Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/*
  30 * 82562G 10/100 Network Connection
  31 * 82562G-2 10/100 Network Connection
  32 * 82562GT 10/100 Network Connection
  33 * 82562GT-2 10/100 Network Connection
  34 * 82562V 10/100 Network Connection
  35 * 82562V-2 10/100 Network Connection
  36 * 82566DC-2 Gigabit Network Connection
  37 * 82566DC Gigabit Network Connection
  38 * 82566DM-2 Gigabit Network Connection
  39 * 82566DM Gigabit Network Connection
  40 * 82566MC Gigabit Network Connection
  41 * 82566MM Gigabit Network Connection
  42 * 82567LM Gigabit Network Connection
  43 * 82567LF Gigabit Network Connection
  44 * 82567V Gigabit Network Connection
  45 * 82567LM-2 Gigabit Network Connection
  46 * 82567LF-2 Gigabit Network Connection
  47 * 82567V-2 Gigabit Network Connection
  48 * 82567LF-3 Gigabit Network Connection
  49 * 82567LM-3 Gigabit Network Connection
  50 * 82567LM-4 Gigabit Network Connection
  51 * 82577LM Gigabit Network Connection
  52 * 82577LC Gigabit Network Connection
  53 * 82578DM Gigabit Network Connection
  54 * 82578DC Gigabit Network Connection
  55 * 82579LM Gigabit Network Connection
  56 * 82579V Gigabit Network Connection
 
 
 
 
 
 
 
 
  57 */
  58
  59#include "e1000.h"
  60
  61#define ICH_FLASH_GFPREG		0x0000
  62#define ICH_FLASH_HSFSTS		0x0004
  63#define ICH_FLASH_HSFCTL		0x0006
  64#define ICH_FLASH_FADDR			0x0008
  65#define ICH_FLASH_FDATA0		0x0010
  66#define ICH_FLASH_PR0			0x0074
  67
  68#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
  69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
  70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
  71#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
  72#define ICH_FLASH_CYCLE_REPEAT_COUNT	10
  73
  74#define ICH_CYCLE_READ			0
  75#define ICH_CYCLE_WRITE			2
  76#define ICH_CYCLE_ERASE			3
  77
  78#define FLASH_GFPREG_BASE_MASK		0x1FFF
  79#define FLASH_SECTOR_ADDR_SHIFT		12
  80
  81#define ICH_FLASH_SEG_SIZE_256		256
  82#define ICH_FLASH_SEG_SIZE_4K		4096
  83#define ICH_FLASH_SEG_SIZE_8K		8192
  84#define ICH_FLASH_SEG_SIZE_64K		65536
  85
  86
  87#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
  88/* FW established a valid mode */
  89#define E1000_ICH_FWSM_FW_VALID		0x00008000
  90
  91#define E1000_ICH_MNG_IAMT_MODE		0x2
  92
  93#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
  94				 (ID_LED_DEF1_OFF2 <<  8) | \
  95				 (ID_LED_DEF1_ON2  <<  4) | \
  96				 (ID_LED_DEF1_DEF2))
  97
  98#define E1000_ICH_NVM_SIG_WORD		0x13
  99#define E1000_ICH_NVM_SIG_MASK		0xC000
 100#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
 101#define E1000_ICH_NVM_SIG_VALUE         0x80
 102
 103#define E1000_ICH8_LAN_INIT_TIMEOUT	1500
 104
 105#define E1000_FEXTNVM_SW_CONFIG		1
 106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
 107
 108#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK    0x0C000000
 109#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC  0x08000000
 110
 111#define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
 112#define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
 113#define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
 114
 115#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
 116
 117#define E1000_ICH_RAR_ENTRIES		7
 118#define E1000_PCH2_RAR_ENTRIES		5 /* RAR[0], SHRA[0-3] */
 119#define E1000_PCH_LPT_RAR_ENTRIES	12 /* RAR[0], SHRA[0-10] */
 120
 121#define PHY_PAGE_SHIFT 5
 122#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
 123			   ((reg) & MAX_PHY_REG_ADDRESS))
 124#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
 125#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
 126
 127#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
 128#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
 129#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
 130
 131#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
 132
 133#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
 134
 135/* SMBus Control Phy Register */
 136#define CV_SMB_CTRL		PHY_REG(769, 23)
 137#define CV_SMB_CTRL_FORCE_SMBUS	0x0001
 138
 139/* SMBus Address Phy Register */
 140#define HV_SMB_ADDR            PHY_REG(768, 26)
 141#define HV_SMB_ADDR_MASK       0x007F
 142#define HV_SMB_ADDR_PEC_EN     0x0200
 143#define HV_SMB_ADDR_VALID      0x0080
 144#define HV_SMB_ADDR_FREQ_MASK           0x1100
 145#define HV_SMB_ADDR_FREQ_LOW_SHIFT      8
 146#define HV_SMB_ADDR_FREQ_HIGH_SHIFT     12
 147
 148/* PHY Power Management Control */
 149#define HV_PM_CTRL		PHY_REG(770, 17)
 150#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA	0x100
 151
 152/* PHY Low Power Idle Control */
 153#define I82579_LPI_CTRL				PHY_REG(772, 20)
 154#define I82579_LPI_CTRL_ENABLE_MASK		0x6000
 155#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
 156
 157/* EMI Registers */
 158#define I82579_EMI_ADDR         0x10
 159#define I82579_EMI_DATA         0x11
 160#define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
 161#define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
 162#define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
 163#define I217_EEE_ADVERTISEMENT  0x8001	/* IEEE MMD Register 7.60 */
 164#define I217_EEE_LP_ABILITY     0x8002	/* IEEE MMD Register 7.61 */
 165#define I217_EEE_100_SUPPORTED  (1 << 1)	/* 100BaseTx EEE supported */
 166
 167/* Intel Rapid Start Technology Support */
 168#define I217_PROXY_CTRL                 BM_PHY_REG(BM_WUC_PAGE, 70)
 169#define I217_PROXY_CTRL_AUTO_DISABLE    0x0080
 170#define I217_SxCTRL                     PHY_REG(BM_PORT_CTRL_PAGE, 28)
 171#define I217_SxCTRL_ENABLE_LPI_RESET    0x1000
 172#define I217_CGFREG                     PHY_REG(772, 29)
 173#define I217_CGFREG_ENABLE_MTA_RESET    0x0002
 174#define I217_MEMPWR                     PHY_REG(772, 26)
 175#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
 176
 177/* Strapping Option Register - RO */
 178#define E1000_STRAP                     0x0000C
 179#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
 180#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
 181#define E1000_STRAP_SMT_FREQ_MASK       0x00003000
 182#define E1000_STRAP_SMT_FREQ_SHIFT      12
 183
 184/* OEM Bits Phy Register */
 185#define HV_OEM_BITS            PHY_REG(768, 25)
 186#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
 187#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
 188#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
 189
 190#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
 191#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
 192
 193/* KMRN Mode Control */
 194#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
 195#define HV_KMRN_MDIO_SLOW      0x0400
 196
 197/* KMRN FIFO Control and Status */
 198#define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
 199#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
 200#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
 201
 202/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
 203/* Offset 04h HSFSTS */
 204union ich8_hws_flash_status {
 205	struct ich8_hsfsts {
 206		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
 207		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
 208		u16 dael       :1; /* bit 2 Direct Access error Log */
 209		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
 210		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
 211		u16 reserved1  :2; /* bit 13:6 Reserved */
 212		u16 reserved2  :6; /* bit 13:6 Reserved */
 213		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
 214		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
 215	} hsf_status;
 216	u16 regval;
 217};
 218
 219/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
 220/* Offset 06h FLCTL */
 221union ich8_hws_flash_ctrl {
 222	struct ich8_hsflctl {
 223		u16 flcgo      :1;   /* 0 Flash Cycle Go */
 224		u16 flcycle    :2;   /* 2:1 Flash Cycle */
 225		u16 reserved   :5;   /* 7:3 Reserved  */
 226		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
 227		u16 flockdn    :6;   /* 15:10 Reserved */
 228	} hsf_ctrl;
 229	u16 regval;
 230};
 231
 232/* ICH Flash Region Access Permissions */
 233union ich8_hws_flash_regacc {
 234	struct ich8_flracc {
 235		u32 grra      :8; /* 0:7 GbE region Read Access */
 236		u32 grwa      :8; /* 8:15 GbE region Write Access */
 237		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
 238		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
 239	} hsf_flregacc;
 240	u16 regval;
 241};
 242
 243/* ICH Flash Protected Region */
 244union ich8_flash_protected_range {
 245	struct ich8_pr {
 246		u32 base:13;     /* 0:12 Protected Range Base */
 247		u32 reserved1:2; /* 13:14 Reserved */
 248		u32 rpe:1;       /* 15 Read Protection Enable */
 249		u32 limit:13;    /* 16:28 Protected Range Limit */
 250		u32 reserved2:2; /* 29:30 Reserved */
 251		u32 wpe:1;       /* 31 Write Protection Enable */
 252	} range;
 253	u32 regval;
 254};
 255
 256static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
 257static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 258static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 259static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 260static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 261						u32 offset, u8 byte);
 262static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 263					 u8 *data);
 264static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 265					 u16 *data);
 266static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 267					 u8 size, u16 *data);
 268static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
 269static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 270static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
 271static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 272static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 273static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 274static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 275static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 276static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 277static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 278static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 279static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 280static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 281static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 282static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 283static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 284static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 285static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 286static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 287static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 288static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 289static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 
 
 
 290
 291static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 292{
 293	return readw(hw->flash_address + reg);
 294}
 295
 296static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 297{
 298	return readl(hw->flash_address + reg);
 299}
 300
 301static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 302{
 303	writew(val, hw->flash_address + reg);
 304}
 305
 306static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 307{
 308	writel(val, hw->flash_address + reg);
 309}
 310
 311#define er16flash(reg)		__er16flash(hw, (reg))
 312#define er32flash(reg)		__er32flash(hw, (reg))
 313#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 314#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 315
 316/**
 317 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 318 *  @hw: pointer to the HW structure
 319 *
 320 *  Test access to the PHY registers by reading the PHY ID registers.  If
 321 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 322 *  otherwise assume the read PHY ID is correct if it is valid.
 323 *
 324 *  Assumes the sw/fw/hw semaphore is already acquired.
 325 **/
 326static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 327{
 328	u16 phy_reg = 0;
 329	u32 phy_id = 0;
 330	s32 ret_val;
 331	u16 retry_count;
 
 332
 333	for (retry_count = 0; retry_count < 2; retry_count++) {
 334		ret_val = e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
 335		if (ret_val || (phy_reg == 0xFFFF))
 336			continue;
 337		phy_id = (u32)(phy_reg << 16);
 338
 339		ret_val = e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
 340		if (ret_val || (phy_reg == 0xFFFF)) {
 341			phy_id = 0;
 342			continue;
 343		}
 344		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 345		break;
 346	}
 347
 348	if (hw->phy.id) {
 349		if (hw->phy.id == phy_id)
 350			return true;
 351	} else if (phy_id) {
 352		hw->phy.id = phy_id;
 353		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 354		return true;
 355	}
 356
 357	/*
 358	 * In case the PHY needs to be in mdio slow mode,
 359	 * set slow mode and try to get the PHY id again.
 360	 */
 361	hw->phy.ops.release(hw);
 362	ret_val = e1000_set_mdio_slow_mode_hv(hw);
 363	if (!ret_val)
 364		ret_val = e1000e_get_phy_id(hw);
 365	hw->phy.ops.acquire(hw);
 
 
 366
 367	return !ret_val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368}
 369
 370/**
 371 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 372 *  @hw: pointer to the HW structure
 373 *
 374 *  Workarounds/flow necessary for PHY initialization during driver load
 375 *  and resume paths.
 376 **/
 377static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 378{
 
 379	u32 mac_reg, fwsm = er32(FWSM);
 380	s32 ret_val;
 381	u16 phy_reg;
 
 
 
 
 
 
 
 
 
 
 382
 383	ret_val = hw->phy.ops.acquire(hw);
 384	if (ret_val) {
 385		e_dbg("Failed to initialize PHY flow\n");
 386		return ret_val;
 387	}
 388
 389	/*
 390	 * The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 391	 * inaccessible and resetting the PHY is not blocked, toggle the
 392	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 393	 */
 394	switch (hw->mac.type) {
 395	case e1000_pch_lpt:
 396		if (e1000_phy_is_accessible_pchlan(hw))
 397			break;
 398
 399		/*
 400		 * Before toggling LANPHYPC, see if PHY is accessible by
 401		 * forcing MAC to SMBus mode first.
 402		 */
 403		mac_reg = er32(CTRL_EXT);
 404		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 405		ew32(CTRL_EXT, mac_reg);
 406
 407		/* fall-through */
 408	case e1000_pch2lan:
 409		/*
 410		 * Gate automatic PHY configuration by hardware on
 411		 * non-managed 82579
 412		 */
 413		if ((hw->mac.type == e1000_pch2lan) &&
 414		    !(fwsm & E1000_ICH_FWSM_FW_VALID))
 415			e1000_gate_hw_phy_config_ich8lan(hw, true);
 416
 417		if (e1000_phy_is_accessible_pchlan(hw)) {
 418			if (hw->mac.type == e1000_pch_lpt) {
 419				/* Unforce SMBus mode in PHY */
 420				e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 421				phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 422				e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 423
 424				/* Unforce SMBus mode in MAC */
 425				mac_reg = er32(CTRL_EXT);
 426				mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 427				ew32(CTRL_EXT, mac_reg);
 428			}
 429			break;
 430		}
 431
 432		/* fall-through */
 433	case e1000_pchlan:
 434		if ((hw->mac.type == e1000_pchlan) &&
 435		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 436			break;
 437
 438		if (hw->phy.ops.check_reset_block(hw)) {
 439			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 
 440			break;
 441		}
 442
 443		e_dbg("Toggling LANPHYPC\n");
 
 
 
 
 444
 445		/* Set Phy Config Counter to 50msec */
 446		mac_reg = er32(FEXTNVM3);
 447		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 448		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 449		ew32(FEXTNVM3, mac_reg);
 
 450
 451		/* Toggle LANPHYPC Value bit */
 452		mac_reg = er32(CTRL);
 453		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 454		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 455		ew32(CTRL, mac_reg);
 456		e1e_flush();
 457		udelay(10);
 458		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 459		ew32(CTRL, mac_reg);
 460		e1e_flush();
 461		if (hw->mac.type < e1000_pch_lpt) {
 462			msleep(50);
 463		} else {
 464			u16 count = 20;
 465			do {
 466				usleep_range(5000, 10000);
 467			} while (!(er32(CTRL_EXT) &
 468				   E1000_CTRL_EXT_LPCD) && count--);
 469		}
 470		break;
 471	default:
 472		break;
 473	}
 474
 475	hw->phy.ops.release(hw);
 
 476
 477	/*
 478	 * Reset the PHY before any access to it.  Doing so, ensures
 479	 * that the PHY is in a known good state before we read/write
 480	 * PHY registers.  The generic reset is sufficient here,
 481	 * because we haven't determined the PHY type yet.
 482	 */
 483	ret_val = e1000e_phy_hw_reset_generic(hw);
 484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485	/* Ungate automatic PHY configuration on non-managed 82579 */
 486	if ((hw->mac.type == e1000_pch2lan) &&
 487	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 488		usleep_range(10000, 20000);
 489		e1000_gate_hw_phy_config_ich8lan(hw, false);
 490	}
 491
 492	return ret_val;
 493}
 494
 495/**
 496 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 497 *  @hw: pointer to the HW structure
 498 *
 499 *  Initialize family-specific PHY parameters and function pointers.
 500 **/
 501static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 502{
 503	struct e1000_phy_info *phy = &hw->phy;
 504	s32 ret_val = 0;
 505
 506	phy->addr                     = 1;
 507	phy->reset_delay_us           = 100;
 508
 509	phy->ops.set_page             = e1000_set_page_igp;
 510	phy->ops.read_reg             = e1000_read_phy_reg_hv;
 511	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
 512	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
 513	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
 514	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
 515	phy->ops.write_reg            = e1000_write_phy_reg_hv;
 516	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
 517	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
 518	phy->ops.power_up             = e1000_power_up_phy_copper;
 519	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
 520	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 521
 522	phy->id = e1000_phy_unknown;
 523
 524	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 525	if (ret_val)
 526		return ret_val;
 527
 528	if (phy->id == e1000_phy_unknown)
 529		switch (hw->mac.type) {
 530		default:
 531			ret_val = e1000e_get_phy_id(hw);
 532			if (ret_val)
 533				return ret_val;
 534			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 535				break;
 536			/* fall-through */
 537		case e1000_pch2lan:
 538		case e1000_pch_lpt:
 539			/*
 540			 * In case the PHY needs to be in mdio slow mode,
 541			 * set slow mode and try to get the PHY id again.
 542			 */
 543			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 544			if (ret_val)
 545				return ret_val;
 546			ret_val = e1000e_get_phy_id(hw);
 547			if (ret_val)
 548				return ret_val;
 549			break;
 550		}
 551	phy->type = e1000e_get_phy_type_from_id(phy->id);
 552
 553	switch (phy->type) {
 554	case e1000_phy_82577:
 555	case e1000_phy_82579:
 556	case e1000_phy_i217:
 557		phy->ops.check_polarity = e1000_check_polarity_82577;
 558		phy->ops.force_speed_duplex =
 559		    e1000_phy_force_speed_duplex_82577;
 560		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 561		phy->ops.get_info = e1000_get_phy_info_82577;
 562		phy->ops.commit = e1000e_phy_sw_reset;
 563		break;
 564	case e1000_phy_82578:
 565		phy->ops.check_polarity = e1000_check_polarity_m88;
 566		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 567		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 568		phy->ops.get_info = e1000e_get_phy_info_m88;
 569		break;
 570	default:
 571		ret_val = -E1000_ERR_PHY;
 572		break;
 573	}
 574
 575	return ret_val;
 576}
 577
 578/**
 579 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 580 *  @hw: pointer to the HW structure
 581 *
 582 *  Initialize family-specific PHY parameters and function pointers.
 583 **/
 584static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 585{
 586	struct e1000_phy_info *phy = &hw->phy;
 587	s32 ret_val;
 588	u16 i = 0;
 589
 590	phy->addr			= 1;
 591	phy->reset_delay_us		= 100;
 592
 593	phy->ops.power_up               = e1000_power_up_phy_copper;
 594	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
 595
 596	/*
 597	 * We may need to do this twice - once for IGP and if that fails,
 598	 * we'll set BM func pointers and try again
 599	 */
 600	ret_val = e1000e_determine_phy_address(hw);
 601	if (ret_val) {
 602		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 603		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
 604		ret_val = e1000e_determine_phy_address(hw);
 605		if (ret_val) {
 606			e_dbg("Cannot determine PHY addr. Erroring out\n");
 607			return ret_val;
 608		}
 609	}
 610
 611	phy->id = 0;
 612	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 613	       (i++ < 100)) {
 614		usleep_range(1000, 2000);
 615		ret_val = e1000e_get_phy_id(hw);
 616		if (ret_val)
 617			return ret_val;
 618	}
 619
 620	/* Verify phy id */
 621	switch (phy->id) {
 622	case IGP03E1000_E_PHY_ID:
 623		phy->type = e1000_phy_igp_3;
 624		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 625		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 626		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 627		phy->ops.get_info = e1000e_get_phy_info_igp;
 628		phy->ops.check_polarity = e1000_check_polarity_igp;
 629		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 630		break;
 631	case IFE_E_PHY_ID:
 632	case IFE_PLUS_E_PHY_ID:
 633	case IFE_C_E_PHY_ID:
 634		phy->type = e1000_phy_ife;
 635		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 636		phy->ops.get_info = e1000_get_phy_info_ife;
 637		phy->ops.check_polarity = e1000_check_polarity_ife;
 638		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 639		break;
 640	case BME1000_E_PHY_ID:
 641		phy->type = e1000_phy_bm;
 642		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 643		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 644		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 645		phy->ops.commit = e1000e_phy_sw_reset;
 646		phy->ops.get_info = e1000e_get_phy_info_m88;
 647		phy->ops.check_polarity = e1000_check_polarity_m88;
 648		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 649		break;
 650	default:
 651		return -E1000_ERR_PHY;
 652		break;
 653	}
 654
 655	return 0;
 656}
 657
 658/**
 659 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 660 *  @hw: pointer to the HW structure
 661 *
 662 *  Initialize family-specific NVM parameters and function
 663 *  pointers.
 664 **/
 665static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 666{
 667	struct e1000_nvm_info *nvm = &hw->nvm;
 668	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 669	u32 gfpreg, sector_base_addr, sector_end_addr;
 670	u16 i;
 671
 672	/* Can't read flash registers if the register set isn't mapped. */
 673	if (!hw->flash_address) {
 674		e_dbg("ERROR: Flash registers not mapped\n");
 675		return -E1000_ERR_CONFIG;
 676	}
 677
 678	nvm->type = e1000_nvm_flash_sw;
 679
 680	gfpreg = er32flash(ICH_FLASH_GFPREG);
 681
 682	/*
 683	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
 684	 * Add 1 to sector_end_addr since this sector is included in
 685	 * the overall size.
 686	 */
 687	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 688	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 689
 690	/* flash_base_addr is byte-aligned */
 691	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
 692
 693	/*
 694	 * find total size of the NVM, then cut in half since the total
 695	 * size represents two separate NVM banks.
 696	 */
 697	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
 698				<< FLASH_SECTOR_ADDR_SHIFT;
 699	nvm->flash_bank_size /= 2;
 700	/* Adjust to word count */
 701	nvm->flash_bank_size /= sizeof(u16);
 702
 703	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 704
 705	/* Clear shadow ram */
 706	for (i = 0; i < nvm->word_size; i++) {
 707		dev_spec->shadow_ram[i].modified = false;
 708		dev_spec->shadow_ram[i].value    = 0xFFFF;
 709	}
 710
 711	return 0;
 712}
 713
 714/**
 715 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 716 *  @hw: pointer to the HW structure
 717 *
 718 *  Initialize family-specific MAC parameters and function
 719 *  pointers.
 720 **/
 721static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 722{
 723	struct e1000_mac_info *mac = &hw->mac;
 724
 725	/* Set media type function pointer */
 726	hw->phy.media_type = e1000_media_type_copper;
 727
 728	/* Set mta register count */
 729	mac->mta_reg_count = 32;
 730	/* Set rar entry count */
 731	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 732	if (mac->type == e1000_ich8lan)
 733		mac->rar_entry_count--;
 734	/* FWSM register */
 735	mac->has_fwsm = true;
 736	/* ARC subsystem not supported */
 737	mac->arc_subsystem_valid = false;
 738	/* Adaptive IFS supported */
 739	mac->adaptive_ifs = true;
 740
 741	/* LED and other operations */
 742	switch (mac->type) {
 743	case e1000_ich8lan:
 744	case e1000_ich9lan:
 745	case e1000_ich10lan:
 746		/* check management mode */
 747		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 748		/* ID LED init */
 749		mac->ops.id_led_init = e1000e_id_led_init_generic;
 750		/* blink LED */
 751		mac->ops.blink_led = e1000e_blink_led_generic;
 752		/* setup LED */
 753		mac->ops.setup_led = e1000e_setup_led_generic;
 754		/* cleanup LED */
 755		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 756		/* turn on/off LED */
 757		mac->ops.led_on = e1000_led_on_ich8lan;
 758		mac->ops.led_off = e1000_led_off_ich8lan;
 759		break;
 760	case e1000_pch2lan:
 761		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 762		mac->ops.rar_set = e1000_rar_set_pch2lan;
 763		/* fall-through */
 764	case e1000_pch_lpt:
 765	case e1000_pchlan:
 766		/* check management mode */
 767		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 768		/* ID LED init */
 769		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 770		/* setup LED */
 771		mac->ops.setup_led = e1000_setup_led_pchlan;
 772		/* cleanup LED */
 773		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 774		/* turn on/off LED */
 775		mac->ops.led_on = e1000_led_on_pchlan;
 776		mac->ops.led_off = e1000_led_off_pchlan;
 777		break;
 778	default:
 779		break;
 780	}
 781
 782	if (mac->type == e1000_pch_lpt) {
 783		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 784		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 
 
 785	}
 786
 787	/* Enable PCS Lock-loss workaround for ICH8 */
 788	if (mac->type == e1000_ich8lan)
 789		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 790
 791	/*
 792	 * Gate automatic PHY configuration by hardware on managed
 793	 * 82579 and i217
 794	 */
 795	if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) &&
 796	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
 797		e1000_gate_hw_phy_config_ich8lan(hw, true);
 798
 799	return 0;
 800}
 801
 802/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803 *  e1000_set_eee_pchlan - Enable/disable EEE support
 804 *  @hw: pointer to the HW structure
 805 *
 806 *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
 807 *  the LPI Control register will remain set only if/when link is up.
 
 
 
 
 
 
 
 808 **/
 809static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 810{
 811	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 812	s32 ret_val = 0;
 813	u16 phy_reg;
 814
 815	if ((hw->phy.type != e1000_phy_82579) &&
 816	    (hw->phy.type != e1000_phy_i217))
 
 
 
 
 
 
 
 
 
 
 817		return 0;
 
 818
 819	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
 820	if (ret_val)
 821		return ret_val;
 822
 823	if (dev_spec->eee_disable)
 824		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
 825	else
 826		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
 827
 828	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
 829	if (ret_val)
 830		return ret_val;
 831
 832	if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) {
 
 
 
 
 833		/* Save off link partner's EEE ability */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834		ret_val = hw->phy.ops.acquire(hw);
 835		if (ret_val)
 836			return ret_val;
 837		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
 838					  I217_EEE_LP_ABILITY);
 
 
 839		if (ret_val)
 840			goto release;
 841		e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability);
 842
 843		/*
 844		 * EEE is not supported in 100Half, so ignore partner's EEE
 845		 * in 100 ability if full-duplex is not advertised.
 846		 */
 847		e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg);
 848		if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS))
 849			dev_spec->eee_lp_ability &= ~I217_EEE_100_SUPPORTED;
 
 
 
 
 
 
 
 
 
 850release:
 851		hw->phy.ops.release(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852	}
 853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854	return 0;
 855}
 856
 857/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 859 *  @hw: pointer to the HW structure
 860 *
 861 *  Checks to see of the link status of the hardware has changed.  If a
 862 *  change in link status has been detected, then we read the PHY registers
 863 *  to get the current speed/duplex if link exists.
 864 **/
 865static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
 866{
 867	struct e1000_mac_info *mac = &hw->mac;
 868	s32 ret_val;
 869	bool link;
 870	u16 phy_reg;
 871
 872	/*
 873	 * We only want to go out to the PHY registers to see if Auto-Neg
 874	 * has completed and/or if our link status has changed.  The
 875	 * get_link_status flag is set upon receiving a Link Status
 876	 * Change or Rx Sequence Error interrupt.
 877	 */
 878	if (!mac->get_link_status)
 879		return 0;
 880
 881	/*
 882	 * First we want to see if the MII Status Register reports
 883	 * link.  If so, then we want to get the current speed/duplex
 884	 * of the PHY.
 885	 */
 886	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 887	if (ret_val)
 888		return ret_val;
 889
 890	if (hw->mac.type == e1000_pchlan) {
 891		ret_val = e1000_k1_gig_workaround_hv(hw, link);
 892		if (ret_val)
 893			return ret_val;
 894	}
 895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896	/* Clear link partner's EEE ability */
 897	hw->dev_spec.ich8lan.eee_lp_ability = 0;
 898
 899	if (!link)
 900		return 0; /* No link detected */
 901
 902	mac->get_link_status = false;
 903
 904	switch (hw->mac.type) {
 905	case e1000_pch2lan:
 906		ret_val = e1000_k1_workaround_lv(hw);
 907		if (ret_val)
 908			return ret_val;
 909		/* fall-thru */
 910	case e1000_pchlan:
 911		if (hw->phy.type == e1000_phy_82578) {
 912			ret_val = e1000_link_stall_workaround_hv(hw);
 913			if (ret_val)
 914				return ret_val;
 915		}
 916
 917		/*
 918		 * Workaround for PCHx parts in half-duplex:
 919		 * Set the number of preambles removed from the packet
 920		 * when it is passed from the PHY to the MAC to prevent
 921		 * the MAC from misinterpreting the packet type.
 922		 */
 923		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
 924		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
 925
 926		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
 927			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
 928
 929		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
 930		break;
 931	default:
 932		break;
 933	}
 934
 935	/*
 936	 * Check if there was DownShift, must be checked
 937	 * immediately after link-up
 938	 */
 939	e1000e_check_downshift(hw);
 940
 941	/* Enable/Disable EEE after link up */
 942	ret_val = e1000_set_eee_pchlan(hw);
 943	if (ret_val)
 944		return ret_val;
 
 
 945
 946	/*
 947	 * If we are forcing speed/duplex, then we simply return since
 948	 * we have already determined whether we have link or not.
 949	 */
 950	if (!mac->autoneg)
 951		return -E1000_ERR_CONFIG;
 952
 953	/*
 954	 * Auto-Neg is enabled.  Auto Speed Detection takes care
 955	 * of MAC speed/duplex configuration.  So we only need to
 956	 * configure Collision Distance in the MAC.
 957	 */
 958	mac->ops.config_collision_dist(hw);
 959
 960	/*
 961	 * Configure Flow Control now that Auto-Neg has completed.
 962	 * First, we need to restore the desired flow control
 963	 * settings because we may have had to re-autoneg with a
 964	 * different link partner.
 965	 */
 966	ret_val = e1000e_config_fc_after_link_up(hw);
 967	if (ret_val)
 968		e_dbg("Error configuring flow control\n");
 969
 970	return ret_val;
 971}
 972
 973static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
 974{
 975	struct e1000_hw *hw = &adapter->hw;
 976	s32 rc;
 977
 978	rc = e1000_init_mac_params_ich8lan(hw);
 979	if (rc)
 980		return rc;
 981
 982	rc = e1000_init_nvm_params_ich8lan(hw);
 983	if (rc)
 984		return rc;
 985
 986	switch (hw->mac.type) {
 987	case e1000_ich8lan:
 988	case e1000_ich9lan:
 989	case e1000_ich10lan:
 990		rc = e1000_init_phy_params_ich8lan(hw);
 991		break;
 992	case e1000_pchlan:
 993	case e1000_pch2lan:
 994	case e1000_pch_lpt:
 995		rc = e1000_init_phy_params_pchlan(hw);
 996		break;
 997	default:
 998		break;
 999	}
1000	if (rc)
1001		return rc;
1002
1003	/*
1004	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1005	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1006	 */
1007	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1008	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1009	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1010		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1011		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1012
1013		hw->mac.ops.blink_led = NULL;
1014	}
1015
1016	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1017	    (adapter->hw.phy.type != e1000_phy_ife))
1018		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1019
1020	/* Enable workaround for 82579 w/ ME enabled */
1021	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1022	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1023		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1024
1025	/* Disable EEE by default until IEEE802.3az spec is finalized */
1026	if (adapter->flags2 & FLAG2_HAS_EEE)
1027		adapter->hw.dev_spec.ich8lan.eee_disable = true;
1028
1029	return 0;
1030}
1031
1032static DEFINE_MUTEX(nvm_mutex);
1033
1034/**
1035 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1036 *  @hw: pointer to the HW structure
1037 *
1038 *  Acquires the mutex for performing NVM operations.
1039 **/
1040static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1041{
1042	mutex_lock(&nvm_mutex);
1043
1044	return 0;
1045}
1046
1047/**
1048 *  e1000_release_nvm_ich8lan - Release NVM mutex
1049 *  @hw: pointer to the HW structure
1050 *
1051 *  Releases the mutex used while performing NVM operations.
1052 **/
1053static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1054{
1055	mutex_unlock(&nvm_mutex);
1056}
1057
1058/**
1059 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1060 *  @hw: pointer to the HW structure
1061 *
1062 *  Acquires the software control flag for performing PHY and select
1063 *  MAC CSR accesses.
1064 **/
1065static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1066{
1067	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1068	s32 ret_val = 0;
1069
1070	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1071			     &hw->adapter->state)) {
1072		e_dbg("contention for Phy access\n");
1073		return -E1000_ERR_PHY;
1074	}
1075
1076	while (timeout) {
1077		extcnf_ctrl = er32(EXTCNF_CTRL);
1078		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1079			break;
1080
1081		mdelay(1);
1082		timeout--;
1083	}
1084
1085	if (!timeout) {
1086		e_dbg("SW has already locked the resource.\n");
1087		ret_val = -E1000_ERR_CONFIG;
1088		goto out;
1089	}
1090
1091	timeout = SW_FLAG_TIMEOUT;
1092
1093	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1094	ew32(EXTCNF_CTRL, extcnf_ctrl);
1095
1096	while (timeout) {
1097		extcnf_ctrl = er32(EXTCNF_CTRL);
1098		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1099			break;
1100
1101		mdelay(1);
1102		timeout--;
1103	}
1104
1105	if (!timeout) {
1106		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1107		      er32(FWSM), extcnf_ctrl);
1108		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1109		ew32(EXTCNF_CTRL, extcnf_ctrl);
1110		ret_val = -E1000_ERR_CONFIG;
1111		goto out;
1112	}
1113
1114out:
1115	if (ret_val)
1116		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1117
1118	return ret_val;
1119}
1120
1121/**
1122 *  e1000_release_swflag_ich8lan - Release software control flag
1123 *  @hw: pointer to the HW structure
1124 *
1125 *  Releases the software control flag for performing PHY and select
1126 *  MAC CSR accesses.
1127 **/
1128static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1129{
1130	u32 extcnf_ctrl;
1131
1132	extcnf_ctrl = er32(EXTCNF_CTRL);
1133
1134	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1135		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1136		ew32(EXTCNF_CTRL, extcnf_ctrl);
1137	} else {
1138		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1139	}
1140
1141	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1142}
1143
1144/**
1145 *  e1000_check_mng_mode_ich8lan - Checks management mode
1146 *  @hw: pointer to the HW structure
1147 *
1148 *  This checks if the adapter has any manageability enabled.
1149 *  This is a function pointer entry point only called by read/write
1150 *  routines for the PHY and NVM parts.
1151 **/
1152static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1153{
1154	u32 fwsm;
1155
1156	fwsm = er32(FWSM);
1157	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1158	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1159		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1160}
1161
1162/**
1163 *  e1000_check_mng_mode_pchlan - Checks management mode
1164 *  @hw: pointer to the HW structure
1165 *
1166 *  This checks if the adapter has iAMT enabled.
1167 *  This is a function pointer entry point only called by read/write
1168 *  routines for the PHY and NVM parts.
1169 **/
1170static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1171{
1172	u32 fwsm;
1173
1174	fwsm = er32(FWSM);
1175	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1176	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1177}
1178
1179/**
1180 *  e1000_rar_set_pch2lan - Set receive address register
1181 *  @hw: pointer to the HW structure
1182 *  @addr: pointer to the receive address
1183 *  @index: receive address array register
1184 *
1185 *  Sets the receive address array register at index to the address passed
1186 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1187 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1188 *  Use SHRA[0-3] in place of those reserved for ME.
1189 **/
1190static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1191{
1192	u32 rar_low, rar_high;
1193
1194	/*
1195	 * HW expects these in little endian so we reverse the byte order
1196	 * from network order (big endian) to little endian
1197	 */
1198	rar_low = ((u32)addr[0] |
1199		   ((u32)addr[1] << 8) |
1200		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1201
1202	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1203
1204	/* If MAC address zero, no need to set the AV bit */
1205	if (rar_low || rar_high)
1206		rar_high |= E1000_RAH_AV;
1207
1208	if (index == 0) {
1209		ew32(RAL(index), rar_low);
1210		e1e_flush();
1211		ew32(RAH(index), rar_high);
1212		e1e_flush();
1213		return;
1214	}
1215
1216	if (index < hw->mac.rar_entry_count) {
 
