Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/*
  30 * 82562G 10/100 Network Connection
  31 * 82562G-2 10/100 Network Connection
  32 * 82562GT 10/100 Network Connection
  33 * 82562GT-2 10/100 Network Connection
  34 * 82562V 10/100 Network Connection
  35 * 82562V-2 10/100 Network Connection
  36 * 82566DC-2 Gigabit Network Connection
  37 * 82566DC Gigabit Network Connection
  38 * 82566DM-2 Gigabit Network Connection
  39 * 82566DM Gigabit Network Connection
  40 * 82566MC Gigabit Network Connection
  41 * 82566MM Gigabit Network Connection
  42 * 82567LM Gigabit Network Connection
  43 * 82567LF Gigabit Network Connection
  44 * 82567V Gigabit Network Connection
  45 * 82567LM-2 Gigabit Network Connection
  46 * 82567LF-2 Gigabit Network Connection
  47 * 82567V-2 Gigabit Network Connection
  48 * 82567LF-3 Gigabit Network Connection
  49 * 82567LM-3 Gigabit Network Connection
  50 * 82567LM-4 Gigabit Network Connection
  51 * 82577LM Gigabit Network Connection
  52 * 82577LC Gigabit Network Connection
  53 * 82578DM Gigabit Network Connection
  54 * 82578DC Gigabit Network Connection
  55 * 82579LM Gigabit Network Connection
  56 * 82579V Gigabit Network Connection
 
 
 
 
 
 
 
 
  57 */
  58
  59#include "e1000.h"
  60
  61#define ICH_FLASH_GFPREG		0x0000
  62#define ICH_FLASH_HSFSTS		0x0004
  63#define ICH_FLASH_HSFCTL		0x0006
  64#define ICH_FLASH_FADDR			0x0008
  65#define ICH_FLASH_FDATA0		0x0010
  66#define ICH_FLASH_PR0			0x0074
  67
  68#define ICH_FLASH_READ_COMMAND_TIMEOUT	500
  69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
  70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
  71#define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
  72#define ICH_FLASH_CYCLE_REPEAT_COUNT	10
  73
  74#define ICH_CYCLE_READ			0
  75#define ICH_CYCLE_WRITE			2
  76#define ICH_CYCLE_ERASE			3
  77
  78#define FLASH_GFPREG_BASE_MASK		0x1FFF
  79#define FLASH_SECTOR_ADDR_SHIFT		12
  80
  81#define ICH_FLASH_SEG_SIZE_256		256
  82#define ICH_FLASH_SEG_SIZE_4K		4096
  83#define ICH_FLASH_SEG_SIZE_8K		8192
  84#define ICH_FLASH_SEG_SIZE_64K		65536
  85
  86
  87#define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
  88/* FW established a valid mode */
  89#define E1000_ICH_FWSM_FW_VALID		0x00008000
  90
  91#define E1000_ICH_MNG_IAMT_MODE		0x2
  92
  93#define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
  94				 (ID_LED_DEF1_OFF2 <<  8) | \
  95				 (ID_LED_DEF1_ON2  <<  4) | \
  96				 (ID_LED_DEF1_DEF2))
  97
  98#define E1000_ICH_NVM_SIG_WORD		0x13
  99#define E1000_ICH_NVM_SIG_MASK		0xC000
 100#define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
 101#define E1000_ICH_NVM_SIG_VALUE         0x80
 102
 103#define E1000_ICH8_LAN_INIT_TIMEOUT	1500
 104
 105#define E1000_FEXTNVM_SW_CONFIG		1
 106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
 107
 108#define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK    0x0C000000
 109#define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC  0x08000000
 110
 111#define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
 112#define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
 113#define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
 114
 115#define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
 116
 117#define E1000_ICH_RAR_ENTRIES		7
 118#define E1000_PCH2_RAR_ENTRIES		5 /* RAR[0], SHRA[0-3] */
 119#define E1000_PCH_LPT_RAR_ENTRIES	12 /* RAR[0], SHRA[0-10] */
 120
 121#define PHY_PAGE_SHIFT 5
 122#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
 123			   ((reg) & MAX_PHY_REG_ADDRESS))
 124#define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
 125#define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
 126
 127#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
 128#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
 129#define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
 130
 131#define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
 132
 133#define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
 134
 135/* SMBus Control Phy Register */
 136#define CV_SMB_CTRL		PHY_REG(769, 23)
 137#define CV_SMB_CTRL_FORCE_SMBUS	0x0001
 138
 139/* SMBus Address Phy Register */
 140#define HV_SMB_ADDR            PHY_REG(768, 26)
 141#define HV_SMB_ADDR_MASK       0x007F
 142#define HV_SMB_ADDR_PEC_EN     0x0200
 143#define HV_SMB_ADDR_VALID      0x0080
 144#define HV_SMB_ADDR_FREQ_MASK           0x1100
 145#define HV_SMB_ADDR_FREQ_LOW_SHIFT      8
 146#define HV_SMB_ADDR_FREQ_HIGH_SHIFT     12
 147
 148/* PHY Power Management Control */
 149#define HV_PM_CTRL		PHY_REG(770, 17)
 150#define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA	0x100
 151
 152/* PHY Low Power Idle Control */
 153#define I82579_LPI_CTRL				PHY_REG(772, 20)
 154#define I82579_LPI_CTRL_ENABLE_MASK		0x6000
 155#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
 156
 157/* EMI Registers */
 158#define I82579_EMI_ADDR         0x10
 159#define I82579_EMI_DATA         0x11
 160#define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
 161#define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
 162#define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
 163#define I217_EEE_ADVERTISEMENT  0x8001	/* IEEE MMD Register 7.60 */
 164#define I217_EEE_LP_ABILITY     0x8002	/* IEEE MMD Register 7.61 */
 165#define I217_EEE_100_SUPPORTED  (1 << 1)	/* 100BaseTx EEE supported */
 166
 167/* Intel Rapid Start Technology Support */
 168#define I217_PROXY_CTRL                 BM_PHY_REG(BM_WUC_PAGE, 70)
 169#define I217_PROXY_CTRL_AUTO_DISABLE    0x0080
 170#define I217_SxCTRL                     PHY_REG(BM_PORT_CTRL_PAGE, 28)
 171#define I217_SxCTRL_ENABLE_LPI_RESET    0x1000
 172#define I217_CGFREG                     PHY_REG(772, 29)
 173#define I217_CGFREG_ENABLE_MTA_RESET    0x0002
 174#define I217_MEMPWR                     PHY_REG(772, 26)
 175#define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
 176
 177/* Strapping Option Register - RO */
 178#define E1000_STRAP                     0x0000C
 179#define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
 180#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
 181#define E1000_STRAP_SMT_FREQ_MASK       0x00003000
 182#define E1000_STRAP_SMT_FREQ_SHIFT      12
 183
 184/* OEM Bits Phy Register */
 185#define HV_OEM_BITS            PHY_REG(768, 25)
 186#define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
 187#define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
 188#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
 189
 190#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
 191#define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
 192
 193/* KMRN Mode Control */
 194#define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
 195#define HV_KMRN_MDIO_SLOW      0x0400
 196
 197/* KMRN FIFO Control and Status */
 198#define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
 199#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
 200#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
 201
 202/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
 203/* Offset 04h HSFSTS */
 204union ich8_hws_flash_status {
 205	struct ich8_hsfsts {
 206		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
 207		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
 208		u16 dael       :1; /* bit 2 Direct Access error Log */
 209		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
 210		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
 211		u16 reserved1  :2; /* bit 13:6 Reserved */
 212		u16 reserved2  :6; /* bit 13:6 Reserved */
 213		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
 214		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
 215	} hsf_status;
 216	u16 regval;
 217};
 218
 219/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
 220/* Offset 06h FLCTL */
 221union ich8_hws_flash_ctrl {
 222	struct ich8_hsflctl {
 223		u16 flcgo      :1;   /* 0 Flash Cycle Go */
 224		u16 flcycle    :2;   /* 2:1 Flash Cycle */
 225		u16 reserved   :5;   /* 7:3 Reserved  */
 226		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
 227		u16 flockdn    :6;   /* 15:10 Reserved */
 228	} hsf_ctrl;
 229	u16 regval;
 230};
 231
 232/* ICH Flash Region Access Permissions */
 233union ich8_hws_flash_regacc {
 234	struct ich8_flracc {
 235		u32 grra      :8; /* 0:7 GbE region Read Access */
 236		u32 grwa      :8; /* 8:15 GbE region Write Access */
 237		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
 238		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
 239	} hsf_flregacc;
 240	u16 regval;
 241};
 242
 243/* ICH Flash Protected Region */
 244union ich8_flash_protected_range {
 245	struct ich8_pr {
 246		u32 base:13;     /* 0:12 Protected Range Base */
 247		u32 reserved1:2; /* 13:14 Reserved */
 248		u32 rpe:1;       /* 15 Read Protection Enable */
 249		u32 limit:13;    /* 16:28 Protected Range Limit */
 250		u32 reserved2:2; /* 29:30 Reserved */
 251		u32 wpe:1;       /* 31 Write Protection Enable */
 252	} range;
 253	u32 regval;
 254};
 255
 256static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
 257static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 258static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 259static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 260static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 261						u32 offset, u8 byte);
 262static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 263					 u8 *data);
 264static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 265					 u16 *data);
 266static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 267					 u8 size, u16 *data);
 268static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
 
 
 
 
 
 
 
 269static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 270static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
 271static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 272static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 273static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 274static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 275static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 276static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 277static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 278static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 279static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 280static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 281static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 282static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 283static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 284static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 285static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 286static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 287static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 
 288static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 289static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 
 
 
 290
 291static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 292{
 293	return readw(hw->flash_address + reg);
 294}
 295
 296static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 297{
 298	return readl(hw->flash_address + reg);
 299}
 300
 301static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 302{
 303	writew(val, hw->flash_address + reg);
 304}
 305
 306static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 307{
 308	writel(val, hw->flash_address + reg);
 309}
 310
 311#define er16flash(reg)		__er16flash(hw, (reg))
 312#define er32flash(reg)		__er32flash(hw, (reg))
 313#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 314#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 315
 316/**
 317 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 318 *  @hw: pointer to the HW structure
 319 *
 320 *  Test access to the PHY registers by reading the PHY ID registers.  If
 321 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 322 *  otherwise assume the read PHY ID is correct if it is valid.
 323 *
 324 *  Assumes the sw/fw/hw semaphore is already acquired.
 325 **/
 326static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 327{
 328	u16 phy_reg = 0;
 329	u32 phy_id = 0;
 330	s32 ret_val;
 331	u16 retry_count;
 
 332
 333	for (retry_count = 0; retry_count < 2; retry_count++) {
 334		ret_val = e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
 335		if (ret_val || (phy_reg == 0xFFFF))
 336			continue;
 337		phy_id = (u32)(phy_reg << 16);
 338
 339		ret_val = e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
 340		if (ret_val || (phy_reg == 0xFFFF)) {
 341			phy_id = 0;
 342			continue;
 343		}
 344		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 345		break;
 346	}
 347
 348	if (hw->phy.id) {
 349		if (hw->phy.id == phy_id)
 350			return true;
 351	} else if (phy_id) {
 352		hw->phy.id = phy_id;
 353		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 354		return true;
 355	}
 356
 357	/*
 358	 * In case the PHY needs to be in mdio slow mode,
 359	 * set slow mode and try to get the PHY id again.
 360	 */
 361	hw->phy.ops.release(hw);
 362	ret_val = e1000_set_mdio_slow_mode_hv(hw);
 363	if (!ret_val)
 364		ret_val = e1000e_get_phy_id(hw);
 365	hw->phy.ops.acquire(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366
 367	return !ret_val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 368}
 369
 370/**
 371 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 372 *  @hw: pointer to the HW structure
 373 *
 374 *  Workarounds/flow necessary for PHY initialization during driver load
 375 *  and resume paths.
 376 **/
 377static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 378{
 
 379	u32 mac_reg, fwsm = er32(FWSM);
 380	s32 ret_val;
 381	u16 phy_reg;
 
 
 
 
 
 
 
 
 
 
 382
 383	ret_val = hw->phy.ops.acquire(hw);
 384	if (ret_val) {
 385		e_dbg("Failed to initialize PHY flow\n");
 386		return ret_val;
 387	}
 388
 389	/*
 390	 * The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 391	 * inaccessible and resetting the PHY is not blocked, toggle the
 392	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 393	 */
 394	switch (hw->mac.type) {
 395	case e1000_pch_lpt:
 
 396		if (e1000_phy_is_accessible_pchlan(hw))
 397			break;
 398
 399		/*
 400		 * Before toggling LANPHYPC, see if PHY is accessible by
 401		 * forcing MAC to SMBus mode first.
 402		 */
 403		mac_reg = er32(CTRL_EXT);
 404		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 405		ew32(CTRL_EXT, mac_reg);
 406
 407		/* fall-through */
 408	case e1000_pch2lan:
 409		/*
 410		 * Gate automatic PHY configuration by hardware on
 411		 * non-managed 82579
 412		 */
 413		if ((hw->mac.type == e1000_pch2lan) &&
 414		    !(fwsm & E1000_ICH_FWSM_FW_VALID))
 415			e1000_gate_hw_phy_config_ich8lan(hw, true);
 416
 417		if (e1000_phy_is_accessible_pchlan(hw)) {
 418			if (hw->mac.type == e1000_pch_lpt) {
 419				/* Unforce SMBus mode in PHY */
 420				e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 421				phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 422				e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 423
 424				/* Unforce SMBus mode in MAC */
 425				mac_reg = er32(CTRL_EXT);
 426				mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 427				ew32(CTRL_EXT, mac_reg);
 428			}
 429			break;
 430		}
 431
 432		/* fall-through */
 433	case e1000_pchlan:
 434		if ((hw->mac.type == e1000_pchlan) &&
 435		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 436			break;
 437
 438		if (hw->phy.ops.check_reset_block(hw)) {
 439			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 
 440			break;
 441		}
 442
 443		e_dbg("Toggling LANPHYPC\n");
 
 
 
 
 444
 445		/* Set Phy Config Counter to 50msec */
 446		mac_reg = er32(FEXTNVM3);
 447		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 448		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 449		ew32(FEXTNVM3, mac_reg);
 
 450
 451		/* Toggle LANPHYPC Value bit */
 452		mac_reg = er32(CTRL);
 453		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 454		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 455		ew32(CTRL, mac_reg);
 456		e1e_flush();
 457		udelay(10);
 458		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 459		ew32(CTRL, mac_reg);
 460		e1e_flush();
 461		if (hw->mac.type < e1000_pch_lpt) {
 462			msleep(50);
 463		} else {
 464			u16 count = 20;
 465			do {
 466				usleep_range(5000, 10000);
 467			} while (!(er32(CTRL_EXT) &
 468				   E1000_CTRL_EXT_LPCD) && count--);
 469		}
 470		break;
 471	default:
 472		break;
 473	}
 474
 475	hw->phy.ops.release(hw);
 
