Loading...
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
57 */
58
59#include "e1000.h"
60
61#define ICH_FLASH_GFPREG 0x0000
62#define ICH_FLASH_HSFSTS 0x0004
63#define ICH_FLASH_HSFCTL 0x0006
64#define ICH_FLASH_FADDR 0x0008
65#define ICH_FLASH_FDATA0 0x0010
66#define ICH_FLASH_PR0 0x0074
67
68#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
73
74#define ICH_CYCLE_READ 0
75#define ICH_CYCLE_WRITE 2
76#define ICH_CYCLE_ERASE 3
77
78#define FLASH_GFPREG_BASE_MASK 0x1FFF
79#define FLASH_SECTOR_ADDR_SHIFT 12
80
81#define ICH_FLASH_SEG_SIZE_256 256
82#define ICH_FLASH_SEG_SIZE_4K 4096
83#define ICH_FLASH_SEG_SIZE_8K 8192
84#define ICH_FLASH_SEG_SIZE_64K 65536
85
86
87#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88/* FW established a valid mode */
89#define E1000_ICH_FWSM_FW_VALID 0x00008000
90
91#define E1000_ICH_MNG_IAMT_MODE 0x2
92
93#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
96 (ID_LED_DEF1_DEF2))
97
98#define E1000_ICH_NVM_SIG_WORD 0x13
99#define E1000_ICH_NVM_SIG_MASK 0xC000
100#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101#define E1000_ICH_NVM_SIG_VALUE 0x80
102
103#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
104
105#define E1000_FEXTNVM_SW_CONFIG 1
106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
108#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK 0x0C000000
109#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC 0x08000000
110
111#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
112#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
113#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
114
115#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
116
117#define E1000_ICH_RAR_ENTRIES 7
118#define E1000_PCH2_RAR_ENTRIES 5 /* RAR[0], SHRA[0-3] */
119#define E1000_PCH_LPT_RAR_ENTRIES 12 /* RAR[0], SHRA[0-10] */
120
121#define PHY_PAGE_SHIFT 5
122#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
123 ((reg) & MAX_PHY_REG_ADDRESS))
124#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
125#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
126
127#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
128#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
129#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
130
131#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
132
133#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
134
135/* SMBus Control Phy Register */
136#define CV_SMB_CTRL PHY_REG(769, 23)
137#define CV_SMB_CTRL_FORCE_SMBUS 0x0001
138
139/* SMBus Address Phy Register */
140#define HV_SMB_ADDR PHY_REG(768, 26)
141#define HV_SMB_ADDR_MASK 0x007F
142#define HV_SMB_ADDR_PEC_EN 0x0200
143#define HV_SMB_ADDR_VALID 0x0080
144#define HV_SMB_ADDR_FREQ_MASK 0x1100
145#define HV_SMB_ADDR_FREQ_LOW_SHIFT 8
146#define HV_SMB_ADDR_FREQ_HIGH_SHIFT 12
147
148/* PHY Power Management Control */
149#define HV_PM_CTRL PHY_REG(770, 17)
150#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA 0x100
151
152/* PHY Low Power Idle Control */
153#define I82579_LPI_CTRL PHY_REG(772, 20)
154#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
155#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80
156
157/* EMI Registers */
158#define I82579_EMI_ADDR 0x10
159#define I82579_EMI_DATA 0x11
160#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
161#define I82579_MSE_THRESHOLD 0x084F /* Mean Square Error Threshold */
162#define I82579_MSE_LINK_DOWN 0x2411 /* MSE count before dropping link */
163#define I217_EEE_ADVERTISEMENT 0x8001 /* IEEE MMD Register 7.60 */
164#define I217_EEE_LP_ABILITY 0x8002 /* IEEE MMD Register 7.61 */
165#define I217_EEE_100_SUPPORTED (1 << 1) /* 100BaseTx EEE supported */
166
167/* Intel Rapid Start Technology Support */
168#define I217_PROXY_CTRL BM_PHY_REG(BM_WUC_PAGE, 70)
169#define I217_PROXY_CTRL_AUTO_DISABLE 0x0080
170#define I217_SxCTRL PHY_REG(BM_PORT_CTRL_PAGE, 28)
171#define I217_SxCTRL_ENABLE_LPI_RESET 0x1000
172#define I217_CGFREG PHY_REG(772, 29)
173#define I217_CGFREG_ENABLE_MTA_RESET 0x0002
174#define I217_MEMPWR PHY_REG(772, 26)
175#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
176
177/* Strapping Option Register - RO */
178#define E1000_STRAP 0x0000C
179#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
180#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
181#define E1000_STRAP_SMT_FREQ_MASK 0x00003000
182#define E1000_STRAP_SMT_FREQ_SHIFT 12
183
184/* OEM Bits Phy Register */
185#define HV_OEM_BITS PHY_REG(768, 25)
186#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
187#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
188#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
189
190#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
191#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
192
193/* KMRN Mode Control */
194#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
195#define HV_KMRN_MDIO_SLOW 0x0400
196
197/* KMRN FIFO Control and Status */
198#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
199#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
200#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
201
202/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
203/* Offset 04h HSFSTS */
204union ich8_hws_flash_status {
205 struct ich8_hsfsts {
206 u16 flcdone :1; /* bit 0 Flash Cycle Done */
207 u16 flcerr :1; /* bit 1 Flash Cycle Error */
208 u16 dael :1; /* bit 2 Direct Access error Log */
209 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
210 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
211 u16 reserved1 :2; /* bit 13:6 Reserved */
212 u16 reserved2 :6; /* bit 13:6 Reserved */
213 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
214 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
215 } hsf_status;
216 u16 regval;
217};
218
219/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
220/* Offset 06h FLCTL */
221union ich8_hws_flash_ctrl {
222 struct ich8_hsflctl {
223 u16 flcgo :1; /* 0 Flash Cycle Go */
224 u16 flcycle :2; /* 2:1 Flash Cycle */
225 u16 reserved :5; /* 7:3 Reserved */
226 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
227 u16 flockdn :6; /* 15:10 Reserved */
228 } hsf_ctrl;
229 u16 regval;
230};
231
232/* ICH Flash Region Access Permissions */
233union ich8_hws_flash_regacc {
234 struct ich8_flracc {
235 u32 grra :8; /* 0:7 GbE region Read Access */
236 u32 grwa :8; /* 8:15 GbE region Write Access */
237 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
238 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
239 } hsf_flregacc;
240 u16 regval;
241};
242
243/* ICH Flash Protected Region */
244union ich8_flash_protected_range {
245 struct ich8_pr {
246 u32 base:13; /* 0:12 Protected Range Base */
247 u32 reserved1:2; /* 13:14 Reserved */
248 u32 rpe:1; /* 15 Read Protection Enable */
249 u32 limit:13; /* 16:28 Protected Range Limit */
250 u32 reserved2:2; /* 29:30 Reserved */
251 u32 wpe:1; /* 31 Write Protection Enable */
252 } range;
253 u32 regval;
254};
255
256static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
257static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
258static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
259static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
260static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
261 u32 offset, u8 byte);
262static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
263 u8 *data);
264static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
265 u16 *data);
266static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
267 u8 size, u16 *data);
268static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
269static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
270static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
271static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
272static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
273static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
274static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
275static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
276static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
277static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
278static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
279static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
280static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
281static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
282static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
283static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
284static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
285static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
286static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
287static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
288static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
289static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
290
291static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
292{
293 return readw(hw->flash_address + reg);
294}
295
296static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
297{
298 return readl(hw->flash_address + reg);
299}
300
301static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
302{
303 writew(val, hw->flash_address + reg);
304}
305
306static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
307{
308 writel(val, hw->flash_address + reg);
309}
310
311#define er16flash(reg) __er16flash(hw, (reg))
312#define er32flash(reg) __er32flash(hw, (reg))
313#define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
314#define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
315
316/**
317 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
318 * @hw: pointer to the HW structure
319 *
320 * Test access to the PHY registers by reading the PHY ID registers. If
321 * the PHY ID is already known (e.g. resume path) compare it with known ID,
322 * otherwise assume the read PHY ID is correct if it is valid.
323 *
324 * Assumes the sw/fw/hw semaphore is already acquired.
325 **/
326static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
327{
328 u16 phy_reg = 0;
329 u32 phy_id = 0;
330 s32 ret_val;
331 u16 retry_count;
332
333 for (retry_count = 0; retry_count < 2; retry_count++) {
334 ret_val = e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
335 if (ret_val || (phy_reg == 0xFFFF))
336 continue;
337 phy_id = (u32)(phy_reg << 16);
338
339 ret_val = e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
340 if (ret_val || (phy_reg == 0xFFFF)) {
341 phy_id = 0;
342 continue;
343 }
344 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
345 break;
346 }
347
348 if (hw->phy.id) {
349 if (hw->phy.id == phy_id)
350 return true;
351 } else if (phy_id) {
352 hw->phy.id = phy_id;
353 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
354 return true;
355 }
356
357 /*
358 * In case the PHY needs to be in mdio slow mode,
359 * set slow mode and try to get the PHY id again.
360 */
361 hw->phy.ops.release(hw);
362 ret_val = e1000_set_mdio_slow_mode_hv(hw);
363 if (!ret_val)
364 ret_val = e1000e_get_phy_id(hw);
365 hw->phy.ops.acquire(hw);
366
367 return !ret_val;
368}
369
370/**
371 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
372 * @hw: pointer to the HW structure
373 *
374 * Workarounds/flow necessary for PHY initialization during driver load
375 * and resume paths.
376 **/
377static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
378{
379 u32 mac_reg, fwsm = er32(FWSM);
380 s32 ret_val;
381 u16 phy_reg;
382
383 ret_val = hw->phy.ops.acquire(hw);
384 if (ret_val) {
385 e_dbg("Failed to initialize PHY flow\n");
386 return ret_val;
387 }
388
389 /*
390 * The MAC-PHY interconnect may be in SMBus mode. If the PHY is
391 * inaccessible and resetting the PHY is not blocked, toggle the
392 * LANPHYPC Value bit to force the interconnect to PCIe mode.
393 */
394 switch (hw->mac.type) {
395 case e1000_pch_lpt:
396 if (e1000_phy_is_accessible_pchlan(hw))
397 break;
398
399 /*
400 * Before toggling LANPHYPC, see if PHY is accessible by
401 * forcing MAC to SMBus mode first.
402 */
403 mac_reg = er32(CTRL_EXT);
404 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
405 ew32(CTRL_EXT, mac_reg);
406
407 /* fall-through */
408 case e1000_pch2lan:
409 /*
410 * Gate automatic PHY configuration by hardware on
411 * non-managed 82579
412 */
413 if ((hw->mac.type == e1000_pch2lan) &&
414 !(fwsm & E1000_ICH_FWSM_FW_VALID))
415 e1000_gate_hw_phy_config_ich8lan(hw, true);
416
417 if (e1000_phy_is_accessible_pchlan(hw)) {
418 if (hw->mac.type == e1000_pch_lpt) {
419 /* Unforce SMBus mode in PHY */
420 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
421 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
422 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
423
424 /* Unforce SMBus mode in MAC */
425 mac_reg = er32(CTRL_EXT);
426 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
427 ew32(CTRL_EXT, mac_reg);
428 }
429 break;
430 }
431
432 /* fall-through */
433 case e1000_pchlan:
434 if ((hw->mac.type == e1000_pchlan) &&
435 (fwsm & E1000_ICH_FWSM_FW_VALID))
436 break;
437
438 if (hw->phy.ops.check_reset_block(hw)) {
439 e_dbg("Required LANPHYPC toggle blocked by ME\n");
440 break;
441 }
442
443 e_dbg("Toggling LANPHYPC\n");
444
445 /* Set Phy Config Counter to 50msec */
446 mac_reg = er32(FEXTNVM3);
447 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
448 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
449 ew32(FEXTNVM3, mac_reg);
450
451 /* Toggle LANPHYPC Value bit */
452 mac_reg = er32(CTRL);
453 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
454 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
455 ew32(CTRL, mac_reg);
456 e1e_flush();
457 udelay(10);
458 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
459 ew32(CTRL, mac_reg);
460 e1e_flush();
461 if (hw->mac.type < e1000_pch_lpt) {
462 msleep(50);
463 } else {
464 u16 count = 20;
465 do {
466 usleep_range(5000, 10000);
467 } while (!(er32(CTRL_EXT) &
468 E1000_CTRL_EXT_LPCD) && count--);
469 }
470 break;
471 default:
472 break;
473 }
474
475 hw->phy.ops.release(hw);
476
477 /*
478 * Reset the PHY before any access to it. Doing so, ensures
479 * that the PHY is in a known good state before we read/write
480 * PHY registers. The generic reset is sufficient here,
481 * because we haven't determined the PHY type yet.
482 */
483 ret_val = e1000e_phy_hw_reset_generic(hw);
484
485 /* Ungate automatic PHY configuration on non-managed 82579 */
486 if ((hw->mac.type == e1000_pch2lan) &&
487 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
488 usleep_range(10000, 20000);
489 e1000_gate_hw_phy_config_ich8lan(hw, false);
490 }
491
492 return ret_val;
493}
494
495/**
496 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
497 * @hw: pointer to the HW structure
498 *
499 * Initialize family-specific PHY parameters and function pointers.
500 **/
501static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
502{
503 struct e1000_phy_info *phy = &hw->phy;
504 s32 ret_val = 0;
505
506 phy->addr = 1;
507 phy->reset_delay_us = 100;
508
509 phy->ops.set_page = e1000_set_page_igp;
510 phy->ops.read_reg = e1000_read_phy_reg_hv;
511 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
512 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
513 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
514 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
515 phy->ops.write_reg = e1000_write_phy_reg_hv;
516 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
517 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
518 phy->ops.power_up = e1000_power_up_phy_copper;
519 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
520 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
521
522 phy->id = e1000_phy_unknown;
523
524 ret_val = e1000_init_phy_workarounds_pchlan(hw);
525 if (ret_val)
526 return ret_val;
527
528 if (phy->id == e1000_phy_unknown)
529 switch (hw->mac.type) {
530 default:
531 ret_val = e1000e_get_phy_id(hw);
532 if (ret_val)
533 return ret_val;
534 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
535 break;
536 /* fall-through */
537 case e1000_pch2lan:
538 case e1000_pch_lpt:
539 /*
540 * In case the PHY needs to be in mdio slow mode,
541 * set slow mode and try to get the PHY id again.
542 */
543 ret_val = e1000_set_mdio_slow_mode_hv(hw);
544 if (ret_val)
545 return ret_val;
546 ret_val = e1000e_get_phy_id(hw);
547 if (ret_val)
548 return ret_val;
549 break;
550 }
551 phy->type = e1000e_get_phy_type_from_id(phy->id);
552
553 switch (phy->type) {
554 case e1000_phy_82577:
555 case e1000_phy_82579:
556 case e1000_phy_i217:
557 phy->ops.check_polarity = e1000_check_polarity_82577;
558 phy->ops.force_speed_duplex =
559 e1000_phy_force_speed_duplex_82577;
560 phy->ops.get_cable_length = e1000_get_cable_length_82577;
561 phy->ops.get_info = e1000_get_phy_info_82577;
562 phy->ops.commit = e1000e_phy_sw_reset;
563 break;
564 case e1000_phy_82578:
565 phy->ops.check_polarity = e1000_check_polarity_m88;
566 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
567 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
568 phy->ops.get_info = e1000e_get_phy_info_m88;
569 break;
570 default:
571 ret_val = -E1000_ERR_PHY;
572 break;
573 }
574
575 return ret_val;
576}
577
578/**
579 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
580 * @hw: pointer to the HW structure
581 *
582 * Initialize family-specific PHY parameters and function pointers.
583 **/
584static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
585{
586 struct e1000_phy_info *phy = &hw->phy;
587 s32 ret_val;
588 u16 i = 0;
589
590 phy->addr = 1;
591 phy->reset_delay_us = 100;
592
593 phy->ops.power_up = e1000_power_up_phy_copper;
594 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
595
596 /*
597 * We may need to do this twice - once for IGP and if that fails,
598 * we'll set BM func pointers and try again
599 */
600 ret_val = e1000e_determine_phy_address(hw);
601 if (ret_val) {
602 phy->ops.write_reg = e1000e_write_phy_reg_bm;
603 phy->ops.read_reg = e1000e_read_phy_reg_bm;
604 ret_val = e1000e_determine_phy_address(hw);
605 if (ret_val) {
606 e_dbg("Cannot determine PHY addr. Erroring out\n");
607 return ret_val;
608 }
609 }
610
611 phy->id = 0;
612 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
613 (i++ < 100)) {
614 usleep_range(1000, 2000);
615 ret_val = e1000e_get_phy_id(hw);
616 if (ret_val)
617 return ret_val;
618 }
619
620 /* Verify phy id */
621 switch (phy->id) {
622 case IGP03E1000_E_PHY_ID:
623 phy->type = e1000_phy_igp_3;
624 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
625 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
626 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
627 phy->ops.get_info = e1000e_get_phy_info_igp;
628 phy->ops.check_polarity = e1000_check_polarity_igp;
629 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
630 break;
631 case IFE_E_PHY_ID:
632 case IFE_PLUS_E_PHY_ID:
633 case IFE_C_E_PHY_ID:
634 phy->type = e1000_phy_ife;
635 phy->autoneg_mask = E1000_ALL_NOT_GIG;
636 phy->ops.get_info = e1000_get_phy_info_ife;
637 phy->ops.check_polarity = e1000_check_polarity_ife;
638 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
639 break;
640 case BME1000_E_PHY_ID:
641 phy->type = e1000_phy_bm;
642 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
643 phy->ops.read_reg = e1000e_read_phy_reg_bm;
644 phy->ops.write_reg = e1000e_write_phy_reg_bm;
645 phy->ops.commit = e1000e_phy_sw_reset;
646 phy->ops.get_info = e1000e_get_phy_info_m88;
647 phy->ops.check_polarity = e1000_check_polarity_m88;
648 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
649 break;
650 default:
651 return -E1000_ERR_PHY;
652 break;
653 }
654
655 return 0;
656}
657
658/**
659 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
660 * @hw: pointer to the HW structure
661 *
662 * Initialize family-specific NVM parameters and function
663 * pointers.
664 **/
665static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
666{
667 struct e1000_nvm_info *nvm = &hw->nvm;
668 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
669 u32 gfpreg, sector_base_addr, sector_end_addr;
670 u16 i;
671
672 /* Can't read flash registers if the register set isn't mapped. */
673 if (!hw->flash_address) {
674 e_dbg("ERROR: Flash registers not mapped\n");
675 return -E1000_ERR_CONFIG;
676 }
677
678 nvm->type = e1000_nvm_flash_sw;
679
680 gfpreg = er32flash(ICH_FLASH_GFPREG);
681
682 /*
683 * sector_X_addr is a "sector"-aligned address (4096 bytes)
684 * Add 1 to sector_end_addr since this sector is included in
685 * the overall size.
686 */
687 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
688 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
689
690 /* flash_base_addr is byte-aligned */
691 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
692
693 /*
694 * find total size of the NVM, then cut in half since the total
695 * size represents two separate NVM banks.
696 */
697 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
698 << FLASH_SECTOR_ADDR_SHIFT;
699 nvm->flash_bank_size /= 2;
700 /* Adjust to word count */
701 nvm->flash_bank_size /= sizeof(u16);
702
703 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
704
705 /* Clear shadow ram */
706 for (i = 0; i < nvm->word_size; i++) {
707 dev_spec->shadow_ram[i].modified = false;
708 dev_spec->shadow_ram[i].value = 0xFFFF;
709 }
710
711 return 0;
712}
713
714/**
715 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
716 * @hw: pointer to the HW structure
717 *
718 * Initialize family-specific MAC parameters and function
719 * pointers.
720 **/
721static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
722{
723 struct e1000_mac_info *mac = &hw->mac;
724
725 /* Set media type function pointer */
726 hw->phy.media_type = e1000_media_type_copper;
727
728 /* Set mta register count */
729 mac->mta_reg_count = 32;
730 /* Set rar entry count */
731 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
732 if (mac->type == e1000_ich8lan)
733 mac->rar_entry_count--;
734 /* FWSM register */
735 mac->has_fwsm = true;
736 /* ARC subsystem not supported */
737 mac->arc_subsystem_valid = false;
738 /* Adaptive IFS supported */
739 mac->adaptive_ifs = true;
740
741 /* LED and other operations */
742 switch (mac->type) {
743 case e1000_ich8lan:
744 case e1000_ich9lan:
745 case e1000_ich10lan:
746 /* check management mode */
747 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
748 /* ID LED init */
749 mac->ops.id_led_init = e1000e_id_led_init_generic;
750 /* blink LED */
751 mac->ops.blink_led = e1000e_blink_led_generic;
752 /* setup LED */
753 mac->ops.setup_led = e1000e_setup_led_generic;
754 /* cleanup LED */
755 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
756 /* turn on/off LED */
757 mac->ops.led_on = e1000_led_on_ich8lan;
758 mac->ops.led_off = e1000_led_off_ich8lan;
759 break;
760 case e1000_pch2lan:
761 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
762 mac->ops.rar_set = e1000_rar_set_pch2lan;
763 /* fall-through */
764 case e1000_pch_lpt:
765 case e1000_pchlan:
766 /* check management mode */
767 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
768 /* ID LED init */
769 mac->ops.id_led_init = e1000_id_led_init_pchlan;
770 /* setup LED */
771 mac->ops.setup_led = e1000_setup_led_pchlan;
772 /* cleanup LED */
773 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
774 /* turn on/off LED */
775 mac->ops.led_on = e1000_led_on_pchlan;
776 mac->ops.led_off = e1000_led_off_pchlan;
777 break;
778 default:
779 break;
780 }
781
782 if (mac->type == e1000_pch_lpt) {
783 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
784 mac->ops.rar_set = e1000_rar_set_pch_lpt;
785 }
786
787 /* Enable PCS Lock-loss workaround for ICH8 */
788 if (mac->type == e1000_ich8lan)
789 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
790
791 /*
792 * Gate automatic PHY configuration by hardware on managed
793 * 82579 and i217
794 */
795 if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) &&
796 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
797 e1000_gate_hw_phy_config_ich8lan(hw, true);
798
799 return 0;
800}
801
802/**
803 * e1000_set_eee_pchlan - Enable/disable EEE support
804 * @hw: pointer to the HW structure
805 *
806 * Enable/disable EEE based on setting in dev_spec structure. The bits in
807 * the LPI Control register will remain set only if/when link is up.
808 **/
809static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
810{
811 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
812 s32 ret_val = 0;
813 u16 phy_reg;
814
815 if ((hw->phy.type != e1000_phy_82579) &&
816 (hw->phy.type != e1000_phy_i217))
817 return 0;
818
819 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
820 if (ret_val)
821 return ret_val;
822
823 if (dev_spec->eee_disable)
824 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
825 else
826 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
827
828 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
829 if (ret_val)
830 return ret_val;
831
832 if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) {
833 /* Save off link partner's EEE ability */
834 ret_val = hw->phy.ops.acquire(hw);
835 if (ret_val)
836 return ret_val;
837 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
838 I217_EEE_LP_ABILITY);
839 if (ret_val)
840 goto release;
841 e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability);
842
843 /*
844 * EEE is not supported in 100Half, so ignore partner's EEE
845 * in 100 ability if full-duplex is not advertised.
846 */
847 e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg);
848 if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS))
849 dev_spec->eee_lp_ability &= ~I217_EEE_100_SUPPORTED;
850release:
851 hw->phy.ops.release(hw);
852 }
853
854 return 0;
855}
856
857/**
858 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
859 * @hw: pointer to the HW structure
860 *
861 * Checks to see of the link status of the hardware has changed. If a
862 * change in link status has been detected, then we read the PHY registers
863 * to get the current speed/duplex if link exists.
864 **/
865static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
866{
867 struct e1000_mac_info *mac = &hw->mac;
868 s32 ret_val;
869 bool link;
870 u16 phy_reg;
871
872 /*
873 * We only want to go out to the PHY registers to see if Auto-Neg
874 * has completed and/or if our link status has changed. The
875 * get_link_status flag is set upon receiving a Link Status
876 * Change or Rx Sequence Error interrupt.
877 */
878 if (!mac->get_link_status)
879 return 0;
880
881 /*
882 * First we want to see if the MII Status Register reports
883 * link. If so, then we want to get the current speed/duplex
884 * of the PHY.
885 */
886 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
887 if (ret_val)
888 return ret_val;
889
890 if (hw->mac.type == e1000_pchlan) {
891 ret_val = e1000_k1_gig_workaround_hv(hw, link);
892 if (ret_val)
893 return ret_val;
894 }
895
896 /* Clear link partner's EEE ability */
897 hw->dev_spec.ich8lan.eee_lp_ability = 0;
898
899 if (!link)
900 return 0; /* No link detected */
901
902 mac->get_link_status = false;
903
904 switch (hw->mac.type) {
905 case e1000_pch2lan:
906 ret_val = e1000_k1_workaround_lv(hw);
907 if (ret_val)
908 return ret_val;
909 /* fall-thru */
910 case e1000_pchlan:
911 if (hw->phy.type == e1000_phy_82578) {
912 ret_val = e1000_link_stall_workaround_hv(hw);
913 if (ret_val)
914 return ret_val;
915 }
916
917 /*
918 * Workaround for PCHx parts in half-duplex:
919 * Set the number of preambles removed from the packet
920 * when it is passed from the PHY to the MAC to prevent
921 * the MAC from misinterpreting the packet type.
922 */
923 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
924 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
925
926 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
927 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
928
929 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
930 break;
931 default:
932 break;
933 }
934
935 /*
936 * Check if there was DownShift, must be checked
937 * immediately after link-up
938 */
939 e1000e_check_downshift(hw);
940
941 /* Enable/Disable EEE after link up */
942 ret_val = e1000_set_eee_pchlan(hw);
943 if (ret_val)
944 return ret_val;
945
946 /*
947 * If we are forcing speed/duplex, then we simply return since
948 * we have already determined whether we have link or not.
949 */
950 if (!mac->autoneg)
951 return -E1000_ERR_CONFIG;
952
953 /*
954 * Auto-Neg is enabled. Auto Speed Detection takes care
955 * of MAC speed/duplex configuration. So we only need to
956 * configure Collision Distance in the MAC.
957 */
958 mac->ops.config_collision_dist(hw);
959
960 /*
961 * Configure Flow Control now that Auto-Neg has completed.
962 * First, we need to restore the desired flow control
963 * settings because we may have had to re-autoneg with a
964 * different link partner.
965 */
966 ret_val = e1000e_config_fc_after_link_up(hw);
967 if (ret_val)
968 e_dbg("Error configuring flow control\n");
969
970 return ret_val;
971}
972
973static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
974{
975 struct e1000_hw *hw = &adapter->hw;
976 s32 rc;
977
978 rc = e1000_init_mac_params_ich8lan(hw);
979 if (rc)
980 return rc;
981
982 rc = e1000_init_nvm_params_ich8lan(hw);
983 if (rc)
984 return rc;
985
986 switch (hw->mac.type) {
987 case e1000_ich8lan:
988 case e1000_ich9lan:
989 case e1000_ich10lan:
990 rc = e1000_init_phy_params_ich8lan(hw);
991 break;
992 case e1000_pchlan:
993 case e1000_pch2lan:
994 case e1000_pch_lpt:
995 rc = e1000_init_phy_params_pchlan(hw);
996 break;
997 default:
998 break;
999 }
1000 if (rc)
1001 return rc;
1002
1003 /*
1004 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1005 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1006 */
1007 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1008 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1009 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1010 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1011 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1012
1013 hw->mac.ops.blink_led = NULL;
1014 }
1015
1016 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1017 (adapter->hw.phy.type != e1000_phy_ife))
1018 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1019
1020 /* Enable workaround for 82579 w/ ME enabled */
1021 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1022 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1023 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1024
1025 /* Disable EEE by default until IEEE802.3az spec is finalized */
1026 if (adapter->flags2 & FLAG2_HAS_EEE)
1027 adapter->hw.dev_spec.ich8lan.eee_disable = true;
1028
1029 return 0;
1030}
1031
1032static DEFINE_MUTEX(nvm_mutex);
1033
1034/**
1035 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1036 * @hw: pointer to the HW structure
1037 *
1038 * Acquires the mutex for performing NVM operations.
1039 **/
1040static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1041{
1042 mutex_lock(&nvm_mutex);
1043
1044 return 0;
1045}
1046
1047/**
1048 * e1000_release_nvm_ich8lan - Release NVM mutex
1049 * @hw: pointer to the HW structure
1050 *
1051 * Releases the mutex used while performing NVM operations.
1052 **/
1053static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1054{
1055 mutex_unlock(&nvm_mutex);
1056}
1057
1058/**
1059 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1060 * @hw: pointer to the HW structure
1061 *
1062 * Acquires the software control flag for performing PHY and select
1063 * MAC CSR accesses.
1064 **/
1065static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1066{
1067 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1068 s32 ret_val = 0;
1069
1070 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1071 &hw->adapter->state)) {
1072 e_dbg("contention for Phy access\n");
1073 return -E1000_ERR_PHY;
1074 }
1075
1076 while (timeout) {
1077 extcnf_ctrl = er32(EXTCNF_CTRL);
1078 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1079 break;
1080
1081 mdelay(1);
1082 timeout--;
1083 }
1084
1085 if (!timeout) {
1086 e_dbg("SW has already locked the resource.\n");
1087 ret_val = -E1000_ERR_CONFIG;
1088 goto out;
1089 }
1090
1091 timeout = SW_FLAG_TIMEOUT;
1092
1093 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1094 ew32(EXTCNF_CTRL, extcnf_ctrl);
1095
1096 while (timeout) {
1097 extcnf_ctrl = er32(EXTCNF_CTRL);
1098 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1099 break;
1100
1101 mdelay(1);
1102 timeout--;
1103 }
1104
1105 if (!timeout) {
1106 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1107 er32(FWSM), extcnf_ctrl);
1108 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1109 ew32(EXTCNF_CTRL, extcnf_ctrl);
1110 ret_val = -E1000_ERR_CONFIG;
1111 goto out;
1112 }
1113
1114out:
1115 if (ret_val)
1116 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1117
1118 return ret_val;
1119}
1120
1121/**
1122 * e1000_release_swflag_ich8lan - Release software control flag
1123 * @hw: pointer to the HW structure
1124 *
1125 * Releases the software control flag for performing PHY and select
1126 * MAC CSR accesses.
1127 **/
1128static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1129{
1130 u32 extcnf_ctrl;
1131
1132 extcnf_ctrl = er32(EXTCNF_CTRL);
1133
1134 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1135 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1136 ew32(EXTCNF_CTRL, extcnf_ctrl);
1137 } else {
1138 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1139 }
1140
1141 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1142}
1143
1144/**
1145 * e1000_check_mng_mode_ich8lan - Checks management mode
1146 * @hw: pointer to the HW structure
1147 *
1148 * This checks if the adapter has any manageability enabled.
1149 * This is a function pointer entry point only called by read/write
1150 * routines for the PHY and NVM parts.
1151 **/
1152static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1153{
1154 u32 fwsm;
1155
1156 fwsm = er32(FWSM);
1157 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1158 ((fwsm & E1000_FWSM_MODE_MASK) ==
1159 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1160}
1161
1162/**
1163 * e1000_check_mng_mode_pchlan - Checks management mode
1164 * @hw: pointer to the HW structure
1165 *
1166 * This checks if the adapter has iAMT enabled.
1167 * This is a function pointer entry point only called by read/write
1168 * routines for the PHY and NVM parts.
1169 **/
1170static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1171{
1172 u32 fwsm;
1173
1174 fwsm = er32(FWSM);
1175 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1176 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1177}
1178
1179/**
1180 * e1000_rar_set_pch2lan - Set receive address register
1181 * @hw: pointer to the HW structure
1182 * @addr: pointer to the receive address
1183 * @index: receive address array register
1184 *
1185 * Sets the receive address array register at index to the address passed
1186 * in by addr. For 82579, RAR[0] is the base address register that is to
1187 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1188 * Use SHRA[0-3] in place of those reserved for ME.
1189 **/
1190static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1191{
1192 u32 rar_low, rar_high;
1193
1194 /*
1195 * HW expects these in little endian so we reverse the byte order
1196 * from network order (big endian) to little endian
1197 */
1198 rar_low = ((u32)addr[0] |
1199 ((u32)addr[1] << 8) |
1200 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1201
1202 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1203
1204 /* If MAC address zero, no need to set the AV bit */
1205 if (rar_low || rar_high)
1206 rar_high |= E1000_RAH_AV;
1207
1208 if (index == 0) {
1209 ew32(RAL(index), rar_low);
1210 e1e_flush();
1211 ew32(RAH(index), rar_high);
1212 e1e_flush();
1213 return;
1214 }
1215
1216 if (index < hw->mac.rar_entry_count) {
1217 s32 ret_val;
1218
1219 ret_val = e1000_acquire_swflag_ich8lan(hw);
1220 if (ret_val)
1221 goto out;
1222
1223 ew32(SHRAL(index - 1), rar_low);
1224 e1e_flush();
1225 ew32(SHRAH(index - 1), rar_high);
1226 e1e_flush();
1227
1228 e1000_release_swflag_ich8lan(hw);
1229
1230 /* verify the register updates */
1231 if ((er32(SHRAL(index - 1)) == rar_low) &&
1232 (er32(SHRAH(index - 1)) == rar_high))
1233 return;
1234
1235 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1236 (index - 1), er32(FWSM));
1237 }
1238
1239out:
1240 e_dbg("Failed to write receive address at index %d\n", index);
1241}
1242
1243/**
1244 * e1000_rar_set_pch_lpt - Set receive address registers
1245 * @hw: pointer to the HW structure
1246 * @addr: pointer to the receive address
1247 * @index: receive address array register
1248 *
1249 * Sets the receive address register array at index to the address passed
1250 * in by addr. For LPT, RAR[0] is the base address register that is to
1251 * contain the MAC address. SHRA[0-10] are the shared receive address
1252 * registers that are shared between the Host and manageability engine (ME).
1253 **/
1254static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1255{
1256 u32 rar_low, rar_high;
1257 u32 wlock_mac;
1258
1259 /*
1260 * HW expects these in little endian so we reverse the byte order
1261 * from network order (big endian) to little endian
1262 */
1263 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1264 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1265
1266 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1267
1268 /* If MAC address zero, no need to set the AV bit */
1269 if (rar_low || rar_high)
1270 rar_high |= E1000_RAH_AV;
1271
1272 if (index == 0) {
1273 ew32(RAL(index), rar_low);
1274 e1e_flush();
1275 ew32(RAH(index), rar_high);
1276 e1e_flush();
1277 return;
1278 }
1279
1280 /*
1281 * The manageability engine (ME) can lock certain SHRAR registers that
1282 * it is using - those registers are unavailable for use.
1283 */
1284 if (index < hw->mac.rar_entry_count) {
1285 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1286 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1287
1288 /* Check if all SHRAR registers are locked */
1289 if (wlock_mac == 1)
1290 goto out;
1291
1292 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1293 s32 ret_val;
1294
1295 ret_val = e1000_acquire_swflag_ich8lan(hw);
1296
1297 if (ret_val)
1298 goto out;
1299
1300 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1301 e1e_flush();
1302 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1303 e1e_flush();
1304
1305 e1000_release_swflag_ich8lan(hw);
1306
1307 /* verify the register updates */
1308 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1309 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1310 return;
1311 }
1312 }
1313
1314out:
1315 e_dbg("Failed to write receive address at index %d\n", index);
1316}
1317
1318/**
1319 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1320 * @hw: pointer to the HW structure
1321 *
1322 * Checks if firmware is blocking the reset of the PHY.
1323 * This is a function pointer entry point only called by
1324 * reset routines.
1325 **/
1326static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1327{
1328 u32 fwsm;
1329
1330 fwsm = er32(FWSM);
1331
1332 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1333}
1334
1335/**
1336 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1337 * @hw: pointer to the HW structure
1338 *
1339 * Assumes semaphore already acquired.
1340 *
1341 **/
1342static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1343{
1344 u16 phy_data;
1345 u32 strap = er32(STRAP);
1346 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1347 E1000_STRAP_SMT_FREQ_SHIFT;
1348 s32 ret_val = 0;
1349
1350 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1351
1352 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1353 if (ret_val)
1354 return ret_val;
1355
1356 phy_data &= ~HV_SMB_ADDR_MASK;
1357 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1358 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1359
1360 if (hw->phy.type == e1000_phy_i217) {
1361 /* Restore SMBus frequency */
1362 if (freq--) {
1363 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1364 phy_data |= (freq & (1 << 0)) <<
1365 HV_SMB_ADDR_FREQ_LOW_SHIFT;
1366 phy_data |= (freq & (1 << 1)) <<
1367 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1368 } else {
1369 e_dbg("Unsupported SMB frequency in PHY\n");
1370 }
1371 }
1372
1373 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1374}
1375
1376/**
1377 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1378 * @hw: pointer to the HW structure
1379 *
1380 * SW should configure the LCD from the NVM extended configuration region
1381 * as a workaround for certain parts.
1382 **/
1383static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1384{
1385 struct e1000_phy_info *phy = &hw->phy;
1386 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1387 s32 ret_val = 0;
1388 u16 word_addr, reg_data, reg_addr, phy_page = 0;
1389
1390 /*
1391 * Initialize the PHY from the NVM on ICH platforms. This
1392 * is needed due to an issue where the NVM configuration is
1393 * not properly autoloaded after power transitions.
1394 * Therefore, after each PHY reset, we will load the
1395 * configuration data out of the NVM manually.
1396 */
1397 switch (hw->mac.type) {
1398 case e1000_ich8lan:
1399 if (phy->type != e1000_phy_igp_3)
1400 return ret_val;
1401
1402 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1403 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1404 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1405 break;
1406 }
1407 /* Fall-thru */
1408 case e1000_pchlan:
1409 case e1000_pch2lan:
1410 case e1000_pch_lpt:
1411 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1412 break;
1413 default:
1414 return ret_val;
1415 }
1416
1417 ret_val = hw->phy.ops.acquire(hw);
1418 if (ret_val)
1419 return ret_val;
1420
1421 data = er32(FEXTNVM);
1422 if (!(data & sw_cfg_mask))
1423 goto release;
1424
1425 /*
1426 * Make sure HW does not configure LCD from PHY
1427 * extended configuration before SW configuration
1428 */
1429 data = er32(EXTCNF_CTRL);
1430 if ((hw->mac.type < e1000_pch2lan) &&
1431 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1432 goto release;
1433
1434 cnf_size = er32(EXTCNF_SIZE);
1435 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1436 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1437 if (!cnf_size)
1438 goto release;
1439
1440 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1441 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1442
1443 if (((hw->mac.type == e1000_pchlan) &&
1444 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1445 (hw->mac.type > e1000_pchlan)) {
1446 /*
1447 * HW configures the SMBus address and LEDs when the
1448 * OEM and LCD Write Enable bits are set in the NVM.
