Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*******************************************************************************
 
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/*
  30 * 82562G 10/100 Network Connection
  31 * 82562G-2 10/100 Network Connection
  32 * 82562GT 10/100 Network Connection
  33 * 82562GT-2 10/100 Network Connection
  34 * 82562V 10/100 Network Connection
  35 * 82562V-2 10/100 Network Connection
  36 * 82566DC-2 Gigabit Network Connection
  37 * 82566DC Gigabit Network Connection
  38 * 82566DM-2 Gigabit Network Connection
  39 * 82566DM Gigabit Network Connection
  40 * 82566MC Gigabit Network Connection
  41 * 82566MM Gigabit Network Connection
  42 * 82567LM Gigabit Network Connection
  43 * 82567LF Gigabit Network Connection
  44 * 82567V Gigabit Network Connection
  45 * 82567LM-2 Gigabit Network Connection
  46 * 82567LF-2 Gigabit Network Connection
  47 * 82567V-2 Gigabit Network Connection
  48 * 82567LF-3 Gigabit Network Connection
  49 * 82567LM-3 Gigabit Network Connection
  50 * 82567LM-4 Gigabit Network Connection
  51 * 82577LM Gigabit Network Connection
  52 * 82577LC Gigabit Network Connection
  53 * 82578DM Gigabit Network Connection
  54 * 82578DC Gigabit Network Connection
  55 * 82579LM Gigabit Network Connection
  56 * 82579V Gigabit Network Connection
 
 
 
 
 
 
 
 
  57 */
  58
  59#include "e1000.h"
  60
  61#define ICH_FLASH_GFPREG		0x0000
  62#define ICH_FLASH_HSFSTS		0x0004
  63#define ICH_FLASH_HSFCTL		0x0006
  64#define ICH_FLASH_FADDR			0x0008
  65#define ICH_FLASH_FDATA0		0x0010
  66#define ICH_FLASH_PR0			0x0074
  67
  68#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
  69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
  70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
  71#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
  72#define ICH_FLASH_CYCLE_REPEAT_COUNT	10
  73
  74#define ICH_CYCLE_READ			0
  75#define ICH_CYCLE_WRITE			2
  76#define ICH_CYCLE_ERASE			3
  77
  78#define FLASH_GFPREG_BASE_MASK		0x1FFF
  79#define FLASH_SECTOR_ADDR_SHIFT		12
  80
  81#define ICH_FLASH_SEG_SIZE_256		256
  82#define ICH_FLASH_SEG_SIZE_4K		4096
  83#define ICH_FLASH_SEG_SIZE_8K		8192
  84#define ICH_FLASH_SEG_SIZE_64K		65536
  85
  86
  87#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
  88/* FW established a valid mode */
  89#define E1000_ICH_FWSM_FW_VALID		0x00008000
  90
  91#define E1000_ICH_MNG_IAMT_MODE		0x2
  92
  93#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
  94				 (ID_LED_DEF1_OFF2 <<  8) | \
  95				 (ID_LED_DEF1_ON2  <<  4) | \
  96				 (ID_LED_DEF1_DEF2))
  97
  98#define E1000_ICH_NVM_SIG_WORD		0x13
  99#define E1000_ICH_NVM_SIG_MASK		0xC000
 100#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
 101#define E1000_ICH_NVM_SIG_VALUE         0x80
 102
 103#define E1000_ICH8_LAN_INIT_TIMEOUT	1500
 104
 105#define E1000_FEXTNVM_SW_CONFIG		1
 106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
 107
 108#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK    0x0C000000
 109#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC  0x08000000
 110
 111#define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
 112#define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
 113#define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
 114
 115#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
 116
 117#define E1000_ICH_RAR_ENTRIES		7
 118#define E1000_PCH2_RAR_ENTRIES		5 /* RAR[0], SHRA[0-3] */
 119#define E1000_PCH_LPT_RAR_ENTRIES	12 /* RAR[0], SHRA[0-10] */
 120
 121#define PHY_PAGE_SHIFT 5
 122#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
 123			   ((reg) & MAX_PHY_REG_ADDRESS))
 124#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
 125#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
 126
 127#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
 128#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
 129#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
 130
 131#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
 132
 133#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
 134
 135/* SMBus Control Phy Register */
 136#define CV_SMB_CTRL		PHY_REG(769, 23)
 137#define CV_SMB_CTRL_FORCE_SMBUS	0x0001
 138
 139/* SMBus Address Phy Register */
 140#define HV_SMB_ADDR            PHY_REG(768, 26)
 141#define HV_SMB_ADDR_MASK       0x007F
 142#define HV_SMB_ADDR_PEC_EN     0x0200
 143#define HV_SMB_ADDR_VALID      0x0080
 144#define HV_SMB_ADDR_FREQ_MASK           0x1100
 145#define HV_SMB_ADDR_FREQ_LOW_SHIFT      8
 146#define HV_SMB_ADDR_FREQ_HIGH_SHIFT     12
 147
 148/* PHY Power Management Control */
 149#define HV_PM_CTRL		PHY_REG(770, 17)
 150#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA	0x100
 151
 152/* PHY Low Power Idle Control */
 153#define I82579_LPI_CTRL				PHY_REG(772, 20)
 154#define I82579_LPI_CTRL_ENABLE_MASK		0x6000
 155#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
 156
 157/* EMI Registers */
 158#define I82579_EMI_ADDR         0x10
 159#define I82579_EMI_DATA         0x11
 160#define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
 161#define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
 162#define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
 163#define I217_EEE_ADVERTISEMENT  0x8001	/* IEEE MMD Register 7.60 */
 164#define I217_EEE_LP_ABILITY     0x8002	/* IEEE MMD Register 7.61 */
 165#define I217_EEE_100_SUPPORTED  (1 << 1)	/* 100BaseTx EEE supported */
 166
 167/* Intel Rapid Start Technology Support */
 168#define I217_PROXY_CTRL                 BM_PHY_REG(BM_WUC_PAGE, 70)
 169#define I217_PROXY_CTRL_AUTO_DISABLE    0x0080
 170#define I217_SxCTRL                     PHY_REG(BM_PORT_CTRL_PAGE, 28)
 171#define I217_SxCTRL_ENABLE_LPI_RESET    0x1000
 172#define I217_CGFREG                     PHY_REG(772, 29)
 173#define I217_CGFREG_ENABLE_MTA_RESET    0x0002
 174#define I217_MEMPWR                     PHY_REG(772, 26)
 175#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
 176
 177/* Strapping Option Register - RO */
 178#define E1000_STRAP                     0x0000C
 179#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
 180#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
 181#define E1000_STRAP_SMT_FREQ_MASK       0x00003000
 182#define E1000_STRAP_SMT_FREQ_SHIFT      12
 183
 184/* OEM Bits Phy Register */
 185#define HV_OEM_BITS            PHY_REG(768, 25)
 186#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
 187#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
 188#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
 189
 190#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
 191#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
 192
 193/* KMRN Mode Control */
 194#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
 195#define HV_KMRN_MDIO_SLOW      0x0400
 196
 197/* KMRN FIFO Control and Status */
 198#define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
 199#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
 200#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
 201
 202/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
 203/* Offset 04h HSFSTS */
 204union ich8_hws_flash_status {
 205	struct ich8_hsfsts {
 206		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
 207		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
 208		u16 dael       :1; /* bit 2 Direct Access error Log */
 209		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
 210		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
 211		u16 reserved1  :2; /* bit 13:6 Reserved */
 212		u16 reserved2  :6; /* bit 13:6 Reserved */
 213		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
 214		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
 215	} hsf_status;
 216	u16 regval;
 217};
 218
 219/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
 220/* Offset 06h FLCTL */
 221union ich8_hws_flash_ctrl {
 222	struct ich8_hsflctl {
 223		u16 flcgo      :1;   /* 0 Flash Cycle Go */
 224		u16 flcycle    :2;   /* 2:1 Flash Cycle */
 225		u16 reserved   :5;   /* 7:3 Reserved  */
 226		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
 227		u16 flockdn    :6;   /* 15:10 Reserved */
 228	} hsf_ctrl;
 229	u16 regval;
 230};
 231
 232/* ICH Flash Region Access Permissions */
 233union ich8_hws_flash_regacc {
 234	struct ich8_flracc {
 235		u32 grra      :8; /* 0:7 GbE region Read Access */
 236		u32 grwa      :8; /* 8:15 GbE region Write Access */
 237		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
 238		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
 239	} hsf_flregacc;
 240	u16 regval;
 241};
 242
 243/* ICH Flash Protected Region */
 244union ich8_flash_protected_range {
 245	struct ich8_pr {
 246		u32 base:13;     /* 0:12 Protected Range Base */
 247		u32 reserved1:2; /* 13:14 Reserved */
 248		u32 rpe:1;       /* 15 Read Protection Enable */
 249		u32 limit:13;    /* 16:28 Protected Range Limit */
 250		u32 reserved2:2; /* 29:30 Reserved */
 251		u32 wpe:1;       /* 31 Write Protection Enable */
 252	} range;
 253	u32 regval;
 254};
 255
 256static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
 257static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 258static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 259static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 260static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 261						u32 offset, u8 byte);
 262static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 263					 u8 *data);
 264static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 265					 u16 *data);
 266static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 267					 u8 size, u16 *data);
 268static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
 
 
 
 
 
 
 
 269static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 270static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
 271static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 272static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 273static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 274static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 275static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 276static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 277static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 278static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 279static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 280static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 281static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 282static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 283static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 284static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 285static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 286static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 287static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 
 288static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 289static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 
 
 
 290
 291static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 292{
 293	return readw(hw->flash_address + reg);
 294}
 295
 296static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 297{
 298	return readl(hw->flash_address + reg);
 299}
 300
 301static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 302{
 303	writew(val, hw->flash_address + reg);
 304}
 305
 306static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 307{
 308	writel(val, hw->flash_address + reg);
 309}
 310
 311#define er16flash(reg)		__er16flash(hw, (reg))
 312#define er32flash(reg)		__er32flash(hw, (reg))
 313#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 314#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 315
 316/**
 317 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 318 *  @hw: pointer to the HW structure
 319 *
 320 *  Test access to the PHY registers by reading the PHY ID registers.  If
 321 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 322 *  otherwise assume the read PHY ID is correct if it is valid.
 323 *
 324 *  Assumes the sw/fw/hw semaphore is already acquired.
 325 **/
 326static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 327{
 328	u16 phy_reg = 0;
 329	u32 phy_id = 0;
 330	s32 ret_val;
 331	u16 retry_count;
 
 332
 333	for (retry_count = 0; retry_count < 2; retry_count++) {
 334		ret_val = e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
 335		if (ret_val || (phy_reg == 0xFFFF))
 336			continue;
 337		phy_id = (u32)(phy_reg << 16);
 338
 339		ret_val = e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
 340		if (ret_val || (phy_reg == 0xFFFF)) {
 341			phy_id = 0;
 342			continue;
 343		}
 344		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 345		break;
 346	}
 347
 348	if (hw->phy.id) {
 349		if (hw->phy.id == phy_id)
 350			return true;
 351	} else if (phy_id) {
 352		hw->phy.id = phy_id;
 353		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 354		return true;
 355	}
 356
 357	/*
 358	 * In case the PHY needs to be in mdio slow mode,
 359	 * set slow mode and try to get the PHY id again.
 360	 */
 361	hw->phy.ops.release(hw);
 362	ret_val = e1000_set_mdio_slow_mode_hv(hw);
 363	if (!ret_val)
 364		ret_val = e1000e_get_phy_id(hw);
 365	hw->phy.ops.acquire(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366
 367	return !ret_val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368}
 369
 370/**
 371 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 372 *  @hw: pointer to the HW structure
 373 *
 374 *  Workarounds/flow necessary for PHY initialization during driver load
 375 *  and resume paths.
 376 **/
 377static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 378{
 
 379	u32 mac_reg, fwsm = er32(FWSM);
 380	s32 ret_val;
 381	u16 phy_reg;
 
 
 
 
 
 
 
 
 
 
 
 
 382
 383	ret_val = hw->phy.ops.acquire(hw);
 384	if (ret_val) {
 385		e_dbg("Failed to initialize PHY flow\n");
 386		return ret_val;
 387	}
 388
 389	/*
 390	 * The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 391	 * inaccessible and resetting the PHY is not blocked, toggle the
 392	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 393	 */
 394	switch (hw->mac.type) {
 395	case e1000_pch_lpt:
 
 
 
 
 
 
 
 396		if (e1000_phy_is_accessible_pchlan(hw))
 397			break;
 398
 399		/*
 400		 * Before toggling LANPHYPC, see if PHY is accessible by
 401		 * forcing MAC to SMBus mode first.
 402		 */
 403		mac_reg = er32(CTRL_EXT);
 404		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 405		ew32(CTRL_EXT, mac_reg);
 406
 407		/* fall-through */
 408	case e1000_pch2lan:
 409		/*
 410		 * Gate automatic PHY configuration by hardware on
 411		 * non-managed 82579
 412		 */
 413		if ((hw->mac.type == e1000_pch2lan) &&
 414		    !(fwsm & E1000_ICH_FWSM_FW_VALID))
 415			e1000_gate_hw_phy_config_ich8lan(hw, true);
 416
 417		if (e1000_phy_is_accessible_pchlan(hw)) {
 418			if (hw->mac.type == e1000_pch_lpt) {
 419				/* Unforce SMBus mode in PHY */
 420				e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 421				phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 422				e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 423
 424				/* Unforce SMBus mode in MAC */
 425				mac_reg = er32(CTRL_EXT);
 426				mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 427				ew32(CTRL_EXT, mac_reg);
 428			}
 429			break;
 430		}
 431
 432		/* fall-through */
 433	case e1000_pchlan:
 434		if ((hw->mac.type == e1000_pchlan) &&
 435		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 436			break;
 437
 438		if (hw->phy.ops.check_reset_block(hw)) {
 439			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 
 440			break;
 441		}
 442
 443		e_dbg("Toggling LANPHYPC\n");
 
 
 
 
 
 
 
 
 
 
 
 444
 445		/* Set Phy Config Counter to 50msec */
 446		mac_reg = er32(FEXTNVM3);
 447		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 448		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 449		ew32(FEXTNVM3, mac_reg);
 450
 451		/* Toggle LANPHYPC Value bit */
 452		mac_reg = er32(CTRL);
 453		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 454		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 455		ew32(CTRL, mac_reg);
 456		e1e_flush();
 457		udelay(10);
 458		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 459		ew32(CTRL, mac_reg);
 460		e1e_flush();
 461		if (hw->mac.type < e1000_pch_lpt) {
 462			msleep(50);
 463		} else {
 464			u16 count = 20;
 465			do {
 466				usleep_range(5000, 10000);
 467			} while (!(er32(CTRL_EXT) &
 468				   E1000_CTRL_EXT_LPCD) && count--);
 469		}
 470		break;
 471	default:
 472		break;
 473	}
 474
 475	hw->phy.ops.release(hw);
 
 476
 477	/*
 478	 * Reset the PHY before any access to it.  Doing so, ensures
 479	 * that the PHY is in a known good state before we read/write
 480	 * PHY registers.  The generic reset is sufficient here,
 481	 * because we haven't determined the PHY type yet.
 482	 */
 483	ret_val = e1000e_phy_hw_reset_generic(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 484
 
 485	/* Ungate automatic PHY configuration on non-managed 82579 */
 486	if ((hw->mac.type == e1000_pch2lan) &&
 487	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 488		usleep_range(10000, 20000);
 489		e1000_gate_hw_phy_config_ich8lan(hw, false);
 490	}
 491
 492	return ret_val;
 493}
 494
 495/**
 496 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 497 *  @hw: pointer to the HW structure
 498 *
 499 *  Initialize family-specific PHY parameters and function pointers.
 500 **/
 501static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 502{
 503	struct e1000_phy_info *phy = &hw->phy;
 504	s32 ret_val = 0;
 505
 506	phy->addr                     = 1;
 507	phy->reset_delay_us           = 100;
 508
 509	phy->ops.set_page             = e1000_set_page_igp;
 510	phy->ops.read_reg             = e1000_read_phy_reg_hv;
 511	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
 512	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
 513	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
 514	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
 515	phy->ops.write_reg            = e1000_write_phy_reg_hv;
 516	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
 517	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
 518	phy->ops.power_up             = e1000_power_up_phy_copper;
 519	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
 520	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 521
 522	phy->id = e1000_phy_unknown;
 523
 524	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 525	if (ret_val)
 526		return ret_val;
 527
 528	if (phy->id == e1000_phy_unknown)
 529		switch (hw->mac.type) {
 530		default:
 531			ret_val = e1000e_get_phy_id(hw);
 532			if (ret_val)
 533				return ret_val;
 534			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 535				break;
 536			/* fall-through */
 537		case e1000_pch2lan:
 538		case e1000_pch_lpt:
 539			/*
 540			 * In case the PHY needs to be in mdio slow mode,
 
 
 
 
 
 
 541			 * set slow mode and try to get the PHY id again.
 542			 */
 543			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 544			if (ret_val)
 545				return ret_val;
 546			ret_val = e1000e_get_phy_id(hw);
 547			if (ret_val)
 548				return ret_val;
 549			break;
 550		}
 551	phy->type = e1000e_get_phy_type_from_id(phy->id);
 552
 553	switch (phy->type) {
 554	case e1000_phy_82577:
 555	case e1000_phy_82579:
 556	case e1000_phy_i217:
 557		phy->ops.check_polarity = e1000_check_polarity_82577;
 558		phy->ops.force_speed_duplex =
 559		    e1000_phy_force_speed_duplex_82577;
 560		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 561		phy->ops.get_info = e1000_get_phy_info_82577;
 562		phy->ops.commit = e1000e_phy_sw_reset;
 563		break;
 564	case e1000_phy_82578:
 565		phy->ops.check_polarity = e1000_check_polarity_m88;
 566		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 567		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 568		phy->ops.get_info = e1000e_get_phy_info_m88;
 569		break;
 570	default:
 571		ret_val = -E1000_ERR_PHY;
 572		break;
 573	}
 574
 575	return ret_val;
 576}
 577
 578/**
 579 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 580 *  @hw: pointer to the HW structure
 581 *
 582 *  Initialize family-specific PHY parameters and function pointers.
 583 **/
 584static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 585{
 586	struct e1000_phy_info *phy = &hw->phy;
 587	s32 ret_val;
 588	u16 i = 0;
 589
 590	phy->addr			= 1;
 591	phy->reset_delay_us		= 100;
 592
 593	phy->ops.power_up               = e1000_power_up_phy_copper;
 594	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
 595
 596	/*
 597	 * We may need to do this twice - once for IGP and if that fails,
 598	 * we'll set BM func pointers and try again
 599	 */
 600	ret_val = e1000e_determine_phy_address(hw);
 601	if (ret_val) {
 602		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 603		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
 604		ret_val = e1000e_determine_phy_address(hw);
 605		if (ret_val) {
 606			e_dbg("Cannot determine PHY addr. Erroring out\n");
 607			return ret_val;
 608		}
 609	}
 610
 611	phy->id = 0;
 612	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 613	       (i++ < 100)) {
 614		usleep_range(1000, 2000);
 615		ret_val = e1000e_get_phy_id(hw);
 616		if (ret_val)
 617			return ret_val;
 618	}
 619
 620	/* Verify phy id */
 621	switch (phy->id) {
 622	case IGP03E1000_E_PHY_ID:
 623		phy->type = e1000_phy_igp_3;
 624		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 625		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 626		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 627		phy->ops.get_info = e1000e_get_phy_info_igp;
 628		phy->ops.check_polarity = e1000_check_polarity_igp;
 629		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 630		break;
 631	case IFE_E_PHY_ID:
 632	case IFE_PLUS_E_PHY_ID:
 633	case IFE_C_E_PHY_ID:
 634		phy->type = e1000_phy_ife;
 635		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 636		phy->ops.get_info = e1000_get_phy_info_ife;
 637		phy->ops.check_polarity = e1000_check_polarity_ife;
 638		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 639		break;
 640	case BME1000_E_PHY_ID:
 641		phy->type = e1000_phy_bm;
 642		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 643		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 644		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 645		phy->ops.commit = e1000e_phy_sw_reset;
 646		phy->ops.get_info = e1000e_get_phy_info_m88;
 647		phy->ops.check_polarity = e1000_check_polarity_m88;
 648		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 649		break;
 650	default:
 651		return -E1000_ERR_PHY;
 652		break;
 653	}
 654
 655	return 0;
 656}
 657
 658/**
 659 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 660 *  @hw: pointer to the HW structure
 661 *
 662 *  Initialize family-specific NVM parameters and function
 663 *  pointers.
 664 **/
 665static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 666{
 667	struct e1000_nvm_info *nvm = &hw->nvm;
 668	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 669	u32 gfpreg, sector_base_addr, sector_end_addr;
 670	u16 i;
 671
 672	/* Can't read flash registers if the register set isn't mapped. */
 673	if (!hw->flash_address) {
 674		e_dbg("ERROR: Flash registers not mapped\n");
 675		return -E1000_ERR_CONFIG;
 676	}
 677
 678	nvm->type = e1000_nvm_flash_sw;
 679
 680	gfpreg = er32flash(ICH_FLASH_GFPREG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 681
 682	/*
 683	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
 684	 * Add 1 to sector_end_addr since this sector is included in
 685	 * the overall size.
 686	 */
 687	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 688	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 689
 690	/* flash_base_addr is byte-aligned */
 691	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
 692
 693	/*
 694	 * find total size of the NVM, then cut in half since the total
 695	 * size represents two separate NVM banks.
 696	 */
 697	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
 698				<< FLASH_SECTOR_ADDR_SHIFT;
 699	nvm->flash_bank_size /= 2;
 700	/* Adjust to word count */
 701	nvm->flash_bank_size /= sizeof(u16);
 702
 703	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 704
 705	/* Clear shadow ram */
 706	for (i = 0; i < nvm->word_size; i++) {
 707		dev_spec->shadow_ram[i].modified = false;
 708		dev_spec->shadow_ram[i].value    = 0xFFFF;
 709	}
 710
 711	return 0;
 712}
 713
 714/**
 715 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 716 *  @hw: pointer to the HW structure
 717 *
 718 *  Initialize family-specific MAC parameters and function
 719 *  pointers.
 720 **/
 721static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 722{
 723	struct e1000_mac_info *mac = &hw->mac;
 724
 725	/* Set media type function pointer */
 726	hw->phy.media_type = e1000_media_type_copper;
 727
 728	/* Set mta register count */
 729	mac->mta_reg_count = 32;
 730	/* Set rar entry count */
 731	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 732	if (mac->type == e1000_ich8lan)
 733		mac->rar_entry_count--;
 734	/* FWSM register */
 735	mac->has_fwsm = true;
 736	/* ARC subsystem not supported */
 737	mac->arc_subsystem_valid = false;
 738	/* Adaptive IFS supported */
 739	mac->adaptive_ifs = true;
 740
 741	/* LED and other operations */
 742	switch (mac->type) {
 743	case e1000_ich8lan:
 744	case e1000_ich9lan:
 745	case e1000_ich10lan:
 746		/* check management mode */
 747		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 748		/* ID LED init */
 749		mac->ops.id_led_init = e1000e_id_led_init_generic;
 750		/* blink LED */
 751		mac->ops.blink_led = e1000e_blink_led_generic;
 752		/* setup LED */
 753		mac->ops.setup_led = e1000e_setup_led_generic;
 754		/* cleanup LED */
 755		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 756		/* turn on/off LED */
 757		mac->ops.led_on = e1000_led_on_ich8lan;
 758		mac->ops.led_off = e1000_led_off_ich8lan;
 759		break;
 760	case e1000_pch2lan:
 761		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 762		mac->ops.rar_set = e1000_rar_set_pch2lan;
 763		/* fall-through */
 764	case e1000_pch_lpt:
 
 
 
 
 
 
 
 765	case e1000_pchlan:
 766		/* check management mode */
 767		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 768		/* ID LED init */
 769		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 770		/* setup LED */
 771		mac->ops.setup_led = e1000_setup_led_pchlan;
 772		/* cleanup LED */
 773		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 774		/* turn on/off LED */
 775		mac->ops.led_on = e1000_led_on_pchlan;
 776		mac->ops.led_off = e1000_led_off_pchlan;
 777		break;
 778	default:
 779		break;
 780	}
 781
 782	if (mac->type == e1000_pch_lpt) {
 783		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 784		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 
 
 
 785	}
 786
 787	/* Enable PCS Lock-loss workaround for ICH8 */
 788	if (mac->type == e1000_ich8lan)
 789		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 790
 791	/*
 792	 * Gate automatic PHY configuration by hardware on managed
 793	 * 82579 and i217
 794	 */
 795	if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) &&
 796	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
 797		e1000_gate_hw_phy_config_ich8lan(hw, true);
 798
 799	return 0;
 800}
 801
 802/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803 *  e1000_set_eee_pchlan - Enable/disable EEE support
 804 *  @hw: pointer to the HW structure
 805 *
 806 *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
 807 *  the LPI Control register will remain set only if/when link is up.
 
 
 
 
 
 
 
 808 **/
 809static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 810{
 811	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 812	s32 ret_val = 0;
 813	u16 phy_reg;
 814
 815	if ((hw->phy.type != e1000_phy_82579) &&
 816	    (hw->phy.type != e1000_phy_i217))
 
 
 
 
 
 
 
 
 
 
 817		return 0;
 
 818
 819	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
 820	if (ret_val)
 821		return ret_val;
 822
 823	if (dev_spec->eee_disable)
 824		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
 825	else
 826		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
 827
 828	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
 829	if (ret_val)
 830		return ret_val;
 831
 832	if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) {
 
 
 
 
 833		/* Save off link partner's EEE ability */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834		ret_val = hw->phy.ops.acquire(hw);
 835		if (ret_val)
 836			return ret_val;
 837		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
 838					  I217_EEE_LP_ABILITY);
 
 
 839		if (ret_val)
 840			goto release;
 841		e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability);
 842
 843		/*
 844		 * EEE is not supported in 100Half, so ignore partner's EEE
 845		 * in 100 ability if full-duplex is not advertised.
 846		 */
 847		e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg);
 848		if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS))
 849			dev_spec->eee_lp_ability &= ~I217_EEE_100_SUPPORTED;
 
 
 
 
 
 
 
 
 
 850release:
 851		hw->phy.ops.release(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852	}
 853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854	return 0;
 855}
 856
 857/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 859 *  @hw: pointer to the HW structure
 860 *
 861 *  Checks to see of the link status of the hardware has changed.  If a
 862 *  change in link status has been detected, then we read the PHY registers
 863 *  to get the current speed/duplex if link exists.
 864 **/
 865static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
 866{
 867	struct e1000_mac_info *mac = &hw->mac;
 868	s32 ret_val;
 
 869	bool link;
 870	u16 phy_reg;
 871
 872	/*
 873	 * We only want to go out to the PHY registers to see if Auto-Neg
 874	 * has completed and/or if our link status has changed.  The
 875	 * get_link_status flag is set upon receiving a Link Status
 876	 * Change or Rx Sequence Error interrupt.
 877	 */
 878	if (!mac->get_link_status)
 879		return 0;
 
 880
 881	/*
 882	 * First we want to see if the MII Status Register reports
 883	 * link.  If so, then we want to get the current speed/duplex
 884	 * of the PHY.
 885	 */
 886	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 887	if (ret_val)
 888		return ret_val;
 889
 890	if (hw->mac.type == e1000_pchlan) {
 891		ret_val = e1000_k1_gig_workaround_hv(hw, link);
 892		if (ret_val)
 893			return ret_val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894	}
 895
 896	/* Clear link partner's EEE ability */
 897	hw->dev_spec.ich8lan.eee_lp_ability = 0;
 898
 899	if (!link)
 900		return 0; /* No link detected */
 901
 902	mac->get_link_status = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903
 904	switch (hw->mac.type) {
 905	case e1000_pch2lan:
 906		ret_val = e1000_k1_workaround_lv(hw);
 907		if (ret_val)
 908			return ret_val;
 909		/* fall-thru */
 910	case e1000_pchlan:
 911		if (hw->phy.type == e1000_phy_82578) {
 912			ret_val = e1000_link_stall_workaround_hv(hw);
 913			if (ret_val)
 914				return ret_val;
 915		}
 916
 917		/*
 918		 * Workaround for PCHx parts in half-duplex:
 919		 * Set the number of preambles removed from the packet
 920		 * when it is passed from the PHY to the MAC to prevent
 921		 * the MAC from misinterpreting the packet type.
 922		 */
 923		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
 924		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
 925
 926		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
 927			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
 928
 929		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
 930		break;
 931	default:
 932		break;
 933	}
 934
 935	/*
 936	 * Check if there was DownShift, must be checked
 937	 * immediately after link-up
 938	 */
 939	e1000e_check_downshift(hw);
 940
 941	/* Enable/Disable EEE after link up */
 942	ret_val = e1000_set_eee_pchlan(hw);
 943	if (ret_val)
 944		return ret_val;
 
 
 945
 946	/*
 947	 * If we are forcing speed/duplex, then we simply return since
 948	 * we have already determined whether we have link or not.
 949	 */
 950	if (!mac->autoneg)
 951		return -E1000_ERR_CONFIG;
 952
 953	/*
 954	 * Auto-Neg is enabled.  Auto Speed Detection takes care
 955	 * of MAC speed/duplex configuration.  So we only need to
 956	 * configure Collision Distance in the MAC.
 957	 */
 958	mac->ops.config_collision_dist(hw);
 959
 960	/*
 961	 * Configure Flow Control now that Auto-Neg has completed.
 962	 * First, we need to restore the desired flow control
 963	 * settings because we may have had to re-autoneg with a
 964	 * different link partner.
 965	 */
 966	ret_val = e1000e_config_fc_after_link_up(hw);
 967	if (ret_val)
 968		e_dbg("Error configuring flow control\n");
 969
 970	return ret_val;
 
 
 
 
 971}
 972
 973static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
 974{
 975	struct e1000_hw *hw = &adapter->hw;
 976	s32 rc;
 977
 978	rc = e1000_init_mac_params_ich8lan(hw);
 979	if (rc)
 980		return rc;
 981
 982	rc = e1000_init_nvm_params_ich8lan(hw);
 983	if (rc)
 984		return rc;
 985
 986	switch (hw->mac.type) {
 987	case e1000_ich8lan:
 988	case e1000_ich9lan:
 989	case e1000_ich10lan:
 990		rc = e1000_init_phy_params_ich8lan(hw);
 991		break;
 992	case e1000_pchlan:
 993	case e1000_pch2lan:
 994	case e1000_pch_lpt:
 
 
 
 
 
 
 
 995		rc = e1000_init_phy_params_pchlan(hw);
 996		break;
 997	default:
 998		break;
 999	}
1000	if (rc)
1001		return rc;
1002
1003	/*
1004	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1005	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1006	 */
1007	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1008	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1009	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1010		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1011		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1012
1013		hw->mac.ops.blink_led = NULL;
1014	}
1015
1016	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1017	    (adapter->hw.phy.type != e1000_phy_ife))
1018		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1019
1020	/* Enable workaround for 82579 w/ ME enabled */
1021	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1022	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1023		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1024
1025	/* Disable EEE by default until IEEE802.3az spec is finalized */
1026	if (adapter->flags2 & FLAG2_HAS_EEE)
1027		adapter->hw.dev_spec.ich8lan.eee_disable = true;
1028
1029	return 0;
1030}
1031
1032static DEFINE_MUTEX(nvm_mutex);
1033
1034/**
1035 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1036 *  @hw: pointer to the HW structure
1037 *
1038 *  Acquires the mutex for performing NVM operations.
1039 **/
1040static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1041{
1042	mutex_lock(&nvm_mutex);
1043
1044	return 0;
1045}
1046
1047/**
1048 *  e1000_release_nvm_ich8lan - Release NVM mutex
1049 *  @hw: pointer to the HW structure
1050 *
1051 *  Releases the mutex used while performing NVM operations.
1052 **/
1053static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1054{
1055	mutex_unlock(&nvm_mutex);
1056}
1057
1058/**
1059 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1060 *  @hw: pointer to the HW structure
1061 *
1062 *  Acquires the software control flag for performing PHY and select
1063 *  MAC CSR accesses.
1064 **/
1065static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1066{
1067	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1068	s32 ret_val = 0;
1069
1070	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1071			     &hw->adapter->state)) {
1072		e_dbg("contention for Phy access\n");
1073		return -E1000_ERR_PHY;
1074	}
1075
1076	while (timeout) {
1077		extcnf_ctrl = er32(EXTCNF_CTRL);
1078		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1079			break;
1080
1081		mdelay(1);
1082		timeout--;
1083	}
1084
1085	if (!timeout) {
1086		e_dbg("SW has already locked the resource.\n");
1087		ret_val = -E1000_ERR_CONFIG;
1088		goto out;
1089	}
1090
1091	timeout = SW_FLAG_TIMEOUT;
1092
1093	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1094	ew32(EXTCNF_CTRL, extcnf_ctrl);
1095
1096	while (timeout) {
1097		extcnf_ctrl = er32(EXTCNF_CTRL);
1098		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1099			break;
1100
1101		mdelay(1);
1102		timeout--;
1103	}
1104
1105	if (!timeout) {
1106		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1107		      er32(FWSM), extcnf_ctrl);
1108		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1109		ew32(EXTCNF_CTRL, extcnf_ctrl);
1110		ret_val = -E1000_ERR_CONFIG;
1111		goto out;
1112	}
1113
1114out:
1115	if (ret_val)
1116		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1117
1118	return ret_val;
1119}
1120
1121/**
1122 *  e1000_release_swflag_ich8lan - Release software control flag
1123 *  @hw: pointer to the HW structure
1124 *
1125 *  Releases the software control flag for performing PHY and select
1126 *  MAC CSR accesses.
1127 **/
1128static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1129{
1130	u32 extcnf_ctrl;
1131
1132	extcnf_ctrl = er32(EXTCNF_CTRL);
1133
1134	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1135		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1136		ew32(EXTCNF_CTRL, extcnf_ctrl);
1137	} else {
1138		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1139	}
1140
1141	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1142}
1143
1144/**
1145 *  e1000_check_mng_mode_ich8lan - Checks management mode
1146 *  @hw: pointer to the HW structure
1147 *
1148 *  This checks if the adapter has any manageability enabled.
1149 *  This is a function pointer entry point only called by read/write
1150 *  routines for the PHY and NVM parts.
1151 **/
1152static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1153{
1154	u32 fwsm;
1155
1156	fwsm = er32(FWSM);
1157	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1158	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1159		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1160}
1161
1162/**
1163 *  e1000_check_mng_mode_pchlan - Checks management mode
1164 *  @hw: pointer to the HW structure
1165 *
1166 *  This checks if the adapter has iAMT enabled.
1167 *  This is a function pointer entry point only called by read/write
1168 *  routines for the PHY and NVM parts.
1169 **/
1170static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1171{
1172	u32 fwsm;
1173
1174	fwsm = er32(FWSM);
1175	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1176	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1177}
1178
1179/**
1180 *  e1000_rar_set_pch2lan - Set receive address register
1181 *  @hw: pointer to the HW structure
1182 *  @addr: pointer to the receive address
1183 *  @index: receive address array register
1184 *
1185 *  Sets the receive address array register at index to the address passed
1186 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1187 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1188 *  Use SHRA[0-3] in place of those reserved for ME.
1189 **/
1190static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1191{
1192	u32 rar_low, rar_high;
1193
1194	/*
1195	 * HW expects these in little endian so we reverse the byte order
1196	 * from network order (big endian) to little endian
1197	 */
1198	rar_low = ((u32)addr[0] |
1199		   ((u32)addr[1] << 8) |
1200		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1201
1202	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1203
1204	/* If MAC address zero, no need to set the AV bit */
1205	if (rar_low || rar_high)
1206		rar_high |= E1000_RAH_AV;
1207
1208	if (index == 0) {
1209		ew32(RAL(index), rar_low);
1210		e1e_flush();
1211		ew32(RAH(index), rar_high);
1212		e1e_flush();
1213		return;
1214	}
1215
1216	if (index < hw->mac.rar_entry_count) {
 
 
 
1217		s32 ret_val;
1218
1219		ret_val = e1000_acquire_swflag_ich8lan(hw);
1220		if (ret_val)
1221			goto out;
1222
1223		ew32(SHRAL(index - 1), rar_low);
1224		e1e_flush();
1225		ew32(SHRAH(index - 1), rar_high);
1226		e1e_flush();
1227
1228		e1000_release_swflag_ich8lan(hw);
1229
1230		/* verify the register updates */
1231		if ((er32(SHRAL(index - 1)) == rar_low) &&
1232		    (er32(SHRAH(index - 1)) == rar_high))
1233			return;
1234
1235		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1236		      (index - 1), er32(FWSM));
1237	}
1238
1239out:
1240	e_dbg("Failed to write receive address at index %d\n", index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241}
1242
1243/**
1244 *  e1000_rar_set_pch_lpt - Set receive address registers
1245 *  @hw: pointer to the HW structure
1246 *  @addr: pointer to the receive address
1247 *  @index: receive address array register
1248 *
1249 *  Sets the receive address register array at index to the address passed
1250 *  in by addr. For LPT, RAR[0] is the base address register that is to
1251 *  contain the MAC address. SHRA[0-10] are the shared receive address
1252 *  registers that are shared between the Host and manageability engine (ME).
1253 **/
1254static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1255{
1256	u32 rar_low, rar_high;
1257	u32 wlock_mac;
1258
1259	/*
1260	 * HW expects these in little endian so we reverse the byte order
1261	 * from network order (big endian) to little endian
1262	 */
1263	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1264		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1265
1266	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1267
1268	/* If MAC address zero, no need to set the AV bit */
1269	if (rar_low || rar_high)
1270		rar_high |= E1000_RAH_AV;
1271
1272	if (index == 0) {
1273		ew32(RAL(index), rar_low);
1274		e1e_flush();
1275		ew32(RAH(index), rar_high);
1276		e1e_flush();
1277		return;
1278	}
1279
1280	/*
1281	 * The manageability engine (ME) can lock certain SHRAR registers that
1282	 * it is using - those registers are unavailable for use.
1283	 */
1284	if (index < hw->mac.rar_entry_count) {
1285		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1286		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1287
1288		/* Check if all SHRAR registers are locked */
1289		if (wlock_mac == 1)
1290			goto out;
1291
1292		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1293			s32 ret_val;
1294
1295			ret_val = e1000_acquire_swflag_ich8lan(hw);
1296
1297			if (ret_val)
1298				goto out;
1299
1300			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1301			e1e_flush();
1302			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1303			e1e_flush();
1304
1305			e1000_release_swflag_ich8lan(hw);
1306
1307			/* verify the register updates */
1308			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1309			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1310				return;
1311		}
1312	}
1313
1314out:
1315	e_dbg("Failed to write receive address at index %d\n", index);
 