 476
 477	/*
 478	 * Reset the PHY before any access to it.  Doing so, ensures
 479	 * that the PHY is in a known good state before we read/write
 480	 * PHY registers.  The generic reset is sufficient here,
 481	 * because we haven't determined the PHY type yet.
 482	 */
 483	ret_val = e1000e_phy_hw_reset_generic(hw);
 484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485	/* Ungate automatic PHY configuration on non-managed 82579 */
 486	if ((hw->mac.type == e1000_pch2lan) &&
 487	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 488		usleep_range(10000, 20000);
 489		e1000_gate_hw_phy_config_ich8lan(hw, false);
 490	}
 491
 492	return ret_val;
 493}
 494
 495/**
 496 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 497 *  @hw: pointer to the HW structure
 498 *
 499 *  Initialize family-specific PHY parameters and function pointers.
 500 **/
 501static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 502{
 503	struct e1000_phy_info *phy = &hw->phy;
 504	s32 ret_val = 0;
 505
 506	phy->addr                     = 1;
 507	phy->reset_delay_us           = 100;
 508
 509	phy->ops.set_page             = e1000_set_page_igp;
 510	phy->ops.read_reg             = e1000_read_phy_reg_hv;
 511	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
 512	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
 513	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
 514	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
 515	phy->ops.write_reg            = e1000_write_phy_reg_hv;
 516	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
 517	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
 518	phy->ops.power_up             = e1000_power_up_phy_copper;
 519	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
 520	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 521
 522	phy->id = e1000_phy_unknown;
 523
 524	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 525	if (ret_val)
 526		return ret_val;
 527
 528	if (phy->id == e1000_phy_unknown)
 529		switch (hw->mac.type) {
 530		default:
 531			ret_val = e1000e_get_phy_id(hw);
 532			if (ret_val)
 533				return ret_val;
 534			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 535				break;
 536			/* fall-through */
 537		case e1000_pch2lan:
 538		case e1000_pch_lpt:
 539			/*
 540			 * In case the PHY needs to be in mdio slow mode,
 541			 * set slow mode and try to get the PHY id again.
 542			 */
 543			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 544			if (ret_val)
 545				return ret_val;
 546			ret_val = e1000e_get_phy_id(hw);
 547			if (ret_val)
 548				return ret_val;
 549			break;
 550		}
 551	phy->type = e1000e_get_phy_type_from_id(phy->id);
 552
 553	switch (phy->type) {
 554	case e1000_phy_82577:
 555	case e1000_phy_82579:
 556	case e1000_phy_i217:
 557		phy->ops.check_polarity = e1000_check_polarity_82577;
 558		phy->ops.force_speed_duplex =
 559		    e1000_phy_force_speed_duplex_82577;
 560		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 561		phy->ops.get_info = e1000_get_phy_info_82577;
 562		phy->ops.commit = e1000e_phy_sw_reset;
 563		break;
 564	case e1000_phy_82578:
 565		phy->ops.check_polarity = e1000_check_polarity_m88;
 566		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 567		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 568		phy->ops.get_info = e1000e_get_phy_info_m88;
 569		break;
 570	default:
 571		ret_val = -E1000_ERR_PHY;
 572		break;
 573	}
 574
 575	return ret_val;
 576}
 577
 578/**
 579 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 580 *  @hw: pointer to the HW structure
 581 *
 582 *  Initialize family-specific PHY parameters and function pointers.
 583 **/
 584static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 585{
 586	struct e1000_phy_info *phy = &hw->phy;
 587	s32 ret_val;
 588	u16 i = 0;
 589
 590	phy->addr			= 1;
 591	phy->reset_delay_us		= 100;
 592
 593	phy->ops.power_up               = e1000_power_up_phy_copper;
 594	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
 595
 596	/*
 597	 * We may need to do this twice - once for IGP and if that fails,
 598	 * we'll set BM func pointers and try again
 599	 */
 600	ret_val = e1000e_determine_phy_address(hw);
 601	if (ret_val) {
 602		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 603		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
 604		ret_val = e1000e_determine_phy_address(hw);
 605		if (ret_val) {
 606			e_dbg("Cannot determine PHY addr. Erroring out\n");
 607			return ret_val;
 608		}
 609	}
 610
 611	phy->id = 0;
 612	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 613	       (i++ < 100)) {
 614		usleep_range(1000, 2000);
 615		ret_val = e1000e_get_phy_id(hw);
 616		if (ret_val)
 617			return ret_val;
 618	}
 619
 620	/* Verify phy id */
 621	switch (phy->id) {
 622	case IGP03E1000_E_PHY_ID:
 623		phy->type = e1000_phy_igp_3;
 624		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 625		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 626		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 627		phy->ops.get_info = e1000e_get_phy_info_igp;
 628		phy->ops.check_polarity = e1000_check_polarity_igp;
 629		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 630		break;
 631	case IFE_E_PHY_ID:
 632	case IFE_PLUS_E_PHY_ID:
 633	case IFE_C_E_PHY_ID:
 634		phy->type = e1000_phy_ife;
 635		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 636		phy->ops.get_info = e1000_get_phy_info_ife;
 637		phy->ops.check_polarity = e1000_check_polarity_ife;
 638		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 639		break;
 640	case BME1000_E_PHY_ID:
 641		phy->type = e1000_phy_bm;
 642		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 643		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 644		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 645		phy->ops.commit = e1000e_phy_sw_reset;
 646		phy->ops.get_info = e1000e_get_phy_info_m88;
 647		phy->ops.check_polarity = e1000_check_polarity_m88;
 648		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 649		break;
 650	default:
 651		return -E1000_ERR_PHY;
 652		break;
 653	}
 654
 655	return 0;
 656}
 657
 658/**
 659 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 660 *  @hw: pointer to the HW structure
 661 *
 662 *  Initialize family-specific NVM parameters and function
 663 *  pointers.
 664 **/
 665static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 666{
 667	struct e1000_nvm_info *nvm = &hw->nvm;
 668	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 669	u32 gfpreg, sector_base_addr, sector_end_addr;
 670	u16 i;
 671
 672	/* Can't read flash registers if the register set isn't mapped. */
 673	if (!hw->flash_address) {
 674		e_dbg("ERROR: Flash registers not mapped\n");
 675		return -E1000_ERR_CONFIG;
 676	}
 677
 678	nvm->type = e1000_nvm_flash_sw;
 679
 680	gfpreg = er32flash(ICH_FLASH_GFPREG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 681
 682	/*
 683	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
 684	 * Add 1 to sector_end_addr since this sector is included in
 685	 * the overall size.
 686	 */
 687	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 688	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 689
 690	/* flash_base_addr is byte-aligned */
 691	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
 692
 693	/*
 694	 * find total size of the NVM, then cut in half since the total
 695	 * size represents two separate NVM banks.
 696	 */
 697	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
 698				<< FLASH_SECTOR_ADDR_SHIFT;
 699	nvm->flash_bank_size /= 2;
 700	/* Adjust to word count */
 701	nvm->flash_bank_size /= sizeof(u16);
 702
 703	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 704
 705	/* Clear shadow ram */
 706	for (i = 0; i < nvm->word_size; i++) {
 707		dev_spec->shadow_ram[i].modified = false;
 708		dev_spec->shadow_ram[i].value    = 0xFFFF;
 709	}
 710
 711	return 0;
 712}
 713
 714/**
 715 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 716 *  @hw: pointer to the HW structure
 717 *
 718 *  Initialize family-specific MAC parameters and function
 719 *  pointers.
 720 **/
 721static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 722{
 723	struct e1000_mac_info *mac = &hw->mac;
 724
 725	/* Set media type function pointer */
 726	hw->phy.media_type = e1000_media_type_copper;
 727
 728	/* Set mta register count */
 729	mac->mta_reg_count = 32;
 730	/* Set rar entry count */
 731	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 732	if (mac->type == e1000_ich8lan)
 733		mac->rar_entry_count--;
 734	/* FWSM register */
 735	mac->has_fwsm = true;
 736	/* ARC subsystem not supported */
 737	mac->arc_subsystem_valid = false;
 738	/* Adaptive IFS supported */
 739	mac->adaptive_ifs = true;
 740
 741	/* LED and other operations */
 742	switch (mac->type) {
 743	case e1000_ich8lan:
 744	case e1000_ich9lan:
 745	case e1000_ich10lan:
 746		/* check management mode */
 747		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 748		/* ID LED init */
 749		mac->ops.id_led_init = e1000e_id_led_init_generic;
 750		/* blink LED */
 751		mac->ops.blink_led = e1000e_blink_led_generic;
 752		/* setup LED */
 753		mac->ops.setup_led = e1000e_setup_led_generic;
 754		/* cleanup LED */
 755		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 756		/* turn on/off LED */
 757		mac->ops.led_on = e1000_led_on_ich8lan;
 758		mac->ops.led_off = e1000_led_off_ich8lan;
 759		break;
 760	case e1000_pch2lan:
 761		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 762		mac->ops.rar_set = e1000_rar_set_pch2lan;
 763		/* fall-through */
 764	case e1000_pch_lpt:
 
 765	case e1000_pchlan:
 766		/* check management mode */
 767		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 768		/* ID LED init */
 769		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 770		/* setup LED */
 771		mac->ops.setup_led = e1000_setup_led_pchlan;
 772		/* cleanup LED */
 773		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 774		/* turn on/off LED */
 775		mac->ops.led_on = e1000_led_on_pchlan;
 776		mac->ops.led_off = e1000_led_off_pchlan;
 777		break;
 778	default:
 779		break;
 780	}
 781
 782	if (mac->type == e1000_pch_lpt) {
 783		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 784		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 
 
 
 785	}
 786
 787	/* Enable PCS Lock-loss workaround for ICH8 */
 788	if (mac->type == e1000_ich8lan)
 789		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 790
 791	/*
 792	 * Gate automatic PHY configuration by hardware on managed
 793	 * 82579 and i217
 794	 */
 795	if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) &&
 796	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
 797		e1000_gate_hw_phy_config_ich8lan(hw, true);
 798
 799	return 0;
 800}
 801
 802/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803 *  e1000_set_eee_pchlan - Enable/disable EEE support
 804 *  @hw: pointer to the HW structure
 805 *
 806 *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
 807 *  the LPI Control register will remain set only if/when link is up.
 
 
 
 
 
 
 
 808 **/
 809static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 810{
 811	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 812	s32 ret_val = 0;
 813	u16 phy_reg;
 814
 815	if ((hw->phy.type != e1000_phy_82579) &&
 816	    (hw->phy.type != e1000_phy_i217))
 
 
 
 
 
 
 
 
 
 
 817		return 0;
 
 818
 819	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
 820	if (ret_val)
 821		return ret_val;
 822
 823	if (dev_spec->eee_disable)
 824		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
 825	else
 826		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
 827
 828	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
 829	if (ret_val)
 830		return ret_val;
 831
 832	if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) {
 
 
 
 
 833		/* Save off link partner's EEE ability */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834		ret_val = hw->phy.ops.acquire(hw);
 835		if (ret_val)
 836			return ret_val;
 837		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
 838					  I217_EEE_LP_ABILITY);
 
 
 
 
 
 
 
 
 
 
 839		if (ret_val)
 840			goto release;
 841		e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability);
 842
 843		/*
 844		 * EEE is not supported in 100Half, so ignore partner's EEE
 845		 * in 100 ability if full-duplex is not advertised.
 846		 */
 847		e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg);
 848		if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS))
 849			dev_spec->eee_lp_ability &= ~I217_EEE_100_SUPPORTED;
 
 850release:
 851		hw->phy.ops.release(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852	}
 853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854	return 0;
 855}
 856
 857/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
 859 *  @hw: pointer to the HW structure
 860 *
 861 *  Checks to see of the link status of the hardware has changed.  If a
 862 *  change in link status has been detected, then we read the PHY registers
 863 *  to get the current speed/duplex if link exists.
 864 **/
 865static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
 866{
 867	struct e1000_mac_info *mac = &hw->mac;
 868	s32 ret_val;
 
 869	bool link;
 870	u16 phy_reg;
 871
 872	/*
 873	 * We only want to go out to the PHY registers to see if Auto-Neg
 874	 * has completed and/or if our link status has changed.  The
 875	 * get_link_status flag is set upon receiving a Link Status
 876	 * Change or Rx Sequence Error interrupt.
 877	 */
 878	if (!mac->get_link_status)
 879		return 0;
 880
 881	/*
 882	 * First we want to see if the MII Status Register reports
 883	 * link.  If so, then we want to get the current speed/duplex
 884	 * of the PHY.
 885	 */
 886	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 887	if (ret_val)
 888		return ret_val;
 889
 890	if (hw->mac.type == e1000_pchlan) {
 891		ret_val = e1000_k1_gig_workaround_hv(hw, link);
 892		if (ret_val)
 893			return ret_val;
 894	}
 895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896	/* Clear link partner's EEE ability */
 897	hw->dev_spec.ich8lan.eee_lp_ability = 0;
 898
 
 
 
 
 
 
 
 
 
 
 
 
 
 899	if (!link)
 900		return 0; /* No link detected */
 901
 902	mac->get_link_status = false;
 903
 904	switch (hw->mac.type) {
 905	case e1000_pch2lan:
 906		ret_val = e1000_k1_workaround_lv(hw);
 907		if (ret_val)
 908			return ret_val;
 909		/* fall-thru */
 910	case e1000_pchlan:
 911		if (hw->phy.type == e1000_phy_82578) {
 912			ret_val = e1000_link_stall_workaround_hv(hw);
 913			if (ret_val)
 914				return ret_val;
 915		}
 916
 917		/*
 918		 * Workaround for PCHx parts in half-duplex:
 919		 * Set the number of preambles removed from the packet
 920		 * when it is passed from the PHY to the MAC to prevent
 921		 * the MAC from misinterpreting the packet type.
 922		 */
 923		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
 924		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
 925
 926		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
 927			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
 928
 929		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
 930		break;
 931	default:
 932		break;
 933	}
 934
 935	/*
 936	 * Check if there was DownShift, must be checked
 937	 * immediately after link-up
 938	 */
 939	e1000e_check_downshift(hw);
 940
 941	/* Enable/Disable EEE after link up */
 942	ret_val = e1000_set_eee_pchlan(hw);
 943	if (ret_val)
 944		return ret_val;
 