 
 
1217		s32 ret_val;
1218
1219		ret_val = e1000_acquire_swflag_ich8lan(hw);
1220		if (ret_val)
1221			goto out;
1222
1223		ew32(SHRAL(index - 1), rar_low);
1224		e1e_flush();
1225		ew32(SHRAH(index - 1), rar_high);
1226		e1e_flush();
1227
1228		e1000_release_swflag_ich8lan(hw);
1229
1230		/* verify the register updates */
1231		if ((er32(SHRAL(index - 1)) == rar_low) &&
1232		    (er32(SHRAH(index - 1)) == rar_high))
1233			return;
1234
1235		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1236		      (index - 1), er32(FWSM));
1237	}
1238
1239out:
1240	e_dbg("Failed to write receive address at index %d\n", index);
1241}
1242
1243/**
1244 *  e1000_rar_set_pch_lpt - Set receive address registers
1245 *  @hw: pointer to the HW structure
1246 *  @addr: pointer to the receive address
1247 *  @index: receive address array register
1248 *
1249 *  Sets the receive address register array at index to the address passed
1250 *  in by addr. For LPT, RAR[0] is the base address register that is to
1251 *  contain the MAC address. SHRA[0-10] are the shared receive address
1252 *  registers that are shared between the Host and manageability engine (ME).
1253 **/
1254static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1255{
1256	u32 rar_low, rar_high;
1257	u32 wlock_mac;
1258
1259	/*
1260	 * HW expects these in little endian so we reverse the byte order
1261	 * from network order (big endian) to little endian
1262	 */
1263	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1264		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1265
1266	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1267
1268	/* If MAC address zero, no need to set the AV bit */
1269	if (rar_low || rar_high)
1270		rar_high |= E1000_RAH_AV;
1271
1272	if (index == 0) {
1273		ew32(RAL(index), rar_low);
1274		e1e_flush();
1275		ew32(RAH(index), rar_high);
1276		e1e_flush();
1277		return;
1278	}
1279
1280	/*
1281	 * The manageability engine (ME) can lock certain SHRAR registers that
1282	 * it is using - those registers are unavailable for use.
1283	 */
1284	if (index < hw->mac.rar_entry_count) {
1285		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1286		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1287
1288		/* Check if all SHRAR registers are locked */
1289		if (wlock_mac == 1)
1290			goto out;
1291
1292		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1293			s32 ret_val;
1294
1295			ret_val = e1000_acquire_swflag_ich8lan(hw);
1296
1297			if (ret_val)
1298				goto out;
1299
1300			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1301			e1e_flush();
1302			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1303			e1e_flush();
1304
1305			e1000_release_swflag_ich8lan(hw);
1306
1307			/* verify the register updates */
1308			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1309			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1310				return;
1311		}
1312	}
1313
1314out:
1315	e_dbg("Failed to write receive address at index %d\n", index);
1316}
1317
1318/**
1319 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1320 *  @hw: pointer to the HW structure
1321 *
1322 *  Checks if firmware is blocking the reset of the PHY.
1323 *  This is a function pointer entry point only called by
1324 *  reset routines.
1325 **/
1326static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1327{
1328	u32 fwsm;
 
1329
1330	fwsm = er32(FWSM);
1331
1332	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
 
1333}
1334
1335/**
1336 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1337 *  @hw: pointer to the HW structure
1338 *
1339 *  Assumes semaphore already acquired.
1340 *
1341 **/
1342static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1343{
1344	u16 phy_data;
1345	u32 strap = er32(STRAP);
1346	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1347	    E1000_STRAP_SMT_FREQ_SHIFT;
1348	s32 ret_val = 0;
1349
1350	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1351
1352	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1353	if (ret_val)
1354		return ret_val;
1355
1356	phy_data &= ~HV_SMB_ADDR_MASK;
1357	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1358	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1359
1360	if (hw->phy.type == e1000_phy_i217) {
1361		/* Restore SMBus frequency */
1362		if (freq--) {
1363			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1364			phy_data |= (freq & (1 << 0)) <<
1365			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1366			phy_data |= (freq & (1 << 1)) <<
1367			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1368		} else {
1369			e_dbg("Unsupported SMB frequency in PHY\n");
1370		}
1371	}
1372
1373	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1374}
1375
1376/**
1377 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1378 *  @hw:   pointer to the HW structure
1379 *
1380 *  SW should configure the LCD from the NVM extended configuration region
1381 *  as a workaround for certain parts.
1382 **/
1383static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1384{
1385	struct e1000_phy_info *phy = &hw->phy;
1386	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1387	s32 ret_val = 0;
1388	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1389
1390	/*
1391	 * Initialize the PHY from the NVM on ICH platforms.  This
1392	 * is needed due to an issue where the NVM configuration is
1393	 * not properly autoloaded after power transitions.
1394	 * Therefore, after each PHY reset, we will load the
1395	 * configuration data out of the NVM manually.
1396	 */
1397	switch (hw->mac.type) {
1398	case e1000_ich8lan:
1399		if (phy->type != e1000_phy_igp_3)
1400			return ret_val;
1401
1402		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1403		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1404			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1405			break;
1406		}
1407		/* Fall-thru */
1408	case e1000_pchlan:
1409	case e1000_pch2lan:
1410	case e1000_pch_lpt:
1411		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1412		break;
1413	default:
1414		return ret_val;
1415	}
1416
1417	ret_val = hw->phy.ops.acquire(hw);
1418	if (ret_val)
1419		return ret_val;
1420
1421	data = er32(FEXTNVM);
1422	if (!(data & sw_cfg_mask))
1423		goto release;
1424
1425	/*
1426	 * Make sure HW does not configure LCD from PHY
1427	 * extended configuration before SW configuration
1428	 */
1429	data = er32(EXTCNF_CTRL);
1430	if ((hw->mac.type < e1000_pch2lan) &&
1431	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1432		goto release;
1433
1434	cnf_size = er32(EXTCNF_SIZE);
1435	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1436	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1437	if (!cnf_size)
1438		goto release;
1439
1440	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1441	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1442
1443	if (((hw->mac.type == e1000_pchlan) &&
1444	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1445	    (hw->mac.type > e1000_pchlan)) {
1446		/*
1447		 * HW configures the SMBus address and LEDs when the
1448		 * OEM and LCD Write Enable bits are set in the NVM.
1449		 * When both NVM bits are cleared, SW will configure
1450		 * them instead.
1451		 */
1452		ret_val = e1000_write_smbus_addr(hw);
1453		if (ret_val)
1454			goto release;
1455
1456		data = er32(LEDCTL);
1457		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1458							(u16)data);
1459		if (ret_val)
1460			goto release;
1461	}
1462
1463	/* Configure LCD from extended configuration region. */
1464
1465	/* cnf_base_addr is in DWORD */
1466	word_addr = (u16)(cnf_base_addr << 1);
1467
1468	for (i = 0; i < cnf_size; i++) {
1469		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1470					 &reg_data);
1471		if (ret_val)
1472			goto release;
1473
1474		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1475					 1, &reg_addr);
1476		if (ret_val)
1477			goto release;
1478
1479		/* Save off the PHY page for future writes. */
1480		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1481			phy_page = reg_data;
1482			continue;
1483		}
1484
1485		reg_addr &= PHY_REG_MASK;
1486		reg_addr |= phy_page;
1487
1488		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1489		if (ret_val)
1490			goto release;
1491	}
1492
1493release:
1494	hw->phy.ops.release(hw);
1495	return ret_val;
1496}
1497
1498/**
1499 *  e1000_k1_gig_workaround_hv - K1 Si workaround
1500 *  @hw:   pointer to the HW structure
1501 *  @link: link up bool flag
1502 *
1503 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1504 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1505 *  If link is down, the function will restore the default K1 setting located
1506 *  in the NVM.
1507 **/
1508static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1509{
1510	s32 ret_val = 0;
1511	u16 status_reg = 0;
1512	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1513
1514	if (hw->mac.type != e1000_pchlan)
1515		return 0;
1516
1517	/* Wrap the whole flow with the sw flag */
1518	ret_val = hw->phy.ops.acquire(hw);
1519	if (ret_val)
1520		return ret_val;
1521
1522	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1523	if (link) {
1524		if (hw->phy.type == e1000_phy_82578) {
1525			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1526						  &status_reg);
1527			if (ret_val)
1528				goto release;
1529
1530			status_reg &= BM_CS_STATUS_LINK_UP |
1531			              BM_CS_STATUS_RESOLVED |
1532			              BM_CS_STATUS_SPEED_MASK;
1533
1534			if (status_reg == (BM_CS_STATUS_LINK_UP |
1535			                   BM_CS_STATUS_RESOLVED |
1536			                   BM_CS_STATUS_SPEED_1000))
1537				k1_enable = false;
1538		}
1539
1540		if (hw->phy.type == e1000_phy_82577) {
1541			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1542			if (ret_val)
1543				goto release;
1544
1545			status_reg &= HV_M_STATUS_LINK_UP |
1546			              HV_M_STATUS_AUTONEG_COMPLETE |
1547			              HV_M_STATUS_SPEED_MASK;
1548
1549			if (status_reg == (HV_M_STATUS_LINK_UP |
1550			                   HV_M_STATUS_AUTONEG_COMPLETE |
1551			                   HV_M_STATUS_SPEED_1000))
1552				k1_enable = false;
1553		}
1554
1555		/* Link stall fix for link up */
1556		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1557		if (ret_val)
1558			goto release;
1559
1560	} else {
1561		/* Link stall fix for link down */
1562		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1563		if (ret_val)
1564			goto release;
1565	}
1566
1567	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1568
1569release:
1570	hw->phy.ops.release(hw);
1571
1572	return ret_val;
1573}
1574
1575/**
1576 *  e1000_configure_k1_ich8lan - Configure K1 power state
1577 *  @hw: pointer to the HW structure
1578 *  @enable: K1 state to configure
1579 *
1580 *  Configure the K1 power state based on the provided parameter.
1581 *  Assumes semaphore already acquired.
1582 *
1583 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1584 **/
1585s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1586{
1587	s32 ret_val = 0;
1588	u32 ctrl_reg = 0;
1589	u32 ctrl_ext = 0;
1590	u32 reg = 0;
1591	u16 kmrn_reg = 0;
1592
1593	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1594					      &kmrn_reg);
1595	if (ret_val)
1596		return ret_val;
1597
1598	if (k1_enable)
1599		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1600	else
1601		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1602
1603	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1604					       kmrn_reg);
1605	if (ret_val)
1606		return ret_val;
1607
1608	udelay(20);
1609	ctrl_ext = er32(CTRL_EXT);
1610	ctrl_reg = er32(CTRL);
1611
1612	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1613	reg |= E1000_CTRL_FRCSPD;
1614	ew32(CTRL, reg);
1615
1616	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1617	e1e_flush();
1618	udelay(20);
1619	ew32(CTRL, ctrl_reg);
1620	ew32(CTRL_EXT, ctrl_ext);
1621	e1e_flush();
1622	udelay(20);
1623
1624	return 0;
1625}
1626
1627/**
1628 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1629 *  @hw:       pointer to the HW structure
1630 *  @d0_state: boolean if entering d0 or d3 device state
1631 *
1632 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1633 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1634 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1635 **/
1636static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1637{
1638	s32 ret_val = 0;
1639	u32 mac_reg;
1640	u16 oem_reg;
1641
1642	if (hw->mac.type < e1000_pchlan)
1643		return ret_val;
1644
1645	ret_val = hw->phy.ops.acquire(hw);
1646	if (ret_val)
1647		return ret_val;
1648
1649	if (hw->mac.type == e1000_pchlan) {
1650		mac_reg = er32(EXTCNF_CTRL);
1651		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1652			goto release;
1653	}
1654
1655	mac_reg = er32(FEXTNVM);
1656	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1657		goto release;
1658
1659	mac_reg = er32(PHY_CTRL);
1660
1661	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1662	if (ret_val)
1663		goto release;
1664
1665	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1666
1667	if (d0_state) {
1668		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1669			oem_reg |= HV_OEM_BITS_GBE_DIS;
1670
1671		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1672			oem_reg |= HV_OEM_BITS_LPLU;
1673	} else {
1674		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1675			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1676			oem_reg |= HV_OEM_BITS_GBE_DIS;
1677
1678		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1679			       E1000_PHY_CTRL_NOND0A_LPLU))
1680			oem_reg |= HV_OEM_BITS_LPLU;
1681	}
1682
1683	/* Set Restart auto-neg to activate the bits */
1684	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1685	    !hw->phy.ops.check_reset_block(hw))
1686		oem_reg |= HV_OEM_BITS_RESTART_AN;
1687
1688	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1689
1690release:
1691	hw->phy.ops.release(hw);
1692
1693	return ret_val;
1694}
1695
1696
1697/**
1698 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1699 *  @hw:   pointer to the HW structure
1700 **/
1701static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1702{
1703	s32 ret_val;
1704	u16 data;
1705
1706	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1707	if (ret_val)
1708		return ret_val;
1709
1710	data |= HV_KMRN_MDIO_SLOW;
1711
1712	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1713
1714	return ret_val;
1715}
1716
1717/**
1718 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1719 *  done after every PHY reset.
1720 **/
1721static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1722{
1723	s32 ret_val = 0;
1724	u16 phy_data;
1725
1726	if (hw->mac.type != e1000_pchlan)
1727		return 0;
1728
1729	/* Set MDIO slow mode before any other MDIO access */
1730	if (hw->phy.type == e1000_phy_82577) {
1731		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1732		if (ret_val)
1733			return ret_val;
1734	}
1735
1736	if (((hw->phy.type == e1000_phy_82577) &&
1737	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1738	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1739		/* Disable generation of early preamble */
1740		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1741		if (ret_val)
1742			return ret_val;
1743
1744		/* Preamble tuning for SSC */
1745		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1746		if (ret_val)
1747			return ret_val;
1748	}
1749
1750	if (hw->phy.type == e1000_phy_82578) {
1751		/*
1752		 * Return registers to default by doing a soft reset then
1753		 * writing 0x3140 to the control register.
1754		 */
1755		if (hw->phy.revision < 2) {
1756			e1000e_phy_sw_reset(hw);
1757			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1758		}
1759	}
1760
1761	/* Select page 0 */
1762	ret_val = hw->phy.ops.acquire(hw);
1763	if (ret_val)
1764		return ret_val;
1765
1766	hw->phy.addr = 1;
1767	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1768	hw->phy.ops.release(hw);
1769	if (ret_val)
1770		return ret_val;
1771
1772	/*
1773	 * Configure the K1 Si workaround during phy reset assuming there is
1774	 * link so that it disables K1 if link is in 1Gbps.
1775	 */
1776	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1777	if (ret_val)
1778		return ret_val;
1779
1780	/* Workaround for link disconnects on a busy hub in half duplex */
1781	ret_val = hw->phy.ops.acquire(hw);
1782	if (ret_val)
1783		return ret_val;
1784	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1785	if (ret_val)
1786		goto release;
1787	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
 
 
 
 
 
1788release:
1789	hw->phy.ops.release(hw);
1790
1791	return ret_val;
1792}
1793
1794/**
1795 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1796 *  @hw:   pointer to the HW structure
1797 **/
1798void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1799{
1800	u32 mac_reg;
1801	u16 i, phy_reg = 0;
1802	s32 ret_val;
1803
1804	ret_val = hw->phy.ops.acquire(hw);
1805	if (ret_val)
1806		return;
1807	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1808	if (ret_val)
1809		goto release;
1810
1811	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1812	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1813		mac_reg = er32(RAL(i));
1814		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1815					   (u16)(mac_reg & 0xFFFF));
1816		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1817					   (u16)((mac_reg >> 16) & 0xFFFF));
1818
1819		mac_reg = er32(RAH(i));
1820		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1821					   (u16)(mac_reg & 0xFFFF));
1822		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1823					   (u16)((mac_reg & E1000_RAH_AV)
1824						 >> 16));
1825	}
1826
1827	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1828
1829release:
1830	hw->phy.ops.release(hw);
1831}
1832
1833/**
1834 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1835 *  with 82579 PHY
1836 *  @hw: pointer to the HW structure
1837 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1838 **/
1839s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1840{
1841	s32 ret_val = 0;
1842	u16 phy_reg, data;
1843	u32 mac_reg;
1844	u16 i;
1845
1846	if (hw->mac.type < e1000_pch2lan)
1847		return 0;
1848
1849	/* disable Rx path while enabling/disabling workaround */
1850	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1851	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1852	if (ret_val)
1853		return ret_val;
1854
1855	if (enable) {
1856		/*
1857		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1858		 * SHRAL/H) and initial CRC values to the MAC
1859		 */
1860		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1861			u8 mac_addr[ETH_ALEN] = {0};
1862			u32 addr_high, addr_low;
1863
1864			addr_high = er32(RAH(i));
1865			if (!(addr_high & E1000_RAH_AV))
1866				continue;
1867			addr_low = er32(RAL(i));
1868			mac_addr[0] = (addr_low & 0xFF);
1869			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1870			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1871			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1872			mac_addr[4] = (addr_high & 0xFF);
1873			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1874
1875			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1876		}
1877
1878		/* Write Rx addresses to the PHY */
1879		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1880
1881		/* Enable jumbo frame workaround in the MAC */
1882		mac_reg = er32(FFLT_DBG);
1883		mac_reg &= ~(1 << 14);
1884		mac_reg |= (7 << 15);
1885		ew32(FFLT_DBG, mac_reg);
1886
1887		mac_reg = er32(RCTL);
1888		mac_reg |= E1000_RCTL_SECRC;
1889		ew32(RCTL, mac_reg);
1890
1891		ret_val = e1000e_read_kmrn_reg(hw,
1892						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1893						&data);
1894		if (ret_val)
1895			return ret_val;
1896		ret_val = e1000e_write_kmrn_reg(hw,
1897						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1898						data | (1 << 0));
1899		if (ret_val)
1900			return ret_val;
1901		ret_val = e1000e_read_kmrn_reg(hw,
1902						E1000_KMRNCTRLSTA_HD_CTRL,
1903						&data);
1904		if (ret_val)
1905			return ret_val;
1906		data &= ~(0xF << 8);
1907		data |= (0xB << 8);
1908		ret_val = e1000e_write_kmrn_reg(hw,
1909						E1000_KMRNCTRLSTA_HD_CTRL,
1910						data);
1911		if (ret_val)
1912			return ret_val;
1913
1914		/* Enable jumbo frame workaround in the PHY */
1915		e1e_rphy(hw, PHY_REG(769, 23), &data);
1916		data &= ~(0x7F << 5);
1917		data |= (0x37 << 5);
1918		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1919		if (ret_val)
1920			return ret_val;
1921		e1e_rphy(hw, PHY_REG(769, 16), &data);
1922		data &= ~(1 << 13);
1923		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1924		if (ret_val)
1925			return ret_val;
1926		e1e_rphy(hw, PHY_REG(776, 20), &data);
1927		data &= ~(0x3FF << 2);
1928		data |= (0x1A << 2);
1929		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1930		if (ret_val)
1931			return ret_val;
1932		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1933		if (ret_val)
1934			return ret_val;
1935		e1e_rphy(hw, HV_PM_CTRL, &data);
1936		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1937		if (ret_val)
1938			return ret_val;
1939	} else {
1940		/* Write MAC register values back to h/w defaults */
1941		mac_reg = er32(FFLT_DBG);
1942		mac_reg &= ~(0xF << 14);
1943		ew32(FFLT_DBG, mac_reg);
1944
1945		mac_reg = er32(RCTL);
1946		mac_reg &= ~E1000_RCTL_SECRC;
1947		ew32(RCTL, mac_reg);
1948
1949		ret_val = e1000e_read_kmrn_reg(hw,
1950						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1951						&data);
1952		if (ret_val)
1953			return ret_val;
1954		ret_val = e1000e_write_kmrn_reg(hw,
1955						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1956						data & ~(1 << 0));
1957		if (ret_val)
1958			return ret_val;
1959		ret_val = e1000e_read_kmrn_reg(hw,
1960						E1000_KMRNCTRLSTA_HD_CTRL,
1961						&data);
1962		if (ret_val)
1963			return ret_val;
1964		data &= ~(0xF << 8);
1965		data |= (0xB << 8);
1966		ret_val = e1000e_write_kmrn_reg(hw,
1967						E1000_KMRNCTRLSTA_HD_CTRL,
1968						data);
1969		if (ret_val)
1970			return ret_val;
1971
1972		/* Write PHY register values back to h/w defaults */
1973		e1e_rphy(hw, PHY_REG(769, 23), &data);
1974		data &= ~(0x7F << 5);
1975		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1976		if (ret_val)
1977			return ret_val;
1978		e1e_rphy(hw, PHY_REG(769, 16), &data);
1979		data |= (1 << 13);
1980		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1981		if (ret_val)
1982			return ret_val;
1983		e1e_rphy(hw, PHY_REG(776, 20), &data);
1984		data &= ~(0x3FF << 2);
1985		data |= (0x8 << 2);
1986		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1987		if (ret_val)
1988			return ret_val;
1989		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1990		if (ret_val)
1991			return ret_val;
1992		e1e_rphy(hw, HV_PM_CTRL, &data);
1993		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1994		if (ret_val)
1995			return ret_val;
1996	}
1997
1998	/* re-enable Rx path after enabling/disabling workaround */
1999	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2000}
2001
2002/**
2003 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2004 *  done after every PHY reset.
2005 **/
2006static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2007{
2008	s32 ret_val = 0;
2009
2010	if (hw->mac.type != e1000_pch2lan)
2011		return 0;
2012
2013	/* Set MDIO slow mode before any other MDIO access */
2014	ret_val = e1000_set_mdio_slow_mode_hv(hw);
 
 
2015
2016	ret_val = hw->phy.ops.acquire(hw);
2017	if (ret_val)
2018		return ret_val;
2019	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
2020	if (ret_val)
2021		goto release;
2022	/* set MSE higher to enable link to stay up when noise is high */
2023	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
2024	if (ret_val)
2025		goto release;
2026	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
2027	if (ret_val)
2028		goto release;
2029	/* drop link after 5 times MSE threshold was reached */
2030	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
2031release:
2032	hw->phy.ops.release(hw);
2033
2034	return ret_val;
2035}
2036
2037/**
2038 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2039 *  @hw:   pointer to the HW structure
2040 *
2041 *  Workaround to set the K1 beacon duration for 82579 parts
 
2042 **/
2043static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2044{
2045	s32 ret_val = 0;
2046	u16 status_reg = 0;
2047	u32 mac_reg;
2048	u16 phy_reg;
2049
2050	if (hw->mac.type != e1000_pch2lan)
2051		return 0;
2052
2053	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
2054	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2055	if (ret_val)
2056		return ret_val;
2057
2058	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2059	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2060		mac_reg = er32(FEXTNVM4);
2061		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2062
2063		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2064		if (ret_val)
2065			return ret_val;
2066
2067		if (status_reg & HV_M_STATUS_SPEED_1000) {
2068			u16 pm_phy_reg;
2069
2070			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2071			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2072			/* LV 1G Packet drop issue wa  */
2073			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2074			if (ret_val)
2075				return ret_val;
2076			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2077			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2078			if (ret_val)
2079				return ret_val;
2080		} else {
 
 
 
 
2081			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2082			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2083		}
2084		ew32(FEXTNVM4, mac_reg);
2085		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2086	}
2087
2088	return ret_val;
2089}
2090
2091/**
2092 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2093 *  @hw:   pointer to the HW structure
2094 *  @gate: boolean set to true to gate, false to ungate
2095 *
2096 *  Gate/ungate the automatic PHY configuration via hardware; perform
2097 *  the configuration via software instead.
2098 **/
2099static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2100{
2101	u32 extcnf_ctrl;
2102
2103	if (hw->mac.type < e1000_pch2lan)
2104		return;
2105
2106	extcnf_ctrl = er32(EXTCNF_CTRL);
2107
2108	if (gate)
2109		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2110	else
2111		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2112
2113	ew32(EXTCNF_CTRL, extcnf_ctrl);
2114}
2115
2116/**
2117 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2118 *  @hw: pointer to the HW structure
2119 *
2120 *  Check the appropriate indication the MAC has finished configuring the
2121 *  PHY after a software reset.
2122 **/
2123static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2124{
2125	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2126
2127	/* Wait for basic configuration completes before proceeding */
2128	do {
2129		data = er32(STATUS);
2130		data &= E1000_STATUS_LAN_INIT_DONE;
2131		udelay(100);
2132	} while ((!data) && --loop);
2133
2134	/*
2135	 * If basic configuration is incomplete before the above loop
2136	 * count reaches 0, loading the configuration from NVM will
2137	 * leave the PHY in a bad state possibly resulting in no link.
2138	 */
2139	if (loop == 0)
2140		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2141
2142	/* Clear the Init Done bit for the next init event */
2143	data = er32(STATUS);
2144	data &= ~E1000_STATUS_LAN_INIT_DONE;
2145	ew32(STATUS, data);
2146}
2147
2148/**
2149 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2150 *  @hw: pointer to the HW structure
2151 **/
2152static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2153{
2154	s32 ret_val = 0;
2155	u16 reg;
2156
2157	if (hw->phy.ops.check_reset_block(hw))
2158		return 0;
2159
2160	/* Allow time for h/w to get to quiescent state after reset */
2161	usleep_range(10000, 20000);
2162
2163	/* Perform any necessary post-reset workarounds */
2164	switch (hw->mac.type) {
2165	case e1000_pchlan:
2166		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2167		if (ret_val)
2168			return ret_val;
2169		break;
2170	case e1000_pch2lan:
2171		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2172		if (ret_val)
2173			return ret_val;
2174		break;
2175	default:
2176		break;
2177	}
2178
2179	/* Clear the host wakeup bit after lcd reset */
2180	if (hw->mac.type >= e1000_pchlan) {
2181		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2182		reg &= ~BM_WUC_HOST_WU_BIT;
2183		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2184	}
2185
2186	/* Configure the LCD with the extended configuration region in NVM */
2187	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2188	if (ret_val)
2189		return ret_val;
2190
2191	/* Configure the LCD with the OEM bits in NVM */
2192	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2193
2194	if (hw->mac.type == e1000_pch2lan) {
2195		/* Ungate automatic PHY configuration on non-managed 82579 */
2196		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2197			usleep_range(10000, 20000);
2198			e1000_gate_hw_phy_config_ich8lan(hw, false);
2199		}
2200
2201		/* Set EEE LPI Update Timer to 200usec */
2202		ret_val = hw->phy.ops.acquire(hw);
2203		if (ret_val)
2204			return ret_val;
2205		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
2206					  I82579_LPI_UPDATE_TIMER);
2207		if (!ret_val)
2208			ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
2209		hw->phy.ops.release(hw);
2210	}
2211
2212	return ret_val;
2213}
2214
2215/**
2216 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2217 *  @hw: pointer to the HW structure
2218 *
2219 *  Resets the PHY
2220 *  This is a function pointer entry point called by drivers
2221 *  or other shared routines.
2222 **/
2223static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2224{
2225	s32 ret_val = 0;
2226
2227	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2228	if ((hw->mac.type == e1000_pch2lan) &&
2229	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2230		e1000_gate_hw_phy_config_ich8lan(hw, true);
2231
2232	ret_val = e1000e_phy_hw_reset_generic(hw);
2233	if (ret_val)
2234		return ret_val;
2235
2236	return e1000_post_phy_reset_ich8lan(hw);
2237}
2238
2239/**
2240 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2241 *  @hw: pointer to the HW structure
2242 *  @active: true to enable LPLU, false to disable
2243 *
2244 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2245 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2246 *  the phy speed. This function will manually set the LPLU bit and restart
2247 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2248 *  since it configures the same bit.
2249 **/
2250static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2251{
2252	s32 ret_val = 0;
2253	u16 oem_reg;
2254
2255	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2256	if (ret_val)
2257		return ret_val;
2258
2259	if (active)
2260		oem_reg |= HV_OEM_BITS_LPLU;
2261	else
2262		oem_reg &= ~HV_OEM_BITS_LPLU;
2263
2264	if (!hw->phy.ops.check_reset_block(hw))
2265		oem_reg |= HV_OEM_BITS_RESTART_AN;
2266
2267	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2268}
2269
2270/**
2271 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2272 *  @hw: pointer to the HW structure
2273 *  @active: true to enable LPLU, false to disable
2274 *
2275 *  Sets the LPLU D0 state according to the active flag.  When
2276 *  activating LPLU this function also disables smart speed
2277 *  and vice versa.  LPLU will not be activated unless the
2278 *  device autonegotiation advertisement meets standards of
2279 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2280 *  This is a function pointer entry point only called by
2281 *  PHY setup routines.
2282 **/
2283static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2284{
2285	struct e1000_phy_info *phy = &hw->phy;
2286	u32 phy_ctrl;
2287	s32 ret_val = 0;
2288	u16 data;
2289
2290	if (phy->type == e1000_phy_ife)
2291		return 0;
2292
2293	phy_ctrl = er32(PHY_CTRL);
2294
2295	if (active) {
2296		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2297		ew32(PHY_CTRL, phy_ctrl);
2298
2299		if (phy->type != e1000_phy_igp_3)
2300			return 0;
2301
2302		/*
2303		 * Call gig speed drop workaround on LPLU before accessing
2304		 * any PHY registers
2305		 */
2306		if (hw->mac.type == e1000_ich8lan)
2307			e1000e_gig_downshift_workaround_ich8lan(hw);
2308
2309		/* When LPLU is enabled, we should disable SmartSpeed */
2310		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
 