1316}
1317
1318/**
1319 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1320 *  @hw: pointer to the HW structure
1321 *
1322 *  Checks if firmware is blocking the reset of the PHY.
1323 *  This is a function pointer entry point only called by
1324 *  reset routines.
1325 **/
1326static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1327{
1328	u32 fwsm;
1329
1330	fwsm = er32(FWSM);
1331
1332	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
 
 
 
1333}
1334
1335/**
1336 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1337 *  @hw: pointer to the HW structure
1338 *
1339 *  Assumes semaphore already acquired.
1340 *
1341 **/
1342static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1343{
1344	u16 phy_data;
1345	u32 strap = er32(STRAP);
1346	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1347	    E1000_STRAP_SMT_FREQ_SHIFT;
1348	s32 ret_val = 0;
1349
1350	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1351
1352	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1353	if (ret_val)
1354		return ret_val;
1355
1356	phy_data &= ~HV_SMB_ADDR_MASK;
1357	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1358	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1359
1360	if (hw->phy.type == e1000_phy_i217) {
1361		/* Restore SMBus frequency */
1362		if (freq--) {
1363			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1364			phy_data |= (freq & (1 << 0)) <<
1365			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1366			phy_data |= (freq & (1 << 1)) <<
1367			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1368		} else {
1369			e_dbg("Unsupported SMB frequency in PHY\n");
1370		}
1371	}
1372
1373	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1374}
1375
1376/**
1377 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1378 *  @hw:   pointer to the HW structure
1379 *
1380 *  SW should configure the LCD from the NVM extended configuration region
1381 *  as a workaround for certain parts.
1382 **/
1383static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1384{
1385	struct e1000_phy_info *phy = &hw->phy;
1386	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1387	s32 ret_val = 0;
1388	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1389
1390	/*
1391	 * Initialize the PHY from the NVM on ICH platforms.  This
1392	 * is needed due to an issue where the NVM configuration is
1393	 * not properly autoloaded after power transitions.
1394	 * Therefore, after each PHY reset, we will load the
1395	 * configuration data out of the NVM manually.
1396	 */
1397	switch (hw->mac.type) {
1398	case e1000_ich8lan:
1399		if (phy->type != e1000_phy_igp_3)
1400			return ret_val;
1401
1402		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1403		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1404			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1405			break;
1406		}
1407		/* Fall-thru */
1408	case e1000_pchlan:
1409	case e1000_pch2lan:
1410	case e1000_pch_lpt:
 
 
 
 
 
 
 
1411		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1412		break;
1413	default:
1414		return ret_val;
1415	}
1416
1417	ret_val = hw->phy.ops.acquire(hw);
1418	if (ret_val)
1419		return ret_val;
1420
1421	data = er32(FEXTNVM);
1422	if (!(data & sw_cfg_mask))
1423		goto release;
1424
1425	/*
1426	 * Make sure HW does not configure LCD from PHY
1427	 * extended configuration before SW configuration
1428	 */
1429	data = er32(EXTCNF_CTRL);
1430	if ((hw->mac.type < e1000_pch2lan) &&
1431	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1432		goto release;
1433
1434	cnf_size = er32(EXTCNF_SIZE);
1435	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1436	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1437	if (!cnf_size)
1438		goto release;
1439
1440	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1441	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1442
1443	if (((hw->mac.type == e1000_pchlan) &&
1444	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1445	    (hw->mac.type > e1000_pchlan)) {
1446		/*
1447		 * HW configures the SMBus address and LEDs when the
1448		 * OEM and LCD Write Enable bits are set in the NVM.
1449		 * When both NVM bits are cleared, SW will configure
1450		 * them instead.
1451		 */
1452		ret_val = e1000_write_smbus_addr(hw);
1453		if (ret_val)
1454			goto release;
1455
1456		data = er32(LEDCTL);
1457		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1458							(u16)data);
1459		if (ret_val)
1460			goto release;
1461	}
1462
1463	/* Configure LCD from extended configuration region. */
1464
1465	/* cnf_base_addr is in DWORD */
1466	word_addr = (u16)(cnf_base_addr << 1);
1467
1468	for (i = 0; i < cnf_size; i++) {
1469		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1470					 &reg_data);
1471		if (ret_val)
1472			goto release;
1473
1474		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1475					 1, &reg_addr);
1476		if (ret_val)
1477			goto release;
1478
1479		/* Save off the PHY page for future writes. */
1480		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1481			phy_page = reg_data;
1482			continue;
1483		}
1484
1485		reg_addr &= PHY_REG_MASK;
1486		reg_addr |= phy_page;
1487
1488		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1489		if (ret_val)
1490			goto release;
1491	}
1492
1493release:
1494	hw->phy.ops.release(hw);
1495	return ret_val;
1496}
1497
1498/**
1499 *  e1000_k1_gig_workaround_hv - K1 Si workaround
1500 *  @hw:   pointer to the HW structure
1501 *  @link: link up bool flag
1502 *
1503 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1504 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1505 *  If link is down, the function will restore the default K1 setting located
1506 *  in the NVM.
1507 **/
1508static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1509{
1510	s32 ret_val = 0;
1511	u16 status_reg = 0;
1512	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1513
1514	if (hw->mac.type != e1000_pchlan)
1515		return 0;
1516
1517	/* Wrap the whole flow with the sw flag */
1518	ret_val = hw->phy.ops.acquire(hw);
1519	if (ret_val)
1520		return ret_val;
1521
1522	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1523	if (link) {
1524		if (hw->phy.type == e1000_phy_82578) {
1525			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1526						  &status_reg);
1527			if (ret_val)
1528				goto release;
1529
1530			status_reg &= BM_CS_STATUS_LINK_UP |
1531			              BM_CS_STATUS_RESOLVED |
1532			              BM_CS_STATUS_SPEED_MASK;
1533
1534			if (status_reg == (BM_CS_STATUS_LINK_UP |
1535			                   BM_CS_STATUS_RESOLVED |
1536			                   BM_CS_STATUS_SPEED_1000))
1537				k1_enable = false;
1538		}
1539
1540		if (hw->phy.type == e1000_phy_82577) {
1541			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1542			if (ret_val)
1543				goto release;
1544
1545			status_reg &= HV_M_STATUS_LINK_UP |
1546			              HV_M_STATUS_AUTONEG_COMPLETE |
1547			              HV_M_STATUS_SPEED_MASK;
1548
1549			if (status_reg == (HV_M_STATUS_LINK_UP |
1550			                   HV_M_STATUS_AUTONEG_COMPLETE |
1551			                   HV_M_STATUS_SPEED_1000))
1552				k1_enable = false;
1553		}
1554
1555		/* Link stall fix for link up */
1556		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1557		if (ret_val)
1558			goto release;
1559
1560	} else {
1561		/* Link stall fix for link down */
1562		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1563		if (ret_val)
1564			goto release;
1565	}
1566
1567	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1568
1569release:
1570	hw->phy.ops.release(hw);
1571
1572	return ret_val;
1573}
1574
1575/**
1576 *  e1000_configure_k1_ich8lan - Configure K1 power state
1577 *  @hw: pointer to the HW structure
1578 *  @enable: K1 state to configure
1579 *
1580 *  Configure the K1 power state based on the provided parameter.
1581 *  Assumes semaphore already acquired.
1582 *
1583 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1584 **/
1585s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1586{
1587	s32 ret_val = 0;
1588	u32 ctrl_reg = 0;
1589	u32 ctrl_ext = 0;
1590	u32 reg = 0;
1591	u16 kmrn_reg = 0;
1592
1593	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1594					      &kmrn_reg);
1595	if (ret_val)
1596		return ret_val;
1597
1598	if (k1_enable)
1599		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1600	else
1601		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1602
1603	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1604					       kmrn_reg);
1605	if (ret_val)
1606		return ret_val;
1607
1608	udelay(20);
1609	ctrl_ext = er32(CTRL_EXT);
1610	ctrl_reg = er32(CTRL);
1611
1612	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1613	reg |= E1000_CTRL_FRCSPD;
1614	ew32(CTRL, reg);
1615
1616	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1617	e1e_flush();
1618	udelay(20);
1619	ew32(CTRL, ctrl_reg);
1620	ew32(CTRL_EXT, ctrl_ext);
1621	e1e_flush();
1622	udelay(20);
1623
1624	return 0;
1625}
1626
1627/**
1628 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1629 *  @hw:       pointer to the HW structure
1630 *  @d0_state: boolean if entering d0 or d3 device state
1631 *
1632 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1633 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1634 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1635 **/
1636static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1637{
1638	s32 ret_val = 0;
1639	u32 mac_reg;
1640	u16 oem_reg;
1641
1642	if (hw->mac.type < e1000_pchlan)
1643		return ret_val;
1644
1645	ret_val = hw->phy.ops.acquire(hw);
1646	if (ret_val)
1647		return ret_val;
1648
1649	if (hw->mac.type == e1000_pchlan) {
1650		mac_reg = er32(EXTCNF_CTRL);
1651		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1652			goto release;
1653	}
1654
1655	mac_reg = er32(FEXTNVM);
1656	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1657		goto release;
1658
1659	mac_reg = er32(PHY_CTRL);
1660
1661	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1662	if (ret_val)
1663		goto release;
1664
1665	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1666
1667	if (d0_state) {
1668		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1669			oem_reg |= HV_OEM_BITS_GBE_DIS;
1670
1671		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1672			oem_reg |= HV_OEM_BITS_LPLU;
1673	} else {
1674		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1675			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1676			oem_reg |= HV_OEM_BITS_GBE_DIS;
1677
1678		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1679			       E1000_PHY_CTRL_NOND0A_LPLU))
1680			oem_reg |= HV_OEM_BITS_LPLU;
1681	}
1682
1683	/* Set Restart auto-neg to activate the bits */
1684	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1685	    !hw->phy.ops.check_reset_block(hw))
1686		oem_reg |= HV_OEM_BITS_RESTART_AN;
1687
1688	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1689
1690release:
1691	hw->phy.ops.release(hw);
1692
1693	return ret_val;
1694}
1695
1696
1697/**
1698 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1699 *  @hw:   pointer to the HW structure
1700 **/
1701static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1702{
1703	s32 ret_val;
1704	u16 data;
1705
1706	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1707	if (ret_val)
1708		return ret_val;
1709
1710	data |= HV_KMRN_MDIO_SLOW;
1711
1712	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1713
1714	return ret_val;
1715}
1716
1717/**
1718 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1719 *  done after every PHY reset.
 
 
1720 **/
1721static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1722{
1723	s32 ret_val = 0;
1724	u16 phy_data;
1725
1726	if (hw->mac.type != e1000_pchlan)
1727		return 0;
1728
1729	/* Set MDIO slow mode before any other MDIO access */
1730	if (hw->phy.type == e1000_phy_82577) {
1731		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1732		if (ret_val)
1733			return ret_val;
1734	}
1735
1736	if (((hw->phy.type == e1000_phy_82577) &&
1737	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1738	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1739		/* Disable generation of early preamble */
1740		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1741		if (ret_val)
1742			return ret_val;
1743
1744		/* Preamble tuning for SSC */
1745		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1746		if (ret_val)
1747			return ret_val;
1748	}
1749
1750	if (hw->phy.type == e1000_phy_82578) {
1751		/*
1752		 * Return registers to default by doing a soft reset then
1753		 * writing 0x3140 to the control register.
1754		 */
1755		if (hw->phy.revision < 2) {
1756			e1000e_phy_sw_reset(hw);
1757			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
 
 
1758		}
1759	}
1760
1761	/* Select page 0 */
1762	ret_val = hw->phy.ops.acquire(hw);
1763	if (ret_val)
1764		return ret_val;
1765
1766	hw->phy.addr = 1;
1767	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1768	hw->phy.ops.release(hw);
1769	if (ret_val)
1770		return ret_val;
1771
1772	/*
1773	 * Configure the K1 Si workaround during phy reset assuming there is
1774	 * link so that it disables K1 if link is in 1Gbps.
1775	 */
1776	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1777	if (ret_val)
1778		return ret_val;
1779
1780	/* Workaround for link disconnects on a busy hub in half duplex */
1781	ret_val = hw->phy.ops.acquire(hw);
1782	if (ret_val)
1783		return ret_val;
1784	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1785	if (ret_val)
1786		goto release;
1787	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
 
 
 
 
 
1788release:
1789	hw->phy.ops.release(hw);
1790
1791	return ret_val;
1792}
1793
1794/**
1795 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1796 *  @hw:   pointer to the HW structure
1797 **/
1798void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1799{
1800	u32 mac_reg;
1801	u16 i, phy_reg = 0;
1802	s32 ret_val;
1803
1804	ret_val = hw->phy.ops.acquire(hw);
1805	if (ret_val)
1806		return;
1807	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1808	if (ret_val)
1809		goto release;
1810
1811	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1812	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1813		mac_reg = er32(RAL(i));
1814		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1815					   (u16)(mac_reg & 0xFFFF));
1816		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1817					   (u16)((mac_reg >> 16) & 0xFFFF));
1818
1819		mac_reg = er32(RAH(i));
1820		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1821					   (u16)(mac_reg & 0xFFFF));
1822		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1823					   (u16)((mac_reg & E1000_RAH_AV)
1824						 >> 16));
1825	}
1826
1827	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1828
1829release:
1830	hw->phy.ops.release(hw);
1831}
1832
1833/**
1834 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1835 *  with 82579 PHY
1836 *  @hw: pointer to the HW structure
1837 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1838 **/
1839s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1840{
1841	s32 ret_val = 0;
1842	u16 phy_reg, data;
1843	u32 mac_reg;
1844	u16 i;
1845
1846	if (hw->mac.type < e1000_pch2lan)
1847		return 0;
1848
1849	/* disable Rx path while enabling/disabling workaround */
1850	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1851	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1852	if (ret_val)
1853		return ret_val;
1854
1855	if (enable) {
1856		/*
1857		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1858		 * SHRAL/H) and initial CRC values to the MAC
1859		 */
1860		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1861			u8 mac_addr[ETH_ALEN] = {0};
1862			u32 addr_high, addr_low;
1863
1864			addr_high = er32(RAH(i));
1865			if (!(addr_high & E1000_RAH_AV))
1866				continue;
1867			addr_low = er32(RAL(i));
1868			mac_addr[0] = (addr_low & 0xFF);
1869			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1870			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1871			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1872			mac_addr[4] = (addr_high & 0xFF);
1873			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1874
1875			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1876		}
1877
1878		/* Write Rx addresses to the PHY */
1879		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1880
1881		/* Enable jumbo frame workaround in the MAC */
1882		mac_reg = er32(FFLT_DBG);
1883		mac_reg &= ~(1 << 14);
1884		mac_reg |= (7 << 15);
1885		ew32(FFLT_DBG, mac_reg);
1886
1887		mac_reg = er32(RCTL);
1888		mac_reg |= E1000_RCTL_SECRC;
1889		ew32(RCTL, mac_reg);
1890
1891		ret_val = e1000e_read_kmrn_reg(hw,
1892						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1893						&data);
1894		if (ret_val)
1895			return ret_val;
1896		ret_val = e1000e_write_kmrn_reg(hw,
1897						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1898						data | (1 << 0));
1899		if (ret_val)
1900			return ret_val;
1901		ret_val = e1000e_read_kmrn_reg(hw,
1902						E1000_KMRNCTRLSTA_HD_CTRL,
1903						&data);
1904		if (ret_val)
1905			return ret_val;
1906		data &= ~(0xF << 8);
1907		data |= (0xB << 8);
1908		ret_val = e1000e_write_kmrn_reg(hw,
1909						E1000_KMRNCTRLSTA_HD_CTRL,
1910						data);
1911		if (ret_val)
1912			return ret_val;
1913
1914		/* Enable jumbo frame workaround in the PHY */
1915		e1e_rphy(hw, PHY_REG(769, 23), &data);
1916		data &= ~(0x7F << 5);
1917		data |= (0x37 << 5);
1918		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1919		if (ret_val)
1920			return ret_val;
1921		e1e_rphy(hw, PHY_REG(769, 16), &data);
1922		data &= ~(1 << 13);
1923		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1924		if (ret_val)
1925			return ret_val;
1926		e1e_rphy(hw, PHY_REG(776, 20), &data);
1927		data &= ~(0x3FF << 2);
1928		data |= (0x1A << 2);
1929		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1930		if (ret_val)
1931			return ret_val;
1932		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1933		if (ret_val)
1934			return ret_val;
1935		e1e_rphy(hw, HV_PM_CTRL, &data);
1936		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1937		if (ret_val)
1938			return ret_val;
1939	} else {
1940		/* Write MAC register values back to h/w defaults */
1941		mac_reg = er32(FFLT_DBG);
1942		mac_reg &= ~(0xF << 14);
1943		ew32(FFLT_DBG, mac_reg);
1944
1945		mac_reg = er32(RCTL);
1946		mac_reg &= ~E1000_RCTL_SECRC;
1947		ew32(RCTL, mac_reg);
1948
1949		ret_val = e1000e_read_kmrn_reg(hw,
1950						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1951						&data);
1952		if (ret_val)
1953			return ret_val;
1954		ret_val = e1000e_write_kmrn_reg(hw,
1955						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1956						data & ~(1 << 0));
1957		if (ret_val)
1958			return ret_val;
1959		ret_val = e1000e_read_kmrn_reg(hw,
1960						E1000_KMRNCTRLSTA_HD_CTRL,
1961						&data);
1962		if (ret_val)
1963			return ret_val;
1964		data &= ~(0xF << 8);
1965		data |= (0xB << 8);
1966		ret_val = e1000e_write_kmrn_reg(hw,
1967						E1000_KMRNCTRLSTA_HD_CTRL,
1968						data);
1969		if (ret_val)
1970			return ret_val;
1971
1972		/* Write PHY register values back to h/w defaults */
1973		e1e_rphy(hw, PHY_REG(769, 23), &data);
1974		data &= ~(0x7F << 5);
1975		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1976		if (ret_val)
1977			return ret_val;
1978		e1e_rphy(hw, PHY_REG(769, 16), &data);
1979		data |= (1 << 13);
1980		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1981		if (ret_val)
1982			return ret_val;
1983		e1e_rphy(hw, PHY_REG(776, 20), &data);
1984		data &= ~(0x3FF << 2);
1985		data |= (0x8 << 2);
1986		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1987		if (ret_val)
1988			return ret_val;
1989		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1990		if (ret_val)
1991			return ret_val;
1992		e1e_rphy(hw, HV_PM_CTRL, &data);
1993		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1994		if (ret_val)
1995			return ret_val;
1996	}
1997
1998	/* re-enable Rx path after enabling/disabling workaround */
1999	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2000}
2001
2002/**
2003 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2004 *  done after every PHY reset.
 
 
2005 **/
2006static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2007{
2008	s32 ret_val = 0;
2009
2010	if (hw->mac.type != e1000_pch2lan)
2011		return 0;
2012
2013	/* Set MDIO slow mode before any other MDIO access */
2014	ret_val = e1000_set_mdio_slow_mode_hv(hw);
 
 
2015
2016	ret_val = hw->phy.ops.acquire(hw);
2017	if (ret_val)
2018		return ret_val;
2019	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
2020	if (ret_val)
2021		goto release;
2022	/* set MSE higher to enable link to stay up when noise is high */
2023	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
2024	if (ret_val)
2025		goto release;
2026	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
2027	if (ret_val)
2028		goto release;
2029	/* drop link after 5 times MSE threshold was reached */
2030	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
2031release:
2032	hw->phy.ops.release(hw);
2033
2034	return ret_val;
2035}
2036
2037/**
2038 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2039 *  @hw:   pointer to the HW structure
2040 *
2041 *  Workaround to set the K1 beacon duration for 82579 parts
 
2042 **/
2043static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2044{
2045	s32 ret_val = 0;
2046	u16 status_reg = 0;
2047	u32 mac_reg;
2048	u16 phy_reg;
2049
2050	if (hw->mac.type != e1000_pch2lan)
2051		return 0;
2052
2053	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
2054	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2055	if (ret_val)
2056		return ret_val;
2057
2058	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2059	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2060		mac_reg = er32(FEXTNVM4);
2061		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2062
2063		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2064		if (ret_val)
2065			return ret_val;
2066
2067		if (status_reg & HV_M_STATUS_SPEED_1000) {
2068			u16 pm_phy_reg;
2069
2070			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2071			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2072			/* LV 1G Packet drop issue wa  */
2073			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2074			if (ret_val)
2075				return ret_val;
2076			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2077			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2078			if (ret_val)
2079				return ret_val;
2080		} else {
 
 
 
 
2081			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2082			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2083		}
2084		ew32(FEXTNVM4, mac_reg);
2085		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2086	}
2087
2088	return ret_val;
2089}
2090
2091/**
2092 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2093 *  @hw:   pointer to the HW structure
2094 *  @gate: boolean set to true to gate, false to ungate
2095 *
2096 *  Gate/ungate the automatic PHY configuration via hardware; perform
2097 *  the configuration via software instead.
2098 **/
2099static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2100{
2101	u32 extcnf_ctrl;
2102
2103	if (hw->mac.type < e1000_pch2lan)
2104		return;
2105
2106	extcnf_ctrl = er32(EXTCNF_CTRL);
2107
2108	if (gate)
2109		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2110	else
2111		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2112
2113	ew32(EXTCNF_CTRL, extcnf_ctrl);
2114}
2115
2116/**
2117 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2118 *  @hw: pointer to the HW structure
2119 *
2120 *  Check the appropriate indication the MAC has finished configuring the
2121 *  PHY after a software reset.
2122 **/
2123static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2124{
2125	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2126
2127	/* Wait for basic configuration completes before proceeding */
2128	do {
2129		data = er32(STATUS);
2130		data &= E1000_STATUS_LAN_INIT_DONE;
2131		udelay(100);
2132	} while ((!data) && --loop);
2133
2134	/*
2135	 * If basic configuration is incomplete before the above loop
2136	 * count reaches 0, loading the configuration from NVM will
2137	 * leave the PHY in a bad state possibly resulting in no link.
2138	 */
2139	if (loop == 0)
2140		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2141
2142	/* Clear the Init Done bit for the next init event */
2143	data = er32(STATUS);
2144	data &= ~E1000_STATUS_LAN_INIT_DONE;
2145	ew32(STATUS, data);
2146}
2147
2148/**
2149 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2150 *  @hw: pointer to the HW structure
2151 **/
2152static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2153{
2154	s32 ret_val = 0;
2155	u16 reg;
2156
2157	if (hw->phy.ops.check_reset_block(hw))
2158		return 0;
2159
2160	/* Allow time for h/w to get to quiescent state after reset */
2161	usleep_range(10000, 20000);
2162
2163	/* Perform any necessary post-reset workarounds */
2164	switch (hw->mac.type) {
2165	case e1000_pchlan:
2166		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2167		if (ret_val)
2168			return ret_val;
2169		break;
2170	case e1000_pch2lan:
2171		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2172		if (ret_val)
2173			return ret_val;
2174		break;
2175	default:
2176		break;
2177	}
2178
2179	/* Clear the host wakeup bit after lcd reset */
2180	if (hw->mac.type >= e1000_pchlan) {
2181		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2182		reg &= ~BM_WUC_HOST_WU_BIT;
2183		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2184	}
2185
2186	/* Configure the LCD with the extended configuration region in NVM */
2187	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2188	if (ret_val)
2189		return ret_val;
2190
2191	/* Configure the LCD with the OEM bits in NVM */
2192	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2193
2194	if (hw->mac.type == e1000_pch2lan) {
2195		/* Ungate automatic PHY configuration on non-managed 82579 */
2196		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2197			usleep_range(10000, 20000);
2198			e1000_gate_hw_phy_config_ich8lan(hw, false);
2199		}
2200
2201		/* Set EEE LPI Update Timer to 200usec */
2202		ret_val = hw->phy.ops.acquire(hw);
2203		if (ret_val)
2204			return ret_val;
2205		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
2206					  I82579_LPI_UPDATE_TIMER);
2207		if (!ret_val)
2208			ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
2209		hw->phy.ops.release(hw);
2210	}
2211
2212	return ret_val;
2213}
2214
2215/**
2216 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2217 *  @hw: pointer to the HW structure
2218 *
2219 *  Resets the PHY
2220 *  This is a function pointer entry point called by drivers
2221 *  or other shared routines.
2222 **/
2223static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2224{
2225	s32 ret_val = 0;
2226
2227	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2228	if ((hw->mac.type == e1000_pch2lan) &&
2229	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2230		e1000_gate_hw_phy_config_ich8lan(hw, true);
2231
2232	ret_val = e1000e_phy_hw_reset_generic(hw);
2233	if (ret_val)
2234		return ret_val;
2235
2236	return e1000_post_phy_reset_ich8lan(hw);
2237}
2238
2239/**
2240 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2241 *  @hw: pointer to the HW structure
2242 *  @active: true to enable LPLU, false to disable
2243 *
2244 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2245 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2246 *  the phy speed. This function will manually set the LPLU bit and restart
2247 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2248 *  since it configures the same bit.
2249 **/
2250static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2251{
2252	s32 ret_val = 0;
2253	u16 oem_reg;
2254
2255	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2256	if (ret_val)
2257		return ret_val;
2258
2259	if (active)
2260		oem_reg |= HV_OEM_BITS_LPLU;
2261	else
2262		oem_reg &= ~HV_OEM_BITS_LPLU;
2263
2264	if (!hw->phy.ops.check_reset_block(hw))
2265		oem_reg |= HV_OEM_BITS_RESTART_AN;
2266
2267	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2268}
2269
2270/**
2271 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2272 *  @hw: pointer to the HW structure
2273 *  @active: true to enable LPLU, false to disable
2274 *
2275 *  Sets the LPLU D0 state according to the active flag.  When
2276 *  activating LPLU this function also disables smart speed
2277 *  and vice versa.  LPLU will not be activated unless the
2278 *  device autonegotiation advertisement meets standards of
2279 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2280 *  This is a function pointer entry point only called by
2281 *  PHY setup routines.
2282 **/
2283static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2284{
2285	struct e1000_phy_info *phy = &hw->phy;
2286	u32 phy_ctrl;
2287	s32 ret_val = 0;
2288	u16 data;
2289
2290	if (phy->type == e1000_phy_ife)
2291		return 0;
2292
2293	phy_ctrl = er32(PHY_CTRL);
2294
2295	if (active) {
2296		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2297		ew32(PHY_CTRL, phy_ctrl);
2298
2299		if (phy->type != e1000_phy_igp_3)
2300			return 0;
2301
2302		/*
2303		 * Call gig speed drop workaround on LPLU before accessing
2304		 * any PHY registers
2305		 */
2306		if (hw->mac.type == e1000_ich8lan)
2307			e1000e_gig_downshift_workaround_ich8lan(hw);
2308
2309		/* When LPLU is enabled, we should disable SmartSpeed */
2310		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
 
 
2311		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2312		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2313		if (ret_val)
2314			return ret_val;
2315	} else {
2316		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2317		ew32(PHY_CTRL, phy_ctrl);
2318
2319		if (phy->type != e1000_phy_igp_3)
2320			return 0;
2321
2322		/*
2323		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2324		 * during Dx states where the power conservation is most
2325		 * important.  During driver activity we should enable
2326		 * SmartSpeed, so performance is maintained.
2327		 */
2328		if (phy->smart_speed == e1000_smart_speed_on) {
2329			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2330					   &data);
2331			if (ret_val)
2332				return ret_val;
2333
2334			data |= IGP01E1000_PSCFR_SMART_SPEED;
2335			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2336					   data);
2337			if (ret_val)
2338				return ret_val;
2339		} else if (phy->smart_speed == e1000_smart_speed_off) {
2340			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2341					   &data);
2342			if (ret_val)
2343				return ret_val;
2344
2345			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2346			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2347					   data);
2348			if (ret_val)
2349				return ret_val;
2350		}
2351	}
2352
2353	return 0;
2354}
2355
2356/**
2357 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2358 *  @hw: pointer to the HW structure
2359 *  @active: true to enable LPLU, false to disable
2360 *
2361 *  Sets the LPLU D3 state according to the active flag.  When
2362 *  activating LPLU this function also disables smart speed
2363 *  and vice versa.  LPLU will not be activated unless the
2364 *  device autonegotiation advertisement meets standards of
2365 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2366 *  This is a function pointer entry point only called by
2367 *  PHY setup routines.
2368 **/
2369static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2370{
2371	struct e1000_phy_info *phy = &hw->phy;
2372	u32 phy_ctrl;
2373	s32 ret_val = 0;
2374	u16 data;
2375
2376	phy_ctrl = er32(PHY_CTRL);
2377
2378	if (!active) {
2379		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2380		ew32(PHY_CTRL, phy_ctrl);
2381
2382		if (phy->type != e1000_phy_igp_3)
2383			return 0;
2384
2385		/*
2386		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2387		 * during Dx states where the power conservation is most
2388		 * important.  During driver activity we should enable
2389		 * SmartSpeed, so performance is maintained.
2390		 */
2391		if (phy->smart_speed == e1000_smart_speed_on) {
2392			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2393					   &data);
2394			if (ret_val)
2395				return ret_val;
2396
2397			data |= IGP01E1000_PSCFR_SMART_SPEED;
2398			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2399					   data);
2400			if (ret_val)
2401				return ret_val;
2402		} else if (phy->smart_speed == e1000_smart_speed_off) {
2403			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2404					   &data);
2405			if (ret_val)
2406				return ret_val;
2407
2408			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2409			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2410					   data);
2411			if (ret_val)
2412				return ret_val;
2413		}
2414	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2415		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2416		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2417		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2418		ew32(PHY_CTRL, phy_ctrl);
2419
2420		if (phy->type != e1000_phy_igp_3)
2421			return 0;
2422
2423		/*
2424		 * Call gig speed drop workaround on LPLU before accessing
2425		 * any PHY registers
2426		 */
2427		if (hw->mac.type == e1000_ich8lan)
2428			e1000e_gig_downshift_workaround_ich8lan(hw);
2429
2430		/* When LPLU is enabled, we should disable SmartSpeed */
2431		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2432		if (ret_val)
2433			return ret_val;
2434
2435		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2436		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2437	}
2438
2439	return ret_val;
2440}
2441
2442/**
2443 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2444 *  @hw: pointer to the HW structure
2445 *  @bank:  pointer to the variable that returns the active bank
2446 *
2447 *  Reads signature byte from the NVM using the flash access registers.
2448 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2449 **/
2450static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2451{
2452	u32 eecd;
2453	struct e1000_nvm_info *nvm = &hw->nvm;
2454	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2455	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
 
2456	u8 sig_byte = 0;
2457	s32 ret_val;
2458
2459	switch (hw->mac.type) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460	case e1000_ich8lan:
2461	case e1000_ich9lan:
2462		eecd = er32(EECD);
2463		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2464		    E1000_EECD_SEC1VAL_VALID_MASK) {
2465			if (eecd & E1000_EECD_SEC1VAL)
2466				*bank = 1;
2467			else
2468				*bank = 0;
2469
2470			return 0;
2471		}
2472		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2473		/* fall-thru */
2474	default:
2475		/* set bank to 0 in case flash read fails */
2476		*bank = 0;
2477
2478		/* Check bank 0 */
2479		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2480		                                        &sig_byte);
2481		if (ret_val)
2482			return ret_val;
2483		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2484		    E1000_ICH_NVM_SIG_VALUE) {
2485			*bank = 0;
2486			return 0;
2487		}
2488
2489		/* Check bank 1 */
2490		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2491		                                        bank1_offset,
2492		                                        &sig_byte);
2493		if (ret_val)
2494			return ret_val;
2495		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2496		    E1000_ICH_NVM_SIG_VALUE) {
2497			*bank = 1;
2498			return 0;
2499		}
2500
2501		e_dbg("ERROR: No valid NVM bank present\n");
2502		return -E1000_ERR_NVM;
2503	}
2504}
2505
2506/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2507 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2508 *  @hw: pointer to the HW structure
2509 *  @offset: The offset (in bytes) of the word(s) to read.
2510 *  @words: Size of data to read in words
2511 *  @data: Pointer to the word(s) to read at offset.
2512 *
2513 *  Reads a word(s) from the NVM using the flash access registers.
2514 **/
2515static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2516				  u16 *data)
2517{
2518	struct e1000_nvm_info *nvm = &hw->nvm;
2519	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2520	u32 act_offset;
2521	s32 ret_val = 0;
2522	u32 bank = 0;
2523	u16 i, word;
2524
2525	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2526	    (words == 0)) {
2527		e_dbg("nvm parameter(s) out of bounds\n");
2528		ret_val = -E1000_ERR_NVM;
2529		goto out;
2530	}
2531
2532	nvm->ops.acquire(hw);
2533
2534	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2535	if (ret_val) {
2536		e_dbg("Could not detect valid bank, assuming bank 0\n");
2537		bank = 0;
2538	}
2539
2540	act_offset = (bank) ? nvm->flash_bank_size : 0;
2541	act_offset += offset;
2542
2543	ret_val = 0;
2544	for (i = 0; i < words; i++) {
2545		if (dev_spec->shadow_ram[offset+i].modified) {
2546			data[i] = dev_spec->shadow_ram[offset+i].value;
2547		} else {
2548			ret_val = e1000_read_flash_word_ich8lan(hw,
2549								act_offset + i,
2550								&word);
2551			if (ret_val)
2552				break;
2553			data[i] = word;
2554		}
2555	}
2556
2557	nvm->ops.release(hw);
2558
2559out:
2560	if (ret_val)
2561		e_dbg("NVM read error: %d\n", ret_val);
2562
2563	return ret_val;
2564}
2565
2566/**
2567 *  e1000_flash_cycle_init_ich8lan - Initialize flash
2568 *  @hw: pointer to the HW structure
2569 *
2570 *  This function does initial flash setup so that a new read/write/erase cycle
2571 *  can be started.
2572 **/
2573static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2574{
2575	union ich8_hws_flash_status hsfsts;
2576	s32 ret_val = -E1000_ERR_NVM;
2577
2578	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2579
2580	/* Check if the flash descriptor is valid */
2581	if (!hsfsts.hsf_status.fldesvalid) {
2582		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2583		return -E1000_ERR_NVM;
2584	}
2585
2586	/* Clear FCERR and DAEL in hw status by writing 1 */
2587	hsfsts.hsf_status.flcerr = 1;
2588	hsfsts.hsf_status.dael = 1;
 
 
 
 
2589
2590	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2591
2592	/*
2593	 * Either we should have a hardware SPI cycle in progress
2594	 * bit to check against, in order to start a new cycle or
2595	 * FDONE bit should be changed in the hardware so that it
2596	 * is 1 after hardware reset, which can then be used as an
2597	 * indication whether a cycle is in progress or has been
2598	 * completed.
2599	 */
2600
2601	if (!hsfsts.hsf_status.flcinprog) {
2602		/*
2603		 * There is no cycle running at present,
2604		 * so we can start a cycle.
2605		 * Begin by setting Flash Cycle Done.
2606		 */
2607		hsfsts.hsf_status.flcdone = 1;
2608		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
 
 
 
2609		ret_val = 0;
2610	} else {
2611		s32 i;
2612
2613		/*
2614		 * Otherwise poll for sometime so the current
2615		 * cycle has a chance to end before giving up.
2616		 */
2617		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2618			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2619			if (!hsfsts.hsf_status.flcinprog) {
2620				ret_val = 0;
2621				break;
2622			}
2623			udelay(1);
2624		}
2625		if (!ret_val) {
2626			/*
2627			 * Successful in waiting for previous cycle to timeout,
2628			 * now set the Flash Cycle Done.
2629			 */
2630			hsfsts.hsf_status.flcdone = 1;
2631			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
 
 
 
 
2632		} else {
2633			e_dbg("Flash controller busy, cannot get access\n");
2634		}
2635	}
2636
2637	return ret_val;
2638}
2639
2640/**
2641 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2642 *  @hw: pointer to the HW structure
2643 *  @timeout: maximum time to wait for completion
2644 *
2645 *  This function starts a flash cycle and waits for its completion.
2646 **/
2647static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2648{
2649	union ich8_hws_flash_ctrl hsflctl;
2650	union ich8_hws_flash_status hsfsts;
2651	u32 i = 0;
2652
2653	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2654	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
 
 
 
2655	hsflctl.hsf_ctrl.flcgo = 1;
2656	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
 
 
 
 
2657
2658	/* wait till FDONE bit is set to 1 */
2659	do {
2660		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2661		if (hsfsts.hsf_status.flcdone)
2662			break;
2663		udelay(1);
2664	} while (i++ < timeout);
2665
2666	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2667		return 0;
2668
2669	return -E1000_ERR_NVM;
2670}
2671
2672/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2673 *  e1000_read_flash_word_ich8lan - Read word from flash
2674 *  @hw: pointer to the HW structure
2675 *  @offset: offset to data location
2676 *  @data: pointer to the location for storing the data
2677 *
2678 *  Reads the flash word at offset into data.  Offset is converted
2679 *  to bytes before read.
2680 **/
2681static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2682					 u16 *data)
2683{
2684	/* Must convert offset into bytes. */
2685	offset <<= 1;
2686
2687	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2688}
2689
2690/**
2691 *  e1000_read_flash_byte_ich8lan - Read byte from flash
2692 *  @hw: pointer to the HW structure
2693 *  @offset: The offset of the byte to read.
2694 *  @data: Pointer to a byte to store the value read.
2695 *
2696 *  Reads a single byte from the NVM using the flash access registers.
2697 **/
2698static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2699					 u8 *data)
2700{
2701	s32 ret_val;
2702	u16 word = 0;
2703
2704	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
 
 
 
 
 
 
 