 
 945
 946	/*
 947	 * If we are forcing speed/duplex, then we simply return since
 948	 * we have already determined whether we have link or not.
 949	 */
 950	if (!mac->autoneg)
 951		return -E1000_ERR_CONFIG;
 952
 953	/*
 954	 * Auto-Neg is enabled.  Auto Speed Detection takes care
 955	 * of MAC speed/duplex configuration.  So we only need to
 956	 * configure Collision Distance in the MAC.
 957	 */
 958	mac->ops.config_collision_dist(hw);
 959
 960	/*
 961	 * Configure Flow Control now that Auto-Neg has completed.
 962	 * First, we need to restore the desired flow control
 963	 * settings because we may have had to re-autoneg with a
 964	 * different link partner.
 965	 */
 966	ret_val = e1000e_config_fc_after_link_up(hw);
 967	if (ret_val)
 968		e_dbg("Error configuring flow control\n");
 969
 970	return ret_val;
 971}
 972
 973static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
 974{
 975	struct e1000_hw *hw = &adapter->hw;
 976	s32 rc;
 977
 978	rc = e1000_init_mac_params_ich8lan(hw);
 979	if (rc)
 980		return rc;
 981
 982	rc = e1000_init_nvm_params_ich8lan(hw);
 983	if (rc)
 984		return rc;
 985
 986	switch (hw->mac.type) {
 987	case e1000_ich8lan:
 988	case e1000_ich9lan:
 989	case e1000_ich10lan:
 990		rc = e1000_init_phy_params_ich8lan(hw);
 991		break;
 992	case e1000_pchlan:
 993	case e1000_pch2lan:
 994	case e1000_pch_lpt:
 
 995		rc = e1000_init_phy_params_pchlan(hw);
 996		break;
 997	default:
 998		break;
 999	}
1000	if (rc)
1001		return rc;
1002
1003	/*
1004	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1005	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1006	 */
1007	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1008	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1009	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1010		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1011		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1012
1013		hw->mac.ops.blink_led = NULL;
1014	}
1015
1016	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1017	    (adapter->hw.phy.type != e1000_phy_ife))
1018		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1019
1020	/* Enable workaround for 82579 w/ ME enabled */
1021	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1022	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1023		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1024
1025	/* Disable EEE by default until IEEE802.3az spec is finalized */
1026	if (adapter->flags2 & FLAG2_HAS_EEE)
1027		adapter->hw.dev_spec.ich8lan.eee_disable = true;
1028
1029	return 0;
1030}
1031
1032static DEFINE_MUTEX(nvm_mutex);
1033
1034/**
1035 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1036 *  @hw: pointer to the HW structure
1037 *
1038 *  Acquires the mutex for performing NVM operations.
1039 **/
1040static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1041{
1042	mutex_lock(&nvm_mutex);
1043
1044	return 0;
1045}
1046
1047/**
1048 *  e1000_release_nvm_ich8lan - Release NVM mutex
1049 *  @hw: pointer to the HW structure
1050 *
1051 *  Releases the mutex used while performing NVM operations.
1052 **/
1053static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1054{
1055	mutex_unlock(&nvm_mutex);
1056}
1057
1058/**
1059 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1060 *  @hw: pointer to the HW structure
1061 *
1062 *  Acquires the software control flag for performing PHY and select
1063 *  MAC CSR accesses.
1064 **/
1065static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1066{
1067	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1068	s32 ret_val = 0;
1069
1070	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1071			     &hw->adapter->state)) {
1072		e_dbg("contention for Phy access\n");
1073		return -E1000_ERR_PHY;
1074	}
1075
1076	while (timeout) {
1077		extcnf_ctrl = er32(EXTCNF_CTRL);
1078		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1079			break;
1080
1081		mdelay(1);
1082		timeout--;
1083	}
1084
1085	if (!timeout) {
1086		e_dbg("SW has already locked the resource.\n");
1087		ret_val = -E1000_ERR_CONFIG;
1088		goto out;
1089	}
1090
1091	timeout = SW_FLAG_TIMEOUT;
1092
1093	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1094	ew32(EXTCNF_CTRL, extcnf_ctrl);
1095
1096	while (timeout) {
1097		extcnf_ctrl = er32(EXTCNF_CTRL);
1098		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1099			break;
1100
1101		mdelay(1);
1102		timeout--;
1103	}
1104
1105	if (!timeout) {
1106		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1107		      er32(FWSM), extcnf_ctrl);
1108		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1109		ew32(EXTCNF_CTRL, extcnf_ctrl);
1110		ret_val = -E1000_ERR_CONFIG;
1111		goto out;
1112	}
1113
1114out:
1115	if (ret_val)
1116		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1117
1118	return ret_val;
1119}
1120
1121/**
1122 *  e1000_release_swflag_ich8lan - Release software control flag
1123 *  @hw: pointer to the HW structure
1124 *
1125 *  Releases the software control flag for performing PHY and select
1126 *  MAC CSR accesses.
1127 **/
1128static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1129{
1130	u32 extcnf_ctrl;
1131
1132	extcnf_ctrl = er32(EXTCNF_CTRL);
1133
1134	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1135		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1136		ew32(EXTCNF_CTRL, extcnf_ctrl);
1137	} else {
1138		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1139	}
1140
1141	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1142}
1143
1144/**
1145 *  e1000_check_mng_mode_ich8lan - Checks management mode
1146 *  @hw: pointer to the HW structure
1147 *
1148 *  This checks if the adapter has any manageability enabled.
1149 *  This is a function pointer entry point only called by read/write
1150 *  routines for the PHY and NVM parts.
1151 **/
1152static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1153{
1154	u32 fwsm;
1155
1156	fwsm = er32(FWSM);
1157	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1158	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1159		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1160}
1161
1162/**
1163 *  e1000_check_mng_mode_pchlan - Checks management mode
1164 *  @hw: pointer to the HW structure
1165 *
1166 *  This checks if the adapter has iAMT enabled.
1167 *  This is a function pointer entry point only called by read/write
1168 *  routines for the PHY and NVM parts.
1169 **/
1170static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1171{
1172	u32 fwsm;
1173
1174	fwsm = er32(FWSM);
1175	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1176	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1177}
1178
1179/**
1180 *  e1000_rar_set_pch2lan - Set receive address register
1181 *  @hw: pointer to the HW structure
1182 *  @addr: pointer to the receive address
1183 *  @index: receive address array register
1184 *
1185 *  Sets the receive address array register at index to the address passed
1186 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1187 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1188 *  Use SHRA[0-3] in place of those reserved for ME.
1189 **/
1190static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1191{
1192	u32 rar_low, rar_high;
1193
1194	/*
1195	 * HW expects these in little endian so we reverse the byte order
1196	 * from network order (big endian) to little endian
1197	 */
1198	rar_low = ((u32)addr[0] |
1199		   ((u32)addr[1] << 8) |
1200		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1201
1202	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1203
1204	/* If MAC address zero, no need to set the AV bit */
1205	if (rar_low || rar_high)
1206		rar_high |= E1000_RAH_AV;
1207
1208	if (index == 0) {
1209		ew32(RAL(index), rar_low);
1210		e1e_flush();
1211		ew32(RAH(index), rar_high);
1212		e1e_flush();
1213		return;
1214	}
1215
1216	if (index < hw->mac.rar_entry_count) {
 
 
 
1217		s32 ret_val;
1218
1219		ret_val = e1000_acquire_swflag_ich8lan(hw);
1220		if (ret_val)
1221			goto out;
1222
1223		ew32(SHRAL(index - 1), rar_low);
1224		e1e_flush();
1225		ew32(SHRAH(index - 1), rar_high);
1226		e1e_flush();
1227
1228		e1000_release_swflag_ich8lan(hw);
1229
1230		/* verify the register updates */
1231		if ((er32(SHRAL(index - 1)) == rar_low) &&
1232		    (er32(SHRAH(index - 1)) == rar_high))
1233			return;
1234
1235		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1236		      (index - 1), er32(FWSM));
1237	}
1238
1239out:
1240	e_dbg("Failed to write receive address at index %d\n", index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241}
1242
1243/**
1244 *  e1000_rar_set_pch_lpt - Set receive address registers
1245 *  @hw: pointer to the HW structure
1246 *  @addr: pointer to the receive address
1247 *  @index: receive address array register
1248 *
1249 *  Sets the receive address register array at index to the address passed
1250 *  in by addr. For LPT, RAR[0] is the base address register that is to
1251 *  contain the MAC address. SHRA[0-10] are the shared receive address
1252 *  registers that are shared between the Host and manageability engine (ME).
1253 **/
1254static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1255{
1256	u32 rar_low, rar_high;
1257	u32 wlock_mac;
1258
1259	/*
1260	 * HW expects these in little endian so we reverse the byte order
1261	 * from network order (big endian) to little endian
1262	 */
1263	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1264		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1265
1266	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1267
1268	/* If MAC address zero, no need to set the AV bit */
1269	if (rar_low || rar_high)
1270		rar_high |= E1000_RAH_AV;
1271
1272	if (index == 0) {
1273		ew32(RAL(index), rar_low);
1274		e1e_flush();
1275		ew32(RAH(index), rar_high);
1276		e1e_flush();
1277		return;
1278	}
1279
1280	/*
1281	 * The manageability engine (ME) can lock certain SHRAR registers that
1282	 * it is using - those registers are unavailable for use.
1283	 */
1284	if (index < hw->mac.rar_entry_count) {
1285		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1286		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1287
1288		/* Check if all SHRAR registers are locked */
1289		if (wlock_mac == 1)
1290			goto out;
1291
1292		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1293			s32 ret_val;
1294
1295			ret_val = e1000_acquire_swflag_ich8lan(hw);
1296
1297			if (ret_val)
1298				goto out;
1299
1300			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1301			e1e_flush();
1302			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1303			e1e_flush();
1304
1305			e1000_release_swflag_ich8lan(hw);
1306
1307			/* verify the register updates */
1308			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1309			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1310				return;
1311		}
1312	}
1313
1314out:
1315	e_dbg("Failed to write receive address at index %d\n", index);
 
1316}
1317
1318/**
1319 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1320 *  @hw: pointer to the HW structure
1321 *
1322 *  Checks if firmware is blocking the reset of the PHY.
1323 *  This is a function pointer entry point only called by
1324 *  reset routines.
1325 **/
1326static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1327{
1328	u32 fwsm;
 
1329
1330	fwsm = er32(FWSM);
1331
1332	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
 
1333}
1334
1335/**
1336 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1337 *  @hw: pointer to the HW structure
1338 *
1339 *  Assumes semaphore already acquired.
1340 *
1341 **/
1342static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1343{
1344	u16 phy_data;
1345	u32 strap = er32(STRAP);
1346	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1347	    E1000_STRAP_SMT_FREQ_SHIFT;
1348	s32 ret_val = 0;
1349
1350	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1351
1352	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1353	if (ret_val)
1354		return ret_val;
1355
1356	phy_data &= ~HV_SMB_ADDR_MASK;
1357	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1358	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1359
1360	if (hw->phy.type == e1000_phy_i217) {
1361		/* Restore SMBus frequency */
1362		if (freq--) {
1363			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1364			phy_data |= (freq & (1 << 0)) <<
1365			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1366			phy_data |= (freq & (1 << 1)) <<
1367			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1368		} else {
1369			e_dbg("Unsupported SMB frequency in PHY\n");
1370		}
1371	}
1372
1373	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1374}
1375
1376/**
1377 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1378 *  @hw:   pointer to the HW structure
1379 *
1380 *  SW should configure the LCD from the NVM extended configuration region
1381 *  as a workaround for certain parts.
1382 **/
1383static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1384{
1385	struct e1000_phy_info *phy = &hw->phy;
1386	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1387	s32 ret_val = 0;
1388	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1389
1390	/*
1391	 * Initialize the PHY from the NVM on ICH platforms.  This
1392	 * is needed due to an issue where the NVM configuration is
1393	 * not properly autoloaded after power transitions.
1394	 * Therefore, after each PHY reset, we will load the
1395	 * configuration data out of the NVM manually.
1396	 */
1397	switch (hw->mac.type) {
1398	case e1000_ich8lan:
1399		if (phy->type != e1000_phy_igp_3)
1400			return ret_val;
1401
1402		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1403		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1404			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1405			break;
1406		}
1407		/* Fall-thru */
1408	case e1000_pchlan:
1409	case e1000_pch2lan:
1410	case e1000_pch_lpt:
 