 
2311		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2312		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2313		if (ret_val)
2314			return ret_val;
2315	} else {
2316		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2317		ew32(PHY_CTRL, phy_ctrl);
2318
2319		if (phy->type != e1000_phy_igp_3)
2320			return 0;
2321
2322		/*
2323		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2324		 * during Dx states where the power conservation is most
2325		 * important.  During driver activity we should enable
2326		 * SmartSpeed, so performance is maintained.
2327		 */
2328		if (phy->smart_speed == e1000_smart_speed_on) {
2329			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2330					   &data);
2331			if (ret_val)
2332				return ret_val;
2333
2334			data |= IGP01E1000_PSCFR_SMART_SPEED;
2335			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2336					   data);
2337			if (ret_val)
2338				return ret_val;
2339		} else if (phy->smart_speed == e1000_smart_speed_off) {
2340			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2341					   &data);
2342			if (ret_val)
2343				return ret_val;
2344
2345			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2346			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2347					   data);
2348			if (ret_val)
2349				return ret_val;
2350		}
2351	}
2352
2353	return 0;
2354}
2355
2356/**
2357 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2358 *  @hw: pointer to the HW structure
2359 *  @active: true to enable LPLU, false to disable
2360 *
2361 *  Sets the LPLU D3 state according to the active flag.  When
2362 *  activating LPLU this function also disables smart speed
2363 *  and vice versa.  LPLU will not be activated unless the
2364 *  device autonegotiation advertisement meets standards of
2365 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2366 *  This is a function pointer entry point only called by
2367 *  PHY setup routines.
2368 **/
2369static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2370{
2371	struct e1000_phy_info *phy = &hw->phy;
2372	u32 phy_ctrl;
2373	s32 ret_val = 0;
2374	u16 data;
2375
2376	phy_ctrl = er32(PHY_CTRL);
2377
2378	if (!active) {
2379		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2380		ew32(PHY_CTRL, phy_ctrl);
2381
2382		if (phy->type != e1000_phy_igp_3)
2383			return 0;
2384
2385		/*
2386		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2387		 * during Dx states where the power conservation is most
2388		 * important.  During driver activity we should enable
2389		 * SmartSpeed, so performance is maintained.
2390		 */
2391		if (phy->smart_speed == e1000_smart_speed_on) {
2392			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2393					   &data);
2394			if (ret_val)
2395				return ret_val;
2396
2397			data |= IGP01E1000_PSCFR_SMART_SPEED;
2398			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2399					   data);
2400			if (ret_val)
2401				return ret_val;
2402		} else if (phy->smart_speed == e1000_smart_speed_off) {
2403			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2404					   &data);
2405			if (ret_val)
2406				return ret_val;
2407
2408			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2409			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2410					   data);
2411			if (ret_val)
2412				return ret_val;
2413		}
2414	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2415		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2416		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2417		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2418		ew32(PHY_CTRL, phy_ctrl);
2419
2420		if (phy->type != e1000_phy_igp_3)
2421			return 0;
2422
2423		/*
2424		 * Call gig speed drop workaround on LPLU before accessing
2425		 * any PHY registers
2426		 */
2427		if (hw->mac.type == e1000_ich8lan)
2428			e1000e_gig_downshift_workaround_ich8lan(hw);
2429
2430		/* When LPLU is enabled, we should disable SmartSpeed */
2431		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2432		if (ret_val)
2433			return ret_val;
2434
2435		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2436		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2437	}
2438
2439	return ret_val;
2440}
2441
2442/**
2443 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2444 *  @hw: pointer to the HW structure
2445 *  @bank:  pointer to the variable that returns the active bank
2446 *
2447 *  Reads signature byte from the NVM using the flash access registers.
2448 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2449 **/
2450static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2451{
2452	u32 eecd;
2453	struct e1000_nvm_info *nvm = &hw->nvm;
2454	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2455	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2456	u8 sig_byte = 0;
2457	s32 ret_val;
2458
2459	switch (hw->mac.type) {
2460	case e1000_ich8lan:
2461	case e1000_ich9lan:
2462		eecd = er32(EECD);
2463		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2464		    E1000_EECD_SEC1VAL_VALID_MASK) {
2465			if (eecd & E1000_EECD_SEC1VAL)
2466				*bank = 1;
2467			else
2468				*bank = 0;
2469
2470			return 0;
2471		}
2472		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2473		/* fall-thru */
2474	default:
2475		/* set bank to 0 in case flash read fails */
2476		*bank = 0;
2477
2478		/* Check bank 0 */
2479		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2480		                                        &sig_byte);
2481		if (ret_val)
2482			return ret_val;
2483		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2484		    E1000_ICH_NVM_SIG_VALUE) {
2485			*bank = 0;
2486			return 0;
2487		}
2488
2489		/* Check bank 1 */
2490		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2491		                                        bank1_offset,
2492		                                        &sig_byte);
2493		if (ret_val)
2494			return ret_val;
2495		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2496		    E1000_ICH_NVM_SIG_VALUE) {
2497			*bank = 1;
2498			return 0;
2499		}
2500
2501		e_dbg("ERROR: No valid NVM bank present\n");
2502		return -E1000_ERR_NVM;
2503	}
2504}
2505
2506/**
2507 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2508 *  @hw: pointer to the HW structure
2509 *  @offset: The offset (in bytes) of the word(s) to read.
2510 *  @words: Size of data to read in words
2511 *  @data: Pointer to the word(s) to read at offset.
2512 *
2513 *  Reads a word(s) from the NVM using the flash access registers.
2514 **/
2515static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2516				  u16 *data)
2517{
2518	struct e1000_nvm_info *nvm = &hw->nvm;
2519	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2520	u32 act_offset;
2521	s32 ret_val = 0;
2522	u32 bank = 0;
2523	u16 i, word;
2524
2525	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2526	    (words == 0)) {
2527		e_dbg("nvm parameter(s) out of bounds\n");
2528		ret_val = -E1000_ERR_NVM;
2529		goto out;
2530	}
2531
2532	nvm->ops.acquire(hw);
2533
2534	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2535	if (ret_val) {
2536		e_dbg("Could not detect valid bank, assuming bank 0\n");
2537		bank = 0;
2538	}
2539
2540	act_offset = (bank) ? nvm->flash_bank_size : 0;
2541	act_offset += offset;
2542
2543	ret_val = 0;
2544	for (i = 0; i < words; i++) {
2545		if (dev_spec->shadow_ram[offset+i].modified) {
2546			data[i] = dev_spec->shadow_ram[offset+i].value;
2547		} else {
2548			ret_val = e1000_read_flash_word_ich8lan(hw,
2549								act_offset + i,
2550								&word);
2551			if (ret_val)
2552				break;
2553			data[i] = word;
2554		}
2555	}
2556
2557	nvm->ops.release(hw);
2558
2559out:
2560	if (ret_val)
2561		e_dbg("NVM read error: %d\n", ret_val);
2562
2563	return ret_val;
2564}
2565
2566/**
2567 *  e1000_flash_cycle_init_ich8lan - Initialize flash
2568 *  @hw: pointer to the HW structure
2569 *
2570 *  This function does initial flash setup so that a new read/write/erase cycle
2571 *  can be started.
2572 **/
2573static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2574{
2575	union ich8_hws_flash_status hsfsts;
2576	s32 ret_val = -E1000_ERR_NVM;
2577
2578	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2579
2580	/* Check if the flash descriptor is valid */
2581	if (!hsfsts.hsf_status.fldesvalid) {
2582		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2583		return -E1000_ERR_NVM;
2584	}
2585
2586	/* Clear FCERR and DAEL in hw status by writing 1 */
2587	hsfsts.hsf_status.flcerr = 1;
2588	hsfsts.hsf_status.dael = 1;
2589
2590	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2591
2592	/*
2593	 * Either we should have a hardware SPI cycle in progress
2594	 * bit to check against, in order to start a new cycle or
2595	 * FDONE bit should be changed in the hardware so that it
2596	 * is 1 after hardware reset, which can then be used as an
2597	 * indication whether a cycle is in progress or has been
2598	 * completed.
2599	 */
2600
2601	if (!hsfsts.hsf_status.flcinprog) {
2602		/*
2603		 * There is no cycle running at present,
2604		 * so we can start a cycle.
2605		 * Begin by setting Flash Cycle Done.
2606		 */
2607		hsfsts.hsf_status.flcdone = 1;
2608		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2609		ret_val = 0;
2610	} else {
2611		s32 i;
2612
2613		/*
2614		 * Otherwise poll for sometime so the current
2615		 * cycle has a chance to end before giving up.
2616		 */
2617		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2618			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2619			if (!hsfsts.hsf_status.flcinprog) {
2620				ret_val = 0;
2621				break;
2622			}
2623			udelay(1);
2624		}
2625		if (!ret_val) {
2626			/*
2627			 * Successful in waiting for previous cycle to timeout,
2628			 * now set the Flash Cycle Done.
2629			 */
2630			hsfsts.hsf_status.flcdone = 1;
2631			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2632		} else {
2633			e_dbg("Flash controller busy, cannot get access\n");
2634		}
2635	}
2636
2637	return ret_val;
2638}
2639
2640/**
2641 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2642 *  @hw: pointer to the HW structure
2643 *  @timeout: maximum time to wait for completion
2644 *
2645 *  This function starts a flash cycle and waits for its completion.
2646 **/
2647static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2648{
2649	union ich8_hws_flash_ctrl hsflctl;
2650	union ich8_hws_flash_status hsfsts;
2651	u32 i = 0;
2652
2653	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2654	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2655	hsflctl.hsf_ctrl.flcgo = 1;
2656	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2657
2658	/* wait till FDONE bit is set to 1 */
2659	do {
2660		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2661		if (hsfsts.hsf_status.flcdone)
2662			break;
2663		udelay(1);
2664	} while (i++ < timeout);
2665
2666	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2667		return 0;
2668
2669	return -E1000_ERR_NVM;
2670}
2671
2672/**
2673 *  e1000_read_flash_word_ich8lan - Read word from flash
2674 *  @hw: pointer to the HW structure
2675 *  @offset: offset to data location
2676 *  @data: pointer to the location for storing the data
2677 *
2678 *  Reads the flash word at offset into data.  Offset is converted
2679 *  to bytes before read.
2680 **/
2681static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2682					 u16 *data)
2683{
2684	/* Must convert offset into bytes. */
2685	offset <<= 1;
2686
2687	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2688}
2689
2690/**
2691 *  e1000_read_flash_byte_ich8lan - Read byte from flash
2692 *  @hw: pointer to the HW structure
2693 *  @offset: The offset of the byte to read.
2694 *  @data: Pointer to a byte to store the value read.
2695 *
2696 *  Reads a single byte from the NVM using the flash access registers.
2697 **/
2698static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2699					 u8 *data)
2700{
2701	s32 ret_val;
2702	u16 word = 0;
2703
2704	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2705	if (ret_val)
2706		return ret_val;
2707
2708	*data = (u8)word;
2709
2710	return 0;
2711}
2712
2713/**
2714 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2715 *  @hw: pointer to the HW structure
2716 *  @offset: The offset (in bytes) of the byte or word to read.
2717 *  @size: Size of data to read, 1=byte 2=word
2718 *  @data: Pointer to the word to store the value read.
2719 *
2720 *  Reads a byte or word from the NVM using the flash access registers.
2721 **/
2722static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2723					 u8 size, u16 *data)
2724{
2725	union ich8_hws_flash_status hsfsts;
2726	union ich8_hws_flash_ctrl hsflctl;
2727	u32 flash_linear_addr;
2728	u32 flash_data = 0;
2729	s32 ret_val = -E1000_ERR_NVM;
2730	u8 count = 0;
2731
2732	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2733		return -E1000_ERR_NVM;
2734
2735	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2736			    hw->nvm.flash_base_addr;
2737
2738	do {
2739		udelay(1);
2740		/* Steps */
2741		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2742		if (ret_val)
2743			break;
2744
2745		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2746		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2747		hsflctl.hsf_ctrl.fldbcount = size - 1;
2748		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2749		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2750
2751		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2752
2753		ret_val = e1000_flash_cycle_ich8lan(hw,
2754						ICH_FLASH_READ_COMMAND_TIMEOUT);
 
2755
2756		/*
2757		 * Check if FCERR is set to 1, if set to 1, clear it
2758		 * and try the whole sequence a few more times, else
2759		 * read in (shift in) the Flash Data0, the order is
2760		 * least significant byte first msb to lsb
2761		 */
2762		if (!ret_val) {
2763			flash_data = er32flash(ICH_FLASH_FDATA0);
2764			if (size == 1)
2765				*data = (u8)(flash_data & 0x000000FF);
2766			else if (size == 2)
2767				*data = (u16)(flash_data & 0x0000FFFF);
2768			break;
2769		} else {
2770			/*
2771			 * If we've gotten here, then things are probably
2772			 * completely hosed, but if the error condition is
2773			 * detected, it won't hurt to give it another try...
2774			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2775			 */
2776			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2777			if (hsfsts.hsf_status.flcerr) {
2778				/* Repeat for some time before giving up. */
2779				continue;
2780			} else if (!hsfsts.hsf_status.flcdone) {
2781				e_dbg("Timeout error - flash cycle did not complete.\n");
2782				break;
2783			}
2784		}
2785	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2786
2787	return ret_val;
2788}
2789
2790/**
2791 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2792 *  @hw: pointer to the HW structure
2793 *  @offset: The offset (in bytes) of the word(s) to write.
2794 *  @words: Size of data to write in words
2795 *  @data: Pointer to the word(s) to write at offset.
2796 *
2797 *  Writes a byte or word to the NVM using the flash access registers.
2798 **/
2799static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2800				   u16 *data)
2801{
2802	struct e1000_nvm_info *nvm = &hw->nvm;
2803	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2804	u16 i;
2805
2806	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2807	    (words == 0)) {
2808		e_dbg("nvm parameter(s) out of bounds\n");
2809		return -E1000_ERR_NVM;
2810	}
2811
2812	nvm->ops.acquire(hw);
2813
2814	for (i = 0; i < words; i++) {
2815		dev_spec->shadow_ram[offset+i].modified = true;
2816		dev_spec->shadow_ram[offset+i].value = data[i];
2817	}
2818
2819	nvm->ops.release(hw);
2820
2821	return 0;
2822}
2823
2824/**
2825 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2826 *  @hw: pointer to the HW structure
2827 *
2828 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2829 *  which writes the checksum to the shadow ram.  The changes in the shadow
2830 *  ram are then committed to the EEPROM by processing each bank at a time
2831 *  checking for the modified bit and writing only the pending changes.
2832 *  After a successful commit, the shadow ram is cleared and is ready for
2833 *  future writes.
2834 **/
2835static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2836{
2837	struct e1000_nvm_info *nvm = &hw->nvm;
2838	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2839	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2840	s32 ret_val;
2841	u16 data;
2842
2843	ret_val = e1000e_update_nvm_checksum_generic(hw);
2844	if (ret_val)
2845		goto out;
2846
2847	if (nvm->type != e1000_nvm_flash_sw)
2848		goto out;
2849
2850	nvm->ops.acquire(hw);
2851
2852	/*
2853	 * We're writing to the opposite bank so if we're on bank 1,
2854	 * write to bank 0 etc.  We also need to erase the segment that
2855	 * is going to be written
2856	 */
2857	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2858	if (ret_val) {
2859		e_dbg("Could not detect valid bank, assuming bank 0\n");
2860		bank = 0;
2861	}
2862
2863	if (bank == 0) {
2864		new_bank_offset = nvm->flash_bank_size;
2865		old_bank_offset = 0;
2866		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2867		if (ret_val)
2868			goto release;
2869	} else {
2870		old_bank_offset = nvm->flash_bank_size;
2871		new_bank_offset = 0;
2872		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2873		if (ret_val)
2874			goto release;
2875	}
2876
2877	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2878		/*
2879		 * Determine whether to write the value stored
2880		 * in the other NVM bank or a modified value stored
2881		 * in the shadow RAM
2882		 */
2883		if (dev_spec->shadow_ram[i].modified) {
2884			data = dev_spec->shadow_ram[i].value;
2885		} else {
2886			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2887			                                        old_bank_offset,
2888			                                        &data);
2889			if (ret_val)
2890				break;
2891		}
2892
2893		/*
2894		 * If the word is 0x13, then make sure the signature bits
2895		 * (15:14) are 11b until the commit has completed.
2896		 * This will allow us to write 10b which indicates the
2897		 * signature is valid.  We want to do this after the write
2898		 * has completed so that we don't mark the segment valid
2899		 * while the write is still in progress
2900		 */
2901		if (i == E1000_ICH_NVM_SIG_WORD)
2902			data |= E1000_ICH_NVM_SIG_MASK;
2903
2904		/* Convert offset to bytes. */
2905		act_offset = (i + new_bank_offset) << 1;
2906
2907		udelay(100);
2908		/* Write the bytes to the new bank. */
2909		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2910							       act_offset,
2911							       (u8)data);
2912		if (ret_val)
2913			break;
2914
2915		udelay(100);
2916		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2917							  act_offset + 1,
2918							  (u8)(data >> 8));
2919		if (ret_val)
2920			break;
2921	}
2922
2923	/*
2924	 * Don't bother writing the segment valid bits if sector
2925	 * programming failed.
2926	 */
2927	if (ret_val) {
2928		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2929		e_dbg("Flash commit failed.\n");
2930		goto release;
2931	}
2932
2933	/*
2934	 * Finally validate the new segment by setting bit 15:14
2935	 * to 10b in word 0x13 , this can be done without an
2936	 * erase as well since these bits are 11 to start with
2937	 * and we need to change bit 14 to 0b
2938	 */
2939	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2940	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2941	if (ret_val)
2942		goto release;
2943
2944	data &= 0xBFFF;
2945	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2946						       act_offset * 2 + 1,
2947						       (u8)(data >> 8));
2948	if (ret_val)
2949		goto release;
2950
2951	/*
2952	 * And invalidate the previously valid segment by setting
2953	 * its signature word (0x13) high_byte to 0b. This can be
2954	 * done without an erase because flash erase sets all bits
2955	 * to 1's. We can write 1's to 0's without an erase
2956	 */
2957	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2958	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2959	if (ret_val)
2960		goto release;
2961
2962	/* Great!  Everything worked, we can now clear the cached entries. */
2963	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2964		dev_spec->shadow_ram[i].modified = false;
2965		dev_spec->shadow_ram[i].value = 0xFFFF;
2966	}
2967
2968release:
2969	nvm->ops.release(hw);
2970
2971	/*
2972	 * Reload the EEPROM, or else modifications will not appear
2973	 * until after the next adapter reset.
2974	 */
2975	if (!ret_val) {
2976		nvm->ops.reload(hw);
2977		usleep_range(10000, 20000);
2978	}
2979
2980out:
2981	if (ret_val)
2982		e_dbg("NVM update error: %d\n", ret_val);
2983
2984	return ret_val;
2985}
2986
2987/**
2988 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2989 *  @hw: pointer to the HW structure
2990 *
2991 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2992 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2993 *  calculated, in which case we need to calculate the checksum and set bit 6.
2994 **/
2995static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2996{
2997	s32 ret_val;
2998	u16 data;
 
 
2999
3000	/*
3001	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
3002	 * needs to be fixed.  This bit is an indication that the NVM
3003	 * was prepared by OEM software and did not calculate the
3004	 * checksum...a likely scenario.
3005	 */
3006	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
 
 
 
 
 
 
 
 
 
 
 
3007	if (ret_val)
3008		return ret_val;
3009
3010	if (!(data & 0x40)) {
3011		data |= 0x40;
3012		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
3013		if (ret_val)
3014			return ret_val;
3015		ret_val = e1000e_update_nvm_checksum(hw);
3016		if (ret_val)
3017			return ret_val;
3018	}
3019
3020	return e1000e_validate_nvm_checksum_generic(hw);
3021}
3022
3023/**
3024 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3025 *  @hw: pointer to the HW structure
3026 *
3027 *  To prevent malicious write/erase of the NVM, set it to be read-only
3028 *  so that the hardware ignores all write/erase cycles of the NVM via
3029 *  the flash control registers.  The shadow-ram copy of the NVM will
3030 *  still be updated, however any updates to this copy will not stick
3031 *  across driver reloads.
3032 **/
3033void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3034{
3035	struct e1000_nvm_info *nvm = &hw->nvm;
3036	union ich8_flash_protected_range pr0;
3037	union ich8_hws_flash_status hsfsts;
3038	u32 gfpreg;
3039
3040	nvm->ops.acquire(hw);
3041
3042	gfpreg = er32flash(ICH_FLASH_GFPREG);
3043
3044	/* Write-protect GbE Sector of NVM */
3045	pr0.regval = er32flash(ICH_FLASH_PR0);
3046	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3047	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3048	pr0.range.wpe = true;
3049	ew32flash(ICH_FLASH_PR0, pr0.regval);
3050
3051	/*
3052	 * Lock down a subset of GbE Flash Control Registers, e.g.
3053	 * PR0 to prevent the write-protection from being lifted.
3054	 * Once FLOCKDN is set, the registers protected by it cannot
3055	 * be written until FLOCKDN is cleared by a hardware reset.
3056	 */
3057	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3058	hsfsts.hsf_status.flockdn = true;
3059	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3060
3061	nvm->ops.release(hw);
3062}
3063
3064/**
3065 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3066 *  @hw: pointer to the HW structure
3067 *  @offset: The offset (in bytes) of the byte/word to read.
3068 *  @size: Size of data to read, 1=byte 2=word
3069 *  @data: The byte(s) to write to the NVM.
3070 *
3071 *  Writes one/two bytes to the NVM using the flash access registers.
3072 **/
3073static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3074					  u8 size, u16 data)
3075{
3076	union ich8_hws_flash_status hsfsts;
3077	union ich8_hws_flash_ctrl hsflctl;
3078	u32 flash_linear_addr;
3079	u32 flash_data = 0;
3080	s32 ret_val;
3081	u8 count = 0;
3082
3083	if (size < 1 || size > 2 || data > size * 0xff ||
3084	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3085		return -E1000_ERR_NVM;
3086
3087	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3088			    hw->nvm.flash_base_addr;
3089
3090	do {
3091		udelay(1);
3092		/* Steps */
3093		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3094		if (ret_val)
3095			break;
3096
3097		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3098		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3099		hsflctl.hsf_ctrl.fldbcount = size -1;
3100		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3101		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3102
3103		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3104
3105		if (size == 1)
3106			flash_data = (u32)data & 0x00FF;
3107		else
3108			flash_data = (u32)data;
3109
3110		ew32flash(ICH_FLASH_FDATA0, flash_data);
3111
3112		/*
3113		 * check if FCERR is set to 1 , if set to 1, clear it
3114		 * and try the whole sequence a few more times else done
3115		 */
3116		ret_val = e1000_flash_cycle_ich8lan(hw,
3117					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
 
3118		if (!ret_val)
3119			break;
3120
3121		/*
3122		 * If we're here, then things are most likely
3123		 * completely hosed, but if the error condition
3124		 * is detected, it won't hurt to give it another
3125		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3126		 */
3127		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3128		if (hsfsts.hsf_status.flcerr)
3129			/* Repeat for some time before giving up. */
3130			continue;
3131		if (!hsfsts.hsf_status.flcdone) {
3132			e_dbg("Timeout error - flash cycle did not complete.\n");
3133			break;
3134		}
3135	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3136
3137	return ret_val;
3138}
3139
3140/**
3141 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3142 *  @hw: pointer to the HW structure
3143 *  @offset: The index of the byte to read.
3144 *  @data: The byte to write to the NVM.
3145 *
3146 *  Writes a single byte to the NVM using the flash access registers.
3147 **/
3148static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3149					  u8 data)
3150{
3151	u16 word = (u16)data;
3152
3153	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3154}
3155
3156/**
3157 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3158 *  @hw: pointer to the HW structure
3159 *  @offset: The offset of the byte to write.
3160 *  @byte: The byte to write to the NVM.
3161 *
3162 *  Writes a single byte to the NVM using the flash access registers.
3163 *  Goes through a retry algorithm before giving up.
3164 **/
3165static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3166						u32 offset, u8 byte)
3167{
3168	s32 ret_val;
3169	u16 program_retries;
3170
3171	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3172	if (!ret_val)
3173		return ret_val;
3174
3175	for (program_retries = 0; program_retries < 100; program_retries++) {
3176		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3177		udelay(100);
3178		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3179		if (!ret_val)
3180			break;
3181	}
3182	if (program_retries == 100)
3183		return -E1000_ERR_NVM;
3184
3185	return 0;
3186}
3187
3188/**
3189 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3190 *  @hw: pointer to the HW structure
3191 *  @bank: 0 for first bank, 1 for second bank, etc.
3192 *
3193 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3194 *  bank N is 4096 * N + flash_reg_addr.
3195 **/
3196static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3197{
3198	struct e1000_nvm_info *nvm = &hw->nvm;
3199	union ich8_hws_flash_status hsfsts;
3200	union ich8_hws_flash_ctrl hsflctl;
3201	u32 flash_linear_addr;
3202	/* bank size is in 16bit words - adjust to bytes */
3203	u32 flash_bank_size = nvm->flash_bank_size * 2;
3204	s32 ret_val;
3205	s32 count = 0;
3206	s32 j, iteration, sector_size;
3207
3208	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3209
3210	/*
3211	 * Determine HW Sector size: Read BERASE bits of hw flash status
3212	 * register
3213	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3214	 *     consecutive sectors.  The start index for the nth Hw sector
3215	 *     can be calculated as = bank * 4096 + n * 256
3216	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3217	 *     The start index for the nth Hw sector can be calculated
3218	 *     as = bank * 4096
3219	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3220	 *     (ich9 only, otherwise error condition)
3221	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3222	 */
3223	switch (hsfsts.hsf_status.berasesz) {
3224	case 0:
3225		/* Hw sector size 256 */
3226		sector_size = ICH_FLASH_SEG_SIZE_256;
3227		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3228		break;
3229	case 1:
3230		sector_size = ICH_FLASH_SEG_SIZE_4K;
3231		iteration = 1;
3232		break;
3233	case 2:
3234		sector_size = ICH_FLASH_SEG_SIZE_8K;
3235		iteration = 1;
3236		break;
3237	case 3:
3238		sector_size = ICH_FLASH_SEG_SIZE_64K;
3239		iteration = 1;
3240		break;
3241	default:
3242		return -E1000_ERR_NVM;
3243	}
3244
3245	/* Start with the base address, then add the sector offset. */
3246	flash_linear_addr = hw->nvm.flash_base_addr;
3247	flash_linear_addr += (bank) ? flash_bank_size : 0;
3248
3249	for (j = 0; j < iteration ; j++) {
3250		do {
 
 
3251			/* Steps */
3252			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3253			if (ret_val)
3254				return ret_val;
3255
3256			/*
3257			 * Write a value 11 (block Erase) in Flash
3258			 * Cycle field in hw flash control
3259			 */
3260			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3261			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3262			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3263
3264			/*
3265			 * Write the last 24 bits of an index within the
3266			 * block into Flash Linear address field in Flash
3267			 * Address.
3268			 */
3269			flash_linear_addr += (j * sector_size);
3270			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3271
3272			ret_val = e1000_flash_cycle_ich8lan(hw,
3273					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3274			if (!ret_val)
3275				break;
3276
3277			/*
3278			 * Check if FCERR is set to 1.  If 1,
3279			 * clear it and try the whole sequence
3280			 * a few more times else Done
3281			 */
3282			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3283			if (hsfsts.hsf_status.flcerr)
3284				/* repeat for some time before giving up */
3285				continue;
3286			else if (!hsfsts.hsf_status.flcdone)
3287				return ret_val;
3288		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3289	}
3290
3291	return 0;
3292}
3293
3294/**
3295 *  e1000_valid_led_default_ich8lan - Set the default LED settings
3296 *  @hw: pointer to the HW structure
3297 *  @data: Pointer to the LED settings
3298 *
3299 *  Reads the LED default settings from the NVM to data.  If the NVM LED
3300 *  settings is all 0's or F's, set the LED default to a valid LED default
3301 *  setting.
3302 **/
3303static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3304{
3305	s32 ret_val;
3306
3307	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3308	if (ret_val) {
3309		e_dbg("NVM Read Error\n");
3310		return ret_val;
3311	}
3312
3313	if (*data == ID_LED_RESERVED_0000 ||
3314	    *data == ID_LED_RESERVED_FFFF)
3315		*data = ID_LED_DEFAULT_ICH8LAN;
3316
3317	return 0;
3318}
3319
3320/**
3321 *  e1000_id_led_init_pchlan - store LED configurations
3322 *  @hw: pointer to the HW structure
3323 *
3324 *  PCH does not control LEDs via the LEDCTL register, rather it uses
3325 *  the PHY LED configuration register.
3326 *
3327 *  PCH also does not have an "always on" or "always off" mode which
3328 *  complicates the ID feature.  Instead of using the "on" mode to indicate
3329 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3330 *  use "link_up" mode.  The LEDs will still ID on request if there is no
3331 *  link based on logic in e1000_led_[on|off]_pchlan().
3332 **/
3333static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3334{
3335	struct e1000_mac_info *mac = &hw->mac;
3336	s32 ret_val;
3337	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3338	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3339	u16 data, i, temp, shift;
3340
3341	/* Get default ID LED modes */
3342	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3343	if (ret_val)
3344		return ret_val;
3345
3346	mac->ledctl_default = er32(LEDCTL);
3347	mac->ledctl_mode1 = mac->ledctl_default;
3348	mac->ledctl_mode2 = mac->ledctl_default;
3349
3350	for (i = 0; i < 4; i++) {
3351		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3352		shift = (i * 5);
3353		switch (temp) {
3354		case ID_LED_ON1_DEF2:
3355		case ID_LED_ON1_ON2:
3356		case ID_LED_ON1_OFF2:
3357			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3358			mac->ledctl_mode1 |= (ledctl_on << shift);
3359			break;
3360		case ID_LED_OFF1_DEF2:
3361		case ID_LED_OFF1_ON2:
3362		case ID_LED_OFF1_OFF2:
3363			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3364			mac->ledctl_mode1 |= (ledctl_off << shift);
3365			break;
3366		default:
3367			/* Do nothing */
3368			break;
3369		}
3370		switch (temp) {
3371		case ID_LED_DEF1_ON2:
3372		case ID_LED_ON1_ON2:
3373		case ID_LED_OFF1_ON2:
3374			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3375			mac->ledctl_mode2 |= (ledctl_on << shift);
3376			break;
3377		case ID_LED_DEF1_OFF2:
3378		case ID_LED_ON1_OFF2:
3379		case ID_LED_OFF1_OFF2:
3380			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3381			mac->ledctl_mode2 |= (ledctl_off << shift);
3382			break;
3383		default:
3384			/* Do nothing */
3385			break;
3386		}
3387	}
3388
3389	return 0;
3390}
3391
3392/**
3393 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3394 *  @hw: pointer to the HW structure
3395 *
3396 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3397 *  register, so the the bus width is hard coded.
3398 **/
3399static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3400{
3401	struct e1000_bus_info *bus = &hw->bus;
3402	s32 ret_val;
3403
3404	ret_val = e1000e_get_bus_info_pcie(hw);
3405
3406	/*
3407	 * ICH devices are "PCI Express"-ish.  They have
3408	 * a configuration space, but do not contain
3409	 * PCI Express Capability registers, so bus width
3410	 * must be hardcoded.
3411	 */
3412	if (bus->width == e1000_bus_width_unknown)
3413		bus->width = e1000_bus_width_pcie_x1;
3414
3415	return ret_val;
3416}
3417
3418/**
3419 *  e1000_reset_hw_ich8lan - Reset the hardware
3420 *  @hw: pointer to the HW structure
3421 *
3422 *  Does a full reset of the hardware which includes a reset of the PHY and
3423 *  MAC.
3424 **/
3425static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3426{
3427	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3428	u16 kum_cfg;
3429	u32 ctrl, reg;
3430	s32 ret_val;
3431
3432	/*
3433	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3434	 * on the last TLP read/write transaction when MAC is reset.
3435	 */
3436	ret_val = e1000e_disable_pcie_master(hw);
3437	if (ret_val)
3438		e_dbg("PCI-E Master disable polling has failed.\n");
3439
3440	e_dbg("Masking off all interrupts\n");
3441	ew32(IMC, 0xffffffff);
3442
3443	/*
3444	 * Disable the Transmit and Receive units.  Then delay to allow
3445	 * any pending transactions to complete before we hit the MAC
3446	 * with the global reset.
3447	 */
3448	ew32(RCTL, 0);
3449	ew32(TCTL, E1000_TCTL_PSP);
3450	e1e_flush();
3451
3452	usleep_range(10000, 20000);
3453
3454	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3455	if (hw->mac.type == e1000_ich8lan) {
3456		/* Set Tx and Rx buffer allocation to 8k apiece. */
3457		ew32(PBA, E1000_PBA_8K);
3458		/* Set Packet Buffer Size to 16k. */
3459		ew32(PBS, E1000_PBS_16K);
3460	}
3461
3462	if (hw->mac.type == e1000_pchlan) {
3463		/* Save the NVM K1 bit setting */
3464		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3465		if (ret_val)
3466			return ret_val;
3467
3468		if (kum_cfg & E1000_NVM_K1_ENABLE)
3469			dev_spec->nvm_k1_enabled = true;
3470		else
3471			dev_spec->nvm_k1_enabled = false;
3472	}
3473
3474	ctrl = er32(CTRL);
3475
3476	if (!hw->phy.ops.check_reset_block(hw)) {
3477		/*
3478		 * Full-chip reset requires MAC and PHY reset at the same
3479		 * time to make sure the interface between MAC and the
3480		 * external PHY is reset.
3481		 */
3482		ctrl |= E1000_CTRL_PHY_RST;
3483
3484		/*
3485		 * Gate automatic PHY configuration by hardware on
3486		 * non-managed 82579
3487		 */
3488		if ((hw->mac.type == e1000_pch2lan) &&
3489		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3490			e1000_gate_hw_phy_config_ich8lan(hw, true);
3491	}
3492	ret_val = e1000_acquire_swflag_ich8lan(hw);
3493	e_dbg("Issuing a global reset to ich8lan\n");
3494	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3495	/* cannot issue a flush here because it hangs the hardware */
3496	msleep(20);
3497
3498	/* Set Phy Config Counter to 50msec */
3499	if (hw->mac.type == e1000_pch2lan) {
3500		reg = er32(FEXTNVM3);
3501		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3502		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3503		ew32(FEXTNVM3, reg);
3504	}
3505
3506	if (!ret_val)
3507		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3508
3509	if (ctrl & E1000_CTRL_PHY_RST) {
3510		ret_val = hw->phy.ops.get_cfg_done(hw);
3511		if (ret_val)
3512			return ret_val;
3513
3514		ret_val = e1000_post_phy_reset_ich8lan(hw);
3515		if (ret_val)
3516			return ret_val;
3517	}
3518
3519	/*
3520	 * For PCH, this write will make sure that any noise
3521	 * will be detected as a CRC error and be dropped rather than show up
3522	 * as a bad packet to the DMA engine.
3523	 */
3524	if (hw->mac.type == e1000_pchlan)
3525		ew32(CRC_OFFSET, 0x65656565);
3526
3527	ew32(IMC, 0xffffffff);
3528	er32(ICR);
3529
3530	reg = er32(KABGTXD);
3531	reg |= E1000_KABGTXD_BGSQLBIAS;
3532	ew32(KABGTXD, reg);
3533
3534	return 0;
3535}
3536
3537/**
3538 *  e1000_init_hw_ich8lan - Initialize the hardware
3539 *  @hw: pointer to the HW structure
3540 *
3541 *  Prepares the hardware for transmit and receive by doing the following:
3542 *   - initialize hardware bits
3543 *   - initialize LED identification
3544 *   - setup receive address registers
3545 *   - setup flow control
3546 *   - setup transmit descriptors
3547 *   - clear statistics
3548 **/
3549static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3550{
3551	struct e1000_mac_info *mac = &hw->mac;
3552	u32 ctrl_ext, txdctl, snoop;
3553	s32 ret_val;
3554	u16 i;
3555
3556	e1000_initialize_hw_bits_ich8lan(hw);
3557
3558	/* Initialize identification LED */
3559	ret_val = mac->ops.id_led_init(hw);
 
3560	if (ret_val)
3561		e_dbg("Error initializing identification LED\n");
3562		/* This is not fatal and we should not stop init due to this */
3563
3564	/* Setup the receive address. */
3565	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3566
3567	/* Zero out the Multicast HASH table */
3568	e_dbg("Zeroing the MTA\n");
3569	for (i = 0; i < mac->mta_reg_count; i++)
3570		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3571
3572	/*
3573	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3574	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3575	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3576	 */
3577	if (hw->phy.type == e1000_phy_82578) {
3578		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3579		i &= ~BM_WUC_HOST_WU_BIT;
3580		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3581		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3582		if (ret_val)
3583			return ret_val;
3584	}
3585
3586	/* Setup link and flow control */
3587	ret_val = mac->ops.setup_link(hw);
3588
3589	/* Set the transmit descriptor write-back policy for both queues */
3590	txdctl = er32(TXDCTL(0));
3591	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3592		 E1000_TXDCTL_FULL_TX_DESC_WB;
3593	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3594		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3595	ew32(TXDCTL(0), txdctl);
3596	txdctl = er32(TXDCTL(1));
3597	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3598		 E1000_TXDCTL_FULL_TX_DESC_WB;
3599	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3600		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3601	ew32(TXDCTL(1), txdctl);
3602
3603	/*
3604	 * ICH8 has opposite polarity of no_snoop bits.
3605	 * By default, we should use snoop behavior.
3606	 */
3607	if (mac->type == e1000_ich8lan)
3608		snoop = PCIE_ICH8_SNOOP_ALL;
3609	else
3610		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3611	e1000e_set_pcie_no_snoop(hw, snoop);
3612
3613	ctrl_ext = er32(CTRL_EXT);
3614	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3615	ew32(CTRL_EXT, ctrl_ext);
3616
3617	/*
3618	 * Clear all of the statistics registers (clear on read).  It is
3619	 * important that we do this after we have tried to establish link
3620	 * because the symbol error count will increment wildly if there
3621	 * is no link.
3622	 */
3623	e1000_clear_hw_cntrs_ich8lan(hw);
3624
3625	return ret_val;
3626}
 
3627/**
3628 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3629 *  @hw: pointer to the HW structure
3630 *
3631 *  Sets/Clears required hardware bits necessary for correctly setting up the
3632 *  hardware for transmit and receive.
3633 **/
3634static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3635{
3636	u32 reg;
3637
3638	/* Extended Device Control */
3639	reg = er32(CTRL_EXT);
3640	reg |= (1 << 22);
3641	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3642	if (hw->mac.type >= e1000_pchlan)
3643		reg |= E1000_CTRL_EXT_PHYPDEN;
3644	ew32(CTRL_EXT, reg);
3645
3646	/* Transmit Descriptor Control 0 */
3647	reg = er32(TXDCTL(0));
3648	reg |= (1 << 22);
3649	ew32(TXDCTL(0), reg);
3650
3651	/* Transmit Descriptor Control 1 */
3652	reg = er32(TXDCTL(1));
3653	reg |= (1 << 22);
3654	ew32(TXDCTL(1), reg);
3655
3656	/* Transmit Arbitration Control 0 */
3657	reg = er32(TARC(0));
3658	if (hw->mac.type == e1000_ich8lan)
3659		reg |= (1 << 28) | (1 << 29);
3660	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3661	ew32(TARC(0), reg);
3662
3663	/* Transmit Arbitration Control 1 */
3664	reg = er32(TARC(1));
3665	if (er32(TCTL) & E1000_TCTL_MULR)
3666		reg &= ~(1 << 28);
3667	else
3668		reg |= (1 << 28);
3669	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3670	ew32(TARC(1), reg);
3671
3672	/* Device Status */
3673	if (hw->mac.type == e1000_ich8lan) {
3674		reg = er32(STATUS);
3675		reg &= ~(1 << 31);
3676		ew32(STATUS, reg);
3677	}
3678
3679	/*
3680	 * work-around descriptor data corruption issue during nfs v2 udp
3681	 * traffic, just disable the nfs filtering capability
3682	 */
3683	reg = er32(RFCTL);
3684	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3685
3686	/*
3687	 * Disable IPv6 extension header parsing because some malformed
3688	 * IPv6 headers can hang the Rx.
3689	 */
3690	if (hw->mac.type == e1000_ich8lan)
3691		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3692	ew32(RFCTL, reg);
 
 
 
 
 
 
 
 
 
 
 