1449 * When both NVM bits are cleared, SW will configure
1450 * them instead.
1451 */
1452 ret_val = e1000_write_smbus_addr(hw);
1453 if (ret_val)
1454 goto release;
1455
1456 data = er32(LEDCTL);
1457 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1458 (u16)data);
1459 if (ret_val)
1460 goto release;
1461 }
1462
1463 /* Configure LCD from extended configuration region. */
1464
1465 /* cnf_base_addr is in DWORD */
1466 word_addr = (u16)(cnf_base_addr << 1);
1467
1468 for (i = 0; i < cnf_size; i++) {
1469 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1470 ®_data);
1471 if (ret_val)
1472 goto release;
1473
1474 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1475 1, ®_addr);
1476 if (ret_val)
1477 goto release;
1478
1479 /* Save off the PHY page for future writes. */
1480 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1481 phy_page = reg_data;
1482 continue;
1483 }
1484
1485 reg_addr &= PHY_REG_MASK;
1486 reg_addr |= phy_page;
1487
1488 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1489 if (ret_val)
1490 goto release;
1491 }
1492
1493release:
1494 hw->phy.ops.release(hw);
1495 return ret_val;
1496}
1497
1498/**
1499 * e1000_k1_gig_workaround_hv - K1 Si workaround
1500 * @hw: pointer to the HW structure
1501 * @link: link up bool flag
1502 *
1503 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1504 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1505 * If link is down, the function will restore the default K1 setting located
1506 * in the NVM.
1507 **/
1508static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1509{
1510 s32 ret_val = 0;
1511 u16 status_reg = 0;
1512 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1513
1514 if (hw->mac.type != e1000_pchlan)
1515 return 0;
1516
1517 /* Wrap the whole flow with the sw flag */
1518 ret_val = hw->phy.ops.acquire(hw);
1519 if (ret_val)
1520 return ret_val;
1521
1522 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1523 if (link) {
1524 if (hw->phy.type == e1000_phy_82578) {
1525 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1526 &status_reg);
1527 if (ret_val)
1528 goto release;
1529
1530 status_reg &= BM_CS_STATUS_LINK_UP |
1531 BM_CS_STATUS_RESOLVED |
1532 BM_CS_STATUS_SPEED_MASK;
1533
1534 if (status_reg == (BM_CS_STATUS_LINK_UP |
1535 BM_CS_STATUS_RESOLVED |
1536 BM_CS_STATUS_SPEED_1000))
1537 k1_enable = false;
1538 }
1539
1540 if (hw->phy.type == e1000_phy_82577) {
1541 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1542 if (ret_val)
1543 goto release;
1544
1545 status_reg &= HV_M_STATUS_LINK_UP |
1546 HV_M_STATUS_AUTONEG_COMPLETE |
1547 HV_M_STATUS_SPEED_MASK;
1548
1549 if (status_reg == (HV_M_STATUS_LINK_UP |
1550 HV_M_STATUS_AUTONEG_COMPLETE |
1551 HV_M_STATUS_SPEED_1000))
1552 k1_enable = false;
1553 }
1554
1555 /* Link stall fix for link up */
1556 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1557 if (ret_val)
1558 goto release;
1559
1560 } else {
1561 /* Link stall fix for link down */
1562 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1563 if (ret_val)
1564 goto release;
1565 }
1566
1567 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1568
1569release:
1570 hw->phy.ops.release(hw);
1571
1572 return ret_val;
1573}
1574
1575/**
1576 * e1000_configure_k1_ich8lan - Configure K1 power state
1577 * @hw: pointer to the HW structure
1578 * @enable: K1 state to configure
1579 *
1580 * Configure the K1 power state based on the provided parameter.
1581 * Assumes semaphore already acquired.
1582 *
1583 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1584 **/
1585s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1586{
1587 s32 ret_val = 0;
1588 u32 ctrl_reg = 0;
1589 u32 ctrl_ext = 0;
1590 u32 reg = 0;
1591 u16 kmrn_reg = 0;
1592
1593 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1594 &kmrn_reg);
1595 if (ret_val)
1596 return ret_val;
1597
1598 if (k1_enable)
1599 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1600 else
1601 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1602
1603 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1604 kmrn_reg);
1605 if (ret_val)
1606 return ret_val;
1607
1608 udelay(20);
1609 ctrl_ext = er32(CTRL_EXT);
1610 ctrl_reg = er32(CTRL);
1611
1612 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1613 reg |= E1000_CTRL_FRCSPD;
1614 ew32(CTRL, reg);
1615
1616 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1617 e1e_flush();
1618 udelay(20);
1619 ew32(CTRL, ctrl_reg);
1620 ew32(CTRL_EXT, ctrl_ext);
1621 e1e_flush();
1622 udelay(20);
1623
1624 return 0;
1625}
1626
1627/**
1628 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1629 * @hw: pointer to the HW structure
1630 * @d0_state: boolean if entering d0 or d3 device state
1631 *
1632 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1633 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1634 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1635 **/
1636static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1637{
1638 s32 ret_val = 0;
1639 u32 mac_reg;
1640 u16 oem_reg;
1641
1642 if (hw->mac.type < e1000_pchlan)
1643 return ret_val;
1644
1645 ret_val = hw->phy.ops.acquire(hw);
1646 if (ret_val)
1647 return ret_val;
1648
1649 if (hw->mac.type == e1000_pchlan) {
1650 mac_reg = er32(EXTCNF_CTRL);
1651 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1652 goto release;
1653 }
1654
1655 mac_reg = er32(FEXTNVM);
1656 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1657 goto release;
1658
1659 mac_reg = er32(PHY_CTRL);
1660
1661 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1662 if (ret_val)
1663 goto release;
1664
1665 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1666
1667 if (d0_state) {
1668 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1669 oem_reg |= HV_OEM_BITS_GBE_DIS;
1670
1671 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1672 oem_reg |= HV_OEM_BITS_LPLU;
1673 } else {
1674 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1675 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1676 oem_reg |= HV_OEM_BITS_GBE_DIS;
1677
1678 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1679 E1000_PHY_CTRL_NOND0A_LPLU))
1680 oem_reg |= HV_OEM_BITS_LPLU;
1681 }
1682
1683 /* Set Restart auto-neg to activate the bits */
1684 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1685 !hw->phy.ops.check_reset_block(hw))
1686 oem_reg |= HV_OEM_BITS_RESTART_AN;
1687
1688 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1689
1690release:
1691 hw->phy.ops.release(hw);
1692
1693 return ret_val;
1694}
1695
1696
1697/**
1698 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1699 * @hw: pointer to the HW structure
1700 **/
1701static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1702{
1703 s32 ret_val;
1704 u16 data;
1705
1706 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1707 if (ret_val)
1708 return ret_val;
1709
1710 data |= HV_KMRN_MDIO_SLOW;
1711
1712 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1713
1714 return ret_val;
1715}
1716
1717/**
1718 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1719 * done after every PHY reset.
1720 **/
1721static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1722{
1723 s32 ret_val = 0;
1724 u16 phy_data;
1725
1726 if (hw->mac.type != e1000_pchlan)
1727 return 0;
1728
1729 /* Set MDIO slow mode before any other MDIO access */
1730 if (hw->phy.type == e1000_phy_82577) {
1731 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1732 if (ret_val)
1733 return ret_val;
1734 }
1735
1736 if (((hw->phy.type == e1000_phy_82577) &&
1737 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1738 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1739 /* Disable generation of early preamble */
1740 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1741 if (ret_val)
1742 return ret_val;
1743
1744 /* Preamble tuning for SSC */
1745 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1746 if (ret_val)
1747 return ret_val;
1748 }
1749
1750 if (hw->phy.type == e1000_phy_82578) {
1751 /*
1752 * Return registers to default by doing a soft reset then
1753 * writing 0x3140 to the control register.
1754 */
1755 if (hw->phy.revision < 2) {
1756 e1000e_phy_sw_reset(hw);
1757 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1758 }
1759 }
1760
1761 /* Select page 0 */
1762 ret_val = hw->phy.ops.acquire(hw);
1763 if (ret_val)
1764 return ret_val;
1765
1766 hw->phy.addr = 1;
1767 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1768 hw->phy.ops.release(hw);
1769 if (ret_val)
1770 return ret_val;
1771
1772 /*
1773 * Configure the K1 Si workaround during phy reset assuming there is
1774 * link so that it disables K1 if link is in 1Gbps.
1775 */
1776 ret_val = e1000_k1_gig_workaround_hv(hw, true);
1777 if (ret_val)
1778 return ret_val;
1779
1780 /* Workaround for link disconnects on a busy hub in half duplex */
1781 ret_val = hw->phy.ops.acquire(hw);
1782 if (ret_val)
1783 return ret_val;
1784 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1785 if (ret_val)
1786 goto release;
1787 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1788release:
1789 hw->phy.ops.release(hw);
1790
1791 return ret_val;
1792}
1793
1794/**
1795 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1796 * @hw: pointer to the HW structure
1797 **/
1798void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1799{
1800 u32 mac_reg;
1801 u16 i, phy_reg = 0;
1802 s32 ret_val;
1803
1804 ret_val = hw->phy.ops.acquire(hw);
1805 if (ret_val)
1806 return;
1807 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1808 if (ret_val)
1809 goto release;
1810
1811 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1812 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1813 mac_reg = er32(RAL(i));
1814 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1815 (u16)(mac_reg & 0xFFFF));
1816 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1817 (u16)((mac_reg >> 16) & 0xFFFF));
1818
1819 mac_reg = er32(RAH(i));
1820 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1821 (u16)(mac_reg & 0xFFFF));
1822 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1823 (u16)((mac_reg & E1000_RAH_AV)
1824 >> 16));
1825 }
1826
1827 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1828
1829release:
1830 hw->phy.ops.release(hw);
1831}
1832
1833/**
1834 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1835 * with 82579 PHY
1836 * @hw: pointer to the HW structure
1837 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1838 **/
1839s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1840{
1841 s32 ret_val = 0;
1842 u16 phy_reg, data;
1843 u32 mac_reg;
1844 u16 i;
1845
1846 if (hw->mac.type < e1000_pch2lan)
1847 return 0;
1848
1849 /* disable Rx path while enabling/disabling workaround */
1850 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1851 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1852 if (ret_val)
1853 return ret_val;
1854
1855 if (enable) {
1856 /*
1857 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1858 * SHRAL/H) and initial CRC values to the MAC
1859 */
1860 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1861 u8 mac_addr[ETH_ALEN] = {0};
1862 u32 addr_high, addr_low;
1863
1864 addr_high = er32(RAH(i));
1865 if (!(addr_high & E1000_RAH_AV))
1866 continue;
1867 addr_low = er32(RAL(i));
1868 mac_addr[0] = (addr_low & 0xFF);
1869 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1870 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1871 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1872 mac_addr[4] = (addr_high & 0xFF);
1873 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1874
1875 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1876 }
1877
1878 /* Write Rx addresses to the PHY */
1879 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1880
1881 /* Enable jumbo frame workaround in the MAC */
1882 mac_reg = er32(FFLT_DBG);
1883 mac_reg &= ~(1 << 14);
1884 mac_reg |= (7 << 15);
1885 ew32(FFLT_DBG, mac_reg);
1886
1887 mac_reg = er32(RCTL);
1888 mac_reg |= E1000_RCTL_SECRC;
1889 ew32(RCTL, mac_reg);
1890
1891 ret_val = e1000e_read_kmrn_reg(hw,
1892 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1893 &data);
1894 if (ret_val)
1895 return ret_val;
1896 ret_val = e1000e_write_kmrn_reg(hw,
1897 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1898 data | (1 << 0));
1899 if (ret_val)
1900 return ret_val;
1901 ret_val = e1000e_read_kmrn_reg(hw,
1902 E1000_KMRNCTRLSTA_HD_CTRL,
1903 &data);
1904 if (ret_val)
1905 return ret_val;
1906 data &= ~(0xF << 8);
1907 data |= (0xB << 8);
1908 ret_val = e1000e_write_kmrn_reg(hw,
1909 E1000_KMRNCTRLSTA_HD_CTRL,
1910 data);
1911 if (ret_val)
1912 return ret_val;
1913
1914 /* Enable jumbo frame workaround in the PHY */
1915 e1e_rphy(hw, PHY_REG(769, 23), &data);
1916 data &= ~(0x7F << 5);
1917 data |= (0x37 << 5);
1918 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1919 if (ret_val)
1920 return ret_val;
1921 e1e_rphy(hw, PHY_REG(769, 16), &data);
1922 data &= ~(1 << 13);
1923 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1924 if (ret_val)
1925 return ret_val;
1926 e1e_rphy(hw, PHY_REG(776, 20), &data);
1927 data &= ~(0x3FF << 2);
1928 data |= (0x1A << 2);
1929 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1930 if (ret_val)
1931 return ret_val;
1932 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1933 if (ret_val)
1934 return ret_val;
1935 e1e_rphy(hw, HV_PM_CTRL, &data);
1936 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1937 if (ret_val)
1938 return ret_val;
1939 } else {
1940 /* Write MAC register values back to h/w defaults */
1941 mac_reg = er32(FFLT_DBG);
1942 mac_reg &= ~(0xF << 14);
1943 ew32(FFLT_DBG, mac_reg);
1944
1945 mac_reg = er32(RCTL);
1946 mac_reg &= ~E1000_RCTL_SECRC;
1947 ew32(RCTL, mac_reg);
1948
1949 ret_val = e1000e_read_kmrn_reg(hw,
1950 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1951 &data);
1952 if (ret_val)
1953 return ret_val;
1954 ret_val = e1000e_write_kmrn_reg(hw,
1955 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1956 data & ~(1 << 0));
1957 if (ret_val)
1958 return ret_val;
1959 ret_val = e1000e_read_kmrn_reg(hw,
1960 E1000_KMRNCTRLSTA_HD_CTRL,
1961 &data);
1962 if (ret_val)
1963 return ret_val;
1964 data &= ~(0xF << 8);
1965 data |= (0xB << 8);
1966 ret_val = e1000e_write_kmrn_reg(hw,
1967 E1000_KMRNCTRLSTA_HD_CTRL,
1968 data);
1969 if (ret_val)
1970 return ret_val;
1971
1972 /* Write PHY register values back to h/w defaults */
1973 e1e_rphy(hw, PHY_REG(769, 23), &data);
1974 data &= ~(0x7F << 5);
1975 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1976 if (ret_val)
1977 return ret_val;
1978 e1e_rphy(hw, PHY_REG(769, 16), &data);
1979 data |= (1 << 13);
1980 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1981 if (ret_val)
1982 return ret_val;
1983 e1e_rphy(hw, PHY_REG(776, 20), &data);
1984 data &= ~(0x3FF << 2);
1985 data |= (0x8 << 2);
1986 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1987 if (ret_val)
1988 return ret_val;
1989 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1990 if (ret_val)
1991 return ret_val;
1992 e1e_rphy(hw, HV_PM_CTRL, &data);
1993 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1994 if (ret_val)
1995 return ret_val;
1996 }
1997
1998 /* re-enable Rx path after enabling/disabling workaround */
1999 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2000}
2001
2002/**
2003 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2004 * done after every PHY reset.
2005 **/
2006static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2007{
2008 s32 ret_val = 0;
2009
2010 if (hw->mac.type != e1000_pch2lan)
2011 return 0;
2012
2013 /* Set MDIO slow mode before any other MDIO access */
2014 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2015
2016 ret_val = hw->phy.ops.acquire(hw);
2017 if (ret_val)
2018 return ret_val;
2019 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
2020 if (ret_val)
2021 goto release;
2022 /* set MSE higher to enable link to stay up when noise is high */
2023 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
2024 if (ret_val)
2025 goto release;
2026 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
2027 if (ret_val)
2028 goto release;
2029 /* drop link after 5 times MSE threshold was reached */
2030 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
2031release:
2032 hw->phy.ops.release(hw);
2033
2034 return ret_val;
2035}
2036
2037/**
2038 * e1000_k1_gig_workaround_lv - K1 Si workaround
2039 * @hw: pointer to the HW structure
2040 *
2041 * Workaround to set the K1 beacon duration for 82579 parts
2042 **/
2043static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2044{
2045 s32 ret_val = 0;
2046 u16 status_reg = 0;
2047 u32 mac_reg;
2048 u16 phy_reg;
2049
2050 if (hw->mac.type != e1000_pch2lan)
2051 return 0;
2052
2053 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
2054 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2055 if (ret_val)
2056 return ret_val;
2057
2058 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2059 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2060 mac_reg = er32(FEXTNVM4);
2061 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2062
2063 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2064 if (ret_val)
2065 return ret_val;
2066
2067 if (status_reg & HV_M_STATUS_SPEED_1000) {
2068 u16 pm_phy_reg;
2069
2070 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2071 phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2072 /* LV 1G Packet drop issue wa */
2073 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2074 if (ret_val)
2075 return ret_val;
2076 pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2077 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2078 if (ret_val)
2079 return ret_val;
2080 } else {
2081 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2082 phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2083 }
2084 ew32(FEXTNVM4, mac_reg);
2085 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2086 }
2087
2088 return ret_val;
2089}
2090
2091/**
2092 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2093 * @hw: pointer to the HW structure
2094 * @gate: boolean set to true to gate, false to ungate
2095 *
2096 * Gate/ungate the automatic PHY configuration via hardware; perform
2097 * the configuration via software instead.
2098 **/
2099static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2100{
2101 u32 extcnf_ctrl;
2102
2103 if (hw->mac.type < e1000_pch2lan)
2104 return;
2105
2106 extcnf_ctrl = er32(EXTCNF_CTRL);
2107
2108 if (gate)
2109 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2110 else
2111 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2112
2113 ew32(EXTCNF_CTRL, extcnf_ctrl);
2114}
2115
2116/**
2117 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2118 * @hw: pointer to the HW structure
2119 *
2120 * Check the appropriate indication the MAC has finished configuring the
2121 * PHY after a software reset.
2122 **/
2123static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2124{
2125 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2126
2127 /* Wait for basic configuration completes before proceeding */
2128 do {
2129 data = er32(STATUS);
2130 data &= E1000_STATUS_LAN_INIT_DONE;
2131 udelay(100);
2132 } while ((!data) && --loop);
2133
2134 /*
2135 * If basic configuration is incomplete before the above loop
2136 * count reaches 0, loading the configuration from NVM will
2137 * leave the PHY in a bad state possibly resulting in no link.
2138 */
2139 if (loop == 0)
2140 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2141
2142 /* Clear the Init Done bit for the next init event */
2143 data = er32(STATUS);
2144 data &= ~E1000_STATUS_LAN_INIT_DONE;
2145 ew32(STATUS, data);
2146}
2147
2148/**
2149 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2150 * @hw: pointer to the HW structure
2151 **/
2152static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2153{
2154 s32 ret_val = 0;
2155 u16 reg;
2156
2157 if (hw->phy.ops.check_reset_block(hw))
2158 return 0;
2159
2160 /* Allow time for h/w to get to quiescent state after reset */
2161 usleep_range(10000, 20000);
2162
2163 /* Perform any necessary post-reset workarounds */
2164 switch (hw->mac.type) {
2165 case e1000_pchlan:
2166 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2167 if (ret_val)
2168 return ret_val;
2169 break;
2170 case e1000_pch2lan:
2171 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2172 if (ret_val)
2173 return ret_val;
2174 break;
2175 default:
2176 break;
2177 }
2178
2179 /* Clear the host wakeup bit after lcd reset */
2180 if (hw->mac.type >= e1000_pchlan) {
2181 e1e_rphy(hw, BM_PORT_GEN_CFG, ®);
2182 reg &= ~BM_WUC_HOST_WU_BIT;
2183 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2184 }
2185
2186 /* Configure the LCD with the extended configuration region in NVM */
2187 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2188 if (ret_val)
2189 return ret_val;
2190
2191 /* Configure the LCD with the OEM bits in NVM */
2192 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2193
2194 if (hw->mac.type == e1000_pch2lan) {
2195 /* Ungate automatic PHY configuration on non-managed 82579 */
2196 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2197 usleep_range(10000, 20000);
2198 e1000_gate_hw_phy_config_ich8lan(hw, false);
2199 }
2200
2201 /* Set EEE LPI Update Timer to 200usec */
2202 ret_val = hw->phy.ops.acquire(hw);
2203 if (ret_val)
2204 return ret_val;
2205 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
2206 I82579_LPI_UPDATE_TIMER);
2207 if (!ret_val)
2208 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
2209 hw->phy.ops.release(hw);
2210 }
2211
2212 return ret_val;
2213}
2214
2215/**
2216 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2217 * @hw: pointer to the HW structure
2218 *
2219 * Resets the PHY
2220 * This is a function pointer entry point called by drivers
2221 * or other shared routines.
2222 **/
2223static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2224{
2225 s32 ret_val = 0;
2226
2227 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2228 if ((hw->mac.type == e1000_pch2lan) &&
2229 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2230 e1000_gate_hw_phy_config_ich8lan(hw, true);
2231
2232 ret_val = e1000e_phy_hw_reset_generic(hw);
2233 if (ret_val)
2234 return ret_val;
2235
2236 return e1000_post_phy_reset_ich8lan(hw);
2237}
2238
2239/**
2240 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2241 * @hw: pointer to the HW structure
2242 * @active: true to enable LPLU, false to disable
2243 *
2244 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2245 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2246 * the phy speed. This function will manually set the LPLU bit and restart
2247 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2248 * since it configures the same bit.
2249 **/
2250static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2251{
2252 s32 ret_val = 0;
2253 u16 oem_reg;
2254
2255 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2256 if (ret_val)
2257 return ret_val;
2258
2259 if (active)
2260 oem_reg |= HV_OEM_BITS_LPLU;
2261 else
2262 oem_reg &= ~HV_OEM_BITS_LPLU;
2263
2264 if (!hw->phy.ops.check_reset_block(hw))
2265 oem_reg |= HV_OEM_BITS_RESTART_AN;
2266
2267 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2268}
2269
2270/**
2271 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2272 * @hw: pointer to the HW structure
2273 * @active: true to enable LPLU, false to disable
2274 *
2275 * Sets the LPLU D0 state according to the active flag. When
2276 * activating LPLU this function also disables smart speed
2277 * and vice versa. LPLU will not be activated unless the
2278 * device autonegotiation advertisement meets standards of
2279 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2280 * This is a function pointer entry point only called by
2281 * PHY setup routines.
2282 **/
2283static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2284{
2285 struct e1000_phy_info *phy = &hw->phy;
2286 u32 phy_ctrl;
2287 s32 ret_val = 0;
2288 u16 data;
2289
2290 if (phy->type == e1000_phy_ife)
2291 return 0;
2292
2293 phy_ctrl = er32(PHY_CTRL);
2294
2295 if (active) {
2296 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2297 ew32(PHY_CTRL, phy_ctrl);
2298
2299 if (phy->type != e1000_phy_igp_3)
2300 return 0;
2301
2302 /*
2303 * Call gig speed drop workaround on LPLU before accessing
2304 * any PHY registers
2305 */
2306 if (hw->mac.type == e1000_ich8lan)
2307 e1000e_gig_downshift_workaround_ich8lan(hw);
2308
2309 /* When LPLU is enabled, we should disable SmartSpeed */
2310 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2311 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2312 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2313 if (ret_val)
2314 return ret_val;
2315 } else {
2316 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2317 ew32(PHY_CTRL, phy_ctrl);
2318
2319 if (phy->type != e1000_phy_igp_3)
2320 return 0;
2321
2322 /*
2323 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
2324 * during Dx states where the power conservation is most
2325 * important. During driver activity we should enable
2326 * SmartSpeed, so performance is maintained.
2327 */
2328 if (phy->smart_speed == e1000_smart_speed_on) {
2329 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2330 &data);
2331 if (ret_val)
2332 return ret_val;
2333
2334 data |= IGP01E1000_PSCFR_SMART_SPEED;
2335 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2336 data);
2337 if (ret_val)
2338 return ret_val;
2339 } else if (phy->smart_speed == e1000_smart_speed_off) {
2340 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2341 &data);
2342 if (ret_val)
2343 return ret_val;
2344
2345 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2346 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2347 data);
2348 if (ret_val)
2349 return ret_val;
2350 }
2351 }
2352
2353 return 0;
2354}
2355
2356/**
2357 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2358 * @hw: pointer to the HW structure
2359 * @active: true to enable LPLU, false to disable
2360 *
2361 * Sets the LPLU D3 state according to the active flag. When
2362 * activating LPLU this function also disables smart speed
2363 * and vice versa. LPLU will not be activated unless the
2364 * device autonegotiation advertisement meets standards of
2365 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2366 * This is a function pointer entry point only called by
2367 * PHY setup routines.
2368 **/
2369static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2370{
2371 struct e1000_phy_info *phy = &hw->phy;
2372 u32 phy_ctrl;
2373 s32 ret_val = 0;
2374 u16 data;
2375
2376 phy_ctrl = er32(PHY_CTRL);
2377
2378 if (!active) {
2379 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2380 ew32(PHY_CTRL, phy_ctrl);
2381
2382 if (phy->type != e1000_phy_igp_3)
2383 return 0;
2384
2385 /*
2386 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
2387 * during Dx states where the power conservation is most
2388 * important. During driver activity we should enable
2389 * SmartSpeed, so performance is maintained.
2390 */
2391 if (phy->smart_speed == e1000_smart_speed_on) {
2392 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2393 &data);
2394 if (ret_val)
2395 return ret_val;
2396
2397 data |= IGP01E1000_PSCFR_SMART_SPEED;
2398 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2399 data);
2400 if (ret_val)
2401 return ret_val;
2402 } else if (phy->smart_speed == e1000_smart_speed_off) {
2403 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2404 &data);
2405 if (ret_val)
2406 return ret_val;
2407
2408 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2409 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2410 data);
2411 if (ret_val)
2412 return ret_val;
2413 }
2414 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2415 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2416 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2417 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2418 ew32(PHY_CTRL, phy_ctrl);
2419
2420 if (phy->type != e1000_phy_igp_3)
2421 return 0;
2422
2423 /*
2424 * Call gig speed drop workaround on LPLU before accessing
2425 * any PHY registers
2426 */
2427 if (hw->mac.type == e1000_ich8lan)
2428 e1000e_gig_downshift_workaround_ich8lan(hw);
2429
2430 /* When LPLU is enabled, we should disable SmartSpeed */
2431 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2432 if (ret_val)
2433 return ret_val;
2434
2435 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2436 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2437 }
2438
2439 return ret_val;
2440}
2441
2442/**
2443 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2444 * @hw: pointer to the HW structure
2445 * @bank: pointer to the variable that returns the active bank
2446 *
2447 * Reads signature byte from the NVM using the flash access registers.
2448 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2449 **/
2450static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2451{
2452 u32 eecd;
2453 struct e1000_nvm_info *nvm = &hw->nvm;
2454 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2455 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2456 u8 sig_byte = 0;
2457 s32 ret_val;
2458
2459 switch (hw->mac.type) {
2460 case e1000_ich8lan:
2461 case e1000_ich9lan:
2462 eecd = er32(EECD);
2463 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2464 E1000_EECD_SEC1VAL_VALID_MASK) {
2465 if (eecd & E1000_EECD_SEC1VAL)
2466 *bank = 1;
2467 else
2468 *bank = 0;
2469
2470 return 0;
2471 }
2472 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2473 /* fall-thru */
2474 default:
2475 /* set bank to 0 in case flash read fails */
2476 *bank = 0;
2477
2478 /* Check bank 0 */
2479 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2480 &sig_byte);
2481 if (ret_val)
2482 return ret_val;
2483 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2484 E1000_ICH_NVM_SIG_VALUE) {
2485 *bank = 0;
2486 return 0;
2487 }
2488
2489 /* Check bank 1 */
2490 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2491 bank1_offset,
2492 &sig_byte);
2493 if (ret_val)
2494 return ret_val;
2495 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2496 E1000_ICH_NVM_SIG_VALUE) {
2497 *bank = 1;
2498 return 0;
2499 }
2500
2501 e_dbg("ERROR: No valid NVM bank present\n");
2502 return -E1000_ERR_NVM;
2503 }
2504}
2505
2506/**
2507 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2508 * @hw: pointer to the HW structure
2509 * @offset: The offset (in bytes) of the word(s) to read.
2510 * @words: Size of data to read in words
2511 * @data: Pointer to the word(s) to read at offset.
2512 *
2513 * Reads a word(s) from the NVM using the flash access registers.
2514 **/
2515static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2516 u16 *data)
2517{
2518 struct e1000_nvm_info *nvm = &hw->nvm;
2519 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2520 u32 act_offset;
2521 s32 ret_val = 0;
2522 u32 bank = 0;
2523 u16 i, word;
2524
2525 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2526 (words == 0)) {
2527 e_dbg("nvm parameter(s) out of bounds\n");
2528 ret_val = -E1000_ERR_NVM;
2529 goto out;
2530 }
2531
2532 nvm->ops.acquire(hw);
2533
2534 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2535 if (ret_val) {
2536 e_dbg("Could not detect valid bank, assuming bank 0\n");
2537 bank = 0;
2538 }
2539
2540 act_offset = (bank) ? nvm->flash_bank_size : 0;
2541 act_offset += offset;
2542
2543 ret_val = 0;
2544 for (i = 0; i < words; i++) {
2545 if (dev_spec->shadow_ram[offset+i].modified) {
2546 data[i] = dev_spec->shadow_ram[offset+i].value;
2547 } else {
2548 ret_val = e1000_read_flash_word_ich8lan(hw,
2549 act_offset + i,
2550 &word);
2551 if (ret_val)
2552 break;
2553 data[i] = word;
2554 }
2555 }
2556
2557 nvm->ops.release(hw);
2558
2559out:
2560 if (ret_val)
2561 e_dbg("NVM read error: %d\n", ret_val);
2562
2563 return ret_val;
2564}
2565
2566/**
2567 * e1000_flash_cycle_init_ich8lan - Initialize flash
2568 * @hw: pointer to the HW structure
2569 *
2570 * This function does initial flash setup so that a new read/write/erase cycle
2571 * can be started.
2572 **/
2573static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2574{
2575 union ich8_hws_flash_status hsfsts;
2576 s32 ret_val = -E1000_ERR_NVM;
2577
2578 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2579
2580 /* Check if the flash descriptor is valid */
2581 if (!hsfsts.hsf_status.fldesvalid) {
2582 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
2583 return -E1000_ERR_NVM;
2584 }
2585
2586 /* Clear FCERR and DAEL in hw status by writing 1 */
2587 hsfsts.hsf_status.flcerr = 1;
2588 hsfsts.hsf_status.dael = 1;
2589
2590 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2591
2592 /*
2593 * Either we should have a hardware SPI cycle in progress
2594 * bit to check against, in order to start a new cycle or
2595 * FDONE bit should be changed in the hardware so that it
2596 * is 1 after hardware reset, which can then be used as an
2597 * indication whether a cycle is in progress or has been
2598 * completed.
2599 */
2600
2601 if (!hsfsts.hsf_status.flcinprog) {
2602 /*
2603 * There is no cycle running at present,
2604 * so we can start a cycle.
2605 * Begin by setting Flash Cycle Done.
2606 */
2607 hsfsts.hsf_status.flcdone = 1;
2608 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2609 ret_val = 0;
2610 } else {
2611 s32 i;
2612
2613 /*
2614 * Otherwise poll for sometime so the current
2615 * cycle has a chance to end before giving up.
2616 */
2617 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2618 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2619 if (!hsfsts.hsf_status.flcinprog) {
2620 ret_val = 0;
2621 break;
2622 }
2623 udelay(1);
2624 }
2625 if (!ret_val) {
2626 /*
2627 * Successful in waiting for previous cycle to timeout,
2628 * now set the Flash Cycle Done.
2629 */
2630 hsfsts.hsf_status.flcdone = 1;
2631 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2632 } else {
2633 e_dbg("Flash controller busy, cannot get access\n");
2634 }
2635 }
2636
2637 return ret_val;
2638}
2639
2640/**
2641 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2642 * @hw: pointer to the HW structure
2643 * @timeout: maximum time to wait for completion
2644 *
2645 * This function starts a flash cycle and waits for its completion.
2646 **/
2647static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2648{
2649 union ich8_hws_flash_ctrl hsflctl;
2650 union ich8_hws_flash_status hsfsts;
2651 u32 i = 0;
2652
2653 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2654 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2655 hsflctl.hsf_ctrl.flcgo = 1;
2656 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2657
2658 /* wait till FDONE bit is set to 1 */
2659 do {
2660 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2661 if (hsfsts.hsf_status.flcdone)
2662 break;
2663 udelay(1);
2664 } while (i++ < timeout);
2665
2666 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2667 return 0;
2668
2669 return -E1000_ERR_NVM;
2670}
2671
2672/**
2673 * e1000_read_flash_word_ich8lan - Read word from flash
2674 * @hw: pointer to the HW structure
2675 * @offset: offset to data location
2676 * @data: pointer to the location for storing the data
2677 *
2678 * Reads the flash word at offset into data. Offset is converted
2679 * to bytes before read.
2680 **/
2681static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2682 u16 *data)
2683{
2684 /* Must convert offset into bytes. */
2685 offset <<= 1;
2686
2687 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2688}
2689
2690/**
2691 * e1000_read_flash_byte_ich8lan - Read byte from flash
2692 * @hw: pointer to the HW structure
2693 * @offset: The offset of the byte to read.
2694 * @data: Pointer to a byte to store the value read.
2695 *
2696 * Reads a single byte from the NVM using the flash access registers.
2697 **/
2698static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2699 u8 *data)
2700{
2701 s32 ret_val;
2702 u16 word = 0;
2703
2704 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2705 if (ret_val)
2706 return ret_val;
2707
2708 *data = (u8)word;
2709
2710 return 0;
2711}
2712
2713/**
2714 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2715 * @hw: pointer to the HW structure
2716 * @offset: The offset (in bytes) of the byte or word to read.
2717 * @size: Size of data to read, 1=byte 2=word
2718 * @data: Pointer to the word to store the value read.
2719 *
2720 * Reads a byte or word from the NVM using the flash access registers.
2721 **/
2722static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2723 u8 size, u16 *data)
2724{
2725 union ich8_hws_flash_status hsfsts;
2726 union ich8_hws_flash_ctrl hsflctl;
2727 u32 flash_linear_addr;
2728 u32 flash_data = 0;
2729 s32 ret_val = -E1000_ERR_NVM;
2730 u8 count = 0;
2731
2732 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2733 return -E1000_ERR_NVM;
2734
2735 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2736 hw->nvm.flash_base_addr;
2737
2738 do {
2739 udelay(1);
2740 /* Steps */
2741 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2742 if (ret_val)
2743 break;
2744
2745 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2746 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2747 hsflctl.hsf_ctrl.fldbcount = size - 1;
2748 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2749 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2750
2751 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2752
2753 ret_val = e1000_flash_cycle_ich8lan(hw,
2754 ICH_FLASH_READ_COMMAND_TIMEOUT);
2755
2756 /*
2757 * Check if FCERR is set to 1, if set to 1, clear it
2758 * and try the whole sequence a few more times, else
2759 * read in (shift in) the Flash Data0, the order is
2760 * least significant byte first msb to lsb
2761 */
2762 if (!ret_val) {
2763 flash_data = er32flash(ICH_FLASH_FDATA0);
2764 if (size == 1)
2765 *data = (u8)(flash_data & 0x000000FF);
2766 else if (size == 2)
2767 *data = (u16)(flash_data & 0x0000FFFF);
2768 break;
2769 } else {
2770 /*
2771 * If we've gotten here, then things are probably
2772 * completely hosed, but if the error condition is
2773 * detected, it won't hurt to give it another try...
2774 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2775 */
2776 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2777 if (hsfsts.hsf_status.flcerr) {
2778 /* Repeat for some time before giving up. */
2779 continue;
2780 } else if (!hsfsts.hsf_status.flcdone) {
2781 e_dbg("Timeout error - flash cycle did not complete.\n");
2782 break;
2783 }
2784 }
2785 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2786
2787 return ret_val;
2788}
2789
2790/**
2791 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2792 * @hw: pointer to the HW structure
2793 * @offset: The offset (in bytes) of the word(s) to write.
2794 * @words: Size of data to write in words
2795 * @data: Pointer to the word(s) to write at offset.
2796 *
2797 * Writes a byte or word to the NVM using the flash access registers.
2798 **/
2799static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2800 u16 *data)
2801{
2802 struct e1000_nvm_info *nvm = &hw->nvm;
2803 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2804 u16 i;
2805
2806 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2807 (words == 0)) {
2808 e_dbg("nvm parameter(s) out of bounds\n");
2809 return -E1000_ERR_NVM;
2810 }
2811
2812 nvm->ops.acquire(hw);
2813
2814 for (i = 0; i < words; i++) {
2815 dev_spec->shadow_ram[offset+i].modified = true;
2816 dev_spec->shadow_ram[offset+i].value = data[i];
2817 }
2818
2819 nvm->ops.release(hw);
2820
2821 return 0;
2822}
2823
2824/**
2825 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2826 * @hw: pointer to the HW structure
2827 *
2828 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2829 * which writes the checksum to the shadow ram. The changes in the shadow
2830 * ram are then committed to the EEPROM by processing each bank at a time
2831 * checking for the modified bit and writing only the pending changes.
2832 * After a successful commit, the shadow ram is cleared and is ready for
2833 * future writes.