1411		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1412		break;
1413	default:
1414		return ret_val;
1415	}
1416
1417	ret_val = hw->phy.ops.acquire(hw);
1418	if (ret_val)
1419		return ret_val;
1420
1421	data = er32(FEXTNVM);
1422	if (!(data & sw_cfg_mask))
1423		goto release;
1424
1425	/*
1426	 * Make sure HW does not configure LCD from PHY
1427	 * extended configuration before SW configuration
1428	 */
1429	data = er32(EXTCNF_CTRL);
1430	if ((hw->mac.type < e1000_pch2lan) &&
1431	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1432		goto release;
1433
1434	cnf_size = er32(EXTCNF_SIZE);
1435	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1436	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1437	if (!cnf_size)
1438		goto release;
1439
1440	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1441	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1442
1443	if (((hw->mac.type == e1000_pchlan) &&
1444	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1445	    (hw->mac.type > e1000_pchlan)) {
1446		/*
1447		 * HW configures the SMBus address and LEDs when the
1448		 * OEM and LCD Write Enable bits are set in the NVM.
1449		 * When both NVM bits are cleared, SW will configure
1450		 * them instead.
1451		 */
1452		ret_val = e1000_write_smbus_addr(hw);
1453		if (ret_val)
1454			goto release;
1455
1456		data = er32(LEDCTL);
1457		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1458							(u16)data);
1459		if (ret_val)
1460			goto release;
1461	}
1462
1463	/* Configure LCD from extended configuration region. */
1464
1465	/* cnf_base_addr is in DWORD */
1466	word_addr = (u16)(cnf_base_addr << 1);
1467
1468	for (i = 0; i < cnf_size; i++) {
1469		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1470					 &reg_data);
1471		if (ret_val)
1472			goto release;
1473
1474		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1475					 1, &reg_addr);
1476		if (ret_val)
1477			goto release;
1478
1479		/* Save off the PHY page for future writes. */
1480		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1481			phy_page = reg_data;
1482			continue;
1483		}
1484
1485		reg_addr &= PHY_REG_MASK;
1486		reg_addr |= phy_page;
1487
1488		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1489		if (ret_val)
1490			goto release;
1491	}
1492
1493release:
1494	hw->phy.ops.release(hw);
1495	return ret_val;
1496}
1497
1498/**
1499 *  e1000_k1_gig_workaround_hv - K1 Si workaround
1500 *  @hw:   pointer to the HW structure
1501 *  @link: link up bool flag
1502 *
1503 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1504 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1505 *  If link is down, the function will restore the default K1 setting located
1506 *  in the NVM.
1507 **/
1508static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1509{
1510	s32 ret_val = 0;
1511	u16 status_reg = 0;
1512	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1513
1514	if (hw->mac.type != e1000_pchlan)
1515		return 0;
1516
1517	/* Wrap the whole flow with the sw flag */
1518	ret_val = hw->phy.ops.acquire(hw);
1519	if (ret_val)
1520		return ret_val;
1521
1522	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1523	if (link) {
1524		if (hw->phy.type == e1000_phy_82578) {
1525			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1526						  &status_reg);
1527			if (ret_val)
1528				goto release;
1529
1530			status_reg &= BM_CS_STATUS_LINK_UP |
1531			              BM_CS_STATUS_RESOLVED |
1532			              BM_CS_STATUS_SPEED_MASK;
1533
1534			if (status_reg == (BM_CS_STATUS_LINK_UP |
1535			                   BM_CS_STATUS_RESOLVED |
1536			                   BM_CS_STATUS_SPEED_1000))
1537				k1_enable = false;
1538		}
1539
1540		if (hw->phy.type == e1000_phy_82577) {
1541			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1542			if (ret_val)
1543				goto release;
1544
1545			status_reg &= HV_M_STATUS_LINK_UP |
1546			              HV_M_STATUS_AUTONEG_COMPLETE |
1547			              HV_M_STATUS_SPEED_MASK;
1548
1549			if (status_reg == (HV_M_STATUS_LINK_UP |
1550			                   HV_M_STATUS_AUTONEG_COMPLETE |
1551			                   HV_M_STATUS_SPEED_1000))
1552				k1_enable = false;
1553		}
1554
1555		/* Link stall fix for link up */
1556		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1557		if (ret_val)
1558			goto release;
1559
1560	} else {
1561		/* Link stall fix for link down */
1562		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1563		if (ret_val)
1564			goto release;
1565	}
1566
1567	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1568
1569release:
1570	hw->phy.ops.release(hw);
1571
1572	return ret_val;
1573}
1574
1575/**
1576 *  e1000_configure_k1_ich8lan - Configure K1 power state
1577 *  @hw: pointer to the HW structure
1578 *  @enable: K1 state to configure
1579 *
1580 *  Configure the K1 power state based on the provided parameter.
1581 *  Assumes semaphore already acquired.
1582 *
1583 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1584 **/
1585s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1586{
1587	s32 ret_val = 0;
1588	u32 ctrl_reg = 0;
1589	u32 ctrl_ext = 0;
1590	u32 reg = 0;
1591	u16 kmrn_reg = 0;
1592
1593	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1594					      &kmrn_reg);
1595	if (ret_val)
1596		return ret_val;
1597
1598	if (k1_enable)
1599		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1600	else
1601		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1602
1603	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1604					       kmrn_reg);
1605	if (ret_val)
1606		return ret_val;
1607
1608	udelay(20);
1609	ctrl_ext = er32(CTRL_EXT);
1610	ctrl_reg = er32(CTRL);
1611
1612	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1613	reg |= E1000_CTRL_FRCSPD;
1614	ew32(CTRL, reg);
1615
1616	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1617	e1e_flush();
1618	udelay(20);
1619	ew32(CTRL, ctrl_reg);
1620	ew32(CTRL_EXT, ctrl_ext);
1621	e1e_flush();
1622	udelay(20);
1623
1624	return 0;
1625}
1626
1627/**
1628 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1629 *  @hw:       pointer to the HW structure
1630 *  @d0_state: boolean if entering d0 or d3 device state
1631 *
1632 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1633 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1634 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1635 **/
1636static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1637{
1638	s32 ret_val = 0;
1639	u32 mac_reg;
1640	u16 oem_reg;
1641
1642	if (hw->mac.type < e1000_pchlan)
1643		return ret_val;
1644
1645	ret_val = hw->phy.ops.acquire(hw);
1646	if (ret_val)
1647		return ret_val;
1648
1649	if (hw->mac.type == e1000_pchlan) {
1650		mac_reg = er32(EXTCNF_CTRL);
1651		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1652			goto release;
1653	}
1654
1655	mac_reg = er32(FEXTNVM);
1656	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1657		goto release;
1658
1659	mac_reg = er32(PHY_CTRL);
1660
1661	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1662	if (ret_val)
1663		goto release;
1664
1665	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1666
1667	if (d0_state) {
1668		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1669			oem_reg |= HV_OEM_BITS_GBE_DIS;
1670
1671		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1672			oem_reg |= HV_OEM_BITS_LPLU;
1673	} else {
1674		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1675			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1676			oem_reg |= HV_OEM_BITS_GBE_DIS;
1677
1678		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1679			       E1000_PHY_CTRL_NOND0A_LPLU))
1680			oem_reg |= HV_OEM_BITS_LPLU;
1681	}
1682
1683	/* Set Restart auto-neg to activate the bits */
1684	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1685	    !hw->phy.ops.check_reset_block(hw))
1686		oem_reg |= HV_OEM_BITS_RESTART_AN;
1687
1688	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1689
1690release:
1691	hw->phy.ops.release(hw);
1692
1693	return ret_val;
1694}
1695
1696
1697/**
1698 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1699 *  @hw:   pointer to the HW structure
1700 **/
1701static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1702{
1703	s32 ret_val;
1704	u16 data;
1705
1706	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1707	if (ret_val)
1708		return ret_val;
1709
1710	data |= HV_KMRN_MDIO_SLOW;
1711
1712	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1713
1714	return ret_val;
1715}
1716
1717/**
1718 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1719 *  done after every PHY reset.
1720 **/
1721static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1722{
1723	s32 ret_val = 0;
1724	u16 phy_data;
1725
1726	if (hw->mac.type != e1000_pchlan)
1727		return 0;
1728
1729	/* Set MDIO slow mode before any other MDIO access */
1730	if (hw->phy.type == e1000_phy_82577) {
1731		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1732		if (ret_val)
1733			return ret_val;
1734	}
1735
1736	if (((hw->phy.type == e1000_phy_82577) &&
1737	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1738	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1739		/* Disable generation of early preamble */
1740		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1741		if (ret_val)
1742			return ret_val;
1743
1744		/* Preamble tuning for SSC */
1745		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1746		if (ret_val)
1747			return ret_val;
1748	}
1749
1750	if (hw->phy.type == e1000_phy_82578) {
1751		/*
1752		 * Return registers to default by doing a soft reset then
1753		 * writing 0x3140 to the control register.
1754		 */
1755		if (hw->phy.revision < 2) {
1756			e1000e_phy_sw_reset(hw);
1757			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1758		}
1759	}
1760
1761	/* Select page 0 */
1762	ret_val = hw->phy.ops.acquire(hw);
1763	if (ret_val)
1764		return ret_val;
1765
1766	hw->phy.addr = 1;
1767	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1768	hw->phy.ops.release(hw);
1769	if (ret_val)
1770		return ret_val;
1771
1772	/*
1773	 * Configure the K1 Si workaround during phy reset assuming there is
1774	 * link so that it disables K1 if link is in 1Gbps.
1775	 */
1776	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1777	if (ret_val)
1778		return ret_val;
1779
1780	/* Workaround for link disconnects on a busy hub in half duplex */
1781	ret_val = hw->phy.ops.acquire(hw);
1782	if (ret_val)
1783		return ret_val;
1784	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1785	if (ret_val)
1786		goto release;
1787	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
 
 
 
 
 
1788release:
1789	hw->phy.ops.release(hw);
1790
1791	return ret_val;
1792}
1793
1794/**
1795 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1796 *  @hw:   pointer to the HW structure
1797 **/
1798void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1799{
1800	u32 mac_reg;
1801	u16 i, phy_reg = 0;
1802	s32 ret_val;
1803
1804	ret_val = hw->phy.ops.acquire(hw);
1805	if (ret_val)
1806		return;
1807	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1808	if (ret_val)
1809		goto release;
1810
1811	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1812	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1813		mac_reg = er32(RAL(i));
1814		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1815					   (u16)(mac_reg & 0xFFFF));
1816		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1817					   (u16)((mac_reg >> 16) & 0xFFFF));
1818
1819		mac_reg = er32(RAH(i));
1820		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1821					   (u16)(mac_reg & 0xFFFF));
1822		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1823					   (u16)((mac_reg & E1000_RAH_AV)
1824						 >> 16));
1825	}
1826
1827	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1828
1829release:
1830	hw->phy.ops.release(hw);
1831}
1832
1833/**
1834 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1835 *  with 82579 PHY
1836 *  @hw: pointer to the HW structure
1837 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1838 **/
1839s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1840{
1841	s32 ret_val = 0;
1842	u16 phy_reg, data;
1843	u32 mac_reg;
1844	u16 i;
1845
1846	if (hw->mac.type < e1000_pch2lan)
1847		return 0;
1848
1849	/* disable Rx path while enabling/disabling workaround */
1850	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1851	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1852	if (ret_val)
1853		return ret_val;
1854
1855	if (enable) {
1856		/*
1857		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1858		 * SHRAL/H) and initial CRC values to the MAC
1859		 */
1860		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1861			u8 mac_addr[ETH_ALEN] = {0};
1862			u32 addr_high, addr_low;
1863
1864			addr_high = er32(RAH(i));
1865			if (!(addr_high & E1000_RAH_AV))
1866				continue;
1867			addr_low = er32(RAL(i));
1868			mac_addr[0] = (addr_low & 0xFF);
1869			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1870			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1871			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1872			mac_addr[4] = (addr_high & 0xFF);
1873			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1874
1875			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1876		}
1877
1878		/* Write Rx addresses to the PHY */
1879		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1880
1881		/* Enable jumbo frame workaround in the MAC */
1882		mac_reg = er32(FFLT_DBG);
1883		mac_reg &= ~(1 << 14);
1884		mac_reg |= (7 << 15);
1885		ew32(FFLT_DBG, mac_reg);
1886
1887		mac_reg = er32(RCTL);
1888		mac_reg |= E1000_RCTL_SECRC;
1889		ew32(RCTL, mac_reg);
1890
1891		ret_val = e1000e_read_kmrn_reg(hw,
1892						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1893						&data);
1894		if (ret_val)
1895			return ret_val;
1896		ret_val = e1000e_write_kmrn_reg(hw,
1897						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1898						data | (1 << 0));
1899		if (ret_val)
1900			return ret_val;
1901		ret_val = e1000e_read_kmrn_reg(hw,
1902						E1000_KMRNCTRLSTA_HD_CTRL,
1903						&data);
1904		if (ret_val)
1905			return ret_val;
1906		data &= ~(0xF << 8);
1907		data |= (0xB << 8);
1908		ret_val = e1000e_write_kmrn_reg(hw,
1909						E1000_KMRNCTRLSTA_HD_CTRL,
1910						data);
1911		if (ret_val)
1912			return ret_val;
1913
1914		/* Enable jumbo frame workaround in the PHY */
1915		e1e_rphy(hw, PHY_REG(769, 23), &data);
1916		data &= ~(0x7F << 5);
1917		data |= (0x37 << 5);
1918		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1919		if (ret_val)
1920			return ret_val;
1921		e1e_rphy(hw, PHY_REG(769, 16), &data);
1922		data &= ~(1 << 13);
1923		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1924		if (ret_val)
1925			return ret_val;
1926		e1e_rphy(hw, PHY_REG(776, 20), &data);
1927		data &= ~(0x3FF << 2);
1928		data |= (0x1A << 2);
1929		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1930		if (ret_val)
1931			return ret_val;
1932		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1933		if (ret_val)
1934			return ret_val;
1935		e1e_rphy(hw, HV_PM_CTRL, &data);
1936		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1937		if (ret_val)
1938			return ret_val;
1939	} else {
1940		/* Write MAC register values back to h/w defaults */
1941		mac_reg = er32(FFLT_DBG);
1942		mac_reg &= ~(0xF << 14);
1943		ew32(FFLT_DBG, mac_reg);
1944
1945		mac_reg = er32(RCTL);
1946		mac_reg &= ~E1000_RCTL_SECRC;
1947		ew32(RCTL, mac_reg);
1948
1949		ret_val = e1000e_read_kmrn_reg(hw,
1950						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1951						&data);
1952		if (ret_val)
1953			return ret_val;
1954		ret_val = e1000e_write_kmrn_reg(hw,
1955						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1956						data & ~(1 << 0));
1957		if (ret_val)
1958			return ret_val;
1959		ret_val = e1000e_read_kmrn_reg(hw,
1960						E1000_KMRNCTRLSTA_HD_CTRL,
1961						&data);
1962		if (ret_val)
1963			return ret_val;
1964		data &= ~(0xF << 8);
1965		data |= (0xB << 8);
1966		ret_val = e1000e_write_kmrn_reg(hw,
1967						E1000_KMRNCTRLSTA_HD_CTRL,
1968						data);
1969		if (ret_val)
1970			return ret_val;
1971
1972		/* Write PHY register values back to h/w defaults */
1973		e1e_rphy(hw, PHY_REG(769, 23), &data);
1974		data &= ~(0x7F << 5);
1975		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1976		if (ret_val)
1977			return ret_val;
1978		e1e_rphy(hw, PHY_REG(769, 16), &data);
1979		data |= (1 << 13);
1980		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1981		if (ret_val)
1982			return ret_val;
1983		e1e_rphy(hw, PHY_REG(776, 20), &data);
1984		data &= ~(0x3FF << 2);
1985		data |= (0x8 << 2);
1986		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1987		if (ret_val)
1988			return ret_val;
1989		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1990		if (ret_val)
1991			return ret_val;
1992		e1e_rphy(hw, HV_PM_CTRL, &data);
1993		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1994		if (ret_val)
1995			return ret_val;
1996	}
1997
1998	/* re-enable Rx path after enabling/disabling workaround */
1999	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2000}
2001
2002/**
2003 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2004 *  done after every PHY reset.
2005 **/
2006static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2007{
2008	s32 ret_val = 0;
2009
2010	if (hw->mac.type != e1000_pch2lan)
2011		return 0;
2012
2013	/* Set MDIO slow mode before any other MDIO access */
2014	ret_val = e1000_set_mdio_slow_mode_hv(hw);
 
 
2015
2016	ret_val = hw->phy.ops.acquire(hw);
2017	if (ret_val)
2018		return ret_val;
2019	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
2020	if (ret_val)
2021		goto release;
2022	/* set MSE higher to enable link to stay up when noise is high */
2023	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
2024	if (ret_val)
2025		goto release;
2026	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
2027	if (ret_val)
2028		goto release;
2029	/* drop link after 5 times MSE threshold was reached */
2030	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
2031release:
2032	hw->phy.ops.release(hw);
2033
2034	return ret_val;
2035}
2036
2037/**
2038 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2039 *  @hw:   pointer to the HW structure
2040 *
2041 *  Workaround to set the K1 beacon duration for 82579 parts
 
2042 **/
2043static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2044{
2045	s32 ret_val = 0;
2046	u16 status_reg = 0;
2047	u32 mac_reg;
2048	u16 phy_reg;
2049
2050	if (hw->mac.type != e1000_pch2lan)
2051		return 0;
2052
2053	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
2054	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2055	if (ret_val)
2056		return ret_val;
2057
2058	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2059	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2060		mac_reg = er32(FEXTNVM4);
2061		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2062
2063		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2064		if (ret_val)
2065			return ret_val;
2066
2067		if (status_reg & HV_M_STATUS_SPEED_1000) {
2068			u16 pm_phy_reg;
2069
2070			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2071			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2072			/* LV 1G Packet drop issue wa  */
2073			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2074			if (ret_val)
2075				return ret_val;
2076			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2077			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2078			if (ret_val)
2079				return ret_val;
2080		} else {
 