3693}
3694
3695/**
3696 *  e1000_setup_link_ich8lan - Setup flow control and link settings
3697 *  @hw: pointer to the HW structure
3698 *
3699 *  Determines which flow control settings to use, then configures flow
3700 *  control.  Calls the appropriate media-specific link configuration
3701 *  function.  Assuming the adapter has a valid link partner, a valid link
3702 *  should be established.  Assumes the hardware has previously been reset
3703 *  and the transmitter and receiver are not enabled.
3704 **/
3705static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3706{
3707	s32 ret_val;
3708
3709	if (hw->phy.ops.check_reset_block(hw))
3710		return 0;
3711
3712	/*
3713	 * ICH parts do not have a word in the NVM to determine
3714	 * the default flow control setting, so we explicitly
3715	 * set it to full.
3716	 */
3717	if (hw->fc.requested_mode == e1000_fc_default) {
3718		/* Workaround h/w hang when Tx flow control enabled */
3719		if (hw->mac.type == e1000_pchlan)
3720			hw->fc.requested_mode = e1000_fc_rx_pause;
3721		else
3722			hw->fc.requested_mode = e1000_fc_full;
3723	}
3724
3725	/*
3726	 * Save off the requested flow control mode for use later.  Depending
3727	 * on the link partner's capabilities, we may or may not use this mode.
3728	 */
3729	hw->fc.current_mode = hw->fc.requested_mode;
3730
3731	e_dbg("After fix-ups FlowControl is now = %x\n",
3732		hw->fc.current_mode);
3733
3734	/* Continue to configure the copper link. */
3735	ret_val = hw->mac.ops.setup_physical_interface(hw);
3736	if (ret_val)
3737		return ret_val;
3738
3739	ew32(FCTTV, hw->fc.pause_time);
3740	if ((hw->phy.type == e1000_phy_82578) ||
3741	    (hw->phy.type == e1000_phy_82579) ||
3742	    (hw->phy.type == e1000_phy_i217) ||
3743	    (hw->phy.type == e1000_phy_82577)) {
3744		ew32(FCRTV_PCH, hw->fc.refresh_time);
3745
3746		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3747				   hw->fc.pause_time);
3748		if (ret_val)
3749			return ret_val;
3750	}
3751
3752	return e1000e_set_fc_watermarks(hw);
3753}
3754
3755/**
3756 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3757 *  @hw: pointer to the HW structure
3758 *
3759 *  Configures the kumeran interface to the PHY to wait the appropriate time
3760 *  when polling the PHY, then call the generic setup_copper_link to finish
3761 *  configuring the copper link.
3762 **/
3763static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3764{
3765	u32 ctrl;
3766	s32 ret_val;
3767	u16 reg_data;
3768
3769	ctrl = er32(CTRL);
3770	ctrl |= E1000_CTRL_SLU;
3771	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3772	ew32(CTRL, ctrl);
3773
3774	/*
3775	 * Set the mac to wait the maximum time between each iteration
3776	 * and increase the max iterations when polling the phy;
3777	 * this fixes erroneous timeouts at 10Mbps.
3778	 */
3779	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3780	if (ret_val)
3781		return ret_val;
3782	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3783	                               &reg_data);
3784	if (ret_val)
3785		return ret_val;
3786	reg_data |= 0x3F;
3787	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3788	                                reg_data);
3789	if (ret_val)
3790		return ret_val;
3791
3792	switch (hw->phy.type) {
3793	case e1000_phy_igp_3:
3794		ret_val = e1000e_copper_link_setup_igp(hw);
3795		if (ret_val)
3796			return ret_val;
3797		break;
3798	case e1000_phy_bm:
3799	case e1000_phy_82578:
3800		ret_val = e1000e_copper_link_setup_m88(hw);
3801		if (ret_val)
3802			return ret_val;
3803		break;
3804	case e1000_phy_82577:
3805	case e1000_phy_82579:
3806	case e1000_phy_i217:
3807		ret_val = e1000_copper_link_setup_82577(hw);
3808		if (ret_val)
3809			return ret_val;
3810		break;
3811	case e1000_phy_ife:
3812		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3813		if (ret_val)
3814			return ret_val;
3815
3816		reg_data &= ~IFE_PMC_AUTO_MDIX;
3817
3818		switch (hw->phy.mdix) {
3819		case 1:
3820			reg_data &= ~IFE_PMC_FORCE_MDIX;
3821			break;
3822		case 2:
3823			reg_data |= IFE_PMC_FORCE_MDIX;
3824			break;
3825		case 0:
3826		default:
3827			reg_data |= IFE_PMC_AUTO_MDIX;
3828			break;
3829		}
3830		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3831		if (ret_val)
3832			return ret_val;
3833		break;
3834	default:
3835		break;
3836	}
3837
3838	return e1000e_setup_copper_link(hw);
3839}
3840
3841/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3842 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3843 *  @hw: pointer to the HW structure
3844 *  @speed: pointer to store current link speed
3845 *  @duplex: pointer to store the current link duplex
3846 *
3847 *  Calls the generic get_speed_and_duplex to retrieve the current link
3848 *  information and then calls the Kumeran lock loss workaround for links at
3849 *  gigabit speeds.
3850 **/
3851static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3852					  u16 *duplex)
3853{
3854	s32 ret_val;
3855
3856	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3857	if (ret_val)
3858		return ret_val;
3859
3860	if ((hw->mac.type == e1000_ich8lan) &&
3861	    (hw->phy.type == e1000_phy_igp_3) &&
3862	    (*speed == SPEED_1000)) {
3863		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3864	}
3865
3866	return ret_val;
3867}
3868
3869/**
3870 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3871 *  @hw: pointer to the HW structure
3872 *
3873 *  Work-around for 82566 Kumeran PCS lock loss:
3874 *  On link status change (i.e. PCI reset, speed change) and link is up and
3875 *  speed is gigabit-
3876 *    0) if workaround is optionally disabled do nothing
3877 *    1) wait 1ms for Kumeran link to come up
3878 *    2) check Kumeran Diagnostic register PCS lock loss bit
3879 *    3) if not set the link is locked (all is good), otherwise...
3880 *    4) reset the PHY
3881 *    5) repeat up to 10 times
3882 *  Note: this is only called for IGP3 copper when speed is 1gb.
3883 **/
3884static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3885{
3886	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3887	u32 phy_ctrl;
3888	s32 ret_val;
3889	u16 i, data;
3890	bool link;
3891
3892	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3893		return 0;
3894
3895	/*
3896	 * Make sure link is up before proceeding.  If not just return.
3897	 * Attempting this while link is negotiating fouled up link
3898	 * stability
3899	 */
3900	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3901	if (!link)
3902		return 0;
3903
3904	for (i = 0; i < 10; i++) {
3905		/* read once to clear */
3906		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3907		if (ret_val)
3908			return ret_val;
3909		/* and again to get new status */
3910		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3911		if (ret_val)
3912			return ret_val;
3913
3914		/* check for PCS lock */
3915		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3916			return 0;
3917
3918		/* Issue PHY reset */
3919		e1000_phy_hw_reset(hw);
3920		mdelay(5);
3921	}
3922	/* Disable GigE link negotiation */
3923	phy_ctrl = er32(PHY_CTRL);
3924	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3925		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3926	ew32(PHY_CTRL, phy_ctrl);
3927
3928	/*
3929	 * Call gig speed drop workaround on Gig disable before accessing
3930	 * any PHY registers
3931	 */
3932	e1000e_gig_downshift_workaround_ich8lan(hw);
3933
3934	/* unable to acquire PCS lock */
3935	return -E1000_ERR_PHY;
3936}
3937
3938/**
3939 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3940 *  @hw: pointer to the HW structure
3941 *  @state: boolean value used to set the current Kumeran workaround state
3942 *
3943 *  If ICH8, set the current Kumeran workaround state (enabled - true
3944 *  /disabled - false).
3945 **/
3946void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3947						 bool state)
3948{
3949	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3950
3951	if (hw->mac.type != e1000_ich8lan) {
3952		e_dbg("Workaround applies to ICH8 only.\n");
3953		return;
3954	}
3955
3956	dev_spec->kmrn_lock_loss_workaround_enabled = state;
3957}
3958
3959/**
3960 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3961 *  @hw: pointer to the HW structure
3962 *
3963 *  Workaround for 82566 power-down on D3 entry:
3964 *    1) disable gigabit link
3965 *    2) write VR power-down enable
3966 *    3) read it back
3967 *  Continue if successful, else issue LCD reset and repeat
3968 **/
3969void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3970{
3971	u32 reg;
3972	u16 data;
3973	u8  retry = 0;
3974
3975	if (hw->phy.type != e1000_phy_igp_3)
3976		return;
3977
3978	/* Try the workaround twice (if needed) */
3979	do {
3980		/* Disable link */
3981		reg = er32(PHY_CTRL);
3982		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3983			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3984		ew32(PHY_CTRL, reg);
3985
3986		/*
3987		 * Call gig speed drop workaround on Gig disable before
3988		 * accessing any PHY registers
3989		 */
3990		if (hw->mac.type == e1000_ich8lan)
3991			e1000e_gig_downshift_workaround_ich8lan(hw);
3992
3993		/* Write VR power-down enable */
3994		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3995		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3996		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3997
3998		/* Read it back and test */
3999		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4000		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4001		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4002			break;
4003
4004		/* Issue PHY reset and repeat at most one more time */
4005		reg = er32(CTRL);
4006		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4007		retry++;
4008	} while (retry);
4009}
4010
4011/**
4012 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4013 *  @hw: pointer to the HW structure
4014 *
4015 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4016 *  LPLU, Gig disable, MDIC PHY reset):
4017 *    1) Set Kumeran Near-end loopback
4018 *    2) Clear Kumeran Near-end loopback
4019 *  Should only be called for ICH8[m] devices with any 1G Phy.
4020 **/
4021void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4022{
4023	s32 ret_val;
4024	u16 reg_data;
4025
4026	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4027		return;
4028
4029	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4030				      &reg_data);
4031	if (ret_val)
4032		return;
4033	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4034	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4035				       reg_data);
4036	if (ret_val)
4037		return;
4038	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4039	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4040				       reg_data);
4041}
4042
4043/**
4044 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4045 *  @hw: pointer to the HW structure
4046 *
4047 *  During S0 to Sx transition, it is possible the link remains at gig
4048 *  instead of negotiating to a lower speed.  Before going to Sx, set
4049 *  'Gig Disable' to force link speed negotiation to a lower speed based on
4050 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4051 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4052 *  needs to be written.
4053 *  Parts that support (and are linked to a partner which support) EEE in
4054 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4055 *  than 10Mbps w/o EEE.
4056 **/
4057void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4058{
4059	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4060	u32 phy_ctrl;
4061	s32 ret_val;
4062
4063	phy_ctrl = er32(PHY_CTRL);
4064	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
 
4065	if (hw->phy.type == e1000_phy_i217) {
4066		u16 phy_reg;
 
 
 
 
 
 
 
 
 
4067
4068		ret_val = hw->phy.ops.acquire(hw);
4069		if (ret_val)
4070			goto out;
4071
4072		if (!dev_spec->eee_disable) {
4073			u16 eee_advert;
4074
4075			ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
4076						  I217_EEE_ADVERTISEMENT);
 
 
4077			if (ret_val)
4078				goto release;
4079			e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert);
4080
4081			/*
4082			 * Disable LPLU if both link partners support 100BaseT
4083			 * EEE and 100Full is advertised on both ends of the
4084			 * link.
4085			 */
4086			if ((eee_advert & I217_EEE_100_SUPPORTED) &&
4087			    (dev_spec->eee_lp_ability &
4088			     I217_EEE_100_SUPPORTED) &&
4089			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4090				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4091					      E1000_PHY_CTRL_NOND0A_LPLU);
4092		}
4093
4094		/*
4095		 * For i217 Intel Rapid Start Technology support,
4096		 * when the system is going into Sx and no manageability engine
4097		 * is present, the driver must configure proxy to reset only on
4098		 * power good.  LPI (Low Power Idle) state must also reset only
4099		 * on power good, as well as the MTA (Multicast table array).
4100		 * The SMBus release must also be disabled on LCD reset.
4101		 */
4102		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4103
4104			/* Enable proxy to reset only on power good. */
4105			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4106			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4107			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4108
4109			/*
4110			 * Set bit enable LPI (EEE) to reset only on
4111			 * power good.
4112			 */
4113			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4114			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4115			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4116
4117			/* Disable the SMB release on LCD reset. */
4118			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4119			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4120			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4121		}
4122
4123		/*
4124		 * Enable MTA to reset for Intel Rapid Start Technology
4125		 * Support
4126		 */
4127		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4128		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4129		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4130
4131release:
4132		hw->phy.ops.release(hw);
4133	}
4134out:
4135	ew32(PHY_CTRL, phy_ctrl);
4136
4137	if (hw->mac.type == e1000_ich8lan)
4138		e1000e_gig_downshift_workaround_ich8lan(hw);
4139
4140	if (hw->mac.type >= e1000_pchlan) {
4141		e1000_oem_bits_config_ich8lan(hw, false);
4142
4143		/* Reset PHY to activate OEM bits on 82577/8 */
4144		if (hw->mac.type == e1000_pchlan)
4145			e1000e_phy_hw_reset_generic(hw);
4146
4147		ret_val = hw->phy.ops.acquire(hw);
4148		if (ret_val)
4149			return;
4150		e1000_write_smbus_addr(hw);
4151		hw->phy.ops.release(hw);
4152	}
4153}
4154
4155/**
4156 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4157 *  @hw: pointer to the HW structure
4158 *
4159 *  During Sx to S0 transitions on non-managed devices or managed devices
4160 *  on which PHY resets are not blocked, if the PHY registers cannot be
4161 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4162 *  the PHY.
4163 *  On i217, setup Intel Rapid Start Technology.
4164 **/
4165void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4166{
4167	s32 ret_val;
4168
4169	if (hw->mac.type < e1000_pch2lan)
4170		return;
4171
4172	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4173	if (ret_val) {
4174		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4175		return;
4176	}
4177
4178	/*
4179	 * For i217 Intel Rapid Start Technology support when the system
4180	 * is transitioning from Sx and no manageability engine is present
4181	 * configure SMBus to restore on reset, disable proxy, and enable
4182	 * the reset on MTA (Multicast table array).
4183	 */
4184	if (hw->phy.type == e1000_phy_i217) {
4185		u16 phy_reg;
4186
4187		ret_val = hw->phy.ops.acquire(hw);
4188		if (ret_val) {
4189			e_dbg("Failed to setup iRST\n");
4190			return;
4191		}
4192
4193		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4194			/*
4195			 * Restore clear on SMB if no manageability engine
4196			 * is present
4197			 */
4198			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4199			if (ret_val)
4200				goto release;
4201			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4202			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4203
4204			/* Disable Proxy */
4205			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4206		}
4207		/* Enable reset on MTA */
4208		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4209		if (ret_val)
4210			goto release;
4211		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4212		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4213release:
4214		if (ret_val)
4215			e_dbg("Error %d in resume workarounds\n", ret_val);
4216		hw->phy.ops.release(hw);
4217	}
4218}
4219
4220/**
4221 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4222 *  @hw: pointer to the HW structure
4223 *
4224 *  Return the LED back to the default configuration.
4225 **/
4226static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4227{
4228	if (hw->phy.type == e1000_phy_ife)
4229		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4230
4231	ew32(LEDCTL, hw->mac.ledctl_default);
4232	return 0;
4233}
4234
4235/**
4236 *  e1000_led_on_ich8lan - Turn LEDs on
4237 *  @hw: pointer to the HW structure
4238 *
4239 *  Turn on the LEDs.
4240 **/
4241static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4242{
4243	if (hw->phy.type == e1000_phy_ife)
4244		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4245				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4246
4247	ew32(LEDCTL, hw->mac.ledctl_mode2);
4248	return 0;
4249}
4250
4251/**
4252 *  e1000_led_off_ich8lan - Turn LEDs off
4253 *  @hw: pointer to the HW structure
4254 *
4255 *  Turn off the LEDs.
4256 **/
4257static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4258{
4259	if (hw->phy.type == e1000_phy_ife)
4260		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4261				(IFE_PSCL_PROBE_MODE |
4262				 IFE_PSCL_PROBE_LEDS_OFF));
4263
4264	ew32(LEDCTL, hw->mac.ledctl_mode1);
4265	return 0;
4266}
4267
4268/**
4269 *  e1000_setup_led_pchlan - Configures SW controllable LED
4270 *  @hw: pointer to the HW structure
4271 *
4272 *  This prepares the SW controllable LED for use.
4273 **/
4274static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4275{
4276	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4277}
4278
4279/**
4280 *  e1000_cleanup_led_pchlan - Restore the default LED operation
4281 *  @hw: pointer to the HW structure
4282 *
4283 *  Return the LED back to the default configuration.
4284 **/
4285static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4286{
4287	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4288}
4289
4290/**
4291 *  e1000_led_on_pchlan - Turn LEDs on
4292 *  @hw: pointer to the HW structure
4293 *
4294 *  Turn on the LEDs.
4295 **/
4296static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4297{
4298	u16 data = (u16)hw->mac.ledctl_mode2;
4299	u32 i, led;
4300
4301	/*
4302	 * If no link, then turn LED on by setting the invert bit
4303	 * for each LED that's mode is "link_up" in ledctl_mode2.
4304	 */
4305	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4306		for (i = 0; i < 3; i++) {
4307			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4308			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4309			    E1000_LEDCTL_MODE_LINK_UP)
4310				continue;
4311			if (led & E1000_PHY_LED0_IVRT)
4312				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4313			else
4314				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4315		}
4316	}
4317
4318	return e1e_wphy(hw, HV_LED_CONFIG, data);
4319}
4320
4321/**
4322 *  e1000_led_off_pchlan - Turn LEDs off
4323 *  @hw: pointer to the HW structure
4324 *
4325 *  Turn off the LEDs.
4326 **/
4327static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4328{
4329	u16 data = (u16)hw->mac.ledctl_mode1;
4330	u32 i, led;
4331
4332	/*
4333	 * If no link, then turn LED off by clearing the invert bit
4334	 * for each LED that's mode is "link_up" in ledctl_mode1.
4335	 */
4336	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4337		for (i = 0; i < 3; i++) {
4338			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4339			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4340			    E1000_LEDCTL_MODE_LINK_UP)
4341				continue;
4342			if (led & E1000_PHY_LED0_IVRT)
4343				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4344			else
4345				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4346		}
4347	}
4348
4349	return e1e_wphy(hw, HV_LED_CONFIG, data);
4350}
4351
4352/**
4353 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4354 *  @hw: pointer to the HW structure
4355 *
4356 *  Read appropriate register for the config done bit for completion status
4357 *  and configure the PHY through s/w for EEPROM-less parts.
4358 *
4359 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4360 *  config done bit, so only an error is logged and continues.  If we were
4361 *  to return with error, EEPROM-less silicon would not be able to be reset
4362 *  or change link.
4363 **/
4364static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4365{
4366	s32 ret_val = 0;
4367	u32 bank = 0;
4368	u32 status;
4369
4370	e1000e_get_cfg_done(hw);
4371
4372	/* Wait for indication from h/w that it has completed basic config */
4373	if (hw->mac.type >= e1000_ich10lan) {
4374		e1000_lan_init_done_ich8lan(hw);
4375	} else {
4376		ret_val = e1000e_get_auto_rd_done(hw);
4377		if (ret_val) {
4378			/*
4379			 * When auto config read does not complete, do not
4380			 * return with an error. This can happen in situations
4381			 * where there is no eeprom and prevents getting link.
4382			 */
4383			e_dbg("Auto Read Done did not complete\n");
4384			ret_val = 0;
4385		}
4386	}
4387
4388	/* Clear PHY Reset Asserted bit */
4389	status = er32(STATUS);
4390	if (status & E1000_STATUS_PHYRA)
4391		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4392	else
4393		e_dbg("PHY Reset Asserted not set - needs delay\n");
4394
4395	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4396	if (hw->mac.type <= e1000_ich9lan) {
4397		if (!(er32(EECD) & E1000_EECD_PRES) &&
4398		    (hw->phy.type == e1000_phy_igp_3)) {
4399			e1000e_phy_init_script_igp3(hw);
4400		}
4401	} else {
4402		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4403			/* Maybe we should do a basic PHY config */
4404			e_dbg("EEPROM not present\n");
4405			ret_val = -E1000_ERR_CONFIG;
4406		}
4407	}
4408
4409	return ret_val;
4410}
4411
4412/**
4413 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4414 * @hw: pointer to the HW structure
4415 *
4416 * In the case of a PHY power down to save power, or to turn off link during a
4417 * driver unload, or wake on lan is not enabled, remove the link.
4418 **/
4419static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4420{
4421	/* If the management interface is not enabled, then power down */
4422	if (!(hw->mac.ops.check_mng_mode(hw) ||
4423	      hw->phy.ops.check_reset_block(hw)))
4424		e1000_power_down_phy_copper(hw);
4425}
4426
4427/**
4428 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4429 *  @hw: pointer to the HW structure
4430 *
4431 *  Clears hardware counters specific to the silicon family and calls
4432 *  clear_hw_cntrs_generic to clear all general purpose counters.
4433 **/
4434static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4435{
4436	u16 phy_data;
4437	s32 ret_val;
4438
4439	e1000e_clear_hw_cntrs_base(hw);
4440
4441	er32(ALGNERRC);
4442	er32(RXERRC);
4443	er32(TNCRS);
4444	er32(CEXTERR);
4445	er32(TSCTC);
4446	er32(TSCTFC);
4447
4448	er32(MGTPRC);
4449	er32(MGTPDC);
4450	er32(MGTPTC);
4451
4452	er32(IAC);
4453	er32(ICRXOC);
4454
4455	/* Clear PHY statistics registers */
4456	if ((hw->phy.type == e1000_phy_82578) ||
4457	    (hw->phy.type == e1000_phy_82579) ||
4458	    (hw->phy.type == e1000_phy_i217) ||
4459	    (hw->phy.type == e1000_phy_82577)) {
4460		ret_val = hw->phy.ops.acquire(hw);
4461		if (ret_val)
4462			return;
4463		ret_val = hw->phy.ops.set_page(hw,
4464					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4465		if (ret_val)
4466			goto release;
4467		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4468		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4469		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4470		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4471		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4472		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4473		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4474		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4475		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4476		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4477		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4478		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4479		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4480		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4481release:
4482		hw->phy.ops.release(hw);
4483	}
4484}
4485
4486static const struct e1000_mac_operations ich8_mac_ops = {
4487	/* check_mng_mode dependent on mac type */
4488	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4489	/* cleanup_led dependent on mac type */
4490	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4491	.get_bus_info		= e1000_get_bus_info_ich8lan,
4492	.set_lan_id		= e1000_set_lan_id_single_port,
4493	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4494	/* led_on dependent on mac type */
4495	/* led_off dependent on mac type */
4496	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4497	.reset_hw		= e1000_reset_hw_ich8lan,
4498	.init_hw		= e1000_init_hw_ich8lan,
4499	.setup_link		= e1000_setup_link_ich8lan,
4500	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4501	/* id_led_init dependent on mac type */
4502	.config_collision_dist	= e1000e_config_collision_dist_generic,
4503	.rar_set		= e1000e_rar_set_generic,
4504};
4505
4506static const struct e1000_phy_operations ich8_phy_ops = {
4507	.acquire		= e1000_acquire_swflag_ich8lan,
4508	.check_reset_block	= e1000_check_reset_block_ich8lan,
4509	.commit			= NULL,
4510	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4511	.get_cable_length	= e1000e_get_cable_length_igp_2,
4512	.read_reg		= e1000e_read_phy_reg_igp,
4513	.release		= e1000_release_swflag_ich8lan,
4514	.reset			= e1000_phy_hw_reset_ich8lan,
4515	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4516	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4517	.write_reg		= e1000e_write_phy_reg_igp,
4518};
4519
4520static const struct e1000_nvm_operations ich8_nvm_ops = {
4521	.acquire		= e1000_acquire_nvm_ich8lan,
4522	.read		 	= e1000_read_nvm_ich8lan,
4523	.release		= e1000_release_nvm_ich8lan,
4524	.reload			= e1000e_reload_nvm_generic,
4525	.update			= e1000_update_nvm_checksum_ich8lan,
4526	.valid_led_default	= e1000_valid_led_default_ich8lan,
4527	.validate		= e1000_validate_nvm_checksum_ich8lan,
4528	.write			= e1000_write_nvm_ich8lan,
4529};
4530
4531const struct e1000_info e1000_ich8_info = {
4532	.mac			= e1000_ich8lan,
4533	.flags			= FLAG_HAS_WOL
4534				  | FLAG_IS_ICH
4535				  | FLAG_HAS_CTRLEXT_ON_LOAD
4536				  | FLAG_HAS_AMT
4537				  | FLAG_HAS_FLASH
4538				  | FLAG_APME_IN_WUC,
4539	.pba			= 8,
4540	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4541	.get_variants		= e1000_get_variants_ich8lan,
4542	.mac_ops		= &ich8_mac_ops,
4543	.phy_ops		= &ich8_phy_ops,
4544	.nvm_ops		= &ich8_nvm_ops,
4545};
4546
4547const struct e1000_info e1000_ich9_info = {
4548	.mac			= e1000_ich9lan,
4549	.flags			= FLAG_HAS_JUMBO_FRAMES
4550				  | FLAG_IS_ICH
4551				  | FLAG_HAS_WOL
4552				  | FLAG_HAS_CTRLEXT_ON_LOAD
4553				  | FLAG_HAS_AMT
4554				  | FLAG_HAS_FLASH
4555				  | FLAG_APME_IN_WUC,
4556	.pba			= 18,
4557	.max_hw_frame_size	= DEFAULT_JUMBO,
4558	.get_variants		= e1000_get_variants_ich8lan,
4559	.mac_ops		= &ich8_mac_ops,
4560	.phy_ops		= &ich8_phy_ops,
4561	.nvm_ops		= &ich8_nvm_ops,
4562};
4563
4564const struct e1000_info e1000_ich10_info = {
4565	.mac			= e1000_ich10lan,
4566	.flags			= FLAG_HAS_JUMBO_FRAMES
4567				  | FLAG_IS_ICH
4568				  | FLAG_HAS_WOL
4569				  | FLAG_HAS_CTRLEXT_ON_LOAD
4570				  | FLAG_HAS_AMT
4571				  | FLAG_HAS_FLASH
4572				  | FLAG_APME_IN_WUC,
4573	.pba			= 18,
4574	.max_hw_frame_size	= DEFAULT_JUMBO,
4575	.get_variants		= e1000_get_variants_ich8lan,
4576	.mac_ops		= &ich8_mac_ops,
4577	.phy_ops		= &ich8_phy_ops,
4578	.nvm_ops		= &ich8_nvm_ops,
4579};
4580
4581const struct e1000_info e1000_pch_info = {
4582	.mac			= e1000_pchlan,
4583	.flags			= FLAG_IS_ICH
4584				  | FLAG_HAS_WOL
4585				  | FLAG_HAS_CTRLEXT_ON_LOAD
4586				  | FLAG_HAS_AMT
4587				  | FLAG_HAS_FLASH
4588				  | FLAG_HAS_JUMBO_FRAMES
4589				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4590				  | FLAG_APME_IN_WUC,
4591	.flags2			= FLAG2_HAS_PHY_STATS,
4592	.pba			= 26,
4593	.max_hw_frame_size	= 4096,
4594	.get_variants		= e1000_get_variants_ich8lan,
4595	.mac_ops		= &ich8_mac_ops,
4596	.phy_ops		= &ich8_phy_ops,
4597	.nvm_ops		= &ich8_nvm_ops,
4598};
4599
4600const struct e1000_info e1000_pch2_info = {
4601	.mac			= e1000_pch2lan,
4602	.flags			= FLAG_IS_ICH
4603				  | FLAG_HAS_WOL
 
4604				  | FLAG_HAS_CTRLEXT_ON_LOAD
4605				  | FLAG_HAS_AMT
4606				  | FLAG_HAS_FLASH
4607				  | FLAG_HAS_JUMBO_FRAMES
4608				  | FLAG_APME_IN_WUC,
4609	.flags2			= FLAG2_HAS_PHY_STATS
4610				  | FLAG2_HAS_EEE,
4611	.pba			= 26,
4612	.max_hw_frame_size	= DEFAULT_JUMBO,
4613	.get_variants		= e1000_get_variants_ich8lan,
4614	.mac_ops		= &ich8_mac_ops,
4615	.phy_ops		= &ich8_phy_ops,
4616	.nvm_ops		= &ich8_nvm_ops,
4617};
4618
4619const struct e1000_info e1000_pch_lpt_info = {
4620	.mac			= e1000_pch_lpt,
4621	.flags			= FLAG_IS_ICH
4622				  | FLAG_HAS_WOL
 
4623				  | FLAG_HAS_CTRLEXT_ON_LOAD
4624				  | FLAG_HAS_AMT
4625				  | FLAG_HAS_FLASH
4626				  | FLAG_HAS_JUMBO_FRAMES
4627				  | FLAG_APME_IN_WUC,
4628	.flags2			= FLAG2_HAS_PHY_STATS
4629				  | FLAG2_HAS_EEE,
4630	.pba			= 26,
4631	.max_hw_frame_size	= DEFAULT_JUMBO,
4632	.get_variants		= e1000_get_variants_ich8lan,
4633	.mac_ops		= &ich8_mac_ops,
4634	.phy_ops		= &ich8_phy_ops,
4635	.nvm_ops		= &ich8_nvm_ops,
4636};
v3.15
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2014 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
 
 
 
 
 
 
 
  21
  22/* 82562G 10/100 Network Connection
 
  23 * 82562G-2 10/100 Network Connection
  24 * 82562GT 10/100 Network Connection
  25 * 82562GT-2 10/100 Network Connection
  26 * 82562V 10/100 Network Connection
  27 * 82562V-2 10/100 Network Connection
  28 * 82566DC-2 Gigabit Network Connection
  29 * 82566DC Gigabit Network Connection
  30 * 82566DM-2 Gigabit Network Connection
  31 * 82566DM Gigabit Network Connection
  32 * 82566MC Gigabit Network Connection
  33 * 82566MM Gigabit Network Connection
  34 * 82567LM Gigabit Network Connection
  35 * 82567LF Gigabit Network Connection
  36 * 82567V Gigabit Network Connection
  37 * 82567LM-2 Gigabit Network Connection
  38 * 82567LF-2 Gigabit Network Connection
  39 * 82567V-2 Gigabit Network Connection
  40 * 82567LF-3 Gigabit Network Connection
  41 * 82567LM-3 Gigabit Network Connection
  42 * 82567LM-4 Gigabit Network Connection
  43 * 82577LM Gigabit Network Connection
  44 * 82577LC Gigabit Network Connection
  45 * 82578DM Gigabit Network Connection
  46 * 82578DC Gigabit Network Connection
  47 * 82579LM Gigabit Network Connection
  48 * 82579V Gigabit Network Connection
  49 * Ethernet Connection I217-LM
  50 * Ethernet Connection I217-V
  51 * Ethernet Connection I218-V
  52 * Ethernet Connection I218-LM
  53 * Ethernet Connection (2) I218-LM
  54 * Ethernet Connection (2) I218-V
  55 * Ethernet Connection (3) I218-LM
  56 * Ethernet Connection (3) I218-V
  57 */
  58
  59#include "e1000.h"
  60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  62/* Offset 04h HSFSTS */
  63union ich8_hws_flash_status {
  64	struct ich8_hsfsts {
  65		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  66		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  67		u16 dael:1;	/* bit 2 Direct Access error Log */
  68		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  69		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  70		u16 reserved1:2;	/* bit 13:6 Reserved */
  71		u16 reserved2:6;	/* bit 13:6 Reserved */
  72		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  73		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  74	} hsf_status;
  75	u16 regval;
  76};
  77
  78/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  79/* Offset 06h FLCTL */
  80union ich8_hws_flash_ctrl {
  81	struct ich8_hsflctl {
  82		u16 flcgo:1;	/* 0 Flash Cycle Go */
  83		u16 flcycle:2;	/* 2:1 Flash Cycle */
  84		u16 reserved:5;	/* 7:3 Reserved  */
  85		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  86		u16 flockdn:6;	/* 15:10 Reserved */
  87	} hsf_ctrl;
  88	u16 regval;
  89};
  90
  91/* ICH Flash Region Access Permissions */
  92union ich8_hws_flash_regacc {
  93	struct ich8_flracc {
  94		u32 grra:8;	/* 0:7 GbE region Read Access */
  95		u32 grwa:8;	/* 8:15 GbE region Write Access */
  96		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  97		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  98	} hsf_flregacc;
  99	u16 regval;
 100};
 101
 102/* ICH Flash Protected Region */
 103union ich8_flash_protected_range {
 104	struct ich8_pr {
 105		u32 base:13;	/* 0:12 Protected Range Base */
 106		u32 reserved1:2;	/* 13:14 Reserved */
 107		u32 rpe:1;	/* 15 Read Protection Enable */
 108		u32 limit:13;	/* 16:28 Protected Range Limit */
 109		u32 reserved2:2;	/* 29:30 Reserved */
 110		u32 wpe:1;	/* 31 Write Protection Enable */
 111	} range;
 112	u32 regval;
 113};
 114
 
 115static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 116static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 118static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 119						u32 offset, u8 byte);
 120static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 121					 u8 *data);
 122static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 123					 u16 *data);
 124static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 125					 u8 size, u16 *data);
 
 126static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 
 127static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 129static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 130static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 131static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 132static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 133static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 134static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 135static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 136static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 137static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 138static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 139static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 140static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 141static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 142static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 143static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 144static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 145static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 146static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 147static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 148static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 149
 150static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 151{
 152	return readw(hw->flash_address + reg);
 153}
 154
 155static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 156{
 157	return readl(hw->flash_address + reg);
 158}
 159
 160static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 161{
 162	writew(val, hw->flash_address + reg);
 163}
 164
 165static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 166{
 167	writel(val, hw->flash_address + reg);
 168}
 169
 170#define er16flash(reg)		__er16flash(hw, (reg))
 171#define er32flash(reg)		__er32flash(hw, (reg))
 172#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 173#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 174
 175/**
 176 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 177 *  @hw: pointer to the HW structure
 178 *
 179 *  Test access to the PHY registers by reading the PHY ID registers.  If
 180 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 181 *  otherwise assume the read PHY ID is correct if it is valid.
 182 *
 183 *  Assumes the sw/fw/hw semaphore is already acquired.
 184 **/
 185static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 186{
 187	u16 phy_reg = 0;
 188	u32 phy_id = 0;
 189	s32 ret_val = 0;
 190	u16 retry_count;
 191	u32 mac_reg = 0;
 192
 193	for (retry_count = 0; retry_count < 2; retry_count++) {
 194		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 195		if (ret_val || (phy_reg == 0xFFFF))
 196			continue;
 197		phy_id = (u32)(phy_reg << 16);
 198
 199		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 200		if (ret_val || (phy_reg == 0xFFFF)) {
 201			phy_id = 0;
 202			continue;
 203		}
 204		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 205		break;
 206	}
 207
 208	if (hw->phy.id) {
 209		if (hw->phy.id == phy_id)
 210			goto out;
 211	} else if (phy_id) {
 212		hw->phy.id = phy_id;
 213		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 214		goto out;
 215	}
 216
 217	/* In case the PHY needs to be in mdio slow mode,
 
 218	 * set slow mode and try to get the PHY id again.
 219	 */
 220	if (hw->mac.type < e1000_pch_lpt) {
 221		hw->phy.ops.release(hw);
 222		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 223		if (!ret_val)
 224			ret_val = e1000e_get_phy_id(hw);
 225		hw->phy.ops.acquire(hw);
 226	}
 227
 228	if (ret_val)
 229		return false;
 230out:
 231	if (hw->mac.type == e1000_pch_lpt) {
 232		/* Unforce SMBus mode in PHY */
 233		e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 234		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 235		e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 236
 237		/* Unforce SMBus mode in MAC */
 238		mac_reg = er32(CTRL_EXT);
 239		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 240		ew32(CTRL_EXT, mac_reg);
 241	}
 242
 243	return true;
 244}
 245
 246/**
 247 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 248 *  @hw: pointer to the HW structure
 249 *
 250 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 251 *  used to reset the PHY to a quiescent state when necessary.
 252 **/
 253static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 254{
 255	u32 mac_reg;
 256
 257	/* Set Phy Config Counter to 50msec */
 258	mac_reg = er32(FEXTNVM3);
 259	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 260	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 261	ew32(FEXTNVM3, mac_reg);
 262
 263	/* Toggle LANPHYPC Value bit */
 264	mac_reg = er32(CTRL);
 265	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 266	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 267	ew32(CTRL, mac_reg);
 268	e1e_flush();
 269	usleep_range(10, 20);
 270	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 271	ew32(CTRL, mac_reg);
 272	e1e_flush();
 273
 274	if (hw->mac.type < e1000_pch_lpt) {
 275		msleep(50);
 276	} else {
 277		u16 count = 20;
 278
 279		do {
 280			usleep_range(5000, 10000);
 281		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 282
 283		msleep(30);
 284	}
 285}
 286
 287/**
 288 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 289 *  @hw: pointer to the HW structure
 290 *
 291 *  Workarounds/flow necessary for PHY initialization during driver load
 292 *  and resume paths.
 293 **/
 294static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 295{
 296	struct e1000_adapter *adapter = hw->adapter;
 297	u32 mac_reg, fwsm = er32(FWSM);
 298	s32 ret_val;
 299
 300	/* Gate automatic PHY configuration by hardware on managed and
 301	 * non-managed 82579 and newer adapters.
 302	 */
 303	e1000_gate_hw_phy_config_ich8lan(hw, true);
 304
 305	/* It is not possible to be certain of the current state of ULP
 306	 * so forcibly disable it.
 307	 */
 308	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 309	e1000_disable_ulp_lpt_lp(hw, true);
 310
 311	ret_val = hw->phy.ops.acquire(hw);
 312	if (ret_val) {
 313		e_dbg("Failed to initialize PHY flow\n");
 314		goto out;
 315	}
 316
 317	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 
 318	 * inaccessible and resetting the PHY is not blocked, toggle the
 319	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 320	 */
 321	switch (hw->mac.type) {
 322	case e1000_pch_lpt:
 323		if (e1000_phy_is_accessible_pchlan(hw))
 324			break;
 325
 326		/* Before toggling LANPHYPC, see if PHY is accessible by
 
 327		 * forcing MAC to SMBus mode first.
 328		 */
 329		mac_reg = er32(CTRL_EXT);
 330		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 331		ew32(CTRL_EXT, mac_reg);
 332
 333		/* Wait 50 milliseconds for MAC to finish any retries
 334		 * that it might be trying to perform from previous
 335		 * attempts to acknowledge any phy read requests.
 