2834 **/
2835static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2836{
2837 struct e1000_nvm_info *nvm = &hw->nvm;
2838 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2839 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2840 s32 ret_val;
2841 u16 data;
2842
2843 ret_val = e1000e_update_nvm_checksum_generic(hw);
2844 if (ret_val)
2845 goto out;
2846
2847 if (nvm->type != e1000_nvm_flash_sw)
2848 goto out;
2849
2850 nvm->ops.acquire(hw);
2851
2852 /*
2853 * We're writing to the opposite bank so if we're on bank 1,
2854 * write to bank 0 etc. We also need to erase the segment that
2855 * is going to be written
2856 */
2857 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2858 if (ret_val) {
2859 e_dbg("Could not detect valid bank, assuming bank 0\n");
2860 bank = 0;
2861 }
2862
2863 if (bank == 0) {
2864 new_bank_offset = nvm->flash_bank_size;
2865 old_bank_offset = 0;
2866 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2867 if (ret_val)
2868 goto release;
2869 } else {
2870 old_bank_offset = nvm->flash_bank_size;
2871 new_bank_offset = 0;
2872 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2873 if (ret_val)
2874 goto release;
2875 }
2876
2877 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2878 /*
2879 * Determine whether to write the value stored
2880 * in the other NVM bank or a modified value stored
2881 * in the shadow RAM
2882 */
2883 if (dev_spec->shadow_ram[i].modified) {
2884 data = dev_spec->shadow_ram[i].value;
2885 } else {
2886 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2887 old_bank_offset,
2888 &data);
2889 if (ret_val)
2890 break;
2891 }
2892
2893 /*
2894 * If the word is 0x13, then make sure the signature bits
2895 * (15:14) are 11b until the commit has completed.
2896 * This will allow us to write 10b which indicates the
2897 * signature is valid. We want to do this after the write
2898 * has completed so that we don't mark the segment valid
2899 * while the write is still in progress
2900 */
2901 if (i == E1000_ICH_NVM_SIG_WORD)
2902 data |= E1000_ICH_NVM_SIG_MASK;
2903
2904 /* Convert offset to bytes. */
2905 act_offset = (i + new_bank_offset) << 1;
2906
2907 udelay(100);
2908 /* Write the bytes to the new bank. */
2909 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2910 act_offset,
2911 (u8)data);
2912 if (ret_val)
2913 break;
2914
2915 udelay(100);
2916 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2917 act_offset + 1,
2918 (u8)(data >> 8));
2919 if (ret_val)
2920 break;
2921 }
2922
2923 /*
2924 * Don't bother writing the segment valid bits if sector
2925 * programming failed.
2926 */
2927 if (ret_val) {
2928 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2929 e_dbg("Flash commit failed.\n");
2930 goto release;
2931 }
2932
2933 /*
2934 * Finally validate the new segment by setting bit 15:14
2935 * to 10b in word 0x13 , this can be done without an
2936 * erase as well since these bits are 11 to start with
2937 * and we need to change bit 14 to 0b
2938 */
2939 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2940 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2941 if (ret_val)
2942 goto release;
2943
2944 data &= 0xBFFF;
2945 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2946 act_offset * 2 + 1,
2947 (u8)(data >> 8));
2948 if (ret_val)
2949 goto release;
2950
2951 /*
2952 * And invalidate the previously valid segment by setting
2953 * its signature word (0x13) high_byte to 0b. This can be
2954 * done without an erase because flash erase sets all bits
2955 * to 1's. We can write 1's to 0's without an erase
2956 */
2957 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2958 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2959 if (ret_val)
2960 goto release;
2961
2962 /* Great! Everything worked, we can now clear the cached entries. */
2963 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2964 dev_spec->shadow_ram[i].modified = false;
2965 dev_spec->shadow_ram[i].value = 0xFFFF;
2966 }
2967
2968release:
2969 nvm->ops.release(hw);
2970
2971 /*
2972 * Reload the EEPROM, or else modifications will not appear
2973 * until after the next adapter reset.
2974 */
2975 if (!ret_val) {
2976 nvm->ops.reload(hw);
2977 usleep_range(10000, 20000);
2978 }
2979
2980out:
2981 if (ret_val)
2982 e_dbg("NVM update error: %d\n", ret_val);
2983
2984 return ret_val;
2985}
2986
2987/**
2988 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2989 * @hw: pointer to the HW structure
2990 *
2991 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2992 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2993 * calculated, in which case we need to calculate the checksum and set bit 6.
2994 **/
2995static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2996{
2997 s32 ret_val;
2998 u16 data;
2999
3000 /*
3001 * Read 0x19 and check bit 6. If this bit is 0, the checksum
3002 * needs to be fixed. This bit is an indication that the NVM
3003 * was prepared by OEM software and did not calculate the
3004 * checksum...a likely scenario.
3005 */
3006 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
3007 if (ret_val)
3008 return ret_val;
3009
3010 if (!(data & 0x40)) {
3011 data |= 0x40;
3012 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
3013 if (ret_val)
3014 return ret_val;
3015 ret_val = e1000e_update_nvm_checksum(hw);
3016 if (ret_val)
3017 return ret_val;
3018 }
3019
3020 return e1000e_validate_nvm_checksum_generic(hw);
3021}
3022
3023/**
3024 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3025 * @hw: pointer to the HW structure
3026 *
3027 * To prevent malicious write/erase of the NVM, set it to be read-only
3028 * so that the hardware ignores all write/erase cycles of the NVM via
3029 * the flash control registers. The shadow-ram copy of the NVM will
3030 * still be updated, however any updates to this copy will not stick
3031 * across driver reloads.
3032 **/
3033void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3034{
3035 struct e1000_nvm_info *nvm = &hw->nvm;
3036 union ich8_flash_protected_range pr0;
3037 union ich8_hws_flash_status hsfsts;
3038 u32 gfpreg;
3039
3040 nvm->ops.acquire(hw);
3041
3042 gfpreg = er32flash(ICH_FLASH_GFPREG);
3043
3044 /* Write-protect GbE Sector of NVM */
3045 pr0.regval = er32flash(ICH_FLASH_PR0);
3046 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3047 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3048 pr0.range.wpe = true;
3049 ew32flash(ICH_FLASH_PR0, pr0.regval);
3050
3051 /*
3052 * Lock down a subset of GbE Flash Control Registers, e.g.
3053 * PR0 to prevent the write-protection from being lifted.
3054 * Once FLOCKDN is set, the registers protected by it cannot
3055 * be written until FLOCKDN is cleared by a hardware reset.
3056 */
3057 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3058 hsfsts.hsf_status.flockdn = true;
3059 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3060
3061 nvm->ops.release(hw);
3062}
3063
3064/**
3065 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3066 * @hw: pointer to the HW structure
3067 * @offset: The offset (in bytes) of the byte/word to read.
3068 * @size: Size of data to read, 1=byte 2=word
3069 * @data: The byte(s) to write to the NVM.
3070 *
3071 * Writes one/two bytes to the NVM using the flash access registers.
3072 **/
3073static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3074 u8 size, u16 data)
3075{
3076 union ich8_hws_flash_status hsfsts;
3077 union ich8_hws_flash_ctrl hsflctl;
3078 u32 flash_linear_addr;
3079 u32 flash_data = 0;
3080 s32 ret_val;
3081 u8 count = 0;
3082
3083 if (size < 1 || size > 2 || data > size * 0xff ||
3084 offset > ICH_FLASH_LINEAR_ADDR_MASK)
3085 return -E1000_ERR_NVM;
3086
3087 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3088 hw->nvm.flash_base_addr;
3089
3090 do {
3091 udelay(1);
3092 /* Steps */
3093 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3094 if (ret_val)
3095 break;
3096
3097 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3098 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3099 hsflctl.hsf_ctrl.fldbcount = size -1;
3100 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3101 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3102
3103 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3104
3105 if (size == 1)
3106 flash_data = (u32)data & 0x00FF;
3107 else
3108 flash_data = (u32)data;
3109
3110 ew32flash(ICH_FLASH_FDATA0, flash_data);
3111
3112 /*
3113 * check if FCERR is set to 1 , if set to 1, clear it
3114 * and try the whole sequence a few more times else done
3115 */
3116 ret_val = e1000_flash_cycle_ich8lan(hw,
3117 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3118 if (!ret_val)
3119 break;
3120
3121 /*
3122 * If we're here, then things are most likely
3123 * completely hosed, but if the error condition
3124 * is detected, it won't hurt to give it another
3125 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3126 */
3127 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3128 if (hsfsts.hsf_status.flcerr)
3129 /* Repeat for some time before giving up. */
3130 continue;
3131 if (!hsfsts.hsf_status.flcdone) {
3132 e_dbg("Timeout error - flash cycle did not complete.\n");
3133 break;
3134 }
3135 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3136
3137 return ret_val;
3138}
3139
3140/**
3141 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3142 * @hw: pointer to the HW structure
3143 * @offset: The index of the byte to read.
3144 * @data: The byte to write to the NVM.
3145 *
3146 * Writes a single byte to the NVM using the flash access registers.
3147 **/
3148static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3149 u8 data)
3150{
3151 u16 word = (u16)data;
3152
3153 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3154}
3155
3156/**
3157 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3158 * @hw: pointer to the HW structure
3159 * @offset: The offset of the byte to write.
3160 * @byte: The byte to write to the NVM.
3161 *
3162 * Writes a single byte to the NVM using the flash access registers.
3163 * Goes through a retry algorithm before giving up.
3164 **/
3165static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3166 u32 offset, u8 byte)
3167{
3168 s32 ret_val;
3169 u16 program_retries;
3170
3171 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3172 if (!ret_val)
3173 return ret_val;
3174
3175 for (program_retries = 0; program_retries < 100; program_retries++) {
3176 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3177 udelay(100);
3178 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3179 if (!ret_val)
3180 break;
3181 }
3182 if (program_retries == 100)
3183 return -E1000_ERR_NVM;
3184
3185 return 0;
3186}
3187
3188/**
3189 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3190 * @hw: pointer to the HW structure
3191 * @bank: 0 for first bank, 1 for second bank, etc.
3192 *
3193 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3194 * bank N is 4096 * N + flash_reg_addr.
3195 **/
3196static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3197{
3198 struct e1000_nvm_info *nvm = &hw->nvm;
3199 union ich8_hws_flash_status hsfsts;
3200 union ich8_hws_flash_ctrl hsflctl;
3201 u32 flash_linear_addr;
3202 /* bank size is in 16bit words - adjust to bytes */
3203 u32 flash_bank_size = nvm->flash_bank_size * 2;
3204 s32 ret_val;
3205 s32 count = 0;
3206 s32 j, iteration, sector_size;
3207
3208 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3209
3210 /*
3211 * Determine HW Sector size: Read BERASE bits of hw flash status
3212 * register
3213 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3214 * consecutive sectors. The start index for the nth Hw sector
3215 * can be calculated as = bank * 4096 + n * 256
3216 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3217 * The start index for the nth Hw sector can be calculated
3218 * as = bank * 4096
3219 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3220 * (ich9 only, otherwise error condition)
3221 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3222 */
3223 switch (hsfsts.hsf_status.berasesz) {
3224 case 0:
3225 /* Hw sector size 256 */
3226 sector_size = ICH_FLASH_SEG_SIZE_256;
3227 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3228 break;
3229 case 1:
3230 sector_size = ICH_FLASH_SEG_SIZE_4K;
3231 iteration = 1;
3232 break;
3233 case 2:
3234 sector_size = ICH_FLASH_SEG_SIZE_8K;
3235 iteration = 1;
3236 break;
3237 case 3:
3238 sector_size = ICH_FLASH_SEG_SIZE_64K;
3239 iteration = 1;
3240 break;
3241 default:
3242 return -E1000_ERR_NVM;
3243 }
3244
3245 /* Start with the base address, then add the sector offset. */
3246 flash_linear_addr = hw->nvm.flash_base_addr;
3247 flash_linear_addr += (bank) ? flash_bank_size : 0;
3248
3249 for (j = 0; j < iteration ; j++) {
3250 do {
3251 /* Steps */
3252 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3253 if (ret_val)
3254 return ret_val;
3255
3256 /*
3257 * Write a value 11 (block Erase) in Flash
3258 * Cycle field in hw flash control
3259 */
3260 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3261 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3262 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3263
3264 /*
3265 * Write the last 24 bits of an index within the
3266 * block into Flash Linear address field in Flash
3267 * Address.
3268 */
3269 flash_linear_addr += (j * sector_size);
3270 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3271
3272 ret_val = e1000_flash_cycle_ich8lan(hw,
3273 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3274 if (!ret_val)
3275 break;
3276
3277 /*
3278 * Check if FCERR is set to 1. If 1,
3279 * clear it and try the whole sequence
3280 * a few more times else Done
3281 */
3282 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3283 if (hsfsts.hsf_status.flcerr)
3284 /* repeat for some time before giving up */
3285 continue;
3286 else if (!hsfsts.hsf_status.flcdone)
3287 return ret_val;
3288 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3289 }
3290
3291 return 0;
3292}
3293
3294/**
3295 * e1000_valid_led_default_ich8lan - Set the default LED settings
3296 * @hw: pointer to the HW structure
3297 * @data: Pointer to the LED settings
3298 *
3299 * Reads the LED default settings from the NVM to data. If the NVM LED
3300 * settings is all 0's or F's, set the LED default to a valid LED default
3301 * setting.
3302 **/
3303static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3304{
3305 s32 ret_val;
3306
3307 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3308 if (ret_val) {
3309 e_dbg("NVM Read Error\n");
3310 return ret_val;
3311 }
3312
3313 if (*data == ID_LED_RESERVED_0000 ||
3314 *data == ID_LED_RESERVED_FFFF)
3315 *data = ID_LED_DEFAULT_ICH8LAN;
3316
3317 return 0;
3318}
3319
3320/**
3321 * e1000_id_led_init_pchlan - store LED configurations
3322 * @hw: pointer to the HW structure
3323 *
3324 * PCH does not control LEDs via the LEDCTL register, rather it uses
3325 * the PHY LED configuration register.
3326 *
3327 * PCH also does not have an "always on" or "always off" mode which
3328 * complicates the ID feature. Instead of using the "on" mode to indicate
3329 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3330 * use "link_up" mode. The LEDs will still ID on request if there is no
3331 * link based on logic in e1000_led_[on|off]_pchlan().
3332 **/
3333static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3334{
3335 struct e1000_mac_info *mac = &hw->mac;
3336 s32 ret_val;
3337 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3338 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3339 u16 data, i, temp, shift;
3340
3341 /* Get default ID LED modes */
3342 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3343 if (ret_val)
3344 return ret_val;
3345
3346 mac->ledctl_default = er32(LEDCTL);
3347 mac->ledctl_mode1 = mac->ledctl_default;
3348 mac->ledctl_mode2 = mac->ledctl_default;
3349
3350 for (i = 0; i < 4; i++) {
3351 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3352 shift = (i * 5);
3353 switch (temp) {
3354 case ID_LED_ON1_DEF2:
3355 case ID_LED_ON1_ON2:
3356 case ID_LED_ON1_OFF2:
3357 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3358 mac->ledctl_mode1 |= (ledctl_on << shift);
3359 break;
3360 case ID_LED_OFF1_DEF2:
3361 case ID_LED_OFF1_ON2:
3362 case ID_LED_OFF1_OFF2:
3363 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3364 mac->ledctl_mode1 |= (ledctl_off << shift);
3365 break;
3366 default:
3367 /* Do nothing */
3368 break;
3369 }
3370 switch (temp) {
3371 case ID_LED_DEF1_ON2:
3372 case ID_LED_ON1_ON2:
3373 case ID_LED_OFF1_ON2:
3374 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3375 mac->ledctl_mode2 |= (ledctl_on << shift);
3376 break;
3377 case ID_LED_DEF1_OFF2:
3378 case ID_LED_ON1_OFF2:
3379 case ID_LED_OFF1_OFF2:
3380 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3381 mac->ledctl_mode2 |= (ledctl_off << shift);
3382 break;
3383 default:
3384 /* Do nothing */
3385 break;
3386 }
3387 }
3388
3389 return 0;
3390}
3391
3392/**
3393 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3394 * @hw: pointer to the HW structure
3395 *
3396 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3397 * register, so the the bus width is hard coded.
3398 **/
3399static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3400{
3401 struct e1000_bus_info *bus = &hw->bus;
3402 s32 ret_val;
3403
3404 ret_val = e1000e_get_bus_info_pcie(hw);
3405
3406 /*
3407 * ICH devices are "PCI Express"-ish. They have
3408 * a configuration space, but do not contain
3409 * PCI Express Capability registers, so bus width
3410 * must be hardcoded.
3411 */
3412 if (bus->width == e1000_bus_width_unknown)
3413 bus->width = e1000_bus_width_pcie_x1;
3414
3415 return ret_val;
3416}
3417
3418/**
3419 * e1000_reset_hw_ich8lan - Reset the hardware
3420 * @hw: pointer to the HW structure
3421 *
3422 * Does a full reset of the hardware which includes a reset of the PHY and
3423 * MAC.
3424 **/
3425static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3426{
3427 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3428 u16 kum_cfg;
3429 u32 ctrl, reg;
3430 s32 ret_val;
3431
3432 /*
3433 * Prevent the PCI-E bus from sticking if there is no TLP connection
3434 * on the last TLP read/write transaction when MAC is reset.
3435 */
3436 ret_val = e1000e_disable_pcie_master(hw);
3437 if (ret_val)
3438 e_dbg("PCI-E Master disable polling has failed.\n");
3439
3440 e_dbg("Masking off all interrupts\n");
3441 ew32(IMC, 0xffffffff);
3442
3443 /*
3444 * Disable the Transmit and Receive units. Then delay to allow
3445 * any pending transactions to complete before we hit the MAC
3446 * with the global reset.
3447 */
3448 ew32(RCTL, 0);
3449 ew32(TCTL, E1000_TCTL_PSP);
3450 e1e_flush();
3451
3452 usleep_range(10000, 20000);
3453
3454 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3455 if (hw->mac.type == e1000_ich8lan) {
3456 /* Set Tx and Rx buffer allocation to 8k apiece. */
3457 ew32(PBA, E1000_PBA_8K);
3458 /* Set Packet Buffer Size to 16k. */
3459 ew32(PBS, E1000_PBS_16K);
3460 }
3461
3462 if (hw->mac.type == e1000_pchlan) {
3463 /* Save the NVM K1 bit setting */
3464 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3465 if (ret_val)
3466 return ret_val;
3467
3468 if (kum_cfg & E1000_NVM_K1_ENABLE)
3469 dev_spec->nvm_k1_enabled = true;
3470 else
3471 dev_spec->nvm_k1_enabled = false;
3472 }
3473
3474 ctrl = er32(CTRL);
3475
3476 if (!hw->phy.ops.check_reset_block(hw)) {
3477 /*
3478 * Full-chip reset requires MAC and PHY reset at the same
3479 * time to make sure the interface between MAC and the
3480 * external PHY is reset.
3481 */
3482 ctrl |= E1000_CTRL_PHY_RST;
3483
3484 /*
3485 * Gate automatic PHY configuration by hardware on
3486 * non-managed 82579
3487 */
3488 if ((hw->mac.type == e1000_pch2lan) &&
3489 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3490 e1000_gate_hw_phy_config_ich8lan(hw, true);
3491 }
3492 ret_val = e1000_acquire_swflag_ich8lan(hw);
3493 e_dbg("Issuing a global reset to ich8lan\n");
3494 ew32(CTRL, (ctrl | E1000_CTRL_RST));
3495 /* cannot issue a flush here because it hangs the hardware */
3496 msleep(20);
3497
3498 /* Set Phy Config Counter to 50msec */
3499 if (hw->mac.type == e1000_pch2lan) {
3500 reg = er32(FEXTNVM3);
3501 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3502 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3503 ew32(FEXTNVM3, reg);
3504 }
3505
3506 if (!ret_val)
3507 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3508
3509 if (ctrl & E1000_CTRL_PHY_RST) {
3510 ret_val = hw->phy.ops.get_cfg_done(hw);
3511 if (ret_val)
3512 return ret_val;
3513
3514 ret_val = e1000_post_phy_reset_ich8lan(hw);
3515 if (ret_val)
3516 return ret_val;
3517 }
3518
3519 /*
3520 * For PCH, this write will make sure that any noise
3521 * will be detected as a CRC error and be dropped rather than show up
3522 * as a bad packet to the DMA engine.
3523 */
3524 if (hw->mac.type == e1000_pchlan)
3525 ew32(CRC_OFFSET, 0x65656565);
3526
3527 ew32(IMC, 0xffffffff);
3528 er32(ICR);
3529
3530 reg = er32(KABGTXD);
3531 reg |= E1000_KABGTXD_BGSQLBIAS;
3532 ew32(KABGTXD, reg);
3533
3534 return 0;
3535}
3536
3537/**
3538 * e1000_init_hw_ich8lan - Initialize the hardware
3539 * @hw: pointer to the HW structure
3540 *
3541 * Prepares the hardware for transmit and receive by doing the following:
3542 * - initialize hardware bits
3543 * - initialize LED identification
3544 * - setup receive address registers
3545 * - setup flow control
3546 * - setup transmit descriptors
3547 * - clear statistics
3548 **/
3549static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3550{
3551 struct e1000_mac_info *mac = &hw->mac;
3552 u32 ctrl_ext, txdctl, snoop;
3553 s32 ret_val;
3554 u16 i;
3555
3556 e1000_initialize_hw_bits_ich8lan(hw);
3557
3558 /* Initialize identification LED */
3559 ret_val = mac->ops.id_led_init(hw);
3560 if (ret_val)
3561 e_dbg("Error initializing identification LED\n");
3562 /* This is not fatal and we should not stop init due to this */
3563
3564 /* Setup the receive address. */
3565 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3566
3567 /* Zero out the Multicast HASH table */
3568 e_dbg("Zeroing the MTA\n");
3569 for (i = 0; i < mac->mta_reg_count; i++)
3570 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3571
3572 /*
3573 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3574 * the ME. Disable wakeup by clearing the host wakeup bit.
3575 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3576 */
3577 if (hw->phy.type == e1000_phy_82578) {
3578 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3579 i &= ~BM_WUC_HOST_WU_BIT;
3580 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3581 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3582 if (ret_val)
3583 return ret_val;
3584 }
3585
3586 /* Setup link and flow control */
3587 ret_val = mac->ops.setup_link(hw);
3588
3589 /* Set the transmit descriptor write-back policy for both queues */
3590 txdctl = er32(TXDCTL(0));
3591 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3592 E1000_TXDCTL_FULL_TX_DESC_WB;
3593 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3594 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3595 ew32(TXDCTL(0), txdctl);
3596 txdctl = er32(TXDCTL(1));
3597 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3598 E1000_TXDCTL_FULL_TX_DESC_WB;
3599 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3600 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3601 ew32(TXDCTL(1), txdctl);
3602
3603 /*
3604 * ICH8 has opposite polarity of no_snoop bits.
3605 * By default, we should use snoop behavior.
3606 */
3607 if (mac->type == e1000_ich8lan)
3608 snoop = PCIE_ICH8_SNOOP_ALL;
3609 else
3610 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3611 e1000e_set_pcie_no_snoop(hw, snoop);
3612
3613 ctrl_ext = er32(CTRL_EXT);
3614 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3615 ew32(CTRL_EXT, ctrl_ext);
3616
3617 /*
3618 * Clear all of the statistics registers (clear on read). It is
3619 * important that we do this after we have tried to establish link
3620 * because the symbol error count will increment wildly if there
3621 * is no link.
3622 */
3623 e1000_clear_hw_cntrs_ich8lan(hw);
3624
3625 return ret_val;
3626}
3627/**
3628 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3629 * @hw: pointer to the HW structure
3630 *
3631 * Sets/Clears required hardware bits necessary for correctly setting up the
3632 * hardware for transmit and receive.
3633 **/
3634static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3635{
3636 u32 reg;
3637
3638 /* Extended Device Control */
3639 reg = er32(CTRL_EXT);
3640 reg |= (1 << 22);
3641 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3642 if (hw->mac.type >= e1000_pchlan)
3643 reg |= E1000_CTRL_EXT_PHYPDEN;
3644 ew32(CTRL_EXT, reg);
3645
3646 /* Transmit Descriptor Control 0 */
3647 reg = er32(TXDCTL(0));
3648 reg |= (1 << 22);
3649 ew32(TXDCTL(0), reg);
3650
3651 /* Transmit Descriptor Control 1 */
3652 reg = er32(TXDCTL(1));
3653 reg |= (1 << 22);
3654 ew32(TXDCTL(1), reg);
3655
3656 /* Transmit Arbitration Control 0 */
3657 reg = er32(TARC(0));
3658 if (hw->mac.type == e1000_ich8lan)
3659 reg |= (1 << 28) | (1 << 29);
3660 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3661 ew32(TARC(0), reg);
3662
3663 /* Transmit Arbitration Control 1 */
3664 reg = er32(TARC(1));
3665 if (er32(TCTL) & E1000_TCTL_MULR)
3666 reg &= ~(1 << 28);
3667 else
3668 reg |= (1 << 28);
3669 reg |= (1 << 24) | (1 << 26) | (1 << 30);
3670 ew32(TARC(1), reg);
3671
3672 /* Device Status */
3673 if (hw->mac.type == e1000_ich8lan) {
3674 reg = er32(STATUS);
3675 reg &= ~(1 << 31);
3676 ew32(STATUS, reg);
3677 }
3678
3679 /*
3680 * work-around descriptor data corruption issue during nfs v2 udp
3681 * traffic, just disable the nfs filtering capability
3682 */
3683 reg = er32(RFCTL);
3684 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3685
3686 /*
3687 * Disable IPv6 extension header parsing because some malformed
3688 * IPv6 headers can hang the Rx.
3689 */
3690 if (hw->mac.type == e1000_ich8lan)
3691 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3692 ew32(RFCTL, reg);
3693}
3694
3695/**
3696 * e1000_setup_link_ich8lan - Setup flow control and link settings
3697 * @hw: pointer to the HW structure
3698 *
3699 * Determines which flow control settings to use, then configures flow
3700 * control. Calls the appropriate media-specific link configuration
3701 * function. Assuming the adapter has a valid link partner, a valid link
3702 * should be established. Assumes the hardware has previously been reset
3703 * and the transmitter and receiver are not enabled.
3704 **/
3705static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3706{
3707 s32 ret_val;
3708
3709 if (hw->phy.ops.check_reset_block(hw))
3710 return 0;
3711
3712 /*
3713 * ICH parts do not have a word in the NVM to determine
3714 * the default flow control setting, so we explicitly
3715 * set it to full.
3716 */
3717 if (hw->fc.requested_mode == e1000_fc_default) {
3718 /* Workaround h/w hang when Tx flow control enabled */
3719 if (hw->mac.type == e1000_pchlan)
3720 hw->fc.requested_mode = e1000_fc_rx_pause;
3721 else
3722 hw->fc.requested_mode = e1000_fc_full;
3723 }
3724
3725 /*
3726 * Save off the requested flow control mode for use later. Depending
3727 * on the link partner's capabilities, we may or may not use this mode.
3728 */
3729 hw->fc.current_mode = hw->fc.requested_mode;
3730
3731 e_dbg("After fix-ups FlowControl is now = %x\n",
3732 hw->fc.current_mode);
3733
3734 /* Continue to configure the copper link. */
3735 ret_val = hw->mac.ops.setup_physical_interface(hw);
3736 if (ret_val)
3737 return ret_val;
3738
3739 ew32(FCTTV, hw->fc.pause_time);
3740 if ((hw->phy.type == e1000_phy_82578) ||
3741 (hw->phy.type == e1000_phy_82579) ||
3742 (hw->phy.type == e1000_phy_i217) ||
3743 (hw->phy.type == e1000_phy_82577)) {
3744 ew32(FCRTV_PCH, hw->fc.refresh_time);
3745
3746 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3747 hw->fc.pause_time);
3748 if (ret_val)
3749 return ret_val;
3750 }
3751
3752 return e1000e_set_fc_watermarks(hw);
3753}
3754
3755/**
3756 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3757 * @hw: pointer to the HW structure
3758 *
3759 * Configures the kumeran interface to the PHY to wait the appropriate time
3760 * when polling the PHY, then call the generic setup_copper_link to finish
3761 * configuring the copper link.
3762 **/
3763static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3764{
3765 u32 ctrl;
3766 s32 ret_val;
3767 u16 reg_data;
3768
3769 ctrl = er32(CTRL);
3770 ctrl |= E1000_CTRL_SLU;
3771 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3772 ew32(CTRL, ctrl);
3773
3774 /*
3775 * Set the mac to wait the maximum time between each iteration
3776 * and increase the max iterations when polling the phy;
3777 * this fixes erroneous timeouts at 10Mbps.
3778 */
3779 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3780 if (ret_val)
3781 return ret_val;
3782 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3783 ®_data);
3784 if (ret_val)
3785 return ret_val;
3786 reg_data |= 0x3F;
3787 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3788 reg_data);
3789 if (ret_val)
3790 return ret_val;
3791
3792 switch (hw->phy.type) {
3793 case e1000_phy_igp_3:
3794 ret_val = e1000e_copper_link_setup_igp(hw);
3795 if (ret_val)
3796 return ret_val;
3797 break;
3798 case e1000_phy_bm:
3799 case e1000_phy_82578:
3800 ret_val = e1000e_copper_link_setup_m88(hw);
3801 if (ret_val)
3802 return ret_val;
3803 break;
3804 case e1000_phy_82577:
3805 case e1000_phy_82579:
3806 case e1000_phy_i217:
3807 ret_val = e1000_copper_link_setup_82577(hw);
3808 if (ret_val)
3809 return ret_val;
3810 break;
3811 case e1000_phy_ife:
3812 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
3813 if (ret_val)
3814 return ret_val;
3815
3816 reg_data &= ~IFE_PMC_AUTO_MDIX;
3817
3818 switch (hw->phy.mdix) {
3819 case 1:
3820 reg_data &= ~IFE_PMC_FORCE_MDIX;
3821 break;
3822 case 2:
3823 reg_data |= IFE_PMC_FORCE_MDIX;
3824 break;
3825 case 0:
3826 default:
3827 reg_data |= IFE_PMC_AUTO_MDIX;
3828 break;
3829 }
3830 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3831 if (ret_val)
3832 return ret_val;
3833 break;
3834 default:
3835 break;
3836 }
3837
3838 return e1000e_setup_copper_link(hw);
3839}
3840
3841/**
3842 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3843 * @hw: pointer to the HW structure
3844 * @speed: pointer to store current link speed
3845 * @duplex: pointer to store the current link duplex
3846 *
3847 * Calls the generic get_speed_and_duplex to retrieve the current link
3848 * information and then calls the Kumeran lock loss workaround for links at
3849 * gigabit speeds.
3850 **/
3851static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3852 u16 *duplex)
3853{
3854 s32 ret_val;
3855
3856 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3857 if (ret_val)
3858 return ret_val;
3859
3860 if ((hw->mac.type == e1000_ich8lan) &&
3861 (hw->phy.type == e1000_phy_igp_3) &&
3862 (*speed == SPEED_1000)) {
3863 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3864 }
3865
3866 return ret_val;
3867}
3868
3869/**
3870 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3871 * @hw: pointer to the HW structure
3872 *
3873 * Work-around for 82566 Kumeran PCS lock loss:
3874 * On link status change (i.e. PCI reset, speed change) and link is up and
3875 * speed is gigabit-
3876 * 0) if workaround is optionally disabled do nothing
3877 * 1) wait 1ms for Kumeran link to come up
3878 * 2) check Kumeran Diagnostic register PCS lock loss bit
3879 * 3) if not set the link is locked (all is good), otherwise...
3880 * 4) reset the PHY
3881 * 5) repeat up to 10 times
3882 * Note: this is only called for IGP3 copper when speed is 1gb.
3883 **/
3884static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3885{
3886 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3887 u32 phy_ctrl;
3888 s32 ret_val;
3889 u16 i, data;
3890 bool link;
3891
3892 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3893 return 0;
3894
3895 /*
3896 * Make sure link is up before proceeding. If not just return.
3897 * Attempting this while link is negotiating fouled up link
3898 * stability
3899 */
3900 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3901 if (!link)
3902 return 0;
3903
3904 for (i = 0; i < 10; i++) {
3905 /* read once to clear */
3906 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3907 if (ret_val)
3908 return ret_val;
3909 /* and again to get new status */
3910 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3911 if (ret_val)
3912 return ret_val;
3913
3914 /* check for PCS lock */
3915 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3916 return 0;
3917
3918 /* Issue PHY reset */
3919 e1000_phy_hw_reset(hw);
3920 mdelay(5);
3921 }
3922 /* Disable GigE link negotiation */
3923 phy_ctrl = er32(PHY_CTRL);
3924 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3925 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3926 ew32(PHY_CTRL, phy_ctrl);
3927
3928 /*
3929 * Call gig speed drop workaround on Gig disable before accessing
3930 * any PHY registers
3931 */
3932 e1000e_gig_downshift_workaround_ich8lan(hw);
3933
3934 /* unable to acquire PCS lock */
3935 return -E1000_ERR_PHY;
3936}
3937
3938/**
3939 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3940 * @hw: pointer to the HW structure
3941 * @state: boolean value used to set the current Kumeran workaround state
3942 *
3943 * If ICH8, set the current Kumeran workaround state (enabled - true
3944 * /disabled - false).
3945 **/
3946void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3947 bool state)
3948{
3949 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3950
3951 if (hw->mac.type != e1000_ich8lan) {
3952 e_dbg("Workaround applies to ICH8 only.\n");
3953 return;
3954 }
3955
3956 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3957}
3958
3959/**
3960 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3961 * @hw: pointer to the HW structure
3962 *
3963 * Workaround for 82566 power-down on D3 entry:
3964 * 1) disable gigabit link
3965 * 2) write VR power-down enable
3966 * 3) read it back
3967 * Continue if successful, else issue LCD reset and repeat
3968 **/
3969void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3970{
3971 u32 reg;
3972 u16 data;
3973 u8 retry = 0;
3974
3975 if (hw->phy.type != e1000_phy_igp_3)
3976 return;
3977
3978 /* Try the workaround twice (if needed) */
3979 do {
3980 /* Disable link */
3981 reg = er32(PHY_CTRL);
3982 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3983 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3984 ew32(PHY_CTRL, reg);
3985
3986 /*
3987 * Call gig speed drop workaround on Gig disable before
3988 * accessing any PHY registers
3989 */
3990 if (hw->mac.type == e1000_ich8lan)
3991 e1000e_gig_downshift_workaround_ich8lan(hw);
3992
3993 /* Write VR power-down enable */
3994 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3995 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3996 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3997
3998 /* Read it back and test */
3999 e1e_rphy(hw, IGP3_VR_CTRL, &data);
4000 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4001 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4002 break;
4003
4004 /* Issue PHY reset and repeat at most one more time */
4005 reg = er32(CTRL);
4006 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4007 retry++;
4008 } while (retry);
4009}
4010
4011/**
4012 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4013 * @hw: pointer to the HW structure
4014 *
4015 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4016 * LPLU, Gig disable, MDIC PHY reset):
4017 * 1) Set Kumeran Near-end loopback
4018 * 2) Clear Kumeran Near-end loopback
4019 * Should only be called for ICH8[m] devices with any 1G Phy.
4020 **/
4021void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4022{
4023 s32 ret_val;
4024 u16 reg_data;
4025
4026 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4027 return;
4028
4029 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4030 ®_data);
4031 if (ret_val)
4032 return;
4033 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4034 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4035 reg_data);
4036 if (ret_val)
4037 return;
4038 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4039 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4040 reg_data);
4041}
4042
4043/**
4044 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4045 * @hw: pointer to the HW structure
4046 *
4047 * During S0 to Sx transition, it is possible the link remains at gig
4048 * instead of negotiating to a lower speed. Before going to Sx, set
4049 * 'Gig Disable' to force link speed negotiation to a lower speed based on
4050 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
4051 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4052 * needs to be written.
4053 * Parts that support (and are linked to a partner which support) EEE in
4054 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4055 * than 10Mbps w/o EEE.
4056 **/
4057void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4058{
4059 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4060 u32 phy_ctrl;
4061 s32 ret_val;
4062
4063 phy_ctrl = er32(PHY_CTRL);
4064 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4065 if (hw->phy.type == e1000_phy_i217) {
4066 u16 phy_reg;
4067
4068 ret_val = hw->phy.ops.acquire(hw);
4069 if (ret_val)
4070 goto out;
4071
4072 if (!dev_spec->eee_disable) {
4073 u16 eee_advert;
4074
4075 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
4076 I217_EEE_ADVERTISEMENT);
4077 if (ret_val)
4078 goto release;
4079 e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert);
4080
4081 /*
4082 * Disable LPLU if both link partners support 100BaseT
4083 * EEE and 100Full is advertised on both ends of the
4084 * link.
4085 */
4086 if ((eee_advert & I217_EEE_100_SUPPORTED) &&
4087 (dev_spec->eee_lp_ability &
4088 I217_EEE_100_SUPPORTED) &&
4089 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4090 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4091 E1000_PHY_CTRL_NOND0A_LPLU);
4092 }
4093
4094 /*
4095 * For i217 Intel Rapid Start Technology support,
4096 * when the system is going into Sx and no manageability engine
4097 * is present, the driver must configure proxy to reset only on
4098 * power good. LPI (Low Power Idle) state must also reset only
4099 * on power good, as well as the MTA (Multicast table array).
4100 * The SMBus release must also be disabled on LCD reset.
4101 */
4102 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4103
4104 /* Enable proxy to reset only on power good. */
4105 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4106 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4107 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4108
4109 /*
4110 * Set bit enable LPI (EEE) to reset only on
4111 * power good.
4112 */
4113 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4114 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4115 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4116
4117 /* Disable the SMB release on LCD reset. */
4118 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4119 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4120 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4121 }
4122
4123 /*
4124 * Enable MTA to reset for Intel Rapid Start Technology
4125 * Support
4126 */
4127 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4128 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4129 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4130
4131release:
4132 hw->phy.ops.release(hw);
4133 }
4134out:
4135 ew32(PHY_CTRL, phy_ctrl);
4136
4137 if (hw->mac.type == e1000_ich8lan)
4138 e1000e_gig_downshift_workaround_ich8lan(hw);
4139
4140 if (hw->mac.type >= e1000_pchlan) {
4141 e1000_oem_bits_config_ich8lan(hw, false);
4142
4143 /* Reset PHY to activate OEM bits on 82577/8 */
4144 if (hw->mac.type == e1000_pchlan)
4145 e1000e_phy_hw_reset_generic(hw);
4146
4147 ret_val = hw->phy.ops.acquire(hw);
4148 if (ret_val)
4149 return;
4150 e1000_write_smbus_addr(hw);
4151 hw->phy.ops.release(hw);
4152 }
4153}
4154
4155/**
4156 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4157 * @hw: pointer to the HW structure
4158 *
4159 * During Sx to S0 transitions on non-managed devices or managed devices
4160 * on which PHY resets are not blocked, if the PHY registers cannot be
4161 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
4162 * the PHY.