2705	if (ret_val)
2706		return ret_val;
2707
2708	*data = (u8)word;
2709
2710	return 0;
2711}
2712
2713/**
2714 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2715 *  @hw: pointer to the HW structure
2716 *  @offset: The offset (in bytes) of the byte or word to read.
2717 *  @size: Size of data to read, 1=byte 2=word
2718 *  @data: Pointer to the word to store the value read.
2719 *
2720 *  Reads a byte or word from the NVM using the flash access registers.
2721 **/
2722static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2723					 u8 size, u16 *data)
2724{
2725	union ich8_hws_flash_status hsfsts;
2726	union ich8_hws_flash_ctrl hsflctl;
2727	u32 flash_linear_addr;
2728	u32 flash_data = 0;
2729	s32 ret_val = -E1000_ERR_NVM;
2730	u8 count = 0;
2731
2732	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2733		return -E1000_ERR_NVM;
2734
2735	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2736			    hw->nvm.flash_base_addr;
2737
2738	do {
2739		udelay(1);
2740		/* Steps */
2741		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2742		if (ret_val)
2743			break;
2744
2745		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2746		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2747		hsflctl.hsf_ctrl.fldbcount = size - 1;
2748		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2749		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2750
2751		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2752
2753		ret_val = e1000_flash_cycle_ich8lan(hw,
2754						ICH_FLASH_READ_COMMAND_TIMEOUT);
 
2755
2756		/*
2757		 * Check if FCERR is set to 1, if set to 1, clear it
2758		 * and try the whole sequence a few more times, else
2759		 * read in (shift in) the Flash Data0, the order is
2760		 * least significant byte first msb to lsb
2761		 */
2762		if (!ret_val) {
2763			flash_data = er32flash(ICH_FLASH_FDATA0);
2764			if (size == 1)
2765				*data = (u8)(flash_data & 0x000000FF);
2766			else if (size == 2)
2767				*data = (u16)(flash_data & 0x0000FFFF);
2768			break;
2769		} else {
2770			/*
2771			 * If we've gotten here, then things are probably
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2772			 * completely hosed, but if the error condition is
2773			 * detected, it won't hurt to give it another try...
2774			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2775			 */
2776			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2777			if (hsfsts.hsf_status.flcerr) {
2778				/* Repeat for some time before giving up. */
2779				continue;
2780			} else if (!hsfsts.hsf_status.flcdone) {
2781				e_dbg("Timeout error - flash cycle did not complete.\n");
2782				break;
2783			}
2784		}
2785	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2786
2787	return ret_val;
2788}
2789
2790/**
2791 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2792 *  @hw: pointer to the HW structure
2793 *  @offset: The offset (in bytes) of the word(s) to write.
2794 *  @words: Size of data to write in words
2795 *  @data: Pointer to the word(s) to write at offset.
2796 *
2797 *  Writes a byte or word to the NVM using the flash access registers.
2798 **/
2799static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2800				   u16 *data)
2801{
2802	struct e1000_nvm_info *nvm = &hw->nvm;
2803	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2804	u16 i;
2805
2806	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2807	    (words == 0)) {
2808		e_dbg("nvm parameter(s) out of bounds\n");
2809		return -E1000_ERR_NVM;
2810	}
2811
2812	nvm->ops.acquire(hw);
2813
2814	for (i = 0; i < words; i++) {
2815		dev_spec->shadow_ram[offset+i].modified = true;
2816		dev_spec->shadow_ram[offset+i].value = data[i];
2817	}
2818
2819	nvm->ops.release(hw);
2820
2821	return 0;
2822}
2823
2824/**
2825 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2826 *  @hw: pointer to the HW structure
2827 *
2828 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2829 *  which writes the checksum to the shadow ram.  The changes in the shadow
2830 *  ram are then committed to the EEPROM by processing each bank at a time
2831 *  checking for the modified bit and writing only the pending changes.
2832 *  After a successful commit, the shadow ram is cleared and is ready for
2833 *  future writes.
2834 **/
2835static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2836{
2837	struct e1000_nvm_info *nvm = &hw->nvm;
2838	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2839	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2840	s32 ret_val;
2841	u16 data;
2842
2843	ret_val = e1000e_update_nvm_checksum_generic(hw);
2844	if (ret_val)
2845		goto out;
2846
2847	if (nvm->type != e1000_nvm_flash_sw)
2848		goto out;
2849
2850	nvm->ops.acquire(hw);
2851
2852	/*
2853	 * We're writing to the opposite bank so if we're on bank 1,
2854	 * write to bank 0 etc.  We also need to erase the segment that
2855	 * is going to be written
2856	 */
2857	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2858	if (ret_val) {
2859		e_dbg("Could not detect valid bank, assuming bank 0\n");
2860		bank = 0;
2861	}
2862
2863	if (bank == 0) {
2864		new_bank_offset = nvm->flash_bank_size;
2865		old_bank_offset = 0;
2866		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2867		if (ret_val)
2868			goto release;
2869	} else {
2870		old_bank_offset = nvm->flash_bank_size;
2871		new_bank_offset = 0;
2872		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2873		if (ret_val)
2874			goto release;
2875	}
2876
2877	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2878		/*
2879		 * Determine whether to write the value stored
2880		 * in the other NVM bank or a modified value stored
2881		 * in the shadow RAM
2882		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2883		if (dev_spec->shadow_ram[i].modified) {
2884			data = dev_spec->shadow_ram[i].value;
2885		} else {
2886			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2887			                                        old_bank_offset,
2888			                                        &data);
2889			if (ret_val)
2890				break;
2891		}
2892
2893		/*
2894		 * If the word is 0x13, then make sure the signature bits
2895		 * (15:14) are 11b until the commit has completed.
2896		 * This will allow us to write 10b which indicates the
2897		 * signature is valid.  We want to do this after the write
2898		 * has completed so that we don't mark the segment valid
2899		 * while the write is still in progress
2900		 */
2901		if (i == E1000_ICH_NVM_SIG_WORD)
2902			data |= E1000_ICH_NVM_SIG_MASK;
2903
2904		/* Convert offset to bytes. */
2905		act_offset = (i + new_bank_offset) << 1;
2906
2907		udelay(100);
2908		/* Write the bytes to the new bank. */
2909		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2910							       act_offset,
2911							       (u8)data);
2912		if (ret_val)
2913			break;
2914
2915		udelay(100);
2916		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2917							  act_offset + 1,
2918							  (u8)(data >> 8));
2919		if (ret_val)
2920			break;
2921	}
2922
2923	/*
2924	 * Don't bother writing the segment valid bits if sector
2925	 * programming failed.
2926	 */
2927	if (ret_val) {
2928		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2929		e_dbg("Flash commit failed.\n");
2930		goto release;
2931	}
2932
2933	/*
2934	 * Finally validate the new segment by setting bit 15:14
2935	 * to 10b in word 0x13 , this can be done without an
2936	 * erase as well since these bits are 11 to start with
2937	 * and we need to change bit 14 to 0b
2938	 */
2939	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2940	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2941	if (ret_val)
2942		goto release;
2943
2944	data &= 0xBFFF;
2945	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2946						       act_offset * 2 + 1,
2947						       (u8)(data >> 8));
2948	if (ret_val)
2949		goto release;
2950
2951	/*
2952	 * And invalidate the previously valid segment by setting
2953	 * its signature word (0x13) high_byte to 0b. This can be
2954	 * done without an erase because flash erase sets all bits
2955	 * to 1's. We can write 1's to 0's without an erase
2956	 */
2957	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2958	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2959	if (ret_val)
2960		goto release;
2961
2962	/* Great!  Everything worked, we can now clear the cached entries. */
2963	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2964		dev_spec->shadow_ram[i].modified = false;
2965		dev_spec->shadow_ram[i].value = 0xFFFF;
2966	}
2967
2968release:
2969	nvm->ops.release(hw);
2970
2971	/*
2972	 * Reload the EEPROM, or else modifications will not appear
2973	 * until after the next adapter reset.
2974	 */
2975	if (!ret_val) {
2976		nvm->ops.reload(hw);
2977		usleep_range(10000, 20000);
2978	}
2979
2980out:
2981	if (ret_val)
2982		e_dbg("NVM update error: %d\n", ret_val);
2983
2984	return ret_val;
2985}
2986
2987/**
2988 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2989 *  @hw: pointer to the HW structure
2990 *
2991 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2992 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2993 *  calculated, in which case we need to calculate the checksum and set bit 6.
2994 **/
2995static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2996{
2997	s32 ret_val;
2998	u16 data;
 
 
2999
3000	/*
3001	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
3002	 * needs to be fixed.  This bit is an indication that the NVM
3003	 * was prepared by OEM software and did not calculate the
3004	 * checksum...a likely scenario.
3005	 */
3006	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3007	if (ret_val)
3008		return ret_val;
3009
3010	if (!(data & 0x40)) {
3011		data |= 0x40;
3012		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
3013		if (ret_val)
3014			return ret_val;
3015		ret_val = e1000e_update_nvm_checksum(hw);
3016		if (ret_val)
3017			return ret_val;
 
 
 
 
3018	}
3019
3020	return e1000e_validate_nvm_checksum_generic(hw);
3021}
3022
3023/**
3024 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3025 *  @hw: pointer to the HW structure
3026 *
3027 *  To prevent malicious write/erase of the NVM, set it to be read-only
3028 *  so that the hardware ignores all write/erase cycles of the NVM via
3029 *  the flash control registers.  The shadow-ram copy of the NVM will
3030 *  still be updated, however any updates to this copy will not stick
3031 *  across driver reloads.
3032 **/
3033void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3034{
3035	struct e1000_nvm_info *nvm = &hw->nvm;
3036	union ich8_flash_protected_range pr0;
3037	union ich8_hws_flash_status hsfsts;
3038	u32 gfpreg;
3039
3040	nvm->ops.acquire(hw);
3041
3042	gfpreg = er32flash(ICH_FLASH_GFPREG);
3043
3044	/* Write-protect GbE Sector of NVM */
3045	pr0.regval = er32flash(ICH_FLASH_PR0);
3046	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3047	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3048	pr0.range.wpe = true;
3049	ew32flash(ICH_FLASH_PR0, pr0.regval);
3050
3051	/*
3052	 * Lock down a subset of GbE Flash Control Registers, e.g.
3053	 * PR0 to prevent the write-protection from being lifted.
3054	 * Once FLOCKDN is set, the registers protected by it cannot
3055	 * be written until FLOCKDN is cleared by a hardware reset.
3056	 */
3057	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3058	hsfsts.hsf_status.flockdn = true;
3059	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3060
3061	nvm->ops.release(hw);
3062}
3063
3064/**
3065 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3066 *  @hw: pointer to the HW structure
3067 *  @offset: The offset (in bytes) of the byte/word to read.
3068 *  @size: Size of data to read, 1=byte 2=word
3069 *  @data: The byte(s) to write to the NVM.
3070 *
3071 *  Writes one/two bytes to the NVM using the flash access registers.
3072 **/
3073static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3074					  u8 size, u16 data)
3075{
3076	union ich8_hws_flash_status hsfsts;
3077	union ich8_hws_flash_ctrl hsflctl;
3078	u32 flash_linear_addr;
3079	u32 flash_data = 0;
3080	s32 ret_val;
3081	u8 count = 0;
3082
3083	if (size < 1 || size > 2 || data > size * 0xff ||
3084	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3085		return -E1000_ERR_NVM;
 
 
 
 
3086
3087	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3088			    hw->nvm.flash_base_addr;
3089
3090	do {
3091		udelay(1);
3092		/* Steps */
3093		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3094		if (ret_val)
3095			break;
 
 
 
 
 
 
 
3096
3097		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3098		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3099		hsflctl.hsf_ctrl.fldbcount = size -1;
3100		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3101		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
 
 
 
 
 
 
 
3102
3103		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3104
3105		if (size == 1)
3106			flash_data = (u32)data & 0x00FF;
3107		else
3108			flash_data = (u32)data;
3109
3110		ew32flash(ICH_FLASH_FDATA0, flash_data);
3111
3112		/*
3113		 * check if FCERR is set to 1 , if set to 1, clear it
3114		 * and try the whole sequence a few more times else done
3115		 */
3116		ret_val = e1000_flash_cycle_ich8lan(hw,
3117					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
 
3118		if (!ret_val)
3119			break;
3120
3121		/*
3122		 * If we're here, then things are most likely
3123		 * completely hosed, but if the error condition
3124		 * is detected, it won't hurt to give it another
3125		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3126		 */
3127		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3128		if (hsfsts.hsf_status.flcerr)
3129			/* Repeat for some time before giving up. */
3130			continue;
3131		if (!hsfsts.hsf_status.flcdone) {
3132			e_dbg("Timeout error - flash cycle did not complete.\n");
3133			break;
3134		}
3135	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3136
3137	return ret_val;
3138}
3139
3140/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3141 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3142 *  @hw: pointer to the HW structure
3143 *  @offset: The index of the byte to read.
3144 *  @data: The byte to write to the NVM.
3145 *
3146 *  Writes a single byte to the NVM using the flash access registers.
3147 **/
3148static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3149					  u8 data)
3150{
3151	u16 word = (u16)data;
3152
3153	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3154}
3155
3156/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3157 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3158 *  @hw: pointer to the HW structure
3159 *  @offset: The offset of the byte to write.
3160 *  @byte: The byte to write to the NVM.
3161 *
3162 *  Writes a single byte to the NVM using the flash access registers.
3163 *  Goes through a retry algorithm before giving up.
3164 **/
3165static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3166						u32 offset, u8 byte)
3167{
3168	s32 ret_val;
3169	u16 program_retries;
3170
3171	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3172	if (!ret_val)
3173		return ret_val;
3174
3175	for (program_retries = 0; program_retries < 100; program_retries++) {
3176		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3177		udelay(100);
3178		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3179		if (!ret_val)
3180			break;
3181	}
3182	if (program_retries == 100)
3183		return -E1000_ERR_NVM;
3184
3185	return 0;
3186}
3187
3188/**
3189 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3190 *  @hw: pointer to the HW structure
3191 *  @bank: 0 for first bank, 1 for second bank, etc.
3192 *
3193 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3194 *  bank N is 4096 * N + flash_reg_addr.
3195 **/
3196static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3197{
3198	struct e1000_nvm_info *nvm = &hw->nvm;
3199	union ich8_hws_flash_status hsfsts;
3200	union ich8_hws_flash_ctrl hsflctl;
3201	u32 flash_linear_addr;
3202	/* bank size is in 16bit words - adjust to bytes */
3203	u32 flash_bank_size = nvm->flash_bank_size * 2;
3204	s32 ret_val;
3205	s32 count = 0;
3206	s32 j, iteration, sector_size;
3207
3208	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3209
3210	/*
3211	 * Determine HW Sector size: Read BERASE bits of hw flash status
3212	 * register
3213	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3214	 *     consecutive sectors.  The start index for the nth Hw sector
3215	 *     can be calculated as = bank * 4096 + n * 256
3216	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3217	 *     The start index for the nth Hw sector can be calculated
3218	 *     as = bank * 4096
3219	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3220	 *     (ich9 only, otherwise error condition)
3221	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3222	 */
3223	switch (hsfsts.hsf_status.berasesz) {
3224	case 0:
3225		/* Hw sector size 256 */
3226		sector_size = ICH_FLASH_SEG_SIZE_256;
3227		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3228		break;
3229	case 1:
3230		sector_size = ICH_FLASH_SEG_SIZE_4K;
3231		iteration = 1;
3232		break;
3233	case 2:
3234		sector_size = ICH_FLASH_SEG_SIZE_8K;
3235		iteration = 1;
3236		break;
3237	case 3:
3238		sector_size = ICH_FLASH_SEG_SIZE_64K;
3239		iteration = 1;
3240		break;
3241	default:
3242		return -E1000_ERR_NVM;
3243	}
3244
3245	/* Start with the base address, then add the sector offset. */
3246	flash_linear_addr = hw->nvm.flash_base_addr;
3247	flash_linear_addr += (bank) ? flash_bank_size : 0;
3248
3249	for (j = 0; j < iteration ; j++) {
3250		do {
 
 
3251			/* Steps */
3252			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3253			if (ret_val)
3254				return ret_val;
3255
3256			/*
3257			 * Write a value 11 (block Erase) in Flash
3258			 * Cycle field in hw flash control
3259			 */
3260			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
 
 
 
 
 
3261			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3262			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
 
 
 
 
3263
3264			/*
3265			 * Write the last 24 bits of an index within the
3266			 * block into Flash Linear address field in Flash
3267			 * Address.
3268			 */
3269			flash_linear_addr += (j * sector_size);
3270			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3271
3272			ret_val = e1000_flash_cycle_ich8lan(hw,
3273					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3274			if (!ret_val)
3275				break;
3276
3277			/*
3278			 * Check if FCERR is set to 1.  If 1,
3279			 * clear it and try the whole sequence
3280			 * a few more times else Done
3281			 */
3282			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3283			if (hsfsts.hsf_status.flcerr)
3284				/* repeat for some time before giving up */
3285				continue;
3286			else if (!hsfsts.hsf_status.flcdone)
3287				return ret_val;
3288		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3289	}
3290
3291	return 0;
3292}
3293
3294/**
3295 *  e1000_valid_led_default_ich8lan - Set the default LED settings
3296 *  @hw: pointer to the HW structure
3297 *  @data: Pointer to the LED settings
3298 *
3299 *  Reads the LED default settings from the NVM to data.  If the NVM LED
3300 *  settings is all 0's or F's, set the LED default to a valid LED default
3301 *  setting.
3302 **/
3303static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3304{
3305	s32 ret_val;
3306
3307	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3308	if (ret_val) {
3309		e_dbg("NVM Read Error\n");
3310		return ret_val;
3311	}
3312
3313	if (*data == ID_LED_RESERVED_0000 ||
3314	    *data == ID_LED_RESERVED_FFFF)
3315		*data = ID_LED_DEFAULT_ICH8LAN;
3316
3317	return 0;
3318}
3319
3320/**
3321 *  e1000_id_led_init_pchlan - store LED configurations
3322 *  @hw: pointer to the HW structure
3323 *
3324 *  PCH does not control LEDs via the LEDCTL register, rather it uses
3325 *  the PHY LED configuration register.
3326 *
3327 *  PCH also does not have an "always on" or "always off" mode which
3328 *  complicates the ID feature.  Instead of using the "on" mode to indicate
3329 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3330 *  use "link_up" mode.  The LEDs will still ID on request if there is no
3331 *  link based on logic in e1000_led_[on|off]_pchlan().
3332 **/
3333static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3334{
3335	struct e1000_mac_info *mac = &hw->mac;
3336	s32 ret_val;
3337	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3338	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3339	u16 data, i, temp, shift;
3340
3341	/* Get default ID LED modes */
3342	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3343	if (ret_val)
3344		return ret_val;
3345
3346	mac->ledctl_default = er32(LEDCTL);
3347	mac->ledctl_mode1 = mac->ledctl_default;
3348	mac->ledctl_mode2 = mac->ledctl_default;
3349
3350	for (i = 0; i < 4; i++) {
3351		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3352		shift = (i * 5);
3353		switch (temp) {
3354		case ID_LED_ON1_DEF2:
3355		case ID_LED_ON1_ON2:
3356		case ID_LED_ON1_OFF2:
3357			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3358			mac->ledctl_mode1 |= (ledctl_on << shift);
3359			break;
3360		case ID_LED_OFF1_DEF2:
3361		case ID_LED_OFF1_ON2:
3362		case ID_LED_OFF1_OFF2:
3363			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3364			mac->ledctl_mode1 |= (ledctl_off << shift);
3365			break;
3366		default:
3367			/* Do nothing */
3368			break;
3369		}
3370		switch (temp) {
3371		case ID_LED_DEF1_ON2:
3372		case ID_LED_ON1_ON2:
3373		case ID_LED_OFF1_ON2:
3374			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3375			mac->ledctl_mode2 |= (ledctl_on << shift);
3376			break;
3377		case ID_LED_DEF1_OFF2:
3378		case ID_LED_ON1_OFF2:
3379		case ID_LED_OFF1_OFF2:
3380			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3381			mac->ledctl_mode2 |= (ledctl_off << shift);
3382			break;
3383		default:
3384			/* Do nothing */
3385			break;
3386		}
3387	}
3388
3389	return 0;
3390}
3391
3392/**
3393 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3394 *  @hw: pointer to the HW structure
3395 *
3396 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3397 *  register, so the the bus width is hard coded.
3398 **/
3399static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3400{
3401	struct e1000_bus_info *bus = &hw->bus;
3402	s32 ret_val;
3403
3404	ret_val = e1000e_get_bus_info_pcie(hw);
3405
3406	/*
3407	 * ICH devices are "PCI Express"-ish.  They have
3408	 * a configuration space, but do not contain
3409	 * PCI Express Capability registers, so bus width
3410	 * must be hardcoded.
3411	 */
3412	if (bus->width == e1000_bus_width_unknown)
3413		bus->width = e1000_bus_width_pcie_x1;
3414
3415	return ret_val;
3416}
3417
3418/**
3419 *  e1000_reset_hw_ich8lan - Reset the hardware
3420 *  @hw: pointer to the HW structure
3421 *
3422 *  Does a full reset of the hardware which includes a reset of the PHY and
3423 *  MAC.
3424 **/
3425static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3426{
3427	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3428	u16 kum_cfg;
3429	u32 ctrl, reg;
3430	s32 ret_val;
3431
3432	/*
3433	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3434	 * on the last TLP read/write transaction when MAC is reset.
3435	 */
3436	ret_val = e1000e_disable_pcie_master(hw);
3437	if (ret_val)
3438		e_dbg("PCI-E Master disable polling has failed.\n");
3439
3440	e_dbg("Masking off all interrupts\n");
3441	ew32(IMC, 0xffffffff);
3442
3443	/*
3444	 * Disable the Transmit and Receive units.  Then delay to allow
3445	 * any pending transactions to complete before we hit the MAC
3446	 * with the global reset.
3447	 */
3448	ew32(RCTL, 0);
3449	ew32(TCTL, E1000_TCTL_PSP);
3450	e1e_flush();
3451
3452	usleep_range(10000, 20000);
3453
3454	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3455	if (hw->mac.type == e1000_ich8lan) {
3456		/* Set Tx and Rx buffer allocation to 8k apiece. */
3457		ew32(PBA, E1000_PBA_8K);
3458		/* Set Packet Buffer Size to 16k. */
3459		ew32(PBS, E1000_PBS_16K);
3460	}
3461
3462	if (hw->mac.type == e1000_pchlan) {
3463		/* Save the NVM K1 bit setting */
3464		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3465		if (ret_val)
3466			return ret_val;
3467
3468		if (kum_cfg & E1000_NVM_K1_ENABLE)
3469			dev_spec->nvm_k1_enabled = true;
3470		else
3471			dev_spec->nvm_k1_enabled = false;
3472	}
3473
3474	ctrl = er32(CTRL);
3475
3476	if (!hw->phy.ops.check_reset_block(hw)) {
3477		/*
3478		 * Full-chip reset requires MAC and PHY reset at the same
3479		 * time to make sure the interface between MAC and the
3480		 * external PHY is reset.
3481		 */
3482		ctrl |= E1000_CTRL_PHY_RST;
3483
3484		/*
3485		 * Gate automatic PHY configuration by hardware on
3486		 * non-managed 82579
3487		 */
3488		if ((hw->mac.type == e1000_pch2lan) &&
3489		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3490			e1000_gate_hw_phy_config_ich8lan(hw, true);
3491	}
3492	ret_val = e1000_acquire_swflag_ich8lan(hw);
3493	e_dbg("Issuing a global reset to ich8lan\n");
3494	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3495	/* cannot issue a flush here because it hangs the hardware */
3496	msleep(20);
3497
3498	/* Set Phy Config Counter to 50msec */
3499	if (hw->mac.type == e1000_pch2lan) {
3500		reg = er32(FEXTNVM3);
3501		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3502		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3503		ew32(FEXTNVM3, reg);
3504	}
3505
3506	if (!ret_val)
3507		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3508
3509	if (ctrl & E1000_CTRL_PHY_RST) {
3510		ret_val = hw->phy.ops.get_cfg_done(hw);
3511		if (ret_val)
3512			return ret_val;
3513
3514		ret_val = e1000_post_phy_reset_ich8lan(hw);
3515		if (ret_val)
3516			return ret_val;
3517	}
3518
3519	/*
3520	 * For PCH, this write will make sure that any noise
3521	 * will be detected as a CRC error and be dropped rather than show up
3522	 * as a bad packet to the DMA engine.
3523	 */
3524	if (hw->mac.type == e1000_pchlan)
3525		ew32(CRC_OFFSET, 0x65656565);
3526
3527	ew32(IMC, 0xffffffff);
3528	er32(ICR);
3529
3530	reg = er32(KABGTXD);
3531	reg |= E1000_KABGTXD_BGSQLBIAS;
3532	ew32(KABGTXD, reg);
3533
3534	return 0;
3535}
3536
3537/**
3538 *  e1000_init_hw_ich8lan - Initialize the hardware
3539 *  @hw: pointer to the HW structure
3540 *
3541 *  Prepares the hardware for transmit and receive by doing the following:
3542 *   - initialize hardware bits
3543 *   - initialize LED identification
3544 *   - setup receive address registers
3545 *   - setup flow control
3546 *   - setup transmit descriptors
3547 *   - clear statistics
3548 **/
3549static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3550{
3551	struct e1000_mac_info *mac = &hw->mac;
3552	u32 ctrl_ext, txdctl, snoop;
3553	s32 ret_val;
3554	u16 i;
3555
3556	e1000_initialize_hw_bits_ich8lan(hw);
3557
3558	/* Initialize identification LED */
3559	ret_val = mac->ops.id_led_init(hw);
 
3560	if (ret_val)
3561		e_dbg("Error initializing identification LED\n");
3562		/* This is not fatal and we should not stop init due to this */
3563
3564	/* Setup the receive address. */
3565	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3566
3567	/* Zero out the Multicast HASH table */
3568	e_dbg("Zeroing the MTA\n");
3569	for (i = 0; i < mac->mta_reg_count; i++)
3570		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3571
3572	/*
3573	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3574	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3575	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3576	 */
3577	if (hw->phy.type == e1000_phy_82578) {
3578		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3579		i &= ~BM_WUC_HOST_WU_BIT;
3580		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3581		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3582		if (ret_val)
3583			return ret_val;
3584	}
3585
3586	/* Setup link and flow control */
3587	ret_val = mac->ops.setup_link(hw);
3588
3589	/* Set the transmit descriptor write-back policy for both queues */
3590	txdctl = er32(TXDCTL(0));
3591	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3592		 E1000_TXDCTL_FULL_TX_DESC_WB;
3593	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3594		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3595	ew32(TXDCTL(0), txdctl);
3596	txdctl = er32(TXDCTL(1));
3597	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3598		 E1000_TXDCTL_FULL_TX_DESC_WB;
3599	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3600		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3601	ew32(TXDCTL(1), txdctl);
3602
3603	/*
3604	 * ICH8 has opposite polarity of no_snoop bits.
3605	 * By default, we should use snoop behavior.
3606	 */
3607	if (mac->type == e1000_ich8lan)
3608		snoop = PCIE_ICH8_SNOOP_ALL;
3609	else
3610		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3611	e1000e_set_pcie_no_snoop(hw, snoop);
3612
 
 
 
 
 
 
 
 
 
3613	ctrl_ext = er32(CTRL_EXT);
3614	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3615	ew32(CTRL_EXT, ctrl_ext);
3616
3617	/*
3618	 * Clear all of the statistics registers (clear on read).  It is
3619	 * important that we do this after we have tried to establish link
3620	 * because the symbol error count will increment wildly if there
3621	 * is no link.
3622	 */
3623	e1000_clear_hw_cntrs_ich8lan(hw);
3624
3625	return ret_val;
3626}
 
3627/**
3628 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3629 *  @hw: pointer to the HW structure
3630 *
3631 *  Sets/Clears required hardware bits necessary for correctly setting up the
3632 *  hardware for transmit and receive.
3633 **/
3634static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3635{
3636	u32 reg;
3637
3638	/* Extended Device Control */
3639	reg = er32(CTRL_EXT);
3640	reg |= (1 << 22);
3641	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3642	if (hw->mac.type >= e1000_pchlan)
3643		reg |= E1000_CTRL_EXT_PHYPDEN;
3644	ew32(CTRL_EXT, reg);
3645
3646	/* Transmit Descriptor Control 0 */
3647	reg = er32(TXDCTL(0));
3648	reg |= (1 << 22);
3649	ew32(TXDCTL(0), reg);
3650
3651	/* Transmit Descriptor Control 1 */
3652	reg = er32(TXDCTL(1));
3653	reg |= (1 << 22);
3654	ew32(TXDCTL(1), reg);
3655
3656	/* Transmit Arbitration Control 0 */
3657	reg = er32(TARC(0));
3658	if (hw->mac.type == e1000_ich8lan)
3659		reg |= (1 << 28) | (1 << 29);
3660	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3661	ew32(TARC(0), reg);
3662
3663	/* Transmit Arbitration Control 1 */
3664	reg = er32(TARC(1));
3665	if (er32(TCTL) & E1000_TCTL_MULR)
3666		reg &= ~(1 << 28);
3667	else
3668		reg |= (1 << 28);
3669	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3670	ew32(TARC(1), reg);
3671
3672	/* Device Status */
3673	if (hw->mac.type == e1000_ich8lan) {
3674		reg = er32(STATUS);
3675		reg &= ~(1 << 31);
3676		ew32(STATUS, reg);
3677	}
3678
3679	/*
3680	 * work-around descriptor data corruption issue during nfs v2 udp
3681	 * traffic, just disable the nfs filtering capability
3682	 */
3683	reg = er32(RFCTL);
3684	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3685
3686	/*
3687	 * Disable IPv6 extension header parsing because some malformed
3688	 * IPv6 headers can hang the Rx.
3689	 */
3690	if (hw->mac.type == e1000_ich8lan)
3691		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3692	ew32(RFCTL, reg);
 
 
 
 
 
 
 
 
 
 
 
3693}
3694
3695/**
3696 *  e1000_setup_link_ich8lan - Setup flow control and link settings
3697 *  @hw: pointer to the HW structure
3698 *
3699 *  Determines which flow control settings to use, then configures flow
3700 *  control.  Calls the appropriate media-specific link configuration
3701 *  function.  Assuming the adapter has a valid link partner, a valid link
3702 *  should be established.  Assumes the hardware has previously been reset
3703 *  and the transmitter and receiver are not enabled.
3704 **/
3705static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3706{
3707	s32 ret_val;
3708
3709	if (hw->phy.ops.check_reset_block(hw))
3710		return 0;
3711
3712	/*
3713	 * ICH parts do not have a word in the NVM to determine
3714	 * the default flow control setting, so we explicitly
3715	 * set it to full.
3716	 */
3717	if (hw->fc.requested_mode == e1000_fc_default) {
3718		/* Workaround h/w hang when Tx flow control enabled */
3719		if (hw->mac.type == e1000_pchlan)
3720			hw->fc.requested_mode = e1000_fc_rx_pause;
3721		else
3722			hw->fc.requested_mode = e1000_fc_full;
3723	}
3724
3725	/*
3726	 * Save off the requested flow control mode for use later.  Depending
3727	 * on the link partner's capabilities, we may or may not use this mode.
3728	 */
3729	hw->fc.current_mode = hw->fc.requested_mode;
3730
3731	e_dbg("After fix-ups FlowControl is now = %x\n",
3732		hw->fc.current_mode);
3733
3734	/* Continue to configure the copper link. */
3735	ret_val = hw->mac.ops.setup_physical_interface(hw);
3736	if (ret_val)
3737		return ret_val;
3738
3739	ew32(FCTTV, hw->fc.pause_time);
3740	if ((hw->phy.type == e1000_phy_82578) ||
3741	    (hw->phy.type == e1000_phy_82579) ||
3742	    (hw->phy.type == e1000_phy_i217) ||
3743	    (hw->phy.type == e1000_phy_82577)) {
3744		ew32(FCRTV_PCH, hw->fc.refresh_time);
3745
3746		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3747				   hw->fc.pause_time);
3748		if (ret_val)
3749			return ret_val;
3750	}
3751
3752	return e1000e_set_fc_watermarks(hw);
3753}
3754
3755/**
3756 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3757 *  @hw: pointer to the HW structure
3758 *
3759 *  Configures the kumeran interface to the PHY to wait the appropriate time
3760 *  when polling the PHY, then call the generic setup_copper_link to finish
3761 *  configuring the copper link.
3762 **/
3763static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3764{
3765	u32 ctrl;
3766	s32 ret_val;
3767	u16 reg_data;
3768
3769	ctrl = er32(CTRL);
3770	ctrl |= E1000_CTRL_SLU;
3771	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3772	ew32(CTRL, ctrl);
3773
3774	/*
3775	 * Set the mac to wait the maximum time between each iteration
3776	 * and increase the max iterations when polling the phy;
3777	 * this fixes erroneous timeouts at 10Mbps.
3778	 */
3779	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3780	if (ret_val)
3781		return ret_val;
3782	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3783	                               &reg_data);
3784	if (ret_val)
3785		return ret_val;
3786	reg_data |= 0x3F;
3787	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3788	                                reg_data);
3789	if (ret_val)
3790		return ret_val;
3791
3792	switch (hw->phy.type) {
3793	case e1000_phy_igp_3:
3794		ret_val = e1000e_copper_link_setup_igp(hw);
3795		if (ret_val)
3796			return ret_val;
3797		break;
3798	case e1000_phy_bm:
3799	case e1000_phy_82578:
3800		ret_val = e1000e_copper_link_setup_m88(hw);
3801		if (ret_val)
3802			return ret_val;
3803		break;
3804	case e1000_phy_82577:
3805	case e1000_phy_82579:
3806	case e1000_phy_i217:
3807		ret_val = e1000_copper_link_setup_82577(hw);
3808		if (ret_val)
3809			return ret_val;
3810		break;
3811	case e1000_phy_ife:
3812		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3813		if (ret_val)
3814			return ret_val;
3815
3816		reg_data &= ~IFE_PMC_AUTO_MDIX;
3817
3818		switch (hw->phy.mdix) {
3819		case 1:
3820			reg_data &= ~IFE_PMC_FORCE_MDIX;
3821			break;
3822		case 2:
3823			reg_data |= IFE_PMC_FORCE_MDIX;
3824			break;
3825		case 0:
3826		default:
3827			reg_data |= IFE_PMC_AUTO_MDIX;
3828			break;
3829		}
3830		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3831		if (ret_val)
3832			return ret_val;
3833		break;
3834	default:
3835		break;
3836	}
3837
3838	return e1000e_setup_copper_link(hw);
3839}
3840
3841/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3842 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3843 *  @hw: pointer to the HW structure
3844 *  @speed: pointer to store current link speed
3845 *  @duplex: pointer to store the current link duplex
3846 *
3847 *  Calls the generic get_speed_and_duplex to retrieve the current link
3848 *  information and then calls the Kumeran lock loss workaround for links at
3849 *  gigabit speeds.
3850 **/
3851static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3852					  u16 *duplex)
3853{
3854	s32 ret_val;
3855
3856	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3857	if (ret_val)
3858		return ret_val;
3859
3860	if ((hw->mac.type == e1000_ich8lan) &&
3861	    (hw->phy.type == e1000_phy_igp_3) &&
3862	    (*speed == SPEED_1000)) {
3863		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3864	}
3865
3866	return ret_val;
3867}
3868
3869/**
3870 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3871 *  @hw: pointer to the HW structure
3872 *
3873 *  Work-around for 82566 Kumeran PCS lock loss:
3874 *  On link status change (i.e. PCI reset, speed change) and link is up and
3875 *  speed is gigabit-
3876 *    0) if workaround is optionally disabled do nothing
3877 *    1) wait 1ms for Kumeran link to come up
3878 *    2) check Kumeran Diagnostic register PCS lock loss bit
3879 *    3) if not set the link is locked (all is good), otherwise...
3880 *    4) reset the PHY
3881 *    5) repeat up to 10 times
3882 *  Note: this is only called for IGP3 copper when speed is 1gb.
3883 **/
3884static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3885{
3886	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3887	u32 phy_ctrl;
3888	s32 ret_val;
3889	u16 i, data;
3890	bool link;
3891
3892	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3893		return 0;
3894
3895	/*
3896	 * Make sure link is up before proceeding.  If not just return.
3897	 * Attempting this while link is negotiating fouled up link
3898	 * stability
3899	 */
3900	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3901	if (!link)
3902		return 0;
3903
3904	for (i = 0; i < 10; i++) {
3905		/* read once to clear */
3906		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3907		if (ret_val)
3908			return ret_val;
3909		/* and again to get new status */
3910		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3911		if (ret_val)
3912			return ret_val;
3913
3914		/* check for PCS lock */
3915		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3916			return 0;
3917
3918		/* Issue PHY reset */
3919		e1000_phy_hw_reset(hw);
3920		mdelay(5);
3921	}
3922	/* Disable GigE link negotiation */
3923	phy_ctrl = er32(PHY_CTRL);
3924	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3925		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3926	ew32(PHY_CTRL, phy_ctrl);
3927
3928	/*
3929	 * Call gig speed drop workaround on Gig disable before accessing
3930	 * any PHY registers
3931	 */
3932	e1000e_gig_downshift_workaround_ich8lan(hw);
3933
3934	/* unable to acquire PCS lock */
3935	return -E1000_ERR_PHY;
3936}
3937
3938/**
3939 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3940 *  @hw: pointer to the HW structure
3941 *  @state: boolean value used to set the current Kumeran workaround state
3942 *
3943 *  If ICH8, set the current Kumeran workaround state (enabled - true
3944 *  /disabled - false).
3945 **/
3946void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3947						 bool state)
3948{
3949	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3950
3951	if (hw->mac.type != e1000_ich8lan) {
3952		e_dbg("Workaround applies to ICH8 only.\n");
3953		return;
3954	}
3955
3956	dev_spec->kmrn_lock_loss_workaround_enabled = state;
3957}
3958
3959/**
3960 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3961 *  @hw: pointer to the HW structure
3962 *
3963 *  Workaround for 82566 power-down on D3 entry:
3964 *    1) disable gigabit link
3965 *    2) write VR power-down enable
3966 *    3) read it back
3967 *  Continue if successful, else issue LCD reset and repeat
3968 **/
3969void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3970{
3971	u32 reg;
3972	u16 data;
3973	u8  retry = 0;
3974
3975	if (hw->phy.type != e1000_phy_igp_3)
3976		return;
3977
3978	/* Try the workaround twice (if needed) */
3979	do {
3980		/* Disable link */
3981		reg = er32(PHY_CTRL);
3982		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3983			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3984		ew32(PHY_CTRL, reg);
3985
3986		/*
3987		 * Call gig speed drop workaround on Gig disable before
3988		 * accessing any PHY registers
3989		 */
3990		if (hw->mac.type == e1000_ich8lan)
3991			e1000e_gig_downshift_workaround_ich8lan(hw);
3992
3993		/* Write VR power-down enable */
3994		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3995		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3996		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3997
3998		/* Read it back and test */
3999		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4000		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4001		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4002			break;
4003
4004		/* Issue PHY reset and repeat at most one more time */
4005		reg = er32(CTRL);
4006		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4007		retry++;
4008	} while (retry);
4009}
4010
4011/**
4012 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4013 *  @hw: pointer to the HW structure
4014 *
4015 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4016 *  LPLU, Gig disable, MDIC PHY reset):
4017 *    1) Set Kumeran Near-end loopback
4018 *    2) Clear Kumeran Near-end loopback
4019 *  Should only be called for ICH8[m] devices with any 1G Phy.
4020 **/
4021void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4022{
4023	s32 ret_val;
4024	u16 reg_data;
4025
4026	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4027		return;
4028
4029	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4030				      &reg_data);
4031	if (ret_val)
4032		return;
4033	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4034	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4035				       reg_data);
4036	if (ret_val)
4037		return;
4038	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4039	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4040				       reg_data);
4041}
4042
4043/**
4044 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4045 *  @hw: pointer to the HW structure
4046 *
4047 *  During S0 to Sx transition, it is possible the link remains at gig
4048 *  instead of negotiating to a lower speed.  Before going to Sx, set
4049 *  'Gig Disable' to force link speed negotiation to a lower speed based on
4050 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4051 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4052 *  needs to be written.
4053 *  Parts that support (and are linked to a partner which support) EEE in
4054 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4055 *  than 10Mbps w/o EEE.
4056 **/
4057void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4058{
4059	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4060	u32 phy_ctrl;
4061	s32 ret_val;
4062
4063	phy_ctrl = er32(PHY_CTRL);
4064	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
 
4065	if (hw->phy.type == e1000_phy_i217) {
4066		u16 phy_reg;
 
 
 
 
 
 
 
 
 
 
4067
4068		ret_val = hw->phy.ops.acquire(hw);
4069		if (ret_val)
4070			goto out;
4071
4072		if (!dev_spec->eee_disable) {
4073			u16 eee_advert;
4074
4075			ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
4076						  I217_EEE_ADVERTISEMENT);
 
 
4077			if (ret_val)
4078				goto release;
4079			e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert);
4080
4081			/*
4082			 * Disable LPLU if both link partners support 100BaseT
4083			 * EEE and 100Full is advertised on both ends of the
4084			 * link.
 