 
 336		 */
 337		msleep(50);
 
 
 338
 339		/* fall-through */
 340	case e1000_pch2lan:
 341		if (e1000_phy_is_accessible_pchlan(hw))
 
 
 
 
 
 
 
 
 
 342			break;
 
 343
 344		/* fall-through */
 345	case e1000_pchlan:
 346		if ((hw->mac.type == e1000_pchlan) &&
 347		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 348			break;
 349
 350		if (hw->phy.ops.check_reset_block(hw)) {
 351			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 352			ret_val = -E1000_ERR_PHY;
 353			break;
 354		}
 355
 356		/* Toggle LANPHYPC Value bit */
 357		e1000_toggle_lanphypc_pch_lpt(hw);
 358		if (hw->mac.type >= e1000_pch_lpt) {
 359			if (e1000_phy_is_accessible_pchlan(hw))
 360				break;
 361
 362			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 363			 * so ensure that the MAC is also out of SMBus mode
 364			 */
 365			mac_reg = er32(CTRL_EXT);
 366			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 367			ew32(CTRL_EXT, mac_reg);
 368
 369			if (e1000_phy_is_accessible_pchlan(hw))
 370				break;
 371
 372			ret_val = -E1000_ERR_PHY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373		}
 374		break;
 375	default:
 376		break;
 377	}
 378
 379	hw->phy.ops.release(hw);
 380	if (!ret_val) {
 381
 382		/* Check to see if able to reset PHY.  Print error if not */
 383		if (hw->phy.ops.check_reset_block(hw)) {
 384			e_err("Reset blocked by ME\n");
 385			goto out;
 386		}
 
 
 387
 388		/* Reset the PHY before any access to it.  Doing so, ensures
 389		 * that the PHY is in a known good state before we read/write
 390		 * PHY registers.  The generic reset is sufficient here,
 391		 * because we haven't determined the PHY type yet.
 392		 */
 393		ret_val = e1000e_phy_hw_reset_generic(hw);
 394		if (ret_val)
 395			goto out;
 396
 397		/* On a successful reset, possibly need to wait for the PHY
 398		 * to quiesce to an accessible state before returning control
 399		 * to the calling function.  If the PHY does not quiesce, then
 400		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 401		 *  the PHY is in.
 402		 */
 403		ret_val = hw->phy.ops.check_reset_block(hw);
 404		if (ret_val)
 405			e_err("ME blocked access to PHY after reset\n");
 406	}
 407
 408out:
 409	/* Ungate automatic PHY configuration on non-managed 82579 */
 410	if ((hw->mac.type == e1000_pch2lan) &&
 411	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 412		usleep_range(10000, 20000);
 413		e1000_gate_hw_phy_config_ich8lan(hw, false);
 414	}
 415
 416	return ret_val;
 417}
 418
 419/**
 420 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 421 *  @hw: pointer to the HW structure
 422 *
 423 *  Initialize family-specific PHY parameters and function pointers.
 424 **/
 425static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 426{
 427	struct e1000_phy_info *phy = &hw->phy;
 428	s32 ret_val;
 429
 430	phy->addr = 1;
 431	phy->reset_delay_us = 100;
 432
 433	phy->ops.set_page = e1000_set_page_igp;
 434	phy->ops.read_reg = e1000_read_phy_reg_hv;
 435	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 436	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 437	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 438	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 439	phy->ops.write_reg = e1000_write_phy_reg_hv;
 440	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 441	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 442	phy->ops.power_up = e1000_power_up_phy_copper;
 443	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 444	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 445
 446	phy->id = e1000_phy_unknown;
 447
 448	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 449	if (ret_val)
 450		return ret_val;
 451
 452	if (phy->id == e1000_phy_unknown)
 453		switch (hw->mac.type) {
 454		default:
 455			ret_val = e1000e_get_phy_id(hw);
 456			if (ret_val)
 457				return ret_val;
 458			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 459				break;
 460			/* fall-through */
 461		case e1000_pch2lan:
 462		case e1000_pch_lpt:
 463			/* In case the PHY needs to be in mdio slow mode,
 
 464			 * set slow mode and try to get the PHY id again.
 465			 */
 466			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 467			if (ret_val)
 468				return ret_val;
 469			ret_val = e1000e_get_phy_id(hw);
 470			if (ret_val)
 471				return ret_val;
 472			break;
 473		}
 474	phy->type = e1000e_get_phy_type_from_id(phy->id);
 475
 476	switch (phy->type) {
 477	case e1000_phy_82577:
 478	case e1000_phy_82579:
 479	case e1000_phy_i217:
 480		phy->ops.check_polarity = e1000_check_polarity_82577;
 481		phy->ops.force_speed_duplex =
 482		    e1000_phy_force_speed_duplex_82577;
 483		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 484		phy->ops.get_info = e1000_get_phy_info_82577;
 485		phy->ops.commit = e1000e_phy_sw_reset;
 486		break;
 487	case e1000_phy_82578:
 488		phy->ops.check_polarity = e1000_check_polarity_m88;
 489		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 490		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 491		phy->ops.get_info = e1000e_get_phy_info_m88;
 492		break;
 493	default:
 494		ret_val = -E1000_ERR_PHY;
 495		break;
 496	}
 497
 498	return ret_val;
 499}
 500
 501/**
 502 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 503 *  @hw: pointer to the HW structure
 504 *
 505 *  Initialize family-specific PHY parameters and function pointers.
 506 **/
 507static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 508{
 509	struct e1000_phy_info *phy = &hw->phy;
 510	s32 ret_val;
 511	u16 i = 0;
 512
 513	phy->addr = 1;
 514	phy->reset_delay_us = 100;
 515
 516	phy->ops.power_up = e1000_power_up_phy_copper;
 517	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 518
 519	/* We may need to do this twice - once for IGP and if that fails,
 
 520	 * we'll set BM func pointers and try again
 521	 */
 522	ret_val = e1000e_determine_phy_address(hw);
 523	if (ret_val) {
 524		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 525		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 526		ret_val = e1000e_determine_phy_address(hw);
 527		if (ret_val) {
 528			e_dbg("Cannot determine PHY addr. Erroring out\n");
 529			return ret_val;
 530		}
 531	}
 532
 533	phy->id = 0;
 534	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 535	       (i++ < 100)) {
 536		usleep_range(1000, 2000);
 537		ret_val = e1000e_get_phy_id(hw);
 538		if (ret_val)
 539			return ret_val;
 540	}
 541
 542	/* Verify phy id */
 543	switch (phy->id) {
 544	case IGP03E1000_E_PHY_ID:
 545		phy->type = e1000_phy_igp_3;
 546		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 547		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 548		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 549		phy->ops.get_info = e1000e_get_phy_info_igp;
 550		phy->ops.check_polarity = e1000_check_polarity_igp;
 551		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 552		break;
 553	case IFE_E_PHY_ID:
 554	case IFE_PLUS_E_PHY_ID:
 555	case IFE_C_E_PHY_ID:
 556		phy->type = e1000_phy_ife;
 557		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 558		phy->ops.get_info = e1000_get_phy_info_ife;
 559		phy->ops.check_polarity = e1000_check_polarity_ife;
 560		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 561		break;
 562	case BME1000_E_PHY_ID:
 563		phy->type = e1000_phy_bm;
 564		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 565		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 566		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 567		phy->ops.commit = e1000e_phy_sw_reset;
 568		phy->ops.get_info = e1000e_get_phy_info_m88;
 569		phy->ops.check_polarity = e1000_check_polarity_m88;
 570		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 571		break;
 572	default:
 573		return -E1000_ERR_PHY;
 574		break;
 575	}
 576
 577	return 0;
 578}
 579
 580/**
 581 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 582 *  @hw: pointer to the HW structure
 583 *
 584 *  Initialize family-specific NVM parameters and function
 585 *  pointers.
 586 **/
 587static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 588{
 589	struct e1000_nvm_info *nvm = &hw->nvm;
 590	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 591	u32 gfpreg, sector_base_addr, sector_end_addr;
 592	u16 i;
 593
 594	/* Can't read flash registers if the register set isn't mapped. */
 595	if (!hw->flash_address) {
 596		e_dbg("ERROR: Flash registers not mapped\n");
 597		return -E1000_ERR_CONFIG;
 598	}
 599
 600	nvm->type = e1000_nvm_flash_sw;
 601
 602	gfpreg = er32flash(ICH_FLASH_GFPREG);
 603
 604	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 
 605	 * Add 1 to sector_end_addr since this sector is included in
 606	 * the overall size.
 607	 */
 608	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 609	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 610
 611	/* flash_base_addr is byte-aligned */
 612	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
 613
 614	/* find total size of the NVM, then cut in half since the total
 
 615	 * size represents two separate NVM banks.
 616	 */
 617	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 618				<< FLASH_SECTOR_ADDR_SHIFT);
 619	nvm->flash_bank_size /= 2;
 620	/* Adjust to word count */
 621	nvm->flash_bank_size /= sizeof(u16);
 622
 623	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 624
 625	/* Clear shadow ram */
 626	for (i = 0; i < nvm->word_size; i++) {
 627		dev_spec->shadow_ram[i].modified = false;
 628		dev_spec->shadow_ram[i].value = 0xFFFF;
 629	}
 630
 631	return 0;
 632}
 633
 634/**
 635 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 636 *  @hw: pointer to the HW structure
 637 *
 638 *  Initialize family-specific MAC parameters and function
 639 *  pointers.
 640 **/
 641static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 642{
 643	struct e1000_mac_info *mac = &hw->mac;
 644
 645	/* Set media type function pointer */
 646	hw->phy.media_type = e1000_media_type_copper;
 647
 648	/* Set mta register count */
 649	mac->mta_reg_count = 32;
 650	/* Set rar entry count */
 651	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 652	if (mac->type == e1000_ich8lan)
 653		mac->rar_entry_count--;
 654	/* FWSM register */
 655	mac->has_fwsm = true;
 656	/* ARC subsystem not supported */
 657	mac->arc_subsystem_valid = false;
 658	/* Adaptive IFS supported */
 659	mac->adaptive_ifs = true;
 660
 661	/* LED and other operations */
 662	switch (mac->type) {
 663	case e1000_ich8lan:
 664	case e1000_ich9lan:
 665	case e1000_ich10lan:
 666		/* check management mode */
 667		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 668		/* ID LED init */
 669		mac->ops.id_led_init = e1000e_id_led_init_generic;
 670		/* blink LED */
 671		mac->ops.blink_led = e1000e_blink_led_generic;
 672		/* setup LED */
 673		mac->ops.setup_led = e1000e_setup_led_generic;
 674		/* cleanup LED */
 675		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 676		/* turn on/off LED */
 677		mac->ops.led_on = e1000_led_on_ich8lan;
 678		mac->ops.led_off = e1000_led_off_ich8lan;
 679		break;
 680	case e1000_pch2lan:
 681		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 682		mac->ops.rar_set = e1000_rar_set_pch2lan;
 683		/* fall-through */
 684	case e1000_pch_lpt:
 685	case e1000_pchlan:
 686		/* check management mode */
 687		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 688		/* ID LED init */
 689		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 690		/* setup LED */
 691		mac->ops.setup_led = e1000_setup_led_pchlan;
 692		/* cleanup LED */
 693		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 694		/* turn on/off LED */
 695		mac->ops.led_on = e1000_led_on_pchlan;
 696		mac->ops.led_off = e1000_led_off_pchlan;
 697		break;
 698	default:
 699		break;
 700	}
 701
 702	if (mac->type == e1000_pch_lpt) {
 703		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 704		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 705		mac->ops.setup_physical_interface =
 706		    e1000_setup_copper_link_pch_lpt;
 707	}
 708
 709	/* Enable PCS Lock-loss workaround for ICH8 */
 710	if (mac->type == e1000_ich8lan)
 711		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 712
 
 
 
 
 
 
 
 
 713	return 0;
 714}
 715
 716/**
 717 *  __e1000_access_emi_reg_locked - Read/write EMI register
 718 *  @hw: pointer to the HW structure
 719 *  @addr: EMI address to program
 720 *  @data: pointer to value to read/write from/to the EMI address
 721 *  @read: boolean flag to indicate read or write
 722 *
 723 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 724 **/
 725static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 726					 u16 *data, bool read)
 727{
 728	s32 ret_val;
 729
 730	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 731	if (ret_val)
 732		return ret_val;
 733
 734	if (read)
 735		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 736	else
 737		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 738
 739	return ret_val;
 740}
 741
 742/**
 743 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 744 *  @hw: pointer to the HW structure
 745 *  @addr: EMI address to program
 746 *  @data: value to be read from the EMI address
 747 *
 748 *  Assumes the SW/FW/HW Semaphore is already acquired.
 749 **/
 750s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 751{
 752	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 753}
 754
 755/**
 756 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 757 *  @hw: pointer to the HW structure
 758 *  @addr: EMI address to program
 759 *  @data: value to be written to the EMI address
 760 *
 761 *  Assumes the SW/FW/HW Semaphore is already acquired.
 762 **/
 763s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 764{
 765	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 766}
 767
 768/**
 769 *  e1000_set_eee_pchlan - Enable/disable EEE support
 770 *  @hw: pointer to the HW structure
 771 *
 772 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 773 *  the link and the EEE capabilities of the link partner.  The LPI Control
 774 *  register bits will remain set only if/when link is up.
 775 *
 776 *  EEE LPI must not be asserted earlier than one second after link is up.
 777 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 778 *  can be link issues with some switches.  Other devices can have EEE LPI
 779 *  enabled immediately upon link up since they have a timer in hardware which
 780 *  prevents LPI from being asserted too early.
 781 **/
 782s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 783{
 784	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 785	s32 ret_val;
 786	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 787
 788	switch (hw->phy.type) {
 789	case e1000_phy_82579:
 790		lpa = I82579_EEE_LP_ABILITY;
 791		pcs_status = I82579_EEE_PCS_STATUS;
 792		adv_addr = I82579_EEE_ADVERTISEMENT;
 793		break;
 794	case e1000_phy_i217:
 795		lpa = I217_EEE_LP_ABILITY;
 796		pcs_status = I217_EEE_PCS_STATUS;
 797		adv_addr = I217_EEE_ADVERTISEMENT;
 798		break;
 799	default:
 800		return 0;
 801	}
 802
 803	ret_val = hw->phy.ops.acquire(hw);
 804	if (ret_val)
 805		return ret_val;
 806
 807	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 
 
 
 
 
 808	if (ret_val)
 809		goto release;
 810
 811	/* Clear bits that enable EEE in various speeds */
 812	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 813
 814	/* Enable EEE if not disabled by user */
 815	if (!dev_spec->eee_disable) {
 816		/* Save off link partner's EEE ability */
 817		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 818						    &dev_spec->eee_lp_ability);
 819		if (ret_val)
 820			goto release;
 821
 822		/* Read EEE advertisement */
 823		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 824		if (ret_val)
 825			goto release;
 826
 827		/* Enable EEE only for speeds in which the link partner is
 828		 * EEE capable and for which we advertise EEE.
 829		 */
 830		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 831			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 832
 833		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 834			e1e_rphy_locked(hw, MII_LPA, &data);
 835			if (data & LPA_100FULL)
 836				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 837			else
 838				/* EEE is not supported in 100Half, so ignore
 839				 * partner's EEE in 100 ability if full-duplex
 840				 * is not advertised.
 841				 */
 842				dev_spec->eee_lp_ability &=
 843				    ~I82579_EEE_100_SUPPORTED;
 844		}
 845	}
 846
 847	if (hw->phy.type == e1000_phy_82579) {
 848		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 849						    &data);
 850		if (ret_val)
 851			goto release;
 852
 853		data &= ~I82579_LPI_100_PLL_SHUT;
 854		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 855						     data);
 856	}
 857
 858	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 859	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 860	if (ret_val)
 861		goto release;
 862
 863	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 864release:
 865	hw->phy.ops.release(hw);
 866
 867	return ret_val;
 868}
 869
 870/**
 871 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 872 *  @hw:   pointer to the HW structure
 873 *  @link: link up bool flag
 874 *
 875 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 876 *  preventing further DMA write requests.  Workaround the issue by disabling
 877 *  the de-assertion of the clock request when in 1Gpbs mode.
 878 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 879 *  speeds in order to avoid Tx hangs.
 880 **/
 881static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 882{
 883	u32 fextnvm6 = er32(FEXTNVM6);
 884	u32 status = er32(STATUS);
 885	s32 ret_val = 0;
 886	u16 reg;
 887
 888	if (link && (status & E1000_STATUS_SPEED_1000)) {
 889		ret_val = hw->phy.ops.acquire(hw);
 890		if (ret_val)
 891			return ret_val;
 892
 893		ret_val =
 894		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 895						&reg);
 896		if (ret_val)
 897			goto release;
 
 898
 899		ret_val =
 900		    e1000e_write_kmrn_reg_locked(hw,
 901						 E1000_KMRNCTRLSTA_K1_CONFIG,
 902						 reg &
 903						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 904		if (ret_val)
 905			goto release;
 906
 907		usleep_range(10, 20);
 908
 909		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 910
 911		ret_val =
 912		    e1000e_write_kmrn_reg_locked(hw,
 913						 E1000_KMRNCTRLSTA_K1_CONFIG,
 914						 reg);
 915release:
 916		hw->phy.ops.release(hw);
 917	} else {
 918		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 919		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 920
 921		if (!link || ((status & E1000_STATUS_SPEED_100) &&
 922			      (status & E1000_STATUS_FD)))
 923			goto update_fextnvm6;
 924
 925		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 926		if (ret_val)
 927			return ret_val;
 928
 929		/* Clear link status transmit timeout */
 930		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 931
 932		if (status & E1000_STATUS_SPEED_100) {
 933			/* Set inband Tx timeout to 5x10us for 100Half */
 934			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 935
 936			/* Do not extend the K1 entry latency for 100Half */
 937			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 938		} else {
 939			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 940			reg |= 50 <<
 941			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 942
 943			/* Extend the K1 entry latency for 10 Mbps */
 944			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 945		}
 946
 947		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 948		if (ret_val)
 949			return ret_val;
 950
 951update_fextnvm6:
 952		ew32(FEXTNVM6, fextnvm6);
 953	}
 954
 955	return ret_val;
 956}
 957
 958/**
 959 *  e1000_platform_pm_pch_lpt - Set platform power management values
 960 *  @hw: pointer to the HW structure
 961 *  @link: bool indicating link status
 962 *
 963 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 964 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
 965 *  when link is up (which must not exceed the maximum latency supported
 966 *  by the platform), otherwise specify there is no LTR requirement.
 967 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
 968 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
 969 *  Capability register set, on this device LTR is set by writing the
 970 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
 971 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
 972 *  message to the PMC.
 973 **/
 974static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
 975{
 976	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
 977	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
 978	u16 lat_enc = 0;	/* latency encoded */
 979
 980	if (link) {
 981		u16 speed, duplex, scale = 0;
 982		u16 max_snoop, max_nosnoop;
 983		u16 max_ltr_enc;	/* max LTR latency encoded */
 984		s64 lat_ns;	/* latency (ns) */
 985		s64 value;
 986		u32 rxa;
 987
 988		if (!hw->adapter->max_frame_size) {
 989			e_dbg("max_frame_size not set.\n");
 990			return -E1000_ERR_CONFIG;
 991		}
 992
 993		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
 994		if (!speed) {
 995			e_dbg("Speed not set.\n");
 996			return -E1000_ERR_CONFIG;
 997		}
 998
 999		/* Rx Packet Buffer Allocation size (KB) */
1000		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1001
1002		/* Determine the maximum latency tolerated by the device.
1003		 *
1004		 * Per the PCIe spec, the tolerated latencies are encoded as
1005		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1006		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1007		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1008		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1009		 */
1010		lat_ns = ((s64)rxa * 1024 -
1011			  (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
1012		if (lat_ns < 0)
1013			lat_ns = 0;
1014		else
1015			do_div(lat_ns, speed);
1016
1017		value = lat_ns;
1018		while (value > PCI_LTR_VALUE_MASK) {
1019			scale++;
1020			value = DIV_ROUND_UP(value, (1 << 5));
1021		}
1022		if (scale > E1000_LTRV_SCALE_MAX) {
1023			e_dbg("Invalid LTR latency scale %d\n", scale);
1024			return -E1000_ERR_CONFIG;
1025		}
1026		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1027
1028		/* Determine the maximum latency tolerated by the platform */
1029		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1030				     &max_snoop);
1031		pci_read_config_word(hw->adapter->pdev,
1032				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1033		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1034
1035		if (lat_enc > max_ltr_enc)
1036			lat_enc = max_ltr_enc;
1037	}
1038
1039	/* Set Snoop and No-Snoop latencies the same */
1040	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1041	ew32(LTRV, reg);
1042
1043	return 0;
1044}
1045
1046/**
1047 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1048 *  @hw: pointer to the HW structure
1049 *  @to_sx: boolean indicating a system power state transition to Sx
1050 *
1051 *  When link is down, configure ULP mode to significantly reduce the power
1052 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1053 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1054 *  system, configure the ULP mode by software.
1055 */
1056s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1057{
1058	u32 mac_reg;
1059	s32 ret_val = 0;
1060	u16 phy_reg;
1061
1062	if ((hw->mac.type < e1000_pch_lpt) ||
1063	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1064	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1065	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1066	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1067	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1068		return 0;
1069
1070	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1071		/* Request ME configure ULP mode in the PHY */
1072		mac_reg = er32(H2ME);
1073		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1074		ew32(H2ME, mac_reg);
1075
1076		goto out;
1077	}
1078
1079	if (!to_sx) {
1080		int i = 0;
1081
1082		/* Poll up to 5 seconds for Cable Disconnected indication */
1083		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1084			/* Bail if link is re-acquired */
1085			if (er32(STATUS) & E1000_STATUS_LU)
1086				return -E1000_ERR_PHY;
1087
1088			if (i++ == 100)
1089				break;
1090
1091			msleep(50);
1092		}
1093		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1094		      (er32(FEXT) &
1095		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1096	}
1097
1098	ret_val = hw->phy.ops.acquire(hw);
1099	if (ret_val)
1100		goto out;
1101
1102	/* Force SMBus mode in PHY */
1103	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1104	if (ret_val)
1105		goto release;
1106	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1107	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1108
1109	/* Force SMBus mode in MAC */
1110	mac_reg = er32(CTRL_EXT);
1111	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1112	ew32(CTRL_EXT, mac_reg);
1113
1114	/* Set Inband ULP Exit, Reset to SMBus mode and
1115	 * Disable SMBus Release on PERST# in PHY
1116	 */
1117	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1118	if (ret_val)
1119		goto release;
1120	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1121		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1122	if (to_sx) {
1123		if (er32(WUFC) & E1000_WUFC_LNKC)
1124			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1125
1126		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1127	} else {
1128		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1129	}
1130	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1131
1132	/* Set Disable SMBus Release on PERST# in MAC */
1133	mac_reg = er32(FEXTNVM7);
1134	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1135	ew32(FEXTNVM7, mac_reg);
1136
1137	/* Commit ULP changes in PHY by starting auto ULP configuration */
1138	phy_reg |= I218_ULP_CONFIG1_START;
1139	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1140release:
1141	hw->phy.ops.release(hw);
1142out:
1143	if (ret_val)
1144		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1145	else
1146		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1147
1148	return ret_val;
1149}
1150
1151/**
1152 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1153 *  @hw: pointer to the HW structure
1154 *  @force: boolean indicating whether or not to force disabling ULP
1155 *
1156 *  Un-configure ULP mode when link is up, the system is transitioned from
1157 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1158 *  system, poll for an indication from ME that ULP has been un-configured.
1159 *  If not on an ME enabled system, un-configure the ULP mode by software.
1160 *
1161 *  During nominal operation, this function is called when link is acquired
1162 *  to disable ULP mode (force=false); otherwise, for example when unloading
1163 *  the driver or during Sx->S0 transitions, this is called with force=true
1164 *  to forcibly disable ULP.
1165 */
1166static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1167{
1168	s32 ret_val = 0;
1169	u32 mac_reg;
1170	u16 phy_reg;
1171	int i = 0;
1172
1173	if ((hw->mac.type < e1000_pch_lpt) ||
1174	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1175	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1176	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1177	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1178	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1179		return 0;
1180
1181	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1182		if (force) {
1183			/* Request ME un-configure ULP mode in the PHY */
1184			mac_reg = er32(H2ME);
1185			mac_reg &= ~E1000_H2ME_ULP;
1186			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1187			ew32(H2ME, mac_reg);
1188		}
1189
1190		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1191		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1192			if (i++ == 10) {
1193				ret_val = -E1000_ERR_PHY;
1194				goto out;
1195			}
1196
1197			usleep_range(10000, 20000);
1198		}
1199		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1200
1201		if (force) {
1202			mac_reg = er32(H2ME);
1203			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1204			ew32(H2ME, mac_reg);
1205		} else {
1206			/* Clear H2ME.ULP after ME ULP configuration */
1207			mac_reg = er32(H2ME);
1208			mac_reg &= ~E1000_H2ME_ULP;
1209			ew32(H2ME, mac_reg);
1210		}
1211
1212		goto out;
1213	}
1214
1215	ret_val = hw->phy.ops.acquire(hw);
1216	if (ret_val)
1217		goto out;
1218
1219	if (force)
1220		/* Toggle LANPHYPC Value bit */
1221		e1000_toggle_lanphypc_pch_lpt(hw);
1222
1223	/* Unforce SMBus mode in PHY */
1224	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1225	if (ret_val) {
1226		/* The MAC might be in PCIe mode, so temporarily force to
1227		 * SMBus mode in order to access the PHY.
1228		 */
1229		mac_reg = er32(CTRL_EXT);
1230		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1231		ew32(CTRL_EXT, mac_reg);
1232
1233		msleep(50);
1234
1235		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1236						       &phy_reg);
1237		if (ret_val)
1238			goto release;
1239	}
1240	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1241	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1242
1243	/* Unforce SMBus mode in MAC */
1244	mac_reg = er32(CTRL_EXT);
1245	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1246	ew32(CTRL_EXT, mac_reg);
1247
1248	/* When ULP mode was previously entered, K1 was disabled by the
1249	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1250	 */
1251	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1252	if (ret_val)
1253		goto release;
1254	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1255	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1256
1257	/* Clear ULP enabled configuration */
1258	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1259	if (ret_val)
1260		goto release;
1261	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1262		     I218_ULP_CONFIG1_STICKY_ULP |
1263		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1264		     I218_ULP_CONFIG1_WOL_HOST |
1265		     I218_ULP_CONFIG1_INBAND_EXIT |
1266		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1267	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1268
1269	/* Commit ULP changes by starting auto ULP configuration */
1270	phy_reg |= I218_ULP_CONFIG1_START;
1271	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1272
1273	/* Clear Disable SMBus Release on PERST# in MAC */
1274	mac_reg = er32(FEXTNVM7);
1275	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1276	ew32(FEXTNVM7, mac_reg);
1277
1278release:
1279	hw->phy.ops.release(hw);
1280	if (force) {
1281		e1000_phy_hw_reset(hw);
1282		msleep(50);
1283	}
1284out:
1285	if (ret_val)
1286		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1287	else
1288		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1289
1290	return ret_val;
1291}
1292
1293/**
1294 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1295 *  @hw: pointer to the HW structure
1296 *
1297 *  Checks to see of the link status of the hardware has changed.  If a
1298 *  change in link status has been detected, then we read the PHY registers
1299 *  to get the current speed/duplex if link exists.
1300 **/
1301static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1302{
1303	struct e1000_mac_info *mac = &hw->mac;
1304	s32 ret_val;
1305	bool link;
1306	u16 phy_reg;
1307
1308	/* We only want to go out to the PHY registers to see if Auto-Neg
 
1309	 * has completed and/or if our link status has changed.  The
1310	 * get_link_status flag is set upon receiving a Link Status
1311	 * Change or Rx Sequence Error interrupt.
1312	 */
1313	if (!mac->get_link_status)
1314		return 0;
1315
1316	/* First we want to see if the MII Status Register reports
 
1317	 * link.  If so, then we want to get the current speed/duplex
1318	 * of the PHY.
1319	 */
1320	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1321	if (ret_val)
1322		return ret_val;
1323
1324	if (hw->mac.type == e1000_pchlan) {
1325		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1326		if (ret_val)
1327			return ret_val;
1328	}
1329
1330	/* When connected at 10Mbps half-duplex, some parts are excessively
1331	 * aggressive resulting in many collisions. To avoid this, increase
1332	 * the IPG and reduce Rx latency in the PHY.
1333	 */
1334	if (((hw->mac.type == e1000_pch2lan) ||
1335	     (hw->mac.type == e1000_pch_lpt)) && link) {
1336		u32 reg;
1337		reg = er32(STATUS);
1338		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1339			u16 emi_addr;
1340
1341			reg = er32(TIPG);
1342			reg &= ~E1000_TIPG_IPGT_MASK;
1343			reg |= 0xFF;
1344			ew32(TIPG, reg);
1345
1346			/* Reduce Rx latency in analog PHY */
1347			ret_val = hw->phy.ops.acquire(hw);
1348			if (ret_val)
1349				return ret_val;
1350
1351			if (hw->mac.type == e1000_pch2lan)
1352				emi_addr = I82579_RX_CONFIG;
1353			else
1354				emi_addr = I217_RX_CONFIG;
1355
1356			ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
1357
1358			hw->phy.ops.release(hw);
1359
1360			if (ret_val)
1361				return ret_val;
1362		}
1363	}
1364
1365	/* Work-around I218 hang issue */
1366	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1367	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1368	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1369	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1370		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1371		if (ret_val)
1372			return ret_val;
1373	}
1374
1375	if (hw->mac.type == e1000_pch_lpt) {
1376		/* Set platform power management values for
1377		 * Latency Tolerance Reporting (LTR)
1378		 */
1379		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1380		if (ret_val)
1381			return ret_val;
1382	}
1383
1384	/* Clear link partner's EEE ability */
1385	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1386
1387	if (!link)
1388		return 0;	/* No link detected */
1389
1390	mac->get_link_status = false;
1391
1392	switch (hw->mac.type) {
1393	case e1000_pch2lan:
1394		ret_val = e1000_k1_workaround_lv(hw);
1395		if (ret_val)
1396			return ret_val;
1397		/* fall-thru */
1398	case e1000_pchlan:
1399		if (hw->phy.type == e1000_phy_82578) {
1400			ret_val = e1000_link_stall_workaround_hv(hw);
1401			if (ret_val)
1402				return ret_val;
1403		}
1404
1405		/* Workaround for PCHx parts in half-duplex:
 
1406		 * Set the number of preambles removed from the packet
1407		 * when it is passed from the PHY to the MAC to prevent
1408		 * the MAC from misinterpreting the packet type.
1409		 */
1410		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1411		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1412
1413		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1414			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1415
1416		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1417		break;
1418	default:
1419		break;
1420	}
1421
1422	/* Check if there was DownShift, must be checked
 
1423	 * immediately after link-up
1424	 */
1425	e1000e_check_downshift(hw);
1426
1427	/* Enable/Disable EEE after link up */
1428	if (hw->phy.type > e1000_phy_82579) {
1429		ret_val = e1000_set_eee_pchlan(hw);
1430		if (ret_val)
1431			return ret_val;
1432	}
1433
1434	/* If we are forcing speed/duplex, then we simply return since
 
1435	 * we have already determined whether we have link or not.
1436	 */
1437	if (!mac->autoneg)
1438		return -E1000_ERR_CONFIG;
1439
1440	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 
1441	 * of MAC speed/duplex configuration.  So we only need to
1442	 * configure Collision Distance in the MAC.
1443	 */
1444	mac->ops.config_collision_dist(hw);
1445
1446	/* Configure Flow Control now that Auto-Neg has completed.
 