4163 * On i217, setup Intel Rapid Start Technology.
4164 **/
4165void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4166{
4167 s32 ret_val;
4168
4169 if (hw->mac.type < e1000_pch2lan)
4170 return;
4171
4172 ret_val = e1000_init_phy_workarounds_pchlan(hw);
4173 if (ret_val) {
4174 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4175 return;
4176 }
4177
4178 /*
4179 * For i217 Intel Rapid Start Technology support when the system
4180 * is transitioning from Sx and no manageability engine is present
4181 * configure SMBus to restore on reset, disable proxy, and enable
4182 * the reset on MTA (Multicast table array).
4183 */
4184 if (hw->phy.type == e1000_phy_i217) {
4185 u16 phy_reg;
4186
4187 ret_val = hw->phy.ops.acquire(hw);
4188 if (ret_val) {
4189 e_dbg("Failed to setup iRST\n");
4190 return;
4191 }
4192
4193 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4194 /*
4195 * Restore clear on SMB if no manageability engine
4196 * is present
4197 */
4198 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4199 if (ret_val)
4200 goto release;
4201 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4202 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4203
4204 /* Disable Proxy */
4205 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4206 }
4207 /* Enable reset on MTA */
4208 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4209 if (ret_val)
4210 goto release;
4211 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4212 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4213release:
4214 if (ret_val)
4215 e_dbg("Error %d in resume workarounds\n", ret_val);
4216 hw->phy.ops.release(hw);
4217 }
4218}
4219
4220/**
4221 * e1000_cleanup_led_ich8lan - Restore the default LED operation
4222 * @hw: pointer to the HW structure
4223 *
4224 * Return the LED back to the default configuration.
4225 **/
4226static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4227{
4228 if (hw->phy.type == e1000_phy_ife)
4229 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4230
4231 ew32(LEDCTL, hw->mac.ledctl_default);
4232 return 0;
4233}
4234
4235/**
4236 * e1000_led_on_ich8lan - Turn LEDs on
4237 * @hw: pointer to the HW structure
4238 *
4239 * Turn on the LEDs.
4240 **/
4241static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4242{
4243 if (hw->phy.type == e1000_phy_ife)
4244 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4245 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4246
4247 ew32(LEDCTL, hw->mac.ledctl_mode2);
4248 return 0;
4249}
4250
4251/**
4252 * e1000_led_off_ich8lan - Turn LEDs off
4253 * @hw: pointer to the HW structure
4254 *
4255 * Turn off the LEDs.
4256 **/
4257static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4258{
4259 if (hw->phy.type == e1000_phy_ife)
4260 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4261 (IFE_PSCL_PROBE_MODE |
4262 IFE_PSCL_PROBE_LEDS_OFF));
4263
4264 ew32(LEDCTL, hw->mac.ledctl_mode1);
4265 return 0;
4266}
4267
4268/**
4269 * e1000_setup_led_pchlan - Configures SW controllable LED
4270 * @hw: pointer to the HW structure
4271 *
4272 * This prepares the SW controllable LED for use.
4273 **/
4274static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4275{
4276 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4277}
4278
4279/**
4280 * e1000_cleanup_led_pchlan - Restore the default LED operation
4281 * @hw: pointer to the HW structure
4282 *
4283 * Return the LED back to the default configuration.
4284 **/
4285static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4286{
4287 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4288}
4289
4290/**
4291 * e1000_led_on_pchlan - Turn LEDs on
4292 * @hw: pointer to the HW structure
4293 *
4294 * Turn on the LEDs.
4295 **/
4296static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4297{
4298 u16 data = (u16)hw->mac.ledctl_mode2;
4299 u32 i, led;
4300
4301 /*
4302 * If no link, then turn LED on by setting the invert bit
4303 * for each LED that's mode is "link_up" in ledctl_mode2.
4304 */
4305 if (!(er32(STATUS) & E1000_STATUS_LU)) {
4306 for (i = 0; i < 3; i++) {
4307 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4308 if ((led & E1000_PHY_LED0_MODE_MASK) !=
4309 E1000_LEDCTL_MODE_LINK_UP)
4310 continue;
4311 if (led & E1000_PHY_LED0_IVRT)
4312 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4313 else
4314 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4315 }
4316 }
4317
4318 return e1e_wphy(hw, HV_LED_CONFIG, data);
4319}
4320
4321/**
4322 * e1000_led_off_pchlan - Turn LEDs off
4323 * @hw: pointer to the HW structure
4324 *
4325 * Turn off the LEDs.
4326 **/
4327static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4328{
4329 u16 data = (u16)hw->mac.ledctl_mode1;
4330 u32 i, led;
4331
4332 /*
4333 * If no link, then turn LED off by clearing the invert bit
4334 * for each LED that's mode is "link_up" in ledctl_mode1.
4335 */
4336 if (!(er32(STATUS) & E1000_STATUS_LU)) {
4337 for (i = 0; i < 3; i++) {
4338 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4339 if ((led & E1000_PHY_LED0_MODE_MASK) !=
4340 E1000_LEDCTL_MODE_LINK_UP)
4341 continue;
4342 if (led & E1000_PHY_LED0_IVRT)
4343 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4344 else
4345 data |= (E1000_PHY_LED0_IVRT << (i * 5));
4346 }
4347 }
4348
4349 return e1e_wphy(hw, HV_LED_CONFIG, data);
4350}
4351
4352/**
4353 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4354 * @hw: pointer to the HW structure
4355 *
4356 * Read appropriate register for the config done bit for completion status
4357 * and configure the PHY through s/w for EEPROM-less parts.
4358 *
4359 * NOTE: some silicon which is EEPROM-less will fail trying to read the
4360 * config done bit, so only an error is logged and continues. If we were
4361 * to return with error, EEPROM-less silicon would not be able to be reset
4362 * or change link.
4363 **/
4364static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4365{
4366 s32 ret_val = 0;
4367 u32 bank = 0;
4368 u32 status;
4369
4370 e1000e_get_cfg_done(hw);
4371
4372 /* Wait for indication from h/w that it has completed basic config */
4373 if (hw->mac.type >= e1000_ich10lan) {
4374 e1000_lan_init_done_ich8lan(hw);
4375 } else {
4376 ret_val = e1000e_get_auto_rd_done(hw);
4377 if (ret_val) {
4378 /*
4379 * When auto config read does not complete, do not
4380 * return with an error. This can happen in situations
4381 * where there is no eeprom and prevents getting link.
4382 */
4383 e_dbg("Auto Read Done did not complete\n");
4384 ret_val = 0;
4385 }
4386 }
4387
4388 /* Clear PHY Reset Asserted bit */
4389 status = er32(STATUS);
4390 if (status & E1000_STATUS_PHYRA)
4391 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4392 else
4393 e_dbg("PHY Reset Asserted not set - needs delay\n");
4394
4395 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
4396 if (hw->mac.type <= e1000_ich9lan) {
4397 if (!(er32(EECD) & E1000_EECD_PRES) &&
4398 (hw->phy.type == e1000_phy_igp_3)) {
4399 e1000e_phy_init_script_igp3(hw);
4400 }
4401 } else {
4402 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4403 /* Maybe we should do a basic PHY config */
4404 e_dbg("EEPROM not present\n");
4405 ret_val = -E1000_ERR_CONFIG;
4406 }
4407 }
4408
4409 return ret_val;
4410}
4411
4412/**
4413 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4414 * @hw: pointer to the HW structure
4415 *
4416 * In the case of a PHY power down to save power, or to turn off link during a
4417 * driver unload, or wake on lan is not enabled, remove the link.
4418 **/
4419static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4420{
4421 /* If the management interface is not enabled, then power down */
4422 if (!(hw->mac.ops.check_mng_mode(hw) ||
4423 hw->phy.ops.check_reset_block(hw)))
4424 e1000_power_down_phy_copper(hw);
4425}
4426
4427/**
4428 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4429 * @hw: pointer to the HW structure
4430 *
4431 * Clears hardware counters specific to the silicon family and calls
4432 * clear_hw_cntrs_generic to clear all general purpose counters.
4433 **/
4434static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4435{
4436 u16 phy_data;
4437 s32 ret_val;
4438
4439 e1000e_clear_hw_cntrs_base(hw);
4440
4441 er32(ALGNERRC);
4442 er32(RXERRC);
4443 er32(TNCRS);
4444 er32(CEXTERR);
4445 er32(TSCTC);
4446 er32(TSCTFC);
4447
4448 er32(MGTPRC);
4449 er32(MGTPDC);
4450 er32(MGTPTC);
4451
4452 er32(IAC);
4453 er32(ICRXOC);
4454
4455 /* Clear PHY statistics registers */
4456 if ((hw->phy.type == e1000_phy_82578) ||
4457 (hw->phy.type == e1000_phy_82579) ||
4458 (hw->phy.type == e1000_phy_i217) ||
4459 (hw->phy.type == e1000_phy_82577)) {
4460 ret_val = hw->phy.ops.acquire(hw);
4461 if (ret_val)
4462 return;
4463 ret_val = hw->phy.ops.set_page(hw,
4464 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4465 if (ret_val)
4466 goto release;
4467 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4468 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4469 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4470 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4471 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4472 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4473 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4474 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4475 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4476 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4477 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4478 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4479 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4480 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4481release:
4482 hw->phy.ops.release(hw);
4483 }
4484}
4485
4486static const struct e1000_mac_operations ich8_mac_ops = {
4487 /* check_mng_mode dependent on mac type */
4488 .check_for_link = e1000_check_for_copper_link_ich8lan,
4489 /* cleanup_led dependent on mac type */
4490 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
4491 .get_bus_info = e1000_get_bus_info_ich8lan,
4492 .set_lan_id = e1000_set_lan_id_single_port,
4493 .get_link_up_info = e1000_get_link_up_info_ich8lan,
4494 /* led_on dependent on mac type */
4495 /* led_off dependent on mac type */
4496 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
4497 .reset_hw = e1000_reset_hw_ich8lan,
4498 .init_hw = e1000_init_hw_ich8lan,
4499 .setup_link = e1000_setup_link_ich8lan,
4500 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
4501 /* id_led_init dependent on mac type */
4502 .config_collision_dist = e1000e_config_collision_dist_generic,
4503 .rar_set = e1000e_rar_set_generic,
4504};
4505
4506static const struct e1000_phy_operations ich8_phy_ops = {
4507 .acquire = e1000_acquire_swflag_ich8lan,
4508 .check_reset_block = e1000_check_reset_block_ich8lan,
4509 .commit = NULL,
4510 .get_cfg_done = e1000_get_cfg_done_ich8lan,
4511 .get_cable_length = e1000e_get_cable_length_igp_2,
4512 .read_reg = e1000e_read_phy_reg_igp,
4513 .release = e1000_release_swflag_ich8lan,
4514 .reset = e1000_phy_hw_reset_ich8lan,
4515 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
4516 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
4517 .write_reg = e1000e_write_phy_reg_igp,
4518};
4519
4520static const struct e1000_nvm_operations ich8_nvm_ops = {
4521 .acquire = e1000_acquire_nvm_ich8lan,
4522 .read = e1000_read_nvm_ich8lan,
4523 .release = e1000_release_nvm_ich8lan,
4524 .reload = e1000e_reload_nvm_generic,
4525 .update = e1000_update_nvm_checksum_ich8lan,
4526 .valid_led_default = e1000_valid_led_default_ich8lan,
4527 .validate = e1000_validate_nvm_checksum_ich8lan,
4528 .write = e1000_write_nvm_ich8lan,
4529};
4530
4531const struct e1000_info e1000_ich8_info = {
4532 .mac = e1000_ich8lan,
4533 .flags = FLAG_HAS_WOL
4534 | FLAG_IS_ICH
4535 | FLAG_HAS_CTRLEXT_ON_LOAD
4536 | FLAG_HAS_AMT
4537 | FLAG_HAS_FLASH
4538 | FLAG_APME_IN_WUC,
4539 .pba = 8,
4540 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
4541 .get_variants = e1000_get_variants_ich8lan,
4542 .mac_ops = &ich8_mac_ops,
4543 .phy_ops = &ich8_phy_ops,
4544 .nvm_ops = &ich8_nvm_ops,
4545};
4546
4547const struct e1000_info e1000_ich9_info = {
4548 .mac = e1000_ich9lan,
4549 .flags = FLAG_HAS_JUMBO_FRAMES
4550 | FLAG_IS_ICH
4551 | FLAG_HAS_WOL
4552 | FLAG_HAS_CTRLEXT_ON_LOAD
4553 | FLAG_HAS_AMT
4554 | FLAG_HAS_FLASH
4555 | FLAG_APME_IN_WUC,
4556 .pba = 18,
4557 .max_hw_frame_size = DEFAULT_JUMBO,
4558 .get_variants = e1000_get_variants_ich8lan,
4559 .mac_ops = &ich8_mac_ops,
4560 .phy_ops = &ich8_phy_ops,
4561 .nvm_ops = &ich8_nvm_ops,
4562};
4563
4564const struct e1000_info e1000_ich10_info = {
4565 .mac = e1000_ich10lan,
4566 .flags = FLAG_HAS_JUMBO_FRAMES
4567 | FLAG_IS_ICH
4568 | FLAG_HAS_WOL
4569 | FLAG_HAS_CTRLEXT_ON_LOAD
4570 | FLAG_HAS_AMT
4571 | FLAG_HAS_FLASH
4572 | FLAG_APME_IN_WUC,
4573 .pba = 18,
4574 .max_hw_frame_size = DEFAULT_JUMBO,
4575 .get_variants = e1000_get_variants_ich8lan,
4576 .mac_ops = &ich8_mac_ops,
4577 .phy_ops = &ich8_phy_ops,
4578 .nvm_ops = &ich8_nvm_ops,
4579};
4580
4581const struct e1000_info e1000_pch_info = {
4582 .mac = e1000_pchlan,
4583 .flags = FLAG_IS_ICH
4584 | FLAG_HAS_WOL
4585 | FLAG_HAS_CTRLEXT_ON_LOAD
4586 | FLAG_HAS_AMT
4587 | FLAG_HAS_FLASH
4588 | FLAG_HAS_JUMBO_FRAMES
4589 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4590 | FLAG_APME_IN_WUC,
4591 .flags2 = FLAG2_HAS_PHY_STATS,
4592 .pba = 26,
4593 .max_hw_frame_size = 4096,
4594 .get_variants = e1000_get_variants_ich8lan,
4595 .mac_ops = &ich8_mac_ops,
4596 .phy_ops = &ich8_phy_ops,
4597 .nvm_ops = &ich8_nvm_ops,
4598};
4599
4600const struct e1000_info e1000_pch2_info = {
4601 .mac = e1000_pch2lan,
4602 .flags = FLAG_IS_ICH
4603 | FLAG_HAS_WOL
4604 | FLAG_HAS_CTRLEXT_ON_LOAD
4605 | FLAG_HAS_AMT
4606 | FLAG_HAS_FLASH
4607 | FLAG_HAS_JUMBO_FRAMES
4608 | FLAG_APME_IN_WUC,
4609 .flags2 = FLAG2_HAS_PHY_STATS
4610 | FLAG2_HAS_EEE,
4611 .pba = 26,
4612 .max_hw_frame_size = DEFAULT_JUMBO,
4613 .get_variants = e1000_get_variants_ich8lan,
4614 .mac_ops = &ich8_mac_ops,
4615 .phy_ops = &ich8_phy_ops,
4616 .nvm_ops = &ich8_nvm_ops,
4617};
4618
4619const struct e1000_info e1000_pch_lpt_info = {
4620 .mac = e1000_pch_lpt,
4621 .flags = FLAG_IS_ICH
4622 | FLAG_HAS_WOL
4623 | FLAG_HAS_CTRLEXT_ON_LOAD
4624 | FLAG_HAS_AMT
4625 | FLAG_HAS_FLASH
4626 | FLAG_HAS_JUMBO_FRAMES
4627 | FLAG_APME_IN_WUC,
4628 .flags2 = FLAG2_HAS_PHY_STATS
4629 | FLAG2_HAS_EEE,
4630 .pba = 26,
4631 .max_hw_frame_size = DEFAULT_JUMBO,
4632 .get_variants = e1000_get_variants_ich8lan,
4633 .mac_ops = &ich8_mac_ops,
4634 .phy_ops = &ich8_phy_ops,
4635 .nvm_ops = &ich8_nvm_ops,
4636};
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* 82562G 10/100 Network Connection
5 * 82562G-2 10/100 Network Connection
6 * 82562GT 10/100 Network Connection
7 * 82562GT-2 10/100 Network Connection
8 * 82562V 10/100 Network Connection
9 * 82562V-2 10/100 Network Connection
10 * 82566DC-2 Gigabit Network Connection
11 * 82566DC Gigabit Network Connection
12 * 82566DM-2 Gigabit Network Connection
13 * 82566DM Gigabit Network Connection
14 * 82566MC Gigabit Network Connection
15 * 82566MM Gigabit Network Connection
16 * 82567LM Gigabit Network Connection
17 * 82567LF Gigabit Network Connection
18 * 82567V Gigabit Network Connection
19 * 82567LM-2 Gigabit Network Connection
20 * 82567LF-2 Gigabit Network Connection
21 * 82567V-2 Gigabit Network Connection
22 * 82567LF-3 Gigabit Network Connection
23 * 82567LM-3 Gigabit Network Connection
24 * 82567LM-4 Gigabit Network Connection
25 * 82577LM Gigabit Network Connection
26 * 82577LC Gigabit Network Connection
27 * 82578DM Gigabit Network Connection
28 * 82578DC Gigabit Network Connection
29 * 82579LM Gigabit Network Connection
30 * 82579V Gigabit Network Connection
31 * Ethernet Connection I217-LM
32 * Ethernet Connection I217-V
33 * Ethernet Connection I218-V
34 * Ethernet Connection I218-LM
35 * Ethernet Connection (2) I218-LM
36 * Ethernet Connection (2) I218-V
37 * Ethernet Connection (3) I218-LM
38 * Ethernet Connection (3) I218-V
39 */
40
41#include "e1000.h"
42
43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44/* Offset 04h HSFSTS */
45union ich8_hws_flash_status {
46 struct ich8_hsfsts {
47 u16 flcdone:1; /* bit 0 Flash Cycle Done */
48 u16 flcerr:1; /* bit 1 Flash Cycle Error */
49 u16 dael:1; /* bit 2 Direct Access error Log */
50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
52 u16 reserved1:2; /* bit 13:6 Reserved */
53 u16 reserved2:6; /* bit 13:6 Reserved */
54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
56 } hsf_status;
57 u16 regval;
58};
59
60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61/* Offset 06h FLCTL */
62union ich8_hws_flash_ctrl {
63 struct ich8_hsflctl {
64 u16 flcgo:1; /* 0 Flash Cycle Go */
65 u16 flcycle:2; /* 2:1 Flash Cycle */
66 u16 reserved:5; /* 7:3 Reserved */
67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
68 u16 flockdn:6; /* 15:10 Reserved */
69 } hsf_ctrl;
70 u16 regval;
71};
72
73/* ICH Flash Region Access Permissions */
74union ich8_hws_flash_regacc {
75 struct ich8_flracc {
76 u32 grra:8; /* 0:7 GbE region Read Access */
77 u32 grwa:8; /* 8:15 GbE region Write Access */
78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
80 } hsf_flregacc;
81 u16 regval;
82};
83
84/* ICH Flash Protected Region */
85union ich8_flash_protected_range {
86 struct ich8_pr {
87 u32 base:13; /* 0:12 Protected Range Base */
88 u32 reserved1:2; /* 13:14 Reserved */
89 u32 rpe:1; /* 15 Read Protection Enable */
90 u32 limit:13; /* 16:28 Protected Range Limit */
91 u32 reserved2:2; /* 29:30 Reserved */
92 u32 wpe:1; /* 31 Write Protection Enable */
93 } range;
94 u32 regval;
95};
96
97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 u32 offset, u8 byte);
102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 u8 *data);
104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 u16 *data);
106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 u8 size, u16 *data);
108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 u32 *data);
110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 u32 offset, u32 *data);
112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 u32 offset, u32 data);
114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 u32 offset, u32 dword);
116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142{
143 return readw(hw->flash_address + reg);
144}
145
146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147{
148 return readl(hw->flash_address + reg);
149}
150
151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152{
153 writew(val, hw->flash_address + reg);
154}
155
156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157{
158 writel(val, hw->flash_address + reg);
159}
160
161#define er16flash(reg) __er16flash(hw, (reg))
162#define er32flash(reg) __er32flash(hw, (reg))
163#define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
164#define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
165
166/**
167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168 * @hw: pointer to the HW structure
169 *
170 * Test access to the PHY registers by reading the PHY ID registers. If
171 * the PHY ID is already known (e.g. resume path) compare it with known ID,
172 * otherwise assume the read PHY ID is correct if it is valid.
173 *
174 * Assumes the sw/fw/hw semaphore is already acquired.
175 **/
176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177{
178 u16 phy_reg = 0;
179 u32 phy_id = 0;
180 s32 ret_val = 0;
181 u16 retry_count;
182 u32 mac_reg = 0;
183
184 for (retry_count = 0; retry_count < 2; retry_count++) {
185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 if (ret_val || (phy_reg == 0xFFFF))
187 continue;
188 phy_id = (u32)(phy_reg << 16);
189
190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 if (ret_val || (phy_reg == 0xFFFF)) {
192 phy_id = 0;
193 continue;
194 }
195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 break;
197 }
198
199 if (hw->phy.id) {
200 if (hw->phy.id == phy_id)
201 goto out;
202 } else if (phy_id) {
203 hw->phy.id = phy_id;
204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 goto out;
206 }
207
208 /* In case the PHY needs to be in mdio slow mode,
209 * set slow mode and try to get the PHY id again.
210 */
211 if (hw->mac.type < e1000_pch_lpt) {
212 hw->phy.ops.release(hw);
213 ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 if (!ret_val)
215 ret_val = e1000e_get_phy_id(hw);
216 hw->phy.ops.acquire(hw);
217 }
218
219 if (ret_val)
220 return false;
221out:
222 if (hw->mac.type >= e1000_pch_lpt) {
223 /* Only unforce SMBus if ME is not active */
224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 /* Unforce SMBus mode in PHY */
226 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229
230 /* Unforce SMBus mode in MAC */
231 mac_reg = er32(CTRL_EXT);
232 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 ew32(CTRL_EXT, mac_reg);
234 }
235 }
236
237 return true;
238}
239
240/**
241 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242 * @hw: pointer to the HW structure
243 *
244 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245 * used to reset the PHY to a quiescent state when necessary.
246 **/
247static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248{
249 u32 mac_reg;
250
251 /* Set Phy Config Counter to 50msec */
252 mac_reg = er32(FEXTNVM3);
253 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 ew32(FEXTNVM3, mac_reg);
256
257 /* Toggle LANPHYPC Value bit */
258 mac_reg = er32(CTRL);
259 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 ew32(CTRL, mac_reg);
262 e1e_flush();
263 usleep_range(10, 20);
264 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 ew32(CTRL, mac_reg);
266 e1e_flush();
267
268 if (hw->mac.type < e1000_pch_lpt) {
269 msleep(50);
270 } else {
271 u16 count = 20;
272
273 do {
274 usleep_range(5000, 6000);
275 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276
277 msleep(30);
278 }
279}
280
281/**
282 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283 * @hw: pointer to the HW structure
284 *
285 * Workarounds/flow necessary for PHY initialization during driver load
286 * and resume paths.
287 **/
288static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289{
290 struct e1000_adapter *adapter = hw->adapter;
291 u32 mac_reg, fwsm = er32(FWSM);
292 s32 ret_val;
293
294 /* Gate automatic PHY configuration by hardware on managed and
295 * non-managed 82579 and newer adapters.
296 */
297 e1000_gate_hw_phy_config_ich8lan(hw, true);
298
299 /* It is not possible to be certain of the current state of ULP
300 * so forcibly disable it.
301 */
302 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304 if (ret_val)
305 e_warn("Failed to disable ULP\n");
306
307 ret_val = hw->phy.ops.acquire(hw);
308 if (ret_val) {
309 e_dbg("Failed to initialize PHY flow\n");
310 goto out;
311 }
312
313 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
314 * inaccessible and resetting the PHY is not blocked, toggle the
315 * LANPHYPC Value bit to force the interconnect to PCIe mode.
316 */
317 switch (hw->mac.type) {
318 case e1000_pch_lpt:
319 case e1000_pch_spt:
320 case e1000_pch_cnp:
321 case e1000_pch_tgp:
322 case e1000_pch_adp:
323 case e1000_pch_mtp:
324 case e1000_pch_lnp:
325 case e1000_pch_ptp:
326 if (e1000_phy_is_accessible_pchlan(hw))
327 break;
328
329 /* Before toggling LANPHYPC, see if PHY is accessible by
330 * forcing MAC to SMBus mode first.
331 */
332 mac_reg = er32(CTRL_EXT);
333 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
334 ew32(CTRL_EXT, mac_reg);
335
336 /* Wait 50 milliseconds for MAC to finish any retries
337 * that it might be trying to perform from previous
338 * attempts to acknowledge any phy read requests.
339 */
340 msleep(50);
341
342 fallthrough;
343 case e1000_pch2lan:
344 if (e1000_phy_is_accessible_pchlan(hw))
345 break;
346
347 fallthrough;
348 case e1000_pchlan:
349 if ((hw->mac.type == e1000_pchlan) &&
350 (fwsm & E1000_ICH_FWSM_FW_VALID))
351 break;
352
353 if (hw->phy.ops.check_reset_block(hw)) {
354 e_dbg("Required LANPHYPC toggle blocked by ME\n");
355 ret_val = -E1000_ERR_PHY;
356 break;
357 }
358
359 /* Toggle LANPHYPC Value bit */
360 e1000_toggle_lanphypc_pch_lpt(hw);
361 if (hw->mac.type >= e1000_pch_lpt) {
362 if (e1000_phy_is_accessible_pchlan(hw))
363 break;
364
365 /* Toggling LANPHYPC brings the PHY out of SMBus mode
366 * so ensure that the MAC is also out of SMBus mode
367 */
368 mac_reg = er32(CTRL_EXT);
369 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
370 ew32(CTRL_EXT, mac_reg);
371
372 if (e1000_phy_is_accessible_pchlan(hw))
373 break;
374
375 ret_val = -E1000_ERR_PHY;
376 }
377 break;
378 default:
379 break;
380 }
381
382 hw->phy.ops.release(hw);
383 if (!ret_val) {
384
385 /* Check to see if able to reset PHY. Print error if not */
386 if (hw->phy.ops.check_reset_block(hw)) {
387 e_err("Reset blocked by ME\n");
388 goto out;
389 }
390
391 /* Reset the PHY before any access to it. Doing so, ensures
392 * that the PHY is in a known good state before we read/write
393 * PHY registers. The generic reset is sufficient here,
394 * because we haven't determined the PHY type yet.
395 */
396 ret_val = e1000e_phy_hw_reset_generic(hw);
397 if (ret_val)
398 goto out;
399
400 /* On a successful reset, possibly need to wait for the PHY
401 * to quiesce to an accessible state before returning control
402 * to the calling function. If the PHY does not quiesce, then
403 * return E1000E_BLK_PHY_RESET, as this is the condition that
404 * the PHY is in.
405 */
406 ret_val = hw->phy.ops.check_reset_block(hw);
407 if (ret_val)
408 e_err("ME blocked access to PHY after reset\n");
409 }
410
411out:
412 /* Ungate automatic PHY configuration on non-managed 82579 */
413 if ((hw->mac.type == e1000_pch2lan) &&
414 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
415 usleep_range(10000, 11000);
416 e1000_gate_hw_phy_config_ich8lan(hw, false);
417 }
418
419 return ret_val;
420}
421
422/**
423 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
424 * @hw: pointer to the HW structure
425 *
426 * Initialize family-specific PHY parameters and function pointers.
427 **/
428static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
429{
430 struct e1000_phy_info *phy = &hw->phy;
431 s32 ret_val;
432
433 phy->addr = 1;
434 phy->reset_delay_us = 100;
435
436 phy->ops.set_page = e1000_set_page_igp;
437 phy->ops.read_reg = e1000_read_phy_reg_hv;
438 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
439 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
440 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
441 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
442 phy->ops.write_reg = e1000_write_phy_reg_hv;
443 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
444 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
445 phy->ops.power_up = e1000_power_up_phy_copper;
446 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
447 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
448
449 phy->id = e1000_phy_unknown;
450
451 ret_val = e1000_init_phy_workarounds_pchlan(hw);
452 if (ret_val)
453 return ret_val;
454
455 if (phy->id == e1000_phy_unknown)
456 switch (hw->mac.type) {
457 default:
458 ret_val = e1000e_get_phy_id(hw);
459 if (ret_val)
460 return ret_val;
461 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
462 break;
463 fallthrough;
464 case e1000_pch2lan:
465 case e1000_pch_lpt:
466 case e1000_pch_spt:
467 case e1000_pch_cnp:
468 case e1000_pch_tgp:
469 case e1000_pch_adp:
470 case e1000_pch_mtp:
471 case e1000_pch_lnp:
472 case e1000_pch_ptp:
473 /* In case the PHY needs to be in mdio slow mode,
474 * set slow mode and try to get the PHY id again.
475 */
476 ret_val = e1000_set_mdio_slow_mode_hv(hw);
477 if (ret_val)
478 return ret_val;
479 ret_val = e1000e_get_phy_id(hw);
480 if (ret_val)
481 return ret_val;
482 break;
483 }
484 phy->type = e1000e_get_phy_type_from_id(phy->id);
485
486 switch (phy->type) {
487 case e1000_phy_82577:
488 case e1000_phy_82579:
489 case e1000_phy_i217:
490 phy->ops.check_polarity = e1000_check_polarity_82577;
491 phy->ops.force_speed_duplex =
492 e1000_phy_force_speed_duplex_82577;
493 phy->ops.get_cable_length = e1000_get_cable_length_82577;
494 phy->ops.get_info = e1000_get_phy_info_82577;
495 phy->ops.commit = e1000e_phy_sw_reset;
496 break;
497 case e1000_phy_82578:
498 phy->ops.check_polarity = e1000_check_polarity_m88;
499 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
500 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
501 phy->ops.get_info = e1000e_get_phy_info_m88;
502 break;
503 default:
504 ret_val = -E1000_ERR_PHY;
505 break;
506 }
507
508 return ret_val;
509}
510
511/**
512 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
513 * @hw: pointer to the HW structure
514 *
515 * Initialize family-specific PHY parameters and function pointers.
516 **/
517static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
518{
519 struct e1000_phy_info *phy = &hw->phy;
520 s32 ret_val;
521 u16 i = 0;
522
523 phy->addr = 1;
524 phy->reset_delay_us = 100;
525
526 phy->ops.power_up = e1000_power_up_phy_copper;
527 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
528
529 /* We may need to do this twice - once for IGP and if that fails,
530 * we'll set BM func pointers and try again
531 */
532 ret_val = e1000e_determine_phy_address(hw);
533 if (ret_val) {
534 phy->ops.write_reg = e1000e_write_phy_reg_bm;
535 phy->ops.read_reg = e1000e_read_phy_reg_bm;
536 ret_val = e1000e_determine_phy_address(hw);
537 if (ret_val) {
538 e_dbg("Cannot determine PHY addr. Erroring out\n");
539 return ret_val;
540 }
541 }
542
543 phy->id = 0;
544 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
545 (i++ < 100)) {
546 usleep_range(1000, 1100);
547 ret_val = e1000e_get_phy_id(hw);
548 if (ret_val)
549 return ret_val;
550 }
551
552 /* Verify phy id */
553 switch (phy->id) {
554 case IGP03E1000_E_PHY_ID:
555 phy->type = e1000_phy_igp_3;
556 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
557 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
558 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
559 phy->ops.get_info = e1000e_get_phy_info_igp;
560 phy->ops.check_polarity = e1000_check_polarity_igp;
561 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
562 break;
563 case IFE_E_PHY_ID:
564 case IFE_PLUS_E_PHY_ID:
565 case IFE_C_E_PHY_ID:
566 phy->type = e1000_phy_ife;
567 phy->autoneg_mask = E1000_ALL_NOT_GIG;
568 phy->ops.get_info = e1000_get_phy_info_ife;
569 phy->ops.check_polarity = e1000_check_polarity_ife;
570 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
571 break;
572 case BME1000_E_PHY_ID:
573 phy->type = e1000_phy_bm;
574 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
575 phy->ops.read_reg = e1000e_read_phy_reg_bm;
576 phy->ops.write_reg = e1000e_write_phy_reg_bm;
577 phy->ops.commit = e1000e_phy_sw_reset;
578 phy->ops.get_info = e1000e_get_phy_info_m88;
579 phy->ops.check_polarity = e1000_check_polarity_m88;
580 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
581 break;
582 default:
583 return -E1000_ERR_PHY;
584 }
585
586 return 0;
587}
588
589/**
590 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
591 * @hw: pointer to the HW structure
592 *
593 * Initialize family-specific NVM parameters and function
594 * pointers.
595 **/
596static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
597{
598 struct e1000_nvm_info *nvm = &hw->nvm;
599 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
600 u32 gfpreg, sector_base_addr, sector_end_addr;
601 u16 i;
602 u32 nvm_size;
603
604 nvm->type = e1000_nvm_flash_sw;
605
606 if (hw->mac.type >= e1000_pch_spt) {
607 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
608 * STRAP register. This is because in SPT the GbE Flash region
609 * is no longer accessed through the flash registers. Instead,
610 * the mechanism has changed, and the Flash region access
611 * registers are now implemented in GbE memory space.
612 */
613 nvm->flash_base_addr = 0;
614 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
615 * NVM_SIZE_MULTIPLIER;
616 nvm->flash_bank_size = nvm_size / 2;
617 /* Adjust to word count */
618 nvm->flash_bank_size /= sizeof(u16);
619 /* Set the base address for flash register access */
620 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
621 } else {
622 /* Can't read flash registers if register set isn't mapped. */
623 if (!hw->flash_address) {
624 e_dbg("ERROR: Flash registers not mapped\n");
625 return -E1000_ERR_CONFIG;
626 }
627
628 gfpreg = er32flash(ICH_FLASH_GFPREG);
629
630 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
631 * Add 1 to sector_end_addr since this sector is included in
632 * the overall size.
633 */
634 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
635 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
636
637 /* flash_base_addr is byte-aligned */
638 nvm->flash_base_addr = sector_base_addr
639 << FLASH_SECTOR_ADDR_SHIFT;
640
641 /* find total size of the NVM, then cut in half since the total
642 * size represents two separate NVM banks.
643 */
644 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
645 << FLASH_SECTOR_ADDR_SHIFT);
646 nvm->flash_bank_size /= 2;
647 /* Adjust to word count */
648 nvm->flash_bank_size /= sizeof(u16);
649 }
650
651 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
652
653 /* Clear shadow ram */
654 for (i = 0; i < nvm->word_size; i++) {
655 dev_spec->shadow_ram[i].modified = false;
656 dev_spec->shadow_ram[i].value = 0xFFFF;
657 }
658
659 return 0;
660}
661
662/**
663 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
664 * @hw: pointer to the HW structure
665 *
666 * Initialize family-specific MAC parameters and function
667 * pointers.
668 **/
669static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
670{
671 struct e1000_mac_info *mac = &hw->mac;
672
673 /* Set media type function pointer */
674 hw->phy.media_type = e1000_media_type_copper;
675
676 /* Set mta register count */
677 mac->mta_reg_count = 32;
678 /* Set rar entry count */
679 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
680 if (mac->type == e1000_ich8lan)
681 mac->rar_entry_count--;
682 /* FWSM register */
683 mac->has_fwsm = true;
684 /* ARC subsystem not supported */
685 mac->arc_subsystem_valid = false;
686 /* Adaptive IFS supported */
687 mac->adaptive_ifs = true;
688
689 /* LED and other operations */
690 switch (mac->type) {
691 case e1000_ich8lan:
692 case e1000_ich9lan:
693 case e1000_ich10lan:
694 /* check management mode */
695 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
696 /* ID LED init */
697 mac->ops.id_led_init = e1000e_id_led_init_generic;
698 /* blink LED */
699 mac->ops.blink_led = e1000e_blink_led_generic;
700 /* setup LED */
701 mac->ops.setup_led = e1000e_setup_led_generic;
702 /* cleanup LED */
703 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
704 /* turn on/off LED */
705 mac->ops.led_on = e1000_led_on_ich8lan;
706 mac->ops.led_off = e1000_led_off_ich8lan;
707 break;
708 case e1000_pch2lan:
709 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
710 mac->ops.rar_set = e1000_rar_set_pch2lan;
711 fallthrough;
712 case e1000_pch_lpt:
713 case e1000_pch_spt:
714 case e1000_pch_cnp:
715 case e1000_pch_tgp:
716 case e1000_pch_adp:
717 case e1000_pch_mtp:
718 case e1000_pch_lnp:
719 case e1000_pch_ptp:
720 case e1000_pchlan:
721 /* check management mode */
722 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
723 /* ID LED init */
724 mac->ops.id_led_init = e1000_id_led_init_pchlan;
725 /* setup LED */
726 mac->ops.setup_led = e1000_setup_led_pchlan;
727 /* cleanup LED */
728 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
729 /* turn on/off LED */
730 mac->ops.led_on = e1000_led_on_pchlan;
731 mac->ops.led_off = e1000_led_off_pchlan;
732 break;
733 default:
734 break;
735 }
736
737 if (mac->type >= e1000_pch_lpt) {
738 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
739 mac->ops.rar_set = e1000_rar_set_pch_lpt;
740 mac->ops.setup_physical_interface =
741 e1000_setup_copper_link_pch_lpt;
742 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
743 }
744
745 /* Enable PCS Lock-loss workaround for ICH8 */
746 if (mac->type == e1000_ich8lan)
747 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
748
749 return 0;
750}
751
752/**
753 * __e1000_access_emi_reg_locked - Read/write EMI register
754 * @hw: pointer to the HW structure
755 * @address: EMI address to program
756 * @data: pointer to value to read/write from/to the EMI address
757 * @read: boolean flag to indicate read or write
758 *
759 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
760 **/
761static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
762 u16 *data, bool read)
763{
764 s32 ret_val;
765
766 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
767 if (ret_val)
768 return ret_val;
769
770 if (read)
771 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
772 else
773 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
774
775 return ret_val;
776}
777
778/**
779 * e1000_read_emi_reg_locked - Read Extended Management Interface register
780 * @hw: pointer to the HW structure
781 * @addr: EMI address to program
782 * @data: value to be read from the EMI address
783 *
784 * Assumes the SW/FW/HW Semaphore is already acquired.