4085			 */
4086			if ((eee_advert & I217_EEE_100_SUPPORTED) &&
4087			    (dev_spec->eee_lp_ability &
4088			     I217_EEE_100_SUPPORTED) &&
4089			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4090				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4091					      E1000_PHY_CTRL_NOND0A_LPLU);
 
 
 
 
 
 
 
 
4092		}
4093
4094		/*
4095		 * For i217 Intel Rapid Start Technology support,
4096		 * when the system is going into Sx and no manageability engine
4097		 * is present, the driver must configure proxy to reset only on
4098		 * power good.  LPI (Low Power Idle) state must also reset only
4099		 * on power good, as well as the MTA (Multicast table array).
4100		 * The SMBus release must also be disabled on LCD reset.
4101		 */
4102		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4103
4104			/* Enable proxy to reset only on power good. */
4105			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4106			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4107			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4108
4109			/*
4110			 * Set bit enable LPI (EEE) to reset only on
4111			 * power good.
4112			 */
4113			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4114			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4115			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4116
4117			/* Disable the SMB release on LCD reset. */
4118			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4119			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4120			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4121		}
4122
4123		/*
4124		 * Enable MTA to reset for Intel Rapid Start Technology
4125		 * Support
4126		 */
4127		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4128		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4129		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4130
4131release:
4132		hw->phy.ops.release(hw);
4133	}
4134out:
4135	ew32(PHY_CTRL, phy_ctrl);
4136
4137	if (hw->mac.type == e1000_ich8lan)
4138		e1000e_gig_downshift_workaround_ich8lan(hw);
4139
4140	if (hw->mac.type >= e1000_pchlan) {
4141		e1000_oem_bits_config_ich8lan(hw, false);
4142
4143		/* Reset PHY to activate OEM bits on 82577/8 */
4144		if (hw->mac.type == e1000_pchlan)
4145			e1000e_phy_hw_reset_generic(hw);
4146
4147		ret_val = hw->phy.ops.acquire(hw);
4148		if (ret_val)
4149			return;
4150		e1000_write_smbus_addr(hw);
4151		hw->phy.ops.release(hw);
4152	}
4153}
4154
4155/**
4156 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4157 *  @hw: pointer to the HW structure
4158 *
4159 *  During Sx to S0 transitions on non-managed devices or managed devices
4160 *  on which PHY resets are not blocked, if the PHY registers cannot be
4161 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4162 *  the PHY.
4163 *  On i217, setup Intel Rapid Start Technology.
4164 **/
4165void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4166{
4167	s32 ret_val;
4168
4169	if (hw->mac.type < e1000_pch2lan)
4170		return;
4171
4172	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4173	if (ret_val) {
4174		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4175		return;
4176	}
4177
4178	/*
4179	 * For i217 Intel Rapid Start Technology support when the system
4180	 * is transitioning from Sx and no manageability engine is present
4181	 * configure SMBus to restore on reset, disable proxy, and enable
4182	 * the reset on MTA (Multicast table array).
4183	 */
4184	if (hw->phy.type == e1000_phy_i217) {
4185		u16 phy_reg;
4186
4187		ret_val = hw->phy.ops.acquire(hw);
4188		if (ret_val) {
4189			e_dbg("Failed to setup iRST\n");
4190			return;
4191		}
4192
 
 
 
 
 
4193		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4194			/*
4195			 * Restore clear on SMB if no manageability engine
4196			 * is present
4197			 */
4198			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4199			if (ret_val)
4200				goto release;
4201			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4202			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4203
4204			/* Disable Proxy */
4205			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4206		}
4207		/* Enable reset on MTA */
4208		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4209		if (ret_val)
4210			goto release;
4211		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4212		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4213release:
4214		if (ret_val)
4215			e_dbg("Error %d in resume workarounds\n", ret_val);
4216		hw->phy.ops.release(hw);
4217	}
4218}
4219
4220/**
4221 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4222 *  @hw: pointer to the HW structure
4223 *
4224 *  Return the LED back to the default configuration.
4225 **/
4226static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4227{
4228	if (hw->phy.type == e1000_phy_ife)
4229		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4230
4231	ew32(LEDCTL, hw->mac.ledctl_default);
4232	return 0;
4233}
4234
4235/**
4236 *  e1000_led_on_ich8lan - Turn LEDs on
4237 *  @hw: pointer to the HW structure
4238 *
4239 *  Turn on the LEDs.
4240 **/
4241static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4242{
4243	if (hw->phy.type == e1000_phy_ife)
4244		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4245				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4246
4247	ew32(LEDCTL, hw->mac.ledctl_mode2);
4248	return 0;
4249}
4250
4251/**
4252 *  e1000_led_off_ich8lan - Turn LEDs off
4253 *  @hw: pointer to the HW structure
4254 *
4255 *  Turn off the LEDs.
4256 **/
4257static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4258{
4259	if (hw->phy.type == e1000_phy_ife)
4260		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4261				(IFE_PSCL_PROBE_MODE |
4262				 IFE_PSCL_PROBE_LEDS_OFF));
4263
4264	ew32(LEDCTL, hw->mac.ledctl_mode1);
4265	return 0;
4266}
4267
4268/**
4269 *  e1000_setup_led_pchlan - Configures SW controllable LED
4270 *  @hw: pointer to the HW structure
4271 *
4272 *  This prepares the SW controllable LED for use.
4273 **/
4274static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4275{
4276	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4277}
4278
4279/**
4280 *  e1000_cleanup_led_pchlan - Restore the default LED operation
4281 *  @hw: pointer to the HW structure
4282 *
4283 *  Return the LED back to the default configuration.
4284 **/
4285static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4286{
4287	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4288}
4289
4290/**
4291 *  e1000_led_on_pchlan - Turn LEDs on
4292 *  @hw: pointer to the HW structure
4293 *
4294 *  Turn on the LEDs.
4295 **/
4296static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4297{
4298	u16 data = (u16)hw->mac.ledctl_mode2;
4299	u32 i, led;
4300
4301	/*
4302	 * If no link, then turn LED on by setting the invert bit
4303	 * for each LED that's mode is "link_up" in ledctl_mode2.
4304	 */
4305	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4306		for (i = 0; i < 3; i++) {
4307			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4308			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4309			    E1000_LEDCTL_MODE_LINK_UP)
4310				continue;
4311			if (led & E1000_PHY_LED0_IVRT)
4312				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4313			else
4314				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4315		}
4316	}
4317
4318	return e1e_wphy(hw, HV_LED_CONFIG, data);
4319}
4320
4321/**
4322 *  e1000_led_off_pchlan - Turn LEDs off
4323 *  @hw: pointer to the HW structure
4324 *
4325 *  Turn off the LEDs.
4326 **/
4327static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4328{
4329	u16 data = (u16)hw->mac.ledctl_mode1;
4330	u32 i, led;
4331
4332	/*
4333	 * If no link, then turn LED off by clearing the invert bit
4334	 * for each LED that's mode is "link_up" in ledctl_mode1.
4335	 */
4336	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4337		for (i = 0; i < 3; i++) {
4338			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4339			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4340			    E1000_LEDCTL_MODE_LINK_UP)
4341				continue;
4342			if (led & E1000_PHY_LED0_IVRT)
4343				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4344			else
4345				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4346		}
4347	}
4348
4349	return e1e_wphy(hw, HV_LED_CONFIG, data);
4350}
4351
4352/**
4353 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4354 *  @hw: pointer to the HW structure
4355 *
4356 *  Read appropriate register for the config done bit for completion status
4357 *  and configure the PHY through s/w for EEPROM-less parts.
4358 *
4359 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4360 *  config done bit, so only an error is logged and continues.  If we were
4361 *  to return with error, EEPROM-less silicon would not be able to be reset
4362 *  or change link.
4363 **/
4364static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4365{
4366	s32 ret_val = 0;
4367	u32 bank = 0;
4368	u32 status;
4369
4370	e1000e_get_cfg_done(hw);
4371
4372	/* Wait for indication from h/w that it has completed basic config */
4373	if (hw->mac.type >= e1000_ich10lan) {
4374		e1000_lan_init_done_ich8lan(hw);
4375	} else {
4376		ret_val = e1000e_get_auto_rd_done(hw);
4377		if (ret_val) {
4378			/*
4379			 * When auto config read does not complete, do not
4380			 * return with an error. This can happen in situations
4381			 * where there is no eeprom and prevents getting link.
4382			 */
4383			e_dbg("Auto Read Done did not complete\n");
4384			ret_val = 0;
4385		}
4386	}
4387
4388	/* Clear PHY Reset Asserted bit */
4389	status = er32(STATUS);
4390	if (status & E1000_STATUS_PHYRA)
4391		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4392	else
4393		e_dbg("PHY Reset Asserted not set - needs delay\n");
4394
4395	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4396	if (hw->mac.type <= e1000_ich9lan) {
4397		if (!(er32(EECD) & E1000_EECD_PRES) &&
4398		    (hw->phy.type == e1000_phy_igp_3)) {
4399			e1000e_phy_init_script_igp3(hw);
4400		}
4401	} else {
4402		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4403			/* Maybe we should do a basic PHY config */
4404			e_dbg("EEPROM not present\n");
4405			ret_val = -E1000_ERR_CONFIG;
4406		}
4407	}
4408
4409	return ret_val;
4410}
4411
4412/**
4413 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4414 * @hw: pointer to the HW structure
4415 *
4416 * In the case of a PHY power down to save power, or to turn off link during a
4417 * driver unload, or wake on lan is not enabled, remove the link.
4418 **/
4419static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4420{
4421	/* If the management interface is not enabled, then power down */
4422	if (!(hw->mac.ops.check_mng_mode(hw) ||
4423	      hw->phy.ops.check_reset_block(hw)))
4424		e1000_power_down_phy_copper(hw);
4425}
4426
4427/**
4428 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4429 *  @hw: pointer to the HW structure
4430 *
4431 *  Clears hardware counters specific to the silicon family and calls
4432 *  clear_hw_cntrs_generic to clear all general purpose counters.
4433 **/
4434static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4435{
4436	u16 phy_data;
4437	s32 ret_val;
4438
4439	e1000e_clear_hw_cntrs_base(hw);
4440
4441	er32(ALGNERRC);
4442	er32(RXERRC);
4443	er32(TNCRS);
4444	er32(CEXTERR);
4445	er32(TSCTC);
4446	er32(TSCTFC);
4447
4448	er32(MGTPRC);
4449	er32(MGTPDC);
4450	er32(MGTPTC);
4451
4452	er32(IAC);
4453	er32(ICRXOC);
4454
4455	/* Clear PHY statistics registers */
4456	if ((hw->phy.type == e1000_phy_82578) ||
4457	    (hw->phy.type == e1000_phy_82579) ||
4458	    (hw->phy.type == e1000_phy_i217) ||
4459	    (hw->phy.type == e1000_phy_82577)) {
4460		ret_val = hw->phy.ops.acquire(hw);
4461		if (ret_val)
4462			return;
4463		ret_val = hw->phy.ops.set_page(hw,
4464					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4465		if (ret_val)
4466			goto release;
4467		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4468		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4469		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4470		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4471		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4472		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4473		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4474		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4475		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4476		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4477		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4478		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4479		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4480		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4481release:
4482		hw->phy.ops.release(hw);
4483	}
4484}
4485
4486static const struct e1000_mac_operations ich8_mac_ops = {
4487	/* check_mng_mode dependent on mac type */
4488	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4489	/* cleanup_led dependent on mac type */
4490	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4491	.get_bus_info		= e1000_get_bus_info_ich8lan,
4492	.set_lan_id		= e1000_set_lan_id_single_port,
4493	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4494	/* led_on dependent on mac type */
4495	/* led_off dependent on mac type */
4496	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4497	.reset_hw		= e1000_reset_hw_ich8lan,
4498	.init_hw		= e1000_init_hw_ich8lan,
4499	.setup_link		= e1000_setup_link_ich8lan,
4500	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4501	/* id_led_init dependent on mac type */
4502	.config_collision_dist	= e1000e_config_collision_dist_generic,
4503	.rar_set		= e1000e_rar_set_generic,
 
4504};
4505
4506static const struct e1000_phy_operations ich8_phy_ops = {
4507	.acquire		= e1000_acquire_swflag_ich8lan,
4508	.check_reset_block	= e1000_check_reset_block_ich8lan,
4509	.commit			= NULL,
4510	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4511	.get_cable_length	= e1000e_get_cable_length_igp_2,
4512	.read_reg		= e1000e_read_phy_reg_igp,
4513	.release		= e1000_release_swflag_ich8lan,
4514	.reset			= e1000_phy_hw_reset_ich8lan,
4515	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4516	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4517	.write_reg		= e1000e_write_phy_reg_igp,
4518};
4519
4520static const struct e1000_nvm_operations ich8_nvm_ops = {
4521	.acquire		= e1000_acquire_nvm_ich8lan,
4522	.read		 	= e1000_read_nvm_ich8lan,
4523	.release		= e1000_release_nvm_ich8lan,
4524	.reload			= e1000e_reload_nvm_generic,
4525	.update			= e1000_update_nvm_checksum_ich8lan,
4526	.valid_led_default	= e1000_valid_led_default_ich8lan,
4527	.validate		= e1000_validate_nvm_checksum_ich8lan,
4528	.write			= e1000_write_nvm_ich8lan,
4529};
4530
 
 
 
 
 
 
 
 
 
 
 
4531const struct e1000_info e1000_ich8_info = {
4532	.mac			= e1000_ich8lan,
4533	.flags			= FLAG_HAS_WOL
4534				  | FLAG_IS_ICH
4535				  | FLAG_HAS_CTRLEXT_ON_LOAD
4536				  | FLAG_HAS_AMT
4537				  | FLAG_HAS_FLASH
4538				  | FLAG_APME_IN_WUC,
4539	.pba			= 8,
4540	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4541	.get_variants		= e1000_get_variants_ich8lan,
4542	.mac_ops		= &ich8_mac_ops,
4543	.phy_ops		= &ich8_phy_ops,
4544	.nvm_ops		= &ich8_nvm_ops,
4545};
4546
4547const struct e1000_info e1000_ich9_info = {
4548	.mac			= e1000_ich9lan,
4549	.flags			= FLAG_HAS_JUMBO_FRAMES
4550				  | FLAG_IS_ICH
4551				  | FLAG_HAS_WOL
4552				  | FLAG_HAS_CTRLEXT_ON_LOAD
4553				  | FLAG_HAS_AMT
4554				  | FLAG_HAS_FLASH
4555				  | FLAG_APME_IN_WUC,
4556	.pba			= 18,
4557	.max_hw_frame_size	= DEFAULT_JUMBO,
4558	.get_variants		= e1000_get_variants_ich8lan,
4559	.mac_ops		= &ich8_mac_ops,
4560	.phy_ops		= &ich8_phy_ops,
4561	.nvm_ops		= &ich8_nvm_ops,
4562};
4563
4564const struct e1000_info e1000_ich10_info = {
4565	.mac			= e1000_ich10lan,
4566	.flags			= FLAG_HAS_JUMBO_FRAMES
4567				  | FLAG_IS_ICH
4568				  | FLAG_HAS_WOL
4569				  | FLAG_HAS_CTRLEXT_ON_LOAD
4570				  | FLAG_HAS_AMT
4571				  | FLAG_HAS_FLASH
4572				  | FLAG_APME_IN_WUC,
4573	.pba			= 18,
4574	.max_hw_frame_size	= DEFAULT_JUMBO,
4575	.get_variants		= e1000_get_variants_ich8lan,
4576	.mac_ops		= &ich8_mac_ops,
4577	.phy_ops		= &ich8_phy_ops,
4578	.nvm_ops		= &ich8_nvm_ops,
4579};
4580
4581const struct e1000_info e1000_pch_info = {
4582	.mac			= e1000_pchlan,
4583	.flags			= FLAG_IS_ICH
4584				  | FLAG_HAS_WOL
4585				  | FLAG_HAS_CTRLEXT_ON_LOAD
4586				  | FLAG_HAS_AMT
4587				  | FLAG_HAS_FLASH
4588				  | FLAG_HAS_JUMBO_FRAMES
4589				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4590				  | FLAG_APME_IN_WUC,
4591	.flags2			= FLAG2_HAS_PHY_STATS,
4592	.pba			= 26,
4593	.max_hw_frame_size	= 4096,
4594	.get_variants		= e1000_get_variants_ich8lan,
4595	.mac_ops		= &ich8_mac_ops,
4596	.phy_ops		= &ich8_phy_ops,
4597	.nvm_ops		= &ich8_nvm_ops,
4598};
4599
4600const struct e1000_info e1000_pch2_info = {
4601	.mac			= e1000_pch2lan,
4602	.flags			= FLAG_IS_ICH
4603				  | FLAG_HAS_WOL
 
4604				  | FLAG_HAS_CTRLEXT_ON_LOAD
4605				  | FLAG_HAS_AMT
4606				  | FLAG_HAS_FLASH
4607				  | FLAG_HAS_JUMBO_FRAMES
4608				  | FLAG_APME_IN_WUC,
4609	.flags2			= FLAG2_HAS_PHY_STATS
4610				  | FLAG2_HAS_EEE,
 
4611	.pba			= 26,
4612	.max_hw_frame_size	= DEFAULT_JUMBO,
4613	.get_variants		= e1000_get_variants_ich8lan,
4614	.mac_ops		= &ich8_mac_ops,
4615	.phy_ops		= &ich8_phy_ops,
4616	.nvm_ops		= &ich8_nvm_ops,
4617};
4618
4619const struct e1000_info e1000_pch_lpt_info = {
4620	.mac			= e1000_pch_lpt,
4621	.flags			= FLAG_IS_ICH
4622				  | FLAG_HAS_WOL
 
4623				  | FLAG_HAS_CTRLEXT_ON_LOAD
4624				  | FLAG_HAS_AMT
4625				  | FLAG_HAS_FLASH
4626				  | FLAG_HAS_JUMBO_FRAMES
4627				  | FLAG_APME_IN_WUC,
4628	.flags2			= FLAG2_HAS_PHY_STATS
4629				  | FLAG2_HAS_EEE,
 
4630	.pba			= 26,
4631	.max_hw_frame_size	= DEFAULT_JUMBO,
4632	.get_variants		= e1000_get_variants_ich8lan,
4633	.mac_ops		= &ich8_mac_ops,
4634	.phy_ops		= &ich8_phy_ops,
4635	.nvm_ops		= &ich8_nvm_ops,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4636};
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4/* 82562G 10/100 Network Connection
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
 
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225			/* Unforce SMBus mode in PHY */
 226			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 227			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 228			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 229
 230			/* Unforce SMBus mode in MAC */
 231			mac_reg = er32(CTRL_EXT);
 232			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 233			ew32(CTRL_EXT, mac_reg);
 234		}
 235	}
 236
 237	return true;
 238}
 239
 240/**
 241 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 242 *  @hw: pointer to the HW structure
 243 *
 244 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 245 *  used to reset the PHY to a quiescent state when necessary.
 246 **/
 247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 248{
 249	u32 mac_reg;
 250
 251	/* Set Phy Config Counter to 50msec */
 252	mac_reg = er32(FEXTNVM3);
 253	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 254	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 255	ew32(FEXTNVM3, mac_reg);
 256
 257	/* Toggle LANPHYPC Value bit */
 258	mac_reg = er32(CTRL);
 259	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 260	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 261	ew32(CTRL, mac_reg);
 262	e1e_flush();
 263	usleep_range(10, 20);
 264	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 265	ew32(CTRL, mac_reg);
 266	e1e_flush();
 267
 268	if (hw->mac.type < e1000_pch_lpt) {
 269		msleep(50);
 270	} else {
 271		u16 count = 20;
 272
 273		do {
 274			usleep_range(5000, 6000);
 275		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 276
 277		msleep(30);
 278	}
 279}
 280
 281/**
 282 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 283 *  @hw: pointer to the HW structure
 284 *
 285 *  Workarounds/flow necessary for PHY initialization during driver load
 286 *  and resume paths.
 287 **/
 288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 289{
 290	struct e1000_adapter *adapter = hw->adapter;
 291	u32 mac_reg, fwsm = er32(FWSM);
 292	s32 ret_val;
 293
 294	/* Gate automatic PHY configuration by hardware on managed and
 295	 * non-managed 82579 and newer adapters.
 296	 */
 297	e1000_gate_hw_phy_config_ich8lan(hw, true);
 298
 299	/* It is not possible to be certain of the current state of ULP
 300	 * so forcibly disable it.
 301	 */
 302	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 303	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 304	if (ret_val)
 305		e_warn("Failed to disable ULP\n");
 306
 307	ret_val = hw->phy.ops.acquire(hw);
 308	if (ret_val) {
 309		e_dbg("Failed to initialize PHY flow\n");
 310		goto out;
 311	}
 312
 313	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 
 314	 * inaccessible and resetting the PHY is not blocked, toggle the
 315	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 316	 */
 317	switch (hw->mac.type) {
 318	case e1000_pch_lpt:
 319	case e1000_pch_spt:
 320	case e1000_pch_cnp:
 321	case e1000_pch_tgp:
 322	case e1000_pch_adp:
 323	case e1000_pch_mtp:
 324	case e1000_pch_lnp:
 325	case e1000_pch_ptp:
 326		if (e1000_phy_is_accessible_pchlan(hw))
 327			break;
 328
 329		/* Before toggling LANPHYPC, see if PHY is accessible by
 
 330		 * forcing MAC to SMBus mode first.
 331		 */
 332		mac_reg = er32(CTRL_EXT);
 333		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 334		ew32(CTRL_EXT, mac_reg);
 335
 336		/* Wait 50 milliseconds for MAC to finish any retries
 337		 * that it might be trying to perform from previous
 338		 * attempts to acknowledge any phy read requests.
 
 
 339		 */
 340		msleep(50);
 
 
 341
 342		fallthrough;
 343	case e1000_pch2lan:
 344		if (e1000_phy_is_accessible_pchlan(hw))
 
 
 
 
 
 
 
 
 
 345			break;
 
 346
 347		fallthrough;
 348	case e1000_pchlan:
 349		if ((hw->mac.type == e1000_pchlan) &&
 350		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 351			break;
 352
 353		if (hw->phy.ops.check_reset_block(hw)) {
 354			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 355			ret_val = -E1000_ERR_PHY;
 356			break;
 357		}
 358
 359		/* Toggle LANPHYPC Value bit */
 360		e1000_toggle_lanphypc_pch_lpt(hw);
 361		if (hw->mac.type >= e1000_pch_lpt) {
 362			if (e1000_phy_is_accessible_pchlan(hw))
 363				break;
 364
 365			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 366			 * so ensure that the MAC is also out of SMBus mode
 367			 */
 368			mac_reg = er32(CTRL_EXT);
 369			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 370			ew32(CTRL_EXT, mac_reg);
 371
 372			if (e1000_phy_is_accessible_pchlan(hw))
 373				break;
 
 
 
 374
 375			ret_val = -E1000_ERR_PHY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376		}
 377		break;
 378	default:
 379		break;
 380	}
 381
 382	hw->phy.ops.release(hw);
 383	if (!ret_val) {
 384
 385		/* Check to see if able to reset PHY.  Print error if not */
 386		if (hw->phy.ops.check_reset_block(hw)) {
 387			e_err("Reset blocked by ME\n");
 388			goto out;
 389		}
 390
 391		/* Reset the PHY before any access to it.  Doing so, ensures
 392		 * that the PHY is in a known good state before we read/write
 393		 * PHY registers.  The generic reset is sufficient here,
 394		 * because we haven't determined the PHY type yet.
 395		 */
 396		ret_val = e1000e_phy_hw_reset_generic(hw);
 397		if (ret_val)
 398			goto out;
 399
 400		/* On a successful reset, possibly need to wait for the PHY
 401		 * to quiesce to an accessible state before returning control
 402		 * to the calling function.  If the PHY does not quiesce, then
 403		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 404		 *  the PHY is in.
 405		 */
 406		ret_val = hw->phy.ops.check_reset_block(hw);
 407		if (ret_val)
 408			e_err("ME blocked access to PHY after reset\n");
 409	}
 410
 411out:
 412	/* Ungate automatic PHY configuration on non-managed 82579 */
 413	if ((hw->mac.type == e1000_pch2lan) &&
 414	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 415		usleep_range(10000, 11000);
 416		e1000_gate_hw_phy_config_ich8lan(hw, false);
 417	}
 418
 419	return ret_val;
 420}
 421
 422/**
 423 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 424 *  @hw: pointer to the HW structure
 425 *
 426 *  Initialize family-specific PHY parameters and function pointers.
 427 **/
 428static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 429{
 430	struct e1000_phy_info *phy = &hw->phy;
 431	s32 ret_val;
 432
 433	phy->addr = 1;
 434	phy->reset_delay_us = 100;
 435
 436	phy->ops.set_page = e1000_set_page_igp;
 437	phy->ops.read_reg = e1000_read_phy_reg_hv;
 438	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 439	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 440	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 441	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 442	phy->ops.write_reg = e1000_write_phy_reg_hv;
 443	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 444	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 445	phy->ops.power_up = e1000_power_up_phy_copper;
 446	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 447	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 448
 449	phy->id = e1000_phy_unknown;
 450
 451	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 452	if (ret_val)
 453		return ret_val;
 454
 455	if (phy->id == e1000_phy_unknown)
 456		switch (hw->mac.type) {
 457		default:
 458			ret_val = e1000e_get_phy_id(hw);
 459			if (ret_val)
 460				return ret_val;
 461			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 462				break;
 463			fallthrough;
 464		case e1000_pch2lan:
 465		case e1000_pch_lpt:
 466		case e1000_pch_spt:
 467		case e1000_pch_cnp:
 468		case e1000_pch_tgp:
 469		case e1000_pch_adp:
 470		case e1000_pch_mtp:
 471		case e1000_pch_lnp:
 472		case e1000_pch_ptp:
 473			/* In case the PHY needs to be in mdio slow mode,
 474			 * set slow mode and try to get the PHY id again.
 475			 */
 476			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 477			if (ret_val)
 478				return ret_val;
 479			ret_val = e1000e_get_phy_id(hw);
 480			if (ret_val)
 481				return ret_val;
 482			break;
 483		}
 484	phy->type = e1000e_get_phy_type_from_id(phy->id);
 485
 486	switch (phy->type) {
 487	case e1000_phy_82577:
 488	case e1000_phy_82579:
 489	case e1000_phy_i217:
 490		phy->ops.check_polarity = e1000_check_polarity_82577;
 491		phy->ops.force_speed_duplex =
 492		    e1000_phy_force_speed_duplex_82577;
 493		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 494		phy->ops.get_info = e1000_get_phy_info_82577;
 495		phy->ops.commit = e1000e_phy_sw_reset;
 496		break;
 497	case e1000_phy_82578:
 498		phy->ops.check_polarity = e1000_check_polarity_m88;
 499		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 500		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 501		phy->ops.get_info = e1000e_get_phy_info_m88;
 502		break;
 503	default:
 504		ret_val = -E1000_ERR_PHY;
 505		break;
 506	}
 507
 508	return ret_val;
 509}
 510
 511/**
 512 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 513 *  @hw: pointer to the HW structure
 514 *
 515 *  Initialize family-specific PHY parameters and function pointers.
 516 **/
 517static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 518{
 519	struct e1000_phy_info *phy = &hw->phy;
 520	s32 ret_val;
 521	u16 i = 0;
 522
 523	phy->addr = 1;
 524	phy->reset_delay_us = 100;
 525
 526	phy->ops.power_up = e1000_power_up_phy_copper;
 527	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 528
 529	/* We may need to do this twice - once for IGP and if that fails,
 
 530	 * we'll set BM func pointers and try again
 531	 */
 532	ret_val = e1000e_determine_phy_address(hw);
 533	if (ret_val) {
 534		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 535		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 536		ret_val = e1000e_determine_phy_address(hw);
 537		if (ret_val) {
 538			e_dbg("Cannot determine PHY addr. Erroring out\n");
 539			return ret_val;
 540		}
 541	}
 542
 543	phy->id = 0;
 544	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 545	       (i++ < 100)) {
 546		usleep_range(1000, 1100);
 547		ret_val = e1000e_get_phy_id(hw);
 548		if (ret_val)
 549			return ret_val;
 550	}
 551
 552	/* Verify phy id */
 553	switch (phy->id) {
 554	case IGP03E1000_E_PHY_ID:
 555		phy->type = e1000_phy_igp_3;
 556		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 557		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 558		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 559		phy->ops.get_info = e1000e_get_phy_info_igp;
 560		phy->ops.check_polarity = e1000_check_polarity_igp;
 561		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 562		break;
 563	case IFE_E_PHY_ID:
 564	case IFE_PLUS_E_PHY_ID:
 565	case IFE_C_E_PHY_ID:
 566		phy->type = e1000_phy_ife;
 567		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 568		phy->ops.get_info = e1000_get_phy_info_ife;
 569		phy->ops.check_polarity = e1000_check_polarity_ife;
 570		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 571		break;
 572	case BME1000_E_PHY_ID:
 573		phy->type = e1000_phy_bm;
 574		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 575		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 576		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 577		phy->ops.commit = e1000e_phy_sw_reset;
 578		phy->ops.get_info = e1000e_get_phy_info_m88;
 579		phy->ops.check_polarity = e1000_check_polarity_m88;
 580		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 581		break;
 582	default:
 583		return -E1000_ERR_PHY;
 
 584	}
 585
 586	return 0;
 587}
 588
 589/**
 590 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 591 *  @hw: pointer to the HW structure
 592 *
 593 *  Initialize family-specific NVM parameters and function
 594 *  pointers.
 595 **/
 596static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 597{
 598	struct e1000_nvm_info *nvm = &hw->nvm;
 599	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 600	u32 gfpreg, sector_base_addr, sector_end_addr;
 601	u16 i;
 602	u32 nvm_size;
 
 
 
 
 
 603
 604	nvm->type = e1000_nvm_flash_sw;
 605
 606	if (hw->mac.type >= e1000_pch_spt) {
 607		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 608		 * STRAP register. This is because in SPT the GbE Flash region
 609		 * is no longer accessed through the flash registers. Instead,
 610		 * the mechanism has changed, and the Flash region access
 611		 * registers are now implemented in GbE memory space.
 612		 */
 613		nvm->flash_base_addr = 0;
 614		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 615		    * NVM_SIZE_MULTIPLIER;
 616		nvm->flash_bank_size = nvm_size / 2;
 617		/* Adjust to word count */
 618		nvm->flash_bank_size /= sizeof(u16);
 619		/* Set the base address for flash register access */
 620		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 621	} else {
 622		/* Can't read flash registers if register set isn't mapped. */
 623		if (!hw->flash_address) {
 624			e_dbg("ERROR: Flash registers not mapped\n");
 625			return -E1000_ERR_CONFIG;
 626		}
 627
 628		gfpreg = er32flash(ICH_FLASH_GFPREG);
 629
 630		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 631		 * Add 1 to sector_end_addr since this sector is included in
 632		 * the overall size.
 633		 */
 634		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 635		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 636
 637		/* flash_base_addr is byte-aligned */
 638		nvm->flash_base_addr = sector_base_addr
 639		    << FLASH_SECTOR_ADDR_SHIFT;
 640
 641		/* find total size of the NVM, then cut in half since the total
 642		 * size represents two separate NVM banks.
 643		 */
 644		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 645					<< FLASH_SECTOR_ADDR_SHIFT);
 646		nvm->flash_bank_size /= 2;
 647		/* Adjust to word count */
 648		nvm->flash_bank_size /= sizeof(u16);
 649	}
 
 
 
 
 
 
 
 
 
 
 
 650
 651	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 652
 653	/* Clear shadow ram */
 654	for (i = 0; i < nvm->word_size; i++) {
 655		dev_spec->shadow_ram[i].modified = false;
 656		dev_spec->shadow_ram[i].value = 0xFFFF;
 657	}
 658
 659	return 0;
 660}
 661
 662/**
 663 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 664 *  @hw: pointer to the HW structure
 665 *
 666 *  Initialize family-specific MAC parameters and function
 667 *  pointers.
 668 **/
 669static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 670{
 671	struct e1000_mac_info *mac = &hw->mac;
 672
 673	/* Set media type function pointer */
 674	hw->phy.media_type = e1000_media_type_copper;
 675
 676	/* Set mta register count */
 677	mac->mta_reg_count = 32;
 678	/* Set rar entry count */
 679	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 680	if (mac->type == e1000_ich8lan)
 681		mac->rar_entry_count--;
 682	/* FWSM register */
 683	mac->has_fwsm = true;
 684	/* ARC subsystem not supported */
 685	mac->arc_subsystem_valid = false;
 686	/* Adaptive IFS supported */
 687	mac->adaptive_ifs = true;
 688
 689	/* LED and other operations */
 690	switch (mac->type) {
 691	case e1000_ich8lan:
 692	case e1000_ich9lan:
 693	case e1000_ich10lan:
 694		/* check management mode */
 695		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 696		/* ID LED init */
 697		mac->ops.id_led_init = e1000e_id_led_init_generic;
 698		/* blink LED */
 699		mac->ops.blink_led = e1000e_blink_led_generic;
 700		/* setup LED */
 701		mac->ops.setup_led = e1000e_setup_led_generic;
 702		/* cleanup LED */
 703		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 704		/* turn on/off LED */
 705		mac->ops.led_on = e1000_led_on_ich8lan;
 706		mac->ops.led_off = e1000_led_off_ich8lan;
 707		break;
 708	case e1000_pch2lan:
 709		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 710		mac->ops.rar_set = e1000_rar_set_pch2lan;
 711		fallthrough;
 712	case e1000_pch_lpt:
 713	case e1000_pch_spt:
 714	case e1000_pch_cnp:
 715	case e1000_pch_tgp:
 716	case e1000_pch_adp:
 717	case e1000_pch_mtp:
 718	case e1000_pch_lnp:
 719	case e1000_pch_ptp:
 720	case e1000_pchlan:
 721		/* check management mode */
 722		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 723		/* ID LED init */
 724		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 725		/* setup LED */
 726		mac->ops.setup_led = e1000_setup_led_pchlan;
 727		/* cleanup LED */
 728		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 729		/* turn on/off LED */
 730		mac->ops.led_on = e1000_led_on_pchlan;
 731		mac->ops.led_off = e1000_led_off_pchlan;
 732		break;
 733	default:
 734		break;
 735	}
 736
 737	if (mac->type >= e1000_pch_lpt) {
 738		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 739		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 740		mac->ops.setup_physical_interface =
 741		    e1000_setup_copper_link_pch_lpt;
 742		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 743	}
 744
 745	/* Enable PCS Lock-loss workaround for ICH8 */
 746	if (mac->type == e1000_ich8lan)
 747		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 748
 
 
 
 
 
 
 