 
 
 
2081			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2082			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2083		}
2084		ew32(FEXTNVM4, mac_reg);
2085		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2086	}
2087
2088	return ret_val;
2089}
2090
2091/**
2092 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2093 *  @hw:   pointer to the HW structure
2094 *  @gate: boolean set to true to gate, false to ungate
2095 *
2096 *  Gate/ungate the automatic PHY configuration via hardware; perform
2097 *  the configuration via software instead.
2098 **/
2099static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2100{
2101	u32 extcnf_ctrl;
2102
2103	if (hw->mac.type < e1000_pch2lan)
2104		return;
2105
2106	extcnf_ctrl = er32(EXTCNF_CTRL);
2107
2108	if (gate)
2109		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2110	else
2111		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2112
2113	ew32(EXTCNF_CTRL, extcnf_ctrl);
2114}
2115
2116/**
2117 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2118 *  @hw: pointer to the HW structure
2119 *
2120 *  Check the appropriate indication the MAC has finished configuring the
2121 *  PHY after a software reset.
2122 **/
2123static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2124{
2125	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2126
2127	/* Wait for basic configuration completes before proceeding */
2128	do {
2129		data = er32(STATUS);
2130		data &= E1000_STATUS_LAN_INIT_DONE;
2131		udelay(100);
2132	} while ((!data) && --loop);
2133
2134	/*
2135	 * If basic configuration is incomplete before the above loop
2136	 * count reaches 0, loading the configuration from NVM will
2137	 * leave the PHY in a bad state possibly resulting in no link.
2138	 */
2139	if (loop == 0)
2140		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2141
2142	/* Clear the Init Done bit for the next init event */
2143	data = er32(STATUS);
2144	data &= ~E1000_STATUS_LAN_INIT_DONE;
2145	ew32(STATUS, data);
2146}
2147
2148/**
2149 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2150 *  @hw: pointer to the HW structure
2151 **/
2152static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2153{
2154	s32 ret_val = 0;
2155	u16 reg;
2156
2157	if (hw->phy.ops.check_reset_block(hw))
2158		return 0;
2159
2160	/* Allow time for h/w to get to quiescent state after reset */
2161	usleep_range(10000, 20000);
2162
2163	/* Perform any necessary post-reset workarounds */
2164	switch (hw->mac.type) {
2165	case e1000_pchlan:
2166		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2167		if (ret_val)
2168			return ret_val;
2169		break;
2170	case e1000_pch2lan:
2171		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2172		if (ret_val)
2173			return ret_val;
2174		break;
2175	default:
2176		break;
2177	}
2178
2179	/* Clear the host wakeup bit after lcd reset */
2180	if (hw->mac.type >= e1000_pchlan) {
2181		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2182		reg &= ~BM_WUC_HOST_WU_BIT;
2183		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2184	}
2185
2186	/* Configure the LCD with the extended configuration region in NVM */
2187	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2188	if (ret_val)
2189		return ret_val;
2190
2191	/* Configure the LCD with the OEM bits in NVM */
2192	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2193
2194	if (hw->mac.type == e1000_pch2lan) {
2195		/* Ungate automatic PHY configuration on non-managed 82579 */
2196		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2197			usleep_range(10000, 20000);
2198			e1000_gate_hw_phy_config_ich8lan(hw, false);
2199		}
2200
2201		/* Set EEE LPI Update Timer to 200usec */
2202		ret_val = hw->phy.ops.acquire(hw);
2203		if (ret_val)
2204			return ret_val;
2205		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
2206					  I82579_LPI_UPDATE_TIMER);
2207		if (!ret_val)
2208			ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
2209		hw->phy.ops.release(hw);
2210	}
2211
2212	return ret_val;
2213}
2214
2215/**
2216 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2217 *  @hw: pointer to the HW structure
2218 *
2219 *  Resets the PHY
2220 *  This is a function pointer entry point called by drivers
2221 *  or other shared routines.
2222 **/
2223static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2224{
2225	s32 ret_val = 0;
2226
2227	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2228	if ((hw->mac.type == e1000_pch2lan) &&
2229	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2230		e1000_gate_hw_phy_config_ich8lan(hw, true);
2231
2232	ret_val = e1000e_phy_hw_reset_generic(hw);
2233	if (ret_val)
2234		return ret_val;
2235
2236	return e1000_post_phy_reset_ich8lan(hw);
2237}
2238
2239/**
2240 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2241 *  @hw: pointer to the HW structure
2242 *  @active: true to enable LPLU, false to disable
2243 *
2244 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2245 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2246 *  the phy speed. This function will manually set the LPLU bit and restart
2247 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2248 *  since it configures the same bit.
2249 **/
2250static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2251{
2252	s32 ret_val = 0;
2253	u16 oem_reg;
2254
2255	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2256	if (ret_val)
2257		return ret_val;
2258
2259	if (active)
2260		oem_reg |= HV_OEM_BITS_LPLU;
2261	else
2262		oem_reg &= ~HV_OEM_BITS_LPLU;
2263
2264	if (!hw->phy.ops.check_reset_block(hw))
2265		oem_reg |= HV_OEM_BITS_RESTART_AN;
2266
2267	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2268}
2269
2270/**
2271 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2272 *  @hw: pointer to the HW structure
2273 *  @active: true to enable LPLU, false to disable
2274 *
2275 *  Sets the LPLU D0 state according to the active flag.  When
2276 *  activating LPLU this function also disables smart speed
2277 *  and vice versa.  LPLU will not be activated unless the
2278 *  device autonegotiation advertisement meets standards of
2279 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2280 *  This is a function pointer entry point only called by
2281 *  PHY setup routines.
2282 **/
2283static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2284{
2285	struct e1000_phy_info *phy = &hw->phy;
2286	u32 phy_ctrl;
2287	s32 ret_val = 0;
2288	u16 data;
2289
2290	if (phy->type == e1000_phy_ife)
2291		return 0;
2292
2293	phy_ctrl = er32(PHY_CTRL);
2294
2295	if (active) {
2296		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2297		ew32(PHY_CTRL, phy_ctrl);
2298
2299		if (phy->type != e1000_phy_igp_3)
2300			return 0;
2301
2302		/*
2303		 * Call gig speed drop workaround on LPLU before accessing
2304		 * any PHY registers
2305		 */
2306		if (hw->mac.type == e1000_ich8lan)
2307			e1000e_gig_downshift_workaround_ich8lan(hw);
2308
2309		/* When LPLU is enabled, we should disable SmartSpeed */
2310		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
 
 
2311		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2312		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2313		if (ret_val)
2314			return ret_val;
2315	} else {
2316		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2317		ew32(PHY_CTRL, phy_ctrl);
2318
2319		if (phy->type != e1000_phy_igp_3)
2320			return 0;
2321
2322		/*
2323		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2324		 * during Dx states where the power conservation is most
2325		 * important.  During driver activity we should enable
2326		 * SmartSpeed, so performance is maintained.
2327		 */
2328		if (phy->smart_speed == e1000_smart_speed_on) {
2329			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2330					   &data);
2331			if (ret_val)
2332				return ret_val;
2333
2334			data |= IGP01E1000_PSCFR_SMART_SPEED;
2335			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2336					   data);
2337			if (ret_val)
2338				return ret_val;
2339		} else if (phy->smart_speed == e1000_smart_speed_off) {
2340			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2341					   &data);
2342			if (ret_val)
2343				return ret_val;
2344
2345			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2346			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2347					   data);
2348			if (ret_val)
2349				return ret_val;
2350		}
2351	}
2352
2353	return 0;
2354}
2355
2356/**
2357 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2358 *  @hw: pointer to the HW structure
2359 *  @active: true to enable LPLU, false to disable
2360 *
2361 *  Sets the LPLU D3 state according to the active flag.  When
2362 *  activating LPLU this function also disables smart speed
2363 *  and vice versa.  LPLU will not be activated unless the
2364 *  device autonegotiation advertisement meets standards of
2365 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2366 *  This is a function pointer entry point only called by
2367 *  PHY setup routines.
2368 **/
2369static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2370{
2371	struct e1000_phy_info *phy = &hw->phy;
2372	u32 phy_ctrl;
2373	s32 ret_val = 0;
2374	u16 data;
2375
2376	phy_ctrl = er32(PHY_CTRL);
2377
2378	if (!active) {
2379		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2380		ew32(PHY_CTRL, phy_ctrl);
2381
2382		if (phy->type != e1000_phy_igp_3)
2383			return 0;
2384
2385		/*
2386		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2387		 * during Dx states where the power conservation is most
2388		 * important.  During driver activity we should enable
2389		 * SmartSpeed, so performance is maintained.
2390		 */
2391		if (phy->smart_speed == e1000_smart_speed_on) {
2392			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2393					   &data);
2394			if (ret_val)
2395				return ret_val;
2396
2397			data |= IGP01E1000_PSCFR_SMART_SPEED;
2398			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2399					   data);
2400			if (ret_val)
2401				return ret_val;
2402		} else if (phy->smart_speed == e1000_smart_speed_off) {
2403			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2404					   &data);
2405			if (ret_val)
2406				return ret_val;
2407
2408			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2409			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2410					   data);
2411			if (ret_val)
2412				return ret_val;
2413		}
2414	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2415		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2416		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2417		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2418		ew32(PHY_CTRL, phy_ctrl);
2419
2420		if (phy->type != e1000_phy_igp_3)
2421			return 0;
2422
2423		/*
2424		 * Call gig speed drop workaround on LPLU before accessing
2425		 * any PHY registers
2426		 */
2427		if (hw->mac.type == e1000_ich8lan)
2428			e1000e_gig_downshift_workaround_ich8lan(hw);
2429
2430		/* When LPLU is enabled, we should disable SmartSpeed */
2431		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2432		if (ret_val)
2433			return ret_val;
2434
2435		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2436		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2437	}
2438
2439	return ret_val;
2440}
2441
2442/**
2443 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2444 *  @hw: pointer to the HW structure
2445 *  @bank:  pointer to the variable that returns the active bank
2446 *
2447 *  Reads signature byte from the NVM using the flash access registers.
2448 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2449 **/
2450static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2451{
2452	u32 eecd;
2453	struct e1000_nvm_info *nvm = &hw->nvm;
2454	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2455	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
 
2456	u8 sig_byte = 0;
2457	s32 ret_val;
2458
2459	switch (hw->mac.type) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460	case e1000_ich8lan:
2461	case e1000_ich9lan:
2462		eecd = er32(EECD);
2463		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2464		    E1000_EECD_SEC1VAL_VALID_MASK) {
2465			if (eecd & E1000_EECD_SEC1VAL)
2466				*bank = 1;
2467			else
2468				*bank = 0;
2469
2470			return 0;
2471		}
2472		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2473		/* fall-thru */
2474	default:
2475		/* set bank to 0 in case flash read fails */
2476		*bank = 0;
2477
2478		/* Check bank 0 */
2479		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2480		                                        &sig_byte);
2481		if (ret_val)
2482			return ret_val;
2483		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2484		    E1000_ICH_NVM_SIG_VALUE) {
2485			*bank = 0;
2486			return 0;
2487		}
2488
2489		/* Check bank 1 */
2490		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2491		                                        bank1_offset,
2492		                                        &sig_byte);
2493		if (ret_val)
2494			return ret_val;
2495		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2496		    E1000_ICH_NVM_SIG_VALUE) {
2497			*bank = 1;
2498			return 0;
2499		}
2500
2501		e_dbg("ERROR: No valid NVM bank present\n");
2502		return -E1000_ERR_NVM;
2503	}
2504}
2505
2506/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2507 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2508 *  @hw: pointer to the HW structure
2509 *  @offset: The offset (in bytes) of the word(s) to read.
2510 *  @words: Size of data to read in words
2511 *  @data: Pointer to the word(s) to read at offset.
2512 *
2513 *  Reads a word(s) from the NVM using the flash access registers.
2514 **/
2515static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2516				  u16 *data)
2517{
2518	struct e1000_nvm_info *nvm = &hw->nvm;
2519	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2520	u32 act_offset;
2521	s32 ret_val = 0;
2522	u32 bank = 0;
2523	u16 i, word;
2524
2525	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2526	    (words == 0)) {
2527		e_dbg("nvm parameter(s) out of bounds\n");
2528		ret_val = -E1000_ERR_NVM;
2529		goto out;
2530	}
2531
2532	nvm->ops.acquire(hw);
2533
2534	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2535	if (ret_val) {
2536		e_dbg("Could not detect valid bank, assuming bank 0\n");
2537		bank = 0;
2538	}
2539
2540	act_offset = (bank) ? nvm->flash_bank_size : 0;
2541	act_offset += offset;
2542
2543	ret_val = 0;
2544	for (i = 0; i < words; i++) {
2545		if (dev_spec->shadow_ram[offset+i].modified) {
2546			data[i] = dev_spec->shadow_ram[offset+i].value;
2547		} else {
2548			ret_val = e1000_read_flash_word_ich8lan(hw,
2549								act_offset + i,
2550								&word);
2551			if (ret_val)
2552				break;
2553			data[i] = word;
2554		}
2555	}
2556
2557	nvm->ops.release(hw);
2558
2559out:
2560	if (ret_val)
2561		e_dbg("NVM read error: %d\n", ret_val);
2562
2563	return ret_val;
2564}
2565
2566/**
2567 *  e1000_flash_cycle_init_ich8lan - Initialize flash
2568 *  @hw: pointer to the HW structure
2569 *
2570 *  This function does initial flash setup so that a new read/write/erase cycle
2571 *  can be started.
2572 **/
2573static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2574{
2575	union ich8_hws_flash_status hsfsts;
2576	s32 ret_val = -E1000_ERR_NVM;
2577
2578	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2579
2580	/* Check if the flash descriptor is valid */
2581	if (!hsfsts.hsf_status.fldesvalid) {
2582		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2583		return -E1000_ERR_NVM;
2584	}
2585
2586	/* Clear FCERR and DAEL in hw status by writing 1 */
2587	hsfsts.hsf_status.flcerr = 1;
2588	hsfsts.hsf_status.dael = 1;
 
 
 
 
2589
2590	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2591
2592	/*
2593	 * Either we should have a hardware SPI cycle in progress
2594	 * bit to check against, in order to start a new cycle or
2595	 * FDONE bit should be changed in the hardware so that it
2596	 * is 1 after hardware reset, which can then be used as an
2597	 * indication whether a cycle is in progress or has been
2598	 * completed.
2599	 */
2600
2601	if (!hsfsts.hsf_status.flcinprog) {
2602		/*
2603		 * There is no cycle running at present,
2604		 * so we can start a cycle.
2605		 * Begin by setting Flash Cycle Done.
2606		 */
2607		hsfsts.hsf_status.flcdone = 1;
2608		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
 
 
 