785 **/
786s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
787{
788 return __e1000_access_emi_reg_locked(hw, addr, data, true);
789}
790
791/**
792 * e1000_write_emi_reg_locked - Write Extended Management Interface register
793 * @hw: pointer to the HW structure
794 * @addr: EMI address to program
795 * @data: value to be written to the EMI address
796 *
797 * Assumes the SW/FW/HW Semaphore is already acquired.
798 **/
799s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
800{
801 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
802}
803
804/**
805 * e1000_set_eee_pchlan - Enable/disable EEE support
806 * @hw: pointer to the HW structure
807 *
808 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
809 * the link and the EEE capabilities of the link partner. The LPI Control
810 * register bits will remain set only if/when link is up.
811 *
812 * EEE LPI must not be asserted earlier than one second after link is up.
813 * On 82579, EEE LPI should not be enabled until such time otherwise there
814 * can be link issues with some switches. Other devices can have EEE LPI
815 * enabled immediately upon link up since they have a timer in hardware which
816 * prevents LPI from being asserted too early.
817 **/
818s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
819{
820 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
821 s32 ret_val;
822 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
823
824 switch (hw->phy.type) {
825 case e1000_phy_82579:
826 lpa = I82579_EEE_LP_ABILITY;
827 pcs_status = I82579_EEE_PCS_STATUS;
828 adv_addr = I82579_EEE_ADVERTISEMENT;
829 break;
830 case e1000_phy_i217:
831 lpa = I217_EEE_LP_ABILITY;
832 pcs_status = I217_EEE_PCS_STATUS;
833 adv_addr = I217_EEE_ADVERTISEMENT;
834 break;
835 default:
836 return 0;
837 }
838
839 ret_val = hw->phy.ops.acquire(hw);
840 if (ret_val)
841 return ret_val;
842
843 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
844 if (ret_val)
845 goto release;
846
847 /* Clear bits that enable EEE in various speeds */
848 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
849
850 /* Enable EEE if not disabled by user */
851 if (!dev_spec->eee_disable) {
852 /* Save off link partner's EEE ability */
853 ret_val = e1000_read_emi_reg_locked(hw, lpa,
854 &dev_spec->eee_lp_ability);
855 if (ret_val)
856 goto release;
857
858 /* Read EEE advertisement */
859 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
860 if (ret_val)
861 goto release;
862
863 /* Enable EEE only for speeds in which the link partner is
864 * EEE capable and for which we advertise EEE.
865 */
866 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
867 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
868
869 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
870 e1e_rphy_locked(hw, MII_LPA, &data);
871 if (data & LPA_100FULL)
872 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
873 else
874 /* EEE is not supported in 100Half, so ignore
875 * partner's EEE in 100 ability if full-duplex
876 * is not advertised.
877 */
878 dev_spec->eee_lp_ability &=
879 ~I82579_EEE_100_SUPPORTED;
880 }
881 }
882
883 if (hw->phy.type == e1000_phy_82579) {
884 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
885 &data);
886 if (ret_val)
887 goto release;
888
889 data &= ~I82579_LPI_100_PLL_SHUT;
890 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
891 data);
892 }
893
894 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
895 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
896 if (ret_val)
897 goto release;
898
899 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
900release:
901 hw->phy.ops.release(hw);
902
903 return ret_val;
904}
905
906/**
907 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
908 * @hw: pointer to the HW structure
909 * @link: link up bool flag
910 *
911 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
912 * preventing further DMA write requests. Workaround the issue by disabling
913 * the de-assertion of the clock request when in 1Gpbs mode.
914 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
915 * speeds in order to avoid Tx hangs.
916 **/
917static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
918{
919 u32 fextnvm6 = er32(FEXTNVM6);
920 u32 status = er32(STATUS);
921 s32 ret_val = 0;
922 u16 reg;
923
924 if (link && (status & E1000_STATUS_SPEED_1000)) {
925 ret_val = hw->phy.ops.acquire(hw);
926 if (ret_val)
927 return ret_val;
928
929 ret_val =
930 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
931 ®);
932 if (ret_val)
933 goto release;
934
935 ret_val =
936 e1000e_write_kmrn_reg_locked(hw,
937 E1000_KMRNCTRLSTA_K1_CONFIG,
938 reg &
939 ~E1000_KMRNCTRLSTA_K1_ENABLE);
940 if (ret_val)
941 goto release;
942
943 usleep_range(10, 20);
944
945 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
946
947 ret_val =
948 e1000e_write_kmrn_reg_locked(hw,
949 E1000_KMRNCTRLSTA_K1_CONFIG,
950 reg);
951release:
952 hw->phy.ops.release(hw);
953 } else {
954 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
955 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
956
957 if ((hw->phy.revision > 5) || !link ||
958 ((status & E1000_STATUS_SPEED_100) &&
959 (status & E1000_STATUS_FD)))
960 goto update_fextnvm6;
961
962 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®);
963 if (ret_val)
964 return ret_val;
965
966 /* Clear link status transmit timeout */
967 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
968
969 if (status & E1000_STATUS_SPEED_100) {
970 /* Set inband Tx timeout to 5x10us for 100Half */
971 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
972
973 /* Do not extend the K1 entry latency for 100Half */
974 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
975 } else {
976 /* Set inband Tx timeout to 50x10us for 10Full/Half */
977 reg |= 50 <<
978 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
979
980 /* Extend the K1 entry latency for 10 Mbps */
981 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
982 }
983
984 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
985 if (ret_val)
986 return ret_val;
987
988update_fextnvm6:
989 ew32(FEXTNVM6, fextnvm6);
990 }
991
992 return ret_val;
993}
994
995/**
996 * e1000_platform_pm_pch_lpt - Set platform power management values
997 * @hw: pointer to the HW structure
998 * @link: bool indicating link status
999 *
1000 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1001 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1002 * when link is up (which must not exceed the maximum latency supported
1003 * by the platform), otherwise specify there is no LTR requirement.
1004 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1005 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1006 * Capability register set, on this device LTR is set by writing the
1007 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1008 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1009 * message to the PMC.
1010 **/
1011static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1012{
1013 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1014 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1015 u32 max_ltr_enc_d = 0; /* maximum LTR decoded by platform */
1016 u32 lat_enc_d = 0; /* latency decoded */
1017 u16 lat_enc = 0; /* latency encoded */
1018
1019 if (link) {
1020 u16 speed, duplex, scale = 0;
1021 u16 max_snoop, max_nosnoop;
1022 u16 max_ltr_enc; /* max LTR latency encoded */
1023 u64 value;
1024 u32 rxa;
1025
1026 if (!hw->adapter->max_frame_size) {
1027 e_dbg("max_frame_size not set.\n");
1028 return -E1000_ERR_CONFIG;
1029 }
1030
1031 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1032 if (!speed) {
1033 e_dbg("Speed not set.\n");
1034 return -E1000_ERR_CONFIG;
1035 }
1036
1037 /* Rx Packet Buffer Allocation size (KB) */
1038 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1039
1040 /* Determine the maximum latency tolerated by the device.
1041 *
1042 * Per the PCIe spec, the tolerated latencies are encoded as
1043 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1044 * a 10-bit value (0-1023) to provide a range from 1 ns to
1045 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1046 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1047 */
1048 rxa *= 512;
1049 value = (rxa > hw->adapter->max_frame_size) ?
1050 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1051 0;
1052
1053 while (value > PCI_LTR_VALUE_MASK) {
1054 scale++;
1055 value = DIV_ROUND_UP(value, BIT(5));
1056 }
1057 if (scale > E1000_LTRV_SCALE_MAX) {
1058 e_dbg("Invalid LTR latency scale %d\n", scale);
1059 return -E1000_ERR_CONFIG;
1060 }
1061 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1062
1063 /* Determine the maximum latency tolerated by the platform */
1064 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1065 &max_snoop);
1066 pci_read_config_word(hw->adapter->pdev,
1067 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1068 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1069
1070 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1071 (1U << (E1000_LTRV_SCALE_FACTOR *
1072 ((lat_enc & E1000_LTRV_SCALE_MASK)
1073 >> E1000_LTRV_SCALE_SHIFT)));
1074
1075 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1076 (1U << (E1000_LTRV_SCALE_FACTOR *
1077 ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1078 >> E1000_LTRV_SCALE_SHIFT)));
1079
1080 if (lat_enc_d > max_ltr_enc_d)
1081 lat_enc = max_ltr_enc;
1082 }
1083
1084 /* Set Snoop and No-Snoop latencies the same */
1085 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1086 ew32(LTRV, reg);
1087
1088 return 0;
1089}
1090
1091/**
1092 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1093 * @hw: pointer to the HW structure
1094 * @to_sx: boolean indicating a system power state transition to Sx
1095 *
1096 * When link is down, configure ULP mode to significantly reduce the power
1097 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1098 * ME firmware to start the ULP configuration. If not on an ME enabled
1099 * system, configure the ULP mode by software.
1100 */
1101s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1102{
1103 u32 mac_reg;
1104 s32 ret_val = 0;
1105 u16 phy_reg;
1106 u16 oem_reg = 0;
1107
1108 if ((hw->mac.type < e1000_pch_lpt) ||
1109 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1110 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1111 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1112 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1113 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1114 return 0;
1115
1116 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1117 /* Request ME configure ULP mode in the PHY */
1118 mac_reg = er32(H2ME);
1119 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1120 ew32(H2ME, mac_reg);
1121
1122 goto out;
1123 }
1124
1125 if (!to_sx) {
1126 int i = 0;
1127
1128 /* Poll up to 5 seconds for Cable Disconnected indication */
1129 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1130 /* Bail if link is re-acquired */
1131 if (er32(STATUS) & E1000_STATUS_LU)
1132 return -E1000_ERR_PHY;
1133
1134 if (i++ == 100)
1135 break;
1136
1137 msleep(50);
1138 }
1139 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1140 (er32(FEXT) &
1141 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1142 }
1143
1144 ret_val = hw->phy.ops.acquire(hw);
1145 if (ret_val)
1146 goto out;
1147
1148 /* Force SMBus mode in PHY */
1149 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1150 if (ret_val)
1151 goto release;
1152 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1153 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1154
1155 /* Force SMBus mode in MAC */
1156 mac_reg = er32(CTRL_EXT);
1157 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1158 ew32(CTRL_EXT, mac_reg);
1159
1160 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1161 * LPLU and disable Gig speed when entering ULP
1162 */
1163 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1164 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1165 &oem_reg);
1166 if (ret_val)
1167 goto release;
1168
1169 phy_reg = oem_reg;
1170 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1171
1172 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1173 phy_reg);
1174
1175 if (ret_val)
1176 goto release;
1177 }
1178
1179 /* Set Inband ULP Exit, Reset to SMBus mode and
1180 * Disable SMBus Release on PERST# in PHY
1181 */
1182 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1183 if (ret_val)
1184 goto release;
1185 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1186 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1187 if (to_sx) {
1188 if (er32(WUFC) & E1000_WUFC_LNKC)
1189 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1190 else
1191 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1192
1193 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1194 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1195 } else {
1196 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1197 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1198 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1199 }
1200 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1201
1202 /* Set Disable SMBus Release on PERST# in MAC */
1203 mac_reg = er32(FEXTNVM7);
1204 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1205 ew32(FEXTNVM7, mac_reg);
1206
1207 /* Commit ULP changes in PHY by starting auto ULP configuration */
1208 phy_reg |= I218_ULP_CONFIG1_START;
1209 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1210
1211 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1212 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1213 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1214 oem_reg);
1215 if (ret_val)
1216 goto release;
1217 }
1218
1219release:
1220 hw->phy.ops.release(hw);
1221out:
1222 if (ret_val)
1223 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1224 else
1225 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1226
1227 return ret_val;
1228}
1229
1230/**
1231 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1232 * @hw: pointer to the HW structure
1233 * @force: boolean indicating whether or not to force disabling ULP
1234 *
1235 * Un-configure ULP mode when link is up, the system is transitioned from
1236 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1237 * system, poll for an indication from ME that ULP has been un-configured.
1238 * If not on an ME enabled system, un-configure the ULP mode by software.
1239 *
1240 * During nominal operation, this function is called when link is acquired
1241 * to disable ULP mode (force=false); otherwise, for example when unloading
1242 * the driver or during Sx->S0 transitions, this is called with force=true
1243 * to forcibly disable ULP.
1244 */
1245static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1246{
1247 s32 ret_val = 0;
1248 u32 mac_reg;
1249 u16 phy_reg;
1250 int i = 0;
1251
1252 if ((hw->mac.type < e1000_pch_lpt) ||
1253 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1254 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1255 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1256 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1257 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1258 return 0;
1259
1260 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1261 struct e1000_adapter *adapter = hw->adapter;
1262 bool firmware_bug = false;
1263
1264 if (force) {
1265 /* Request ME un-configure ULP mode in the PHY */
1266 mac_reg = er32(H2ME);
1267 mac_reg &= ~E1000_H2ME_ULP;
1268 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1269 ew32(H2ME, mac_reg);
1270 }
1271
1272 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1273 * If this takes more than 1 second, show a warning indicating a
1274 * firmware bug
1275 */
1276 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1277 if (i++ == 250) {
1278 ret_val = -E1000_ERR_PHY;
1279 goto out;
1280 }
1281 if (i > 100 && !firmware_bug)
1282 firmware_bug = true;
1283
1284 usleep_range(10000, 11000);
1285 }
1286 if (firmware_bug)
1287 e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1288 i * 10);
1289 else
1290 e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1291 i * 10);
1292
1293 if (force) {
1294 mac_reg = er32(H2ME);
1295 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1296 ew32(H2ME, mac_reg);
1297 } else {
1298 /* Clear H2ME.ULP after ME ULP configuration */
1299 mac_reg = er32(H2ME);
1300 mac_reg &= ~E1000_H2ME_ULP;
1301 ew32(H2ME, mac_reg);
1302 }
1303
1304 goto out;
1305 }
1306
1307 ret_val = hw->phy.ops.acquire(hw);
1308 if (ret_val)
1309 goto out;
1310
1311 if (force)
1312 /* Toggle LANPHYPC Value bit */
1313 e1000_toggle_lanphypc_pch_lpt(hw);
1314
1315 /* Unforce SMBus mode in PHY */
1316 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1317 if (ret_val) {
1318 /* The MAC might be in PCIe mode, so temporarily force to
1319 * SMBus mode in order to access the PHY.
1320 */
1321 mac_reg = er32(CTRL_EXT);
1322 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1323 ew32(CTRL_EXT, mac_reg);
1324
1325 msleep(50);
1326
1327 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1328 &phy_reg);
1329 if (ret_val)
1330 goto release;
1331 }
1332 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1333 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1334
1335 /* Unforce SMBus mode in MAC */
1336 mac_reg = er32(CTRL_EXT);
1337 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1338 ew32(CTRL_EXT, mac_reg);
1339
1340 /* When ULP mode was previously entered, K1 was disabled by the
1341 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1342 */
1343 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1344 if (ret_val)
1345 goto release;
1346 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1347 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1348
1349 /* Clear ULP enabled configuration */
1350 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1351 if (ret_val)
1352 goto release;
1353 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1354 I218_ULP_CONFIG1_STICKY_ULP |
1355 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1356 I218_ULP_CONFIG1_WOL_HOST |
1357 I218_ULP_CONFIG1_INBAND_EXIT |
1358 I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1359 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1360 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1361 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1362
1363 /* Commit ULP changes by starting auto ULP configuration */
1364 phy_reg |= I218_ULP_CONFIG1_START;
1365 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1366
1367 /* Clear Disable SMBus Release on PERST# in MAC */
1368 mac_reg = er32(FEXTNVM7);
1369 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1370 ew32(FEXTNVM7, mac_reg);
1371
1372release:
1373 hw->phy.ops.release(hw);
1374 if (force) {
1375 e1000_phy_hw_reset(hw);
1376 msleep(50);
1377 }
1378out:
1379 if (ret_val)
1380 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1381 else
1382 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1383
1384 return ret_val;
1385}
1386
1387/**
1388 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1389 * @hw: pointer to the HW structure
1390 *
1391 * Checks to see of the link status of the hardware has changed. If a
1392 * change in link status has been detected, then we read the PHY registers
1393 * to get the current speed/duplex if link exists.
1394 **/
1395static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1396{
1397 struct e1000_mac_info *mac = &hw->mac;
1398 s32 ret_val, tipg_reg = 0;
1399 u16 emi_addr, emi_val = 0;
1400 bool link;
1401 u16 phy_reg;
1402
1403 /* We only want to go out to the PHY registers to see if Auto-Neg
1404 * has completed and/or if our link status has changed. The
1405 * get_link_status flag is set upon receiving a Link Status
1406 * Change or Rx Sequence Error interrupt.
1407 */
1408 if (!mac->get_link_status)
1409 return 0;
1410 mac->get_link_status = false;
1411
1412 /* First we want to see if the MII Status Register reports
1413 * link. If so, then we want to get the current speed/duplex
1414 * of the PHY.
1415 */
1416 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1417 if (ret_val)
1418 goto out;
1419
1420 if (hw->mac.type == e1000_pchlan) {
1421 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1422 if (ret_val)
1423 goto out;
1424 }
1425
1426 /* When connected at 10Mbps half-duplex, some parts are excessively
1427 * aggressive resulting in many collisions. To avoid this, increase
1428 * the IPG and reduce Rx latency in the PHY.
1429 */
1430 if ((hw->mac.type >= e1000_pch2lan) && link) {
1431 u16 speed, duplex;
1432
1433 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1434 tipg_reg = er32(TIPG);
1435 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1436
1437 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1438 tipg_reg |= 0xFF;
1439 /* Reduce Rx latency in analog PHY */
1440 emi_val = 0;
1441 } else if (hw->mac.type >= e1000_pch_spt &&
1442 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1443 tipg_reg |= 0xC;
1444 emi_val = 1;
1445 } else {
1446
1447 /* Roll back the default values */
1448 tipg_reg |= 0x08;
1449 emi_val = 1;
1450 }
1451
1452 ew32(TIPG, tipg_reg);
1453
1454 ret_val = hw->phy.ops.acquire(hw);
1455 if (ret_val)
1456 goto out;
1457
1458 if (hw->mac.type == e1000_pch2lan)
1459 emi_addr = I82579_RX_CONFIG;
1460 else
1461 emi_addr = I217_RX_CONFIG;
1462 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1463
1464 if (hw->mac.type >= e1000_pch_lpt) {
1465 u16 phy_reg;
1466
1467 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1468 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1469 if (speed == SPEED_100 || speed == SPEED_10)
1470 phy_reg |= 0x3E8;
1471 else
1472 phy_reg |= 0xFA;
1473 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1474
1475 if (speed == SPEED_1000) {
1476 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1477 &phy_reg);
1478
1479 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1480
1481 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1482 phy_reg);
1483 }
1484 }
1485 hw->phy.ops.release(hw);
1486
1487 if (ret_val)
1488 goto out;
1489
1490 if (hw->mac.type >= e1000_pch_spt) {
1491 u16 data;
1492 u16 ptr_gap;
1493
1494 if (speed == SPEED_1000) {
1495 ret_val = hw->phy.ops.acquire(hw);
1496 if (ret_val)
1497 goto out;
1498
1499 ret_val = e1e_rphy_locked(hw,
1500 PHY_REG(776, 20),
1501 &data);
1502 if (ret_val) {
1503 hw->phy.ops.release(hw);
1504 goto out;
1505 }
1506
1507 ptr_gap = (data & (0x3FF << 2)) >> 2;
1508 if (ptr_gap < 0x18) {
1509 data &= ~(0x3FF << 2);
1510 data |= (0x18 << 2);
1511 ret_val =
1512 e1e_wphy_locked(hw,
1513 PHY_REG(776, 20),
1514 data);
1515 }
1516 hw->phy.ops.release(hw);
1517 if (ret_val)
1518 goto out;
1519 } else {
1520 ret_val = hw->phy.ops.acquire(hw);
1521 if (ret_val)
1522 goto out;
1523
1524 ret_val = e1e_wphy_locked(hw,
1525 PHY_REG(776, 20),
1526 0xC023);
1527 hw->phy.ops.release(hw);
1528 if (ret_val)
1529 goto out;
1530
1531 }
1532 }
1533 }
1534
1535 /* I217 Packet Loss issue:
1536 * ensure that FEXTNVM4 Beacon Duration is set correctly
1537 * on power up.
1538 * Set the Beacon Duration for I217 to 8 usec
1539 */
1540 if (hw->mac.type >= e1000_pch_lpt) {
1541 u32 mac_reg;
1542
1543 mac_reg = er32(FEXTNVM4);
1544 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1545 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1546 ew32(FEXTNVM4, mac_reg);
1547 }
1548
1549 /* Work-around I218 hang issue */
1550 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1551 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1552 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1553 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1554 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1555 if (ret_val)
1556 goto out;
1557 }
1558 if (hw->mac.type >= e1000_pch_lpt) {
1559 /* Set platform power management values for
1560 * Latency Tolerance Reporting (LTR)
1561 */
1562 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1563 if (ret_val)
1564 goto out;
1565 }
1566
1567 /* Clear link partner's EEE ability */
1568 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1569
1570 if (hw->mac.type >= e1000_pch_lpt) {
1571 u32 fextnvm6 = er32(FEXTNVM6);
1572
1573 if (hw->mac.type == e1000_pch_spt) {
1574 /* FEXTNVM6 K1-off workaround - for SPT only */
1575 u32 pcieanacfg = er32(PCIEANACFG);
1576
1577 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1578 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1579 else
1580 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1581 }
1582
1583 ew32(FEXTNVM6, fextnvm6);
1584 }
1585
1586 if (!link)
1587 goto out;
1588
1589 switch (hw->mac.type) {
1590 case e1000_pch2lan:
1591 ret_val = e1000_k1_workaround_lv(hw);
1592 if (ret_val)
1593 return ret_val;
1594 fallthrough;
1595 case e1000_pchlan:
1596 if (hw->phy.type == e1000_phy_82578) {
1597 ret_val = e1000_link_stall_workaround_hv(hw);
1598 if (ret_val)
1599 return ret_val;
1600 }
1601
1602 /* Workaround for PCHx parts in half-duplex:
1603 * Set the number of preambles removed from the packet
1604 * when it is passed from the PHY to the MAC to prevent
1605 * the MAC from misinterpreting the packet type.
1606 */
1607 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1608 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1609
1610 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1611 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1612
1613 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1614 break;
1615 default:
1616 break;
1617 }
1618
1619 /* Check if there was DownShift, must be checked
1620 * immediately after link-up
1621 */
1622 e1000e_check_downshift(hw);
1623
1624 /* Enable/Disable EEE after link up */
1625 if (hw->phy.type > e1000_phy_82579) {
1626 ret_val = e1000_set_eee_pchlan(hw);
1627 if (ret_val)
1628 return ret_val;
1629 }
1630
1631 /* If we are forcing speed/duplex, then we simply return since
1632 * we have already determined whether we have link or not.
1633 */
1634 if (!mac->autoneg)
1635 return -E1000_ERR_CONFIG;
1636
1637 /* Auto-Neg is enabled. Auto Speed Detection takes care
1638 * of MAC speed/duplex configuration. So we only need to
1639 * configure Collision Distance in the MAC.
1640 */
1641 mac->ops.config_collision_dist(hw);
1642
1643 /* Configure Flow Control now that Auto-Neg has completed.
1644 * First, we need to restore the desired flow control
1645 * settings because we may have had to re-autoneg with a
1646 * different link partner.
1647 */
1648 ret_val = e1000e_config_fc_after_link_up(hw);
1649 if (ret_val)
1650 e_dbg("Error configuring flow control\n");
1651
1652 return ret_val;
1653
1654out:
1655 mac->get_link_status = true;
1656 return ret_val;
1657}
1658
1659static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1660{
1661 struct e1000_hw *hw = &adapter->hw;
1662 s32 rc;
1663
1664 rc = e1000_init_mac_params_ich8lan(hw);
1665 if (rc)
1666 return rc;
1667
1668 rc = e1000_init_nvm_params_ich8lan(hw);
1669 if (rc)
1670 return rc;
1671
1672 switch (hw->mac.type) {
1673 case e1000_ich8lan:
1674 case e1000_ich9lan:
1675 case e1000_ich10lan:
1676 rc = e1000_init_phy_params_ich8lan(hw);
1677 break;
1678 case e1000_pchlan:
1679 case e1000_pch2lan:
1680 case e1000_pch_lpt:
1681 case e1000_pch_spt:
1682 case e1000_pch_cnp:
1683 case e1000_pch_tgp:
1684 case e1000_pch_adp:
1685 case e1000_pch_mtp:
1686 case e1000_pch_lnp:
1687 case e1000_pch_ptp:
1688 rc = e1000_init_phy_params_pchlan(hw);
1689 break;
1690 default:
1691 break;
1692 }
1693 if (rc)
1694 return rc;
1695
1696 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1697 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1698 */
1699 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1700 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1701 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1702 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1703 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1704
1705 hw->mac.ops.blink_led = NULL;
1706 }
1707
1708 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1709 (adapter->hw.phy.type != e1000_phy_ife))
1710 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1711
1712 /* Enable workaround for 82579 w/ ME enabled */
1713 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1714 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1715 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1716
1717 return 0;
1718}
1719
1720static DEFINE_MUTEX(nvm_mutex);
1721
1722/**
1723 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1724 * @hw: pointer to the HW structure
1725 *
1726 * Acquires the mutex for performing NVM operations.
1727 **/
1728static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1729{
1730 mutex_lock(&nvm_mutex);
1731
1732 return 0;
1733}
1734
1735/**
1736 * e1000_release_nvm_ich8lan - Release NVM mutex
1737 * @hw: pointer to the HW structure
1738 *
1739 * Releases the mutex used while performing NVM operations.
1740 **/
1741static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1742{
1743 mutex_unlock(&nvm_mutex);
1744}
1745
1746/**
1747 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1748 * @hw: pointer to the HW structure
1749 *
1750 * Acquires the software control flag for performing PHY and select
1751 * MAC CSR accesses.
1752 **/
1753static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1754{
1755 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1756 s32 ret_val = 0;
1757
1758 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1759 &hw->adapter->state)) {
1760 e_dbg("contention for Phy access\n");
1761 return -E1000_ERR_PHY;
1762 }
1763
1764 while (timeout) {
1765 extcnf_ctrl = er32(EXTCNF_CTRL);
1766 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1767 break;
1768
1769 mdelay(1);
1770 timeout--;
1771 }
1772
1773 if (!timeout) {
1774 e_dbg("SW has already locked the resource.\n");
1775 ret_val = -E1000_ERR_CONFIG;
1776 goto out;
1777 }
1778
1779 timeout = SW_FLAG_TIMEOUT;
1780
1781 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1782 ew32(EXTCNF_CTRL, extcnf_ctrl);
1783
1784 while (timeout) {
1785 extcnf_ctrl = er32(EXTCNF_CTRL);
1786 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1787 break;
1788
1789 mdelay(1);
1790 timeout--;
1791 }
1792
1793 if (!timeout) {
1794 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1795 er32(FWSM), extcnf_ctrl);
1796 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1797 ew32(EXTCNF_CTRL, extcnf_ctrl);
1798 ret_val = -E1000_ERR_CONFIG;
1799 goto out;
1800 }
1801
1802out:
1803 if (ret_val)
1804 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1805
1806 return ret_val;
1807}
1808
1809/**
1810 * e1000_release_swflag_ich8lan - Release software control flag
1811 * @hw: pointer to the HW structure
1812 *
1813 * Releases the software control flag for performing PHY and select
1814 * MAC CSR accesses.
1815 **/
1816static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1817{
1818 u32 extcnf_ctrl;
1819
1820 extcnf_ctrl = er32(EXTCNF_CTRL);
1821
1822 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1823 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1824 ew32(EXTCNF_CTRL, extcnf_ctrl);
1825 } else {
1826 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1827 }
1828
1829 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1830}
1831
1832/**
1833 * e1000_check_mng_mode_ich8lan - Checks management mode
1834 * @hw: pointer to the HW structure
1835 *
1836 * This checks if the adapter has any manageability enabled.
1837 * This is a function pointer entry point only called by read/write
1838 * routines for the PHY and NVM parts.
1839 **/
1840static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1841{
1842 u32 fwsm;
1843
1844 fwsm = er32(FWSM);
1845 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1846 ((fwsm & E1000_FWSM_MODE_MASK) ==
1847 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1848}
1849
1850/**
1851 * e1000_check_mng_mode_pchlan - Checks management mode
1852 * @hw: pointer to the HW structure
1853 *
1854 * This checks if the adapter has iAMT enabled.
1855 * This is a function pointer entry point only called by read/write
1856 * routines for the PHY and NVM parts.
1857 **/
1858static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1859{
1860 u32 fwsm;
1861
1862 fwsm = er32(FWSM);
1863 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1864 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1865}
1866
1867/**
1868 * e1000_rar_set_pch2lan - Set receive address register
1869 * @hw: pointer to the HW structure
1870 * @addr: pointer to the receive address
1871 * @index: receive address array register
1872 *
1873 * Sets the receive address array register at index to the address passed
1874 * in by addr. For 82579, RAR[0] is the base address register that is to
1875 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1876 * Use SHRA[0-3] in place of those reserved for ME.
1877 **/
1878static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1879{
1880 u32 rar_low, rar_high;
1881
1882 /* HW expects these in little endian so we reverse the byte order
1883 * from network order (big endian) to little endian
1884 */
1885 rar_low = ((u32)addr[0] |
1886 ((u32)addr[1] << 8) |
1887 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1888
1889 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1890
1891 /* If MAC address zero, no need to set the AV bit */
1892 if (rar_low || rar_high)
1893 rar_high |= E1000_RAH_AV;
1894
1895 if (index == 0) {
1896 ew32(RAL(index), rar_low);
1897 e1e_flush();
1898 ew32(RAH(index), rar_high);
1899 e1e_flush();
1900 return 0;
1901 }
1902
1903 /* RAR[1-6] are owned by manageability. Skip those and program the
1904 * next address into the SHRA register array.
1905 */
1906 if (index < (u32)(hw->mac.rar_entry_count)) {
1907 s32 ret_val;
1908
1909 ret_val = e1000_acquire_swflag_ich8lan(hw);
1910 if (ret_val)
1911 goto out;
1912
1913 ew32(SHRAL(index - 1), rar_low);
1914 e1e_flush();
1915 ew32(SHRAH(index - 1), rar_high);
1916 e1e_flush();
1917
1918 e1000_release_swflag_ich8lan(hw);
1919
1920 /* verify the register updates */
1921 if ((er32(SHRAL(index - 1)) == rar_low) &&
1922 (er32(SHRAH(index - 1)) == rar_high))
1923 return 0;
1924
1925 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1926 (index - 1), er32(FWSM));
1927 }
1928
1929out:
1930 e_dbg("Failed to write receive address at index %d\n", index);
1931 return -E1000_ERR_CONFIG;
1932}
1933
1934/**
1935 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1936 * @hw: pointer to the HW structure
1937 *
1938 * Get the number of available receive registers that the Host can
1939 * program. SHRA[0-10] are the shared receive address registers
1940 * that are shared between the Host and manageability engine (ME).
1941 * ME can reserve any number of addresses and the host needs to be
1942 * able to tell how many available registers it has access to.
1943 **/
1944static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1945{
1946 u32 wlock_mac;
1947 u32 num_entries;
1948
1949 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1950 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1951
1952 switch (wlock_mac) {
1953 case 0:
1954 /* All SHRA[0..10] and RAR[0] available */
1955 num_entries = hw->mac.rar_entry_count;
1956 break;
1957 case 1:
1958 /* Only RAR[0] available */
1959 num_entries = 1;
1960 break;
1961 default:
1962 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1963 num_entries = wlock_mac + 1;
1964 break;
1965 }
1966
1967 return num_entries;
1968}
1969
1970/**
1971 * e1000_rar_set_pch_lpt - Set receive address registers
1972 * @hw: pointer to the HW structure
1973 * @addr: pointer to the receive address
1974 * @index: receive address array register
1975 *
1976 * Sets the receive address register array at index to the address passed
1977 * in by addr. For LPT, RAR[0] is the base address register that is to
1978 * contain the MAC address. SHRA[0-10] are the shared receive address
1979 * registers that are shared between the Host and manageability engine (ME).
1980 **/
1981static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1982{
1983 u32 rar_low, rar_high;
1984 u32 wlock_mac;
1985
1986 /* HW expects these in little endian so we reverse the byte order
1987 * from network order (big endian) to little endian
1988 */
1989 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1990 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1991
1992 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1993
1994 /* If MAC address zero, no need to set the AV bit */
1995 if (rar_low || rar_high)
1996 rar_high |= E1000_RAH_AV;
1997
1998 if (index == 0) {
1999 ew32(RAL(index), rar_low);
2000 e1e_flush();
2001 ew32(RAH(index), rar_high);
2002 e1e_flush();
2003 return 0;
2004 }
2005
2006 /* The manageability engine (ME) can lock certain SHRAR registers that
2007 * it is using - those registers are unavailable for use.
2008 */
2009 if (index < hw->mac.rar_entry_count) {
2010 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2011 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2012
2013 /* Check if all SHRAR registers are locked */
2014 if (wlock_mac == 1)
2015 goto out;
2016
2017 if ((wlock_mac == 0) || (index <= wlock_mac)) {
2018 s32 ret_val;
2019
2020 ret_val = e1000_acquire_swflag_ich8lan(hw);
2021
2022 if (ret_val)
2023 goto out;
2024
2025 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2026 e1e_flush();
2027 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2028 e1e_flush();
2029
2030 e1000_release_swflag_ich8lan(hw);
2031
2032 /* verify the register updates */
2033 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2034 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2035 return 0;
2036 }
2037 }
2038
2039out:
2040 e_dbg("Failed to write receive address at index %d\n", index);
2041 return -E1000_ERR_CONFIG;
2042}
2043
2044/**
2045 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2046 * @hw: pointer to the HW structure
2047 *
2048 * Checks if firmware is blocking the reset of the PHY.
2049 * This is a function pointer entry point only called by
2050 * reset routines.
2051 **/
2052static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2053{
2054 bool blocked = false;
2055 int i = 0;
2056
2057 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2058 (i++ < 30))
2059 usleep_range(10000, 11000);
2060 return blocked ? E1000_BLK_PHY_RESET : 0;
2061}
2062
2063/**
2064 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2065 * @hw: pointer to the HW structure
2066 *
2067 * Assumes semaphore already acquired.
2068 *
2069 **/
2070static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2071{
2072 u16 phy_data;
2073 u32 strap = er32(STRAP);
2074 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2075 E1000_STRAP_SMT_FREQ_SHIFT;
2076 s32 ret_val;
2077
2078 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2079
2080 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2081 if (ret_val)
2082 return ret_val;
2083
2084 phy_data &= ~HV_SMB_ADDR_MASK;
2085 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2086 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2087
2088 if (hw->phy.type == e1000_phy_i217) {
2089 /* Restore SMBus frequency */
2090 if (freq--) {
2091 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2092 phy_data |= (freq & BIT(0)) <<
2093 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2094 phy_data |= (freq & BIT(1)) <<
2095 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2096 } else {
2097 e_dbg("Unsupported SMB frequency in PHY\n");
2098 }
2099 }
2100
2101 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2102}
2103
2104/**
2105 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2106 * @hw: pointer to the HW structure
2107 *
2108 * SW should configure the LCD from the NVM extended configuration region
2109 * as a workaround for certain parts.
2110 **/
2111static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2112{
2113 struct e1000_phy_info *phy = &hw->phy;
2114 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2115 s32 ret_val = 0;
2116 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2117
2118 /* Initialize the PHY from the NVM on ICH platforms. This
2119 * is needed due to an issue where the NVM configuration is
2120 * not properly autoloaded after power transitions.
2121 * Therefore, after each PHY reset, we will load the
2122 * configuration data out of the NVM manually.
2123 */
2124 switch (hw->mac.type) {
2125 case e1000_ich8lan:
2126 if (phy->type != e1000_phy_igp_3)
2127 return ret_val;
2128
2129 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2130 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2131 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2132 break;
2133 }
2134 fallthrough;
2135 case e1000_pchlan:
2136 case e1000_pch2lan:
2137 case e1000_pch_lpt:
2138 case e1000_pch_spt:
2139 case e1000_pch_cnp:
2140 case e1000_pch_tgp:
2141 case e1000_pch_adp:
2142 case e1000_pch_mtp:
2143 case e1000_pch_lnp:
2144 case e1000_pch_ptp:
2145 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2146 break;
2147 default:
2148 return ret_val;
2149 }
2150
2151 ret_val = hw->phy.ops.acquire(hw);
2152 if (ret_val)
2153 return ret_val;
2154
2155 data = er32(FEXTNVM);
2156 if (!(data & sw_cfg_mask))
2157 goto release;
2158
2159 /* Make sure HW does not configure LCD from PHY
2160 * extended configuration before SW configuration
2161 */
2162 data = er32(EXTCNF_CTRL);
2163 if ((hw->mac.type < e1000_pch2lan) &&
2164 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2165 goto release;
2166
2167 cnf_size = er32(EXTCNF_SIZE);
2168 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2169 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2170 if (!cnf_size)
2171 goto release;
2172
2173 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2174 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2175
2176 if (((hw->mac.type == e1000_pchlan) &&
2177 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2178 (hw->mac.type > e1000_pchlan)) {
2179 /* HW configures the SMBus address and LEDs when the
2180 * OEM and LCD Write Enable bits are set in the NVM.