 
 749	return 0;
 750}
 751
 752/**
 753 *  __e1000_access_emi_reg_locked - Read/write EMI register
 754 *  @hw: pointer to the HW structure
 755 *  @address: EMI address to program
 756 *  @data: pointer to value to read/write from/to the EMI address
 757 *  @read: boolean flag to indicate read or write
 758 *
 759 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 760 **/
 761static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 762					 u16 *data, bool read)
 763{
 764	s32 ret_val;
 765
 766	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 767	if (ret_val)
 768		return ret_val;
 769
 770	if (read)
 771		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 772	else
 773		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 774
 775	return ret_val;
 776}
 777
 778/**
 779 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 780 *  @hw: pointer to the HW structure
 781 *  @addr: EMI address to program
 782 *  @data: value to be read from the EMI address
 783 *
 784 *  Assumes the SW/FW/HW Semaphore is already acquired.
 785 **/
 786s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 787{
 788	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 789}
 790
 791/**
 792 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 793 *  @hw: pointer to the HW structure
 794 *  @addr: EMI address to program
 795 *  @data: value to be written to the EMI address
 796 *
 797 *  Assumes the SW/FW/HW Semaphore is already acquired.
 798 **/
 799s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 800{
 801	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 802}
 803
 804/**
 805 *  e1000_set_eee_pchlan - Enable/disable EEE support
 806 *  @hw: pointer to the HW structure
 807 *
 808 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 809 *  the link and the EEE capabilities of the link partner.  The LPI Control
 810 *  register bits will remain set only if/when link is up.
 811 *
 812 *  EEE LPI must not be asserted earlier than one second after link is up.
 813 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 814 *  can be link issues with some switches.  Other devices can have EEE LPI
 815 *  enabled immediately upon link up since they have a timer in hardware which
 816 *  prevents LPI from being asserted too early.
 817 **/
 818s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 819{
 820	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 821	s32 ret_val;
 822	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 823
 824	switch (hw->phy.type) {
 825	case e1000_phy_82579:
 826		lpa = I82579_EEE_LP_ABILITY;
 827		pcs_status = I82579_EEE_PCS_STATUS;
 828		adv_addr = I82579_EEE_ADVERTISEMENT;
 829		break;
 830	case e1000_phy_i217:
 831		lpa = I217_EEE_LP_ABILITY;
 832		pcs_status = I217_EEE_PCS_STATUS;
 833		adv_addr = I217_EEE_ADVERTISEMENT;
 834		break;
 835	default:
 836		return 0;
 837	}
 838
 839	ret_val = hw->phy.ops.acquire(hw);
 840	if (ret_val)
 841		return ret_val;
 842
 843	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 
 
 
 
 
 844	if (ret_val)
 845		goto release;
 846
 847	/* Clear bits that enable EEE in various speeds */
 848	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 849
 850	/* Enable EEE if not disabled by user */
 851	if (!dev_spec->eee_disable) {
 852		/* Save off link partner's EEE ability */
 853		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 854						    &dev_spec->eee_lp_ability);
 855		if (ret_val)
 856			goto release;
 857
 858		/* Read EEE advertisement */
 859		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 860		if (ret_val)
 861			goto release;
 862
 863		/* Enable EEE only for speeds in which the link partner is
 864		 * EEE capable and for which we advertise EEE.
 865		 */
 866		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 867			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 868
 869		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 870			e1e_rphy_locked(hw, MII_LPA, &data);
 871			if (data & LPA_100FULL)
 872				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 873			else
 874				/* EEE is not supported in 100Half, so ignore
 875				 * partner's EEE in 100 ability if full-duplex
 876				 * is not advertised.
 877				 */
 878				dev_spec->eee_lp_ability &=
 879				    ~I82579_EEE_100_SUPPORTED;
 880		}
 881	}
 882
 883	if (hw->phy.type == e1000_phy_82579) {
 884		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 885						    &data);
 886		if (ret_val)
 887			goto release;
 888
 889		data &= ~I82579_LPI_100_PLL_SHUT;
 890		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 891						     data);
 892	}
 893
 894	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 895	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 896	if (ret_val)
 897		goto release;
 898
 899	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 900release:
 901	hw->phy.ops.release(hw);
 902
 903	return ret_val;
 904}
 905
 906/**
 907 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 908 *  @hw:   pointer to the HW structure
 909 *  @link: link up bool flag
 910 *
 911 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 912 *  preventing further DMA write requests.  Workaround the issue by disabling
 913 *  the de-assertion of the clock request when in 1Gpbs mode.
 914 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 915 *  speeds in order to avoid Tx hangs.
 916 **/
 917static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 918{
 919	u32 fextnvm6 = er32(FEXTNVM6);
 920	u32 status = er32(STATUS);
 921	s32 ret_val = 0;
 922	u16 reg;
 923
 924	if (link && (status & E1000_STATUS_SPEED_1000)) {
 925		ret_val = hw->phy.ops.acquire(hw);
 926		if (ret_val)
 927			return ret_val;
 928
 929		ret_val =
 930		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 931						&reg);
 932		if (ret_val)
 933			goto release;
 
 934
 935		ret_val =
 936		    e1000e_write_kmrn_reg_locked(hw,
 937						 E1000_KMRNCTRLSTA_K1_CONFIG,
 938						 reg &
 939						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 940		if (ret_val)
 941			goto release;
 942
 943		usleep_range(10, 20);
 944
 945		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 946
 947		ret_val =
 948		    e1000e_write_kmrn_reg_locked(hw,
 949						 E1000_KMRNCTRLSTA_K1_CONFIG,
 950						 reg);
 951release:
 952		hw->phy.ops.release(hw);
 953	} else {
 954		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 955		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 956
 957		if ((hw->phy.revision > 5) || !link ||
 958		    ((status & E1000_STATUS_SPEED_100) &&
 959		     (status & E1000_STATUS_FD)))
 960			goto update_fextnvm6;
 961
 962		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 963		if (ret_val)
 964			return ret_val;
 965
 966		/* Clear link status transmit timeout */
 967		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 968
 969		if (status & E1000_STATUS_SPEED_100) {
 970			/* Set inband Tx timeout to 5x10us for 100Half */
 971			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 972
 973			/* Do not extend the K1 entry latency for 100Half */
 974			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 975		} else {
 976			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 977			reg |= 50 <<
 978			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 979
 980			/* Extend the K1 entry latency for 10 Mbps */
 981			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 982		}
 983
 984		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 985		if (ret_val)
 986			return ret_val;
 987
 988update_fextnvm6:
 989		ew32(FEXTNVM6, fextnvm6);
 990	}
 991
 992	return ret_val;
 993}
 994
 995/**
 996 *  e1000_platform_pm_pch_lpt - Set platform power management values
 997 *  @hw: pointer to the HW structure
 998 *  @link: bool indicating link status
 999 *
1000 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1001 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1002 *  when link is up (which must not exceed the maximum latency supported
1003 *  by the platform), otherwise specify there is no LTR requirement.
1004 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1005 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1006 *  Capability register set, on this device LTR is set by writing the
1007 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1008 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1009 *  message to the PMC.
1010 **/
1011static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1012{
1013	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1014	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1015	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1016	u32 lat_enc_d = 0;	/* latency decoded */
1017	u16 lat_enc = 0;	/* latency encoded */
1018
1019	if (link) {
1020		u16 speed, duplex, scale = 0;
1021		u16 max_snoop, max_nosnoop;
1022		u16 max_ltr_enc;	/* max LTR latency encoded */
1023		u64 value;
1024		u32 rxa;
1025
1026		if (!hw->adapter->max_frame_size) {
1027			e_dbg("max_frame_size not set.\n");
1028			return -E1000_ERR_CONFIG;
1029		}
1030
1031		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1032		if (!speed) {
1033			e_dbg("Speed not set.\n");
1034			return -E1000_ERR_CONFIG;
1035		}
1036
1037		/* Rx Packet Buffer Allocation size (KB) */
1038		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1039
1040		/* Determine the maximum latency tolerated by the device.
1041		 *
1042		 * Per the PCIe spec, the tolerated latencies are encoded as
1043		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1044		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1045		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1046		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1047		 */
1048		rxa *= 512;
1049		value = (rxa > hw->adapter->max_frame_size) ?
1050			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1051			0;
1052
1053		while (value > PCI_LTR_VALUE_MASK) {
1054			scale++;
1055			value = DIV_ROUND_UP(value, BIT(5));
1056		}
1057		if (scale > E1000_LTRV_SCALE_MAX) {
1058			e_dbg("Invalid LTR latency scale %d\n", scale);
1059			return -E1000_ERR_CONFIG;
1060		}
1061		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1062
1063		/* Determine the maximum latency tolerated by the platform */
1064		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1065				     &max_snoop);
1066		pci_read_config_word(hw->adapter->pdev,
1067				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1068		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1069
1070		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1071			     (1U << (E1000_LTRV_SCALE_FACTOR *
1072			     ((lat_enc & E1000_LTRV_SCALE_MASK)
1073			     >> E1000_LTRV_SCALE_SHIFT)));
1074
1075		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1076				 (1U << (E1000_LTRV_SCALE_FACTOR *
1077				 ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1078				 >> E1000_LTRV_SCALE_SHIFT)));
1079
1080		if (lat_enc_d > max_ltr_enc_d)
1081			lat_enc = max_ltr_enc;
1082	}
1083
1084	/* Set Snoop and No-Snoop latencies the same */
1085	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1086	ew32(LTRV, reg);
1087
1088	return 0;
1089}
1090
1091/**
1092 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1093 *  @hw: pointer to the HW structure
1094 *  @to_sx: boolean indicating a system power state transition to Sx
1095 *
1096 *  When link is down, configure ULP mode to significantly reduce the power
1097 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1098 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1099 *  system, configure the ULP mode by software.
1100 */
1101s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1102{
1103	u32 mac_reg;
1104	s32 ret_val = 0;
1105	u16 phy_reg;
1106	u16 oem_reg = 0;
1107
1108	if ((hw->mac.type < e1000_pch_lpt) ||
1109	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1110	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1111	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1112	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1113	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1114		return 0;
1115
1116	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1117		/* Request ME configure ULP mode in the PHY */
1118		mac_reg = er32(H2ME);
1119		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1120		ew32(H2ME, mac_reg);
1121
1122		goto out;
1123	}
1124
1125	if (!to_sx) {
1126		int i = 0;
1127
1128		/* Poll up to 5 seconds for Cable Disconnected indication */
1129		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1130			/* Bail if link is re-acquired */
1131			if (er32(STATUS) & E1000_STATUS_LU)
1132				return -E1000_ERR_PHY;
1133
1134			if (i++ == 100)
1135				break;
1136
1137			msleep(50);
1138		}
1139		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1140		      (er32(FEXT) &
1141		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1142	}
1143
1144	ret_val = hw->phy.ops.acquire(hw);
1145	if (ret_val)
1146		goto out;
1147
1148	/* Force SMBus mode in PHY */
1149	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1150	if (ret_val)
1151		goto release;
1152	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1153	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1154
1155	/* Force SMBus mode in MAC */
1156	mac_reg = er32(CTRL_EXT);
1157	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1158	ew32(CTRL_EXT, mac_reg);
1159
1160	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1161	 * LPLU and disable Gig speed when entering ULP
1162	 */
1163	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1164		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1165						       &oem_reg);
1166		if (ret_val)
1167			goto release;
1168
1169		phy_reg = oem_reg;
1170		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1171
1172		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1173							phy_reg);
1174
1175		if (ret_val)
1176			goto release;
1177	}
1178
1179	/* Set Inband ULP Exit, Reset to SMBus mode and
1180	 * Disable SMBus Release on PERST# in PHY
1181	 */
1182	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1183	if (ret_val)
1184		goto release;
1185	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1186		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1187	if (to_sx) {
1188		if (er32(WUFC) & E1000_WUFC_LNKC)
1189			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1190		else
1191			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1192
1193		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1194		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1195	} else {
1196		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1197		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1198		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1199	}
1200	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1201
1202	/* Set Disable SMBus Release on PERST# in MAC */
1203	mac_reg = er32(FEXTNVM7);
1204	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1205	ew32(FEXTNVM7, mac_reg);
1206
1207	/* Commit ULP changes in PHY by starting auto ULP configuration */
1208	phy_reg |= I218_ULP_CONFIG1_START;
1209	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1210
1211	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1212	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1213		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1214							oem_reg);
1215		if (ret_val)
1216			goto release;
1217	}
1218
1219release:
1220	hw->phy.ops.release(hw);
1221out:
1222	if (ret_val)
1223		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1224	else
1225		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1226
1227	return ret_val;
1228}
1229
1230/**
1231 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1232 *  @hw: pointer to the HW structure
1233 *  @force: boolean indicating whether or not to force disabling ULP
1234 *
1235 *  Un-configure ULP mode when link is up, the system is transitioned from
1236 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1237 *  system, poll for an indication from ME that ULP has been un-configured.
1238 *  If not on an ME enabled system, un-configure the ULP mode by software.
1239 *
1240 *  During nominal operation, this function is called when link is acquired
1241 *  to disable ULP mode (force=false); otherwise, for example when unloading
1242 *  the driver or during Sx->S0 transitions, this is called with force=true
1243 *  to forcibly disable ULP.
1244 */
1245static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1246{
1247	s32 ret_val = 0;
1248	u32 mac_reg;
1249	u16 phy_reg;
1250	int i = 0;
1251
1252	if ((hw->mac.type < e1000_pch_lpt) ||
1253	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1254	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1255	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1256	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1257	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1258		return 0;
1259
1260	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1261		struct e1000_adapter *adapter = hw->adapter;
1262		bool firmware_bug = false;
1263
1264		if (force) {
1265			/* Request ME un-configure ULP mode in the PHY */
1266			mac_reg = er32(H2ME);
1267			mac_reg &= ~E1000_H2ME_ULP;
1268			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1269			ew32(H2ME, mac_reg);
1270		}
1271
1272		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1273		 * If this takes more than 1 second, show a warning indicating a
1274		 * firmware bug
1275		 */
1276		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1277			if (i++ == 250) {
1278				ret_val = -E1000_ERR_PHY;
1279				goto out;
1280			}
1281			if (i > 100 && !firmware_bug)
1282				firmware_bug = true;
1283
1284			usleep_range(10000, 11000);
1285		}
1286		if (firmware_bug)
1287			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1288			       i * 10);
1289		else
1290			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1291			      i * 10);
1292
1293		if (force) {
1294			mac_reg = er32(H2ME);
1295			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1296			ew32(H2ME, mac_reg);
1297		} else {
1298			/* Clear H2ME.ULP after ME ULP configuration */
1299			mac_reg = er32(H2ME);
1300			mac_reg &= ~E1000_H2ME_ULP;
1301			ew32(H2ME, mac_reg);
1302		}
1303
1304		goto out;
1305	}
1306
1307	ret_val = hw->phy.ops.acquire(hw);
1308	if (ret_val)
1309		goto out;
1310
1311	if (force)
1312		/* Toggle LANPHYPC Value bit */
1313		e1000_toggle_lanphypc_pch_lpt(hw);
1314
1315	/* Unforce SMBus mode in PHY */
1316	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1317	if (ret_val) {
1318		/* The MAC might be in PCIe mode, so temporarily force to
1319		 * SMBus mode in order to access the PHY.
1320		 */
1321		mac_reg = er32(CTRL_EXT);
1322		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1323		ew32(CTRL_EXT, mac_reg);
1324
1325		msleep(50);
1326
1327		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1328						       &phy_reg);
1329		if (ret_val)
1330			goto release;
1331	}
1332	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1333	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1334
1335	/* Unforce SMBus mode in MAC */
1336	mac_reg = er32(CTRL_EXT);
1337	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1338	ew32(CTRL_EXT, mac_reg);
1339
1340	/* When ULP mode was previously entered, K1 was disabled by the
1341	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1342	 */
1343	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1344	if (ret_val)
1345		goto release;
1346	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1347	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1348
1349	/* Clear ULP enabled configuration */
1350	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1351	if (ret_val)
1352		goto release;
1353	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1354		     I218_ULP_CONFIG1_STICKY_ULP |
1355		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1356		     I218_ULP_CONFIG1_WOL_HOST |
1357		     I218_ULP_CONFIG1_INBAND_EXIT |
1358		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1359		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1360		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1361	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1362
1363	/* Commit ULP changes by starting auto ULP configuration */
1364	phy_reg |= I218_ULP_CONFIG1_START;
1365	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1366
1367	/* Clear Disable SMBus Release on PERST# in MAC */
1368	mac_reg = er32(FEXTNVM7);
1369	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1370	ew32(FEXTNVM7, mac_reg);
1371
1372release:
1373	hw->phy.ops.release(hw);
1374	if (force) {
1375		e1000_phy_hw_reset(hw);
1376		msleep(50);
1377	}
1378out:
1379	if (ret_val)
1380		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1381	else
1382		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1383
1384	return ret_val;
1385}
1386
1387/**
1388 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1389 *  @hw: pointer to the HW structure
1390 *
1391 *  Checks to see of the link status of the hardware has changed.  If a
1392 *  change in link status has been detected, then we read the PHY registers
1393 *  to get the current speed/duplex if link exists.
1394 **/
1395static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1396{
1397	struct e1000_mac_info *mac = &hw->mac;
1398	s32 ret_val, tipg_reg = 0;
1399	u16 emi_addr, emi_val = 0;
1400	bool link;
1401	u16 phy_reg;
1402
1403	/* We only want to go out to the PHY registers to see if Auto-Neg
 
1404	 * has completed and/or if our link status has changed.  The
1405	 * get_link_status flag is set upon receiving a Link Status
1406	 * Change or Rx Sequence Error interrupt.
1407	 */
1408	if (!mac->get_link_status)
1409		return 0;
1410	mac->get_link_status = false;
1411
1412	/* First we want to see if the MII Status Register reports
 
1413	 * link.  If so, then we want to get the current speed/duplex
1414	 * of the PHY.
1415	 */
1416	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1417	if (ret_val)
1418		goto out;
1419
1420	if (hw->mac.type == e1000_pchlan) {
1421		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1422		if (ret_val)
1423			goto out;
1424	}
1425
1426	/* When connected at 10Mbps half-duplex, some parts are excessively
1427	 * aggressive resulting in many collisions. To avoid this, increase
1428	 * the IPG and reduce Rx latency in the PHY.
1429	 */
1430	if ((hw->mac.type >= e1000_pch2lan) && link) {
1431		u16 speed, duplex;
1432
1433		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1434		tipg_reg = er32(TIPG);
1435		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1436
1437		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1438			tipg_reg |= 0xFF;
1439			/* Reduce Rx latency in analog PHY */
1440			emi_val = 0;
1441		} else if (hw->mac.type >= e1000_pch_spt &&
1442			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1443			tipg_reg |= 0xC;
1444			emi_val = 1;
1445		} else {
1446
1447			/* Roll back the default values */
1448			tipg_reg |= 0x08;
1449			emi_val = 1;
1450		}
1451
1452		ew32(TIPG, tipg_reg);
1453
1454		ret_val = hw->phy.ops.acquire(hw);
1455		if (ret_val)
1456			goto out;
1457
1458		if (hw->mac.type == e1000_pch2lan)
1459			emi_addr = I82579_RX_CONFIG;
1460		else
1461			emi_addr = I217_RX_CONFIG;
1462		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1463
1464		if (hw->mac.type >= e1000_pch_lpt) {
1465			u16 phy_reg;
1466
1467			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1468			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1469			if (speed == SPEED_100 || speed == SPEED_10)
1470				phy_reg |= 0x3E8;
1471			else
1472				phy_reg |= 0xFA;
1473			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1474
1475			if (speed == SPEED_1000) {
1476				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1477							    &phy_reg);
1478
1479				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1480
1481				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1482							     phy_reg);
1483			}
1484		}
1485		hw->phy.ops.release(hw);
1486
1487		if (ret_val)
1488			goto out;
1489
1490		if (hw->mac.type >= e1000_pch_spt) {
1491			u16 data;
1492			u16 ptr_gap;
1493
1494			if (speed == SPEED_1000) {
1495				ret_val = hw->phy.ops.acquire(hw);
1496				if (ret_val)
1497					goto out;
1498
1499				ret_val = e1e_rphy_locked(hw,
1500							  PHY_REG(776, 20),
1501							  &data);
1502				if (ret_val) {
1503					hw->phy.ops.release(hw);
1504					goto out;
1505				}
1506
1507				ptr_gap = (data & (0x3FF << 2)) >> 2;
1508				if (ptr_gap < 0x18) {
1509					data &= ~(0x3FF << 2);
1510					data |= (0x18 << 2);
1511					ret_val =
1512					    e1e_wphy_locked(hw,
1513							    PHY_REG(776, 20),
1514							    data);
1515				}
1516				hw->phy.ops.release(hw);
1517				if (ret_val)
1518					goto out;
1519			} else {
1520				ret_val = hw->phy.ops.acquire(hw);
1521				if (ret_val)
1522					goto out;
1523
1524				ret_val = e1e_wphy_locked(hw,
1525							  PHY_REG(776, 20),
1526							  0xC023);
1527				hw->phy.ops.release(hw);
1528				if (ret_val)
1529					goto out;
1530
1531			}
1532		}
1533	}
1534
1535	/* I217 Packet Loss issue:
1536	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1537	 * on power up.
1538	 * Set the Beacon Duration for I217 to 8 usec
1539	 */
1540	if (hw->mac.type >= e1000_pch_lpt) {
1541		u32 mac_reg;
1542
1543		mac_reg = er32(FEXTNVM4);
1544		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1545		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1546		ew32(FEXTNVM4, mac_reg);
1547	}
1548
1549	/* Work-around I218 hang issue */
1550	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1551	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1552	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1553	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1554		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1555		if (ret_val)
1556			goto out;
1557	}
1558	if (hw->mac.type >= e1000_pch_lpt) {
1559		/* Set platform power management values for
1560		 * Latency Tolerance Reporting (LTR)
1561		 */
1562		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1563		if (ret_val)
1564			goto out;
1565	}
1566
1567	/* Clear link partner's EEE ability */
1568	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1569
1570	if (hw->mac.type >= e1000_pch_lpt) {
1571		u32 fextnvm6 = er32(FEXTNVM6);
1572
1573		if (hw->mac.type == e1000_pch_spt) {
1574			/* FEXTNVM6 K1-off workaround - for SPT only */
1575			u32 pcieanacfg = er32(PCIEANACFG);
1576
1577			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1578				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1579			else
1580				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1581		}
1582
1583		ew32(FEXTNVM6, fextnvm6);
1584	}
1585
1586	if (!link)
1587		goto out;
1588
1589	switch (hw->mac.type) {
1590	case e1000_pch2lan:
1591		ret_val = e1000_k1_workaround_lv(hw);
1592		if (ret_val)
1593			return ret_val;
1594		fallthrough;
1595	case e1000_pchlan:
1596		if (hw->phy.type == e1000_phy_82578) {
1597			ret_val = e1000_link_stall_workaround_hv(hw);
1598			if (ret_val)
1599				return ret_val;
1600		}
1601
1602		/* Workaround for PCHx parts in half-duplex:
 
1603		 * Set the number of preambles removed from the packet
1604		 * when it is passed from the PHY to the MAC to prevent
1605		 * the MAC from misinterpreting the packet type.
1606		 */
1607		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1608		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1609
1610		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1611			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1612
1613		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1614		break;
1615	default:
1616		break;
1617	}
1618
1619	/* Check if there was DownShift, must be checked
 
1620	 * immediately after link-up
1621	 */
1622	e1000e_check_downshift(hw);
1623
1624	/* Enable/Disable EEE after link up */
1625	if (hw->phy.type > e1000_phy_82579) {
1626		ret_val = e1000_set_eee_pchlan(hw);
1627		if (ret_val)
1628			return ret_val;
1629	}
1630
1631	/* If we are forcing speed/duplex, then we simply return since
 
1632	 * we have already determined whether we have link or not.
1633	 */
1634	if (!mac->autoneg)
1635		return -E1000_ERR_CONFIG;
1636
1637	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 
1638	 * of MAC speed/duplex configuration.  So we only need to
1639	 * configure Collision Distance in the MAC.
1640	 */
1641	mac->ops.config_collision_dist(hw);
1642
1643	/* Configure Flow Control now that Auto-Neg has completed.
 
1644	 * First, we need to restore the desired flow control
1645	 * settings because we may have had to re-autoneg with a
1646	 * different link partner.
1647	 */
1648	ret_val = e1000e_config_fc_after_link_up(hw);
1649	if (ret_val)
1650		e_dbg("Error configuring flow control\n");
1651
1652	return ret_val;
1653
1654out:
1655	mac->get_link_status = true;
1656	return ret_val;
1657}
1658
1659static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1660{
1661	struct e1000_hw *hw = &adapter->hw;
1662	s32 rc;
1663
1664	rc = e1000_init_mac_params_ich8lan(hw);
1665	if (rc)
1666		return rc;
1667
1668	rc = e1000_init_nvm_params_ich8lan(hw);
1669	if (rc)
1670		return rc;
1671
1672	switch (hw->mac.type) {
1673	case e1000_ich8lan:
1674	case e1000_ich9lan:
1675	case e1000_ich10lan:
1676		rc = e1000_init_phy_params_ich8lan(hw);
1677		break;
1678	case e1000_pchlan:
1679	case e1000_pch2lan:
1680	case e1000_pch_lpt:
1681	case e1000_pch_spt:
1682	case e1000_pch_cnp:
1683	case e1000_pch_tgp:
1684	case e1000_pch_adp:
1685	case e1000_pch_mtp:
1686	case e1000_pch_lnp:
1687	case e1000_pch_ptp:
1688		rc = e1000_init_phy_params_pchlan(hw);
1689		break;
1690	default:
1691		break;
1692	}
1693	if (rc)
1694		return rc;
1695
1696	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
 
1697	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1698	 */
1699	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1700	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1701	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1702		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1703		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1704
1705		hw->mac.ops.blink_led = NULL;
1706	}
1707
1708	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1709	    (adapter->hw.phy.type != e1000_phy_ife))
1710		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1711
1712	/* Enable workaround for 82579 w/ ME enabled */
1713	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1714	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1715		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1716
 
 
 
 
1717	return 0;
1718}
1719
1720static DEFINE_MUTEX(nvm_mutex);
1721
1722/**
1723 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1724 *  @hw: pointer to the HW structure
1725 *
1726 *  Acquires the mutex for performing NVM operations.
1727 **/
1728static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1729{
1730	mutex_lock(&nvm_mutex);
1731
1732	return 0;
1733}
1734
1735/**
1736 *  e1000_release_nvm_ich8lan - Release NVM mutex
1737 *  @hw: pointer to the HW structure
1738 *
1739 *  Releases the mutex used while performing NVM operations.
1740 **/
1741static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1742{
1743	mutex_unlock(&nvm_mutex);
1744}
1745
1746/**
1747 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1748 *  @hw: pointer to the HW structure
1749 *
1750 *  Acquires the software control flag for performing PHY and select
1751 *  MAC CSR accesses.
1752 **/
1753static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1754{
1755	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1756	s32 ret_val = 0;
1757
1758	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1759			     &hw->adapter->state)) {
1760		e_dbg("contention for Phy access\n");
1761		return -E1000_ERR_PHY;
1762	}
1763
1764	while (timeout) {
1765		extcnf_ctrl = er32(EXTCNF_CTRL);
1766		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1767			break;
1768
1769		mdelay(1);
1770		timeout--;
1771	}
1772
1773	if (!timeout) {
1774		e_dbg("SW has already locked the resource.\n");
1775		ret_val = -E1000_ERR_CONFIG;
1776		goto out;
1777	}
1778
1779	timeout = SW_FLAG_TIMEOUT;
1780
1781	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1782	ew32(EXTCNF_CTRL, extcnf_ctrl);
1783
1784	while (timeout) {
1785		extcnf_ctrl = er32(EXTCNF_CTRL);
1786		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1787			break;
1788
1789		mdelay(1);
1790		timeout--;
1791	}
1792
1793	if (!timeout) {
1794		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1795		      er32(FWSM), extcnf_ctrl);
1796		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1797		ew32(EXTCNF_CTRL, extcnf_ctrl);
1798		ret_val = -E1000_ERR_CONFIG;
1799		goto out;
1800	}
1801
1802out:
1803	if (ret_val)
1804		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1805
1806	return ret_val;
1807}
1808
1809/**
1810 *  e1000_release_swflag_ich8lan - Release software control flag
1811 *  @hw: pointer to the HW structure
1812 *
1813 *  Releases the software control flag for performing PHY and select
1814 *  MAC CSR accesses.
1815 **/
1816static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1817{
1818	u32 extcnf_ctrl;
1819
1820	extcnf_ctrl = er32(EXTCNF_CTRL);
1821
1822	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1823		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1824		ew32(EXTCNF_CTRL, extcnf_ctrl);
1825	} else {
1826		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1827	}
1828
1829	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1830}
1831
1832/**
1833 *  e1000_check_mng_mode_ich8lan - Checks management mode
1834 *  @hw: pointer to the HW structure
1835 *
1836 *  This checks if the adapter has any manageability enabled.
1837 *  This is a function pointer entry point only called by read/write
1838 *  routines for the PHY and NVM parts.
1839 **/
1840static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1841{
1842	u32 fwsm;
1843
1844	fwsm = er32(FWSM);
1845	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1846		((fwsm & E1000_FWSM_MODE_MASK) ==
1847		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1848}
1849
1850/**
1851 *  e1000_check_mng_mode_pchlan - Checks management mode
1852 *  @hw: pointer to the HW structure
1853 *
1854 *  This checks if the adapter has iAMT enabled.
1855 *  This is a function pointer entry point only called by read/write
1856 *  routines for the PHY and NVM parts.
1857 **/
1858static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1859{
1860	u32 fwsm;
1861
1862	fwsm = er32(FWSM);
1863	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1864	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1865}
1866
1867/**
1868 *  e1000_rar_set_pch2lan - Set receive address register
1869 *  @hw: pointer to the HW structure
1870 *  @addr: pointer to the receive address
1871 *  @index: receive address array register
1872 *
1873 *  Sets the receive address array register at index to the address passed
1874 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1875 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1876 *  Use SHRA[0-3] in place of those reserved for ME.
1877 **/
1878static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1879{
1880	u32 rar_low, rar_high;
1881
1882	/* HW expects these in little endian so we reverse the byte order
 
1883	 * from network order (big endian) to little endian
1884	 */
1885	rar_low = ((u32)addr[0] |
1886		   ((u32)addr[1] << 8) |
1887		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1888
1889	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1890
1891	/* If MAC address zero, no need to set the AV bit */
1892	if (rar_low || rar_high)
1893		rar_high |= E1000_RAH_AV;
1894
1895	if (index == 0) {
1896		ew32(RAL(index), rar_low);
1897		e1e_flush();
1898		ew32(RAH(index), rar_high);
1899		e1e_flush();
1900		return 0;
1901	}
1902
1903	/* RAR[1-6] are owned by manageability.  Skip those and program the
1904	 * next address into the SHRA register array.
1905	 */
1906	if (index < (u32)(hw->mac.rar_entry_count)) {
1907		s32 ret_val;
1908
1909		ret_val = e1000_acquire_swflag_ich8lan(hw);
1910		if (ret_val)
1911			goto out;
1912
1913		ew32(SHRAL(index - 1), rar_low);
1914		e1e_flush();
1915		ew32(SHRAH(index - 1), rar_high);
1916		e1e_flush();
1917
1918		e1000_release_swflag_ich8lan(hw);
1919
1920		/* verify the register updates */
1921		if ((er32(SHRAL(index - 1)) == rar_low) &&
1922		    (er32(SHRAH(index - 1)) == rar_high))
1923			return 0;
1924
1925		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1926		      (index - 1), er32(FWSM));
1927	}
1928
1929out:
1930	e_dbg("Failed to write receive address at index %d\n", index);
1931	return -E1000_ERR_CONFIG;
1932}
1933
1934/**
1935 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1936 *  @hw: pointer to the HW structure
1937 *
1938 *  Get the number of available receive registers that the Host can
1939 *  program. SHRA[0-10] are the shared receive address registers
1940 *  that are shared between the Host and manageability engine (ME).
1941 *  ME can reserve any number of addresses and the host needs to be
1942 *  able to tell how many available registers it has access to.
1943 **/
1944static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1945{
1946	u32 wlock_mac;
1947	u32 num_entries;
1948
1949	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1950	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1951
1952	switch (wlock_mac) {
1953	case 0:
1954		/* All SHRA[0..10] and RAR[0] available */
1955		num_entries = hw->mac.rar_entry_count;
1956		break;
1957	case 1:
1958		/* Only RAR[0] available */
1959		num_entries = 1;
1960		break;
1961	default:
1962		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1963		num_entries = wlock_mac + 1;
1964		break;
1965	}
1966
1967	return num_entries;
1968}
1969
1970/**
1971 *  e1000_rar_set_pch_lpt - Set receive address registers
1972 *  @hw: pointer to the HW structure
1973 *  @addr: pointer to the receive address
1974 *  @index: receive address array register
1975 *
1976 *  Sets the receive address register array at index to the address passed
1977 *  in by addr. For LPT, RAR[0] is the base address register that is to
1978 *  contain the MAC address. SHRA[0-10] are the shared receive address
1979 *  registers that are shared between the Host and manageability engine (ME).
1980 **/
1981static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1982{
1983	u32 rar_low, rar_high;
1984	u32 wlock_mac;
1985
1986	/* HW expects these in little endian so we reverse the byte order
 
1987	 * from network order (big endian) to little endian
1988	 */
1989	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1990		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1991
1992	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1993
1994	/* If MAC address zero, no need to set the AV bit */
1995	if (rar_low || rar_high)
1996		rar_high |= E1000_RAH_AV;
1997
1998	if (index == 0) {
1999		ew32(RAL(index), rar_low);
2000		e1e_flush();
2001		ew32(RAH(index), rar_high);
2002		e1e_flush();
2003		return 0;
2004	}
2005
2006	/* The manageability engine (ME) can lock certain SHRAR registers that
 
2007	 * it is using - those registers are unavailable for use.
2008	 */
2009	if (index < hw->mac.rar_entry_count) {
2010		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2011		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2012
2013		/* Check if all SHRAR registers are locked */
2014		if (wlock_mac == 1)
2015			goto out;
2016
2017		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2018			s32 ret_val;
2019
2020			ret_val = e1000_acquire_swflag_ich8lan(hw);
2021
2022			if (ret_val)
2023				goto out;
2024
2025			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2026			e1e_flush();
2027			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2028			e1e_flush();
2029
2030			e1000_release_swflag_ich8lan(hw);
2031
2032			/* verify the register updates */
2033			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2034			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2035				return 0;
2036		}
2037	}
2038
2039out:
2040	e_dbg("Failed to write receive address at index %d\n", index);
2041	return -E1000_ERR_CONFIG;
2042}
2043
2044/**
2045 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2046 *  @hw: pointer to the HW structure
2047 *
2048 *  Checks if firmware is blocking the reset of the PHY.
2049 *  This is a function pointer entry point only called by
2050 *  reset routines.
2051 **/
2052static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2053{
2054	bool blocked = false;
2055	int i = 0;
 
2056
2057	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2058	       (i++ < 30))
2059		usleep_range(10000, 11000);
2060	return blocked ? E1000_BLK_PHY_RESET : 0;
2061}
2062
2063/**
2064 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2065 *  @hw: pointer to the HW structure
2066 *
2067 *  Assumes semaphore already acquired.
2068 *
2069 **/
2070static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2071{
2072	u16 phy_data;
2073	u32 strap = er32(STRAP);
2074	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2075	    E1000_STRAP_SMT_FREQ_SHIFT;
2076	s32 ret_val;
2077
2078	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2079
2080	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2081	if (ret_val)
2082		return ret_val;
2083
2084	phy_data &= ~HV_SMB_ADDR_MASK;
2085	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2086	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2087
2088	if (hw->phy.type == e1000_phy_i217) {
2089		/* Restore SMBus frequency */
2090		if (freq--) {
2091			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2092			phy_data |= (freq & BIT(0)) <<
2093			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2094			phy_data |= (freq & BIT(1)) <<
2095			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2096		} else {
2097			e_dbg("Unsupported SMB frequency in PHY\n");
2098		}
2099	}
2100
2101	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2102}
2103
2104/**
2105 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2106 *  @hw:   pointer to the HW structure
2107 *
2108 *  SW should configure the LCD from the NVM extended configuration region
2109 *  as a workaround for certain parts.
2110 **/
2111static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2112{
2113	struct e1000_phy_info *phy = &hw->phy;
2114	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2115	s32 ret_val = 0;
2116	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2117
2118	/* Initialize the PHY from the NVM on ICH platforms.  This
 
2119	 * is needed due to an issue where the NVM configuration is
2120	 * not properly autoloaded after power transitions.
2121	 * Therefore, after each PHY reset, we will load the
2122	 * configuration data out of the NVM manually.
2123	 */
2124	switch (hw->mac.type) {
2125	case e1000_ich8lan:
2126		if (phy->type != e1000_phy_igp_3)
2127			return ret_val;
2128
2129		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2130		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2131			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2132			break;
2133		}
2134		fallthrough;
2135	case e1000_pchlan:
2136	case e1000_pch2lan:
2137	case e1000_pch_lpt:
2138	case e1000_pch_spt:
2139	case e1000_pch_cnp:
2140	case e1000_pch_tgp:
2141	case e1000_pch_adp:
2142	case e1000_pch_mtp:
2143	case e1000_pch_lnp:
2144	case e1000_pch_ptp:
2145		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2146		break;
2147	default:
2148		return ret_val;
2149	}
2150
2151	ret_val = hw->phy.ops.acquire(hw);
2152	if (ret_val)
2153		return ret_val;
2154
2155	data = er32(FEXTNVM);
2156	if (!(data & sw_cfg_mask))
2157		goto release;
2158
2159	/* Make sure HW does not configure LCD from PHY
 
2160	 * extended configuration before SW configuration
2161	 */
2162	data = er32(EXTCNF_CTRL);
2163	if ((hw->mac.type < e1000_pch2lan) &&
2164	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2165		goto release;
2166
2167	cnf_size = er32(EXTCNF_SIZE);
2168	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2169	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2170	if (!cnf_size)
2171		goto release;
2172
2173	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2174	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2175
2176	if (((hw->mac.type == e1000_pchlan) &&
2177	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2178	    (hw->mac.type > e1000_pchlan)) {
2179		/* HW configures the SMBus address and LEDs when the
 
2180		 * OEM and LCD Write Enable bits are set in the NVM.
2181		 * When both NVM bits are cleared, SW will configure
2182		 * them instead.
2183		 */
2184		ret_val = e1000_write_smbus_addr(hw);
2185		if (ret_val)
2186			goto release;
2187
2188		data = er32(LEDCTL);
2189		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2190							(u16)data);
2191		if (ret_val)
2192			goto release;
2193	}
2194
2195	/* Configure LCD from extended configuration region. */
2196
2197	/* cnf_base_addr is in DWORD */
2198	word_addr = (u16)(cnf_base_addr << 1);
2199
2200	for (i = 0; i < cnf_size; i++) {
2201		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
 