1447	 * First, we need to restore the desired flow control
1448	 * settings because we may have had to re-autoneg with a
1449	 * different link partner.
1450	 */
1451	ret_val = e1000e_config_fc_after_link_up(hw);
1452	if (ret_val)
1453		e_dbg("Error configuring flow control\n");
1454
1455	return ret_val;
1456}
1457
1458static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1459{
1460	struct e1000_hw *hw = &adapter->hw;
1461	s32 rc;
1462
1463	rc = e1000_init_mac_params_ich8lan(hw);
1464	if (rc)
1465		return rc;
1466
1467	rc = e1000_init_nvm_params_ich8lan(hw);
1468	if (rc)
1469		return rc;
1470
1471	switch (hw->mac.type) {
1472	case e1000_ich8lan:
1473	case e1000_ich9lan:
1474	case e1000_ich10lan:
1475		rc = e1000_init_phy_params_ich8lan(hw);
1476		break;
1477	case e1000_pchlan:
1478	case e1000_pch2lan:
1479	case e1000_pch_lpt:
1480		rc = e1000_init_phy_params_pchlan(hw);
1481		break;
1482	default:
1483		break;
1484	}
1485	if (rc)
1486		return rc;
1487
1488	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
 
1489	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1490	 */
1491	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1492	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1493	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1494		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1495		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1496
1497		hw->mac.ops.blink_led = NULL;
1498	}
1499
1500	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1501	    (adapter->hw.phy.type != e1000_phy_ife))
1502		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1503
1504	/* Enable workaround for 82579 w/ ME enabled */
1505	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1506	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1507		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1508
 
 
 
 
1509	return 0;
1510}
1511
1512static DEFINE_MUTEX(nvm_mutex);
1513
1514/**
1515 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1516 *  @hw: pointer to the HW structure
1517 *
1518 *  Acquires the mutex for performing NVM operations.
1519 **/
1520static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1521{
1522	mutex_lock(&nvm_mutex);
1523
1524	return 0;
1525}
1526
1527/**
1528 *  e1000_release_nvm_ich8lan - Release NVM mutex
1529 *  @hw: pointer to the HW structure
1530 *
1531 *  Releases the mutex used while performing NVM operations.
1532 **/
1533static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1534{
1535	mutex_unlock(&nvm_mutex);
1536}
1537
1538/**
1539 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1540 *  @hw: pointer to the HW structure
1541 *
1542 *  Acquires the software control flag for performing PHY and select
1543 *  MAC CSR accesses.
1544 **/
1545static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1546{
1547	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1548	s32 ret_val = 0;
1549
1550	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1551			     &hw->adapter->state)) {
1552		e_dbg("contention for Phy access\n");
1553		return -E1000_ERR_PHY;
1554	}
1555
1556	while (timeout) {
1557		extcnf_ctrl = er32(EXTCNF_CTRL);
1558		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1559			break;
1560
1561		mdelay(1);
1562		timeout--;
1563	}
1564
1565	if (!timeout) {
1566		e_dbg("SW has already locked the resource.\n");
1567		ret_val = -E1000_ERR_CONFIG;
1568		goto out;
1569	}
1570
1571	timeout = SW_FLAG_TIMEOUT;
1572
1573	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1574	ew32(EXTCNF_CTRL, extcnf_ctrl);
1575
1576	while (timeout) {
1577		extcnf_ctrl = er32(EXTCNF_CTRL);
1578		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1579			break;
1580
1581		mdelay(1);
1582		timeout--;
1583	}
1584
1585	if (!timeout) {
1586		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1587		      er32(FWSM), extcnf_ctrl);
1588		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1589		ew32(EXTCNF_CTRL, extcnf_ctrl);
1590		ret_val = -E1000_ERR_CONFIG;
1591		goto out;
1592	}
1593
1594out:
1595	if (ret_val)
1596		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1597
1598	return ret_val;
1599}
1600
1601/**
1602 *  e1000_release_swflag_ich8lan - Release software control flag
1603 *  @hw: pointer to the HW structure
1604 *
1605 *  Releases the software control flag for performing PHY and select
1606 *  MAC CSR accesses.
1607 **/
1608static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1609{
1610	u32 extcnf_ctrl;
1611
1612	extcnf_ctrl = er32(EXTCNF_CTRL);
1613
1614	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1615		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1616		ew32(EXTCNF_CTRL, extcnf_ctrl);
1617	} else {
1618		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1619	}
1620
1621	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1622}
1623
1624/**
1625 *  e1000_check_mng_mode_ich8lan - Checks management mode
1626 *  @hw: pointer to the HW structure
1627 *
1628 *  This checks if the adapter has any manageability enabled.
1629 *  This is a function pointer entry point only called by read/write
1630 *  routines for the PHY and NVM parts.
1631 **/
1632static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1633{
1634	u32 fwsm;
1635
1636	fwsm = er32(FWSM);
1637	return ((fwsm & E1000_ICH_FWSM_FW_VALID) &&
1638		((fwsm & E1000_FWSM_MODE_MASK) ==
1639		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)));
1640}
1641
1642/**
1643 *  e1000_check_mng_mode_pchlan - Checks management mode
1644 *  @hw: pointer to the HW structure
1645 *
1646 *  This checks if the adapter has iAMT enabled.
1647 *  This is a function pointer entry point only called by read/write
1648 *  routines for the PHY and NVM parts.
1649 **/
1650static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1651{
1652	u32 fwsm;
1653
1654	fwsm = er32(FWSM);
1655	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1656	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1657}
1658
1659/**
1660 *  e1000_rar_set_pch2lan - Set receive address register
1661 *  @hw: pointer to the HW structure
1662 *  @addr: pointer to the receive address
1663 *  @index: receive address array register
1664 *
1665 *  Sets the receive address array register at index to the address passed
1666 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1667 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1668 *  Use SHRA[0-3] in place of those reserved for ME.
1669 **/
1670static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1671{
1672	u32 rar_low, rar_high;
1673
1674	/* HW expects these in little endian so we reverse the byte order
 
1675	 * from network order (big endian) to little endian
1676	 */
1677	rar_low = ((u32)addr[0] |
1678		   ((u32)addr[1] << 8) |
1679		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1680
1681	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1682
1683	/* If MAC address zero, no need to set the AV bit */
1684	if (rar_low || rar_high)
1685		rar_high |= E1000_RAH_AV;
1686
1687	if (index == 0) {
1688		ew32(RAL(index), rar_low);
1689		e1e_flush();
1690		ew32(RAH(index), rar_high);
1691		e1e_flush();
1692		return;
1693	}
1694
1695	/* RAR[1-6] are owned by manageability.  Skip those and program the
1696	 * next address into the SHRA register array.
1697	 */
1698	if (index < (u32)(hw->mac.rar_entry_count)) {
1699		s32 ret_val;
1700
1701		ret_val = e1000_acquire_swflag_ich8lan(hw);
1702		if (ret_val)
1703			goto out;
1704
1705		ew32(SHRAL(index - 1), rar_low);
1706		e1e_flush();
1707		ew32(SHRAH(index - 1), rar_high);
1708		e1e_flush();
1709
1710		e1000_release_swflag_ich8lan(hw);
1711
1712		/* verify the register updates */
1713		if ((er32(SHRAL(index - 1)) == rar_low) &&
1714		    (er32(SHRAH(index - 1)) == rar_high))
1715			return;
1716
1717		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1718		      (index - 1), er32(FWSM));
1719	}
1720
1721out:
1722	e_dbg("Failed to write receive address at index %d\n", index);
1723}
1724
1725/**
1726 *  e1000_rar_set_pch_lpt - Set receive address registers
1727 *  @hw: pointer to the HW structure
1728 *  @addr: pointer to the receive address
1729 *  @index: receive address array register
1730 *
1731 *  Sets the receive address register array at index to the address passed
1732 *  in by addr. For LPT, RAR[0] is the base address register that is to
1733 *  contain the MAC address. SHRA[0-10] are the shared receive address
1734 *  registers that are shared between the Host and manageability engine (ME).
1735 **/
1736static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1737{
1738	u32 rar_low, rar_high;
1739	u32 wlock_mac;
1740
1741	/* HW expects these in little endian so we reverse the byte order
 
1742	 * from network order (big endian) to little endian
1743	 */
1744	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1745		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1746
1747	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1748
1749	/* If MAC address zero, no need to set the AV bit */
1750	if (rar_low || rar_high)
1751		rar_high |= E1000_RAH_AV;
1752
1753	if (index == 0) {
1754		ew32(RAL(index), rar_low);
1755		e1e_flush();
1756		ew32(RAH(index), rar_high);
1757		e1e_flush();
1758		return;
1759	}
1760
1761	/* The manageability engine (ME) can lock certain SHRAR registers that
 
1762	 * it is using - those registers are unavailable for use.
1763	 */
1764	if (index < hw->mac.rar_entry_count) {
1765		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1766		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1767
1768		/* Check if all SHRAR registers are locked */
1769		if (wlock_mac == 1)
1770			goto out;
1771
1772		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1773			s32 ret_val;
1774
1775			ret_val = e1000_acquire_swflag_ich8lan(hw);
1776
1777			if (ret_val)
1778				goto out;
1779
1780			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1781			e1e_flush();
1782			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1783			e1e_flush();
1784
1785			e1000_release_swflag_ich8lan(hw);
1786
1787			/* verify the register updates */
1788			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1789			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1790				return;
1791		}
1792	}
1793
1794out:
1795	e_dbg("Failed to write receive address at index %d\n", index);
1796}
1797
1798/**
1799 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1800 *  @hw: pointer to the HW structure
1801 *
1802 *  Checks if firmware is blocking the reset of the PHY.
1803 *  This is a function pointer entry point only called by
1804 *  reset routines.
1805 **/
1806static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1807{
1808	bool blocked = false;
1809	int i = 0;
1810
1811	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1812	       (i++ < 10))
1813		usleep_range(10000, 20000);
1814	return blocked ? E1000_BLK_PHY_RESET : 0;
1815}
1816
1817/**
1818 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1819 *  @hw: pointer to the HW structure
1820 *
1821 *  Assumes semaphore already acquired.
1822 *
1823 **/
1824static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1825{
1826	u16 phy_data;
1827	u32 strap = er32(STRAP);
1828	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1829	    E1000_STRAP_SMT_FREQ_SHIFT;
1830	s32 ret_val;
1831
1832	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1833
1834	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1835	if (ret_val)
1836		return ret_val;
1837
1838	phy_data &= ~HV_SMB_ADDR_MASK;
1839	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1840	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1841
1842	if (hw->phy.type == e1000_phy_i217) {
1843		/* Restore SMBus frequency */
1844		if (freq--) {
1845			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1846			phy_data |= (freq & (1 << 0)) <<
1847			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1848			phy_data |= (freq & (1 << 1)) <<
1849			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1850		} else {
1851			e_dbg("Unsupported SMB frequency in PHY\n");
1852		}
1853	}
1854
1855	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1856}
1857
1858/**
1859 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1860 *  @hw:   pointer to the HW structure
1861 *
1862 *  SW should configure the LCD from the NVM extended configuration region
1863 *  as a workaround for certain parts.
1864 **/
1865static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1866{
1867	struct e1000_phy_info *phy = &hw->phy;
1868	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1869	s32 ret_val = 0;
1870	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1871
1872	/* Initialize the PHY from the NVM on ICH platforms.  This
 
1873	 * is needed due to an issue where the NVM configuration is
1874	 * not properly autoloaded after power transitions.
1875	 * Therefore, after each PHY reset, we will load the
1876	 * configuration data out of the NVM manually.
1877	 */
1878	switch (hw->mac.type) {
1879	case e1000_ich8lan:
1880		if (phy->type != e1000_phy_igp_3)
1881			return ret_val;
1882
1883		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1884		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1885			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1886			break;
1887		}
1888		/* Fall-thru */
1889	case e1000_pchlan:
1890	case e1000_pch2lan:
1891	case e1000_pch_lpt:
1892		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1893		break;
1894	default:
1895		return ret_val;
1896	}
1897
1898	ret_val = hw->phy.ops.acquire(hw);
1899	if (ret_val)
1900		return ret_val;
1901
1902	data = er32(FEXTNVM);
1903	if (!(data & sw_cfg_mask))
1904		goto release;
1905
1906	/* Make sure HW does not configure LCD from PHY
 
1907	 * extended configuration before SW configuration
1908	 */
1909	data = er32(EXTCNF_CTRL);
1910	if ((hw->mac.type < e1000_pch2lan) &&
1911	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1912		goto release;
1913
1914	cnf_size = er32(EXTCNF_SIZE);
1915	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1916	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1917	if (!cnf_size)
1918		goto release;
1919
1920	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1921	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1922
1923	if (((hw->mac.type == e1000_pchlan) &&
1924	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1925	    (hw->mac.type > e1000_pchlan)) {
1926		/* HW configures the SMBus address and LEDs when the
 
1927		 * OEM and LCD Write Enable bits are set in the NVM.
1928		 * When both NVM bits are cleared, SW will configure
1929		 * them instead.
1930		 */
1931		ret_val = e1000_write_smbus_addr(hw);
1932		if (ret_val)
1933			goto release;
1934
1935		data = er32(LEDCTL);
1936		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1937							(u16)data);
1938		if (ret_val)
1939			goto release;
1940	}
1941
1942	/* Configure LCD from extended configuration region. */
1943
1944	/* cnf_base_addr is in DWORD */
1945	word_addr = (u16)(cnf_base_addr << 1);
1946
1947	for (i = 0; i < cnf_size; i++) {
1948		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
 
1949		if (ret_val)
1950			goto release;
1951
1952		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1953					 1, &reg_addr);
1954		if (ret_val)
1955			goto release;
1956
1957		/* Save off the PHY page for future writes. */
1958		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1959			phy_page = reg_data;
1960			continue;
1961		}
1962
1963		reg_addr &= PHY_REG_MASK;
1964		reg_addr |= phy_page;
1965
1966		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1967		if (ret_val)
1968			goto release;
1969	}
1970
1971release:
1972	hw->phy.ops.release(hw);
1973	return ret_val;
1974}
1975
1976/**
1977 *  e1000_k1_gig_workaround_hv - K1 Si workaround
1978 *  @hw:   pointer to the HW structure
1979 *  @link: link up bool flag
1980 *
1981 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1982 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1983 *  If link is down, the function will restore the default K1 setting located
1984 *  in the NVM.
1985 **/
1986static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1987{
1988	s32 ret_val = 0;
1989	u16 status_reg = 0;
1990	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1991
1992	if (hw->mac.type != e1000_pchlan)
1993		return 0;
1994
1995	/* Wrap the whole flow with the sw flag */
1996	ret_val = hw->phy.ops.acquire(hw);
1997	if (ret_val)
1998		return ret_val;
1999
2000	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2001	if (link) {
2002		if (hw->phy.type == e1000_phy_82578) {
2003			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2004						  &status_reg);
2005			if (ret_val)
2006				goto release;
2007
2008			status_reg &= (BM_CS_STATUS_LINK_UP |
2009				       BM_CS_STATUS_RESOLVED |
2010				       BM_CS_STATUS_SPEED_MASK);
2011
2012			if (status_reg == (BM_CS_STATUS_LINK_UP |
2013					   BM_CS_STATUS_RESOLVED |
2014					   BM_CS_STATUS_SPEED_1000))
2015				k1_enable = false;
2016		}
2017
2018		if (hw->phy.type == e1000_phy_82577) {
2019			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2020			if (ret_val)
2021				goto release;
2022
2023			status_reg &= (HV_M_STATUS_LINK_UP |
2024				       HV_M_STATUS_AUTONEG_COMPLETE |
2025				       HV_M_STATUS_SPEED_MASK);
2026
2027			if (status_reg == (HV_M_STATUS_LINK_UP |
2028					   HV_M_STATUS_AUTONEG_COMPLETE |
2029					   HV_M_STATUS_SPEED_1000))
2030				k1_enable = false;
2031		}
2032
2033		/* Link stall fix for link up */
2034		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2035		if (ret_val)
2036			goto release;
2037
2038	} else {
2039		/* Link stall fix for link down */
2040		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2041		if (ret_val)
2042			goto release;
2043	}
2044
2045	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2046
2047release:
2048	hw->phy.ops.release(hw);
2049
2050	return ret_val;
2051}
2052
2053/**
2054 *  e1000_configure_k1_ich8lan - Configure K1 power state
2055 *  @hw: pointer to the HW structure
2056 *  @enable: K1 state to configure
2057 *
2058 *  Configure the K1 power state based on the provided parameter.
2059 *  Assumes semaphore already acquired.
2060 *
2061 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2062 **/
2063s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2064{
2065	s32 ret_val;
2066	u32 ctrl_reg = 0;
2067	u32 ctrl_ext = 0;
2068	u32 reg = 0;
2069	u16 kmrn_reg = 0;
2070
2071	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2072					      &kmrn_reg);
2073	if (ret_val)
2074		return ret_val;
2075
2076	if (k1_enable)
2077		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2078	else
2079		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2080
2081	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2082					       kmrn_reg);
2083	if (ret_val)
2084		return ret_val;
2085
2086	usleep_range(20, 40);
2087	ctrl_ext = er32(CTRL_EXT);
2088	ctrl_reg = er32(CTRL);
2089
2090	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2091	reg |= E1000_CTRL_FRCSPD;
2092	ew32(CTRL, reg);
2093
2094	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2095	e1e_flush();
2096	usleep_range(20, 40);
2097	ew32(CTRL, ctrl_reg);
2098	ew32(CTRL_EXT, ctrl_ext);
2099	e1e_flush();
2100	usleep_range(20, 40);
2101
2102	return 0;
2103}
2104
2105/**
2106 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2107 *  @hw:       pointer to the HW structure
2108 *  @d0_state: boolean if entering d0 or d3 device state
2109 *
2110 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2111 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2112 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2113 **/
2114static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2115{
2116	s32 ret_val = 0;
2117	u32 mac_reg;
2118	u16 oem_reg;
2119
2120	if (hw->mac.type < e1000_pchlan)
2121		return ret_val;
2122
2123	ret_val = hw->phy.ops.acquire(hw);
2124	if (ret_val)
2125		return ret_val;
2126
2127	if (hw->mac.type == e1000_pchlan) {
2128		mac_reg = er32(EXTCNF_CTRL);
2129		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2130			goto release;
2131	}
2132
2133	mac_reg = er32(FEXTNVM);
2134	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2135		goto release;
2136
2137	mac_reg = er32(PHY_CTRL);
2138
2139	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2140	if (ret_val)
2141		goto release;
2142
2143	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2144
2145	if (d0_state) {
2146		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2147			oem_reg |= HV_OEM_BITS_GBE_DIS;
2148
2149		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2150			oem_reg |= HV_OEM_BITS_LPLU;
2151	} else {
2152		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2153			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2154			oem_reg |= HV_OEM_BITS_GBE_DIS;
2155
2156		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2157			       E1000_PHY_CTRL_NOND0A_LPLU))
2158			oem_reg |= HV_OEM_BITS_LPLU;
2159	}
2160
2161	/* Set Restart auto-neg to activate the bits */
2162	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2163	    !hw->phy.ops.check_reset_block(hw))
2164		oem_reg |= HV_OEM_BITS_RESTART_AN;
2165
2166	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2167
2168release:
2169	hw->phy.ops.release(hw);
2170
2171	return ret_val;
2172}
2173
 
2174/**
2175 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2176 *  @hw:   pointer to the HW structure
2177 **/
2178static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2179{
2180	s32 ret_val;
2181	u16 data;
2182
2183	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2184	if (ret_val)
2185		return ret_val;
2186
2187	data |= HV_KMRN_MDIO_SLOW;
2188
2189	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2190
2191	return ret_val;
2192}
2193
2194/**
2195 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2196 *  done after every PHY reset.
2197 **/
2198static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2199{
2200	s32 ret_val = 0;
2201	u16 phy_data;
2202
2203	if (hw->mac.type != e1000_pchlan)
2204		return 0;
2205
2206	/* Set MDIO slow mode before any other MDIO access */
2207	if (hw->phy.type == e1000_phy_82577) {
2208		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2209		if (ret_val)
2210			return ret_val;
2211	}
2212
2213	if (((hw->phy.type == e1000_phy_82577) &&
2214	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2215	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2216		/* Disable generation of early preamble */
2217		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2218		if (ret_val)
2219			return ret_val;
2220
2221		/* Preamble tuning for SSC */
2222		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2223		if (ret_val)
2224			return ret_val;
2225	}
2226
2227	if (hw->phy.type == e1000_phy_82578) {
2228		/* Return registers to default by doing a soft reset then
 
2229		 * writing 0x3140 to the control register.
2230		 */
2231		if (hw->phy.revision < 2) {
2232			e1000e_phy_sw_reset(hw);
2233			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2234		}
2235	}
2236
2237	/* Select page 0 */
2238	ret_val = hw->phy.ops.acquire(hw);
2239	if (ret_val)
2240		return ret_val;
2241
2242	hw->phy.addr = 1;
2243	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2244	hw->phy.ops.release(hw);
2245	if (ret_val)
2246		return ret_val;
2247
2248	/* Configure the K1 Si workaround during phy reset assuming there is
 
2249	 * link so that it disables K1 if link is in 1Gbps.
2250	 */
2251	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2252	if (ret_val)
2253		return ret_val;
2254
2255	/* Workaround for link disconnects on a busy hub in half duplex */
2256	ret_val = hw->phy.ops.acquire(hw);
2257	if (ret_val)
2258		return ret_val;
2259	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2260	if (ret_val)
2261		goto release;
2262	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2263	if (ret_val)
2264		goto release;
2265
2266	/* set MSE higher to enable link to stay up when noise is high */
2267	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2268release:
2269	hw->phy.ops.release(hw);
2270
2271	return ret_val;
2272}
2273
2274/**
2275 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2276 *  @hw:   pointer to the HW structure
2277 **/
2278void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2279{
2280	u32 mac_reg;
2281	u16 i, phy_reg = 0;
2282	s32 ret_val;
2283
2284	ret_val = hw->phy.ops.acquire(hw);
2285	if (ret_val)
2286		return;
2287	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2288	if (ret_val)
2289		goto release;
2290
2291	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2292	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2293		mac_reg = er32(RAL(i));
2294		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2295					   (u16)(mac_reg & 0xFFFF));
2296		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2297					   (u16)((mac_reg >> 16) & 0xFFFF));
2298
2299		mac_reg = er32(RAH(i));
2300		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2301					   (u16)(mac_reg & 0xFFFF));
2302		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2303					   (u16)((mac_reg & E1000_RAH_AV)
2304						 >> 16));
2305	}
2306
2307	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2308
2309release:
2310	hw->phy.ops.release(hw);
2311}
2312
2313/**
2314 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2315 *  with 82579 PHY
2316 *  @hw: pointer to the HW structure
2317 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2318 **/
2319s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2320{
2321	s32 ret_val = 0;
2322	u16 phy_reg, data;
2323	u32 mac_reg;
2324	u16 i;
2325
2326	if (hw->mac.type < e1000_pch2lan)
2327		return 0;
2328
2329	/* disable Rx path while enabling/disabling workaround */
2330	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2331	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2332	if (ret_val)
2333		return ret_val;
2334
2335	if (enable) {
2336		/* Write Rx addresses (rar_entry_count for RAL/H, and
 
2337		 * SHRAL/H) and initial CRC values to the MAC
2338		 */
2339		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2340			u8 mac_addr[ETH_ALEN] = { 0 };
2341			u32 addr_high, addr_low;
2342
2343			addr_high = er32(RAH(i));
2344			if (!(addr_high & E1000_RAH_AV))
2345				continue;
2346			addr_low = er32(RAL(i));
2347			mac_addr[0] = (addr_low & 0xFF);
2348			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2349			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2350			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2351			mac_addr[4] = (addr_high & 0xFF);
2352			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2353
2354			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2355		}
2356
2357		/* Write Rx addresses to the PHY */
2358		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2359
2360		/* Enable jumbo frame workaround in the MAC */
2361		mac_reg = er32(FFLT_DBG);
2362		mac_reg &= ~(1 << 14);
2363		mac_reg |= (7 << 15);
2364		ew32(FFLT_DBG, mac_reg);
2365
2366		mac_reg = er32(RCTL);
2367		mac_reg |= E1000_RCTL_SECRC;
2368		ew32(RCTL, mac_reg);
2369
2370		ret_val = e1000e_read_kmrn_reg(hw,
2371					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2372					       &data);
2373		if (ret_val)
2374			return ret_val;
2375		ret_val = e1000e_write_kmrn_reg(hw,
2376						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2377						data | (1 << 0));
2378		if (ret_val)
2379			return ret_val;
2380		ret_val = e1000e_read_kmrn_reg(hw,
2381					       E1000_KMRNCTRLSTA_HD_CTRL,
2382					       &data);
2383		if (ret_val)
2384			return ret_val;
2385		data &= ~(0xF << 8);
2386		data |= (0xB << 8);
2387		ret_val = e1000e_write_kmrn_reg(hw,
2388						E1000_KMRNCTRLSTA_HD_CTRL,
2389						data);
2390		if (ret_val)
2391			return ret_val;
2392
2393		/* Enable jumbo frame workaround in the PHY */
2394		e1e_rphy(hw, PHY_REG(769, 23), &data);
2395		data &= ~(0x7F << 5);
2396		data |= (0x37 << 5);
2397		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2398		if (ret_val)
2399			return ret_val;
2400		e1e_rphy(hw, PHY_REG(769, 16), &data);
2401		data &= ~(1 << 13);
2402		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2403		if (ret_val)
2404			return ret_val;
2405		e1e_rphy(hw, PHY_REG(776, 20), &data);
2406		data &= ~(0x3FF << 2);
2407		data |= (0x1A << 2);
2408		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2409		if (ret_val)
2410			return ret_val;
2411		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2412		if (ret_val)
2413			return ret_val;
2414		e1e_rphy(hw, HV_PM_CTRL, &data);
2415		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2416		if (ret_val)
2417			return ret_val;
2418	} else {
2419		/* Write MAC register values back to h/w defaults */
2420		mac_reg = er32(FFLT_DBG);
2421		mac_reg &= ~(0xF << 14);
2422		ew32(FFLT_DBG, mac_reg);
2423
2424		mac_reg = er32(RCTL);
2425		mac_reg &= ~E1000_RCTL_SECRC;
2426		ew32(RCTL, mac_reg);
2427
2428		ret_val = e1000e_read_kmrn_reg(hw,
2429					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2430					       &data);
2431		if (ret_val)
2432			return ret_val;
2433		ret_val = e1000e_write_kmrn_reg(hw,
2434						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2435						data & ~(1 << 0));
2436		if (ret_val)
2437			return ret_val;
2438		ret_val = e1000e_read_kmrn_reg(hw,
2439					       E1000_KMRNCTRLSTA_HD_CTRL,
2440					       &data);
2441		if (ret_val)
2442			return ret_val;
2443		data &= ~(0xF << 8);
2444		data |= (0xB << 8);
2445		ret_val = e1000e_write_kmrn_reg(hw,
2446						E1000_KMRNCTRLSTA_HD_CTRL,
2447						data);
2448		if (ret_val)
2449			return ret_val;
2450
2451		/* Write PHY register values back to h/w defaults */
2452		e1e_rphy(hw, PHY_REG(769, 23), &data);
2453		data &= ~(0x7F << 5);
2454		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2455		if (ret_val)
2456			return ret_val;
2457		e1e_rphy(hw, PHY_REG(769, 16), &data);
2458		data |= (1 << 13);
2459		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2460		if (ret_val)
2461			return ret_val;
2462		e1e_rphy(hw, PHY_REG(776, 20), &data);
2463		data &= ~(0x3FF << 2);
2464		data |= (0x8 << 2);
2465		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2466		if (ret_val)
2467			return ret_val;
2468		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2469		if (ret_val)
2470			return ret_val;
2471		e1e_rphy(hw, HV_PM_CTRL, &data);
2472		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2473		if (ret_val)
2474			return ret_val;
2475	}
2476
2477	/* re-enable Rx path after enabling/disabling workaround */
2478	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2479}
2480
2481/**
2482 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2483 *  done after every PHY reset.
2484 **/
2485static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2486{
2487	s32 ret_val = 0;
2488
2489	if (hw->mac.type != e1000_pch2lan)
2490		return 0;
2491
2492	/* Set MDIO slow mode before any other MDIO access */
2493	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2494	if (ret_val)
2495		return ret_val;
2496
2497	ret_val = hw->phy.ops.acquire(hw);
2498	if (ret_val)
2499		return ret_val;
 
 
 
2500	/* set MSE higher to enable link to stay up when noise is high */
2501	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
 
 
 
2502	if (ret_val)
2503		goto release;
2504	/* drop link after 5 times MSE threshold was reached */
2505	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2506release:
2507	hw->phy.ops.release(hw);
2508
2509	return ret_val;
2510}
2511
2512/**
2513 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2514 *  @hw:   pointer to the HW structure
2515 *
2516 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2517 *  Disable K1 in 1000Mbps and 100Mbps
2518 **/
2519static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2520{
2521	s32 ret_val = 0;
2522	u16 status_reg = 0;
 
 
2523
2524	if (hw->mac.type != e1000_pch2lan)
2525		return 0;
2526
2527	/* Set K1 beacon duration based on 10Mbs speed */
2528	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2529	if (ret_val)
2530		return ret_val;
2531
2532	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2533	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2534		if (status_reg &
2535		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
 
 
 
 
 
 
2536			u16 pm_phy_reg;
2537
2538			/* LV 1G/100 Packet drop issue wa  */
 
 
2539			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2540			if (ret_val)
2541				return ret_val;
2542			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2543			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2544			if (ret_val)
2545				return ret_val;
2546		} else {
2547			u32 mac_reg;
2548
2549			mac_reg = er32(FEXTNVM4);
2550			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2551			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2552			ew32(FEXTNVM4, mac_reg);
2553		}
 
 
2554	}
2555
2556	return ret_val;
2557}
2558
2559/**
2560 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2561 *  @hw:   pointer to the HW structure
2562 *  @gate: boolean set to true to gate, false to ungate
2563 *
2564 *  Gate/ungate the automatic PHY configuration via hardware; perform
2565 *  the configuration via software instead.
2566 **/
2567static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2568{
2569	u32 extcnf_ctrl;
2570
2571	if (hw->mac.type < e1000_pch2lan)
2572		return;
2573
2574	extcnf_ctrl = er32(EXTCNF_CTRL);
2575
2576	if (gate)
2577		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2578	else
2579		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2580
2581	ew32(EXTCNF_CTRL, extcnf_ctrl);
2582}
2583
2584/**
2585 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2586 *  @hw: pointer to the HW structure
2587 *
2588 *  Check the appropriate indication the MAC has finished configuring the
2589 *  PHY after a software reset.
2590 **/
2591static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2592{
2593	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2594
2595	/* Wait for basic configuration completes before proceeding */
2596	do {
2597		data = er32(STATUS);
2598		data &= E1000_STATUS_LAN_INIT_DONE;
2599		usleep_range(100, 200);
2600	} while ((!data) && --loop);
2601
2602	/* If basic configuration is incomplete before the above loop
 
2603	 * count reaches 0, loading the configuration from NVM will
2604	 * leave the PHY in a bad state possibly resulting in no link.
2605	 */
2606	if (loop == 0)
2607		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2608
2609	/* Clear the Init Done bit for the next init event */
2610	data = er32(STATUS);
2611	data &= ~E1000_STATUS_LAN_INIT_DONE;
2612	ew32(STATUS, data);
2613}
2614
2615/**
2616 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2617 *  @hw: pointer to the HW structure
2618 **/
2619static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2620{
2621	s32 ret_val = 0;
2622	u16 reg;
2623
2624	if (hw->phy.ops.check_reset_block(hw))
2625		return 0;
2626
2627	/* Allow time for h/w to get to quiescent state after reset */
2628	usleep_range(10000, 20000);
2629
2630	/* Perform any necessary post-reset workarounds */
2631	switch (hw->mac.type) {
2632	case e1000_pchlan:
2633		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2634		if (ret_val)
2635			return ret_val;
2636		break;
2637	case e1000_pch2lan:
2638		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2639		if (ret_val)
2640			return ret_val;
2641		break;
2642	default:
2643		break;
2644	}
2645
2646	/* Clear the host wakeup bit after lcd reset */
2647	if (hw->mac.type >= e1000_pchlan) {
2648		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2649		reg &= ~BM_WUC_HOST_WU_BIT;
2650		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2651	}
2652
2653	/* Configure the LCD with the extended configuration region in NVM */
2654	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2655	if (ret_val)
2656		return ret_val;
2657
2658	/* Configure the LCD with the OEM bits in NVM */
2659	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2660
2661	if (hw->mac.type == e1000_pch2lan) {
2662		/* Ungate automatic PHY configuration on non-managed 82579 */
2663		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2664			usleep_range(10000, 20000);
2665			e1000_gate_hw_phy_config_ich8lan(hw, false);
2666		}
2667
2668		/* Set EEE LPI Update Timer to 200usec */
2669		ret_val = hw->phy.ops.acquire(hw);
2670		if (ret_val)
2671			return ret_val;
2672		ret_val = e1000_write_emi_reg_locked(hw,
2673						     I82579_LPI_UPDATE_TIMER,
2674						     0x1387);
 
2675		hw->phy.ops.release(hw);
2676	}
2677
2678	return ret_val;
2679}
2680
2681/**
2682 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2683 *  @hw: pointer to the HW structure
2684 *
2685 *  Resets the PHY
2686 *  This is a function pointer entry point called by drivers
2687 *  or other shared routines.
2688 **/
2689static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2690{
2691	s32 ret_val = 0;
2692
2693	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2694	if ((hw->mac.type == e1000_pch2lan) &&
2695	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2696		e1000_gate_hw_phy_config_ich8lan(hw, true);
2697
2698	ret_val = e1000e_phy_hw_reset_generic(hw);
2699	if (ret_val)
2700		return ret_val;
2701
2702	return e1000_post_phy_reset_ich8lan(hw);
2703}
2704
2705/**
2706 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2707 *  @hw: pointer to the HW structure
2708 *  @active: true to enable LPLU, false to disable
2709 *
2710 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2711 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2712 *  the phy speed. This function will manually set the LPLU bit and restart
2713 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2714 *  since it configures the same bit.
2715 **/
2716static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2717{
2718	s32 ret_val;
2719	u16 oem_reg;
2720
2721	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2722	if (ret_val)
2723		return ret_val;
2724
2725	if (active)
2726		oem_reg |= HV_OEM_BITS_LPLU;
2727	else
2728		oem_reg &= ~HV_OEM_BITS_LPLU;
2729
2730	if (!hw->phy.ops.check_reset_block(hw))
2731		oem_reg |= HV_OEM_BITS_RESTART_AN;
2732
2733	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2734}
2735
2736/**
2737 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2738 *  @hw: pointer to the HW structure
2739 *  @active: true to enable LPLU, false to disable
2740 *
2741 *  Sets the LPLU D0 state according to the active flag.  When
2742 *  activating LPLU this function also disables smart speed
2743 *  and vice versa.  LPLU will not be activated unless the
2744 *  device autonegotiation advertisement meets standards of
2745 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2746 *  This is a function pointer entry point only called by
2747 *  PHY setup routines.
2748 **/
2749static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2750{
2751	struct e1000_phy_info *phy = &hw->phy;
2752	u32 phy_ctrl;
2753	s32 ret_val = 0;
2754	u16 data;
2755
2756	if (phy->type == e1000_phy_ife)
2757		return 0;
2758
2759	phy_ctrl = er32(PHY_CTRL);
2760
2761	if (active) {
2762		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2763		ew32(PHY_CTRL, phy_ctrl);
2764
2765		if (phy->type != e1000_phy_igp_3)
2766			return 0;
2767
2768		/* Call gig speed drop workaround on LPLU before accessing
 