2181 * When both NVM bits are cleared, SW will configure
2182 * them instead.
2183 */
2184 ret_val = e1000_write_smbus_addr(hw);
2185 if (ret_val)
2186 goto release;
2187
2188 data = er32(LEDCTL);
2189 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2190 (u16)data);
2191 if (ret_val)
2192 goto release;
2193 }
2194
2195 /* Configure LCD from extended configuration region. */
2196
2197 /* cnf_base_addr is in DWORD */
2198 word_addr = (u16)(cnf_base_addr << 1);
2199
2200 for (i = 0; i < cnf_size; i++) {
2201 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data);
2202 if (ret_val)
2203 goto release;
2204
2205 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2206 1, ®_addr);
2207 if (ret_val)
2208 goto release;
2209
2210 /* Save off the PHY page for future writes. */
2211 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2212 phy_page = reg_data;
2213 continue;
2214 }
2215
2216 reg_addr &= PHY_REG_MASK;
2217 reg_addr |= phy_page;
2218
2219 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2220 if (ret_val)
2221 goto release;
2222 }
2223
2224release:
2225 hw->phy.ops.release(hw);
2226 return ret_val;
2227}
2228
2229/**
2230 * e1000_k1_gig_workaround_hv - K1 Si workaround
2231 * @hw: pointer to the HW structure
2232 * @link: link up bool flag
2233 *
2234 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2235 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2236 * If link is down, the function will restore the default K1 setting located
2237 * in the NVM.
2238 **/
2239static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2240{
2241 s32 ret_val = 0;
2242 u16 status_reg = 0;
2243 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2244
2245 if (hw->mac.type != e1000_pchlan)
2246 return 0;
2247
2248 /* Wrap the whole flow with the sw flag */
2249 ret_val = hw->phy.ops.acquire(hw);
2250 if (ret_val)
2251 return ret_val;
2252
2253 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2254 if (link) {
2255 if (hw->phy.type == e1000_phy_82578) {
2256 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2257 &status_reg);
2258 if (ret_val)
2259 goto release;
2260
2261 status_reg &= (BM_CS_STATUS_LINK_UP |
2262 BM_CS_STATUS_RESOLVED |
2263 BM_CS_STATUS_SPEED_MASK);
2264
2265 if (status_reg == (BM_CS_STATUS_LINK_UP |
2266 BM_CS_STATUS_RESOLVED |
2267 BM_CS_STATUS_SPEED_1000))
2268 k1_enable = false;
2269 }
2270
2271 if (hw->phy.type == e1000_phy_82577) {
2272 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2273 if (ret_val)
2274 goto release;
2275
2276 status_reg &= (HV_M_STATUS_LINK_UP |
2277 HV_M_STATUS_AUTONEG_COMPLETE |
2278 HV_M_STATUS_SPEED_MASK);
2279
2280 if (status_reg == (HV_M_STATUS_LINK_UP |
2281 HV_M_STATUS_AUTONEG_COMPLETE |
2282 HV_M_STATUS_SPEED_1000))
2283 k1_enable = false;
2284 }
2285
2286 /* Link stall fix for link up */
2287 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2288 if (ret_val)
2289 goto release;
2290
2291 } else {
2292 /* Link stall fix for link down */
2293 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2294 if (ret_val)
2295 goto release;
2296 }
2297
2298 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2299
2300release:
2301 hw->phy.ops.release(hw);
2302
2303 return ret_val;
2304}
2305
2306/**
2307 * e1000_configure_k1_ich8lan - Configure K1 power state
2308 * @hw: pointer to the HW structure
2309 * @k1_enable: K1 state to configure
2310 *
2311 * Configure the K1 power state based on the provided parameter.
2312 * Assumes semaphore already acquired.
2313 *
2314 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2315 **/
2316s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2317{
2318 s32 ret_val;
2319 u32 ctrl_reg = 0;
2320 u32 ctrl_ext = 0;
2321 u32 reg = 0;
2322 u16 kmrn_reg = 0;
2323
2324 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2325 &kmrn_reg);
2326 if (ret_val)
2327 return ret_val;
2328
2329 if (k1_enable)
2330 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2331 else
2332 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2333
2334 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2335 kmrn_reg);
2336 if (ret_val)
2337 return ret_val;
2338
2339 usleep_range(20, 40);
2340 ctrl_ext = er32(CTRL_EXT);
2341 ctrl_reg = er32(CTRL);
2342
2343 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2344 reg |= E1000_CTRL_FRCSPD;
2345 ew32(CTRL, reg);
2346
2347 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2348 e1e_flush();
2349 usleep_range(20, 40);
2350 ew32(CTRL, ctrl_reg);
2351 ew32(CTRL_EXT, ctrl_ext);
2352 e1e_flush();
2353 usleep_range(20, 40);
2354
2355 return 0;
2356}
2357
2358/**
2359 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2360 * @hw: pointer to the HW structure
2361 * @d0_state: boolean if entering d0 or d3 device state
2362 *
2363 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2364 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2365 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2366 **/
2367static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2368{
2369 s32 ret_val = 0;
2370 u32 mac_reg;
2371 u16 oem_reg;
2372
2373 if (hw->mac.type < e1000_pchlan)
2374 return ret_val;
2375
2376 ret_val = hw->phy.ops.acquire(hw);
2377 if (ret_val)
2378 return ret_val;
2379
2380 if (hw->mac.type == e1000_pchlan) {
2381 mac_reg = er32(EXTCNF_CTRL);
2382 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2383 goto release;
2384 }
2385
2386 mac_reg = er32(FEXTNVM);
2387 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2388 goto release;
2389
2390 mac_reg = er32(PHY_CTRL);
2391
2392 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2393 if (ret_val)
2394 goto release;
2395
2396 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2397
2398 if (d0_state) {
2399 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2400 oem_reg |= HV_OEM_BITS_GBE_DIS;
2401
2402 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2403 oem_reg |= HV_OEM_BITS_LPLU;
2404 } else {
2405 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2406 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2407 oem_reg |= HV_OEM_BITS_GBE_DIS;
2408
2409 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2410 E1000_PHY_CTRL_NOND0A_LPLU))
2411 oem_reg |= HV_OEM_BITS_LPLU;
2412 }
2413
2414 /* Set Restart auto-neg to activate the bits */
2415 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2416 !hw->phy.ops.check_reset_block(hw))
2417 oem_reg |= HV_OEM_BITS_RESTART_AN;
2418
2419 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2420
2421release:
2422 hw->phy.ops.release(hw);
2423
2424 return ret_val;
2425}
2426
2427/**
2428 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2429 * @hw: pointer to the HW structure
2430 **/
2431static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2432{
2433 s32 ret_val;
2434 u16 data;
2435
2436 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2437 if (ret_val)
2438 return ret_val;
2439
2440 data |= HV_KMRN_MDIO_SLOW;
2441
2442 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2443
2444 return ret_val;
2445}
2446
2447/**
2448 * e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2449 * @hw: pointer to the HW structure
2450 *
2451 * A series of PHY workarounds to be done after every PHY reset.
2452 **/
2453static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2454{
2455 s32 ret_val = 0;
2456 u16 phy_data;
2457
2458 if (hw->mac.type != e1000_pchlan)
2459 return 0;
2460
2461 /* Set MDIO slow mode before any other MDIO access */
2462 if (hw->phy.type == e1000_phy_82577) {
2463 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2464 if (ret_val)
2465 return ret_val;
2466 }
2467
2468 if (((hw->phy.type == e1000_phy_82577) &&
2469 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2470 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2471 /* Disable generation of early preamble */
2472 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2473 if (ret_val)
2474 return ret_val;
2475
2476 /* Preamble tuning for SSC */
2477 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2478 if (ret_val)
2479 return ret_val;
2480 }
2481
2482 if (hw->phy.type == e1000_phy_82578) {
2483 /* Return registers to default by doing a soft reset then
2484 * writing 0x3140 to the control register.
2485 */
2486 if (hw->phy.revision < 2) {
2487 e1000e_phy_sw_reset(hw);
2488 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2489 if (ret_val)
2490 return ret_val;
2491 }
2492 }
2493
2494 /* Select page 0 */
2495 ret_val = hw->phy.ops.acquire(hw);
2496 if (ret_val)
2497 return ret_val;
2498
2499 hw->phy.addr = 1;
2500 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2501 hw->phy.ops.release(hw);
2502 if (ret_val)
2503 return ret_val;
2504
2505 /* Configure the K1 Si workaround during phy reset assuming there is
2506 * link so that it disables K1 if link is in 1Gbps.
2507 */
2508 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2509 if (ret_val)
2510 return ret_val;
2511
2512 /* Workaround for link disconnects on a busy hub in half duplex */
2513 ret_val = hw->phy.ops.acquire(hw);
2514 if (ret_val)
2515 return ret_val;
2516 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2517 if (ret_val)
2518 goto release;
2519 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2520 if (ret_val)
2521 goto release;
2522
2523 /* set MSE higher to enable link to stay up when noise is high */
2524 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2525release:
2526 hw->phy.ops.release(hw);
2527
2528 return ret_val;
2529}
2530
2531/**
2532 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2533 * @hw: pointer to the HW structure
2534 **/
2535void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2536{
2537 u32 mac_reg;
2538 u16 i, phy_reg = 0;
2539 s32 ret_val;
2540
2541 ret_val = hw->phy.ops.acquire(hw);
2542 if (ret_val)
2543 return;
2544 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2545 if (ret_val)
2546 goto release;
2547
2548 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2549 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2550 mac_reg = er32(RAL(i));
2551 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2552 (u16)(mac_reg & 0xFFFF));
2553 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2554 (u16)((mac_reg >> 16) & 0xFFFF));
2555
2556 mac_reg = er32(RAH(i));
2557 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2558 (u16)(mac_reg & 0xFFFF));
2559 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2560 (u16)((mac_reg & E1000_RAH_AV)
2561 >> 16));
2562 }
2563
2564 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2565
2566release:
2567 hw->phy.ops.release(hw);
2568}
2569
2570/**
2571 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2572 * with 82579 PHY
2573 * @hw: pointer to the HW structure
2574 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2575 **/
2576s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2577{
2578 s32 ret_val = 0;
2579 u16 phy_reg, data;
2580 u32 mac_reg;
2581 u16 i;
2582
2583 if (hw->mac.type < e1000_pch2lan)
2584 return 0;
2585
2586 /* disable Rx path while enabling/disabling workaround */
2587 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2588 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2589 if (ret_val)
2590 return ret_val;
2591
2592 if (enable) {
2593 /* Write Rx addresses (rar_entry_count for RAL/H, and
2594 * SHRAL/H) and initial CRC values to the MAC
2595 */
2596 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2597 u8 mac_addr[ETH_ALEN] = { 0 };
2598 u32 addr_high, addr_low;
2599
2600 addr_high = er32(RAH(i));
2601 if (!(addr_high & E1000_RAH_AV))
2602 continue;
2603 addr_low = er32(RAL(i));
2604 mac_addr[0] = (addr_low & 0xFF);
2605 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2606 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2607 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2608 mac_addr[4] = (addr_high & 0xFF);
2609 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2610
2611 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2612 }
2613
2614 /* Write Rx addresses to the PHY */
2615 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2616
2617 /* Enable jumbo frame workaround in the MAC */
2618 mac_reg = er32(FFLT_DBG);
2619 mac_reg &= ~BIT(14);
2620 mac_reg |= (7 << 15);
2621 ew32(FFLT_DBG, mac_reg);
2622
2623 mac_reg = er32(RCTL);
2624 mac_reg |= E1000_RCTL_SECRC;
2625 ew32(RCTL, mac_reg);
2626
2627 ret_val = e1000e_read_kmrn_reg(hw,
2628 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2629 &data);
2630 if (ret_val)
2631 return ret_val;
2632 ret_val = e1000e_write_kmrn_reg(hw,
2633 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2634 data | BIT(0));
2635 if (ret_val)
2636 return ret_val;
2637 ret_val = e1000e_read_kmrn_reg(hw,
2638 E1000_KMRNCTRLSTA_HD_CTRL,
2639 &data);
2640 if (ret_val)
2641 return ret_val;
2642 data &= ~(0xF << 8);
2643 data |= (0xB << 8);
2644 ret_val = e1000e_write_kmrn_reg(hw,
2645 E1000_KMRNCTRLSTA_HD_CTRL,
2646 data);
2647 if (ret_val)
2648 return ret_val;
2649
2650 /* Enable jumbo frame workaround in the PHY */
2651 e1e_rphy(hw, PHY_REG(769, 23), &data);
2652 data &= ~(0x7F << 5);
2653 data |= (0x37 << 5);
2654 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2655 if (ret_val)
2656 return ret_val;
2657 e1e_rphy(hw, PHY_REG(769, 16), &data);
2658 data &= ~BIT(13);
2659 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2660 if (ret_val)
2661 return ret_val;
2662 e1e_rphy(hw, PHY_REG(776, 20), &data);
2663 data &= ~(0x3FF << 2);
2664 data |= (E1000_TX_PTR_GAP << 2);
2665 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2666 if (ret_val)
2667 return ret_val;
2668 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2669 if (ret_val)
2670 return ret_val;
2671 e1e_rphy(hw, HV_PM_CTRL, &data);
2672 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2673 if (ret_val)
2674 return ret_val;
2675 } else {
2676 /* Write MAC register values back to h/w defaults */
2677 mac_reg = er32(FFLT_DBG);
2678 mac_reg &= ~(0xF << 14);
2679 ew32(FFLT_DBG, mac_reg);
2680
2681 mac_reg = er32(RCTL);
2682 mac_reg &= ~E1000_RCTL_SECRC;
2683 ew32(RCTL, mac_reg);
2684
2685 ret_val = e1000e_read_kmrn_reg(hw,
2686 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2687 &data);
2688 if (ret_val)
2689 return ret_val;
2690 ret_val = e1000e_write_kmrn_reg(hw,
2691 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2692 data & ~BIT(0));
2693 if (ret_val)
2694 return ret_val;
2695 ret_val = e1000e_read_kmrn_reg(hw,
2696 E1000_KMRNCTRLSTA_HD_CTRL,
2697 &data);
2698 if (ret_val)
2699 return ret_val;
2700 data &= ~(0xF << 8);
2701 data |= (0xB << 8);
2702 ret_val = e1000e_write_kmrn_reg(hw,
2703 E1000_KMRNCTRLSTA_HD_CTRL,
2704 data);
2705 if (ret_val)
2706 return ret_val;
2707
2708 /* Write PHY register values back to h/w defaults */
2709 e1e_rphy(hw, PHY_REG(769, 23), &data);
2710 data &= ~(0x7F << 5);
2711 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2712 if (ret_val)
2713 return ret_val;
2714 e1e_rphy(hw, PHY_REG(769, 16), &data);
2715 data |= BIT(13);
2716 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2717 if (ret_val)
2718 return ret_val;
2719 e1e_rphy(hw, PHY_REG(776, 20), &data);
2720 data &= ~(0x3FF << 2);
2721 data |= (0x8 << 2);
2722 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2723 if (ret_val)
2724 return ret_val;
2725 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2726 if (ret_val)
2727 return ret_val;
2728 e1e_rphy(hw, HV_PM_CTRL, &data);
2729 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2730 if (ret_val)
2731 return ret_val;
2732 }
2733
2734 /* re-enable Rx path after enabling/disabling workaround */
2735 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2736}
2737
2738/**
2739 * e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2740 * @hw: pointer to the HW structure
2741 *
2742 * A series of PHY workarounds to be done after every PHY reset.
2743 **/
2744static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2745{
2746 s32 ret_val = 0;
2747
2748 if (hw->mac.type != e1000_pch2lan)
2749 return 0;
2750
2751 /* Set MDIO slow mode before any other MDIO access */
2752 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2753 if (ret_val)
2754 return ret_val;
2755
2756 ret_val = hw->phy.ops.acquire(hw);
2757 if (ret_val)
2758 return ret_val;
2759 /* set MSE higher to enable link to stay up when noise is high */
2760 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2761 if (ret_val)
2762 goto release;
2763 /* drop link after 5 times MSE threshold was reached */
2764 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2765release:
2766 hw->phy.ops.release(hw);
2767
2768 return ret_val;
2769}
2770
2771/**
2772 * e1000_k1_workaround_lv - K1 Si workaround
2773 * @hw: pointer to the HW structure
2774 *
2775 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2776 * Disable K1 in 1000Mbps and 100Mbps
2777 **/
2778static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2779{
2780 s32 ret_val = 0;
2781 u16 status_reg = 0;
2782
2783 if (hw->mac.type != e1000_pch2lan)
2784 return 0;
2785
2786 /* Set K1 beacon duration based on 10Mbs speed */
2787 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2788 if (ret_val)
2789 return ret_val;
2790
2791 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2792 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2793 if (status_reg &
2794 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2795 u16 pm_phy_reg;
2796
2797 /* LV 1G/100 Packet drop issue wa */
2798 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2799 if (ret_val)
2800 return ret_val;
2801 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2802 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2803 if (ret_val)
2804 return ret_val;
2805 } else {
2806 u32 mac_reg;
2807
2808 mac_reg = er32(FEXTNVM4);
2809 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2810 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2811 ew32(FEXTNVM4, mac_reg);
2812 }
2813 }
2814
2815 return ret_val;
2816}
2817
2818/**
2819 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2820 * @hw: pointer to the HW structure
2821 * @gate: boolean set to true to gate, false to ungate
2822 *
2823 * Gate/ungate the automatic PHY configuration via hardware; perform
2824 * the configuration via software instead.
2825 **/
2826static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2827{
2828 u32 extcnf_ctrl;
2829
2830 if (hw->mac.type < e1000_pch2lan)
2831 return;
2832
2833 extcnf_ctrl = er32(EXTCNF_CTRL);
2834
2835 if (gate)
2836 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2837 else
2838 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2839
2840 ew32(EXTCNF_CTRL, extcnf_ctrl);
2841}
2842
2843/**
2844 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2845 * @hw: pointer to the HW structure
2846 *
2847 * Check the appropriate indication the MAC has finished configuring the
2848 * PHY after a software reset.
2849 **/
2850static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2851{
2852 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2853
2854 /* Wait for basic configuration completes before proceeding */
2855 do {
2856 data = er32(STATUS);
2857 data &= E1000_STATUS_LAN_INIT_DONE;
2858 usleep_range(100, 200);
2859 } while ((!data) && --loop);
2860
2861 /* If basic configuration is incomplete before the above loop
2862 * count reaches 0, loading the configuration from NVM will
2863 * leave the PHY in a bad state possibly resulting in no link.
2864 */
2865 if (loop == 0)
2866 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2867
2868 /* Clear the Init Done bit for the next init event */
2869 data = er32(STATUS);
2870 data &= ~E1000_STATUS_LAN_INIT_DONE;
2871 ew32(STATUS, data);
2872}
2873
2874/**
2875 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2876 * @hw: pointer to the HW structure
2877 **/
2878static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2879{
2880 s32 ret_val = 0;
2881 u16 reg;
2882
2883 if (hw->phy.ops.check_reset_block(hw))
2884 return 0;
2885
2886 /* Allow time for h/w to get to quiescent state after reset */
2887 usleep_range(10000, 11000);
2888
2889 /* Perform any necessary post-reset workarounds */
2890 switch (hw->mac.type) {
2891 case e1000_pchlan:
2892 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2893 if (ret_val)
2894 return ret_val;
2895 break;
2896 case e1000_pch2lan:
2897 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2898 if (ret_val)
2899 return ret_val;
2900 break;
2901 default:
2902 break;
2903 }
2904
2905 /* Clear the host wakeup bit after lcd reset */
2906 if (hw->mac.type >= e1000_pchlan) {
2907 e1e_rphy(hw, BM_PORT_GEN_CFG, ®);
2908 reg &= ~BM_WUC_HOST_WU_BIT;
2909 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2910 }
2911
2912 /* Configure the LCD with the extended configuration region in NVM */
2913 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2914 if (ret_val)
2915 return ret_val;
2916
2917 /* Configure the LCD with the OEM bits in NVM */
2918 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2919
2920 if (hw->mac.type == e1000_pch2lan) {
2921 /* Ungate automatic PHY configuration on non-managed 82579 */
2922 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2923 usleep_range(10000, 11000);
2924 e1000_gate_hw_phy_config_ich8lan(hw, false);
2925 }
2926
2927 /* Set EEE LPI Update Timer to 200usec */
2928 ret_val = hw->phy.ops.acquire(hw);
2929 if (ret_val)
2930 return ret_val;
2931 ret_val = e1000_write_emi_reg_locked(hw,
2932 I82579_LPI_UPDATE_TIMER,
2933 0x1387);
2934 hw->phy.ops.release(hw);
2935 }
2936
2937 return ret_val;
2938}
2939
2940/**
2941 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2942 * @hw: pointer to the HW structure
2943 *
2944 * Resets the PHY
2945 * This is a function pointer entry point called by drivers
2946 * or other shared routines.
2947 **/
2948static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2949{
2950 s32 ret_val = 0;
2951
2952 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2953 if ((hw->mac.type == e1000_pch2lan) &&
2954 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2955 e1000_gate_hw_phy_config_ich8lan(hw, true);
2956
2957 ret_val = e1000e_phy_hw_reset_generic(hw);
2958 if (ret_val)
2959 return ret_val;
2960
2961 return e1000_post_phy_reset_ich8lan(hw);
2962}
2963
2964/**
2965 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2966 * @hw: pointer to the HW structure
2967 * @active: true to enable LPLU, false to disable
2968 *
2969 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2970 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2971 * the phy speed. This function will manually set the LPLU bit and restart
2972 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2973 * since it configures the same bit.
2974 **/
2975static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2976{
2977 s32 ret_val;
2978 u16 oem_reg;
2979
2980 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2981 if (ret_val)
2982 return ret_val;
2983
2984 if (active)
2985 oem_reg |= HV_OEM_BITS_LPLU;
2986 else
2987 oem_reg &= ~HV_OEM_BITS_LPLU;
2988
2989 if (!hw->phy.ops.check_reset_block(hw))
2990 oem_reg |= HV_OEM_BITS_RESTART_AN;
2991
2992 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2993}
2994
2995/**
2996 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2997 * @hw: pointer to the HW structure
2998 * @active: true to enable LPLU, false to disable
2999 *
3000 * Sets the LPLU D0 state according to the active flag. When
3001 * activating LPLU this function also disables smart speed
3002 * and vice versa. LPLU will not be activated unless the
3003 * device autonegotiation advertisement meets standards of
3004 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3005 * This is a function pointer entry point only called by
3006 * PHY setup routines.
3007 **/
3008static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3009{
3010 struct e1000_phy_info *phy = &hw->phy;
3011 u32 phy_ctrl;
3012 s32 ret_val = 0;
3013 u16 data;
3014
3015 if (phy->type == e1000_phy_ife)
3016 return 0;
3017
3018 phy_ctrl = er32(PHY_CTRL);
3019
3020 if (active) {
3021 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3022 ew32(PHY_CTRL, phy_ctrl);
3023
3024 if (phy->type != e1000_phy_igp_3)
3025 return 0;
3026
3027 /* Call gig speed drop workaround on LPLU before accessing
3028 * any PHY registers
3029 */
3030 if (hw->mac.type == e1000_ich8lan)
3031 e1000e_gig_downshift_workaround_ich8lan(hw);
3032
3033 /* When LPLU is enabled, we should disable SmartSpeed */
3034 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3035 if (ret_val)
3036 return ret_val;
3037 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3038 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3039 if (ret_val)
3040 return ret_val;
3041 } else {
3042 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3043 ew32(PHY_CTRL, phy_ctrl);
3044
3045 if (phy->type != e1000_phy_igp_3)
3046 return 0;
3047
3048 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3049 * during Dx states where the power conservation is most
3050 * important. During driver activity we should enable
3051 * SmartSpeed, so performance is maintained.
3052 */
3053 if (phy->smart_speed == e1000_smart_speed_on) {
3054 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3055 &data);
3056 if (ret_val)
3057 return ret_val;
3058
3059 data |= IGP01E1000_PSCFR_SMART_SPEED;
3060 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3061 data);
3062 if (ret_val)
3063 return ret_val;
3064 } else if (phy->smart_speed == e1000_smart_speed_off) {
3065 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066 &data);
3067 if (ret_val)
3068 return ret_val;
3069
3070 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3071 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3072 data);
3073 if (ret_val)
3074 return ret_val;
3075 }
3076 }
3077
3078 return 0;
3079}
3080
3081/**
3082 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3083 * @hw: pointer to the HW structure
3084 * @active: true to enable LPLU, false to disable
3085 *
3086 * Sets the LPLU D3 state according to the active flag. When
3087 * activating LPLU this function also disables smart speed
3088 * and vice versa. LPLU will not be activated unless the
3089 * device autonegotiation advertisement meets standards of
3090 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3091 * This is a function pointer entry point only called by
3092 * PHY setup routines.
3093 **/
3094static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3095{
3096 struct e1000_phy_info *phy = &hw->phy;
3097 u32 phy_ctrl;
3098 s32 ret_val = 0;
3099 u16 data;
3100
3101 phy_ctrl = er32(PHY_CTRL);
3102
3103 if (!active) {
3104 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3105 ew32(PHY_CTRL, phy_ctrl);
3106
3107 if (phy->type != e1000_phy_igp_3)
3108 return 0;
3109
3110 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3111 * during Dx states where the power conservation is most
3112 * important. During driver activity we should enable
3113 * SmartSpeed, so performance is maintained.
3114 */
3115 if (phy->smart_speed == e1000_smart_speed_on) {
3116 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3117 &data);
3118 if (ret_val)
3119 return ret_val;
3120
3121 data |= IGP01E1000_PSCFR_SMART_SPEED;
3122 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3123 data);
3124 if (ret_val)
3125 return ret_val;
3126 } else if (phy->smart_speed == e1000_smart_speed_off) {
3127 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3128 &data);
3129 if (ret_val)
3130 return ret_val;
3131
3132 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3133 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3134 data);
3135 if (ret_val)
3136 return ret_val;
3137 }
3138 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3139 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3140 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3141 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3142 ew32(PHY_CTRL, phy_ctrl);
3143
3144 if (phy->type != e1000_phy_igp_3)
3145 return 0;
3146
3147 /* Call gig speed drop workaround on LPLU before accessing
3148 * any PHY registers
3149 */
3150 if (hw->mac.type == e1000_ich8lan)
3151 e1000e_gig_downshift_workaround_ich8lan(hw);
3152
3153 /* When LPLU is enabled, we should disable SmartSpeed */
3154 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3155 if (ret_val)
3156 return ret_val;
3157
3158 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3159 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3160 }
3161
3162 return ret_val;
3163}
3164
3165/**
3166 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3167 * @hw: pointer to the HW structure
3168 * @bank: pointer to the variable that returns the active bank
3169 *
3170 * Reads signature byte from the NVM using the flash access registers.
3171 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3172 **/
3173static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3174{
3175 u32 eecd;
3176 struct e1000_nvm_info *nvm = &hw->nvm;
3177 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3178 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3179 u32 nvm_dword = 0;
3180 u8 sig_byte = 0;
3181 s32 ret_val;
3182
3183 switch (hw->mac.type) {
3184 case e1000_pch_spt:
3185 case e1000_pch_cnp:
3186 case e1000_pch_tgp:
3187 case e1000_pch_adp:
3188 case e1000_pch_mtp:
3189 case e1000_pch_lnp:
3190 case e1000_pch_ptp:
3191 bank1_offset = nvm->flash_bank_size;
3192 act_offset = E1000_ICH_NVM_SIG_WORD;
3193
3194 /* set bank to 0 in case flash read fails */
3195 *bank = 0;
3196
3197 /* Check bank 0 */
3198 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3199 &nvm_dword);
3200 if (ret_val)
3201 return ret_val;
3202 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3203 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3204 E1000_ICH_NVM_SIG_VALUE) {
3205 *bank = 0;
3206 return 0;
3207 }
3208
3209 /* Check bank 1 */
3210 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3211 bank1_offset,
3212 &nvm_dword);
3213 if (ret_val)
3214 return ret_val;
3215 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3216 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3217 E1000_ICH_NVM_SIG_VALUE) {
3218 *bank = 1;
3219 return 0;
3220 }
3221
3222 e_dbg("ERROR: No valid NVM bank present\n");
3223 return -E1000_ERR_NVM;
3224 case e1000_ich8lan:
3225 case e1000_ich9lan:
3226 eecd = er32(EECD);
3227 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3228 E1000_EECD_SEC1VAL_VALID_MASK) {
3229 if (eecd & E1000_EECD_SEC1VAL)
3230 *bank = 1;
3231 else
3232 *bank = 0;
3233
3234 return 0;
3235 }
3236 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3237 fallthrough;
3238 default:
3239 /* set bank to 0 in case flash read fails */
3240 *bank = 0;
3241
3242 /* Check bank 0 */
3243 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3244 &sig_byte);
3245 if (ret_val)
3246 return ret_val;
3247 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3248 E1000_ICH_NVM_SIG_VALUE) {
3249 *bank = 0;
3250 return 0;
3251 }
3252
3253 /* Check bank 1 */
3254 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3255 bank1_offset,
3256 &sig_byte);
3257 if (ret_val)
3258 return ret_val;
3259 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3260 E1000_ICH_NVM_SIG_VALUE) {
3261 *bank = 1;
3262 return 0;
3263 }
3264
3265 e_dbg("ERROR: No valid NVM bank present\n");
3266 return -E1000_ERR_NVM;
3267 }
3268}
3269
3270/**
3271 * e1000_read_nvm_spt - NVM access for SPT
3272 * @hw: pointer to the HW structure
3273 * @offset: The offset (in bytes) of the word(s) to read.
3274 * @words: Size of data to read in words.
3275 * @data: pointer to the word(s) to read at offset.
3276 *
3277 * Reads a word(s) from the NVM
3278 **/
3279static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3280 u16 *data)
3281{
3282 struct e1000_nvm_info *nvm = &hw->nvm;
3283 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3284 u32 act_offset;
3285 s32 ret_val = 0;
3286 u32 bank = 0;
3287 u32 dword = 0;
3288 u16 offset_to_read;
3289 u16 i;
3290
3291 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3292 (words == 0)) {
3293 e_dbg("nvm parameter(s) out of bounds\n");
3294 ret_val = -E1000_ERR_NVM;
3295 goto out;
3296 }
3297
3298 nvm->ops.acquire(hw);
3299
3300 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3301 if (ret_val) {
3302 e_dbg("Could not detect valid bank, assuming bank 0\n");
3303 bank = 0;
3304 }
3305
3306 act_offset = (bank) ? nvm->flash_bank_size : 0;
3307 act_offset += offset;
3308
3309 ret_val = 0;
3310
3311 for (i = 0; i < words; i += 2) {
3312 if (words - i == 1) {
3313 if (dev_spec->shadow_ram[offset + i].modified) {
3314 data[i] =
3315 dev_spec->shadow_ram[offset + i].value;
3316 } else {
3317 offset_to_read = act_offset + i -
3318 ((act_offset + i) % 2);
3319 ret_val =
3320 e1000_read_flash_dword_ich8lan(hw,
3321 offset_to_read,
3322 &dword);
3323 if (ret_val)
3324 break;
3325 if ((act_offset + i) % 2 == 0)
3326 data[i] = (u16)(dword & 0xFFFF);
3327 else
3328 data[i] = (u16)((dword >> 16) & 0xFFFF);
3329 }
3330 } else {
3331 offset_to_read = act_offset + i;
3332 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3333 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3334 ret_val =
3335 e1000_read_flash_dword_ich8lan(hw,
3336 offset_to_read,
3337 &dword);
3338 if (ret_val)
3339 break;
3340 }
3341 if (dev_spec->shadow_ram[offset + i].modified)
3342 data[i] =
3343 dev_spec->shadow_ram[offset + i].value;
3344 else
3345 data[i] = (u16)(dword & 0xFFFF);
3346 if (dev_spec->shadow_ram[offset + i].modified)
3347 data[i + 1] =
3348 dev_spec->shadow_ram[offset + i + 1].value;
3349 else
3350 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3351 }
3352 }
3353
3354 nvm->ops.release(hw);
3355
3356out:
3357 if (ret_val)
3358 e_dbg("NVM read error: %d\n", ret_val);
3359
3360 return ret_val;
3361}
3362
3363/**
3364 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3365 * @hw: pointer to the HW structure
3366 * @offset: The offset (in bytes) of the word(s) to read.
3367 * @words: Size of data to read in words
3368 * @data: Pointer to the word(s) to read at offset.
3369 *
3370 * Reads a word(s) from the NVM using the flash access registers.
3371 **/
3372static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3373 u16 *data)
3374{
3375 struct e1000_nvm_info *nvm = &hw->nvm;
3376 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3377 u32 act_offset;
3378 s32 ret_val = 0;
3379 u32 bank = 0;
3380 u16 i, word;
3381
3382 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3383 (words == 0)) {
3384 e_dbg("nvm parameter(s) out of bounds\n");
3385 ret_val = -E1000_ERR_NVM;
3386 goto out;
3387 }
3388
3389 nvm->ops.acquire(hw);
3390
3391 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3392 if (ret_val) {
3393 e_dbg("Could not detect valid bank, assuming bank 0\n");
3394 bank = 0;
3395 }
3396
3397 act_offset = (bank) ? nvm->flash_bank_size : 0;
3398 act_offset += offset;
3399
3400 ret_val = 0;
3401 for (i = 0; i < words; i++) {
3402 if (dev_spec->shadow_ram[offset + i].modified) {
3403 data[i] = dev_spec->shadow_ram[offset + i].value;
3404 } else {
3405 ret_val = e1000_read_flash_word_ich8lan(hw,
3406 act_offset + i,
3407 &word);
3408 if (ret_val)
3409 break;
3410 data[i] = word;
3411 }
3412 }
3413
3414 nvm->ops.release(hw);
3415
3416out:
3417 if (ret_val)
3418 e_dbg("NVM read error: %d\n", ret_val);
3419
3420 return ret_val;
3421}
3422
3423/**
3424 * e1000_flash_cycle_init_ich8lan - Initialize flash
3425 * @hw: pointer to the HW structure
3426 *
3427 * This function does initial flash setup so that a new read/write/erase cycle
3428 * can be started.
3429 **/
3430static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3431{
3432 union ich8_hws_flash_status hsfsts;
3433 s32 ret_val = -E1000_ERR_NVM;
3434
3435 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3436
3437 /* Check if the flash descriptor is valid */
3438 if (!hsfsts.hsf_status.fldesvalid) {
3439 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3440 return -E1000_ERR_NVM;
3441 }
3442
3443 /* Clear FCERR and DAEL in hw status by writing 1 */
3444 hsfsts.hsf_status.flcerr = 1;
3445 hsfsts.hsf_status.dael = 1;
3446 if (hw->mac.type >= e1000_pch_spt)
3447 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3448 else
3449 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3450
3451 /* Either we should have a hardware SPI cycle in progress
3452 * bit to check against, in order to start a new cycle or
3453 * FDONE bit should be changed in the hardware so that it
3454 * is 1 after hardware reset, which can then be used as an
3455 * indication whether a cycle is in progress or has been
3456 * completed.
3457 */
3458
3459 if (!hsfsts.hsf_status.flcinprog) {
3460 /* There is no cycle running at present,
3461 * so we can start a cycle.
3462 * Begin by setting Flash Cycle Done.
3463 */
3464 hsfsts.hsf_status.flcdone = 1;
3465 if (hw->mac.type >= e1000_pch_spt)
3466 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3467 else
3468 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3469 ret_val = 0;
3470 } else {
3471 s32 i;
3472
3473 /* Otherwise poll for sometime so the current
3474 * cycle has a chance to end before giving up.
3475 */
3476 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3477 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3478 if (!hsfsts.hsf_status.flcinprog) {
3479 ret_val = 0;
3480 break;
3481 }
3482 udelay(1);
3483 }
3484 if (!ret_val) {
3485 /* Successful in waiting for previous cycle to timeout,
3486 * now set the Flash Cycle Done.
3487 */
3488 hsfsts.hsf_status.flcdone = 1;
3489 if (hw->mac.type >= e1000_pch_spt)
3490 ew32flash(ICH_FLASH_HSFSTS,
3491 hsfsts.regval & 0xFFFF);
3492 else
3493 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3494 } else {
3495 e_dbg("Flash controller busy, cannot get access\n");
3496 }
3497 }
3498
3499 return ret_val;
3500}
3501
3502/**
3503 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3504 * @hw: pointer to the HW structure
3505 * @timeout: maximum time to wait for completion
3506 *
3507 * This function starts a flash cycle and waits for its completion.
3508 **/
3509static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3510{
3511 union ich8_hws_flash_ctrl hsflctl;
3512 union ich8_hws_flash_status hsfsts;
3513 u32 i = 0;
3514
3515 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3516 if (hw->mac.type >= e1000_pch_spt)
3517 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3518 else
3519 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3520 hsflctl.hsf_ctrl.flcgo = 1;
3521
3522 if (hw->mac.type >= e1000_pch_spt)
3523 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3524 else
3525 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3526
3527 /* wait till FDONE bit is set to 1 */
3528 do {
3529 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3530 if (hsfsts.hsf_status.flcdone)
3531 break;
3532 udelay(1);
3533 } while (i++ < timeout);
3534
3535 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3536 return 0;
3537
3538 return -E1000_ERR_NVM;
3539}
3540
3541/**
3542 * e1000_read_flash_dword_ich8lan - Read dword from flash
3543 * @hw: pointer to the HW structure
3544 * @offset: offset to data location
3545 * @data: pointer to the location for storing the data
3546 *
3547 * Reads the flash dword at offset into data. Offset is converted
3548 * to bytes before read.
3549 **/
3550static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3551 u32 *data)
3552{
3553 /* Must convert word offset into bytes. */
3554 offset <<= 1;
3555 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3556}
3557
3558/**
3559 * e1000_read_flash_word_ich8lan - Read word from flash
3560 * @hw: pointer to the HW structure
3561 * @offset: offset to data location
3562 * @data: pointer to the location for storing the data
3563 *
3564 * Reads the flash word at offset into data. Offset is converted
3565 * to bytes before read.