2202		if (ret_val)
2203			goto release;
2204
2205		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2206					 1, &reg_addr);
2207		if (ret_val)
2208			goto release;
2209
2210		/* Save off the PHY page for future writes. */
2211		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2212			phy_page = reg_data;
2213			continue;
2214		}
2215
2216		reg_addr &= PHY_REG_MASK;
2217		reg_addr |= phy_page;
2218
2219		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2220		if (ret_val)
2221			goto release;
2222	}
2223
2224release:
2225	hw->phy.ops.release(hw);
2226	return ret_val;
2227}
2228
2229/**
2230 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2231 *  @hw:   pointer to the HW structure
2232 *  @link: link up bool flag
2233 *
2234 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2235 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2236 *  If link is down, the function will restore the default K1 setting located
2237 *  in the NVM.
2238 **/
2239static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2240{
2241	s32 ret_val = 0;
2242	u16 status_reg = 0;
2243	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2244
2245	if (hw->mac.type != e1000_pchlan)
2246		return 0;
2247
2248	/* Wrap the whole flow with the sw flag */
2249	ret_val = hw->phy.ops.acquire(hw);
2250	if (ret_val)
2251		return ret_val;
2252
2253	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2254	if (link) {
2255		if (hw->phy.type == e1000_phy_82578) {
2256			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2257						  &status_reg);
2258			if (ret_val)
2259				goto release;
2260
2261			status_reg &= (BM_CS_STATUS_LINK_UP |
2262				       BM_CS_STATUS_RESOLVED |
2263				       BM_CS_STATUS_SPEED_MASK);
2264
2265			if (status_reg == (BM_CS_STATUS_LINK_UP |
2266					   BM_CS_STATUS_RESOLVED |
2267					   BM_CS_STATUS_SPEED_1000))
2268				k1_enable = false;
2269		}
2270
2271		if (hw->phy.type == e1000_phy_82577) {
2272			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2273			if (ret_val)
2274				goto release;
2275
2276			status_reg &= (HV_M_STATUS_LINK_UP |
2277				       HV_M_STATUS_AUTONEG_COMPLETE |
2278				       HV_M_STATUS_SPEED_MASK);
2279
2280			if (status_reg == (HV_M_STATUS_LINK_UP |
2281					   HV_M_STATUS_AUTONEG_COMPLETE |
2282					   HV_M_STATUS_SPEED_1000))
2283				k1_enable = false;
2284		}
2285
2286		/* Link stall fix for link up */
2287		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2288		if (ret_val)
2289			goto release;
2290
2291	} else {
2292		/* Link stall fix for link down */
2293		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2294		if (ret_val)
2295			goto release;
2296	}
2297
2298	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2299
2300release:
2301	hw->phy.ops.release(hw);
2302
2303	return ret_val;
2304}
2305
2306/**
2307 *  e1000_configure_k1_ich8lan - Configure K1 power state
2308 *  @hw: pointer to the HW structure
2309 *  @k1_enable: K1 state to configure
2310 *
2311 *  Configure the K1 power state based on the provided parameter.
2312 *  Assumes semaphore already acquired.
2313 *
2314 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2315 **/
2316s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2317{
2318	s32 ret_val;
2319	u32 ctrl_reg = 0;
2320	u32 ctrl_ext = 0;
2321	u32 reg = 0;
2322	u16 kmrn_reg = 0;
2323
2324	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2325					      &kmrn_reg);
2326	if (ret_val)
2327		return ret_val;
2328
2329	if (k1_enable)
2330		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2331	else
2332		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2333
2334	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2335					       kmrn_reg);
2336	if (ret_val)
2337		return ret_val;
2338
2339	usleep_range(20, 40);
2340	ctrl_ext = er32(CTRL_EXT);
2341	ctrl_reg = er32(CTRL);
2342
2343	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2344	reg |= E1000_CTRL_FRCSPD;
2345	ew32(CTRL, reg);
2346
2347	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2348	e1e_flush();
2349	usleep_range(20, 40);
2350	ew32(CTRL, ctrl_reg);
2351	ew32(CTRL_EXT, ctrl_ext);
2352	e1e_flush();
2353	usleep_range(20, 40);
2354
2355	return 0;
2356}
2357
2358/**
2359 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2360 *  @hw:       pointer to the HW structure
2361 *  @d0_state: boolean if entering d0 or d3 device state
2362 *
2363 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2364 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2365 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2366 **/
2367static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2368{
2369	s32 ret_val = 0;
2370	u32 mac_reg;
2371	u16 oem_reg;
2372
2373	if (hw->mac.type < e1000_pchlan)
2374		return ret_val;
2375
2376	ret_val = hw->phy.ops.acquire(hw);
2377	if (ret_val)
2378		return ret_val;
2379
2380	if (hw->mac.type == e1000_pchlan) {
2381		mac_reg = er32(EXTCNF_CTRL);
2382		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2383			goto release;
2384	}
2385
2386	mac_reg = er32(FEXTNVM);
2387	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2388		goto release;
2389
2390	mac_reg = er32(PHY_CTRL);
2391
2392	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2393	if (ret_val)
2394		goto release;
2395
2396	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2397
2398	if (d0_state) {
2399		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2400			oem_reg |= HV_OEM_BITS_GBE_DIS;
2401
2402		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2403			oem_reg |= HV_OEM_BITS_LPLU;
2404	} else {
2405		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2406			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2407			oem_reg |= HV_OEM_BITS_GBE_DIS;
2408
2409		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2410			       E1000_PHY_CTRL_NOND0A_LPLU))
2411			oem_reg |= HV_OEM_BITS_LPLU;
2412	}
2413
2414	/* Set Restart auto-neg to activate the bits */
2415	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2416	    !hw->phy.ops.check_reset_block(hw))
2417		oem_reg |= HV_OEM_BITS_RESTART_AN;
2418
2419	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2420
2421release:
2422	hw->phy.ops.release(hw);
2423
2424	return ret_val;
2425}
2426
 
2427/**
2428 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2429 *  @hw:   pointer to the HW structure
2430 **/
2431static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2432{
2433	s32 ret_val;
2434	u16 data;
2435
2436	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2437	if (ret_val)
2438		return ret_val;
2439
2440	data |= HV_KMRN_MDIO_SLOW;
2441
2442	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2443
2444	return ret_val;
2445}
2446
2447/**
2448 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2449 *  @hw: pointer to the HW structure
2450 *
2451 *  A series of PHY workarounds to be done after every PHY reset.
2452 **/
2453static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2454{
2455	s32 ret_val = 0;
2456	u16 phy_data;
2457
2458	if (hw->mac.type != e1000_pchlan)
2459		return 0;
2460
2461	/* Set MDIO slow mode before any other MDIO access */
2462	if (hw->phy.type == e1000_phy_82577) {
2463		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2464		if (ret_val)
2465			return ret_val;
2466	}
2467
2468	if (((hw->phy.type == e1000_phy_82577) &&
2469	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2470	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2471		/* Disable generation of early preamble */
2472		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2473		if (ret_val)
2474			return ret_val;
2475
2476		/* Preamble tuning for SSC */
2477		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2478		if (ret_val)
2479			return ret_val;
2480	}
2481
2482	if (hw->phy.type == e1000_phy_82578) {
2483		/* Return registers to default by doing a soft reset then
 
2484		 * writing 0x3140 to the control register.
2485		 */
2486		if (hw->phy.revision < 2) {
2487			e1000e_phy_sw_reset(hw);
2488			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2489			if (ret_val)
2490				return ret_val;
2491		}
2492	}
2493
2494	/* Select page 0 */
2495	ret_val = hw->phy.ops.acquire(hw);
2496	if (ret_val)
2497		return ret_val;
2498
2499	hw->phy.addr = 1;
2500	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2501	hw->phy.ops.release(hw);
2502	if (ret_val)
2503		return ret_val;
2504
2505	/* Configure the K1 Si workaround during phy reset assuming there is
 
2506	 * link so that it disables K1 if link is in 1Gbps.
2507	 */
2508	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2509	if (ret_val)
2510		return ret_val;
2511
2512	/* Workaround for link disconnects on a busy hub in half duplex */
2513	ret_val = hw->phy.ops.acquire(hw);
2514	if (ret_val)
2515		return ret_val;
2516	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2517	if (ret_val)
2518		goto release;
2519	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2520	if (ret_val)
2521		goto release;
2522
2523	/* set MSE higher to enable link to stay up when noise is high */
2524	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2525release:
2526	hw->phy.ops.release(hw);
2527
2528	return ret_val;
2529}
2530
2531/**
2532 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2533 *  @hw:   pointer to the HW structure
2534 **/
2535void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2536{
2537	u32 mac_reg;
2538	u16 i, phy_reg = 0;
2539	s32 ret_val;
2540
2541	ret_val = hw->phy.ops.acquire(hw);
2542	if (ret_val)
2543		return;
2544	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2545	if (ret_val)
2546		goto release;
2547
2548	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2549	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2550		mac_reg = er32(RAL(i));
2551		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2552					   (u16)(mac_reg & 0xFFFF));
2553		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2554					   (u16)((mac_reg >> 16) & 0xFFFF));
2555
2556		mac_reg = er32(RAH(i));
2557		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2558					   (u16)(mac_reg & 0xFFFF));
2559		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2560					   (u16)((mac_reg & E1000_RAH_AV)
2561						 >> 16));
2562	}
2563
2564	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2565
2566release:
2567	hw->phy.ops.release(hw);
2568}
2569
2570/**
2571 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2572 *  with 82579 PHY
2573 *  @hw: pointer to the HW structure
2574 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2575 **/
2576s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2577{
2578	s32 ret_val = 0;
2579	u16 phy_reg, data;
2580	u32 mac_reg;
2581	u16 i;
2582
2583	if (hw->mac.type < e1000_pch2lan)
2584		return 0;
2585
2586	/* disable Rx path while enabling/disabling workaround */
2587	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2588	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2589	if (ret_val)
2590		return ret_val;
2591
2592	if (enable) {
2593		/* Write Rx addresses (rar_entry_count for RAL/H, and
 
2594		 * SHRAL/H) and initial CRC values to the MAC
2595		 */
2596		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2597			u8 mac_addr[ETH_ALEN] = { 0 };
2598			u32 addr_high, addr_low;
2599
2600			addr_high = er32(RAH(i));
2601			if (!(addr_high & E1000_RAH_AV))
2602				continue;
2603			addr_low = er32(RAL(i));
2604			mac_addr[0] = (addr_low & 0xFF);
2605			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2606			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2607			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2608			mac_addr[4] = (addr_high & 0xFF);
2609			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2610
2611			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2612		}
2613
2614		/* Write Rx addresses to the PHY */
2615		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2616
2617		/* Enable jumbo frame workaround in the MAC */
2618		mac_reg = er32(FFLT_DBG);
2619		mac_reg &= ~BIT(14);
2620		mac_reg |= (7 << 15);
2621		ew32(FFLT_DBG, mac_reg);
2622
2623		mac_reg = er32(RCTL);
2624		mac_reg |= E1000_RCTL_SECRC;
2625		ew32(RCTL, mac_reg);
2626
2627		ret_val = e1000e_read_kmrn_reg(hw,
2628					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2629					       &data);
2630		if (ret_val)
2631			return ret_val;
2632		ret_val = e1000e_write_kmrn_reg(hw,
2633						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2634						data | BIT(0));
2635		if (ret_val)
2636			return ret_val;
2637		ret_val = e1000e_read_kmrn_reg(hw,
2638					       E1000_KMRNCTRLSTA_HD_CTRL,
2639					       &data);
2640		if (ret_val)
2641			return ret_val;
2642		data &= ~(0xF << 8);
2643		data |= (0xB << 8);
2644		ret_val = e1000e_write_kmrn_reg(hw,
2645						E1000_KMRNCTRLSTA_HD_CTRL,
2646						data);
2647		if (ret_val)
2648			return ret_val;
2649
2650		/* Enable jumbo frame workaround in the PHY */
2651		e1e_rphy(hw, PHY_REG(769, 23), &data);
2652		data &= ~(0x7F << 5);
2653		data |= (0x37 << 5);
2654		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2655		if (ret_val)
2656			return ret_val;
2657		e1e_rphy(hw, PHY_REG(769, 16), &data);
2658		data &= ~BIT(13);
2659		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2660		if (ret_val)
2661			return ret_val;
2662		e1e_rphy(hw, PHY_REG(776, 20), &data);
2663		data &= ~(0x3FF << 2);
2664		data |= (E1000_TX_PTR_GAP << 2);
2665		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2666		if (ret_val)
2667			return ret_val;
2668		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2669		if (ret_val)
2670			return ret_val;
2671		e1e_rphy(hw, HV_PM_CTRL, &data);
2672		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2673		if (ret_val)
2674			return ret_val;
2675	} else {
2676		/* Write MAC register values back to h/w defaults */
2677		mac_reg = er32(FFLT_DBG);
2678		mac_reg &= ~(0xF << 14);
2679		ew32(FFLT_DBG, mac_reg);
2680
2681		mac_reg = er32(RCTL);
2682		mac_reg &= ~E1000_RCTL_SECRC;
2683		ew32(RCTL, mac_reg);
2684
2685		ret_val = e1000e_read_kmrn_reg(hw,
2686					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2687					       &data);
2688		if (ret_val)
2689			return ret_val;
2690		ret_val = e1000e_write_kmrn_reg(hw,
2691						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2692						data & ~BIT(0));
2693		if (ret_val)
2694			return ret_val;
2695		ret_val = e1000e_read_kmrn_reg(hw,
2696					       E1000_KMRNCTRLSTA_HD_CTRL,
2697					       &data);
2698		if (ret_val)
2699			return ret_val;
2700		data &= ~(0xF << 8);
2701		data |= (0xB << 8);
2702		ret_val = e1000e_write_kmrn_reg(hw,
2703						E1000_KMRNCTRLSTA_HD_CTRL,
2704						data);
2705		if (ret_val)
2706			return ret_val;
2707
2708		/* Write PHY register values back to h/w defaults */
2709		e1e_rphy(hw, PHY_REG(769, 23), &data);
2710		data &= ~(0x7F << 5);
2711		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2712		if (ret_val)
2713			return ret_val;
2714		e1e_rphy(hw, PHY_REG(769, 16), &data);
2715		data |= BIT(13);
2716		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2717		if (ret_val)
2718			return ret_val;
2719		e1e_rphy(hw, PHY_REG(776, 20), &data);
2720		data &= ~(0x3FF << 2);
2721		data |= (0x8 << 2);
2722		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2723		if (ret_val)
2724			return ret_val;
2725		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2726		if (ret_val)
2727			return ret_val;
2728		e1e_rphy(hw, HV_PM_CTRL, &data);
2729		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2730		if (ret_val)
2731			return ret_val;
2732	}
2733
2734	/* re-enable Rx path after enabling/disabling workaround */
2735	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2736}
2737
2738/**
2739 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2740 *  @hw: pointer to the HW structure
2741 *
2742 *  A series of PHY workarounds to be done after every PHY reset.
2743 **/
2744static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2745{
2746	s32 ret_val = 0;
2747
2748	if (hw->mac.type != e1000_pch2lan)
2749		return 0;
2750
2751	/* Set MDIO slow mode before any other MDIO access */
2752	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2753	if (ret_val)
2754		return ret_val;
2755
2756	ret_val = hw->phy.ops.acquire(hw);
2757	if (ret_val)
2758		return ret_val;
 
 
 
2759	/* set MSE higher to enable link to stay up when noise is high */
2760	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
 
 
 
2761	if (ret_val)
2762		goto release;
2763	/* drop link after 5 times MSE threshold was reached */
2764	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2765release:
2766	hw->phy.ops.release(hw);
2767
2768	return ret_val;
2769}
2770
2771/**
2772 *  e1000_k1_workaround_lv - K1 Si workaround
2773 *  @hw:   pointer to the HW structure
2774 *
2775 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2776 *  Disable K1 in 1000Mbps and 100Mbps
2777 **/
2778static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2779{
2780	s32 ret_val = 0;
2781	u16 status_reg = 0;
 
 
2782
2783	if (hw->mac.type != e1000_pch2lan)
2784		return 0;
2785
2786	/* Set K1 beacon duration based on 10Mbs speed */
2787	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2788	if (ret_val)
2789		return ret_val;
2790
2791	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2792	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2793		if (status_reg &
2794		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
 
 
 
 
 
 
2795			u16 pm_phy_reg;
2796
2797			/* LV 1G/100 Packet drop issue wa  */
 
 
2798			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2799			if (ret_val)
2800				return ret_val;
2801			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2802			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2803			if (ret_val)
2804				return ret_val;
2805		} else {
2806			u32 mac_reg;
2807
2808			mac_reg = er32(FEXTNVM4);
2809			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2810			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2811			ew32(FEXTNVM4, mac_reg);
2812		}
 
 
2813	}
2814
2815	return ret_val;
2816}
2817
2818/**
2819 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2820 *  @hw:   pointer to the HW structure
2821 *  @gate: boolean set to true to gate, false to ungate
2822 *
2823 *  Gate/ungate the automatic PHY configuration via hardware; perform
2824 *  the configuration via software instead.
2825 **/
2826static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2827{
2828	u32 extcnf_ctrl;
2829
2830	if (hw->mac.type < e1000_pch2lan)
2831		return;
2832
2833	extcnf_ctrl = er32(EXTCNF_CTRL);
2834
2835	if (gate)
2836		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2837	else
2838		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2839
2840	ew32(EXTCNF_CTRL, extcnf_ctrl);
2841}
2842
2843/**
2844 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2845 *  @hw: pointer to the HW structure
2846 *
2847 *  Check the appropriate indication the MAC has finished configuring the
2848 *  PHY after a software reset.
2849 **/
2850static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2851{
2852	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2853
2854	/* Wait for basic configuration completes before proceeding */
2855	do {
2856		data = er32(STATUS);
2857		data &= E1000_STATUS_LAN_INIT_DONE;
2858		usleep_range(100, 200);
2859	} while ((!data) && --loop);
2860
2861	/* If basic configuration is incomplete before the above loop
 
2862	 * count reaches 0, loading the configuration from NVM will
2863	 * leave the PHY in a bad state possibly resulting in no link.
2864	 */
2865	if (loop == 0)
2866		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2867
2868	/* Clear the Init Done bit for the next init event */
2869	data = er32(STATUS);
2870	data &= ~E1000_STATUS_LAN_INIT_DONE;
2871	ew32(STATUS, data);
2872}
2873
2874/**
2875 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2876 *  @hw: pointer to the HW structure
2877 **/
2878static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2879{
2880	s32 ret_val = 0;
2881	u16 reg;
2882
2883	if (hw->phy.ops.check_reset_block(hw))
2884		return 0;
2885
2886	/* Allow time for h/w to get to quiescent state after reset */
2887	usleep_range(10000, 11000);
2888
2889	/* Perform any necessary post-reset workarounds */
2890	switch (hw->mac.type) {
2891	case e1000_pchlan:
2892		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2893		if (ret_val)
2894			return ret_val;
2895		break;
2896	case e1000_pch2lan:
2897		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2898		if (ret_val)
2899			return ret_val;
2900		break;
2901	default:
2902		break;
2903	}
2904
2905	/* Clear the host wakeup bit after lcd reset */
2906	if (hw->mac.type >= e1000_pchlan) {
2907		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2908		reg &= ~BM_WUC_HOST_WU_BIT;
2909		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2910	}
2911
2912	/* Configure the LCD with the extended configuration region in NVM */
2913	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2914	if (ret_val)
2915		return ret_val;
2916
2917	/* Configure the LCD with the OEM bits in NVM */
2918	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2919
2920	if (hw->mac.type == e1000_pch2lan) {
2921		/* Ungate automatic PHY configuration on non-managed 82579 */
2922		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2923			usleep_range(10000, 11000);
2924			e1000_gate_hw_phy_config_ich8lan(hw, false);
2925		}
2926
2927		/* Set EEE LPI Update Timer to 200usec */
2928		ret_val = hw->phy.ops.acquire(hw);
2929		if (ret_val)
2930			return ret_val;
2931		ret_val = e1000_write_emi_reg_locked(hw,
2932						     I82579_LPI_UPDATE_TIMER,
2933						     0x1387);
 
2934		hw->phy.ops.release(hw);
2935	}
2936
2937	return ret_val;
2938}
2939
2940/**
2941 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2942 *  @hw: pointer to the HW structure
2943 *
2944 *  Resets the PHY
2945 *  This is a function pointer entry point called by drivers
2946 *  or other shared routines.
2947 **/
2948static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2949{
2950	s32 ret_val = 0;
2951
2952	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2953	if ((hw->mac.type == e1000_pch2lan) &&
2954	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2955		e1000_gate_hw_phy_config_ich8lan(hw, true);
2956
2957	ret_val = e1000e_phy_hw_reset_generic(hw);
2958	if (ret_val)
2959		return ret_val;
2960
2961	return e1000_post_phy_reset_ich8lan(hw);
2962}
2963
2964/**
2965 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2966 *  @hw: pointer to the HW structure
2967 *  @active: true to enable LPLU, false to disable
2968 *
2969 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2970 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2971 *  the phy speed. This function will manually set the LPLU bit and restart
2972 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2973 *  since it configures the same bit.
2974 **/
2975static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2976{
2977	s32 ret_val;
2978	u16 oem_reg;
2979
2980	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2981	if (ret_val)
2982		return ret_val;
2983
2984	if (active)
2985		oem_reg |= HV_OEM_BITS_LPLU;
2986	else
2987		oem_reg &= ~HV_OEM_BITS_LPLU;
2988
2989	if (!hw->phy.ops.check_reset_block(hw))
2990		oem_reg |= HV_OEM_BITS_RESTART_AN;
2991
2992	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2993}
2994
2995/**
2996 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2997 *  @hw: pointer to the HW structure
2998 *  @active: true to enable LPLU, false to disable
2999 *
3000 *  Sets the LPLU D0 state according to the active flag.  When
3001 *  activating LPLU this function also disables smart speed
3002 *  and vice versa.  LPLU will not be activated unless the
3003 *  device autonegotiation advertisement meets standards of
3004 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3005 *  This is a function pointer entry point only called by
3006 *  PHY setup routines.
3007 **/
3008static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3009{
3010	struct e1000_phy_info *phy = &hw->phy;
3011	u32 phy_ctrl;
3012	s32 ret_val = 0;
3013	u16 data;
3014
3015	if (phy->type == e1000_phy_ife)
3016		return 0;
3017
3018	phy_ctrl = er32(PHY_CTRL);
3019
3020	if (active) {
3021		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3022		ew32(PHY_CTRL, phy_ctrl);
3023
3024		if (phy->type != e1000_phy_igp_3)
3025			return 0;
3026
3027		/* Call gig speed drop workaround on LPLU before accessing
 
3028		 * any PHY registers
3029		 */
3030		if (hw->mac.type == e1000_ich8lan)
3031			e1000e_gig_downshift_workaround_ich8lan(hw);
3032
3033		/* When LPLU is enabled, we should disable SmartSpeed */
3034		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3035		if (ret_val)
3036			return ret_val;
3037		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3038		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3039		if (ret_val)
3040			return ret_val;
3041	} else {
3042		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3043		ew32(PHY_CTRL, phy_ctrl);
3044
3045		if (phy->type != e1000_phy_igp_3)
3046			return 0;
3047
3048		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
3049		 * during Dx states where the power conservation is most
3050		 * important.  During driver activity we should enable
3051		 * SmartSpeed, so performance is maintained.
3052		 */
3053		if (phy->smart_speed == e1000_smart_speed_on) {
3054			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3055					   &data);
3056			if (ret_val)
3057				return ret_val;
3058
3059			data |= IGP01E1000_PSCFR_SMART_SPEED;
3060			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3061					   data);
3062			if (ret_val)
3063				return ret_val;
3064		} else if (phy->smart_speed == e1000_smart_speed_off) {
3065			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066					   &data);
3067			if (ret_val)
3068				return ret_val;
3069
3070			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3071			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3072					   data);
3073			if (ret_val)
3074				return ret_val;
3075		}
3076	}
3077
3078	return 0;
3079}
3080
3081/**
3082 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3083 *  @hw: pointer to the HW structure
3084 *  @active: true to enable LPLU, false to disable
3085 *
3086 *  Sets the LPLU D3 state according to the active flag.  When
3087 *  activating LPLU this function also disables smart speed
3088 *  and vice versa.  LPLU will not be activated unless the
3089 *  device autonegotiation advertisement meets standards of
3090 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3091 *  This is a function pointer entry point only called by
3092 *  PHY setup routines.
3093 **/
3094static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3095{
3096	struct e1000_phy_info *phy = &hw->phy;
3097	u32 phy_ctrl;
3098	s32 ret_val = 0;
3099	u16 data;
3100
3101	phy_ctrl = er32(PHY_CTRL);
3102
3103	if (!active) {
3104		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3105		ew32(PHY_CTRL, phy_ctrl);
3106
3107		if (phy->type != e1000_phy_igp_3)
3108			return 0;
3109
3110		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
3111		 * during Dx states where the power conservation is most
3112		 * important.  During driver activity we should enable
3113		 * SmartSpeed, so performance is maintained.
3114		 */
3115		if (phy->smart_speed == e1000_smart_speed_on) {
3116			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3117					   &data);
3118			if (ret_val)
3119				return ret_val;
3120
3121			data |= IGP01E1000_PSCFR_SMART_SPEED;
3122			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3123					   data);
3124			if (ret_val)
3125				return ret_val;
3126		} else if (phy->smart_speed == e1000_smart_speed_off) {
3127			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3128					   &data);
3129			if (ret_val)
3130				return ret_val;
3131
3132			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3133			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3134					   data);
3135			if (ret_val)
3136				return ret_val;
3137		}
3138	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3139		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3140		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3141		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3142		ew32(PHY_CTRL, phy_ctrl);
3143
3144		if (phy->type != e1000_phy_igp_3)
3145			return 0;
3146
3147		/* Call gig speed drop workaround on LPLU before accessing
 
3148		 * any PHY registers
3149		 */
3150		if (hw->mac.type == e1000_ich8lan)
3151			e1000e_gig_downshift_workaround_ich8lan(hw);
3152
3153		/* When LPLU is enabled, we should disable SmartSpeed */
3154		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3155		if (ret_val)
3156			return ret_val;
3157
3158		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3159		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3160	}
3161
3162	return ret_val;
3163}
3164
3165/**
3166 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3167 *  @hw: pointer to the HW structure
3168 *  @bank:  pointer to the variable that returns the active bank
3169 *
3170 *  Reads signature byte from the NVM using the flash access registers.
3171 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3172 **/
3173static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3174{
3175	u32 eecd;
3176	struct e1000_nvm_info *nvm = &hw->nvm;
3177	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3178	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3179	u32 nvm_dword = 0;
3180	u8 sig_byte = 0;
3181	s32 ret_val;
3182
3183	switch (hw->mac.type) {
3184	case e1000_pch_spt:
3185	case e1000_pch_cnp:
3186	case e1000_pch_tgp:
3187	case e1000_pch_adp:
3188	case e1000_pch_mtp:
3189	case e1000_pch_lnp:
3190	case e1000_pch_ptp:
3191		bank1_offset = nvm->flash_bank_size;
3192		act_offset = E1000_ICH_NVM_SIG_WORD;
3193
3194		/* set bank to 0 in case flash read fails */
3195		*bank = 0;
3196
3197		/* Check bank 0 */
3198		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3199							 &nvm_dword);
3200		if (ret_val)
3201			return ret_val;
3202		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3203		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3204		    E1000_ICH_NVM_SIG_VALUE) {
3205			*bank = 0;
3206			return 0;
3207		}
3208
3209		/* Check bank 1 */
3210		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3211							 bank1_offset,
3212							 &nvm_dword);
3213		if (ret_val)
3214			return ret_val;
3215		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3216		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3217		    E1000_ICH_NVM_SIG_VALUE) {
3218			*bank = 1;
3219			return 0;
3220		}
3221
3222		e_dbg("ERROR: No valid NVM bank present\n");
3223		return -E1000_ERR_NVM;
3224	case e1000_ich8lan:
3225	case e1000_ich9lan:
3226		eecd = er32(EECD);
3227		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3228		    E1000_EECD_SEC1VAL_VALID_MASK) {
3229			if (eecd & E1000_EECD_SEC1VAL)
3230				*bank = 1;
3231			else
3232				*bank = 0;
3233
3234			return 0;
3235		}
3236		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3237		fallthrough;
3238	default:
3239		/* set bank to 0 in case flash read fails */
3240		*bank = 0;
3241
3242		/* Check bank 0 */
3243		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3244							&sig_byte);
3245		if (ret_val)
3246			return ret_val;
3247		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3248		    E1000_ICH_NVM_SIG_VALUE) {
3249			*bank = 0;
3250			return 0;
3251		}
3252
3253		/* Check bank 1 */
3254		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3255							bank1_offset,
3256							&sig_byte);
3257		if (ret_val)
3258			return ret_val;
3259		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3260		    E1000_ICH_NVM_SIG_VALUE) {
3261			*bank = 1;
3262			return 0;
3263		}
3264
3265		e_dbg("ERROR: No valid NVM bank present\n");
3266		return -E1000_ERR_NVM;
3267	}
3268}
3269
3270/**
3271 *  e1000_read_nvm_spt - NVM access for SPT
3272 *  @hw: pointer to the HW structure
3273 *  @offset: The offset (in bytes) of the word(s) to read.
3274 *  @words: Size of data to read in words.
3275 *  @data: pointer to the word(s) to read at offset.
3276 *
3277 *  Reads a word(s) from the NVM
3278 **/
3279static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3280			      u16 *data)
3281{
3282	struct e1000_nvm_info *nvm = &hw->nvm;
3283	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3284	u32 act_offset;
3285	s32 ret_val = 0;
3286	u32 bank = 0;
3287	u32 dword = 0;
3288	u16 offset_to_read;
3289	u16 i;
3290
3291	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3292	    (words == 0)) {
3293		e_dbg("nvm parameter(s) out of bounds\n");
3294		ret_val = -E1000_ERR_NVM;
3295		goto out;
3296	}
3297
3298	nvm->ops.acquire(hw);
3299
3300	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3301	if (ret_val) {
3302		e_dbg("Could not detect valid bank, assuming bank 0\n");
3303		bank = 0;
3304	}
3305
3306	act_offset = (bank) ? nvm->flash_bank_size : 0;
3307	act_offset += offset;
3308
3309	ret_val = 0;
3310
3311	for (i = 0; i < words; i += 2) {
3312		if (words - i == 1) {
3313			if (dev_spec->shadow_ram[offset + i].modified) {
3314				data[i] =
3315				    dev_spec->shadow_ram[offset + i].value;
3316			} else {
3317				offset_to_read = act_offset + i -
3318				    ((act_offset + i) % 2);
3319				ret_val =
3320				  e1000_read_flash_dword_ich8lan(hw,
3321								 offset_to_read,
3322								 &dword);
3323				if (ret_val)
3324					break;
3325				if ((act_offset + i) % 2 == 0)
3326					data[i] = (u16)(dword & 0xFFFF);
3327				else
3328					data[i] = (u16)((dword >> 16) & 0xFFFF);
3329			}
3330		} else {
3331			offset_to_read = act_offset + i;
3332			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3333			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3334				ret_val =
3335				  e1000_read_flash_dword_ich8lan(hw,
3336								 offset_to_read,
3337								 &dword);
3338				if (ret_val)
3339					break;
3340			}
3341			if (dev_spec->shadow_ram[offset + i].modified)
3342				data[i] =
3343				    dev_spec->shadow_ram[offset + i].value;
3344			else
3345				data[i] = (u16)(dword & 0xFFFF);
3346			if (dev_spec->shadow_ram[offset + i].modified)
3347				data[i + 1] =
3348				    dev_spec->shadow_ram[offset + i + 1].value;
3349			else
3350				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3351		}
3352	}
3353
3354	nvm->ops.release(hw);
3355
3356out:
3357	if (ret_val)
3358		e_dbg("NVM read error: %d\n", ret_val);
3359
3360	return ret_val;
3361}
3362
3363/**
3364 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3365 *  @hw: pointer to the HW structure
3366 *  @offset: The offset (in bytes) of the word(s) to read.
3367 *  @words: Size of data to read in words
3368 *  @data: Pointer to the word(s) to read at offset.
3369 *
3370 *  Reads a word(s) from the NVM using the flash access registers.
3371 **/
3372static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3373				  u16 *data)
3374{
3375	struct e1000_nvm_info *nvm = &hw->nvm;
3376	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3377	u32 act_offset;
3378	s32 ret_val = 0;
3379	u32 bank = 0;
3380	u16 i, word;
3381
3382	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3383	    (words == 0)) {
3384		e_dbg("nvm parameter(s) out of bounds\n");
3385		ret_val = -E1000_ERR_NVM;
3386		goto out;
3387	}
3388
3389	nvm->ops.acquire(hw);
3390
3391	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3392	if (ret_val) {
3393		e_dbg("Could not detect valid bank, assuming bank 0\n");
3394		bank = 0;
3395	}
3396
3397	act_offset = (bank) ? nvm->flash_bank_size : 0;
3398	act_offset += offset;
3399
3400	ret_val = 0;
3401	for (i = 0; i < words; i++) {
3402		if (dev_spec->shadow_ram[offset + i].modified) {
3403			data[i] = dev_spec->shadow_ram[offset + i].value;
3404		} else {
3405			ret_val = e1000_read_flash_word_ich8lan(hw,
3406								act_offset + i,
3407								&word);
3408			if (ret_val)
3409				break;
3410			data[i] = word;
3411		}
3412	}
3413
3414	nvm->ops.release(hw);
3415
3416out:
3417	if (ret_val)
3418		e_dbg("NVM read error: %d\n", ret_val);
3419
3420	return ret_val;
3421}
3422
3423/**
3424 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3425 *  @hw: pointer to the HW structure
3426 *
3427 *  This function does initial flash setup so that a new read/write/erase cycle
3428 *  can be started.
3429 **/
3430static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3431{
3432	union ich8_hws_flash_status hsfsts;
3433	s32 ret_val = -E1000_ERR_NVM;
3434
3435	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3436
3437	/* Check if the flash descriptor is valid */
3438	if (!hsfsts.hsf_status.fldesvalid) {
3439		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3440		return -E1000_ERR_NVM;
3441	}
3442
3443	/* Clear FCERR and DAEL in hw status by writing 1 */
3444	hsfsts.hsf_status.flcerr = 1;
3445	hsfsts.hsf_status.dael = 1;
3446	if (hw->mac.type >= e1000_pch_spt)
3447		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3448	else
3449		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3450
3451	/* Either we should have a hardware SPI cycle in progress
 
 
 
3452	 * bit to check against, in order to start a new cycle or
3453	 * FDONE bit should be changed in the hardware so that it
3454	 * is 1 after hardware reset, which can then be used as an
3455	 * indication whether a cycle is in progress or has been
3456	 * completed.
3457	 */
3458
3459	if (!hsfsts.hsf_status.flcinprog) {
3460		/* There is no cycle running at present,
 
3461		 * so we can start a cycle.
3462		 * Begin by setting Flash Cycle Done.
3463		 */
3464		hsfsts.hsf_status.flcdone = 1;
3465		if (hw->mac.type >= e1000_pch_spt)
3466			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3467		else
3468			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3469		ret_val = 0;
3470	} else {
3471		s32 i;
3472
3473		/* Otherwise poll for sometime so the current
 
3474		 * cycle has a chance to end before giving up.
3475		 */
3476		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3477			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3478			if (!hsfsts.hsf_status.flcinprog) {
3479				ret_val = 0;
3480				break;
3481			}
3482			udelay(1);
3483		}
3484		if (!ret_val) {
3485			/* Successful in waiting for previous cycle to timeout,
 
3486			 * now set the Flash Cycle Done.
3487			 */
3488			hsfsts.hsf_status.flcdone = 1;
3489			if (hw->mac.type >= e1000_pch_spt)
3490				ew32flash(ICH_FLASH_HSFSTS,
3491					  hsfsts.regval & 0xFFFF);
3492			else
3493				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3494		} else {
3495			e_dbg("Flash controller busy, cannot get access\n");
3496		}
3497	}
3498
3499	return ret_val;
3500}
3501
3502/**
3503 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3504 *  @hw: pointer to the HW structure
3505 *  @timeout: maximum time to wait for completion
3506 *
3507 *  This function starts a flash cycle and waits for its completion.
3508 **/
3509static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3510{
3511	union ich8_hws_flash_ctrl hsflctl;
3512	union ich8_hws_flash_status hsfsts;
3513	u32 i = 0;
3514
3515	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3516	if (hw->mac.type >= e1000_pch_spt)
3517		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3518	else
3519		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3520	hsflctl.hsf_ctrl.flcgo = 1;
3521
3522	if (hw->mac.type >= e1000_pch_spt)
3523		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3524	else
3525		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3526
3527	/* wait till FDONE bit is set to 1 */
3528	do {
3529		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3530		if (hsfsts.hsf_status.flcdone)
3531			break;
3532		udelay(1);
3533	} while (i++ < timeout);
3534
3535	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3536		return 0;
3537
3538	return -E1000_ERR_NVM;
3539}
3540
3541/**
3542 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3543 *  @hw: pointer to the HW structure
3544 *  @offset: offset to data location
3545 *  @data: pointer to the location for storing the data
3546 *
3547 *  Reads the flash dword at offset into data.  Offset is converted
3548 *  to bytes before read.
3549 **/
3550static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3551					  u32 *data)
3552{
3553	/* Must convert word offset into bytes. */
3554	offset <<= 1;
3555	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3556}
3557
3558/**
3559 *  e1000_read_flash_word_ich8lan - Read word from flash
3560 *  @hw: pointer to the HW structure
3561 *  @offset: offset to data location
3562 *  @data: pointer to the location for storing the data
3563 *
3564 *  Reads the flash word at offset into data.  Offset is converted
3565 *  to bytes before read.
3566 **/
3567static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3568					 u16 *data)
3569{
3570	/* Must convert offset into bytes. */
3571	offset <<= 1;
3572
3573	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3574}
3575
3576/**
3577 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3578 *  @hw: pointer to the HW structure
3579 *  @offset: The offset of the byte to read.
3580 *  @data: Pointer to a byte to store the value read.
3581 *
3582 *  Reads a single byte from the NVM using the flash access registers.
3583 **/
3584static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3585					 u8 *data)
3586{
3587	s32 ret_val;
3588	u16 word = 0;
3589
3590	/* In SPT, only 32 bits access is supported,
3591	 * so this function should not be called.
3592	 */
3593	if (hw->mac.type >= e1000_pch_spt)
3594		return -E1000_ERR_NVM;
3595	else
3596		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3597
3598	if (ret_val)
3599		return ret_val;
3600
3601	*data = (u8)word;
3602
3603	return 0;
3604}
3605
3606/**
3607 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3608 *  @hw: pointer to the HW structure
3609 *  @offset: The offset (in bytes) of the byte or word to read.
3610 *  @size: Size of data to read, 1=byte 2=word
3611 *  @data: Pointer to the word to store the value read.
3612 *
3613 *  Reads a byte or word from the NVM using the flash access registers.
3614 **/
3615static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3616					 u8 size, u16 *data)
3617{
3618	union ich8_hws_flash_status hsfsts;
3619	union ich8_hws_flash_ctrl hsflctl;
3620	u32 flash_linear_addr;
3621	u32 flash_data = 0;
3622	s32 ret_val = -E1000_ERR_NVM;
3623	u8 count = 0;
3624
3625	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3626		return -E1000_ERR_NVM;
3627
3628	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3629			     hw->nvm.flash_base_addr);
3630
3631	do {
3632		udelay(1);
3633		/* Steps */
3634		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3635		if (ret_val)
3636			break;
3637
3638		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3639		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3640		hsflctl.hsf_ctrl.fldbcount = size - 1;
3641		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3642		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3643
3644		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3645
3646		ret_val =
3647		    e1000_flash_cycle_ich8lan(hw,
3648					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3649
3650		/* Check if FCERR is set to 1, if set to 1, clear it
 