2609		ret_val = 0;
2610	} else {
2611		s32 i;
2612
2613		/*
2614		 * Otherwise poll for sometime so the current
2615		 * cycle has a chance to end before giving up.
2616		 */
2617		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2618			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2619			if (!hsfsts.hsf_status.flcinprog) {
2620				ret_val = 0;
2621				break;
2622			}
2623			udelay(1);
2624		}
2625		if (!ret_val) {
2626			/*
2627			 * Successful in waiting for previous cycle to timeout,
2628			 * now set the Flash Cycle Done.
2629			 */
2630			hsfsts.hsf_status.flcdone = 1;
2631			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
 
 
 
 
2632		} else {
2633			e_dbg("Flash controller busy, cannot get access\n");
2634		}
2635	}
2636
2637	return ret_val;
2638}
2639
2640/**
2641 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2642 *  @hw: pointer to the HW structure
2643 *  @timeout: maximum time to wait for completion
2644 *
2645 *  This function starts a flash cycle and waits for its completion.
2646 **/
2647static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2648{
2649	union ich8_hws_flash_ctrl hsflctl;
2650	union ich8_hws_flash_status hsfsts;
2651	u32 i = 0;
2652
2653	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2654	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
 
 
 
2655	hsflctl.hsf_ctrl.flcgo = 1;
2656	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
 
 
 
 
2657
2658	/* wait till FDONE bit is set to 1 */
2659	do {
2660		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2661		if (hsfsts.hsf_status.flcdone)
2662			break;
2663		udelay(1);
2664	} while (i++ < timeout);
2665
2666	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2667		return 0;
2668
2669	return -E1000_ERR_NVM;
2670}
2671
2672/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2673 *  e1000_read_flash_word_ich8lan - Read word from flash
2674 *  @hw: pointer to the HW structure
2675 *  @offset: offset to data location
2676 *  @data: pointer to the location for storing the data
2677 *
2678 *  Reads the flash word at offset into data.  Offset is converted
2679 *  to bytes before read.
2680 **/
2681static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2682					 u16 *data)
2683{
2684	/* Must convert offset into bytes. */
2685	offset <<= 1;
2686
2687	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2688}
2689
2690/**
2691 *  e1000_read_flash_byte_ich8lan - Read byte from flash
2692 *  @hw: pointer to the HW structure
2693 *  @offset: The offset of the byte to read.
2694 *  @data: Pointer to a byte to store the value read.
2695 *
2696 *  Reads a single byte from the NVM using the flash access registers.
2697 **/
2698static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2699					 u8 *data)
2700{
2701	s32 ret_val;
2702	u16 word = 0;
2703
2704	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
 
 
 
 
 
 
 
2705	if (ret_val)
2706		return ret_val;
2707
2708	*data = (u8)word;
2709
2710	return 0;
2711}
2712
2713/**
2714 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2715 *  @hw: pointer to the HW structure
2716 *  @offset: The offset (in bytes) of the byte or word to read.
2717 *  @size: Size of data to read, 1=byte 2=word
2718 *  @data: Pointer to the word to store the value read.
2719 *
2720 *  Reads a byte or word from the NVM using the flash access registers.
2721 **/
2722static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2723					 u8 size, u16 *data)
2724{
2725	union ich8_hws_flash_status hsfsts;
2726	union ich8_hws_flash_ctrl hsflctl;
2727	u32 flash_linear_addr;
2728	u32 flash_data = 0;
2729	s32 ret_val = -E1000_ERR_NVM;
2730	u8 count = 0;
2731
2732	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2733		return -E1000_ERR_NVM;
2734
2735	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2736			    hw->nvm.flash_base_addr;
2737
2738	do {
2739		udelay(1);
2740		/* Steps */
2741		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2742		if (ret_val)
2743			break;
2744
2745		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2746		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2747		hsflctl.hsf_ctrl.fldbcount = size - 1;
2748		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2749		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2750
2751		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2752
2753		ret_val = e1000_flash_cycle_ich8lan(hw,
2754						ICH_FLASH_READ_COMMAND_TIMEOUT);
 
2755
2756		/*
2757		 * Check if FCERR is set to 1, if set to 1, clear it
2758		 * and try the whole sequence a few more times, else
2759		 * read in (shift in) the Flash Data0, the order is
2760		 * least significant byte first msb to lsb
2761		 */
2762		if (!ret_val) {
2763			flash_data = er32flash(ICH_FLASH_FDATA0);
2764			if (size == 1)
2765				*data = (u8)(flash_data & 0x000000FF);
2766			else if (size == 2)
2767				*data = (u16)(flash_data & 0x0000FFFF);
2768			break;
2769		} else {
2770			/*
2771			 * If we've gotten here, then things are probably
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2772			 * completely hosed, but if the error condition is
2773			 * detected, it won't hurt to give it another try...
2774			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2775			 */
2776			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2777			if (hsfsts.hsf_status.flcerr) {
2778				/* Repeat for some time before giving up. */
2779				continue;
2780			} else if (!hsfsts.hsf_status.flcdone) {
2781				e_dbg("Timeout error - flash cycle did not complete.\n");
2782				break;
2783			}
2784		}
2785	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2786
2787	return ret_val;
2788}
2789
2790/**
2791 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2792 *  @hw: pointer to the HW structure
2793 *  @offset: The offset (in bytes) of the word(s) to write.
2794 *  @words: Size of data to write in words
2795 *  @data: Pointer to the word(s) to write at offset.
2796 *
2797 *  Writes a byte or word to the NVM using the flash access registers.
2798 **/
2799static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2800				   u16 *data)
2801{
2802	struct e1000_nvm_info *nvm = &hw->nvm;
2803	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2804	u16 i;
2805
2806	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2807	    (words == 0)) {
2808		e_dbg("nvm parameter(s) out of bounds\n");
2809		return -E1000_ERR_NVM;
2810	}
2811
2812	nvm->ops.acquire(hw);
2813
2814	for (i = 0; i < words; i++) {
2815		dev_spec->shadow_ram[offset+i].modified = true;
2816		dev_spec->shadow_ram[offset+i].value = data[i];
2817	}
2818
2819	nvm->ops.release(hw);
2820
2821	return 0;
2822}
2823
2824/**
2825 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2826 *  @hw: pointer to the HW structure
2827 *
2828 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2829 *  which writes the checksum to the shadow ram.  The changes in the shadow
2830 *  ram are then committed to the EEPROM by processing each bank at a time
2831 *  checking for the modified bit and writing only the pending changes.
2832 *  After a successful commit, the shadow ram is cleared and is ready for
2833 *  future writes.
2834 **/
2835static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2836{
2837	struct e1000_nvm_info *nvm = &hw->nvm;
2838	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2839	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2840	s32 ret_val;
2841	u16 data;
2842
2843	ret_val = e1000e_update_nvm_checksum_generic(hw);
2844	if (ret_val)
2845		goto out;
2846
2847	if (nvm->type != e1000_nvm_flash_sw)
2848		goto out;
2849
2850	nvm->ops.acquire(hw);
2851
2852	/*
2853	 * We're writing to the opposite bank so if we're on bank 1,
2854	 * write to bank 0 etc.  We also need to erase the segment that
2855	 * is going to be written
2856	 */
2857	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2858	if (ret_val) {
2859		e_dbg("Could not detect valid bank, assuming bank 0\n");
2860		bank = 0;
2861	}
2862
2863	if (bank == 0) {
2864		new_bank_offset = nvm->flash_bank_size;
2865		old_bank_offset = 0;
2866		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2867		if (ret_val)
2868			goto release;
2869	} else {
2870		old_bank_offset = nvm->flash_bank_size;
2871		new_bank_offset = 0;
2872		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2873		if (ret_val)
2874			goto release;
2875	}
2876
2877	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2878		/*
2879		 * Determine whether to write the value stored
2880		 * in the other NVM bank or a modified value stored
2881		 * in the shadow RAM
2882		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2883		if (dev_spec->shadow_ram[i].modified) {
2884			data = dev_spec->shadow_ram[i].value;
2885		} else {
2886			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2887			                                        old_bank_offset,
2888			                                        &data);
2889			if (ret_val)
2890				break;
2891		}
2892
2893		/*
2894		 * If the word is 0x13, then make sure the signature bits
2895		 * (15:14) are 11b until the commit has completed.
2896		 * This will allow us to write 10b which indicates the
2897		 * signature is valid.  We want to do this after the write
2898		 * has completed so that we don't mark the segment valid
2899		 * while the write is still in progress
2900		 */
2901		if (i == E1000_ICH_NVM_SIG_WORD)
2902			data |= E1000_ICH_NVM_SIG_MASK;
2903
2904		/* Convert offset to bytes. */
2905		act_offset = (i + new_bank_offset) << 1;
2906
2907		udelay(100);
2908		/* Write the bytes to the new bank. */
2909		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2910							       act_offset,
2911							       (u8)data);
2912		if (ret_val)
2913			break;
2914
2915		udelay(100);
2916		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2917							  act_offset + 1,
2918							  (u8)(data >> 8));
2919		if (ret_val)
2920			break;
2921	}
2922
2923	/*
2924	 * Don't bother writing the segment valid bits if sector
2925	 * programming failed.
2926	 */
2927	if (ret_val) {
2928		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2929		e_dbg("Flash commit failed.\n");
2930		goto release;
2931	}
2932
2933	/*
2934	 * Finally validate the new segment by setting bit 15:14
2935	 * to 10b in word 0x13 , this can be done without an
2936	 * erase as well since these bits are 11 to start with
2937	 * and we need to change bit 14 to 0b
2938	 */
2939	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2940	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2941	if (ret_val)
2942		goto release;
2943
2944	data &= 0xBFFF;
2945	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2946						       act_offset * 2 + 1,
2947						       (u8)(data >> 8));
2948	if (ret_val)
2949		goto release;
2950
2951	/*
2952	 * And invalidate the previously valid segment by setting
2953	 * its signature word (0x13) high_byte to 0b. This can be
2954	 * done without an erase because flash erase sets all bits
2955	 * to 1's. We can write 1's to 0's without an erase
2956	 */
2957	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2958	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2959	if (ret_val)
2960		goto release;
2961
2962	/* Great!  Everything worked, we can now clear the cached entries. */
2963	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2964		dev_spec->shadow_ram[i].modified = false;
2965		dev_spec->shadow_ram[i].value = 0xFFFF;
2966	}
2967
2968release:
2969	nvm->ops.release(hw);
2970
2971	/*
2972	 * Reload the EEPROM, or else modifications will not appear
2973	 * until after the next adapter reset.
2974	 */
2975	if (!ret_val) {
2976		nvm->ops.reload(hw);
2977		usleep_range(10000, 20000);
2978	}
2979
2980out:
2981	if (ret_val)
2982		e_dbg("NVM update error: %d\n", ret_val);
2983
2984	return ret_val;
2985}
2986
2987/**
2988 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2989 *  @hw: pointer to the HW structure
2990 *
2991 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2992 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2993 *  calculated, in which case we need to calculate the checksum and set bit 6.
2994 **/
2995static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2996{
2997	s32 ret_val;
2998	u16 data;
 
 
2999
3000	/*
3001	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
3002	 * needs to be fixed.  This bit is an indication that the NVM
3003	 * was prepared by OEM software and did not calculate the
3004	 * checksum...a likely scenario.
3005	 */
3006	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
 
 
 
 
 
 
 
 
 
 
 
 
3007	if (ret_val)
3008		return ret_val;
3009
3010	if (!(data & 0x40)) {
3011		data |= 0x40;
3012		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
3013		if (ret_val)
3014			return ret_val;
3015		ret_val = e1000e_update_nvm_checksum(hw);
3016		if (ret_val)
3017			return ret_val;
3018	}
3019
3020	return e1000e_validate_nvm_checksum_generic(hw);
3021}
3022
3023/**
3024 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3025 *  @hw: pointer to the HW structure
3026 *
3027 *  To prevent malicious write/erase of the NVM, set it to be read-only
3028 *  so that the hardware ignores all write/erase cycles of the NVM via
3029 *  the flash control registers.  The shadow-ram copy of the NVM will
3030 *  still be updated, however any updates to this copy will not stick
3031 *  across driver reloads.
3032 **/
3033void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3034{
3035	struct e1000_nvm_info *nvm = &hw->nvm;
3036	union ich8_flash_protected_range pr0;
3037	union ich8_hws_flash_status hsfsts;
3038	u32 gfpreg;
3039
3040	nvm->ops.acquire(hw);
3041
3042	gfpreg = er32flash(ICH_FLASH_GFPREG);
3043
3044	/* Write-protect GbE Sector of NVM */
3045	pr0.regval = er32flash(ICH_FLASH_PR0);
3046	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3047	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3048	pr0.range.wpe = true;
3049	ew32flash(ICH_FLASH_PR0, pr0.regval);
3050
3051	/*
3052	 * Lock down a subset of GbE Flash Control Registers, e.g.
3053	 * PR0 to prevent the write-protection from being lifted.
3054	 * Once FLOCKDN is set, the registers protected by it cannot
3055	 * be written until FLOCKDN is cleared by a hardware reset.
3056	 */
3057	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3058	hsfsts.hsf_status.flockdn = true;
3059	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3060
3061	nvm->ops.release(hw);
3062}
3063
3064/**
3065 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3066 *  @hw: pointer to the HW structure
3067 *  @offset: The offset (in bytes) of the byte/word to read.
3068 *  @size: Size of data to read, 1=byte 2=word
3069 *  @data: The byte(s) to write to the NVM.
3070 *
3071 *  Writes one/two bytes to the NVM using the flash access registers.
3072 **/
3073static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3074					  u8 size, u16 data)
3075{
3076	union ich8_hws_flash_status hsfsts;
3077	union ich8_hws_flash_ctrl hsflctl;
3078	u32 flash_linear_addr;
3079	u32 flash_data = 0;
3080	s32 ret_val;
3081	u8 count = 0;
3082
3083	if (size < 1 || size > 2 || data > size * 0xff ||
3084	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3085		return -E1000_ERR_NVM;
 
 
 
 
3086
3087	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3088			    hw->nvm.flash_base_addr;
3089
3090	do {
3091		udelay(1);
3092		/* Steps */
3093		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3094		if (ret_val)
3095			break;
 
 
 
 
 
 
 
3096
3097		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3098		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3099		hsflctl.hsf_ctrl.fldbcount = size -1;
3100		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3101		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
 
 
 
 
 
 
 
3102
3103		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3104
3105		if (size == 1)
3106			flash_data = (u32)data & 0x00FF;
3107		else
3108			flash_data = (u32)data;
3109
3110		ew32flash(ICH_FLASH_FDATA0, flash_data);
3111
3112		/*
3113		 * check if FCERR is set to 1 , if set to 1, clear it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3114		 * and try the whole sequence a few more times else done
3115		 */
3116		ret_val = e1000_flash_cycle_ich8lan(hw,
3117					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
 