2769		 * any PHY registers
2770		 */
2771		if (hw->mac.type == e1000_ich8lan)
2772			e1000e_gig_downshift_workaround_ich8lan(hw);
2773
2774		/* When LPLU is enabled, we should disable SmartSpeed */
2775		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2776		if (ret_val)
2777			return ret_val;
2778		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2779		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2780		if (ret_val)
2781			return ret_val;
2782	} else {
2783		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2784		ew32(PHY_CTRL, phy_ctrl);
2785
2786		if (phy->type != e1000_phy_igp_3)
2787			return 0;
2788
2789		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
2790		 * during Dx states where the power conservation is most
2791		 * important.  During driver activity we should enable
2792		 * SmartSpeed, so performance is maintained.
2793		 */
2794		if (phy->smart_speed == e1000_smart_speed_on) {
2795			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2796					   &data);
2797			if (ret_val)
2798				return ret_val;
2799
2800			data |= IGP01E1000_PSCFR_SMART_SPEED;
2801			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2802					   data);
2803			if (ret_val)
2804				return ret_val;
2805		} else if (phy->smart_speed == e1000_smart_speed_off) {
2806			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2807					   &data);
2808			if (ret_val)
2809				return ret_val;
2810
2811			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2812			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2813					   data);
2814			if (ret_val)
2815				return ret_val;
2816		}
2817	}
2818
2819	return 0;
2820}
2821
2822/**
2823 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2824 *  @hw: pointer to the HW structure
2825 *  @active: true to enable LPLU, false to disable
2826 *
2827 *  Sets the LPLU D3 state according to the active flag.  When
2828 *  activating LPLU this function also disables smart speed
2829 *  and vice versa.  LPLU will not be activated unless the
2830 *  device autonegotiation advertisement meets standards of
2831 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2832 *  This is a function pointer entry point only called by
2833 *  PHY setup routines.
2834 **/
2835static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2836{
2837	struct e1000_phy_info *phy = &hw->phy;
2838	u32 phy_ctrl;
2839	s32 ret_val = 0;
2840	u16 data;
2841
2842	phy_ctrl = er32(PHY_CTRL);
2843
2844	if (!active) {
2845		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2846		ew32(PHY_CTRL, phy_ctrl);
2847
2848		if (phy->type != e1000_phy_igp_3)
2849			return 0;
2850
2851		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
2852		 * during Dx states where the power conservation is most
2853		 * important.  During driver activity we should enable
2854		 * SmartSpeed, so performance is maintained.
2855		 */
2856		if (phy->smart_speed == e1000_smart_speed_on) {
2857			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2858					   &data);
2859			if (ret_val)
2860				return ret_val;
2861
2862			data |= IGP01E1000_PSCFR_SMART_SPEED;
2863			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2864					   data);
2865			if (ret_val)
2866				return ret_val;
2867		} else if (phy->smart_speed == e1000_smart_speed_off) {
2868			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2869					   &data);
2870			if (ret_val)
2871				return ret_val;
2872
2873			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2874			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2875					   data);
2876			if (ret_val)
2877				return ret_val;
2878		}
2879	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2880		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2881		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2882		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2883		ew32(PHY_CTRL, phy_ctrl);
2884
2885		if (phy->type != e1000_phy_igp_3)
2886			return 0;
2887
2888		/* Call gig speed drop workaround on LPLU before accessing
 
2889		 * any PHY registers
2890		 */
2891		if (hw->mac.type == e1000_ich8lan)
2892			e1000e_gig_downshift_workaround_ich8lan(hw);
2893
2894		/* When LPLU is enabled, we should disable SmartSpeed */
2895		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2896		if (ret_val)
2897			return ret_val;
2898
2899		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2900		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2901	}
2902
2903	return ret_val;
2904}
2905
2906/**
2907 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2908 *  @hw: pointer to the HW structure
2909 *  @bank:  pointer to the variable that returns the active bank
2910 *
2911 *  Reads signature byte from the NVM using the flash access registers.
2912 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2913 **/
2914static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2915{
2916	u32 eecd;
2917	struct e1000_nvm_info *nvm = &hw->nvm;
2918	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2919	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2920	u8 sig_byte = 0;
2921	s32 ret_val;
2922
2923	switch (hw->mac.type) {
2924	case e1000_ich8lan:
2925	case e1000_ich9lan:
2926		eecd = er32(EECD);
2927		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2928		    E1000_EECD_SEC1VAL_VALID_MASK) {
2929			if (eecd & E1000_EECD_SEC1VAL)
2930				*bank = 1;
2931			else
2932				*bank = 0;
2933
2934			return 0;
2935		}
2936		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2937		/* fall-thru */
2938	default:
2939		/* set bank to 0 in case flash read fails */
2940		*bank = 0;
2941
2942		/* Check bank 0 */
2943		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2944							&sig_byte);
2945		if (ret_val)
2946			return ret_val;
2947		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2948		    E1000_ICH_NVM_SIG_VALUE) {
2949			*bank = 0;
2950			return 0;
2951		}
2952
2953		/* Check bank 1 */
2954		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2955							bank1_offset,
2956							&sig_byte);
2957		if (ret_val)
2958			return ret_val;
2959		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2960		    E1000_ICH_NVM_SIG_VALUE) {
2961			*bank = 1;
2962			return 0;
2963		}
2964
2965		e_dbg("ERROR: No valid NVM bank present\n");
2966		return -E1000_ERR_NVM;
2967	}
2968}
2969
2970/**
2971 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2972 *  @hw: pointer to the HW structure
2973 *  @offset: The offset (in bytes) of the word(s) to read.
2974 *  @words: Size of data to read in words
2975 *  @data: Pointer to the word(s) to read at offset.
2976 *
2977 *  Reads a word(s) from the NVM using the flash access registers.
2978 **/
2979static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2980				  u16 *data)
2981{
2982	struct e1000_nvm_info *nvm = &hw->nvm;
2983	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2984	u32 act_offset;
2985	s32 ret_val = 0;
2986	u32 bank = 0;
2987	u16 i, word;
2988
2989	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2990	    (words == 0)) {
2991		e_dbg("nvm parameter(s) out of bounds\n");
2992		ret_val = -E1000_ERR_NVM;
2993		goto out;
2994	}
2995
2996	nvm->ops.acquire(hw);
2997
2998	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2999	if (ret_val) {
3000		e_dbg("Could not detect valid bank, assuming bank 0\n");
3001		bank = 0;
3002	}
3003
3004	act_offset = (bank) ? nvm->flash_bank_size : 0;
3005	act_offset += offset;
3006
3007	ret_val = 0;
3008	for (i = 0; i < words; i++) {
3009		if (dev_spec->shadow_ram[offset + i].modified) {
3010			data[i] = dev_spec->shadow_ram[offset + i].value;
3011		} else {
3012			ret_val = e1000_read_flash_word_ich8lan(hw,
3013								act_offset + i,
3014								&word);
3015			if (ret_val)
3016				break;
3017			data[i] = word;
3018		}
3019	}
3020
3021	nvm->ops.release(hw);
3022
3023out:
3024	if (ret_val)
3025		e_dbg("NVM read error: %d\n", ret_val);
3026
3027	return ret_val;
3028}
3029
3030/**
3031 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3032 *  @hw: pointer to the HW structure
3033 *
3034 *  This function does initial flash setup so that a new read/write/erase cycle
3035 *  can be started.
3036 **/
3037static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3038{
3039	union ich8_hws_flash_status hsfsts;
3040	s32 ret_val = -E1000_ERR_NVM;
3041
3042	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3043
3044	/* Check if the flash descriptor is valid */
3045	if (!hsfsts.hsf_status.fldesvalid) {
3046		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3047		return -E1000_ERR_NVM;
3048	}
3049
3050	/* Clear FCERR and DAEL in hw status by writing 1 */
3051	hsfsts.hsf_status.flcerr = 1;
3052	hsfsts.hsf_status.dael = 1;
3053
3054	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3055
3056	/* Either we should have a hardware SPI cycle in progress
 
3057	 * bit to check against, in order to start a new cycle or
3058	 * FDONE bit should be changed in the hardware so that it
3059	 * is 1 after hardware reset, which can then be used as an
3060	 * indication whether a cycle is in progress or has been
3061	 * completed.
3062	 */
3063
3064	if (!hsfsts.hsf_status.flcinprog) {
3065		/* There is no cycle running at present,
 
3066		 * so we can start a cycle.
3067		 * Begin by setting Flash Cycle Done.
3068		 */
3069		hsfsts.hsf_status.flcdone = 1;
3070		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3071		ret_val = 0;
3072	} else {
3073		s32 i;
3074
3075		/* Otherwise poll for sometime so the current
 
3076		 * cycle has a chance to end before giving up.
3077		 */
3078		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3079			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3080			if (!hsfsts.hsf_status.flcinprog) {
3081				ret_val = 0;
3082				break;
3083			}
3084			udelay(1);
3085		}
3086		if (!ret_val) {
3087			/* Successful in waiting for previous cycle to timeout,
 
3088			 * now set the Flash Cycle Done.
3089			 */
3090			hsfsts.hsf_status.flcdone = 1;
3091			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3092		} else {
3093			e_dbg("Flash controller busy, cannot get access\n");
3094		}
3095	}
3096
3097	return ret_val;
3098}
3099
3100/**
3101 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3102 *  @hw: pointer to the HW structure
3103 *  @timeout: maximum time to wait for completion
3104 *
3105 *  This function starts a flash cycle and waits for its completion.
3106 **/
3107static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3108{
3109	union ich8_hws_flash_ctrl hsflctl;
3110	union ich8_hws_flash_status hsfsts;
3111	u32 i = 0;
3112
3113	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3114	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3115	hsflctl.hsf_ctrl.flcgo = 1;
3116	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3117
3118	/* wait till FDONE bit is set to 1 */
3119	do {
3120		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3121		if (hsfsts.hsf_status.flcdone)
3122			break;
3123		udelay(1);
3124	} while (i++ < timeout);
3125
3126	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3127		return 0;
3128
3129	return -E1000_ERR_NVM;
3130}
3131
3132/**
3133 *  e1000_read_flash_word_ich8lan - Read word from flash
3134 *  @hw: pointer to the HW structure
3135 *  @offset: offset to data location
3136 *  @data: pointer to the location for storing the data
3137 *
3138 *  Reads the flash word at offset into data.  Offset is converted
3139 *  to bytes before read.
3140 **/
3141static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3142					 u16 *data)
3143{
3144	/* Must convert offset into bytes. */
3145	offset <<= 1;
3146
3147	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3148}
3149
3150/**
3151 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3152 *  @hw: pointer to the HW structure
3153 *  @offset: The offset of the byte to read.
3154 *  @data: Pointer to a byte to store the value read.
3155 *
3156 *  Reads a single byte from the NVM using the flash access registers.
3157 **/
3158static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3159					 u8 *data)
3160{
3161	s32 ret_val;
3162	u16 word = 0;
3163
3164	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3165	if (ret_val)
3166		return ret_val;
3167
3168	*data = (u8)word;
3169
3170	return 0;
3171}
3172
3173/**
3174 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3175 *  @hw: pointer to the HW structure
3176 *  @offset: The offset (in bytes) of the byte or word to read.
3177 *  @size: Size of data to read, 1=byte 2=word
3178 *  @data: Pointer to the word to store the value read.
3179 *
3180 *  Reads a byte or word from the NVM using the flash access registers.
3181 **/
3182static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3183					 u8 size, u16 *data)
3184{
3185	union ich8_hws_flash_status hsfsts;
3186	union ich8_hws_flash_ctrl hsflctl;
3187	u32 flash_linear_addr;
3188	u32 flash_data = 0;
3189	s32 ret_val = -E1000_ERR_NVM;
3190	u8 count = 0;
3191
3192	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3193		return -E1000_ERR_NVM;
3194
3195	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3196			     hw->nvm.flash_base_addr);
3197
3198	do {
3199		udelay(1);
3200		/* Steps */
3201		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3202		if (ret_val)
3203			break;
3204
3205		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3206		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3207		hsflctl.hsf_ctrl.fldbcount = size - 1;
3208		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3209		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3210
3211		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3212
3213		ret_val =
3214		    e1000_flash_cycle_ich8lan(hw,
3215					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3216
3217		/* Check if FCERR is set to 1, if set to 1, clear it
 
3218		 * and try the whole sequence a few more times, else
3219		 * read in (shift in) the Flash Data0, the order is
3220		 * least significant byte first msb to lsb
3221		 */
3222		if (!ret_val) {
3223			flash_data = er32flash(ICH_FLASH_FDATA0);
3224			if (size == 1)
3225				*data = (u8)(flash_data & 0x000000FF);
3226			else if (size == 2)
3227				*data = (u16)(flash_data & 0x0000FFFF);
3228			break;
3229		} else {
3230			/* If we've gotten here, then things are probably
 
3231			 * completely hosed, but if the error condition is
3232			 * detected, it won't hurt to give it another try...
3233			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3234			 */
3235			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3236			if (hsfsts.hsf_status.flcerr) {
3237				/* Repeat for some time before giving up. */
3238				continue;
3239			} else if (!hsfsts.hsf_status.flcdone) {
3240				e_dbg("Timeout error - flash cycle did not complete.\n");
3241				break;
3242			}
3243		}
3244	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3245
3246	return ret_val;
3247}
3248
3249/**
3250 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3251 *  @hw: pointer to the HW structure
3252 *  @offset: The offset (in bytes) of the word(s) to write.
3253 *  @words: Size of data to write in words
3254 *  @data: Pointer to the word(s) to write at offset.
3255 *
3256 *  Writes a byte or word to the NVM using the flash access registers.
3257 **/
3258static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3259				   u16 *data)
3260{
3261	struct e1000_nvm_info *nvm = &hw->nvm;
3262	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3263	u16 i;
3264
3265	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3266	    (words == 0)) {
3267		e_dbg("nvm parameter(s) out of bounds\n");
3268		return -E1000_ERR_NVM;
3269	}
3270
3271	nvm->ops.acquire(hw);
3272
3273	for (i = 0; i < words; i++) {
3274		dev_spec->shadow_ram[offset + i].modified = true;
3275		dev_spec->shadow_ram[offset + i].value = data[i];
3276	}
3277
3278	nvm->ops.release(hw);
3279
3280	return 0;
3281}
3282
3283/**
3284 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3285 *  @hw: pointer to the HW structure
3286 *
3287 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3288 *  which writes the checksum to the shadow ram.  The changes in the shadow
3289 *  ram are then committed to the EEPROM by processing each bank at a time
3290 *  checking for the modified bit and writing only the pending changes.
3291 *  After a successful commit, the shadow ram is cleared and is ready for
3292 *  future writes.
3293 **/
3294static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3295{
3296	struct e1000_nvm_info *nvm = &hw->nvm;
3297	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3298	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3299	s32 ret_val;
3300	u16 data;
3301
3302	ret_val = e1000e_update_nvm_checksum_generic(hw);
3303	if (ret_val)
3304		goto out;
3305
3306	if (nvm->type != e1000_nvm_flash_sw)
3307		goto out;
3308
3309	nvm->ops.acquire(hw);
3310
3311	/* We're writing to the opposite bank so if we're on bank 1,
 
3312	 * write to bank 0 etc.  We also need to erase the segment that
3313	 * is going to be written
3314	 */
3315	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3316	if (ret_val) {
3317		e_dbg("Could not detect valid bank, assuming bank 0\n");
3318		bank = 0;
3319	}
3320
3321	if (bank == 0) {
3322		new_bank_offset = nvm->flash_bank_size;
3323		old_bank_offset = 0;
3324		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3325		if (ret_val)
3326			goto release;
3327	} else {
3328		old_bank_offset = nvm->flash_bank_size;
3329		new_bank_offset = 0;
3330		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3331		if (ret_val)
3332			goto release;
3333	}
3334
3335	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3336		/* Determine whether to write the value stored
 
3337		 * in the other NVM bank or a modified value stored
3338		 * in the shadow RAM
3339		 */
3340		if (dev_spec->shadow_ram[i].modified) {
3341			data = dev_spec->shadow_ram[i].value;
3342		} else {
3343			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3344								old_bank_offset,
3345								&data);
3346			if (ret_val)
3347				break;
3348		}
3349
3350		/* If the word is 0x13, then make sure the signature bits
 
3351		 * (15:14) are 11b until the commit has completed.
3352		 * This will allow us to write 10b which indicates the
3353		 * signature is valid.  We want to do this after the write
3354		 * has completed so that we don't mark the segment valid
3355		 * while the write is still in progress
3356		 */
3357		if (i == E1000_ICH_NVM_SIG_WORD)
3358			data |= E1000_ICH_NVM_SIG_MASK;
3359
3360		/* Convert offset to bytes. */
3361		act_offset = (i + new_bank_offset) << 1;
3362
3363		usleep_range(100, 200);
3364		/* Write the bytes to the new bank. */
3365		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3366							       act_offset,
3367							       (u8)data);
3368		if (ret_val)
3369			break;
3370
3371		usleep_range(100, 200);
3372		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3373							       act_offset + 1,
3374							       (u8)(data >> 8));
3375		if (ret_val)
3376			break;
3377	}
3378
3379	/* Don't bother writing the segment valid bits if sector
 
3380	 * programming failed.
3381	 */
3382	if (ret_val) {
3383		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3384		e_dbg("Flash commit failed.\n");
3385		goto release;
3386	}
3387
3388	/* Finally validate the new segment by setting bit 15:14
 
3389	 * to 10b in word 0x13 , this can be done without an
3390	 * erase as well since these bits are 11 to start with
3391	 * and we need to change bit 14 to 0b
3392	 */
3393	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3394	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3395	if (ret_val)
3396		goto release;
3397
3398	data &= 0xBFFF;
3399	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3400						       act_offset * 2 + 1,
3401						       (u8)(data >> 8));
3402	if (ret_val)
3403		goto release;
3404
3405	/* And invalidate the previously valid segment by setting
 
3406	 * its signature word (0x13) high_byte to 0b. This can be
3407	 * done without an erase because flash erase sets all bits
3408	 * to 1's. We can write 1's to 0's without an erase
3409	 */
3410	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3411	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3412	if (ret_val)
3413		goto release;
3414
3415	/* Great!  Everything worked, we can now clear the cached entries. */
3416	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3417		dev_spec->shadow_ram[i].modified = false;
3418		dev_spec->shadow_ram[i].value = 0xFFFF;
3419	}
3420
3421release:
3422	nvm->ops.release(hw);
3423
3424	/* Reload the EEPROM, or else modifications will not appear
 
3425	 * until after the next adapter reset.
3426	 */
3427	if (!ret_val) {
3428		nvm->ops.reload(hw);
3429		usleep_range(10000, 20000);
3430	}
3431
3432out:
3433	if (ret_val)
3434		e_dbg("NVM update error: %d\n", ret_val);
3435
3436	return ret_val;
3437}
3438
3439/**
3440 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3441 *  @hw: pointer to the HW structure
3442 *
3443 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3444 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3445 *  calculated, in which case we need to calculate the checksum and set bit 6.
3446 **/
3447static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3448{
3449	s32 ret_val;
3450	u16 data;
3451	u16 word;
3452	u16 valid_csum_mask;
3453
3454	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3455	 * the checksum needs to be fixed.  This bit is an indication that
3456	 * the NVM was prepared by OEM software and did not calculate
3457	 * the checksum...a likely scenario.
 
3458	 */
3459	switch (hw->mac.type) {
3460	case e1000_pch_lpt:
3461		word = NVM_COMPAT;
3462		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3463		break;
3464	default:
3465		word = NVM_FUTURE_INIT_WORD1;
3466		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3467		break;
3468	}
3469
3470	ret_val = e1000_read_nvm(hw, word, 1, &data);
3471	if (ret_val)
3472		return ret_val;
3473
3474	if (!(data & valid_csum_mask)) {
3475		data |= valid_csum_mask;
3476		ret_val = e1000_write_nvm(hw, word, 1, &data);
3477		if (ret_val)
3478			return ret_val;
3479		ret_val = e1000e_update_nvm_checksum(hw);
3480		if (ret_val)
3481			return ret_val;
3482	}
3483
3484	return e1000e_validate_nvm_checksum_generic(hw);
3485}
3486
3487/**
3488 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3489 *  @hw: pointer to the HW structure
3490 *
3491 *  To prevent malicious write/erase of the NVM, set it to be read-only
3492 *  so that the hardware ignores all write/erase cycles of the NVM via
3493 *  the flash control registers.  The shadow-ram copy of the NVM will
3494 *  still be updated, however any updates to this copy will not stick
3495 *  across driver reloads.
3496 **/
3497void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3498{
3499	struct e1000_nvm_info *nvm = &hw->nvm;
3500	union ich8_flash_protected_range pr0;
3501	union ich8_hws_flash_status hsfsts;
3502	u32 gfpreg;
3503
3504	nvm->ops.acquire(hw);
3505
3506	gfpreg = er32flash(ICH_FLASH_GFPREG);
3507
3508	/* Write-protect GbE Sector of NVM */
3509	pr0.regval = er32flash(ICH_FLASH_PR0);
3510	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3511	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3512	pr0.range.wpe = true;
3513	ew32flash(ICH_FLASH_PR0, pr0.regval);
3514
3515	/* Lock down a subset of GbE Flash Control Registers, e.g.
 
3516	 * PR0 to prevent the write-protection from being lifted.
3517	 * Once FLOCKDN is set, the registers protected by it cannot
3518	 * be written until FLOCKDN is cleared by a hardware reset.
3519	 */
3520	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3521	hsfsts.hsf_status.flockdn = true;
3522	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3523
3524	nvm->ops.release(hw);
3525}
3526
3527/**
3528 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3529 *  @hw: pointer to the HW structure
3530 *  @offset: The offset (in bytes) of the byte/word to read.
3531 *  @size: Size of data to read, 1=byte 2=word
3532 *  @data: The byte(s) to write to the NVM.
3533 *
3534 *  Writes one/two bytes to the NVM using the flash access registers.
3535 **/
3536static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3537					  u8 size, u16 data)
3538{
3539	union ich8_hws_flash_status hsfsts;
3540	union ich8_hws_flash_ctrl hsflctl;
3541	u32 flash_linear_addr;
3542	u32 flash_data = 0;
3543	s32 ret_val;
3544	u8 count = 0;
3545
3546	if (size < 1 || size > 2 || data > size * 0xff ||
3547	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3548		return -E1000_ERR_NVM;
3549
3550	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3551			     hw->nvm.flash_base_addr);
3552
3553	do {
3554		udelay(1);
3555		/* Steps */
3556		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3557		if (ret_val)
3558			break;
3559
3560		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3561		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3562		hsflctl.hsf_ctrl.fldbcount = size - 1;
3563		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3564		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3565
3566		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3567
3568		if (size == 1)
3569			flash_data = (u32)data & 0x00FF;
3570		else
3571			flash_data = (u32)data;
3572
3573		ew32flash(ICH_FLASH_FDATA0, flash_data);
3574
3575		/* check if FCERR is set to 1 , if set to 1, clear it
 
3576		 * and try the whole sequence a few more times else done
3577		 */
3578		ret_val =
3579		    e1000_flash_cycle_ich8lan(hw,
3580					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3581		if (!ret_val)
3582			break;
3583
3584		/* If we're here, then things are most likely
 
3585		 * completely hosed, but if the error condition
3586		 * is detected, it won't hurt to give it another
3587		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3588		 */
3589		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3590		if (hsfsts.hsf_status.flcerr)
3591			/* Repeat for some time before giving up. */
3592			continue;
3593		if (!hsfsts.hsf_status.flcdone) {
3594			e_dbg("Timeout error - flash cycle did not complete.\n");
3595			break;
3596		}
3597	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3598
3599	return ret_val;
3600}
3601
3602/**
3603 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3604 *  @hw: pointer to the HW structure
3605 *  @offset: The index of the byte to read.
3606 *  @data: The byte to write to the NVM.
3607 *
3608 *  Writes a single byte to the NVM using the flash access registers.
3609 **/
3610static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3611					  u8 data)
3612{
3613	u16 word = (u16)data;
3614
3615	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3616}
3617
3618/**
3619 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3620 *  @hw: pointer to the HW structure
3621 *  @offset: The offset of the byte to write.
3622 *  @byte: The byte to write to the NVM.
3623 *
3624 *  Writes a single byte to the NVM using the flash access registers.
3625 *  Goes through a retry algorithm before giving up.
3626 **/
3627static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3628						u32 offset, u8 byte)
3629{
3630	s32 ret_val;
3631	u16 program_retries;
3632
3633	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3634	if (!ret_val)
3635		return ret_val;
3636
3637	for (program_retries = 0; program_retries < 100; program_retries++) {
3638		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3639		usleep_range(100, 200);
3640		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3641		if (!ret_val)
3642			break;
3643	}
3644	if (program_retries == 100)
3645		return -E1000_ERR_NVM;
3646
3647	return 0;
3648}
3649
3650/**
3651 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3652 *  @hw: pointer to the HW structure
3653 *  @bank: 0 for first bank, 1 for second bank, etc.
3654 *
3655 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3656 *  bank N is 4096 * N + flash_reg_addr.
3657 **/
3658static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3659{
3660	struct e1000_nvm_info *nvm = &hw->nvm;
3661	union ich8_hws_flash_status hsfsts;
3662	union ich8_hws_flash_ctrl hsflctl;
3663	u32 flash_linear_addr;
3664	/* bank size is in 16bit words - adjust to bytes */
3665	u32 flash_bank_size = nvm->flash_bank_size * 2;
3666	s32 ret_val;
3667	s32 count = 0;
3668	s32 j, iteration, sector_size;
3669
3670	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3671
3672	/* Determine HW Sector size: Read BERASE bits of hw flash status
 
3673	 * register
3674	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3675	 *     consecutive sectors.  The start index for the nth Hw sector
3676	 *     can be calculated as = bank * 4096 + n * 256
3677	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3678	 *     The start index for the nth Hw sector can be calculated
3679	 *     as = bank * 4096
3680	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3681	 *     (ich9 only, otherwise error condition)
3682	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3683	 */
3684	switch (hsfsts.hsf_status.berasesz) {
3685	case 0:
3686		/* Hw sector size 256 */
3687		sector_size = ICH_FLASH_SEG_SIZE_256;
3688		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3689		break;
3690	case 1:
3691		sector_size = ICH_FLASH_SEG_SIZE_4K;
3692		iteration = 1;
3693		break;
3694	case 2:
3695		sector_size = ICH_FLASH_SEG_SIZE_8K;
3696		iteration = 1;
3697		break;
3698	case 3:
3699		sector_size = ICH_FLASH_SEG_SIZE_64K;
3700		iteration = 1;
3701		break;
3702	default:
3703		return -E1000_ERR_NVM;
3704	}
3705
3706	/* Start with the base address, then add the sector offset. */
3707	flash_linear_addr = hw->nvm.flash_base_addr;
3708	flash_linear_addr += (bank) ? flash_bank_size : 0;
3709
3710	for (j = 0; j < iteration; j++) {
3711		do {
3712			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3713
3714			/* Steps */
3715			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3716			if (ret_val)
3717				return ret_val;
3718
3719			/* Write a value 11 (block Erase) in Flash
 
3720			 * Cycle field in hw flash control
3721			 */
3722			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3723			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3724			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3725
3726			/* Write the last 24 bits of an index within the
 
3727			 * block into Flash Linear address field in Flash
3728			 * Address.
3729			 */
3730			flash_linear_addr += (j * sector_size);
3731			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3732
3733			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
 
3734			if (!ret_val)
3735				break;
3736
3737			/* Check if FCERR is set to 1.  If 1,
 
3738			 * clear it and try the whole sequence
3739			 * a few more times else Done
3740			 */
3741			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3742			if (hsfsts.hsf_status.flcerr)
3743				/* repeat for some time before giving up */
3744				continue;
3745			else if (!hsfsts.hsf_status.flcdone)
3746				return ret_val;
3747		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3748	}
3749
3750	return 0;
3751}
3752
3753/**
3754 *  e1000_valid_led_default_ich8lan - Set the default LED settings
3755 *  @hw: pointer to the HW structure
3756 *  @data: Pointer to the LED settings
3757 *
3758 *  Reads the LED default settings from the NVM to data.  If the NVM LED
3759 *  settings is all 0's or F's, set the LED default to a valid LED default
3760 *  setting.
3761 **/
3762static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3763{
3764	s32 ret_val;
3765
3766	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3767	if (ret_val) {
3768		e_dbg("NVM Read Error\n");
3769		return ret_val;
3770	}
3771
3772	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
 
3773		*data = ID_LED_DEFAULT_ICH8LAN;
3774
3775	return 0;
3776}
3777
3778/**
3779 *  e1000_id_led_init_pchlan - store LED configurations
3780 *  @hw: pointer to the HW structure
3781 *
3782 *  PCH does not control LEDs via the LEDCTL register, rather it uses
3783 *  the PHY LED configuration register.
3784 *
3785 *  PCH also does not have an "always on" or "always off" mode which
3786 *  complicates the ID feature.  Instead of using the "on" mode to indicate
3787 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3788 *  use "link_up" mode.  The LEDs will still ID on request if there is no
3789 *  link based on logic in e1000_led_[on|off]_pchlan().
3790 **/
3791static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3792{
3793	struct e1000_mac_info *mac = &hw->mac;
3794	s32 ret_val;
3795	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3796	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3797	u16 data, i, temp, shift;
3798
3799	/* Get default ID LED modes */
3800	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3801	if (ret_val)
3802		return ret_val;
3803
3804	mac->ledctl_default = er32(LEDCTL);
3805	mac->ledctl_mode1 = mac->ledctl_default;
3806	mac->ledctl_mode2 = mac->ledctl_default;
3807
3808	for (i = 0; i < 4; i++) {
3809		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3810		shift = (i * 5);
3811		switch (temp) {
3812		case ID_LED_ON1_DEF2:
3813		case ID_LED_ON1_ON2:
3814		case ID_LED_ON1_OFF2:
3815			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3816			mac->ledctl_mode1 |= (ledctl_on << shift);
3817			break;
3818		case ID_LED_OFF1_DEF2:
3819		case ID_LED_OFF1_ON2:
3820		case ID_LED_OFF1_OFF2:
3821			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3822			mac->ledctl_mode1 |= (ledctl_off << shift);
3823			break;
3824		default:
3825			/* Do nothing */
3826			break;
3827		}
3828		switch (temp) {
3829		case ID_LED_DEF1_ON2:
3830		case ID_LED_ON1_ON2:
3831		case ID_LED_OFF1_ON2:
3832			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3833			mac->ledctl_mode2 |= (ledctl_on << shift);
3834			break;
3835		case ID_LED_DEF1_OFF2:
3836		case ID_LED_ON1_OFF2:
3837		case ID_LED_OFF1_OFF2:
3838			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3839			mac->ledctl_mode2 |= (ledctl_off << shift);
3840			break;
3841		default:
3842			/* Do nothing */
3843			break;
3844		}
3845	}
3846
3847	return 0;
3848}
3849
3850/**
3851 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3852 *  @hw: pointer to the HW structure
3853 *
3854 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3855 *  register, so the the bus width is hard coded.
3856 **/
3857static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3858{
3859	struct e1000_bus_info *bus = &hw->bus;
3860	s32 ret_val;
3861
3862	ret_val = e1000e_get_bus_info_pcie(hw);
3863
3864	/* ICH devices are "PCI Express"-ish.  They have
 
3865	 * a configuration space, but do not contain
3866	 * PCI Express Capability registers, so bus width
3867	 * must be hardcoded.
3868	 */
3869	if (bus->width == e1000_bus_width_unknown)
3870		bus->width = e1000_bus_width_pcie_x1;
3871
3872	return ret_val;
3873}
3874
3875/**
3876 *  e1000_reset_hw_ich8lan - Reset the hardware
3877 *  @hw: pointer to the HW structure
3878 *
3879 *  Does a full reset of the hardware which includes a reset of the PHY and
3880 *  MAC.
3881 **/
3882static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3883{
3884	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3885	u16 kum_cfg;
3886	u32 ctrl, reg;
3887	s32 ret_val;
3888
3889	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 
3890	 * on the last TLP read/write transaction when MAC is reset.
3891	 */
3892	ret_val = e1000e_disable_pcie_master(hw);
3893	if (ret_val)
3894		e_dbg("PCI-E Master disable polling has failed.\n");
3895
3896	e_dbg("Masking off all interrupts\n");
3897	ew32(IMC, 0xffffffff);
3898
3899	/* Disable the Transmit and Receive units.  Then delay to allow
 
3900	 * any pending transactions to complete before we hit the MAC
3901	 * with the global reset.
3902	 */
3903	ew32(RCTL, 0);
3904	ew32(TCTL, E1000_TCTL_PSP);
3905	e1e_flush();
3906
3907	usleep_range(10000, 20000);
3908
3909	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3910	if (hw->mac.type == e1000_ich8lan) {
3911		/* Set Tx and Rx buffer allocation to 8k apiece. */
3912		ew32(PBA, E1000_PBA_8K);
3913		/* Set Packet Buffer Size to 16k. */
3914		ew32(PBS, E1000_PBS_16K);
3915	}
3916
3917	if (hw->mac.type == e1000_pchlan) {
3918		/* Save the NVM K1 bit setting */
3919		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3920		if (ret_val)
3921			return ret_val;
3922
3923		if (kum_cfg & E1000_NVM_K1_ENABLE)
3924			dev_spec->nvm_k1_enabled = true;
3925		else
3926			dev_spec->nvm_k1_enabled = false;
3927	}
3928
3929	ctrl = er32(CTRL);
3930
3931	if (!hw->phy.ops.check_reset_block(hw)) {
3932		/* Full-chip reset requires MAC and PHY reset at the same
 
3933		 * time to make sure the interface between MAC and the
3934		 * external PHY is reset.
3935		 */
3936		ctrl |= E1000_CTRL_PHY_RST;
3937
3938		/* Gate automatic PHY configuration by hardware on
 
3939		 * non-managed 82579
3940		 */
3941		if ((hw->mac.type == e1000_pch2lan) &&
3942		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3943			e1000_gate_hw_phy_config_ich8lan(hw, true);
3944	}
3945	ret_val = e1000_acquire_swflag_ich8lan(hw);
3946	e_dbg("Issuing a global reset to ich8lan\n");
3947	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3948	/* cannot issue a flush here because it hangs the hardware */
3949	msleep(20);
3950
3951	/* Set Phy Config Counter to 50msec */
3952	if (hw->mac.type == e1000_pch2lan) {
3953		reg = er32(FEXTNVM3);
3954		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3955		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3956		ew32(FEXTNVM3, reg);
3957	}
3958
3959	if (!ret_val)
3960		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3961
3962	if (ctrl & E1000_CTRL_PHY_RST) {
3963		ret_val = hw->phy.ops.get_cfg_done(hw);
3964		if (ret_val)
3965			return ret_val;
3966
3967		ret_val = e1000_post_phy_reset_ich8lan(hw);
3968		if (ret_val)
3969			return ret_val;
3970	}
3971
3972	/* For PCH, this write will make sure that any noise
 
3973	 * will be detected as a CRC error and be dropped rather than show up
3974	 * as a bad packet to the DMA engine.
3975	 */
3976	if (hw->mac.type == e1000_pchlan)
3977		ew32(CRC_OFFSET, 0x65656565);
3978
3979	ew32(IMC, 0xffffffff);
3980	er32(ICR);
3981
3982	reg = er32(KABGTXD);
3983	reg |= E1000_KABGTXD_BGSQLBIAS;
3984	ew32(KABGTXD, reg);
3985
3986	return 0;
3987}
3988
3989/**
3990 *  e1000_init_hw_ich8lan - Initialize the hardware
3991 *  @hw: pointer to the HW structure
3992 *
3993 *  Prepares the hardware for transmit and receive by doing the following:
3994 *   - initialize hardware bits
3995 *   - initialize LED identification
3996 *   - setup receive address registers
3997 *   - setup flow control
3998 *   - setup transmit descriptors
3999 *   - clear statistics
4000 **/
4001static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4002{
4003	struct e1000_mac_info *mac = &hw->mac;
4004	u32 ctrl_ext, txdctl, snoop;
4005	s32 ret_val;
4006	u16 i;
4007
4008	e1000_initialize_hw_bits_ich8lan(hw);
4009
4010	/* Initialize identification LED */
4011	ret_val = mac->ops.id_led_init(hw);
4012	/* An error is not fatal and we should not stop init due to this */
4013	if (ret_val)
4014		e_dbg("Error initializing identification LED\n");
 
4015
4016	/* Setup the receive address. */
4017	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4018
4019	/* Zero out the Multicast HASH table */
4020	e_dbg("Zeroing the MTA\n");
4021	for (i = 0; i < mac->mta_reg_count; i++)
4022		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4023
4024	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
 
4025	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4026	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4027	 */
4028	if (hw->phy.type == e1000_phy_82578) {
4029		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4030		i &= ~BM_WUC_HOST_WU_BIT;
4031		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4032		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4033		if (ret_val)
4034			return ret_val;
4035	}
4036
4037	/* Setup link and flow control */
4038	ret_val = mac->ops.setup_link(hw);
4039
4040	/* Set the transmit descriptor write-back policy for both queues */
4041	txdctl = er32(TXDCTL(0));
4042	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4043		  E1000_TXDCTL_FULL_TX_DESC_WB);
4044	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4045		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4046	ew32(TXDCTL(0), txdctl);
4047	txdctl = er32(TXDCTL(1));
4048	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4049		  E1000_TXDCTL_FULL_TX_DESC_WB);
4050	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4051		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4052	ew32(TXDCTL(1), txdctl);
4053
4054	/* ICH8 has opposite polarity of no_snoop bits.
 