3651		 * and try the whole sequence a few more times, else
3652		 * read in (shift in) the Flash Data0, the order is
3653		 * least significant byte first msb to lsb
3654		 */
3655		if (!ret_val) {
3656			flash_data = er32flash(ICH_FLASH_FDATA0);
3657			if (size == 1)
3658				*data = (u8)(flash_data & 0x000000FF);
3659			else if (size == 2)
3660				*data = (u16)(flash_data & 0x0000FFFF);
3661			break;
3662		} else {
3663			/* If we've gotten here, then things are probably
3664			 * completely hosed, but if the error condition is
3665			 * detected, it won't hurt to give it another try...
3666			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3667			 */
3668			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3669			if (hsfsts.hsf_status.flcerr) {
3670				/* Repeat for some time before giving up. */
3671				continue;
3672			} else if (!hsfsts.hsf_status.flcdone) {
3673				e_dbg("Timeout error - flash cycle did not complete.\n");
3674				break;
3675			}
3676		}
3677	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3678
3679	return ret_val;
3680}
3681
3682/**
3683 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3684 *  @hw: pointer to the HW structure
3685 *  @offset: The offset (in bytes) of the dword to read.
3686 *  @data: Pointer to the dword to store the value read.
3687 *
3688 *  Reads a byte or word from the NVM using the flash access registers.
3689 **/
3690
3691static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3692					   u32 *data)
3693{
3694	union ich8_hws_flash_status hsfsts;
3695	union ich8_hws_flash_ctrl hsflctl;
3696	u32 flash_linear_addr;
3697	s32 ret_val = -E1000_ERR_NVM;
3698	u8 count = 0;
3699
3700	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3701		return -E1000_ERR_NVM;
3702	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3703			     hw->nvm.flash_base_addr);
3704
3705	do {
3706		udelay(1);
3707		/* Steps */
3708		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3709		if (ret_val)
3710			break;
3711		/* In SPT, This register is in Lan memory space, not flash.
3712		 * Therefore, only 32 bit access is supported
3713		 */
3714		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3715
3716		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3717		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3718		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3719		/* In SPT, This register is in Lan memory space, not flash.
3720		 * Therefore, only 32 bit access is supported
3721		 */
3722		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3723		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3724
3725		ret_val =
3726		   e1000_flash_cycle_ich8lan(hw,
3727					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3728
3729		/* Check if FCERR is set to 1, if set to 1, clear it
3730		 * and try the whole sequence a few more times, else
3731		 * read in (shift in) the Flash Data0, the order is
3732		 * least significant byte first msb to lsb
3733		 */
3734		if (!ret_val) {
3735			*data = er32flash(ICH_FLASH_FDATA0);
3736			break;
3737		} else {
3738			/* If we've gotten here, then things are probably
3739			 * completely hosed, but if the error condition is
3740			 * detected, it won't hurt to give it another try...
3741			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3742			 */
3743			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3744			if (hsfsts.hsf_status.flcerr) {
3745				/* Repeat for some time before giving up. */
3746				continue;
3747			} else if (!hsfsts.hsf_status.flcdone) {
3748				e_dbg("Timeout error - flash cycle did not complete.\n");
3749				break;
3750			}
3751		}
3752	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3753
3754	return ret_val;
3755}
3756
3757/**
3758 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3759 *  @hw: pointer to the HW structure
3760 *  @offset: The offset (in bytes) of the word(s) to write.
3761 *  @words: Size of data to write in words
3762 *  @data: Pointer to the word(s) to write at offset.
3763 *
3764 *  Writes a byte or word to the NVM using the flash access registers.
3765 **/
3766static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3767				   u16 *data)
3768{
3769	struct e1000_nvm_info *nvm = &hw->nvm;
3770	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3771	u16 i;
3772
3773	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3774	    (words == 0)) {
3775		e_dbg("nvm parameter(s) out of bounds\n");
3776		return -E1000_ERR_NVM;
3777	}
3778
3779	nvm->ops.acquire(hw);
3780
3781	for (i = 0; i < words; i++) {
3782		dev_spec->shadow_ram[offset + i].modified = true;
3783		dev_spec->shadow_ram[offset + i].value = data[i];
3784	}
3785
3786	nvm->ops.release(hw);
3787
3788	return 0;
3789}
3790
3791/**
3792 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3793 *  @hw: pointer to the HW structure
3794 *
3795 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3796 *  which writes the checksum to the shadow ram.  The changes in the shadow
3797 *  ram are then committed to the EEPROM by processing each bank at a time
3798 *  checking for the modified bit and writing only the pending changes.
3799 *  After a successful commit, the shadow ram is cleared and is ready for
3800 *  future writes.
3801 **/
3802static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3803{
3804	struct e1000_nvm_info *nvm = &hw->nvm;
3805	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3806	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3807	s32 ret_val;
3808	u32 dword = 0;
3809
3810	ret_val = e1000e_update_nvm_checksum_generic(hw);
3811	if (ret_val)
3812		goto out;
3813
3814	if (nvm->type != e1000_nvm_flash_sw)
3815		goto out;
3816
3817	nvm->ops.acquire(hw);
3818
3819	/* We're writing to the opposite bank so if we're on bank 1,
 
3820	 * write to bank 0 etc.  We also need to erase the segment that
3821	 * is going to be written
3822	 */
3823	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3824	if (ret_val) {
3825		e_dbg("Could not detect valid bank, assuming bank 0\n");
3826		bank = 0;
3827	}
3828
3829	if (bank == 0) {
3830		new_bank_offset = nvm->flash_bank_size;
3831		old_bank_offset = 0;
3832		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3833		if (ret_val)
3834			goto release;
3835	} else {
3836		old_bank_offset = nvm->flash_bank_size;
3837		new_bank_offset = 0;
3838		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3839		if (ret_val)
3840			goto release;
3841	}
3842	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3843		/* Determine whether to write the value stored
 
 
3844		 * in the other NVM bank or a modified value stored
3845		 * in the shadow RAM
3846		 */
3847		ret_val = e1000_read_flash_dword_ich8lan(hw,
3848							 i + old_bank_offset,
3849							 &dword);
3850
3851		if (dev_spec->shadow_ram[i].modified) {
3852			dword &= 0xffff0000;
3853			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3854		}
3855		if (dev_spec->shadow_ram[i + 1].modified) {
3856			dword &= 0x0000ffff;
3857			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3858				  << 16);
3859		}
3860		if (ret_val)
3861			break;
3862
3863		/* If the word is 0x13, then make sure the signature bits
3864		 * (15:14) are 11b until the commit has completed.
3865		 * This will allow us to write 10b which indicates the
3866		 * signature is valid.  We want to do this after the write
3867		 * has completed so that we don't mark the segment valid
3868		 * while the write is still in progress
3869		 */
3870		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3871			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3872
3873		/* Convert offset to bytes. */
3874		act_offset = (i + new_bank_offset) << 1;
3875
3876		usleep_range(100, 200);
3877
3878		/* Write the data to the new bank. Offset in words */
3879		act_offset = i + new_bank_offset;
3880		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3881								dword);
3882		if (ret_val)
3883			break;
3884	}
3885
3886	/* Don't bother writing the segment valid bits if sector
3887	 * programming failed.
3888	 */
3889	if (ret_val) {
3890		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3891		e_dbg("Flash commit failed.\n");
3892		goto release;
3893	}
3894
3895	/* Finally validate the new segment by setting bit 15:14
3896	 * to 10b in word 0x13 , this can be done without an
3897	 * erase as well since these bits are 11 to start with
3898	 * and we need to change bit 14 to 0b
3899	 */
3900	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3901
3902	/*offset in words but we read dword */
3903	--act_offset;
3904	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3905
3906	if (ret_val)
3907		goto release;
3908
3909	dword &= 0xBFFFFFFF;
3910	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3911
3912	if (ret_val)
3913		goto release;
3914
3915	/* offset in words but we read dword */
3916	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3917	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3918
3919	if (ret_val)
3920		goto release;
3921
3922	dword &= 0x00FFFFFF;
3923	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3924
3925	if (ret_val)
3926		goto release;
3927
3928	/* Great!  Everything worked, we can now clear the cached entries. */
3929	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3930		dev_spec->shadow_ram[i].modified = false;
3931		dev_spec->shadow_ram[i].value = 0xFFFF;
3932	}
3933
3934release:
3935	nvm->ops.release(hw);
3936
3937	/* Reload the EEPROM, or else modifications will not appear
3938	 * until after the next adapter reset.
3939	 */
3940	if (!ret_val) {
3941		nvm->ops.reload(hw);
3942		usleep_range(10000, 11000);
3943	}
3944
3945out:
3946	if (ret_val)
3947		e_dbg("NVM update error: %d\n", ret_val);
3948
3949	return ret_val;
3950}
3951
3952/**
3953 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3954 *  @hw: pointer to the HW structure
3955 *
3956 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3957 *  which writes the checksum to the shadow ram.  The changes in the shadow
3958 *  ram are then committed to the EEPROM by processing each bank at a time
3959 *  checking for the modified bit and writing only the pending changes.
3960 *  After a successful commit, the shadow ram is cleared and is ready for
3961 *  future writes.
3962 **/
3963static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3964{
3965	struct e1000_nvm_info *nvm = &hw->nvm;
3966	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3967	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3968	s32 ret_val;
3969	u16 data = 0;
3970
3971	ret_val = e1000e_update_nvm_checksum_generic(hw);
3972	if (ret_val)
3973		goto out;
3974
3975	if (nvm->type != e1000_nvm_flash_sw)
3976		goto out;
3977
3978	nvm->ops.acquire(hw);
3979
3980	/* We're writing to the opposite bank so if we're on bank 1,
3981	 * write to bank 0 etc.  We also need to erase the segment that
3982	 * is going to be written
3983	 */
3984	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3985	if (ret_val) {
3986		e_dbg("Could not detect valid bank, assuming bank 0\n");
3987		bank = 0;
3988	}
3989
3990	if (bank == 0) {
3991		new_bank_offset = nvm->flash_bank_size;
3992		old_bank_offset = 0;
3993		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3994		if (ret_val)
3995			goto release;
3996	} else {
3997		old_bank_offset = nvm->flash_bank_size;
3998		new_bank_offset = 0;
3999		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4000		if (ret_val)
4001			goto release;
4002	}
4003	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4004		if (dev_spec->shadow_ram[i].modified) {
4005			data = dev_spec->shadow_ram[i].value;
4006		} else {
4007			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4008								old_bank_offset,
4009								&data);
4010			if (ret_val)
4011				break;
4012		}
4013
4014		/* If the word is 0x13, then make sure the signature bits
 
4015		 * (15:14) are 11b until the commit has completed.
4016		 * This will allow us to write 10b which indicates the
4017		 * signature is valid.  We want to do this after the write
4018		 * has completed so that we don't mark the segment valid
4019		 * while the write is still in progress
4020		 */
4021		if (i == E1000_ICH_NVM_SIG_WORD)
4022			data |= E1000_ICH_NVM_SIG_MASK;
4023
4024		/* Convert offset to bytes. */
4025		act_offset = (i + new_bank_offset) << 1;
4026
4027		usleep_range(100, 200);
4028		/* Write the bytes to the new bank. */
4029		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4030							       act_offset,
4031							       (u8)data);
4032		if (ret_val)
4033			break;
4034
4035		usleep_range(100, 200);
4036		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4037							       act_offset + 1,
4038							       (u8)(data >> 8));
4039		if (ret_val)
4040			break;
4041	}
4042
4043	/* Don't bother writing the segment valid bits if sector
 
4044	 * programming failed.
4045	 */
4046	if (ret_val) {
4047		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4048		e_dbg("Flash commit failed.\n");
4049		goto release;
4050	}
4051
4052	/* Finally validate the new segment by setting bit 15:14
 
4053	 * to 10b in word 0x13 , this can be done without an
4054	 * erase as well since these bits are 11 to start with
4055	 * and we need to change bit 14 to 0b
4056	 */
4057	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4058	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4059	if (ret_val)
4060		goto release;
4061
4062	data &= 0xBFFF;
4063	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4064						       act_offset * 2 + 1,
4065						       (u8)(data >> 8));
4066	if (ret_val)
4067		goto release;
4068
4069	/* And invalidate the previously valid segment by setting
 
4070	 * its signature word (0x13) high_byte to 0b. This can be
4071	 * done without an erase because flash erase sets all bits
4072	 * to 1's. We can write 1's to 0's without an erase
4073	 */
4074	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4075	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4076	if (ret_val)
4077		goto release;
4078
4079	/* Great!  Everything worked, we can now clear the cached entries. */
4080	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4081		dev_spec->shadow_ram[i].modified = false;
4082		dev_spec->shadow_ram[i].value = 0xFFFF;
4083	}
4084
4085release:
4086	nvm->ops.release(hw);
4087
4088	/* Reload the EEPROM, or else modifications will not appear
 
4089	 * until after the next adapter reset.
4090	 */
4091	if (!ret_val) {
4092		nvm->ops.reload(hw);
4093		usleep_range(10000, 11000);
4094	}
4095
4096out:
4097	if (ret_val)
4098		e_dbg("NVM update error: %d\n", ret_val);
4099
4100	return ret_val;
4101}
4102
4103/**
4104 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4105 *  @hw: pointer to the HW structure
4106 *
4107 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4108 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4109 *  calculated, in which case we need to calculate the checksum and set bit 6.
4110 **/
4111static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4112{
4113	s32 ret_val;
4114	u16 data;
4115	u16 word;
4116	u16 valid_csum_mask;
4117
4118	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4119	 * the checksum needs to be fixed.  This bit is an indication that
4120	 * the NVM was prepared by OEM software and did not calculate
4121	 * the checksum...a likely scenario.
 
4122	 */
4123	switch (hw->mac.type) {
4124	case e1000_pch_lpt:
4125	case e1000_pch_spt:
4126	case e1000_pch_cnp:
4127	case e1000_pch_tgp:
4128	case e1000_pch_adp:
4129	case e1000_pch_mtp:
4130	case e1000_pch_lnp:
4131	case e1000_pch_ptp:
4132		word = NVM_COMPAT;
4133		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4134		break;
4135	default:
4136		word = NVM_FUTURE_INIT_WORD1;
4137		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4138		break;
4139	}
4140
4141	ret_val = e1000_read_nvm(hw, word, 1, &data);
4142	if (ret_val)
4143		return ret_val;
4144
4145	if (!(data & valid_csum_mask)) {
4146		e_dbg("NVM Checksum valid bit not set\n");
4147
4148		if (hw->mac.type < e1000_pch_tgp) {
4149			data |= valid_csum_mask;
4150			ret_val = e1000_write_nvm(hw, word, 1, &data);
4151			if (ret_val)
4152				return ret_val;
4153			ret_val = e1000e_update_nvm_checksum(hw);
4154			if (ret_val)
4155				return ret_val;
4156		}
4157	}
4158
4159	return e1000e_validate_nvm_checksum_generic(hw);
4160}
4161
4162/**
4163 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4164 *  @hw: pointer to the HW structure
4165 *
4166 *  To prevent malicious write/erase of the NVM, set it to be read-only
4167 *  so that the hardware ignores all write/erase cycles of the NVM via
4168 *  the flash control registers.  The shadow-ram copy of the NVM will
4169 *  still be updated, however any updates to this copy will not stick
4170 *  across driver reloads.
4171 **/
4172void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4173{
4174	struct e1000_nvm_info *nvm = &hw->nvm;
4175	union ich8_flash_protected_range pr0;
4176	union ich8_hws_flash_status hsfsts;
4177	u32 gfpreg;
4178
4179	nvm->ops.acquire(hw);
4180
4181	gfpreg = er32flash(ICH_FLASH_GFPREG);
4182
4183	/* Write-protect GbE Sector of NVM */
4184	pr0.regval = er32flash(ICH_FLASH_PR0);
4185	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4186	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4187	pr0.range.wpe = true;
4188	ew32flash(ICH_FLASH_PR0, pr0.regval);
4189
4190	/* Lock down a subset of GbE Flash Control Registers, e.g.
 
4191	 * PR0 to prevent the write-protection from being lifted.
4192	 * Once FLOCKDN is set, the registers protected by it cannot
4193	 * be written until FLOCKDN is cleared by a hardware reset.
4194	 */
4195	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4196	hsfsts.hsf_status.flockdn = true;
4197	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4198
4199	nvm->ops.release(hw);
4200}
4201
4202/**
4203 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4204 *  @hw: pointer to the HW structure
4205 *  @offset: The offset (in bytes) of the byte/word to read.
4206 *  @size: Size of data to read, 1=byte 2=word
4207 *  @data: The byte(s) to write to the NVM.
4208 *
4209 *  Writes one/two bytes to the NVM using the flash access registers.
4210 **/
4211static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4212					  u8 size, u16 data)
4213{
4214	union ich8_hws_flash_status hsfsts;
4215	union ich8_hws_flash_ctrl hsflctl;
4216	u32 flash_linear_addr;
4217	u32 flash_data = 0;
4218	s32 ret_val;
4219	u8 count = 0;
4220
4221	if (hw->mac.type >= e1000_pch_spt) {
4222		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4223			return -E1000_ERR_NVM;
4224	} else {
4225		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4226			return -E1000_ERR_NVM;
4227	}
4228
4229	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4230			     hw->nvm.flash_base_addr);
4231
4232	do {
4233		udelay(1);
4234		/* Steps */
4235		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4236		if (ret_val)
4237			break;
4238		/* In SPT, This register is in Lan memory space, not
4239		 * flash.  Therefore, only 32 bit access is supported
4240		 */
4241		if (hw->mac.type >= e1000_pch_spt)
4242			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4243		else
4244			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4245
 
4246		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4247		hsflctl.hsf_ctrl.fldbcount = size - 1;
4248		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4249		/* In SPT, This register is in Lan memory space,
4250		 * not flash.  Therefore, only 32 bit access is
4251		 * supported
4252		 */
4253		if (hw->mac.type >= e1000_pch_spt)
4254			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4255		else
4256			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4257
4258		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4259
4260		if (size == 1)
4261			flash_data = (u32)data & 0x00FF;
4262		else
4263			flash_data = (u32)data;
4264
4265		ew32flash(ICH_FLASH_FDATA0, flash_data);
4266
4267		/* check if FCERR is set to 1 , if set to 1, clear it
 
4268		 * and try the whole sequence a few more times else done
4269		 */
4270		ret_val =
4271		    e1000_flash_cycle_ich8lan(hw,
4272					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4273		if (!ret_val)
4274			break;
4275
4276		/* If we're here, then things are most likely
 
4277		 * completely hosed, but if the error condition
4278		 * is detected, it won't hurt to give it another
4279		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4280		 */
4281		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4282		if (hsfsts.hsf_status.flcerr)
4283			/* Repeat for some time before giving up. */
4284			continue;
4285		if (!hsfsts.hsf_status.flcdone) {
4286			e_dbg("Timeout error - flash cycle did not complete.\n");
4287			break;
4288		}
4289	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4290
4291	return ret_val;
4292}
4293
4294/**
4295*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4296*  @hw: pointer to the HW structure
4297*  @offset: The offset (in bytes) of the dwords to read.
4298*  @data: The 4 bytes to write to the NVM.
4299*
4300*  Writes one/two/four bytes to the NVM using the flash access registers.
4301**/
4302static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4303					    u32 data)
4304{
4305	union ich8_hws_flash_status hsfsts;
4306	union ich8_hws_flash_ctrl hsflctl;
4307	u32 flash_linear_addr;
4308	s32 ret_val;
4309	u8 count = 0;
4310
4311	if (hw->mac.type >= e1000_pch_spt) {
4312		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4313			return -E1000_ERR_NVM;
4314	}
4315	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4316			     hw->nvm.flash_base_addr);
4317	do {
4318		udelay(1);
4319		/* Steps */
4320		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4321		if (ret_val)
4322			break;
4323
4324		/* In SPT, This register is in Lan memory space, not
4325		 * flash.  Therefore, only 32 bit access is supported
4326		 */
4327		if (hw->mac.type >= e1000_pch_spt)
4328			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4329			    >> 16;
4330		else
4331			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4332
4333		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4334		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4335
4336		/* In SPT, This register is in Lan memory space,
4337		 * not flash.  Therefore, only 32 bit access is
4338		 * supported
4339		 */
4340		if (hw->mac.type >= e1000_pch_spt)
4341			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4342		else
4343			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4344
4345		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4346
4347		ew32flash(ICH_FLASH_FDATA0, data);
4348
4349		/* check if FCERR is set to 1 , if set to 1, clear it
4350		 * and try the whole sequence a few more times else done
4351		 */
4352		ret_val =
4353		   e1000_flash_cycle_ich8lan(hw,
4354					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4355
4356		if (!ret_val)
4357			break;
4358
4359		/* If we're here, then things are most likely
4360		 * completely hosed, but if the error condition
4361		 * is detected, it won't hurt to give it another
4362		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4363		 */
4364		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4365
4366		if (hsfsts.hsf_status.flcerr)
4367			/* Repeat for some time before giving up. */
4368			continue;
4369		if (!hsfsts.hsf_status.flcdone) {
4370			e_dbg("Timeout error - flash cycle did not complete.\n");
4371			break;
4372		}
4373	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4374
4375	return ret_val;
4376}
4377
4378/**
4379 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4380 *  @hw: pointer to the HW structure
4381 *  @offset: The index of the byte to read.
4382 *  @data: The byte to write to the NVM.
4383 *
4384 *  Writes a single byte to the NVM using the flash access registers.
4385 **/
4386static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4387					  u8 data)
4388{
4389	u16 word = (u16)data;
4390
4391	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4392}
4393
4394/**
4395*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4396*  @hw: pointer to the HW structure
4397*  @offset: The offset of the word to write.
4398*  @dword: The dword to write to the NVM.
4399*
4400*  Writes a single dword to the NVM using the flash access registers.
4401*  Goes through a retry algorithm before giving up.
4402**/
4403static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4404						 u32 offset, u32 dword)
4405{
4406	s32 ret_val;
4407	u16 program_retries;
4408
4409	/* Must convert word offset into bytes. */
4410	offset <<= 1;
4411	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4412
4413	if (!ret_val)
4414		return ret_val;
4415	for (program_retries = 0; program_retries < 100; program_retries++) {
4416		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4417		usleep_range(100, 200);
4418		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4419		if (!ret_val)
4420			break;
4421	}
4422	if (program_retries == 100)
4423		return -E1000_ERR_NVM;
4424
4425	return 0;
4426}
4427
4428/**
4429 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4430 *  @hw: pointer to the HW structure
4431 *  @offset: The offset of the byte to write.
4432 *  @byte: The byte to write to the NVM.
4433 *
4434 *  Writes a single byte to the NVM using the flash access registers.
4435 *  Goes through a retry algorithm before giving up.
4436 **/
4437static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4438						u32 offset, u8 byte)
4439{
4440	s32 ret_val;
4441	u16 program_retries;
4442
4443	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4444	if (!ret_val)
4445		return ret_val;
4446
4447	for (program_retries = 0; program_retries < 100; program_retries++) {
4448		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4449		usleep_range(100, 200);
4450		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4451		if (!ret_val)
4452			break;
4453	}
4454	if (program_retries == 100)
4455		return -E1000_ERR_NVM;
4456
4457	return 0;
4458}
4459
4460/**
4461 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4462 *  @hw: pointer to the HW structure
4463 *  @bank: 0 for first bank, 1 for second bank, etc.
4464 *
4465 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4466 *  bank N is 4096 * N + flash_reg_addr.
4467 **/
4468static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4469{
4470	struct e1000_nvm_info *nvm = &hw->nvm;
4471	union ich8_hws_flash_status hsfsts;
4472	union ich8_hws_flash_ctrl hsflctl;
4473	u32 flash_linear_addr;
4474	/* bank size is in 16bit words - adjust to bytes */
4475	u32 flash_bank_size = nvm->flash_bank_size * 2;
4476	s32 ret_val;
4477	s32 count = 0;
4478	s32 j, iteration, sector_size;
4479
4480	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4481
4482	/* Determine HW Sector size: Read BERASE bits of hw flash status
 
4483	 * register
4484	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4485	 *     consecutive sectors.  The start index for the nth Hw sector
4486	 *     can be calculated as = bank * 4096 + n * 256
4487	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4488	 *     The start index for the nth Hw sector can be calculated
4489	 *     as = bank * 4096
4490	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4491	 *     (ich9 only, otherwise error condition)
4492	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4493	 */
4494	switch (hsfsts.hsf_status.berasesz) {
4495	case 0:
4496		/* Hw sector size 256 */
4497		sector_size = ICH_FLASH_SEG_SIZE_256;
4498		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4499		break;
4500	case 1:
4501		sector_size = ICH_FLASH_SEG_SIZE_4K;
4502		iteration = 1;
4503		break;
4504	case 2:
4505		sector_size = ICH_FLASH_SEG_SIZE_8K;
4506		iteration = 1;
4507		break;
4508	case 3:
4509		sector_size = ICH_FLASH_SEG_SIZE_64K;
4510		iteration = 1;
4511		break;
4512	default:
4513		return -E1000_ERR_NVM;
4514	}
4515
4516	/* Start with the base address, then add the sector offset. */
4517	flash_linear_addr = hw->nvm.flash_base_addr;
4518	flash_linear_addr += (bank) ? flash_bank_size : 0;
4519
4520	for (j = 0; j < iteration; j++) {
4521		do {
4522			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4523
4524			/* Steps */
4525			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4526			if (ret_val)
4527				return ret_val;
4528
4529			/* Write a value 11 (block Erase) in Flash
 
4530			 * Cycle field in hw flash control
4531			 */
4532			if (hw->mac.type >= e1000_pch_spt)
4533				hsflctl.regval =
4534				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4535			else
4536				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4537
4538			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4539			if (hw->mac.type >= e1000_pch_spt)
4540				ew32flash(ICH_FLASH_HSFSTS,
4541					  hsflctl.regval << 16);
4542			else
4543				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4544
4545			/* Write the last 24 bits of an index within the
 
4546			 * block into Flash Linear address field in Flash
4547			 * Address.
4548			 */
4549			flash_linear_addr += (j * sector_size);
4550			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4551
4552			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
 
4553			if (!ret_val)
4554				break;
4555
4556			/* Check if FCERR is set to 1.  If 1,
 
4557			 * clear it and try the whole sequence
4558			 * a few more times else Done
4559			 */
4560			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4561			if (hsfsts.hsf_status.flcerr)
4562				/* repeat for some time before giving up */
4563				continue;
4564			else if (!hsfsts.hsf_status.flcdone)
4565				return ret_val;
4566		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4567	}
4568
4569	return 0;
4570}
4571
4572/**
4573 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4574 *  @hw: pointer to the HW structure
4575 *  @data: Pointer to the LED settings
4576 *
4577 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4578 *  settings is all 0's or F's, set the LED default to a valid LED default
4579 *  setting.
4580 **/
4581static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4582{
4583	s32 ret_val;
4584
4585	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4586	if (ret_val) {
4587		e_dbg("NVM Read Error\n");
4588		return ret_val;
4589	}
4590
4591	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
 
4592		*data = ID_LED_DEFAULT_ICH8LAN;
4593
4594	return 0;
4595}
4596
4597/**
4598 *  e1000_id_led_init_pchlan - store LED configurations
4599 *  @hw: pointer to the HW structure
4600 *
4601 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4602 *  the PHY LED configuration register.
4603 *
4604 *  PCH also does not have an "always on" or "always off" mode which
4605 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4606 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4607 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4608 *  link based on logic in e1000_led_[on|off]_pchlan().
4609 **/
4610static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4611{
4612	struct e1000_mac_info *mac = &hw->mac;
4613	s32 ret_val;
4614	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4615	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4616	u16 data, i, temp, shift;
4617
4618	/* Get default ID LED modes */
4619	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4620	if (ret_val)
4621		return ret_val;
4622
4623	mac->ledctl_default = er32(LEDCTL);
4624	mac->ledctl_mode1 = mac->ledctl_default;
4625	mac->ledctl_mode2 = mac->ledctl_default;
4626
4627	for (i = 0; i < 4; i++) {
4628		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4629		shift = (i * 5);
4630		switch (temp) {
4631		case ID_LED_ON1_DEF2:
4632		case ID_LED_ON1_ON2:
4633		case ID_LED_ON1_OFF2:
4634			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4635			mac->ledctl_mode1 |= (ledctl_on << shift);
4636			break;
4637		case ID_LED_OFF1_DEF2:
4638		case ID_LED_OFF1_ON2:
4639		case ID_LED_OFF1_OFF2:
4640			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4641			mac->ledctl_mode1 |= (ledctl_off << shift);
4642			break;
4643		default:
4644			/* Do nothing */
4645			break;
4646		}
4647		switch (temp) {
4648		case ID_LED_DEF1_ON2:
4649		case ID_LED_ON1_ON2:
4650		case ID_LED_OFF1_ON2:
4651			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4652			mac->ledctl_mode2 |= (ledctl_on << shift);
4653			break;
4654		case ID_LED_DEF1_OFF2:
4655		case ID_LED_ON1_OFF2:
4656		case ID_LED_OFF1_OFF2:
4657			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4658			mac->ledctl_mode2 |= (ledctl_off << shift);
4659			break;
4660		default:
4661			/* Do nothing */
4662			break;
4663		}
4664	}
4665
4666	return 0;
4667}
4668
4669/**
4670 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4671 *  @hw: pointer to the HW structure
4672 *
4673 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4674 *  register, so the bus width is hard coded.
4675 **/
4676static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4677{
4678	struct e1000_bus_info *bus = &hw->bus;
4679	s32 ret_val;
4680
4681	ret_val = e1000e_get_bus_info_pcie(hw);
4682
4683	/* ICH devices are "PCI Express"-ish.  They have
 
4684	 * a configuration space, but do not contain
4685	 * PCI Express Capability registers, so bus width
4686	 * must be hardcoded.
4687	 */
4688	if (bus->width == e1000_bus_width_unknown)
4689		bus->width = e1000_bus_width_pcie_x1;
4690
4691	return ret_val;
4692}
4693
4694/**
4695 *  e1000_reset_hw_ich8lan - Reset the hardware
4696 *  @hw: pointer to the HW structure
4697 *
4698 *  Does a full reset of the hardware which includes a reset of the PHY and
4699 *  MAC.
4700 **/
4701static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4702{
4703	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4704	u16 kum_cfg;
4705	u32 ctrl, reg;
4706	s32 ret_val;
4707
4708	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 
4709	 * on the last TLP read/write transaction when MAC is reset.
4710	 */
4711	ret_val = e1000e_disable_pcie_master(hw);
4712	if (ret_val)
4713		e_dbg("PCI-E Master disable polling has failed.\n");
4714
4715	e_dbg("Masking off all interrupts\n");
4716	ew32(IMC, 0xffffffff);
4717
4718	/* Disable the Transmit and Receive units.  Then delay to allow
 
4719	 * any pending transactions to complete before we hit the MAC
4720	 * with the global reset.
4721	 */
4722	ew32(RCTL, 0);
4723	ew32(TCTL, E1000_TCTL_PSP);
4724	e1e_flush();
4725
4726	usleep_range(10000, 11000);
4727
4728	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4729	if (hw->mac.type == e1000_ich8lan) {
4730		/* Set Tx and Rx buffer allocation to 8k apiece. */
4731		ew32(PBA, E1000_PBA_8K);
4732		/* Set Packet Buffer Size to 16k. */
4733		ew32(PBS, E1000_PBS_16K);
4734	}
4735
4736	if (hw->mac.type == e1000_pchlan) {
4737		/* Save the NVM K1 bit setting */
4738		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4739		if (ret_val)
4740			return ret_val;
4741
4742		if (kum_cfg & E1000_NVM_K1_ENABLE)
4743			dev_spec->nvm_k1_enabled = true;
4744		else
4745			dev_spec->nvm_k1_enabled = false;
4746	}
4747
4748	ctrl = er32(CTRL);
4749
4750	if (!hw->phy.ops.check_reset_block(hw)) {
4751		/* Full-chip reset requires MAC and PHY reset at the same
 
4752		 * time to make sure the interface between MAC and the
4753		 * external PHY is reset.
4754		 */
4755		ctrl |= E1000_CTRL_PHY_RST;
4756
4757		/* Gate automatic PHY configuration by hardware on
 
4758		 * non-managed 82579
4759		 */
4760		if ((hw->mac.type == e1000_pch2lan) &&
4761		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4762			e1000_gate_hw_phy_config_ich8lan(hw, true);
4763	}
4764	ret_val = e1000_acquire_swflag_ich8lan(hw);
4765	e_dbg("Issuing a global reset to ich8lan\n");
4766	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4767	/* cannot issue a flush here because it hangs the hardware */
4768	msleep(20);
4769
4770	/* Set Phy Config Counter to 50msec */
4771	if (hw->mac.type == e1000_pch2lan) {
4772		reg = er32(FEXTNVM3);
4773		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4774		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4775		ew32(FEXTNVM3, reg);
4776	}
4777
4778	if (!ret_val)
4779		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4780
4781	if (ctrl & E1000_CTRL_PHY_RST) {
4782		ret_val = hw->phy.ops.get_cfg_done(hw);
4783		if (ret_val)
4784			return ret_val;
4785
4786		ret_val = e1000_post_phy_reset_ich8lan(hw);
4787		if (ret_val)
4788			return ret_val;
4789	}
4790
4791	/* For PCH, this write will make sure that any noise
 
4792	 * will be detected as a CRC error and be dropped rather than show up
4793	 * as a bad packet to the DMA engine.
4794	 */
4795	if (hw->mac.type == e1000_pchlan)
4796		ew32(CRC_OFFSET, 0x65656565);
4797
4798	ew32(IMC, 0xffffffff);
4799	er32(ICR);
4800
4801	reg = er32(KABGTXD);
4802	reg |= E1000_KABGTXD_BGSQLBIAS;
4803	ew32(KABGTXD, reg);
4804
4805	return 0;
4806}
4807
4808/**
4809 *  e1000_init_hw_ich8lan - Initialize the hardware
4810 *  @hw: pointer to the HW structure
4811 *
4812 *  Prepares the hardware for transmit and receive by doing the following:
4813 *   - initialize hardware bits
4814 *   - initialize LED identification
4815 *   - setup receive address registers
4816 *   - setup flow control
4817 *   - setup transmit descriptors
4818 *   - clear statistics
4819 **/
4820static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4821{
4822	struct e1000_mac_info *mac = &hw->mac;
4823	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4824	s32 ret_val;
4825	u16 i;
4826
4827	e1000_initialize_hw_bits_ich8lan(hw);
4828
4829	/* Initialize identification LED */
4830	ret_val = mac->ops.id_led_init(hw);
4831	/* An error is not fatal and we should not stop init due to this */
4832	if (ret_val)
4833		e_dbg("Error initializing identification LED\n");
 
4834
4835	/* Setup the receive address. */
4836	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4837
4838	/* Zero out the Multicast HASH table */
4839	e_dbg("Zeroing the MTA\n");
4840	for (i = 0; i < mac->mta_reg_count; i++)
4841		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4842
4843	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
 
4844	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4845	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4846	 */
4847	if (hw->phy.type == e1000_phy_82578) {
4848		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4849		i &= ~BM_WUC_HOST_WU_BIT;
4850		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4851		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4852		if (ret_val)
4853			return ret_val;
4854	}
4855
4856	/* Setup link and flow control */
4857	ret_val = mac->ops.setup_link(hw);
4858
4859	/* Set the transmit descriptor write-back policy for both queues */
4860	txdctl = er32(TXDCTL(0));
4861	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4862		  E1000_TXDCTL_FULL_TX_DESC_WB);
4863	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4864		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4865	ew32(TXDCTL(0), txdctl);
4866	txdctl = er32(TXDCTL(1));
4867	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4868		  E1000_TXDCTL_FULL_TX_DESC_WB);
4869	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4870		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4871	ew32(TXDCTL(1), txdctl);
4872
4873	/* ICH8 has opposite polarity of no_snoop bits.
 