 
3118		if (!ret_val)
3119			break;
3120
3121		/*
3122		 * If we're here, then things are most likely
3123		 * completely hosed, but if the error condition
3124		 * is detected, it won't hurt to give it another
3125		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3126		 */
3127		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
 
3128		if (hsfsts.hsf_status.flcerr)
3129			/* Repeat for some time before giving up. */
3130			continue;
3131		if (!hsfsts.hsf_status.flcdone) {
3132			e_dbg("Timeout error - flash cycle did not complete.\n");
3133			break;
3134		}
3135	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3136
3137	return ret_val;
3138}
3139
3140/**
3141 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3142 *  @hw: pointer to the HW structure
3143 *  @offset: The index of the byte to read.
3144 *  @data: The byte to write to the NVM.
3145 *
3146 *  Writes a single byte to the NVM using the flash access registers.
3147 **/
3148static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3149					  u8 data)
3150{
3151	u16 word = (u16)data;
3152
3153	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3154}
3155
3156/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3157 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3158 *  @hw: pointer to the HW structure
3159 *  @offset: The offset of the byte to write.
3160 *  @byte: The byte to write to the NVM.
3161 *
3162 *  Writes a single byte to the NVM using the flash access registers.
3163 *  Goes through a retry algorithm before giving up.
3164 **/
3165static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3166						u32 offset, u8 byte)
3167{
3168	s32 ret_val;
3169	u16 program_retries;
3170
3171	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3172	if (!ret_val)
3173		return ret_val;
3174
3175	for (program_retries = 0; program_retries < 100; program_retries++) {
3176		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3177		udelay(100);
3178		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3179		if (!ret_val)
3180			break;
3181	}
3182	if (program_retries == 100)
3183		return -E1000_ERR_NVM;
3184
3185	return 0;
3186}
3187
3188/**
3189 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3190 *  @hw: pointer to the HW structure
3191 *  @bank: 0 for first bank, 1 for second bank, etc.
3192 *
3193 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3194 *  bank N is 4096 * N + flash_reg_addr.
3195 **/
3196static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3197{
3198	struct e1000_nvm_info *nvm = &hw->nvm;
3199	union ich8_hws_flash_status hsfsts;
3200	union ich8_hws_flash_ctrl hsflctl;
3201	u32 flash_linear_addr;
3202	/* bank size is in 16bit words - adjust to bytes */
3203	u32 flash_bank_size = nvm->flash_bank_size * 2;
3204	s32 ret_val;
3205	s32 count = 0;
3206	s32 j, iteration, sector_size;
3207
3208	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3209
3210	/*
3211	 * Determine HW Sector size: Read BERASE bits of hw flash status
3212	 * register
3213	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3214	 *     consecutive sectors.  The start index for the nth Hw sector
3215	 *     can be calculated as = bank * 4096 + n * 256
3216	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3217	 *     The start index for the nth Hw sector can be calculated
3218	 *     as = bank * 4096
3219	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3220	 *     (ich9 only, otherwise error condition)
3221	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3222	 */
3223	switch (hsfsts.hsf_status.berasesz) {
3224	case 0:
3225		/* Hw sector size 256 */
3226		sector_size = ICH_FLASH_SEG_SIZE_256;
3227		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3228		break;
3229	case 1:
3230		sector_size = ICH_FLASH_SEG_SIZE_4K;
3231		iteration = 1;
3232		break;
3233	case 2:
3234		sector_size = ICH_FLASH_SEG_SIZE_8K;
3235		iteration = 1;
3236		break;
3237	case 3:
3238		sector_size = ICH_FLASH_SEG_SIZE_64K;
3239		iteration = 1;
3240		break;
3241	default:
3242		return -E1000_ERR_NVM;
3243	}
3244
3245	/* Start with the base address, then add the sector offset. */
3246	flash_linear_addr = hw->nvm.flash_base_addr;
3247	flash_linear_addr += (bank) ? flash_bank_size : 0;
3248
3249	for (j = 0; j < iteration ; j++) {
3250		do {
 
 
3251			/* Steps */
3252			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3253			if (ret_val)
3254				return ret_val;
3255
3256			/*
3257			 * Write a value 11 (block Erase) in Flash
3258			 * Cycle field in hw flash control
3259			 */
3260			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
 
 
 
 
 
3261			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3262			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
 
 
 
 
3263
3264			/*
3265			 * Write the last 24 bits of an index within the
3266			 * block into Flash Linear address field in Flash
3267			 * Address.
3268			 */
3269			flash_linear_addr += (j * sector_size);
3270			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3271
3272			ret_val = e1000_flash_cycle_ich8lan(hw,
3273					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3274			if (!ret_val)
3275				break;
3276
3277			/*
3278			 * Check if FCERR is set to 1.  If 1,
3279			 * clear it and try the whole sequence
3280			 * a few more times else Done
3281			 */
3282			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3283			if (hsfsts.hsf_status.flcerr)
3284				/* repeat for some time before giving up */
3285				continue;
3286			else if (!hsfsts.hsf_status.flcdone)
3287				return ret_val;
3288		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3289	}
3290
3291	return 0;
3292}
3293
3294/**
3295 *  e1000_valid_led_default_ich8lan - Set the default LED settings
3296 *  @hw: pointer to the HW structure
3297 *  @data: Pointer to the LED settings
3298 *
3299 *  Reads the LED default settings from the NVM to data.  If the NVM LED
3300 *  settings is all 0's or F's, set the LED default to a valid LED default
3301 *  setting.
3302 **/
3303static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3304{
3305	s32 ret_val;
3306
3307	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3308	if (ret_val) {
3309		e_dbg("NVM Read Error\n");
3310		return ret_val;
3311	}
3312
3313	if (*data == ID_LED_RESERVED_0000 ||
3314	    *data == ID_LED_RESERVED_FFFF)
3315		*data = ID_LED_DEFAULT_ICH8LAN;
3316
3317	return 0;
3318}
3319
3320/**
3321 *  e1000_id_led_init_pchlan - store LED configurations
3322 *  @hw: pointer to the HW structure
3323 *
3324 *  PCH does not control LEDs via the LEDCTL register, rather it uses
3325 *  the PHY LED configuration register.
3326 *
3327 *  PCH also does not have an "always on" or "always off" mode which
3328 *  complicates the ID feature.  Instead of using the "on" mode to indicate
3329 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3330 *  use "link_up" mode.  The LEDs will still ID on request if there is no
3331 *  link based on logic in e1000_led_[on|off]_pchlan().
3332 **/
3333static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3334{
3335	struct e1000_mac_info *mac = &hw->mac;
3336	s32 ret_val;
3337	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3338	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3339	u16 data, i, temp, shift;
3340
3341	/* Get default ID LED modes */
3342	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3343	if (ret_val)
3344		return ret_val;
3345
3346	mac->ledctl_default = er32(LEDCTL);
3347	mac->ledctl_mode1 = mac->ledctl_default;
3348	mac->ledctl_mode2 = mac->ledctl_default;
3349
3350	for (i = 0; i < 4; i++) {
3351		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3352		shift = (i * 5);
3353		switch (temp) {
3354		case ID_LED_ON1_DEF2:
3355		case ID_LED_ON1_ON2:
3356		case ID_LED_ON1_OFF2:
3357			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3358			mac->ledctl_mode1 |= (ledctl_on << shift);
3359			break;
3360		case ID_LED_OFF1_DEF2:
3361		case ID_LED_OFF1_ON2:
3362		case ID_LED_OFF1_OFF2:
3363			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3364			mac->ledctl_mode1 |= (ledctl_off << shift);
3365			break;
3366		default:
3367			/* Do nothing */
3368			break;
3369		}
3370		switch (temp) {
3371		case ID_LED_DEF1_ON2:
3372		case ID_LED_ON1_ON2:
3373		case ID_LED_OFF1_ON2:
3374			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3375			mac->ledctl_mode2 |= (ledctl_on << shift);
3376			break;
3377		case ID_LED_DEF1_OFF2:
3378		case ID_LED_ON1_OFF2:
3379		case ID_LED_OFF1_OFF2:
3380			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3381			mac->ledctl_mode2 |= (ledctl_off << shift);
3382			break;
3383		default:
3384			/* Do nothing */
3385			break;
3386		}
3387	}
3388
3389	return 0;
3390}
3391
3392/**
3393 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3394 *  @hw: pointer to the HW structure
3395 *
3396 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3397 *  register, so the the bus width is hard coded.
3398 **/
3399static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3400{
3401	struct e1000_bus_info *bus = &hw->bus;
3402	s32 ret_val;
3403
3404	ret_val = e1000e_get_bus_info_pcie(hw);
3405
3406	/*
3407	 * ICH devices are "PCI Express"-ish.  They have
3408	 * a configuration space, but do not contain
3409	 * PCI Express Capability registers, so bus width
3410	 * must be hardcoded.
3411	 */
3412	if (bus->width == e1000_bus_width_unknown)
3413		bus->width = e1000_bus_width_pcie_x1;
3414
3415	return ret_val;
3416}
3417
3418/**
3419 *  e1000_reset_hw_ich8lan - Reset the hardware
3420 *  @hw: pointer to the HW structure
3421 *
3422 *  Does a full reset of the hardware which includes a reset of the PHY and
3423 *  MAC.
3424 **/
3425static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3426{
3427	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3428	u16 kum_cfg;
3429	u32 ctrl, reg;
3430	s32 ret_val;
3431
3432	/*
3433	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3434	 * on the last TLP read/write transaction when MAC is reset.
3435	 */
3436	ret_val = e1000e_disable_pcie_master(hw);
3437	if (ret_val)
3438		e_dbg("PCI-E Master disable polling has failed.\n");
3439
3440	e_dbg("Masking off all interrupts\n");
3441	ew32(IMC, 0xffffffff);
3442
3443	/*
3444	 * Disable the Transmit and Receive units.  Then delay to allow
3445	 * any pending transactions to complete before we hit the MAC
3446	 * with the global reset.
3447	 */
3448	ew32(RCTL, 0);
3449	ew32(TCTL, E1000_TCTL_PSP);
3450	e1e_flush();
3451
3452	usleep_range(10000, 20000);
3453
3454	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3455	if (hw->mac.type == e1000_ich8lan) {
3456		/* Set Tx and Rx buffer allocation to 8k apiece. */
3457		ew32(PBA, E1000_PBA_8K);
3458		/* Set Packet Buffer Size to 16k. */
3459		ew32(PBS, E1000_PBS_16K);
3460	}
3461
3462	if (hw->mac.type == e1000_pchlan) {
3463		/* Save the NVM K1 bit setting */
3464		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3465		if (ret_val)
3466			return ret_val;
3467
3468		if (kum_cfg & E1000_NVM_K1_ENABLE)
3469			dev_spec->nvm_k1_enabled = true;
3470		else
3471			dev_spec->nvm_k1_enabled = false;
3472	}
3473
3474	ctrl = er32(CTRL);
3475
3476	if (!hw->phy.ops.check_reset_block(hw)) {
3477		/*
3478		 * Full-chip reset requires MAC and PHY reset at the same
3479		 * time to make sure the interface between MAC and the
3480		 * external PHY is reset.
3481		 */
3482		ctrl |= E1000_CTRL_PHY_RST;
3483
3484		/*
3485		 * Gate automatic PHY configuration by hardware on
3486		 * non-managed 82579
3487		 */
3488		if ((hw->mac.type == e1000_pch2lan) &&
3489		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3490			e1000_gate_hw_phy_config_ich8lan(hw, true);
3491	}
3492	ret_val = e1000_acquire_swflag_ich8lan(hw);
3493	e_dbg("Issuing a global reset to ich8lan\n");
3494	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3495	/* cannot issue a flush here because it hangs the hardware */
3496	msleep(20);
3497
3498	/* Set Phy Config Counter to 50msec */
3499	if (hw->mac.type == e1000_pch2lan) {
3500		reg = er32(FEXTNVM3);
3501		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3502		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3503		ew32(FEXTNVM3, reg);
3504	}
3505
3506	if (!ret_val)
3507		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3508
3509	if (ctrl & E1000_CTRL_PHY_RST) {
3510		ret_val = hw->phy.ops.get_cfg_done(hw);
3511		if (ret_val)
3512			return ret_val;
3513
3514		ret_val = e1000_post_phy_reset_ich8lan(hw);
3515		if (ret_val)
3516			return ret_val;
3517	}
3518
3519	/*
3520	 * For PCH, this write will make sure that any noise
3521	 * will be detected as a CRC error and be dropped rather than show up
3522	 * as a bad packet to the DMA engine.
3523	 */
3524	if (hw->mac.type == e1000_pchlan)
3525		ew32(CRC_OFFSET, 0x65656565);
3526
3527	ew32(IMC, 0xffffffff);
3528	er32(ICR);
3529
3530	reg = er32(KABGTXD);
3531	reg |= E1000_KABGTXD_BGSQLBIAS;
3532	ew32(KABGTXD, reg);
3533
3534	return 0;
3535}
3536
3537/**
3538 *  e1000_init_hw_ich8lan - Initialize the hardware
3539 *  @hw: pointer to the HW structure
3540 *
3541 *  Prepares the hardware for transmit and receive by doing the following:
3542 *   - initialize hardware bits
3543 *   - initialize LED identification
3544 *   - setup receive address registers
3545 *   - setup flow control
3546 *   - setup transmit descriptors
3547 *   - clear statistics
3548 **/
3549static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3550{
3551	struct e1000_mac_info *mac = &hw->mac;
3552	u32 ctrl_ext, txdctl, snoop;
3553	s32 ret_val;
3554	u16 i;
3555
3556	e1000_initialize_hw_bits_ich8lan(hw);
3557
3558	/* Initialize identification LED */
3559	ret_val = mac->ops.id_led_init(hw);
 
3560	if (ret_val)
3561		e_dbg("Error initializing identification LED\n");
3562		/* This is not fatal and we should not stop init due to this */
3563
3564	/* Setup the receive address. */
3565	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3566
3567	/* Zero out the Multicast HASH table */
3568	e_dbg("Zeroing the MTA\n");
3569	for (i = 0; i < mac->mta_reg_count; i++)
3570		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3571
3572	/*
3573	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3574	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3575	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3576	 */
3577	if (hw->phy.type == e1000_phy_82578) {
3578		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3579		i &= ~BM_WUC_HOST_WU_BIT;
3580		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3581		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3582		if (ret_val)
3583			return ret_val;
3584	}
3585
3586	/* Setup link and flow control */
3587	ret_val = mac->ops.setup_link(hw);
3588
3589	/* Set the transmit descriptor write-back policy for both queues */
3590	txdctl = er32(TXDCTL(0));
3591	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3592		 E1000_TXDCTL_FULL_TX_DESC_WB;
3593	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3594		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3595	ew32(TXDCTL(0), txdctl);
3596	txdctl = er32(TXDCTL(1));
3597	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3598		 E1000_TXDCTL_FULL_TX_DESC_WB;
3599	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3600		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3601	ew32(TXDCTL(1), txdctl);
3602
3603	/*
3604	 * ICH8 has opposite polarity of no_snoop bits.
3605	 * By default, we should use snoop behavior.
3606	 */
3607	if (mac->type == e1000_ich8lan)
3608		snoop = PCIE_ICH8_SNOOP_ALL;
3609	else
3610		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3611	e1000e_set_pcie_no_snoop(hw, snoop);
3612
3613	ctrl_ext = er32(CTRL_EXT);
3614	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3615	ew32(CTRL_EXT, ctrl_ext);
3616
3617	/*
3618	 * Clear all of the statistics registers (clear on read).  It is
3619	 * important that we do this after we have tried to establish link
3620	 * because the symbol error count will increment wildly if there
3621	 * is no link.
3622	 */
3623	e1000_clear_hw_cntrs_ich8lan(hw);
3624
3625	return ret_val;
3626}
 