4055	 * By default, we should use snoop behavior.
4056	 */
4057	if (mac->type == e1000_ich8lan)
4058		snoop = PCIE_ICH8_SNOOP_ALL;
4059	else
4060		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4061	e1000e_set_pcie_no_snoop(hw, snoop);
4062
4063	ctrl_ext = er32(CTRL_EXT);
4064	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4065	ew32(CTRL_EXT, ctrl_ext);
4066
4067	/* Clear all of the statistics registers (clear on read).  It is
 
4068	 * important that we do this after we have tried to establish link
4069	 * because the symbol error count will increment wildly if there
4070	 * is no link.
4071	 */
4072	e1000_clear_hw_cntrs_ich8lan(hw);
4073
4074	return ret_val;
4075}
4076
4077/**
4078 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4079 *  @hw: pointer to the HW structure
4080 *
4081 *  Sets/Clears required hardware bits necessary for correctly setting up the
4082 *  hardware for transmit and receive.
4083 **/
4084static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4085{
4086	u32 reg;
4087
4088	/* Extended Device Control */
4089	reg = er32(CTRL_EXT);
4090	reg |= (1 << 22);
4091	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4092	if (hw->mac.type >= e1000_pchlan)
4093		reg |= E1000_CTRL_EXT_PHYPDEN;
4094	ew32(CTRL_EXT, reg);
4095
4096	/* Transmit Descriptor Control 0 */
4097	reg = er32(TXDCTL(0));
4098	reg |= (1 << 22);
4099	ew32(TXDCTL(0), reg);
4100
4101	/* Transmit Descriptor Control 1 */
4102	reg = er32(TXDCTL(1));
4103	reg |= (1 << 22);
4104	ew32(TXDCTL(1), reg);
4105
4106	/* Transmit Arbitration Control 0 */
4107	reg = er32(TARC(0));
4108	if (hw->mac.type == e1000_ich8lan)
4109		reg |= (1 << 28) | (1 << 29);
4110	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4111	ew32(TARC(0), reg);
4112
4113	/* Transmit Arbitration Control 1 */
4114	reg = er32(TARC(1));
4115	if (er32(TCTL) & E1000_TCTL_MULR)
4116		reg &= ~(1 << 28);
4117	else
4118		reg |= (1 << 28);
4119	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4120	ew32(TARC(1), reg);
4121
4122	/* Device Status */
4123	if (hw->mac.type == e1000_ich8lan) {
4124		reg = er32(STATUS);
4125		reg &= ~(1 << 31);
4126		ew32(STATUS, reg);
4127	}
4128
4129	/* work-around descriptor data corruption issue during nfs v2 udp
 
4130	 * traffic, just disable the nfs filtering capability
4131	 */
4132	reg = er32(RFCTL);
4133	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4134
4135	/* Disable IPv6 extension header parsing because some malformed
 
4136	 * IPv6 headers can hang the Rx.
4137	 */
4138	if (hw->mac.type == e1000_ich8lan)
4139		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4140	ew32(RFCTL, reg);
4141
4142	/* Enable ECC on Lynxpoint */
4143	if (hw->mac.type == e1000_pch_lpt) {
4144		reg = er32(PBECCSTS);
4145		reg |= E1000_PBECCSTS_ECC_ENABLE;
4146		ew32(PBECCSTS, reg);
4147
4148		reg = er32(CTRL);
4149		reg |= E1000_CTRL_MEHE;
4150		ew32(CTRL, reg);
4151	}
4152}
4153
4154/**
4155 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4156 *  @hw: pointer to the HW structure
4157 *
4158 *  Determines which flow control settings to use, then configures flow
4159 *  control.  Calls the appropriate media-specific link configuration
4160 *  function.  Assuming the adapter has a valid link partner, a valid link
4161 *  should be established.  Assumes the hardware has previously been reset
4162 *  and the transmitter and receiver are not enabled.
4163 **/
4164static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4165{
4166	s32 ret_val;
4167
4168	if (hw->phy.ops.check_reset_block(hw))
4169		return 0;
4170
4171	/* ICH parts do not have a word in the NVM to determine
 
4172	 * the default flow control setting, so we explicitly
4173	 * set it to full.
4174	 */
4175	if (hw->fc.requested_mode == e1000_fc_default) {
4176		/* Workaround h/w hang when Tx flow control enabled */
4177		if (hw->mac.type == e1000_pchlan)
4178			hw->fc.requested_mode = e1000_fc_rx_pause;
4179		else
4180			hw->fc.requested_mode = e1000_fc_full;
4181	}
4182
4183	/* Save off the requested flow control mode for use later.  Depending
 
4184	 * on the link partner's capabilities, we may or may not use this mode.
4185	 */
4186	hw->fc.current_mode = hw->fc.requested_mode;
4187
4188	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 
4189
4190	/* Continue to configure the copper link. */
4191	ret_val = hw->mac.ops.setup_physical_interface(hw);
4192	if (ret_val)
4193		return ret_val;
4194
4195	ew32(FCTTV, hw->fc.pause_time);
4196	if ((hw->phy.type == e1000_phy_82578) ||
4197	    (hw->phy.type == e1000_phy_82579) ||
4198	    (hw->phy.type == e1000_phy_i217) ||
4199	    (hw->phy.type == e1000_phy_82577)) {
4200		ew32(FCRTV_PCH, hw->fc.refresh_time);
4201
4202		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4203				   hw->fc.pause_time);
4204		if (ret_val)
4205			return ret_val;
4206	}
4207
4208	return e1000e_set_fc_watermarks(hw);
4209}
4210
4211/**
4212 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4213 *  @hw: pointer to the HW structure
4214 *
4215 *  Configures the kumeran interface to the PHY to wait the appropriate time
4216 *  when polling the PHY, then call the generic setup_copper_link to finish
4217 *  configuring the copper link.
4218 **/
4219static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4220{
4221	u32 ctrl;
4222	s32 ret_val;
4223	u16 reg_data;
4224
4225	ctrl = er32(CTRL);
4226	ctrl |= E1000_CTRL_SLU;
4227	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4228	ew32(CTRL, ctrl);
4229
4230	/* Set the mac to wait the maximum time between each iteration
 
4231	 * and increase the max iterations when polling the phy;
4232	 * this fixes erroneous timeouts at 10Mbps.
4233	 */
4234	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4235	if (ret_val)
4236		return ret_val;
4237	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4238				       &reg_data);
4239	if (ret_val)
4240		return ret_val;
4241	reg_data |= 0x3F;
4242	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4243					reg_data);
4244	if (ret_val)
4245		return ret_val;
4246
4247	switch (hw->phy.type) {
4248	case e1000_phy_igp_3:
4249		ret_val = e1000e_copper_link_setup_igp(hw);
4250		if (ret_val)
4251			return ret_val;
4252		break;
4253	case e1000_phy_bm:
4254	case e1000_phy_82578:
4255		ret_val = e1000e_copper_link_setup_m88(hw);
4256		if (ret_val)
4257			return ret_val;
4258		break;
4259	case e1000_phy_82577:
4260	case e1000_phy_82579:
 
4261		ret_val = e1000_copper_link_setup_82577(hw);
4262		if (ret_val)
4263			return ret_val;
4264		break;
4265	case e1000_phy_ife:
4266		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4267		if (ret_val)
4268			return ret_val;
4269
4270		reg_data &= ~IFE_PMC_AUTO_MDIX;
4271
4272		switch (hw->phy.mdix) {
4273		case 1:
4274			reg_data &= ~IFE_PMC_FORCE_MDIX;
4275			break;
4276		case 2:
4277			reg_data |= IFE_PMC_FORCE_MDIX;
4278			break;
4279		case 0:
4280		default:
4281			reg_data |= IFE_PMC_AUTO_MDIX;
4282			break;
4283		}
4284		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4285		if (ret_val)
4286			return ret_val;
4287		break;
4288	default:
4289		break;
4290	}
4291
4292	return e1000e_setup_copper_link(hw);
4293}
4294
4295/**
4296 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4297 *  @hw: pointer to the HW structure
4298 *
4299 *  Calls the PHY specific link setup function and then calls the
4300 *  generic setup_copper_link to finish configuring the link for
4301 *  Lynxpoint PCH devices
4302 **/
4303static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4304{
4305	u32 ctrl;
4306	s32 ret_val;
4307
4308	ctrl = er32(CTRL);
4309	ctrl |= E1000_CTRL_SLU;
4310	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4311	ew32(CTRL, ctrl);
4312
4313	ret_val = e1000_copper_link_setup_82577(hw);
4314	if (ret_val)
4315		return ret_val;
4316
4317	return e1000e_setup_copper_link(hw);
4318}
4319
4320/**
4321 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4322 *  @hw: pointer to the HW structure
4323 *  @speed: pointer to store current link speed
4324 *  @duplex: pointer to store the current link duplex
4325 *
4326 *  Calls the generic get_speed_and_duplex to retrieve the current link
4327 *  information and then calls the Kumeran lock loss workaround for links at
4328 *  gigabit speeds.
4329 **/
4330static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4331					  u16 *duplex)
4332{
4333	s32 ret_val;
4334
4335	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
4336	if (ret_val)
4337		return ret_val;
4338
4339	if ((hw->mac.type == e1000_ich8lan) &&
4340	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
 
4341		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4342	}
4343
4344	return ret_val;
4345}
4346
4347/**
4348 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4349 *  @hw: pointer to the HW structure
4350 *
4351 *  Work-around for 82566 Kumeran PCS lock loss:
4352 *  On link status change (i.e. PCI reset, speed change) and link is up and
4353 *  speed is gigabit-
4354 *    0) if workaround is optionally disabled do nothing
4355 *    1) wait 1ms for Kumeran link to come up
4356 *    2) check Kumeran Diagnostic register PCS lock loss bit
4357 *    3) if not set the link is locked (all is good), otherwise...
4358 *    4) reset the PHY
4359 *    5) repeat up to 10 times
4360 *  Note: this is only called for IGP3 copper when speed is 1gb.
4361 **/
4362static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4363{
4364	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4365	u32 phy_ctrl;
4366	s32 ret_val;
4367	u16 i, data;
4368	bool link;
4369
4370	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4371		return 0;
4372
4373	/* Make sure link is up before proceeding.  If not just return.
 
4374	 * Attempting this while link is negotiating fouled up link
4375	 * stability
4376	 */
4377	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
4378	if (!link)
4379		return 0;
4380
4381	for (i = 0; i < 10; i++) {
4382		/* read once to clear */
4383		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4384		if (ret_val)
4385			return ret_val;
4386		/* and again to get new status */
4387		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4388		if (ret_val)
4389			return ret_val;
4390
4391		/* check for PCS lock */
4392		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4393			return 0;
4394
4395		/* Issue PHY reset */
4396		e1000_phy_hw_reset(hw);
4397		mdelay(5);
4398	}
4399	/* Disable GigE link negotiation */
4400	phy_ctrl = er32(PHY_CTRL);
4401	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4402		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4403	ew32(PHY_CTRL, phy_ctrl);
4404
4405	/* Call gig speed drop workaround on Gig disable before accessing
 
4406	 * any PHY registers
4407	 */
4408	e1000e_gig_downshift_workaround_ich8lan(hw);
4409
4410	/* unable to acquire PCS lock */
4411	return -E1000_ERR_PHY;
4412}
4413
4414/**
4415 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4416 *  @hw: pointer to the HW structure
4417 *  @state: boolean value used to set the current Kumeran workaround state
4418 *
4419 *  If ICH8, set the current Kumeran workaround state (enabled - true
4420 *  /disabled - false).
4421 **/
4422void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4423						  bool state)
4424{
4425	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4426
4427	if (hw->mac.type != e1000_ich8lan) {
4428		e_dbg("Workaround applies to ICH8 only.\n");
4429		return;
4430	}
4431
4432	dev_spec->kmrn_lock_loss_workaround_enabled = state;
4433}
4434
4435/**
4436 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4437 *  @hw: pointer to the HW structure
4438 *
4439 *  Workaround for 82566 power-down on D3 entry:
4440 *    1) disable gigabit link
4441 *    2) write VR power-down enable
4442 *    3) read it back
4443 *  Continue if successful, else issue LCD reset and repeat
4444 **/
4445void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4446{
4447	u32 reg;
4448	u16 data;
4449	u8 retry = 0;
4450
4451	if (hw->phy.type != e1000_phy_igp_3)
4452		return;
4453
4454	/* Try the workaround twice (if needed) */
4455	do {
4456		/* Disable link */
4457		reg = er32(PHY_CTRL);
4458		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4459			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4460		ew32(PHY_CTRL, reg);
4461
4462		/* Call gig speed drop workaround on Gig disable before
 
4463		 * accessing any PHY registers
4464		 */
4465		if (hw->mac.type == e1000_ich8lan)
4466			e1000e_gig_downshift_workaround_ich8lan(hw);
4467
4468		/* Write VR power-down enable */
4469		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4470		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4471		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4472
4473		/* Read it back and test */
4474		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4475		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4476		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4477			break;
4478
4479		/* Issue PHY reset and repeat at most one more time */
4480		reg = er32(CTRL);
4481		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4482		retry++;
4483	} while (retry);
4484}
4485
4486/**
4487 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4488 *  @hw: pointer to the HW structure
4489 *
4490 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4491 *  LPLU, Gig disable, MDIC PHY reset):
4492 *    1) Set Kumeran Near-end loopback
4493 *    2) Clear Kumeran Near-end loopback
4494 *  Should only be called for ICH8[m] devices with any 1G Phy.
4495 **/
4496void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4497{
4498	s32 ret_val;
4499	u16 reg_data;
4500
4501	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4502		return;
4503
4504	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4505				       &reg_data);
4506	if (ret_val)
4507		return;
4508	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4509	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4510					reg_data);
4511	if (ret_val)
4512		return;
4513	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4514	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
 
4515}
4516
4517/**
4518 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4519 *  @hw: pointer to the HW structure
4520 *
4521 *  During S0 to Sx transition, it is possible the link remains at gig
4522 *  instead of negotiating to a lower speed.  Before going to Sx, set
4523 *  'Gig Disable' to force link speed negotiation to a lower speed based on
4524 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4525 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4526 *  needs to be written.
4527 *  Parts that support (and are linked to a partner which support) EEE in
4528 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4529 *  than 10Mbps w/o EEE.
4530 **/
4531void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4532{
4533	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4534	u32 phy_ctrl;
4535	s32 ret_val;
4536
4537	phy_ctrl = er32(PHY_CTRL);
4538	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4539
4540	if (hw->phy.type == e1000_phy_i217) {
4541		u16 phy_reg, device_id = hw->adapter->pdev->device;
4542
4543		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4544		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4545		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4546		    (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4547			u32 fextnvm6 = er32(FEXTNVM6);
4548
4549			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4550		}
4551
4552		ret_val = hw->phy.ops.acquire(hw);
4553		if (ret_val)
4554			goto out;
4555
4556		if (!dev_spec->eee_disable) {
4557			u16 eee_advert;
4558
4559			ret_val =
4560			    e1000_read_emi_reg_locked(hw,
4561						      I217_EEE_ADVERTISEMENT,
4562						      &eee_advert);
4563			if (ret_val)
4564				goto release;
 
4565
4566			/* Disable LPLU if both link partners support 100BaseT
 
4567			 * EEE and 100Full is advertised on both ends of the
4568			 * link.
4569			 */
4570			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4571			    (dev_spec->eee_lp_ability &
4572			     I82579_EEE_100_SUPPORTED) &&
4573			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4574				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4575					      E1000_PHY_CTRL_NOND0A_LPLU);
4576		}
4577
4578		/* For i217 Intel Rapid Start Technology support,
 
4579		 * when the system is going into Sx and no manageability engine
4580		 * is present, the driver must configure proxy to reset only on
4581		 * power good.  LPI (Low Power Idle) state must also reset only
4582		 * on power good, as well as the MTA (Multicast table array).
4583		 * The SMBus release must also be disabled on LCD reset.
4584		 */
4585		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 
4586			/* Enable proxy to reset only on power good. */
4587			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4588			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4589			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4590
4591			/* Set bit enable LPI (EEE) to reset only on
 
4592			 * power good.
4593			 */
4594			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4595			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4596			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4597
4598			/* Disable the SMB release on LCD reset. */
4599			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4600			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4601			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4602		}
4603
4604		/* Enable MTA to reset for Intel Rapid Start Technology
 
4605		 * Support
4606		 */
4607		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4608		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4609		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4610
4611release:
4612		hw->phy.ops.release(hw);
4613	}
4614out:
4615	ew32(PHY_CTRL, phy_ctrl);
4616
4617	if (hw->mac.type == e1000_ich8lan)
4618		e1000e_gig_downshift_workaround_ich8lan(hw);
4619
4620	if (hw->mac.type >= e1000_pchlan) {
4621		e1000_oem_bits_config_ich8lan(hw, false);
4622
4623		/* Reset PHY to activate OEM bits on 82577/8 */
4624		if (hw->mac.type == e1000_pchlan)
4625			e1000e_phy_hw_reset_generic(hw);
4626
4627		ret_val = hw->phy.ops.acquire(hw);
4628		if (ret_val)
4629			return;
4630		e1000_write_smbus_addr(hw);
4631		hw->phy.ops.release(hw);
4632	}
4633}
4634
4635/**
4636 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4637 *  @hw: pointer to the HW structure
4638 *
4639 *  During Sx to S0 transitions on non-managed devices or managed devices
4640 *  on which PHY resets are not blocked, if the PHY registers cannot be
4641 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4642 *  the PHY.
4643 *  On i217, setup Intel Rapid Start Technology.
4644 **/
4645void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4646{
4647	s32 ret_val;
4648
4649	if (hw->mac.type < e1000_pch2lan)
4650		return;
4651
4652	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4653	if (ret_val) {
4654		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4655		return;
4656	}
4657
4658	/* For i217 Intel Rapid Start Technology support when the system
 
4659	 * is transitioning from Sx and no manageability engine is present
4660	 * configure SMBus to restore on reset, disable proxy, and enable
4661	 * the reset on MTA (Multicast table array).
4662	 */
4663	if (hw->phy.type == e1000_phy_i217) {
4664		u16 phy_reg;
4665
4666		ret_val = hw->phy.ops.acquire(hw);
4667		if (ret_val) {
4668			e_dbg("Failed to setup iRST\n");
4669			return;
4670		}
4671
4672		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4673			/* Restore clear on SMB if no manageability engine
 
4674			 * is present
4675			 */
4676			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4677			if (ret_val)
4678				goto release;
4679			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4680			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4681
4682			/* Disable Proxy */
4683			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4684		}
4685		/* Enable reset on MTA */
4686		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4687		if (ret_val)
4688			goto release;
4689		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4690		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4691release:
4692		if (ret_val)
4693			e_dbg("Error %d in resume workarounds\n", ret_val);
4694		hw->phy.ops.release(hw);
4695	}
4696}
4697
4698/**
4699 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4700 *  @hw: pointer to the HW structure
4701 *
4702 *  Return the LED back to the default configuration.
4703 **/
4704static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4705{
4706	if (hw->phy.type == e1000_phy_ife)
4707		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4708
4709	ew32(LEDCTL, hw->mac.ledctl_default);
4710	return 0;
4711}
4712
4713/**
4714 *  e1000_led_on_ich8lan - Turn LEDs on
4715 *  @hw: pointer to the HW structure
4716 *
4717 *  Turn on the LEDs.
4718 **/
4719static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4720{
4721	if (hw->phy.type == e1000_phy_ife)
4722		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4723				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4724
4725	ew32(LEDCTL, hw->mac.ledctl_mode2);
4726	return 0;
4727}
4728
4729/**
4730 *  e1000_led_off_ich8lan - Turn LEDs off
4731 *  @hw: pointer to the HW structure
4732 *
4733 *  Turn off the LEDs.
4734 **/
4735static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4736{
4737	if (hw->phy.type == e1000_phy_ife)
4738		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4739				(IFE_PSCL_PROBE_MODE |
4740				 IFE_PSCL_PROBE_LEDS_OFF));
4741
4742	ew32(LEDCTL, hw->mac.ledctl_mode1);
4743	return 0;
4744}
4745
4746/**
4747 *  e1000_setup_led_pchlan - Configures SW controllable LED
4748 *  @hw: pointer to the HW structure
4749 *
4750 *  This prepares the SW controllable LED for use.
4751 **/
4752static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4753{
4754	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4755}
4756
4757/**
4758 *  e1000_cleanup_led_pchlan - Restore the default LED operation
4759 *  @hw: pointer to the HW structure
4760 *
4761 *  Return the LED back to the default configuration.
4762 **/
4763static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4764{
4765	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4766}
4767
4768/**
4769 *  e1000_led_on_pchlan - Turn LEDs on
4770 *  @hw: pointer to the HW structure
4771 *
4772 *  Turn on the LEDs.
4773 **/
4774static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4775{
4776	u16 data = (u16)hw->mac.ledctl_mode2;
4777	u32 i, led;
4778
4779	/* If no link, then turn LED on by setting the invert bit
 
4780	 * for each LED that's mode is "link_up" in ledctl_mode2.
4781	 */
4782	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4783		for (i = 0; i < 3; i++) {
4784			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4785			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4786			    E1000_LEDCTL_MODE_LINK_UP)
4787				continue;
4788			if (led & E1000_PHY_LED0_IVRT)
4789				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4790			else
4791				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4792		}
4793	}
4794
4795	return e1e_wphy(hw, HV_LED_CONFIG, data);
4796}
4797
4798/**
4799 *  e1000_led_off_pchlan - Turn LEDs off
4800 *  @hw: pointer to the HW structure
4801 *
4802 *  Turn off the LEDs.
4803 **/
4804static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4805{
4806	u16 data = (u16)hw->mac.ledctl_mode1;
4807	u32 i, led;
4808
4809	/* If no link, then turn LED off by clearing the invert bit
 
4810	 * for each LED that's mode is "link_up" in ledctl_mode1.
4811	 */
4812	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4813		for (i = 0; i < 3; i++) {
4814			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4815			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4816			    E1000_LEDCTL_MODE_LINK_UP)
4817				continue;
4818			if (led & E1000_PHY_LED0_IVRT)
4819				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4820			else
4821				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4822		}
4823	}
4824
4825	return e1e_wphy(hw, HV_LED_CONFIG, data);
4826}
4827
4828/**
4829 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4830 *  @hw: pointer to the HW structure
4831 *
4832 *  Read appropriate register for the config done bit for completion status
4833 *  and configure the PHY through s/w for EEPROM-less parts.
4834 *
4835 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4836 *  config done bit, so only an error is logged and continues.  If we were
4837 *  to return with error, EEPROM-less silicon would not be able to be reset
4838 *  or change link.
4839 **/
4840static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4841{
4842	s32 ret_val = 0;
4843	u32 bank = 0;
4844	u32 status;
4845
4846	e1000e_get_cfg_done_generic(hw);
4847
4848	/* Wait for indication from h/w that it has completed basic config */
4849	if (hw->mac.type >= e1000_ich10lan) {
4850		e1000_lan_init_done_ich8lan(hw);
4851	} else {
4852		ret_val = e1000e_get_auto_rd_done(hw);
4853		if (ret_val) {
4854			/* When auto config read does not complete, do not
 
4855			 * return with an error. This can happen in situations
4856			 * where there is no eeprom and prevents getting link.
4857			 */
4858			e_dbg("Auto Read Done did not complete\n");
4859			ret_val = 0;
4860		}
4861	}
4862
4863	/* Clear PHY Reset Asserted bit */
4864	status = er32(STATUS);
4865	if (status & E1000_STATUS_PHYRA)
4866		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4867	else
4868		e_dbg("PHY Reset Asserted not set - needs delay\n");
4869
4870	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4871	if (hw->mac.type <= e1000_ich9lan) {
4872		if (!(er32(EECD) & E1000_EECD_PRES) &&
4873		    (hw->phy.type == e1000_phy_igp_3)) {
4874			e1000e_phy_init_script_igp3(hw);
4875		}
4876	} else {
4877		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4878			/* Maybe we should do a basic PHY config */
4879			e_dbg("EEPROM not present\n");
4880			ret_val = -E1000_ERR_CONFIG;
4881		}
4882	}
4883
4884	return ret_val;
4885}
4886
4887/**
4888 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4889 * @hw: pointer to the HW structure
4890 *
4891 * In the case of a PHY power down to save power, or to turn off link during a
4892 * driver unload, or wake on lan is not enabled, remove the link.
4893 **/
4894static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4895{
4896	/* If the management interface is not enabled, then power down */
4897	if (!(hw->mac.ops.check_mng_mode(hw) ||
4898	      hw->phy.ops.check_reset_block(hw)))
4899		e1000_power_down_phy_copper(hw);
4900}
4901
4902/**
4903 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4904 *  @hw: pointer to the HW structure
4905 *
4906 *  Clears hardware counters specific to the silicon family and calls
4907 *  clear_hw_cntrs_generic to clear all general purpose counters.
4908 **/
4909static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4910{
4911	u16 phy_data;
4912	s32 ret_val;
4913
4914	e1000e_clear_hw_cntrs_base(hw);
4915
4916	er32(ALGNERRC);
4917	er32(RXERRC);
4918	er32(TNCRS);
4919	er32(CEXTERR);
4920	er32(TSCTC);
4921	er32(TSCTFC);
4922
4923	er32(MGTPRC);
4924	er32(MGTPDC);
4925	er32(MGTPTC);
4926
4927	er32(IAC);
4928	er32(ICRXOC);
4929
4930	/* Clear PHY statistics registers */
4931	if ((hw->phy.type == e1000_phy_82578) ||
4932	    (hw->phy.type == e1000_phy_82579) ||
4933	    (hw->phy.type == e1000_phy_i217) ||
4934	    (hw->phy.type == e1000_phy_82577)) {
4935		ret_val = hw->phy.ops.acquire(hw);
4936		if (ret_val)
4937			return;
4938		ret_val = hw->phy.ops.set_page(hw,
4939					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4940		if (ret_val)
4941			goto release;
4942		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4943		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4944		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4945		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4946		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4947		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4948		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4949		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4950		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4951		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4952		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4953		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4954		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4955		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4956release:
4957		hw->phy.ops.release(hw);
4958	}
4959}
4960
4961static const struct e1000_mac_operations ich8_mac_ops = {
4962	/* check_mng_mode dependent on mac type */
4963	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4964	/* cleanup_led dependent on mac type */
4965	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4966	.get_bus_info		= e1000_get_bus_info_ich8lan,
4967	.set_lan_id		= e1000_set_lan_id_single_port,
4968	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4969	/* led_on dependent on mac type */
4970	/* led_off dependent on mac type */
4971	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4972	.reset_hw		= e1000_reset_hw_ich8lan,
4973	.init_hw		= e1000_init_hw_ich8lan,
4974	.setup_link		= e1000_setup_link_ich8lan,
4975	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
4976	/* id_led_init dependent on mac type */
4977	.config_collision_dist	= e1000e_config_collision_dist_generic,
4978	.rar_set		= e1000e_rar_set_generic,
4979};
4980
4981static const struct e1000_phy_operations ich8_phy_ops = {
4982	.acquire		= e1000_acquire_swflag_ich8lan,
4983	.check_reset_block	= e1000_check_reset_block_ich8lan,
4984	.commit			= NULL,
4985	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4986	.get_cable_length	= e1000e_get_cable_length_igp_2,
4987	.read_reg		= e1000e_read_phy_reg_igp,
4988	.release		= e1000_release_swflag_ich8lan,
4989	.reset			= e1000_phy_hw_reset_ich8lan,
4990	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4991	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4992	.write_reg		= e1000e_write_phy_reg_igp,
4993};
4994
4995static const struct e1000_nvm_operations ich8_nvm_ops = {
4996	.acquire		= e1000_acquire_nvm_ich8lan,
4997	.read			= e1000_read_nvm_ich8lan,
4998	.release		= e1000_release_nvm_ich8lan,
4999	.reload			= e1000e_reload_nvm_generic,
5000	.update			= e1000_update_nvm_checksum_ich8lan,
5001	.valid_led_default	= e1000_valid_led_default_ich8lan,
5002	.validate		= e1000_validate_nvm_checksum_ich8lan,
5003	.write			= e1000_write_nvm_ich8lan,
5004};
5005
5006const struct e1000_info e1000_ich8_info = {
5007	.mac			= e1000_ich8lan,
5008	.flags			= FLAG_HAS_WOL
5009				  | FLAG_IS_ICH
5010				  | FLAG_HAS_CTRLEXT_ON_LOAD
5011				  | FLAG_HAS_AMT
5012				  | FLAG_HAS_FLASH
5013				  | FLAG_APME_IN_WUC,
5014	.pba			= 8,
5015	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
5016	.get_variants		= e1000_get_variants_ich8lan,
5017	.mac_ops		= &ich8_mac_ops,
5018	.phy_ops		= &ich8_phy_ops,
5019	.nvm_ops		= &ich8_nvm_ops,
5020};
5021
5022const struct e1000_info e1000_ich9_info = {
5023	.mac			= e1000_ich9lan,
5024	.flags			= FLAG_HAS_JUMBO_FRAMES
5025				  | FLAG_IS_ICH
5026				  | FLAG_HAS_WOL
5027				  | FLAG_HAS_CTRLEXT_ON_LOAD
5028				  | FLAG_HAS_AMT
5029				  | FLAG_HAS_FLASH
5030				  | FLAG_APME_IN_WUC,
5031	.pba			= 18,
5032	.max_hw_frame_size	= DEFAULT_JUMBO,
5033	.get_variants		= e1000_get_variants_ich8lan,
5034	.mac_ops		= &ich8_mac_ops,
5035	.phy_ops		= &ich8_phy_ops,
5036	.nvm_ops		= &ich8_nvm_ops,
5037};
5038
5039const struct e1000_info e1000_ich10_info = {
5040	.mac			= e1000_ich10lan,
5041	.flags			= FLAG_HAS_JUMBO_FRAMES
5042				  | FLAG_IS_ICH
5043				  | FLAG_HAS_WOL
5044				  | FLAG_HAS_CTRLEXT_ON_LOAD
5045				  | FLAG_HAS_AMT
5046				  | FLAG_HAS_FLASH
5047				  | FLAG_APME_IN_WUC,
5048	.pba			= 18,
5049	.max_hw_frame_size	= DEFAULT_JUMBO,
5050	.get_variants		= e1000_get_variants_ich8lan,
5051	.mac_ops		= &ich8_mac_ops,
5052	.phy_ops		= &ich8_phy_ops,
5053	.nvm_ops		= &ich8_nvm_ops,
5054};
5055
5056const struct e1000_info e1000_pch_info = {
5057	.mac			= e1000_pchlan,
5058	.flags			= FLAG_IS_ICH
5059				  | FLAG_HAS_WOL
5060				  | FLAG_HAS_CTRLEXT_ON_LOAD
5061				  | FLAG_HAS_AMT
5062				  | FLAG_HAS_FLASH
5063				  | FLAG_HAS_JUMBO_FRAMES
5064				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5065				  | FLAG_APME_IN_WUC,
5066	.flags2			= FLAG2_HAS_PHY_STATS,
5067	.pba			= 26,
5068	.max_hw_frame_size	= 4096,
5069	.get_variants		= e1000_get_variants_ich8lan,
5070	.mac_ops		= &ich8_mac_ops,
5071	.phy_ops		= &ich8_phy_ops,
5072	.nvm_ops		= &ich8_nvm_ops,
5073};
5074
5075const struct e1000_info e1000_pch2_info = {
5076	.mac			= e1000_pch2lan,
5077	.flags			= FLAG_IS_ICH
5078				  | FLAG_HAS_WOL
5079				  | FLAG_HAS_HW_TIMESTAMP
5080				  | FLAG_HAS_CTRLEXT_ON_LOAD
5081				  | FLAG_HAS_AMT
5082				  | FLAG_HAS_FLASH
5083				  | FLAG_HAS_JUMBO_FRAMES
5084				  | FLAG_APME_IN_WUC,
5085	.flags2			= FLAG2_HAS_PHY_STATS
5086				  | FLAG2_HAS_EEE,
5087	.pba			= 26,
5088	.max_hw_frame_size	= 9018,
5089	.get_variants		= e1000_get_variants_ich8lan,
5090	.mac_ops		= &ich8_mac_ops,
5091	.phy_ops		= &ich8_phy_ops,
5092	.nvm_ops		= &ich8_nvm_ops,
5093};
5094
5095const struct e1000_info e1000_pch_lpt_info = {
5096	.mac			= e1000_pch_lpt,
5097	.flags			= FLAG_IS_ICH
5098				  | FLAG_HAS_WOL
5099				  | FLAG_HAS_HW_TIMESTAMP
5100				  | FLAG_HAS_CTRLEXT_ON_LOAD
5101				  | FLAG_HAS_AMT
5102				  | FLAG_HAS_FLASH
5103				  | FLAG_HAS_JUMBO_FRAMES
5104				  | FLAG_APME_IN_WUC,
5105	.flags2			= FLAG2_HAS_PHY_STATS
5106				  | FLAG2_HAS_EEE,
5107	.pba			= 26,
5108	.max_hw_frame_size	= 9018,
5109	.get_variants		= e1000_get_variants_ich8lan,
5110	.mac_ops		= &ich8_mac_ops,
5111	.phy_ops		= &ich8_phy_ops,
5112	.nvm_ops		= &ich8_nvm_ops,
5113};