3566 **/
3567static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3568 u16 *data)
3569{
3570 /* Must convert offset into bytes. */
3571 offset <<= 1;
3572
3573 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3574}
3575
3576/**
3577 * e1000_read_flash_byte_ich8lan - Read byte from flash
3578 * @hw: pointer to the HW structure
3579 * @offset: The offset of the byte to read.
3580 * @data: Pointer to a byte to store the value read.
3581 *
3582 * Reads a single byte from the NVM using the flash access registers.
3583 **/
3584static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3585 u8 *data)
3586{
3587 s32 ret_val;
3588 u16 word = 0;
3589
3590 /* In SPT, only 32 bits access is supported,
3591 * so this function should not be called.
3592 */
3593 if (hw->mac.type >= e1000_pch_spt)
3594 return -E1000_ERR_NVM;
3595 else
3596 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3597
3598 if (ret_val)
3599 return ret_val;
3600
3601 *data = (u8)word;
3602
3603 return 0;
3604}
3605
3606/**
3607 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3608 * @hw: pointer to the HW structure
3609 * @offset: The offset (in bytes) of the byte or word to read.
3610 * @size: Size of data to read, 1=byte 2=word
3611 * @data: Pointer to the word to store the value read.
3612 *
3613 * Reads a byte or word from the NVM using the flash access registers.
3614 **/
3615static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3616 u8 size, u16 *data)
3617{
3618 union ich8_hws_flash_status hsfsts;
3619 union ich8_hws_flash_ctrl hsflctl;
3620 u32 flash_linear_addr;
3621 u32 flash_data = 0;
3622 s32 ret_val = -E1000_ERR_NVM;
3623 u8 count = 0;
3624
3625 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3626 return -E1000_ERR_NVM;
3627
3628 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3629 hw->nvm.flash_base_addr);
3630
3631 do {
3632 udelay(1);
3633 /* Steps */
3634 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3635 if (ret_val)
3636 break;
3637
3638 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3639 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3640 hsflctl.hsf_ctrl.fldbcount = size - 1;
3641 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3642 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3643
3644 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3645
3646 ret_val =
3647 e1000_flash_cycle_ich8lan(hw,
3648 ICH_FLASH_READ_COMMAND_TIMEOUT);
3649
3650 /* Check if FCERR is set to 1, if set to 1, clear it
3651 * and try the whole sequence a few more times, else
3652 * read in (shift in) the Flash Data0, the order is
3653 * least significant byte first msb to lsb
3654 */
3655 if (!ret_val) {
3656 flash_data = er32flash(ICH_FLASH_FDATA0);
3657 if (size == 1)
3658 *data = (u8)(flash_data & 0x000000FF);
3659 else if (size == 2)
3660 *data = (u16)(flash_data & 0x0000FFFF);
3661 break;
3662 } else {
3663 /* If we've gotten here, then things are probably
3664 * completely hosed, but if the error condition is
3665 * detected, it won't hurt to give it another try...
3666 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3667 */
3668 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3669 if (hsfsts.hsf_status.flcerr) {
3670 /* Repeat for some time before giving up. */
3671 continue;
3672 } else if (!hsfsts.hsf_status.flcdone) {
3673 e_dbg("Timeout error - flash cycle did not complete.\n");
3674 break;
3675 }
3676 }
3677 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3678
3679 return ret_val;
3680}
3681
3682/**
3683 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3684 * @hw: pointer to the HW structure
3685 * @offset: The offset (in bytes) of the dword to read.
3686 * @data: Pointer to the dword to store the value read.
3687 *
3688 * Reads a byte or word from the NVM using the flash access registers.
3689 **/
3690
3691static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3692 u32 *data)
3693{
3694 union ich8_hws_flash_status hsfsts;
3695 union ich8_hws_flash_ctrl hsflctl;
3696 u32 flash_linear_addr;
3697 s32 ret_val = -E1000_ERR_NVM;
3698 u8 count = 0;
3699
3700 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3701 return -E1000_ERR_NVM;
3702 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3703 hw->nvm.flash_base_addr);
3704
3705 do {
3706 udelay(1);
3707 /* Steps */
3708 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3709 if (ret_val)
3710 break;
3711 /* In SPT, This register is in Lan memory space, not flash.
3712 * Therefore, only 32 bit access is supported
3713 */
3714 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3715
3716 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3717 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3718 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3719 /* In SPT, This register is in Lan memory space, not flash.
3720 * Therefore, only 32 bit access is supported
3721 */
3722 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3723 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3724
3725 ret_val =
3726 e1000_flash_cycle_ich8lan(hw,
3727 ICH_FLASH_READ_COMMAND_TIMEOUT);
3728
3729 /* Check if FCERR is set to 1, if set to 1, clear it
3730 * and try the whole sequence a few more times, else
3731 * read in (shift in) the Flash Data0, the order is
3732 * least significant byte first msb to lsb
3733 */
3734 if (!ret_val) {
3735 *data = er32flash(ICH_FLASH_FDATA0);
3736 break;
3737 } else {
3738 /* If we've gotten here, then things are probably
3739 * completely hosed, but if the error condition is
3740 * detected, it won't hurt to give it another try...
3741 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3742 */
3743 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3744 if (hsfsts.hsf_status.flcerr) {
3745 /* Repeat for some time before giving up. */
3746 continue;
3747 } else if (!hsfsts.hsf_status.flcdone) {
3748 e_dbg("Timeout error - flash cycle did not complete.\n");
3749 break;
3750 }
3751 }
3752 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3753
3754 return ret_val;
3755}
3756
3757/**
3758 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3759 * @hw: pointer to the HW structure
3760 * @offset: The offset (in bytes) of the word(s) to write.
3761 * @words: Size of data to write in words
3762 * @data: Pointer to the word(s) to write at offset.
3763 *
3764 * Writes a byte or word to the NVM using the flash access registers.
3765 **/
3766static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3767 u16 *data)
3768{
3769 struct e1000_nvm_info *nvm = &hw->nvm;
3770 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3771 u16 i;
3772
3773 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3774 (words == 0)) {
3775 e_dbg("nvm parameter(s) out of bounds\n");
3776 return -E1000_ERR_NVM;
3777 }
3778
3779 nvm->ops.acquire(hw);
3780
3781 for (i = 0; i < words; i++) {
3782 dev_spec->shadow_ram[offset + i].modified = true;
3783 dev_spec->shadow_ram[offset + i].value = data[i];
3784 }
3785
3786 nvm->ops.release(hw);
3787
3788 return 0;
3789}
3790
3791/**
3792 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3793 * @hw: pointer to the HW structure
3794 *
3795 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3796 * which writes the checksum to the shadow ram. The changes in the shadow
3797 * ram are then committed to the EEPROM by processing each bank at a time
3798 * checking for the modified bit and writing only the pending changes.
3799 * After a successful commit, the shadow ram is cleared and is ready for
3800 * future writes.
3801 **/
3802static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3803{
3804 struct e1000_nvm_info *nvm = &hw->nvm;
3805 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3806 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3807 s32 ret_val;
3808 u32 dword = 0;
3809
3810 ret_val = e1000e_update_nvm_checksum_generic(hw);
3811 if (ret_val)
3812 goto out;
3813
3814 if (nvm->type != e1000_nvm_flash_sw)
3815 goto out;
3816
3817 nvm->ops.acquire(hw);
3818
3819 /* We're writing to the opposite bank so if we're on bank 1,
3820 * write to bank 0 etc. We also need to erase the segment that
3821 * is going to be written
3822 */
3823 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3824 if (ret_val) {
3825 e_dbg("Could not detect valid bank, assuming bank 0\n");
3826 bank = 0;
3827 }
3828
3829 if (bank == 0) {
3830 new_bank_offset = nvm->flash_bank_size;
3831 old_bank_offset = 0;
3832 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3833 if (ret_val)
3834 goto release;
3835 } else {
3836 old_bank_offset = nvm->flash_bank_size;
3837 new_bank_offset = 0;
3838 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3839 if (ret_val)
3840 goto release;
3841 }
3842 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3843 /* Determine whether to write the value stored
3844 * in the other NVM bank or a modified value stored
3845 * in the shadow RAM
3846 */
3847 ret_val = e1000_read_flash_dword_ich8lan(hw,
3848 i + old_bank_offset,
3849 &dword);
3850
3851 if (dev_spec->shadow_ram[i].modified) {
3852 dword &= 0xffff0000;
3853 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3854 }
3855 if (dev_spec->shadow_ram[i + 1].modified) {
3856 dword &= 0x0000ffff;
3857 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3858 << 16);
3859 }
3860 if (ret_val)
3861 break;
3862
3863 /* If the word is 0x13, then make sure the signature bits
3864 * (15:14) are 11b until the commit has completed.
3865 * This will allow us to write 10b which indicates the
3866 * signature is valid. We want to do this after the write
3867 * has completed so that we don't mark the segment valid
3868 * while the write is still in progress
3869 */
3870 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3871 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3872
3873 /* Convert offset to bytes. */
3874 act_offset = (i + new_bank_offset) << 1;
3875
3876 usleep_range(100, 200);
3877
3878 /* Write the data to the new bank. Offset in words */
3879 act_offset = i + new_bank_offset;
3880 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3881 dword);
3882 if (ret_val)
3883 break;
3884 }
3885
3886 /* Don't bother writing the segment valid bits if sector
3887 * programming failed.
3888 */
3889 if (ret_val) {
3890 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3891 e_dbg("Flash commit failed.\n");
3892 goto release;
3893 }
3894
3895 /* Finally validate the new segment by setting bit 15:14
3896 * to 10b in word 0x13 , this can be done without an
3897 * erase as well since these bits are 11 to start with
3898 * and we need to change bit 14 to 0b
3899 */
3900 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3901
3902 /*offset in words but we read dword */
3903 --act_offset;
3904 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3905
3906 if (ret_val)
3907 goto release;
3908
3909 dword &= 0xBFFFFFFF;
3910 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3911
3912 if (ret_val)
3913 goto release;
3914
3915 /* offset in words but we read dword */
3916 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3917 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3918
3919 if (ret_val)
3920 goto release;
3921
3922 dword &= 0x00FFFFFF;
3923 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3924
3925 if (ret_val)
3926 goto release;
3927
3928 /* Great! Everything worked, we can now clear the cached entries. */
3929 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3930 dev_spec->shadow_ram[i].modified = false;
3931 dev_spec->shadow_ram[i].value = 0xFFFF;
3932 }
3933
3934release:
3935 nvm->ops.release(hw);
3936
3937 /* Reload the EEPROM, or else modifications will not appear
3938 * until after the next adapter reset.
3939 */
3940 if (!ret_val) {
3941 nvm->ops.reload(hw);
3942 usleep_range(10000, 11000);
3943 }
3944
3945out:
3946 if (ret_val)
3947 e_dbg("NVM update error: %d\n", ret_val);
3948
3949 return ret_val;
3950}
3951
3952/**
3953 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3954 * @hw: pointer to the HW structure
3955 *
3956 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3957 * which writes the checksum to the shadow ram. The changes in the shadow
3958 * ram are then committed to the EEPROM by processing each bank at a time
3959 * checking for the modified bit and writing only the pending changes.
3960 * After a successful commit, the shadow ram is cleared and is ready for
3961 * future writes.
3962 **/
3963static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3964{
3965 struct e1000_nvm_info *nvm = &hw->nvm;
3966 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3967 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3968 s32 ret_val;
3969 u16 data = 0;
3970
3971 ret_val = e1000e_update_nvm_checksum_generic(hw);
3972 if (ret_val)
3973 goto out;
3974
3975 if (nvm->type != e1000_nvm_flash_sw)
3976 goto out;
3977
3978 nvm->ops.acquire(hw);
3979
3980 /* We're writing to the opposite bank so if we're on bank 1,
3981 * write to bank 0 etc. We also need to erase the segment that
3982 * is going to be written
3983 */
3984 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3985 if (ret_val) {
3986 e_dbg("Could not detect valid bank, assuming bank 0\n");
3987 bank = 0;
3988 }
3989
3990 if (bank == 0) {
3991 new_bank_offset = nvm->flash_bank_size;
3992 old_bank_offset = 0;
3993 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3994 if (ret_val)
3995 goto release;
3996 } else {
3997 old_bank_offset = nvm->flash_bank_size;
3998 new_bank_offset = 0;
3999 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4000 if (ret_val)
4001 goto release;
4002 }
4003 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4004 if (dev_spec->shadow_ram[i].modified) {
4005 data = dev_spec->shadow_ram[i].value;
4006 } else {
4007 ret_val = e1000_read_flash_word_ich8lan(hw, i +
4008 old_bank_offset,
4009 &data);
4010 if (ret_val)
4011 break;
4012 }
4013
4014 /* If the word is 0x13, then make sure the signature bits
4015 * (15:14) are 11b until the commit has completed.
4016 * This will allow us to write 10b which indicates the
4017 * signature is valid. We want to do this after the write
4018 * has completed so that we don't mark the segment valid
4019 * while the write is still in progress
4020 */
4021 if (i == E1000_ICH_NVM_SIG_WORD)
4022 data |= E1000_ICH_NVM_SIG_MASK;
4023
4024 /* Convert offset to bytes. */
4025 act_offset = (i + new_bank_offset) << 1;
4026
4027 usleep_range(100, 200);
4028 /* Write the bytes to the new bank. */
4029 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4030 act_offset,
4031 (u8)data);
4032 if (ret_val)
4033 break;
4034
4035 usleep_range(100, 200);
4036 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4037 act_offset + 1,
4038 (u8)(data >> 8));
4039 if (ret_val)
4040 break;
4041 }
4042
4043 /* Don't bother writing the segment valid bits if sector
4044 * programming failed.
4045 */
4046 if (ret_val) {
4047 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4048 e_dbg("Flash commit failed.\n");
4049 goto release;
4050 }
4051
4052 /* Finally validate the new segment by setting bit 15:14
4053 * to 10b in word 0x13 , this can be done without an
4054 * erase as well since these bits are 11 to start with
4055 * and we need to change bit 14 to 0b
4056 */
4057 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4058 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4059 if (ret_val)
4060 goto release;
4061
4062 data &= 0xBFFF;
4063 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4064 act_offset * 2 + 1,
4065 (u8)(data >> 8));
4066 if (ret_val)
4067 goto release;
4068
4069 /* And invalidate the previously valid segment by setting
4070 * its signature word (0x13) high_byte to 0b. This can be
4071 * done without an erase because flash erase sets all bits
4072 * to 1's. We can write 1's to 0's without an erase
4073 */
4074 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4075 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4076 if (ret_val)
4077 goto release;
4078
4079 /* Great! Everything worked, we can now clear the cached entries. */
4080 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4081 dev_spec->shadow_ram[i].modified = false;
4082 dev_spec->shadow_ram[i].value = 0xFFFF;
4083 }
4084
4085release:
4086 nvm->ops.release(hw);
4087
4088 /* Reload the EEPROM, or else modifications will not appear
4089 * until after the next adapter reset.
4090 */
4091 if (!ret_val) {
4092 nvm->ops.reload(hw);
4093 usleep_range(10000, 11000);
4094 }
4095
4096out:
4097 if (ret_val)
4098 e_dbg("NVM update error: %d\n", ret_val);
4099
4100 return ret_val;
4101}
4102
4103/**
4104 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4105 * @hw: pointer to the HW structure
4106 *
4107 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4108 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4109 * calculated, in which case we need to calculate the checksum and set bit 6.
4110 **/
4111static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4112{
4113 s32 ret_val;
4114 u16 data;
4115 u16 word;
4116 u16 valid_csum_mask;
4117
4118 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4119 * the checksum needs to be fixed. This bit is an indication that
4120 * the NVM was prepared by OEM software and did not calculate
4121 * the checksum...a likely scenario.
4122 */
4123 switch (hw->mac.type) {
4124 case e1000_pch_lpt:
4125 case e1000_pch_spt:
4126 case e1000_pch_cnp:
4127 case e1000_pch_tgp:
4128 case e1000_pch_adp:
4129 case e1000_pch_mtp:
4130 case e1000_pch_lnp:
4131 case e1000_pch_ptp:
4132 word = NVM_COMPAT;
4133 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4134 break;
4135 default:
4136 word = NVM_FUTURE_INIT_WORD1;
4137 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4138 break;
4139 }
4140
4141 ret_val = e1000_read_nvm(hw, word, 1, &data);
4142 if (ret_val)
4143 return ret_val;
4144
4145 if (!(data & valid_csum_mask)) {
4146 e_dbg("NVM Checksum valid bit not set\n");
4147
4148 if (hw->mac.type < e1000_pch_tgp) {
4149 data |= valid_csum_mask;
4150 ret_val = e1000_write_nvm(hw, word, 1, &data);
4151 if (ret_val)
4152 return ret_val;
4153 ret_val = e1000e_update_nvm_checksum(hw);
4154 if (ret_val)
4155 return ret_val;
4156 }
4157 }
4158
4159 return e1000e_validate_nvm_checksum_generic(hw);
4160}
4161
4162/**
4163 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4164 * @hw: pointer to the HW structure
4165 *
4166 * To prevent malicious write/erase of the NVM, set it to be read-only
4167 * so that the hardware ignores all write/erase cycles of the NVM via
4168 * the flash control registers. The shadow-ram copy of the NVM will
4169 * still be updated, however any updates to this copy will not stick
4170 * across driver reloads.
4171 **/
4172void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4173{
4174 struct e1000_nvm_info *nvm = &hw->nvm;
4175 union ich8_flash_protected_range pr0;
4176 union ich8_hws_flash_status hsfsts;
4177 u32 gfpreg;
4178
4179 nvm->ops.acquire(hw);
4180
4181 gfpreg = er32flash(ICH_FLASH_GFPREG);
4182
4183 /* Write-protect GbE Sector of NVM */
4184 pr0.regval = er32flash(ICH_FLASH_PR0);
4185 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4186 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4187 pr0.range.wpe = true;
4188 ew32flash(ICH_FLASH_PR0, pr0.regval);
4189
4190 /* Lock down a subset of GbE Flash Control Registers, e.g.
4191 * PR0 to prevent the write-protection from being lifted.
4192 * Once FLOCKDN is set, the registers protected by it cannot
4193 * be written until FLOCKDN is cleared by a hardware reset.
4194 */
4195 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4196 hsfsts.hsf_status.flockdn = true;
4197 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4198
4199 nvm->ops.release(hw);
4200}
4201
4202/**
4203 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4204 * @hw: pointer to the HW structure
4205 * @offset: The offset (in bytes) of the byte/word to read.
4206 * @size: Size of data to read, 1=byte 2=word
4207 * @data: The byte(s) to write to the NVM.
4208 *
4209 * Writes one/two bytes to the NVM using the flash access registers.
4210 **/
4211static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4212 u8 size, u16 data)
4213{
4214 union ich8_hws_flash_status hsfsts;
4215 union ich8_hws_flash_ctrl hsflctl;
4216 u32 flash_linear_addr;
4217 u32 flash_data = 0;
4218 s32 ret_val;
4219 u8 count = 0;
4220
4221 if (hw->mac.type >= e1000_pch_spt) {
4222 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4223 return -E1000_ERR_NVM;
4224 } else {
4225 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4226 return -E1000_ERR_NVM;
4227 }
4228
4229 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4230 hw->nvm.flash_base_addr);
4231
4232 do {
4233 udelay(1);
4234 /* Steps */
4235 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4236 if (ret_val)
4237 break;
4238 /* In SPT, This register is in Lan memory space, not
4239 * flash. Therefore, only 32 bit access is supported
4240 */
4241 if (hw->mac.type >= e1000_pch_spt)
4242 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4243 else
4244 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4245
4246 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4247 hsflctl.hsf_ctrl.fldbcount = size - 1;
4248 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4249 /* In SPT, This register is in Lan memory space,
4250 * not flash. Therefore, only 32 bit access is
4251 * supported
4252 */
4253 if (hw->mac.type >= e1000_pch_spt)
4254 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4255 else
4256 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4257
4258 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4259
4260 if (size == 1)
4261 flash_data = (u32)data & 0x00FF;
4262 else
4263 flash_data = (u32)data;
4264
4265 ew32flash(ICH_FLASH_FDATA0, flash_data);
4266
4267 /* check if FCERR is set to 1 , if set to 1, clear it
4268 * and try the whole sequence a few more times else done
4269 */
4270 ret_val =
4271 e1000_flash_cycle_ich8lan(hw,
4272 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4273 if (!ret_val)
4274 break;
4275
4276 /* If we're here, then things are most likely
4277 * completely hosed, but if the error condition
4278 * is detected, it won't hurt to give it another
4279 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4280 */
4281 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4282 if (hsfsts.hsf_status.flcerr)
4283 /* Repeat for some time before giving up. */
4284 continue;
4285 if (!hsfsts.hsf_status.flcdone) {
4286 e_dbg("Timeout error - flash cycle did not complete.\n");
4287 break;
4288 }
4289 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4290
4291 return ret_val;
4292}
4293
4294/**
4295* e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4296* @hw: pointer to the HW structure
4297* @offset: The offset (in bytes) of the dwords to read.
4298* @data: The 4 bytes to write to the NVM.
4299*
4300* Writes one/two/four bytes to the NVM using the flash access registers.
4301**/
4302static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4303 u32 data)
4304{
4305 union ich8_hws_flash_status hsfsts;
4306 union ich8_hws_flash_ctrl hsflctl;
4307 u32 flash_linear_addr;
4308 s32 ret_val;
4309 u8 count = 0;
4310
4311 if (hw->mac.type >= e1000_pch_spt) {
4312 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4313 return -E1000_ERR_NVM;
4314 }
4315 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4316 hw->nvm.flash_base_addr);
4317 do {
4318 udelay(1);
4319 /* Steps */
4320 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4321 if (ret_val)
4322 break;
4323
4324 /* In SPT, This register is in Lan memory space, not
4325 * flash. Therefore, only 32 bit access is supported
4326 */
4327 if (hw->mac.type >= e1000_pch_spt)
4328 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4329 >> 16;
4330 else
4331 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4332
4333 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4334 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4335
4336 /* In SPT, This register is in Lan memory space,
4337 * not flash. Therefore, only 32 bit access is
4338 * supported
4339 */
4340 if (hw->mac.type >= e1000_pch_spt)
4341 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4342 else
4343 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4344
4345 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4346
4347 ew32flash(ICH_FLASH_FDATA0, data);
4348
4349 /* check if FCERR is set to 1 , if set to 1, clear it
4350 * and try the whole sequence a few more times else done
4351 */
4352 ret_val =
4353 e1000_flash_cycle_ich8lan(hw,
4354 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4355
4356 if (!ret_val)
4357 break;
4358
4359 /* If we're here, then things are most likely
4360 * completely hosed, but if the error condition
4361 * is detected, it won't hurt to give it another
4362 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4363 */
4364 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4365
4366 if (hsfsts.hsf_status.flcerr)
4367 /* Repeat for some time before giving up. */
4368 continue;
4369 if (!hsfsts.hsf_status.flcdone) {
4370 e_dbg("Timeout error - flash cycle did not complete.\n");
4371 break;
4372 }
4373 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4374
4375 return ret_val;
4376}
4377
4378/**
4379 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4380 * @hw: pointer to the HW structure
4381 * @offset: The index of the byte to read.
4382 * @data: The byte to write to the NVM.
4383 *
4384 * Writes a single byte to the NVM using the flash access registers.
4385 **/
4386static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4387 u8 data)
4388{
4389 u16 word = (u16)data;
4390
4391 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4392}
4393
4394/**
4395* e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4396* @hw: pointer to the HW structure
4397* @offset: The offset of the word to write.
4398* @dword: The dword to write to the NVM.
4399*
4400* Writes a single dword to the NVM using the flash access registers.
4401* Goes through a retry algorithm before giving up.
4402**/
4403static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4404 u32 offset, u32 dword)
4405{
4406 s32 ret_val;
4407 u16 program_retries;
4408
4409 /* Must convert word offset into bytes. */
4410 offset <<= 1;
4411 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4412
4413 if (!ret_val)
4414 return ret_val;
4415 for (program_retries = 0; program_retries < 100; program_retries++) {
4416 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4417 usleep_range(100, 200);
4418 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4419 if (!ret_val)
4420 break;
4421 }
4422 if (program_retries == 100)
4423 return -E1000_ERR_NVM;
4424
4425 return 0;
4426}
4427
4428/**
4429 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4430 * @hw: pointer to the HW structure
4431 * @offset: The offset of the byte to write.
4432 * @byte: The byte to write to the NVM.
4433 *
4434 * Writes a single byte to the NVM using the flash access registers.
4435 * Goes through a retry algorithm before giving up.
4436 **/
4437static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4438 u32 offset, u8 byte)
4439{
4440 s32 ret_val;
4441 u16 program_retries;
4442
4443 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4444 if (!ret_val)
4445 return ret_val;
4446
4447 for (program_retries = 0; program_retries < 100; program_retries++) {
4448 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4449 usleep_range(100, 200);
4450 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4451 if (!ret_val)
4452 break;
4453 }
4454 if (program_retries == 100)
4455 return -E1000_ERR_NVM;
4456
4457 return 0;
4458}
4459
4460/**
4461 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4462 * @hw: pointer to the HW structure
4463 * @bank: 0 for first bank, 1 for second bank, etc.
4464 *
4465 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4466 * bank N is 4096 * N + flash_reg_addr.
4467 **/
4468static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4469{
4470 struct e1000_nvm_info *nvm = &hw->nvm;
4471 union ich8_hws_flash_status hsfsts;
4472 union ich8_hws_flash_ctrl hsflctl;
4473 u32 flash_linear_addr;
4474 /* bank size is in 16bit words - adjust to bytes */
4475 u32 flash_bank_size = nvm->flash_bank_size * 2;
4476 s32 ret_val;
4477 s32 count = 0;
4478 s32 j, iteration, sector_size;
4479
4480 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4481
4482 /* Determine HW Sector size: Read BERASE bits of hw flash status
4483 * register
4484 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4485 * consecutive sectors. The start index for the nth Hw sector
4486 * can be calculated as = bank * 4096 + n * 256
4487 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4488 * The start index for the nth Hw sector can be calculated
4489 * as = bank * 4096
4490 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4491 * (ich9 only, otherwise error condition)
4492 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4493 */
4494 switch (hsfsts.hsf_status.berasesz) {
4495 case 0:
4496 /* Hw sector size 256 */
4497 sector_size = ICH_FLASH_SEG_SIZE_256;
4498 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4499 break;
4500 case 1:
4501 sector_size = ICH_FLASH_SEG_SIZE_4K;
4502 iteration = 1;
4503 break;
4504 case 2:
4505 sector_size = ICH_FLASH_SEG_SIZE_8K;
4506 iteration = 1;
4507 break;
4508 case 3:
4509 sector_size = ICH_FLASH_SEG_SIZE_64K;
4510 iteration = 1;
4511 break;
4512 default:
4513 return -E1000_ERR_NVM;
4514 }
4515
4516 /* Start with the base address, then add the sector offset. */
4517 flash_linear_addr = hw->nvm.flash_base_addr;
4518 flash_linear_addr += (bank) ? flash_bank_size : 0;
4519
4520 for (j = 0; j < iteration; j++) {
4521 do {
4522 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4523
4524 /* Steps */
4525 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4526 if (ret_val)
4527 return ret_val;
4528
4529 /* Write a value 11 (block Erase) in Flash
4530 * Cycle field in hw flash control
4531 */
4532 if (hw->mac.type >= e1000_pch_spt)
4533 hsflctl.regval =
4534 er32flash(ICH_FLASH_HSFSTS) >> 16;
4535 else
4536 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4537
4538 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4539 if (hw->mac.type >= e1000_pch_spt)
4540 ew32flash(ICH_FLASH_HSFSTS,
4541 hsflctl.regval << 16);
4542 else
4543 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4544
4545 /* Write the last 24 bits of an index within the
4546 * block into Flash Linear address field in Flash
4547 * Address.
4548 */
4549 flash_linear_addr += (j * sector_size);
4550 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4551
4552 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4553 if (!ret_val)
4554 break;
4555
4556 /* Check if FCERR is set to 1. If 1,
4557 * clear it and try the whole sequence
4558 * a few more times else Done
4559 */
4560 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4561 if (hsfsts.hsf_status.flcerr)
4562 /* repeat for some time before giving up */
4563 continue;
4564 else if (!hsfsts.hsf_status.flcdone)
4565 return ret_val;
4566 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4567 }
4568
4569 return 0;
4570}
4571
4572/**
4573 * e1000_valid_led_default_ich8lan - Set the default LED settings
4574 * @hw: pointer to the HW structure
4575 * @data: Pointer to the LED settings
4576 *
4577 * Reads the LED default settings from the NVM to data. If the NVM LED
4578 * settings is all 0's or F's, set the LED default to a valid LED default
4579 * setting.
4580 **/
4581static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4582{
4583 s32 ret_val;
4584
4585 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4586 if (ret_val) {
4587 e_dbg("NVM Read Error\n");
4588 return ret_val;
4589 }
4590
4591 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4592 *data = ID_LED_DEFAULT_ICH8LAN;
4593
4594 return 0;
4595}
4596
4597/**
4598 * e1000_id_led_init_pchlan - store LED configurations
4599 * @hw: pointer to the HW structure
4600 *
4601 * PCH does not control LEDs via the LEDCTL register, rather it uses
4602 * the PHY LED configuration register.
4603 *
4604 * PCH also does not have an "always on" or "always off" mode which
4605 * complicates the ID feature. Instead of using the "on" mode to indicate
4606 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4607 * use "link_up" mode. The LEDs will still ID on request if there is no
4608 * link based on logic in e1000_led_[on|off]_pchlan().
4609 **/
4610static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4611{
4612 struct e1000_mac_info *mac = &hw->mac;
4613 s32 ret_val;
4614 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4615 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4616 u16 data, i, temp, shift;
4617
4618 /* Get default ID LED modes */
4619 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4620 if (ret_val)
4621 return ret_val;
4622
4623 mac->ledctl_default = er32(LEDCTL);
4624 mac->ledctl_mode1 = mac->ledctl_default;
4625 mac->ledctl_mode2 = mac->ledctl_default;
4626
4627 for (i = 0; i < 4; i++) {
4628 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4629 shift = (i * 5);
4630 switch (temp) {
4631 case ID_LED_ON1_DEF2:
4632 case ID_LED_ON1_ON2:
4633 case ID_LED_ON1_OFF2:
4634 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4635 mac->ledctl_mode1 |= (ledctl_on << shift);
4636 break;
4637 case ID_LED_OFF1_DEF2:
4638 case ID_LED_OFF1_ON2:
4639 case ID_LED_OFF1_OFF2:
4640 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4641 mac->ledctl_mode1 |= (ledctl_off << shift);
4642 break;
4643 default:
4644 /* Do nothing */
4645 break;
4646 }
4647 switch (temp) {
4648 case ID_LED_DEF1_ON2:
4649 case ID_LED_ON1_ON2:
4650 case ID_LED_OFF1_ON2:
4651 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4652 mac->ledctl_mode2 |= (ledctl_on << shift);
4653 break;
4654 case ID_LED_DEF1_OFF2:
4655 case ID_LED_ON1_OFF2:
4656 case ID_LED_OFF1_OFF2:
4657 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4658 mac->ledctl_mode2 |= (ledctl_off << shift);
4659 break;
4660 default:
4661 /* Do nothing */
4662 break;
4663 }
4664 }
4665
4666 return 0;
4667}
4668
4669/**
4670 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4671 * @hw: pointer to the HW structure
4672 *
4673 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4674 * register, so the bus width is hard coded.
4675 **/
4676static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4677{
4678 struct e1000_bus_info *bus = &hw->bus;
4679 s32 ret_val;
4680
4681 ret_val = e1000e_get_bus_info_pcie(hw);
4682
4683 /* ICH devices are "PCI Express"-ish. They have
4684 * a configuration space, but do not contain
4685 * PCI Express Capability registers, so bus width
4686 * must be hardcoded.
4687 */
4688 if (bus->width == e1000_bus_width_unknown)
4689 bus->width = e1000_bus_width_pcie_x1;
4690
4691 return ret_val;
4692}
4693
4694/**
4695 * e1000_reset_hw_ich8lan - Reset the hardware
4696 * @hw: pointer to the HW structure
4697 *
4698 * Does a full reset of the hardware which includes a reset of the PHY and
4699 * MAC.
4700 **/
4701static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4702{
4703 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4704 u16 kum_cfg;
4705 u32 ctrl, reg;
4706 s32 ret_val;
4707
4708 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4709 * on the last TLP read/write transaction when MAC is reset.
4710 */
4711 ret_val = e1000e_disable_pcie_master(hw);
4712 if (ret_val)
4713 e_dbg("PCI-E Master disable polling has failed.\n");
4714
4715 e_dbg("Masking off all interrupts\n");
4716 ew32(IMC, 0xffffffff);
4717
4718 /* Disable the Transmit and Receive units. Then delay to allow
4719 * any pending transactions to complete before we hit the MAC
4720 * with the global reset.
4721 */
4722 ew32(RCTL, 0);
4723 ew32(TCTL, E1000_TCTL_PSP);
4724 e1e_flush();
4725
4726 usleep_range(10000, 11000);
4727
4728 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4729 if (hw->mac.type == e1000_ich8lan) {
4730 /* Set Tx and Rx buffer allocation to 8k apiece. */
4731 ew32(PBA, E1000_PBA_8K);
4732 /* Set Packet Buffer Size to 16k. */
4733 ew32(PBS, E1000_PBS_16K);
4734 }
4735
4736 if (hw->mac.type == e1000_pchlan) {
4737 /* Save the NVM K1 bit setting */
4738 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4739 if (ret_val)
4740 return ret_val;
4741
4742 if (kum_cfg & E1000_NVM_K1_ENABLE)
4743 dev_spec->nvm_k1_enabled = true;
4744 else
4745 dev_spec->nvm_k1_enabled = false;
4746 }
4747
4748 ctrl = er32(CTRL);
4749
4750 if (!hw->phy.ops.check_reset_block(hw)) {
4751 /* Full-chip reset requires MAC and PHY reset at the same
4752 * time to make sure the interface between MAC and the
4753 * external PHY is reset.
4754 */
4755 ctrl |= E1000_CTRL_PHY_RST;
4756
4757 /* Gate automatic PHY configuration by hardware on
4758 * non-managed 82579
4759 */
4760 if ((hw->mac.type == e1000_pch2lan) &&
4761 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4762 e1000_gate_hw_phy_config_ich8lan(hw, true);
4763 }
4764 ret_val = e1000_acquire_swflag_ich8lan(hw);
4765 e_dbg("Issuing a global reset to ich8lan\n");
4766 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4767 /* cannot issue a flush here because it hangs the hardware */
4768 msleep(20);
4769
4770 /* Set Phy Config Counter to 50msec */
4771 if (hw->mac.type == e1000_pch2lan) {
4772 reg = er32(FEXTNVM3);
4773 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4774 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4775 ew32(FEXTNVM3, reg);
4776 }
4777
4778 if (!ret_val)
4779 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4780
4781 if (ctrl & E1000_CTRL_PHY_RST) {
4782 ret_val = hw->phy.ops.get_cfg_done(hw);
4783 if (ret_val)
4784 return ret_val;
4785
4786 ret_val = e1000_post_phy_reset_ich8lan(hw);
4787 if (ret_val)
4788 return ret_val;
4789 }
4790
4791 /* For PCH, this write will make sure that any noise
4792 * will be detected as a CRC error and be dropped rather than show up
4793 * as a bad packet to the DMA engine.
4794 */
4795 if (hw->mac.type == e1000_pchlan)
4796 ew32(CRC_OFFSET, 0x65656565);
4797
4798 ew32(IMC, 0xffffffff);
4799 er32(ICR);
4800
4801 reg = er32(KABGTXD);
4802 reg |= E1000_KABGTXD_BGSQLBIAS;
4803 ew32(KABGTXD, reg);
4804
4805 return 0;
4806}
4807
4808/**
4809 * e1000_init_hw_ich8lan - Initialize the hardware
4810 * @hw: pointer to the HW structure
4811 *
4812 * Prepares the hardware for transmit and receive by doing the following:
4813 * - initialize hardware bits
4814 * - initialize LED identification
4815 * - setup receive address registers
4816 * - setup flow control
4817 * - setup transmit descriptors
4818 * - clear statistics
4819 **/
4820static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4821{
4822 struct e1000_mac_info *mac = &hw->mac;
4823 u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4824 s32 ret_val;
4825 u16 i;
4826
4827 e1000_initialize_hw_bits_ich8lan(hw);
4828
4829 /* Initialize identification LED */
4830 ret_val = mac->ops.id_led_init(hw);
4831 /* An error is not fatal and we should not stop init due to this */
4832 if (ret_val)
4833 e_dbg("Error initializing identification LED\n");
4834
4835 /* Setup the receive address. */
4836 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4837
4838 /* Zero out the Multicast HASH table */
4839 e_dbg("Zeroing the MTA\n");
4840 for (i = 0; i < mac->mta_reg_count; i++)
4841 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4842
4843 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4844 * the ME. Disable wakeup by clearing the host wakeup bit.
4845 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4846 */
4847 if (hw->phy.type == e1000_phy_82578) {
4848 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4849 i &= ~BM_WUC_HOST_WU_BIT;
4850 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4851 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4852 if (ret_val)
4853 return ret_val;
4854 }
4855
4856 /* Setup link and flow control */
4857 ret_val = mac->ops.setup_link(hw);
4858
4859 /* Set the transmit descriptor write-back policy for both queues */
4860 txdctl = er32(TXDCTL(0));
4861 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4862 E1000_TXDCTL_FULL_TX_DESC_WB);
4863 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4864 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4865 ew32(TXDCTL(0), txdctl);
4866 txdctl = er32(TXDCTL(1));
4867 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4868 E1000_TXDCTL_FULL_TX_DESC_WB);
4869 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4870 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4871 ew32(TXDCTL(1), txdctl);
4872
4873 /* ICH8 has opposite polarity of no_snoop bits.
4874 * By default, we should use snoop behavior.