4874	 * By default, we should use snoop behavior.
4875	 */
4876	if (mac->type == e1000_ich8lan)
4877		snoop = PCIE_ICH8_SNOOP_ALL;
4878	else
4879		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4880	e1000e_set_pcie_no_snoop(hw, snoop);
4881
4882	/* Enable workaround for packet loss issue on TGP PCH
4883	 * Do not gate DMA clock from the modPHY block
4884	 */
4885	if (mac->type >= e1000_pch_tgp) {
4886		fflt_dbg = er32(FFLT_DBG);
4887		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4888		ew32(FFLT_DBG, fflt_dbg);
4889	}
4890
4891	ctrl_ext = er32(CTRL_EXT);
4892	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4893	ew32(CTRL_EXT, ctrl_ext);
4894
4895	/* Clear all of the statistics registers (clear on read).  It is
 
4896	 * important that we do this after we have tried to establish link
4897	 * because the symbol error count will increment wildly if there
4898	 * is no link.
4899	 */
4900	e1000_clear_hw_cntrs_ich8lan(hw);
4901
4902	return ret_val;
4903}
4904
4905/**
4906 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4907 *  @hw: pointer to the HW structure
4908 *
4909 *  Sets/Clears required hardware bits necessary for correctly setting up the
4910 *  hardware for transmit and receive.
4911 **/
4912static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4913{
4914	u32 reg;
4915
4916	/* Extended Device Control */
4917	reg = er32(CTRL_EXT);
4918	reg |= BIT(22);
4919	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4920	if (hw->mac.type >= e1000_pchlan)
4921		reg |= E1000_CTRL_EXT_PHYPDEN;
4922	ew32(CTRL_EXT, reg);
4923
4924	/* Transmit Descriptor Control 0 */
4925	reg = er32(TXDCTL(0));
4926	reg |= BIT(22);
4927	ew32(TXDCTL(0), reg);
4928
4929	/* Transmit Descriptor Control 1 */
4930	reg = er32(TXDCTL(1));
4931	reg |= BIT(22);
4932	ew32(TXDCTL(1), reg);
4933
4934	/* Transmit Arbitration Control 0 */
4935	reg = er32(TARC(0));
4936	if (hw->mac.type == e1000_ich8lan)
4937		reg |= BIT(28) | BIT(29);
4938	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4939	ew32(TARC(0), reg);
4940
4941	/* Transmit Arbitration Control 1 */
4942	reg = er32(TARC(1));
4943	if (er32(TCTL) & E1000_TCTL_MULR)
4944		reg &= ~BIT(28);
4945	else
4946		reg |= BIT(28);
4947	reg |= BIT(24) | BIT(26) | BIT(30);
4948	ew32(TARC(1), reg);
4949
4950	/* Device Status */
4951	if (hw->mac.type == e1000_ich8lan) {
4952		reg = er32(STATUS);
4953		reg &= ~BIT(31);
4954		ew32(STATUS, reg);
4955	}
4956
4957	/* work-around descriptor data corruption issue during nfs v2 udp
 
4958	 * traffic, just disable the nfs filtering capability
4959	 */
4960	reg = er32(RFCTL);
4961	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4962
4963	/* Disable IPv6 extension header parsing because some malformed
 
4964	 * IPv6 headers can hang the Rx.
4965	 */
4966	if (hw->mac.type == e1000_ich8lan)
4967		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4968	ew32(RFCTL, reg);
4969
4970	/* Enable ECC on Lynxpoint */
4971	if (hw->mac.type >= e1000_pch_lpt) {
4972		reg = er32(PBECCSTS);
4973		reg |= E1000_PBECCSTS_ECC_ENABLE;
4974		ew32(PBECCSTS, reg);
4975
4976		reg = er32(CTRL);
4977		reg |= E1000_CTRL_MEHE;
4978		ew32(CTRL, reg);
4979	}
4980}
4981
4982/**
4983 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4984 *  @hw: pointer to the HW structure
4985 *
4986 *  Determines which flow control settings to use, then configures flow
4987 *  control.  Calls the appropriate media-specific link configuration
4988 *  function.  Assuming the adapter has a valid link partner, a valid link
4989 *  should be established.  Assumes the hardware has previously been reset
4990 *  and the transmitter and receiver are not enabled.
4991 **/
4992static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4993{
4994	s32 ret_val;
4995
4996	if (hw->phy.ops.check_reset_block(hw))
4997		return 0;
4998
4999	/* ICH parts do not have a word in the NVM to determine
 
5000	 * the default flow control setting, so we explicitly
5001	 * set it to full.
5002	 */
5003	if (hw->fc.requested_mode == e1000_fc_default) {
5004		/* Workaround h/w hang when Tx flow control enabled */
5005		if (hw->mac.type == e1000_pchlan)
5006			hw->fc.requested_mode = e1000_fc_rx_pause;
5007		else
5008			hw->fc.requested_mode = e1000_fc_full;
5009	}
5010
5011	/* Save off the requested flow control mode for use later.  Depending
 
5012	 * on the link partner's capabilities, we may or may not use this mode.
5013	 */
5014	hw->fc.current_mode = hw->fc.requested_mode;
5015
5016	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 
5017
5018	/* Continue to configure the copper link. */
5019	ret_val = hw->mac.ops.setup_physical_interface(hw);
5020	if (ret_val)
5021		return ret_val;
5022
5023	ew32(FCTTV, hw->fc.pause_time);
5024	if ((hw->phy.type == e1000_phy_82578) ||
5025	    (hw->phy.type == e1000_phy_82579) ||
5026	    (hw->phy.type == e1000_phy_i217) ||
5027	    (hw->phy.type == e1000_phy_82577)) {
5028		ew32(FCRTV_PCH, hw->fc.refresh_time);
5029
5030		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5031				   hw->fc.pause_time);
5032		if (ret_val)
5033			return ret_val;
5034	}
5035
5036	return e1000e_set_fc_watermarks(hw);
5037}
5038
5039/**
5040 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5041 *  @hw: pointer to the HW structure
5042 *
5043 *  Configures the kumeran interface to the PHY to wait the appropriate time
5044 *  when polling the PHY, then call the generic setup_copper_link to finish
5045 *  configuring the copper link.
5046 **/
5047static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5048{
5049	u32 ctrl;
5050	s32 ret_val;
5051	u16 reg_data;
5052
5053	ctrl = er32(CTRL);
5054	ctrl |= E1000_CTRL_SLU;
5055	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5056	ew32(CTRL, ctrl);
5057
5058	/* Set the mac to wait the maximum time between each iteration
 
5059	 * and increase the max iterations when polling the phy;
5060	 * this fixes erroneous timeouts at 10Mbps.
5061	 */
5062	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5063	if (ret_val)
5064		return ret_val;
5065	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5066				       &reg_data);
5067	if (ret_val)
5068		return ret_val;
5069	reg_data |= 0x3F;
5070	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5071					reg_data);
5072	if (ret_val)
5073		return ret_val;
5074
5075	switch (hw->phy.type) {
5076	case e1000_phy_igp_3:
5077		ret_val = e1000e_copper_link_setup_igp(hw);
5078		if (ret_val)
5079			return ret_val;
5080		break;
5081	case e1000_phy_bm:
5082	case e1000_phy_82578:
5083		ret_val = e1000e_copper_link_setup_m88(hw);
5084		if (ret_val)
5085			return ret_val;
5086		break;
5087	case e1000_phy_82577:
5088	case e1000_phy_82579:
 
5089		ret_val = e1000_copper_link_setup_82577(hw);
5090		if (ret_val)
5091			return ret_val;
5092		break;
5093	case e1000_phy_ife:
5094		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5095		if (ret_val)
5096			return ret_val;
5097
5098		reg_data &= ~IFE_PMC_AUTO_MDIX;
5099
5100		switch (hw->phy.mdix) {
5101		case 1:
5102			reg_data &= ~IFE_PMC_FORCE_MDIX;
5103			break;
5104		case 2:
5105			reg_data |= IFE_PMC_FORCE_MDIX;
5106			break;
5107		case 0:
5108		default:
5109			reg_data |= IFE_PMC_AUTO_MDIX;
5110			break;
5111		}
5112		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5113		if (ret_val)
5114			return ret_val;
5115		break;
5116	default:
5117		break;
5118	}
5119
5120	return e1000e_setup_copper_link(hw);
5121}
5122
5123/**
5124 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5125 *  @hw: pointer to the HW structure
5126 *
5127 *  Calls the PHY specific link setup function and then calls the
5128 *  generic setup_copper_link to finish configuring the link for
5129 *  Lynxpoint PCH devices
5130 **/
5131static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5132{
5133	u32 ctrl;
5134	s32 ret_val;
5135
5136	ctrl = er32(CTRL);
5137	ctrl |= E1000_CTRL_SLU;
5138	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5139	ew32(CTRL, ctrl);
5140
5141	ret_val = e1000_copper_link_setup_82577(hw);
5142	if (ret_val)
5143		return ret_val;
5144
5145	return e1000e_setup_copper_link(hw);
5146}
5147
5148/**
5149 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5150 *  @hw: pointer to the HW structure
5151 *  @speed: pointer to store current link speed
5152 *  @duplex: pointer to store the current link duplex
5153 *
5154 *  Calls the generic get_speed_and_duplex to retrieve the current link
5155 *  information and then calls the Kumeran lock loss workaround for links at
5156 *  gigabit speeds.
5157 **/
5158static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5159					  u16 *duplex)
5160{
5161	s32 ret_val;
5162
5163	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5164	if (ret_val)
5165		return ret_val;
5166
5167	if ((hw->mac.type == e1000_ich8lan) &&
5168	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
 
5169		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5170	}
5171
5172	return ret_val;
5173}
5174
5175/**
5176 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5177 *  @hw: pointer to the HW structure
5178 *
5179 *  Work-around for 82566 Kumeran PCS lock loss:
5180 *  On link status change (i.e. PCI reset, speed change) and link is up and
5181 *  speed is gigabit-
5182 *    0) if workaround is optionally disabled do nothing
5183 *    1) wait 1ms for Kumeran link to come up
5184 *    2) check Kumeran Diagnostic register PCS lock loss bit
5185 *    3) if not set the link is locked (all is good), otherwise...
5186 *    4) reset the PHY
5187 *    5) repeat up to 10 times
5188 *  Note: this is only called for IGP3 copper when speed is 1gb.
5189 **/
5190static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5191{
5192	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5193	u32 phy_ctrl;
5194	s32 ret_val;
5195	u16 i, data;
5196	bool link;
5197
5198	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5199		return 0;
5200
5201	/* Make sure link is up before proceeding.  If not just return.
 
5202	 * Attempting this while link is negotiating fouled up link
5203	 * stability
5204	 */
5205	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5206	if (!link)
5207		return 0;
5208
5209	for (i = 0; i < 10; i++) {
5210		/* read once to clear */
5211		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5212		if (ret_val)
5213			return ret_val;
5214		/* and again to get new status */
5215		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5216		if (ret_val)
5217			return ret_val;
5218
5219		/* check for PCS lock */
5220		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5221			return 0;
5222
5223		/* Issue PHY reset */
5224		e1000_phy_hw_reset(hw);
5225		mdelay(5);
5226	}
5227	/* Disable GigE link negotiation */
5228	phy_ctrl = er32(PHY_CTRL);
5229	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5230		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5231	ew32(PHY_CTRL, phy_ctrl);
5232
5233	/* Call gig speed drop workaround on Gig disable before accessing
 
5234	 * any PHY registers
5235	 */
5236	e1000e_gig_downshift_workaround_ich8lan(hw);
5237
5238	/* unable to acquire PCS lock */
5239	return -E1000_ERR_PHY;
5240}
5241
5242/**
5243 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5244 *  @hw: pointer to the HW structure
5245 *  @state: boolean value used to set the current Kumeran workaround state
5246 *
5247 *  If ICH8, set the current Kumeran workaround state (enabled - true
5248 *  /disabled - false).
5249 **/
5250void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5251						  bool state)
5252{
5253	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5254
5255	if (hw->mac.type != e1000_ich8lan) {
5256		e_dbg("Workaround applies to ICH8 only.\n");
5257		return;
5258	}
5259
5260	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5261}
5262
5263/**
5264 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5265 *  @hw: pointer to the HW structure
5266 *
5267 *  Workaround for 82566 power-down on D3 entry:
5268 *    1) disable gigabit link
5269 *    2) write VR power-down enable
5270 *    3) read it back
5271 *  Continue if successful, else issue LCD reset and repeat
5272 **/
5273void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5274{
5275	u32 reg;
5276	u16 data;
5277	u8 retry = 0;
5278
5279	if (hw->phy.type != e1000_phy_igp_3)
5280		return;
5281
5282	/* Try the workaround twice (if needed) */
5283	do {
5284		/* Disable link */
5285		reg = er32(PHY_CTRL);
5286		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5287			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5288		ew32(PHY_CTRL, reg);
5289
5290		/* Call gig speed drop workaround on Gig disable before
 
5291		 * accessing any PHY registers
5292		 */
5293		if (hw->mac.type == e1000_ich8lan)
5294			e1000e_gig_downshift_workaround_ich8lan(hw);
5295
5296		/* Write VR power-down enable */
5297		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5298		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5299		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5300
5301		/* Read it back and test */
5302		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5303		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5304		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5305			break;
5306
5307		/* Issue PHY reset and repeat at most one more time */
5308		reg = er32(CTRL);
5309		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5310		retry++;
5311	} while (retry);
5312}
5313
5314/**
5315 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5316 *  @hw: pointer to the HW structure
5317 *
5318 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5319 *  LPLU, Gig disable, MDIC PHY reset):
5320 *    1) Set Kumeran Near-end loopback
5321 *    2) Clear Kumeran Near-end loopback
5322 *  Should only be called for ICH8[m] devices with any 1G Phy.
5323 **/
5324void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5325{
5326	s32 ret_val;
5327	u16 reg_data;
5328
5329	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5330		return;
5331
5332	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5333				       &reg_data);
5334	if (ret_val)
5335		return;
5336	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5337	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5338					reg_data);
5339	if (ret_val)
5340		return;
5341	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5342	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
 
5343}
5344
5345/**
5346 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5347 *  @hw: pointer to the HW structure
5348 *
5349 *  During S0 to Sx transition, it is possible the link remains at gig
5350 *  instead of negotiating to a lower speed.  Before going to Sx, set
5351 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5352 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5353 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5354 *  needs to be written.
5355 *  Parts that support (and are linked to a partner which support) EEE in
5356 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5357 *  than 10Mbps w/o EEE.
5358 **/
5359void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5360{
5361	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5362	u32 phy_ctrl;
5363	s32 ret_val;
5364
5365	phy_ctrl = er32(PHY_CTRL);
5366	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5367
5368	if (hw->phy.type == e1000_phy_i217) {
5369		u16 phy_reg, device_id = hw->adapter->pdev->device;
5370
5371		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5372		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5373		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5374		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5375		    (hw->mac.type >= e1000_pch_spt)) {
5376			u32 fextnvm6 = er32(FEXTNVM6);
5377
5378			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5379		}
5380
5381		ret_val = hw->phy.ops.acquire(hw);
5382		if (ret_val)
5383			goto out;
5384
5385		if (!dev_spec->eee_disable) {
5386			u16 eee_advert;
5387
5388			ret_val =
5389			    e1000_read_emi_reg_locked(hw,
5390						      I217_EEE_ADVERTISEMENT,
5391						      &eee_advert);
5392			if (ret_val)
5393				goto release;
 
5394
5395			/* Disable LPLU if both link partners support 100BaseT
 
5396			 * EEE and 100Full is advertised on both ends of the
5397			 * link, and enable Auto Enable LPI since there will
5398			 * be no driver to enable LPI while in Sx.
5399			 */
5400			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5401			    (dev_spec->eee_lp_ability &
5402			     I82579_EEE_100_SUPPORTED) &&
5403			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5404				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5405					      E1000_PHY_CTRL_NOND0A_LPLU);
5406
5407				/* Set Auto Enable LPI after link up */
5408				e1e_rphy_locked(hw,
5409						I217_LPI_GPIO_CTRL, &phy_reg);
5410				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5411				e1e_wphy_locked(hw,
5412						I217_LPI_GPIO_CTRL, phy_reg);
5413			}
5414		}
5415
5416		/* For i217 Intel Rapid Start Technology support,
 
5417		 * when the system is going into Sx and no manageability engine
5418		 * is present, the driver must configure proxy to reset only on
5419		 * power good.  LPI (Low Power Idle) state must also reset only
5420		 * on power good, as well as the MTA (Multicast table array).
5421		 * The SMBus release must also be disabled on LCD reset.
5422		 */
5423		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 
5424			/* Enable proxy to reset only on power good. */
5425			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5426			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5427			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5428
5429			/* Set bit enable LPI (EEE) to reset only on
 
5430			 * power good.
5431			 */
5432			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5433			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5434			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5435
5436			/* Disable the SMB release on LCD reset. */
5437			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5438			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5439			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5440		}
5441
5442		/* Enable MTA to reset for Intel Rapid Start Technology
 
5443		 * Support
5444		 */
5445		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5446		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5447		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5448
5449release:
5450		hw->phy.ops.release(hw);
5451	}
5452out:
5453	ew32(PHY_CTRL, phy_ctrl);
5454
5455	if (hw->mac.type == e1000_ich8lan)
5456		e1000e_gig_downshift_workaround_ich8lan(hw);
5457
5458	if (hw->mac.type >= e1000_pchlan) {
5459		e1000_oem_bits_config_ich8lan(hw, false);
5460
5461		/* Reset PHY to activate OEM bits on 82577/8 */
5462		if (hw->mac.type == e1000_pchlan)
5463			e1000e_phy_hw_reset_generic(hw);
5464
5465		ret_val = hw->phy.ops.acquire(hw);
5466		if (ret_val)
5467			return;
5468		e1000_write_smbus_addr(hw);
5469		hw->phy.ops.release(hw);
5470	}
5471}
5472
5473/**
5474 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5475 *  @hw: pointer to the HW structure
5476 *
5477 *  During Sx to S0 transitions on non-managed devices or managed devices
5478 *  on which PHY resets are not blocked, if the PHY registers cannot be
5479 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5480 *  the PHY.
5481 *  On i217, setup Intel Rapid Start Technology.
5482 **/
5483void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5484{
5485	s32 ret_val;
5486
5487	if (hw->mac.type < e1000_pch2lan)
5488		return;
5489
5490	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5491	if (ret_val) {
5492		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5493		return;
5494	}
5495
5496	/* For i217 Intel Rapid Start Technology support when the system
 
5497	 * is transitioning from Sx and no manageability engine is present
5498	 * configure SMBus to restore on reset, disable proxy, and enable
5499	 * the reset on MTA (Multicast table array).
5500	 */
5501	if (hw->phy.type == e1000_phy_i217) {
5502		u16 phy_reg;
5503
5504		ret_val = hw->phy.ops.acquire(hw);
5505		if (ret_val) {
5506			e_dbg("Failed to setup iRST\n");
5507			return;
5508		}
5509
5510		/* Clear Auto Enable LPI after link up */
5511		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5512		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5513		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5514
5515		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5516			/* Restore clear on SMB if no manageability engine
 
5517			 * is present
5518			 */
5519			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5520			if (ret_val)
5521				goto release;
5522			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5523			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5524
5525			/* Disable Proxy */
5526			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5527		}
5528		/* Enable reset on MTA */
5529		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5530		if (ret_val)
5531			goto release;
5532		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5533		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5534release:
5535		if (ret_val)
5536			e_dbg("Error %d in resume workarounds\n", ret_val);
5537		hw->phy.ops.release(hw);
5538	}
5539}
5540
5541/**
5542 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5543 *  @hw: pointer to the HW structure
5544 *
5545 *  Return the LED back to the default configuration.
5546 **/
5547static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5548{
5549	if (hw->phy.type == e1000_phy_ife)
5550		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5551
5552	ew32(LEDCTL, hw->mac.ledctl_default);
5553	return 0;
5554}
5555
5556/**
5557 *  e1000_led_on_ich8lan - Turn LEDs on
5558 *  @hw: pointer to the HW structure
5559 *
5560 *  Turn on the LEDs.
5561 **/
5562static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5563{
5564	if (hw->phy.type == e1000_phy_ife)
5565		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5566				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5567
5568	ew32(LEDCTL, hw->mac.ledctl_mode2);
5569	return 0;
5570}
5571
5572/**
5573 *  e1000_led_off_ich8lan - Turn LEDs off
5574 *  @hw: pointer to the HW structure
5575 *
5576 *  Turn off the LEDs.
5577 **/
5578static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5579{
5580	if (hw->phy.type == e1000_phy_ife)
5581		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5582				(IFE_PSCL_PROBE_MODE |
5583				 IFE_PSCL_PROBE_LEDS_OFF));
5584
5585	ew32(LEDCTL, hw->mac.ledctl_mode1);
5586	return 0;
5587}
5588
5589/**
5590 *  e1000_setup_led_pchlan - Configures SW controllable LED
5591 *  @hw: pointer to the HW structure
5592 *
5593 *  This prepares the SW controllable LED for use.
5594 **/
5595static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5596{
5597	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5598}
5599
5600/**
5601 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5602 *  @hw: pointer to the HW structure
5603 *
5604 *  Return the LED back to the default configuration.
5605 **/
5606static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5607{
5608	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5609}
5610
5611/**
5612 *  e1000_led_on_pchlan - Turn LEDs on
5613 *  @hw: pointer to the HW structure
5614 *
5615 *  Turn on the LEDs.
5616 **/
5617static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5618{
5619	u16 data = (u16)hw->mac.ledctl_mode2;
5620	u32 i, led;
5621
5622	/* If no link, then turn LED on by setting the invert bit
 
5623	 * for each LED that's mode is "link_up" in ledctl_mode2.
5624	 */
5625	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5626		for (i = 0; i < 3; i++) {
5627			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5628			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5629			    E1000_LEDCTL_MODE_LINK_UP)
5630				continue;
5631			if (led & E1000_PHY_LED0_IVRT)
5632				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5633			else
5634				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5635		}
5636	}
5637
5638	return e1e_wphy(hw, HV_LED_CONFIG, data);
5639}
5640
5641/**
5642 *  e1000_led_off_pchlan - Turn LEDs off
5643 *  @hw: pointer to the HW structure
5644 *
5645 *  Turn off the LEDs.
5646 **/
5647static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5648{
5649	u16 data = (u16)hw->mac.ledctl_mode1;
5650	u32 i, led;
5651
5652	/* If no link, then turn LED off by clearing the invert bit
 
5653	 * for each LED that's mode is "link_up" in ledctl_mode1.
5654	 */
5655	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5656		for (i = 0; i < 3; i++) {
5657			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5658			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5659			    E1000_LEDCTL_MODE_LINK_UP)
5660				continue;
5661			if (led & E1000_PHY_LED0_IVRT)
5662				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5663			else
5664				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5665		}
5666	}
5667
5668	return e1e_wphy(hw, HV_LED_CONFIG, data);
5669}
5670
5671/**
5672 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5673 *  @hw: pointer to the HW structure
5674 *
5675 *  Read appropriate register for the config done bit for completion status
5676 *  and configure the PHY through s/w for EEPROM-less parts.
5677 *
5678 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5679 *  config done bit, so only an error is logged and continues.  If we were
5680 *  to return with error, EEPROM-less silicon would not be able to be reset
5681 *  or change link.
5682 **/
5683static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5684{
5685	s32 ret_val = 0;
5686	u32 bank = 0;
5687	u32 status;
5688
5689	e1000e_get_cfg_done_generic(hw);
5690
5691	/* Wait for indication from h/w that it has completed basic config */
5692	if (hw->mac.type >= e1000_ich10lan) {
5693		e1000_lan_init_done_ich8lan(hw);
5694	} else {
5695		ret_val = e1000e_get_auto_rd_done(hw);
5696		if (ret_val) {
5697			/* When auto config read does not complete, do not
 
5698			 * return with an error. This can happen in situations
5699			 * where there is no eeprom and prevents getting link.
5700			 */
5701			e_dbg("Auto Read Done did not complete\n");
5702			ret_val = 0;
5703		}
5704	}
5705
5706	/* Clear PHY Reset Asserted bit */
5707	status = er32(STATUS);
5708	if (status & E1000_STATUS_PHYRA)
5709		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5710	else
5711		e_dbg("PHY Reset Asserted not set - needs delay\n");
5712
5713	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5714	if (hw->mac.type <= e1000_ich9lan) {
5715		if (!(er32(EECD) & E1000_EECD_PRES) &&
5716		    (hw->phy.type == e1000_phy_igp_3)) {
5717			e1000e_phy_init_script_igp3(hw);
5718		}
5719	} else {
5720		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5721			/* Maybe we should do a basic PHY config */
5722			e_dbg("EEPROM not present\n");
5723			ret_val = -E1000_ERR_CONFIG;
5724		}
5725	}
5726
5727	return ret_val;
5728}
5729
5730/**
5731 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5732 * @hw: pointer to the HW structure
5733 *
5734 * In the case of a PHY power down to save power, or to turn off link during a
5735 * driver unload, or wake on lan is not enabled, remove the link.
5736 **/
5737static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5738{
5739	/* If the management interface is not enabled, then power down */
5740	if (!(hw->mac.ops.check_mng_mode(hw) ||
5741	      hw->phy.ops.check_reset_block(hw)))
5742		e1000_power_down_phy_copper(hw);
5743}
5744
5745/**
5746 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5747 *  @hw: pointer to the HW structure
5748 *
5749 *  Clears hardware counters specific to the silicon family and calls
5750 *  clear_hw_cntrs_generic to clear all general purpose counters.
5751 **/
5752static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5753{
5754	u16 phy_data;
5755	s32 ret_val;
5756
5757	e1000e_clear_hw_cntrs_base(hw);
5758
5759	er32(ALGNERRC);
5760	er32(RXERRC);
5761	er32(TNCRS);
5762	er32(CEXTERR);
5763	er32(TSCTC);
5764	er32(TSCTFC);
5765
5766	er32(MGTPRC);
5767	er32(MGTPDC);
5768	er32(MGTPTC);
5769
5770	er32(IAC);
5771	er32(ICRXOC);
5772
5773	/* Clear PHY statistics registers */
5774	if ((hw->phy.type == e1000_phy_82578) ||
5775	    (hw->phy.type == e1000_phy_82579) ||
5776	    (hw->phy.type == e1000_phy_i217) ||
5777	    (hw->phy.type == e1000_phy_82577)) {
5778		ret_val = hw->phy.ops.acquire(hw);
5779		if (ret_val)
5780			return;
5781		ret_val = hw->phy.ops.set_page(hw,
5782					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5783		if (ret_val)
5784			goto release;
5785		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5786		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5787		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5788		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5789		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5790		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5791		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5792		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5793		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5794		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5795		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5796		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5797		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5798		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5799release:
5800		hw->phy.ops.release(hw);
5801	}
5802}
5803
5804static const struct e1000_mac_operations ich8_mac_ops = {
5805	/* check_mng_mode dependent on mac type */
5806	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5807	/* cleanup_led dependent on mac type */
5808	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5809	.get_bus_info		= e1000_get_bus_info_ich8lan,
5810	.set_lan_id		= e1000_set_lan_id_single_port,
5811	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5812	/* led_on dependent on mac type */
5813	/* led_off dependent on mac type */
5814	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5815	.reset_hw		= e1000_reset_hw_ich8lan,
5816	.init_hw		= e1000_init_hw_ich8lan,
5817	.setup_link		= e1000_setup_link_ich8lan,
5818	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5819	/* id_led_init dependent on mac type */
5820	.config_collision_dist	= e1000e_config_collision_dist_generic,
5821	.rar_set		= e1000e_rar_set_generic,
5822	.rar_get_count		= e1000e_rar_get_count_generic,
5823};
5824
5825static const struct e1000_phy_operations ich8_phy_ops = {
5826	.acquire		= e1000_acquire_swflag_ich8lan,
5827	.check_reset_block	= e1000_check_reset_block_ich8lan,
5828	.commit			= NULL,
5829	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5830	.get_cable_length	= e1000e_get_cable_length_igp_2,
5831	.read_reg		= e1000e_read_phy_reg_igp,
5832	.release		= e1000_release_swflag_ich8lan,
5833	.reset			= e1000_phy_hw_reset_ich8lan,
5834	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5835	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5836	.write_reg		= e1000e_write_phy_reg_igp,
5837};
5838
5839static const struct e1000_nvm_operations ich8_nvm_ops = {
5840	.acquire		= e1000_acquire_nvm_ich8lan,
5841	.read			= e1000_read_nvm_ich8lan,
5842	.release		= e1000_release_nvm_ich8lan,
5843	.reload			= e1000e_reload_nvm_generic,
5844	.update			= e1000_update_nvm_checksum_ich8lan,
5845	.valid_led_default	= e1000_valid_led_default_ich8lan,
5846	.validate		= e1000_validate_nvm_checksum_ich8lan,
5847	.write			= e1000_write_nvm_ich8lan,
5848};
5849
5850static const struct e1000_nvm_operations spt_nvm_ops = {
5851	.acquire		= e1000_acquire_nvm_ich8lan,
5852	.release		= e1000_release_nvm_ich8lan,
5853	.read			= e1000_read_nvm_spt,
5854	.update			= e1000_update_nvm_checksum_spt,
5855	.reload			= e1000e_reload_nvm_generic,
5856	.valid_led_default	= e1000_valid_led_default_ich8lan,
5857	.validate		= e1000_validate_nvm_checksum_ich8lan,
5858	.write			= e1000_write_nvm_ich8lan,
5859};
5860
5861const struct e1000_info e1000_ich8_info = {
5862	.mac			= e1000_ich8lan,
5863	.flags			= FLAG_HAS_WOL
5864				  | FLAG_IS_ICH
5865				  | FLAG_HAS_CTRLEXT_ON_LOAD
5866				  | FLAG_HAS_AMT
5867				  | FLAG_HAS_FLASH
5868				  | FLAG_APME_IN_WUC,
5869	.pba			= 8,
5870	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5871	.get_variants		= e1000_get_variants_ich8lan,
5872	.mac_ops		= &ich8_mac_ops,
5873	.phy_ops		= &ich8_phy_ops,
5874	.nvm_ops		= &ich8_nvm_ops,
5875};
5876
5877const struct e1000_info e1000_ich9_info = {
5878	.mac			= e1000_ich9lan,
5879	.flags			= FLAG_HAS_JUMBO_FRAMES
5880				  | FLAG_IS_ICH
5881				  | FLAG_HAS_WOL
5882				  | FLAG_HAS_CTRLEXT_ON_LOAD
5883				  | FLAG_HAS_AMT
5884				  | FLAG_HAS_FLASH
5885				  | FLAG_APME_IN_WUC,
5886	.pba			= 18,
5887	.max_hw_frame_size	= DEFAULT_JUMBO,
5888	.get_variants		= e1000_get_variants_ich8lan,
5889	.mac_ops		= &ich8_mac_ops,
5890	.phy_ops		= &ich8_phy_ops,
5891	.nvm_ops		= &ich8_nvm_ops,
5892};
5893
5894const struct e1000_info e1000_ich10_info = {
5895	.mac			= e1000_ich10lan,
5896	.flags			= FLAG_HAS_JUMBO_FRAMES
5897				  | FLAG_IS_ICH
5898				  | FLAG_HAS_WOL
5899				  | FLAG_HAS_CTRLEXT_ON_LOAD
5900				  | FLAG_HAS_AMT
5901				  | FLAG_HAS_FLASH
5902				  | FLAG_APME_IN_WUC,
5903	.pba			= 18,
5904	.max_hw_frame_size	= DEFAULT_JUMBO,
5905	.get_variants		= e1000_get_variants_ich8lan,
5906	.mac_ops		= &ich8_mac_ops,
5907	.phy_ops		= &ich8_phy_ops,
5908	.nvm_ops		= &ich8_nvm_ops,
5909};
5910
5911const struct e1000_info e1000_pch_info = {
5912	.mac			= e1000_pchlan,
5913	.flags			= FLAG_IS_ICH
5914				  | FLAG_HAS_WOL
5915				  | FLAG_HAS_CTRLEXT_ON_LOAD
5916				  | FLAG_HAS_AMT
5917				  | FLAG_HAS_FLASH
5918				  | FLAG_HAS_JUMBO_FRAMES
5919				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5920				  | FLAG_APME_IN_WUC,
5921	.flags2			= FLAG2_HAS_PHY_STATS,
5922	.pba			= 26,
5923	.max_hw_frame_size	= 4096,
5924	.get_variants		= e1000_get_variants_ich8lan,
5925	.mac_ops		= &ich8_mac_ops,
5926	.phy_ops		= &ich8_phy_ops,
5927	.nvm_ops		= &ich8_nvm_ops,
5928};
5929
5930const struct e1000_info e1000_pch2_info = {
5931	.mac			= e1000_pch2lan,
5932	.flags			= FLAG_IS_ICH
5933				  | FLAG_HAS_WOL
5934				  | FLAG_HAS_HW_TIMESTAMP
5935				  | FLAG_HAS_CTRLEXT_ON_LOAD
5936				  | FLAG_HAS_AMT
5937				  | FLAG_HAS_FLASH
5938				  | FLAG_HAS_JUMBO_FRAMES
5939				  | FLAG_APME_IN_WUC,
5940	.flags2			= FLAG2_HAS_PHY_STATS
5941				  | FLAG2_HAS_EEE
5942				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5943	.pba			= 26,
5944	.max_hw_frame_size	= 9022,
5945	.get_variants		= e1000_get_variants_ich8lan,
5946	.mac_ops		= &ich8_mac_ops,
5947	.phy_ops		= &ich8_phy_ops,
5948	.nvm_ops		= &ich8_nvm_ops,
5949};
5950
5951const struct e1000_info e1000_pch_lpt_info = {
5952	.mac			= e1000_pch_lpt,
5953	.flags			= FLAG_IS_ICH
5954				  | FLAG_HAS_WOL
5955				  | FLAG_HAS_HW_TIMESTAMP
5956				  | FLAG_HAS_CTRLEXT_ON_LOAD
5957				  | FLAG_HAS_AMT
5958				  | FLAG_HAS_FLASH
5959				  | FLAG_HAS_JUMBO_FRAMES
5960				  | FLAG_APME_IN_WUC,
5961	.flags2			= FLAG2_HAS_PHY_STATS
5962				  | FLAG2_HAS_EEE
5963				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5964	.pba			= 26,
5965	.max_hw_frame_size	= 9022,
5966	.get_variants		= e1000_get_variants_ich8lan,
5967	.mac_ops		= &ich8_mac_ops,
5968	.phy_ops		= &ich8_phy_ops,
5969	.nvm_ops		= &ich8_nvm_ops,
5970};
5971
5972const struct e1000_info e1000_pch_spt_info = {
5973	.mac			= e1000_pch_spt,
5974	.flags			= FLAG_IS_ICH
5975				  | FLAG_HAS_WOL
5976				  | FLAG_HAS_HW_TIMESTAMP
5977				  | FLAG_HAS_CTRLEXT_ON_LOAD
5978				  | FLAG_HAS_AMT
5979				  | FLAG_HAS_FLASH
5980				  | FLAG_HAS_JUMBO_FRAMES
5981				  | FLAG_APME_IN_WUC,
5982	.flags2			= FLAG2_HAS_PHY_STATS
5983				  | FLAG2_HAS_EEE,
5984	.pba			= 26,
5985	.max_hw_frame_size	= 9022,
5986	.get_variants		= e1000_get_variants_ich8lan,
5987	.mac_ops		= &ich8_mac_ops,
5988	.phy_ops		= &ich8_phy_ops,
5989	.nvm_ops		= &spt_nvm_ops,
5990};
5991
5992const struct e1000_info e1000_pch_cnp_info = {
5993	.mac			= e1000_pch_cnp,
5994	.flags			= FLAG_IS_ICH
5995				  | FLAG_HAS_WOL
5996				  | FLAG_HAS_HW_TIMESTAMP
5997				  | FLAG_HAS_CTRLEXT_ON_LOAD
5998				  | FLAG_HAS_AMT
5999				  | FLAG_HAS_FLASH
6000				  | FLAG_HAS_JUMBO_FRAMES
6001				  | FLAG_APME_IN_WUC,
6002	.flags2			= FLAG2_HAS_PHY_STATS
6003				  | FLAG2_HAS_EEE,
6004	.pba			= 26,
6005	.max_hw_frame_size	= 9022,
6006	.get_variants		= e1000_get_variants_ich8lan,
6007	.mac_ops		= &ich8_mac_ops,
6008	.phy_ops		= &ich8_phy_ops,
6009	.nvm_ops		= &spt_nvm_ops,
6010};
6011
6012const struct e1000_info e1000_pch_tgp_info = {
6013	.mac			= e1000_pch_tgp,
6014	.flags			= FLAG_IS_ICH
6015				  | FLAG_HAS_WOL
6016				  | FLAG_HAS_HW_TIMESTAMP
6017				  | FLAG_HAS_CTRLEXT_ON_LOAD
6018				  | FLAG_HAS_AMT
6019				  | FLAG_HAS_FLASH
6020				  | FLAG_HAS_JUMBO_FRAMES
6021				  | FLAG_APME_IN_WUC,
6022	.flags2			= FLAG2_HAS_PHY_STATS
6023				  | FLAG2_HAS_EEE,
6024	.pba			= 26,
6025	.max_hw_frame_size	= 9022,
6026	.get_variants		= e1000_get_variants_ich8lan,
6027	.mac_ops		= &ich8_mac_ops,
6028	.phy_ops		= &ich8_phy_ops,
6029	.nvm_ops		= &spt_nvm_ops,
6030};
6031
6032const struct e1000_info e1000_pch_adp_info = {
6033	.mac			= e1000_pch_adp,
6034	.flags			= FLAG_IS_ICH
6035				  | FLAG_HAS_WOL
6036				  | FLAG_HAS_HW_TIMESTAMP
6037				  | FLAG_HAS_CTRLEXT_ON_LOAD
6038				  | FLAG_HAS_AMT
6039				  | FLAG_HAS_FLASH
6040				  | FLAG_HAS_JUMBO_FRAMES
6041				  | FLAG_APME_IN_WUC,
6042	.flags2			= FLAG2_HAS_PHY_STATS
6043				  | FLAG2_HAS_EEE,
6044	.pba			= 26,
6045	.max_hw_frame_size	= 9022,
6046	.get_variants		= e1000_get_variants_ich8lan,
6047	.mac_ops		= &ich8_mac_ops,
6048	.phy_ops		= &ich8_phy_ops,
6049	.nvm_ops		= &spt_nvm_ops,
6050};
6051
6052const struct e1000_info e1000_pch_mtp_info = {
6053	.mac			= e1000_pch_mtp,
6054	.flags			= FLAG_IS_ICH
6055				  | FLAG_HAS_WOL
6056				  | FLAG_HAS_HW_TIMESTAMP
6057				  | FLAG_HAS_CTRLEXT_ON_LOAD
6058				  | FLAG_HAS_AMT
6059				  | FLAG_HAS_FLASH
6060				  | FLAG_HAS_JUMBO_FRAMES
6061				  | FLAG_APME_IN_WUC,
6062	.flags2			= FLAG2_HAS_PHY_STATS
6063				  | FLAG2_HAS_EEE,
6064	.pba			= 26,
6065	.max_hw_frame_size	= 9022,
6066	.get_variants		= e1000_get_variants_ich8lan,
6067	.mac_ops		= &ich8_mac_ops,
6068	.phy_ops		= &ich8_phy_ops,
6069	.nvm_ops		= &spt_nvm_ops,
6070};