4875 */
4876 if (mac->type == e1000_ich8lan)
4877 snoop = PCIE_ICH8_SNOOP_ALL;
4878 else
4879 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4880 e1000e_set_pcie_no_snoop(hw, snoop);
4881
4882 /* Enable workaround for packet loss issue on TGP PCH
4883 * Do not gate DMA clock from the modPHY block
4884 */
4885 if (mac->type >= e1000_pch_tgp) {
4886 fflt_dbg = er32(FFLT_DBG);
4887 fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4888 ew32(FFLT_DBG, fflt_dbg);
4889 }
4890
4891 ctrl_ext = er32(CTRL_EXT);
4892 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4893 ew32(CTRL_EXT, ctrl_ext);
4894
4895 /* Clear all of the statistics registers (clear on read). It is
4896 * important that we do this after we have tried to establish link
4897 * because the symbol error count will increment wildly if there
4898 * is no link.
4899 */
4900 e1000_clear_hw_cntrs_ich8lan(hw);
4901
4902 return ret_val;
4903}
4904
4905/**
4906 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4907 * @hw: pointer to the HW structure
4908 *
4909 * Sets/Clears required hardware bits necessary for correctly setting up the
4910 * hardware for transmit and receive.
4911 **/
4912static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4913{
4914 u32 reg;
4915
4916 /* Extended Device Control */
4917 reg = er32(CTRL_EXT);
4918 reg |= BIT(22);
4919 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4920 if (hw->mac.type >= e1000_pchlan)
4921 reg |= E1000_CTRL_EXT_PHYPDEN;
4922 ew32(CTRL_EXT, reg);
4923
4924 /* Transmit Descriptor Control 0 */
4925 reg = er32(TXDCTL(0));
4926 reg |= BIT(22);
4927 ew32(TXDCTL(0), reg);
4928
4929 /* Transmit Descriptor Control 1 */
4930 reg = er32(TXDCTL(1));
4931 reg |= BIT(22);
4932 ew32(TXDCTL(1), reg);
4933
4934 /* Transmit Arbitration Control 0 */
4935 reg = er32(TARC(0));
4936 if (hw->mac.type == e1000_ich8lan)
4937 reg |= BIT(28) | BIT(29);
4938 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4939 ew32(TARC(0), reg);
4940
4941 /* Transmit Arbitration Control 1 */
4942 reg = er32(TARC(1));
4943 if (er32(TCTL) & E1000_TCTL_MULR)
4944 reg &= ~BIT(28);
4945 else
4946 reg |= BIT(28);
4947 reg |= BIT(24) | BIT(26) | BIT(30);
4948 ew32(TARC(1), reg);
4949
4950 /* Device Status */
4951 if (hw->mac.type == e1000_ich8lan) {
4952 reg = er32(STATUS);
4953 reg &= ~BIT(31);
4954 ew32(STATUS, reg);
4955 }
4956
4957 /* work-around descriptor data corruption issue during nfs v2 udp
4958 * traffic, just disable the nfs filtering capability
4959 */
4960 reg = er32(RFCTL);
4961 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4962
4963 /* Disable IPv6 extension header parsing because some malformed
4964 * IPv6 headers can hang the Rx.
4965 */
4966 if (hw->mac.type == e1000_ich8lan)
4967 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4968 ew32(RFCTL, reg);
4969
4970 /* Enable ECC on Lynxpoint */
4971 if (hw->mac.type >= e1000_pch_lpt) {
4972 reg = er32(PBECCSTS);
4973 reg |= E1000_PBECCSTS_ECC_ENABLE;
4974 ew32(PBECCSTS, reg);
4975
4976 reg = er32(CTRL);
4977 reg |= E1000_CTRL_MEHE;
4978 ew32(CTRL, reg);
4979 }
4980}
4981
4982/**
4983 * e1000_setup_link_ich8lan - Setup flow control and link settings
4984 * @hw: pointer to the HW structure
4985 *
4986 * Determines which flow control settings to use, then configures flow
4987 * control. Calls the appropriate media-specific link configuration
4988 * function. Assuming the adapter has a valid link partner, a valid link
4989 * should be established. Assumes the hardware has previously been reset
4990 * and the transmitter and receiver are not enabled.
4991 **/
4992static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4993{
4994 s32 ret_val;
4995
4996 if (hw->phy.ops.check_reset_block(hw))
4997 return 0;
4998
4999 /* ICH parts do not have a word in the NVM to determine
5000 * the default flow control setting, so we explicitly
5001 * set it to full.
5002 */
5003 if (hw->fc.requested_mode == e1000_fc_default) {
5004 /* Workaround h/w hang when Tx flow control enabled */
5005 if (hw->mac.type == e1000_pchlan)
5006 hw->fc.requested_mode = e1000_fc_rx_pause;
5007 else
5008 hw->fc.requested_mode = e1000_fc_full;
5009 }
5010
5011 /* Save off the requested flow control mode for use later. Depending
5012 * on the link partner's capabilities, we may or may not use this mode.
5013 */
5014 hw->fc.current_mode = hw->fc.requested_mode;
5015
5016 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5017
5018 /* Continue to configure the copper link. */
5019 ret_val = hw->mac.ops.setup_physical_interface(hw);
5020 if (ret_val)
5021 return ret_val;
5022
5023 ew32(FCTTV, hw->fc.pause_time);
5024 if ((hw->phy.type == e1000_phy_82578) ||
5025 (hw->phy.type == e1000_phy_82579) ||
5026 (hw->phy.type == e1000_phy_i217) ||
5027 (hw->phy.type == e1000_phy_82577)) {
5028 ew32(FCRTV_PCH, hw->fc.refresh_time);
5029
5030 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5031 hw->fc.pause_time);
5032 if (ret_val)
5033 return ret_val;
5034 }
5035
5036 return e1000e_set_fc_watermarks(hw);
5037}
5038
5039/**
5040 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5041 * @hw: pointer to the HW structure
5042 *
5043 * Configures the kumeran interface to the PHY to wait the appropriate time
5044 * when polling the PHY, then call the generic setup_copper_link to finish
5045 * configuring the copper link.
5046 **/
5047static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5048{
5049 u32 ctrl;
5050 s32 ret_val;
5051 u16 reg_data;
5052
5053 ctrl = er32(CTRL);
5054 ctrl |= E1000_CTRL_SLU;
5055 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5056 ew32(CTRL, ctrl);
5057
5058 /* Set the mac to wait the maximum time between each iteration
5059 * and increase the max iterations when polling the phy;
5060 * this fixes erroneous timeouts at 10Mbps.
5061 */
5062 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5063 if (ret_val)
5064 return ret_val;
5065 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5066 ®_data);
5067 if (ret_val)
5068 return ret_val;
5069 reg_data |= 0x3F;
5070 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5071 reg_data);
5072 if (ret_val)
5073 return ret_val;
5074
5075 switch (hw->phy.type) {
5076 case e1000_phy_igp_3:
5077 ret_val = e1000e_copper_link_setup_igp(hw);
5078 if (ret_val)
5079 return ret_val;
5080 break;
5081 case e1000_phy_bm:
5082 case e1000_phy_82578:
5083 ret_val = e1000e_copper_link_setup_m88(hw);
5084 if (ret_val)
5085 return ret_val;
5086 break;
5087 case e1000_phy_82577:
5088 case e1000_phy_82579:
5089 ret_val = e1000_copper_link_setup_82577(hw);
5090 if (ret_val)
5091 return ret_val;
5092 break;
5093 case e1000_phy_ife:
5094 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
5095 if (ret_val)
5096 return ret_val;
5097
5098 reg_data &= ~IFE_PMC_AUTO_MDIX;
5099
5100 switch (hw->phy.mdix) {
5101 case 1:
5102 reg_data &= ~IFE_PMC_FORCE_MDIX;
5103 break;
5104 case 2:
5105 reg_data |= IFE_PMC_FORCE_MDIX;
5106 break;
5107 case 0:
5108 default:
5109 reg_data |= IFE_PMC_AUTO_MDIX;
5110 break;
5111 }
5112 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5113 if (ret_val)
5114 return ret_val;
5115 break;
5116 default:
5117 break;
5118 }
5119
5120 return e1000e_setup_copper_link(hw);
5121}
5122
5123/**
5124 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5125 * @hw: pointer to the HW structure
5126 *
5127 * Calls the PHY specific link setup function and then calls the
5128 * generic setup_copper_link to finish configuring the link for
5129 * Lynxpoint PCH devices
5130 **/
5131static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5132{
5133 u32 ctrl;
5134 s32 ret_val;
5135
5136 ctrl = er32(CTRL);
5137 ctrl |= E1000_CTRL_SLU;
5138 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5139 ew32(CTRL, ctrl);
5140
5141 ret_val = e1000_copper_link_setup_82577(hw);
5142 if (ret_val)
5143 return ret_val;
5144
5145 return e1000e_setup_copper_link(hw);
5146}
5147
5148/**
5149 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5150 * @hw: pointer to the HW structure
5151 * @speed: pointer to store current link speed
5152 * @duplex: pointer to store the current link duplex
5153 *
5154 * Calls the generic get_speed_and_duplex to retrieve the current link
5155 * information and then calls the Kumeran lock loss workaround for links at
5156 * gigabit speeds.
5157 **/
5158static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5159 u16 *duplex)
5160{
5161 s32 ret_val;
5162
5163 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5164 if (ret_val)
5165 return ret_val;
5166
5167 if ((hw->mac.type == e1000_ich8lan) &&
5168 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5169 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5170 }
5171
5172 return ret_val;
5173}
5174
5175/**
5176 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5177 * @hw: pointer to the HW structure
5178 *
5179 * Work-around for 82566 Kumeran PCS lock loss:
5180 * On link status change (i.e. PCI reset, speed change) and link is up and
5181 * speed is gigabit-
5182 * 0) if workaround is optionally disabled do nothing
5183 * 1) wait 1ms for Kumeran link to come up
5184 * 2) check Kumeran Diagnostic register PCS lock loss bit
5185 * 3) if not set the link is locked (all is good), otherwise...
5186 * 4) reset the PHY
5187 * 5) repeat up to 10 times
5188 * Note: this is only called for IGP3 copper when speed is 1gb.
5189 **/
5190static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5191{
5192 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5193 u32 phy_ctrl;
5194 s32 ret_val;
5195 u16 i, data;
5196 bool link;
5197
5198 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5199 return 0;
5200
5201 /* Make sure link is up before proceeding. If not just return.
5202 * Attempting this while link is negotiating fouled up link
5203 * stability
5204 */
5205 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5206 if (!link)
5207 return 0;
5208
5209 for (i = 0; i < 10; i++) {
5210 /* read once to clear */
5211 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5212 if (ret_val)
5213 return ret_val;
5214 /* and again to get new status */
5215 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5216 if (ret_val)
5217 return ret_val;
5218
5219 /* check for PCS lock */
5220 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5221 return 0;
5222
5223 /* Issue PHY reset */
5224 e1000_phy_hw_reset(hw);
5225 mdelay(5);
5226 }
5227 /* Disable GigE link negotiation */
5228 phy_ctrl = er32(PHY_CTRL);
5229 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5230 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5231 ew32(PHY_CTRL, phy_ctrl);
5232
5233 /* Call gig speed drop workaround on Gig disable before accessing
5234 * any PHY registers
5235 */
5236 e1000e_gig_downshift_workaround_ich8lan(hw);
5237
5238 /* unable to acquire PCS lock */
5239 return -E1000_ERR_PHY;
5240}
5241
5242/**
5243 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5244 * @hw: pointer to the HW structure
5245 * @state: boolean value used to set the current Kumeran workaround state
5246 *
5247 * If ICH8, set the current Kumeran workaround state (enabled - true
5248 * /disabled - false).
5249 **/
5250void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5251 bool state)
5252{
5253 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5254
5255 if (hw->mac.type != e1000_ich8lan) {
5256 e_dbg("Workaround applies to ICH8 only.\n");
5257 return;
5258 }
5259
5260 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5261}
5262
5263/**
5264 * e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5265 * @hw: pointer to the HW structure
5266 *
5267 * Workaround for 82566 power-down on D3 entry:
5268 * 1) disable gigabit link
5269 * 2) write VR power-down enable
5270 * 3) read it back
5271 * Continue if successful, else issue LCD reset and repeat
5272 **/
5273void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5274{
5275 u32 reg;
5276 u16 data;
5277 u8 retry = 0;
5278
5279 if (hw->phy.type != e1000_phy_igp_3)
5280 return;
5281
5282 /* Try the workaround twice (if needed) */
5283 do {
5284 /* Disable link */
5285 reg = er32(PHY_CTRL);
5286 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5287 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5288 ew32(PHY_CTRL, reg);
5289
5290 /* Call gig speed drop workaround on Gig disable before
5291 * accessing any PHY registers
5292 */
5293 if (hw->mac.type == e1000_ich8lan)
5294 e1000e_gig_downshift_workaround_ich8lan(hw);
5295
5296 /* Write VR power-down enable */
5297 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5298 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5299 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5300
5301 /* Read it back and test */
5302 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5303 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5304 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5305 break;
5306
5307 /* Issue PHY reset and repeat at most one more time */
5308 reg = er32(CTRL);
5309 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5310 retry++;
5311 } while (retry);
5312}
5313
5314/**
5315 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5316 * @hw: pointer to the HW structure
5317 *
5318 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5319 * LPLU, Gig disable, MDIC PHY reset):
5320 * 1) Set Kumeran Near-end loopback
5321 * 2) Clear Kumeran Near-end loopback
5322 * Should only be called for ICH8[m] devices with any 1G Phy.
5323 **/
5324void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5325{
5326 s32 ret_val;
5327 u16 reg_data;
5328
5329 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5330 return;
5331
5332 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5333 ®_data);
5334 if (ret_val)
5335 return;
5336 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5337 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5338 reg_data);
5339 if (ret_val)
5340 return;
5341 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5342 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5343}
5344
5345/**
5346 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5347 * @hw: pointer to the HW structure
5348 *
5349 * During S0 to Sx transition, it is possible the link remains at gig
5350 * instead of negotiating to a lower speed. Before going to Sx, set
5351 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5352 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5353 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5354 * needs to be written.
5355 * Parts that support (and are linked to a partner which support) EEE in
5356 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5357 * than 10Mbps w/o EEE.
5358 **/
5359void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5360{
5361 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5362 u32 phy_ctrl;
5363 s32 ret_val;
5364
5365 phy_ctrl = er32(PHY_CTRL);
5366 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5367
5368 if (hw->phy.type == e1000_phy_i217) {
5369 u16 phy_reg, device_id = hw->adapter->pdev->device;
5370
5371 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5372 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5373 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5374 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5375 (hw->mac.type >= e1000_pch_spt)) {
5376 u32 fextnvm6 = er32(FEXTNVM6);
5377
5378 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5379 }
5380
5381 ret_val = hw->phy.ops.acquire(hw);
5382 if (ret_val)
5383 goto out;
5384
5385 if (!dev_spec->eee_disable) {
5386 u16 eee_advert;
5387
5388 ret_val =
5389 e1000_read_emi_reg_locked(hw,
5390 I217_EEE_ADVERTISEMENT,
5391 &eee_advert);
5392 if (ret_val)
5393 goto release;
5394
5395 /* Disable LPLU if both link partners support 100BaseT
5396 * EEE and 100Full is advertised on both ends of the
5397 * link, and enable Auto Enable LPI since there will
5398 * be no driver to enable LPI while in Sx.
5399 */
5400 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5401 (dev_spec->eee_lp_ability &
5402 I82579_EEE_100_SUPPORTED) &&
5403 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5404 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5405 E1000_PHY_CTRL_NOND0A_LPLU);
5406
5407 /* Set Auto Enable LPI after link up */
5408 e1e_rphy_locked(hw,
5409 I217_LPI_GPIO_CTRL, &phy_reg);
5410 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5411 e1e_wphy_locked(hw,
5412 I217_LPI_GPIO_CTRL, phy_reg);
5413 }
5414 }
5415
5416 /* For i217 Intel Rapid Start Technology support,
5417 * when the system is going into Sx and no manageability engine
5418 * is present, the driver must configure proxy to reset only on
5419 * power good. LPI (Low Power Idle) state must also reset only
5420 * on power good, as well as the MTA (Multicast table array).
5421 * The SMBus release must also be disabled on LCD reset.
5422 */
5423 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5424 /* Enable proxy to reset only on power good. */
5425 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5426 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5427 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5428
5429 /* Set bit enable LPI (EEE) to reset only on
5430 * power good.
5431 */
5432 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5433 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5434 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5435
5436 /* Disable the SMB release on LCD reset. */
5437 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5438 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5439 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5440 }
5441
5442 /* Enable MTA to reset for Intel Rapid Start Technology
5443 * Support
5444 */
5445 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5446 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5447 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5448
5449release:
5450 hw->phy.ops.release(hw);
5451 }
5452out:
5453 ew32(PHY_CTRL, phy_ctrl);
5454
5455 if (hw->mac.type == e1000_ich8lan)
5456 e1000e_gig_downshift_workaround_ich8lan(hw);
5457
5458 if (hw->mac.type >= e1000_pchlan) {
5459 e1000_oem_bits_config_ich8lan(hw, false);
5460
5461 /* Reset PHY to activate OEM bits on 82577/8 */
5462 if (hw->mac.type == e1000_pchlan)
5463 e1000e_phy_hw_reset_generic(hw);
5464
5465 ret_val = hw->phy.ops.acquire(hw);
5466 if (ret_val)
5467 return;
5468 e1000_write_smbus_addr(hw);
5469 hw->phy.ops.release(hw);
5470 }
5471}
5472
5473/**
5474 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5475 * @hw: pointer to the HW structure
5476 *
5477 * During Sx to S0 transitions on non-managed devices or managed devices
5478 * on which PHY resets are not blocked, if the PHY registers cannot be
5479 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5480 * the PHY.
5481 * On i217, setup Intel Rapid Start Technology.
5482 **/
5483void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5484{
5485 s32 ret_val;
5486
5487 if (hw->mac.type < e1000_pch2lan)
5488 return;
5489
5490 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5491 if (ret_val) {
5492 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5493 return;
5494 }
5495
5496 /* For i217 Intel Rapid Start Technology support when the system
5497 * is transitioning from Sx and no manageability engine is present
5498 * configure SMBus to restore on reset, disable proxy, and enable
5499 * the reset on MTA (Multicast table array).
5500 */
5501 if (hw->phy.type == e1000_phy_i217) {
5502 u16 phy_reg;
5503
5504 ret_val = hw->phy.ops.acquire(hw);
5505 if (ret_val) {
5506 e_dbg("Failed to setup iRST\n");
5507 return;
5508 }
5509
5510 /* Clear Auto Enable LPI after link up */
5511 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5512 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5513 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5514
5515 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5516 /* Restore clear on SMB if no manageability engine
5517 * is present
5518 */
5519 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5520 if (ret_val)
5521 goto release;
5522 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5523 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5524
5525 /* Disable Proxy */
5526 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5527 }
5528 /* Enable reset on MTA */
5529 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5530 if (ret_val)
5531 goto release;
5532 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5533 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5534release:
5535 if (ret_val)
5536 e_dbg("Error %d in resume workarounds\n", ret_val);
5537 hw->phy.ops.release(hw);
5538 }
5539}
5540
5541/**
5542 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5543 * @hw: pointer to the HW structure
5544 *
5545 * Return the LED back to the default configuration.
5546 **/
5547static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5548{
5549 if (hw->phy.type == e1000_phy_ife)
5550 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5551
5552 ew32(LEDCTL, hw->mac.ledctl_default);
5553 return 0;
5554}
5555
5556/**
5557 * e1000_led_on_ich8lan - Turn LEDs on
5558 * @hw: pointer to the HW structure
5559 *
5560 * Turn on the LEDs.
5561 **/
5562static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5563{
5564 if (hw->phy.type == e1000_phy_ife)
5565 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5566 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5567
5568 ew32(LEDCTL, hw->mac.ledctl_mode2);
5569 return 0;
5570}
5571
5572/**
5573 * e1000_led_off_ich8lan - Turn LEDs off
5574 * @hw: pointer to the HW structure
5575 *
5576 * Turn off the LEDs.
5577 **/
5578static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5579{
5580 if (hw->phy.type == e1000_phy_ife)
5581 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5582 (IFE_PSCL_PROBE_MODE |
5583 IFE_PSCL_PROBE_LEDS_OFF));
5584
5585 ew32(LEDCTL, hw->mac.ledctl_mode1);
5586 return 0;
5587}
5588
5589/**
5590 * e1000_setup_led_pchlan - Configures SW controllable LED
5591 * @hw: pointer to the HW structure
5592 *
5593 * This prepares the SW controllable LED for use.
5594 **/
5595static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5596{
5597 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5598}
5599
5600/**
5601 * e1000_cleanup_led_pchlan - Restore the default LED operation
5602 * @hw: pointer to the HW structure
5603 *
5604 * Return the LED back to the default configuration.
5605 **/
5606static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5607{
5608 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5609}
5610
5611/**
5612 * e1000_led_on_pchlan - Turn LEDs on
5613 * @hw: pointer to the HW structure
5614 *
5615 * Turn on the LEDs.
5616 **/
5617static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5618{
5619 u16 data = (u16)hw->mac.ledctl_mode2;
5620 u32 i, led;
5621
5622 /* If no link, then turn LED on by setting the invert bit
5623 * for each LED that's mode is "link_up" in ledctl_mode2.
5624 */
5625 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5626 for (i = 0; i < 3; i++) {
5627 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5628 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5629 E1000_LEDCTL_MODE_LINK_UP)
5630 continue;
5631 if (led & E1000_PHY_LED0_IVRT)
5632 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5633 else
5634 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5635 }
5636 }
5637
5638 return e1e_wphy(hw, HV_LED_CONFIG, data);
5639}
5640
5641/**
5642 * e1000_led_off_pchlan - Turn LEDs off
5643 * @hw: pointer to the HW structure
5644 *
5645 * Turn off the LEDs.
5646 **/
5647static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5648{
5649 u16 data = (u16)hw->mac.ledctl_mode1;
5650 u32 i, led;
5651
5652 /* If no link, then turn LED off by clearing the invert bit
5653 * for each LED that's mode is "link_up" in ledctl_mode1.
5654 */
5655 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5656 for (i = 0; i < 3; i++) {
5657 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5658 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5659 E1000_LEDCTL_MODE_LINK_UP)
5660 continue;
5661 if (led & E1000_PHY_LED0_IVRT)
5662 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5663 else
5664 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5665 }
5666 }
5667
5668 return e1e_wphy(hw, HV_LED_CONFIG, data);
5669}
5670
5671/**
5672 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5673 * @hw: pointer to the HW structure
5674 *
5675 * Read appropriate register for the config done bit for completion status
5676 * and configure the PHY through s/w for EEPROM-less parts.
5677 *
5678 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5679 * config done bit, so only an error is logged and continues. If we were
5680 * to return with error, EEPROM-less silicon would not be able to be reset
5681 * or change link.
5682 **/
5683static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5684{
5685 s32 ret_val = 0;
5686 u32 bank = 0;
5687 u32 status;
5688
5689 e1000e_get_cfg_done_generic(hw);
5690
5691 /* Wait for indication from h/w that it has completed basic config */
5692 if (hw->mac.type >= e1000_ich10lan) {
5693 e1000_lan_init_done_ich8lan(hw);
5694 } else {
5695 ret_val = e1000e_get_auto_rd_done(hw);
5696 if (ret_val) {
5697 /* When auto config read does not complete, do not
5698 * return with an error. This can happen in situations
5699 * where there is no eeprom and prevents getting link.
5700 */
5701 e_dbg("Auto Read Done did not complete\n");
5702 ret_val = 0;
5703 }
5704 }
5705
5706 /* Clear PHY Reset Asserted bit */
5707 status = er32(STATUS);
5708 if (status & E1000_STATUS_PHYRA)
5709 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5710 else
5711 e_dbg("PHY Reset Asserted not set - needs delay\n");
5712
5713 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5714 if (hw->mac.type <= e1000_ich9lan) {
5715 if (!(er32(EECD) & E1000_EECD_PRES) &&
5716 (hw->phy.type == e1000_phy_igp_3)) {
5717 e1000e_phy_init_script_igp3(hw);
5718 }
5719 } else {
5720 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5721 /* Maybe we should do a basic PHY config */
5722 e_dbg("EEPROM not present\n");
5723 ret_val = -E1000_ERR_CONFIG;
5724 }
5725 }
5726
5727 return ret_val;
5728}
5729
5730/**
5731 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5732 * @hw: pointer to the HW structure
5733 *
5734 * In the case of a PHY power down to save power, or to turn off link during a
5735 * driver unload, or wake on lan is not enabled, remove the link.
5736 **/
5737static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5738{
5739 /* If the management interface is not enabled, then power down */
5740 if (!(hw->mac.ops.check_mng_mode(hw) ||
5741 hw->phy.ops.check_reset_block(hw)))
5742 e1000_power_down_phy_copper(hw);
5743}
5744
5745/**
5746 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5747 * @hw: pointer to the HW structure
5748 *
5749 * Clears hardware counters specific to the silicon family and calls
5750 * clear_hw_cntrs_generic to clear all general purpose counters.
5751 **/
5752static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5753{
5754 u16 phy_data;
5755 s32 ret_val;
5756
5757 e1000e_clear_hw_cntrs_base(hw);
5758
5759 er32(ALGNERRC);
5760 er32(RXERRC);
5761 er32(TNCRS);
5762 er32(CEXTERR);
5763 er32(TSCTC);
5764 er32(TSCTFC);
5765
5766 er32(MGTPRC);
5767 er32(MGTPDC);
5768 er32(MGTPTC);
5769
5770 er32(IAC);
5771 er32(ICRXOC);
5772
5773 /* Clear PHY statistics registers */
5774 if ((hw->phy.type == e1000_phy_82578) ||
5775 (hw->phy.type == e1000_phy_82579) ||
5776 (hw->phy.type == e1000_phy_i217) ||
5777 (hw->phy.type == e1000_phy_82577)) {
5778 ret_val = hw->phy.ops.acquire(hw);
5779 if (ret_val)
5780 return;
5781 ret_val = hw->phy.ops.set_page(hw,
5782 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5783 if (ret_val)
5784 goto release;
5785 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5786 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5787 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5788 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5789 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5790 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5791 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5792 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5793 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5794 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5795 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5796 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5797 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5798 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5799release:
5800 hw->phy.ops.release(hw);
5801 }
5802}
5803
5804static const struct e1000_mac_operations ich8_mac_ops = {
5805 /* check_mng_mode dependent on mac type */
5806 .check_for_link = e1000_check_for_copper_link_ich8lan,
5807 /* cleanup_led dependent on mac type */
5808 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5809 .get_bus_info = e1000_get_bus_info_ich8lan,
5810 .set_lan_id = e1000_set_lan_id_single_port,
5811 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5812 /* led_on dependent on mac type */
5813 /* led_off dependent on mac type */
5814 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5815 .reset_hw = e1000_reset_hw_ich8lan,
5816 .init_hw = e1000_init_hw_ich8lan,
5817 .setup_link = e1000_setup_link_ich8lan,
5818 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5819 /* id_led_init dependent on mac type */
5820 .config_collision_dist = e1000e_config_collision_dist_generic,
5821 .rar_set = e1000e_rar_set_generic,
5822 .rar_get_count = e1000e_rar_get_count_generic,
5823};
5824
5825static const struct e1000_phy_operations ich8_phy_ops = {
5826 .acquire = e1000_acquire_swflag_ich8lan,
5827 .check_reset_block = e1000_check_reset_block_ich8lan,
5828 .commit = NULL,
5829 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5830 .get_cable_length = e1000e_get_cable_length_igp_2,
5831 .read_reg = e1000e_read_phy_reg_igp,
5832 .release = e1000_release_swflag_ich8lan,
5833 .reset = e1000_phy_hw_reset_ich8lan,
5834 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5835 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5836 .write_reg = e1000e_write_phy_reg_igp,
5837};
5838
5839static const struct e1000_nvm_operations ich8_nvm_ops = {
5840 .acquire = e1000_acquire_nvm_ich8lan,
5841 .read = e1000_read_nvm_ich8lan,
5842 .release = e1000_release_nvm_ich8lan,
5843 .reload = e1000e_reload_nvm_generic,
5844 .update = e1000_update_nvm_checksum_ich8lan,
5845 .valid_led_default = e1000_valid_led_default_ich8lan,
5846 .validate = e1000_validate_nvm_checksum_ich8lan,
5847 .write = e1000_write_nvm_ich8lan,
5848};
5849
5850static const struct e1000_nvm_operations spt_nvm_ops = {
5851 .acquire = e1000_acquire_nvm_ich8lan,
5852 .release = e1000_release_nvm_ich8lan,
5853 .read = e1000_read_nvm_spt,
5854 .update = e1000_update_nvm_checksum_spt,
5855 .reload = e1000e_reload_nvm_generic,
5856 .valid_led_default = e1000_valid_led_default_ich8lan,
5857 .validate = e1000_validate_nvm_checksum_ich8lan,
5858 .write = e1000_write_nvm_ich8lan,
5859};
5860
5861const struct e1000_info e1000_ich8_info = {
5862 .mac = e1000_ich8lan,
5863 .flags = FLAG_HAS_WOL
5864 | FLAG_IS_ICH
5865 | FLAG_HAS_CTRLEXT_ON_LOAD
5866 | FLAG_HAS_AMT
5867 | FLAG_HAS_FLASH
5868 | FLAG_APME_IN_WUC,
5869 .pba = 8,
5870 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5871 .get_variants = e1000_get_variants_ich8lan,
5872 .mac_ops = &ich8_mac_ops,
5873 .phy_ops = &ich8_phy_ops,
5874 .nvm_ops = &ich8_nvm_ops,
5875};
5876
5877const struct e1000_info e1000_ich9_info = {
5878 .mac = e1000_ich9lan,
5879 .flags = FLAG_HAS_JUMBO_FRAMES
5880 | FLAG_IS_ICH
5881 | FLAG_HAS_WOL
5882 | FLAG_HAS_CTRLEXT_ON_LOAD
5883 | FLAG_HAS_AMT
5884 | FLAG_HAS_FLASH
5885 | FLAG_APME_IN_WUC,
5886 .pba = 18,
5887 .max_hw_frame_size = DEFAULT_JUMBO,
5888 .get_variants = e1000_get_variants_ich8lan,
5889 .mac_ops = &ich8_mac_ops,
5890 .phy_ops = &ich8_phy_ops,
5891 .nvm_ops = &ich8_nvm_ops,
5892};
5893
5894const struct e1000_info e1000_ich10_info = {
5895 .mac = e1000_ich10lan,
5896 .flags = FLAG_HAS_JUMBO_FRAMES
5897 | FLAG_IS_ICH
5898 | FLAG_HAS_WOL
5899 | FLAG_HAS_CTRLEXT_ON_LOAD
5900 | FLAG_HAS_AMT
5901 | FLAG_HAS_FLASH
5902 | FLAG_APME_IN_WUC,
5903 .pba = 18,
5904 .max_hw_frame_size = DEFAULT_JUMBO,
5905 .get_variants = e1000_get_variants_ich8lan,
5906 .mac_ops = &ich8_mac_ops,
5907 .phy_ops = &ich8_phy_ops,
5908 .nvm_ops = &ich8_nvm_ops,
5909};
5910
5911const struct e1000_info e1000_pch_info = {
5912 .mac = e1000_pchlan,
5913 .flags = FLAG_IS_ICH
5914 | FLAG_HAS_WOL
5915 | FLAG_HAS_CTRLEXT_ON_LOAD
5916 | FLAG_HAS_AMT
5917 | FLAG_HAS_FLASH
5918 | FLAG_HAS_JUMBO_FRAMES
5919 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5920 | FLAG_APME_IN_WUC,
5921 .flags2 = FLAG2_HAS_PHY_STATS,
5922 .pba = 26,
5923 .max_hw_frame_size = 4096,
5924 .get_variants = e1000_get_variants_ich8lan,
5925 .mac_ops = &ich8_mac_ops,
5926 .phy_ops = &ich8_phy_ops,
5927 .nvm_ops = &ich8_nvm_ops,
5928};
5929
5930const struct e1000_info e1000_pch2_info = {
5931 .mac = e1000_pch2lan,
5932 .flags = FLAG_IS_ICH
5933 | FLAG_HAS_WOL
5934 | FLAG_HAS_HW_TIMESTAMP
5935 | FLAG_HAS_CTRLEXT_ON_LOAD
5936 | FLAG_HAS_AMT
5937 | FLAG_HAS_FLASH
5938 | FLAG_HAS_JUMBO_FRAMES
5939 | FLAG_APME_IN_WUC,
5940 .flags2 = FLAG2_HAS_PHY_STATS
5941 | FLAG2_HAS_EEE
5942 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5943 .pba = 26,
5944 .max_hw_frame_size = 9022,
5945 .get_variants = e1000_get_variants_ich8lan,
5946 .mac_ops = &ich8_mac_ops,
5947 .phy_ops = &ich8_phy_ops,
5948 .nvm_ops = &ich8_nvm_ops,
5949};
5950
5951const struct e1000_info e1000_pch_lpt_info = {
5952 .mac = e1000_pch_lpt,
5953 .flags = FLAG_IS_ICH
5954 | FLAG_HAS_WOL
5955 | FLAG_HAS_HW_TIMESTAMP
5956 | FLAG_HAS_CTRLEXT_ON_LOAD
5957 | FLAG_HAS_AMT
5958 | FLAG_HAS_FLASH
5959 | FLAG_HAS_JUMBO_FRAMES
5960 | FLAG_APME_IN_WUC,
5961 .flags2 = FLAG2_HAS_PHY_STATS
5962 | FLAG2_HAS_EEE
5963 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5964 .pba = 26,
5965 .max_hw_frame_size = 9022,
5966 .get_variants = e1000_get_variants_ich8lan,
5967 .mac_ops = &ich8_mac_ops,
5968 .phy_ops = &ich8_phy_ops,
5969 .nvm_ops = &ich8_nvm_ops,
5970};
5971
5972const struct e1000_info e1000_pch_spt_info = {
5973 .mac = e1000_pch_spt,
5974 .flags = FLAG_IS_ICH
5975 | FLAG_HAS_WOL
5976 | FLAG_HAS_HW_TIMESTAMP
5977 | FLAG_HAS_CTRLEXT_ON_LOAD
5978 | FLAG_HAS_AMT
5979 | FLAG_HAS_FLASH
5980 | FLAG_HAS_JUMBO_FRAMES
5981 | FLAG_APME_IN_WUC,
5982 .flags2 = FLAG2_HAS_PHY_STATS
5983 | FLAG2_HAS_EEE,
5984 .pba = 26,
5985 .max_hw_frame_size = 9022,
5986 .get_variants = e1000_get_variants_ich8lan,
5987 .mac_ops = &ich8_mac_ops,
5988 .phy_ops = &ich8_phy_ops,
5989 .nvm_ops = &spt_nvm_ops,
5990};
5991
5992const struct e1000_info e1000_pch_cnp_info = {
5993 .mac = e1000_pch_cnp,
5994 .flags = FLAG_IS_ICH
5995 | FLAG_HAS_WOL
5996 | FLAG_HAS_HW_TIMESTAMP
5997 | FLAG_HAS_CTRLEXT_ON_LOAD
5998 | FLAG_HAS_AMT
5999 | FLAG_HAS_FLASH
6000 | FLAG_HAS_JUMBO_FRAMES
6001 | FLAG_APME_IN_WUC,
6002 .flags2 = FLAG2_HAS_PHY_STATS
6003 | FLAG2_HAS_EEE,
6004 .pba = 26,
6005 .max_hw_frame_size = 9022,
6006 .get_variants = e1000_get_variants_ich8lan,
6007 .mac_ops = &ich8_mac_ops,
6008 .phy_ops = &ich8_phy_ops,
6009 .nvm_ops = &spt_nvm_ops,
6010};
6011
6012const struct e1000_info e1000_pch_tgp_info = {
6013 .mac = e1000_pch_tgp,
6014 .flags = FLAG_IS_ICH
6015 | FLAG_HAS_WOL
6016 | FLAG_HAS_HW_TIMESTAMP
6017 | FLAG_HAS_CTRLEXT_ON_LOAD
6018 | FLAG_HAS_AMT
6019 | FLAG_HAS_FLASH
6020 | FLAG_HAS_JUMBO_FRAMES
6021 | FLAG_APME_IN_WUC,
6022 .flags2 = FLAG2_HAS_PHY_STATS
6023 | FLAG2_HAS_EEE,
6024 .pba = 26,
6025 .max_hw_frame_size = 9022,
6026 .get_variants = e1000_get_variants_ich8lan,
6027 .mac_ops = &ich8_mac_ops,
6028 .phy_ops = &ich8_phy_ops,
6029 .nvm_ops = &spt_nvm_ops,
6030};
6031
6032const struct e1000_info e1000_pch_adp_info = {
6033 .mac = e1000_pch_adp,
6034 .flags = FLAG_IS_ICH
6035 | FLAG_HAS_WOL
6036 | FLAG_HAS_HW_TIMESTAMP
6037 | FLAG_HAS_CTRLEXT_ON_LOAD
6038 | FLAG_HAS_AMT
6039 | FLAG_HAS_FLASH
6040 | FLAG_HAS_JUMBO_FRAMES
6041 | FLAG_APME_IN_WUC,
6042 .flags2 = FLAG2_HAS_PHY_STATS
6043 | FLAG2_HAS_EEE,
6044 .pba = 26,
6045 .max_hw_frame_size = 9022,
6046 .get_variants = e1000_get_variants_ich8lan,
6047 .mac_ops = &ich8_mac_ops,
6048 .phy_ops = &ich8_phy_ops,
6049 .nvm_ops = &spt_nvm_ops,
6050};
6051
6052const struct e1000_info e1000_pch_mtp_info = {
6053 .mac = e1000_pch_mtp,
6054 .flags = FLAG_IS_ICH
6055 | FLAG_HAS_WOL
6056 | FLAG_HAS_HW_TIMESTAMP
6057 | FLAG_HAS_CTRLEXT_ON_LOAD
6058 | FLAG_HAS_AMT
6059 | FLAG_HAS_FLASH
6060 | FLAG_HAS_JUMBO_FRAMES
6061 | FLAG_APME_IN_WUC,
6062 .flags2 = FLAG2_HAS_PHY_STATS
6063 | FLAG2_HAS_EEE,
6064 .pba = 26,
6065 .max_hw_frame_size = 9022,
6066 .get_variants = e1000_get_variants_ich8lan,
6067 .mac_ops = &ich8_mac_ops,
6068 .phy_ops = &ich8_phy_ops,
6069 .nvm_ops = &spt_nvm_ops,
6070};