3627/**
3628 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3629 *  @hw: pointer to the HW structure
3630 *
3631 *  Sets/Clears required hardware bits necessary for correctly setting up the
3632 *  hardware for transmit and receive.
3633 **/
3634static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3635{
3636	u32 reg;
3637
3638	/* Extended Device Control */
3639	reg = er32(CTRL_EXT);
3640	reg |= (1 << 22);
3641	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3642	if (hw->mac.type >= e1000_pchlan)
3643		reg |= E1000_CTRL_EXT_PHYPDEN;
3644	ew32(CTRL_EXT, reg);
3645
3646	/* Transmit Descriptor Control 0 */
3647	reg = er32(TXDCTL(0));
3648	reg |= (1 << 22);
3649	ew32(TXDCTL(0), reg);
3650
3651	/* Transmit Descriptor Control 1 */
3652	reg = er32(TXDCTL(1));
3653	reg |= (1 << 22);
3654	ew32(TXDCTL(1), reg);
3655
3656	/* Transmit Arbitration Control 0 */
3657	reg = er32(TARC(0));
3658	if (hw->mac.type == e1000_ich8lan)
3659		reg |= (1 << 28) | (1 << 29);
3660	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3661	ew32(TARC(0), reg);
3662
3663	/* Transmit Arbitration Control 1 */
3664	reg = er32(TARC(1));
3665	if (er32(TCTL) & E1000_TCTL_MULR)
3666		reg &= ~(1 << 28);
3667	else
3668		reg |= (1 << 28);
3669	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3670	ew32(TARC(1), reg);
3671
3672	/* Device Status */
3673	if (hw->mac.type == e1000_ich8lan) {
3674		reg = er32(STATUS);
3675		reg &= ~(1 << 31);
3676		ew32(STATUS, reg);
3677	}
3678
3679	/*
3680	 * work-around descriptor data corruption issue during nfs v2 udp
3681	 * traffic, just disable the nfs filtering capability
3682	 */
3683	reg = er32(RFCTL);
3684	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3685
3686	/*
3687	 * Disable IPv6 extension header parsing because some malformed
3688	 * IPv6 headers can hang the Rx.
3689	 */
3690	if (hw->mac.type == e1000_ich8lan)
3691		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3692	ew32(RFCTL, reg);
 
 
 
 
 
 
 
 
 
 
 
 
3693}
3694
3695/**
3696 *  e1000_setup_link_ich8lan - Setup flow control and link settings
3697 *  @hw: pointer to the HW structure
3698 *
3699 *  Determines which flow control settings to use, then configures flow
3700 *  control.  Calls the appropriate media-specific link configuration
3701 *  function.  Assuming the adapter has a valid link partner, a valid link
3702 *  should be established.  Assumes the hardware has previously been reset
3703 *  and the transmitter and receiver are not enabled.
3704 **/
3705static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3706{
3707	s32 ret_val;
3708
3709	if (hw->phy.ops.check_reset_block(hw))
3710		return 0;
3711
3712	/*
3713	 * ICH parts do not have a word in the NVM to determine
3714	 * the default flow control setting, so we explicitly
3715	 * set it to full.
3716	 */
3717	if (hw->fc.requested_mode == e1000_fc_default) {
3718		/* Workaround h/w hang when Tx flow control enabled */
3719		if (hw->mac.type == e1000_pchlan)
3720			hw->fc.requested_mode = e1000_fc_rx_pause;
3721		else
3722			hw->fc.requested_mode = e1000_fc_full;
3723	}
3724
3725	/*
3726	 * Save off the requested flow control mode for use later.  Depending
3727	 * on the link partner's capabilities, we may or may not use this mode.
3728	 */
3729	hw->fc.current_mode = hw->fc.requested_mode;
3730
3731	e_dbg("After fix-ups FlowControl is now = %x\n",
3732		hw->fc.current_mode);
3733
3734	/* Continue to configure the copper link. */
3735	ret_val = hw->mac.ops.setup_physical_interface(hw);
3736	if (ret_val)
3737		return ret_val;
3738
3739	ew32(FCTTV, hw->fc.pause_time);
3740	if ((hw->phy.type == e1000_phy_82578) ||
3741	    (hw->phy.type == e1000_phy_82579) ||
3742	    (hw->phy.type == e1000_phy_i217) ||
3743	    (hw->phy.type == e1000_phy_82577)) {
3744		ew32(FCRTV_PCH, hw->fc.refresh_time);
3745
3746		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3747				   hw->fc.pause_time);
3748		if (ret_val)
3749			return ret_val;
3750	}
3751
3752	return e1000e_set_fc_watermarks(hw);
3753}
3754
3755/**
3756 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3757 *  @hw: pointer to the HW structure
3758 *
3759 *  Configures the kumeran interface to the PHY to wait the appropriate time
3760 *  when polling the PHY, then call the generic setup_copper_link to finish
3761 *  configuring the copper link.
3762 **/
3763static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3764{
3765	u32 ctrl;
3766	s32 ret_val;
3767	u16 reg_data;
3768
3769	ctrl = er32(CTRL);
3770	ctrl |= E1000_CTRL_SLU;
3771	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3772	ew32(CTRL, ctrl);
3773
3774	/*
3775	 * Set the mac to wait the maximum time between each iteration
3776	 * and increase the max iterations when polling the phy;
3777	 * this fixes erroneous timeouts at 10Mbps.
3778	 */
3779	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3780	if (ret_val)
3781		return ret_val;
3782	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3783	                               &reg_data);
3784	if (ret_val)
3785		return ret_val;
3786	reg_data |= 0x3F;
3787	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3788	                                reg_data);
3789	if (ret_val)
3790		return ret_val;
3791
3792	switch (hw->phy.type) {
3793	case e1000_phy_igp_3:
3794		ret_val = e1000e_copper_link_setup_igp(hw);
3795		if (ret_val)
3796			return ret_val;
3797		break;
3798	case e1000_phy_bm:
3799	case e1000_phy_82578:
3800		ret_val = e1000e_copper_link_setup_m88(hw);
3801		if (ret_val)
3802			return ret_val;
3803		break;
3804	case e1000_phy_82577:
3805	case e1000_phy_82579:
3806	case e1000_phy_i217:
3807		ret_val = e1000_copper_link_setup_82577(hw);
3808		if (ret_val)
3809			return ret_val;
3810		break;
3811	case e1000_phy_ife:
3812		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3813		if (ret_val)
3814			return ret_val;
3815
3816		reg_data &= ~IFE_PMC_AUTO_MDIX;
3817
3818		switch (hw->phy.mdix) {
3819		case 1:
3820			reg_data &= ~IFE_PMC_FORCE_MDIX;
3821			break;
3822		case 2:
3823			reg_data |= IFE_PMC_FORCE_MDIX;
3824			break;
3825		case 0:
3826		default:
3827			reg_data |= IFE_PMC_AUTO_MDIX;
3828			break;
3829		}
3830		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3831		if (ret_val)
3832			return ret_val;
3833		break;
3834	default:
3835		break;
3836	}
3837
3838	return e1000e_setup_copper_link(hw);
3839}
3840
3841/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3842 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3843 *  @hw: pointer to the HW structure
3844 *  @speed: pointer to store current link speed
3845 *  @duplex: pointer to store the current link duplex
3846 *
3847 *  Calls the generic get_speed_and_duplex to retrieve the current link
3848 *  information and then calls the Kumeran lock loss workaround for links at
3849 *  gigabit speeds.
3850 **/
3851static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3852					  u16 *duplex)
3853{
3854	s32 ret_val;
3855
3856	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3857	if (ret_val)
3858		return ret_val;
3859
3860	if ((hw->mac.type == e1000_ich8lan) &&
3861	    (hw->phy.type == e1000_phy_igp_3) &&
3862	    (*speed == SPEED_1000)) {
3863		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3864	}
3865
3866	return ret_val;
3867}
3868
3869/**
3870 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3871 *  @hw: pointer to the HW structure
3872 *
3873 *  Work-around for 82566 Kumeran PCS lock loss:
3874 *  On link status change (i.e. PCI reset, speed change) and link is up and
3875 *  speed is gigabit-
3876 *    0) if workaround is optionally disabled do nothing
3877 *    1) wait 1ms for Kumeran link to come up
3878 *    2) check Kumeran Diagnostic register PCS lock loss bit
3879 *    3) if not set the link is locked (all is good), otherwise...
3880 *    4) reset the PHY
3881 *    5) repeat up to 10 times
3882 *  Note: this is only called for IGP3 copper when speed is 1gb.
3883 **/
3884static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3885{
3886	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3887	u32 phy_ctrl;
3888	s32 ret_val;
3889	u16 i, data;
3890	bool link;
3891
3892	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3893		return 0;
3894
3895	/*
3896	 * Make sure link is up before proceeding.  If not just return.
3897	 * Attempting this while link is negotiating fouled up link
3898	 * stability
3899	 */
3900	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3901	if (!link)
3902		return 0;
3903
3904	for (i = 0; i < 10; i++) {
3905		/* read once to clear */
3906		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3907		if (ret_val)
3908			return ret_val;
3909		/* and again to get new status */
3910		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3911		if (ret_val)
3912			return ret_val;
3913
3914		/* check for PCS lock */
3915		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3916			return 0;
3917
3918		/* Issue PHY reset */
3919		e1000_phy_hw_reset(hw);
3920		mdelay(5);
3921	}
3922	/* Disable GigE link negotiation */
3923	phy_ctrl = er32(PHY_CTRL);
3924	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3925		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3926	ew32(PHY_CTRL, phy_ctrl);
3927
3928	/*
3929	 * Call gig speed drop workaround on Gig disable before accessing
3930	 * any PHY registers
3931	 */
3932	e1000e_gig_downshift_workaround_ich8lan(hw);
3933
3934	/* unable to acquire PCS lock */
3935	return -E1000_ERR_PHY;
3936}
3937
3938/**
3939 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3940 *  @hw: pointer to the HW structure
3941 *  @state: boolean value used to set the current Kumeran workaround state
3942 *
3943 *  If ICH8, set the current Kumeran workaround state (enabled - true
3944 *  /disabled - false).
3945 **/
3946void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3947						 bool state)
3948{
3949	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3950
3951	if (hw->mac.type != e1000_ich8lan) {
3952		e_dbg("Workaround applies to ICH8 only.\n");
3953		return;
3954	}
3955
3956	dev_spec->kmrn_lock_loss_workaround_enabled = state;
3957}
3958
3959/**
3960 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3961 *  @hw: pointer to the HW structure
3962 *
3963 *  Workaround for 82566 power-down on D3 entry:
3964 *    1) disable gigabit link
3965 *    2) write VR power-down enable
3966 *    3) read it back
3967 *  Continue if successful, else issue LCD reset and repeat
3968 **/
3969void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3970{
3971	u32 reg;
3972	u16 data;
3973	u8  retry = 0;
3974
3975	if (hw->phy.type != e1000_phy_igp_3)
3976		return;
3977
3978	/* Try the workaround twice (if needed) */
3979	do {
3980		/* Disable link */
3981		reg = er32(PHY_CTRL);
3982		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3983			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3984		ew32(PHY_CTRL, reg);
3985
3986		/*
3987		 * Call gig speed drop workaround on Gig disable before
3988		 * accessing any PHY registers
3989		 */
3990		if (hw->mac.type == e1000_ich8lan)
3991			e1000e_gig_downshift_workaround_ich8lan(hw);
3992
3993		/* Write VR power-down enable */
3994		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3995		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3996		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3997
3998		/* Read it back and test */
3999		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4000		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4001		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4002			break;
4003
4004		/* Issue PHY reset and repeat at most one more time */
4005		reg = er32(CTRL);
4006		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4007		retry++;
4008	} while (retry);
4009}
4010
4011/**
4012 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4013 *  @hw: pointer to the HW structure
4014 *
4015 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4016 *  LPLU, Gig disable, MDIC PHY reset):
4017 *    1) Set Kumeran Near-end loopback
4018 *    2) Clear Kumeran Near-end loopback
4019 *  Should only be called for ICH8[m] devices with any 1G Phy.
4020 **/
4021void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4022{
4023	s32 ret_val;
4024	u16 reg_data;
4025
4026	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4027		return;
4028
4029	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4030				      &reg_data);
4031	if (ret_val)
4032		return;
4033	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4034	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4035				       reg_data);
4036	if (ret_val)
4037		return;
4038	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4039	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4040				       reg_data);
4041}
4042
4043/**
4044 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4045 *  @hw: pointer to the HW structure
4046 *
4047 *  During S0 to Sx transition, it is possible the link remains at gig
4048 *  instead of negotiating to a lower speed.  Before going to Sx, set
4049 *  'Gig Disable' to force link speed negotiation to a lower speed based on
4050 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4051 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4052 *  needs to be written.
4053 *  Parts that support (and are linked to a partner which support) EEE in
4054 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4055 *  than 10Mbps w/o EEE.
4056 **/
4057void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4058{
4059	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4060	u32 phy_ctrl;
4061	s32 ret_val;
4062
4063	phy_ctrl = er32(PHY_CTRL);
4064	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
 
4065	if (hw->phy.type == e1000_phy_i217) {
4066		u16 phy_reg;
 
 
 
 
 
 
 
 
 
 
4067
4068		ret_val = hw->phy.ops.acquire(hw);
4069		if (ret_val)
4070			goto out;
4071
4072		if (!dev_spec->eee_disable) {
4073			u16 eee_advert;
4074
4075			ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
4076						  I217_EEE_ADVERTISEMENT);
 
 
4077			if (ret_val)
4078				goto release;
4079			e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert);
4080
4081			/*
4082			 * Disable LPLU if both link partners support 100BaseT
4083			 * EEE and 100Full is advertised on both ends of the
4084			 * link.
 
4085			 */
4086			if ((eee_advert & I217_EEE_100_SUPPORTED) &&
4087			    (dev_spec->eee_lp_ability &
4088			     I217_EEE_100_SUPPORTED) &&
4089			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4090				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4091					      E1000_PHY_CTRL_NOND0A_LPLU);
 
 
 
 
 
 
 
 
4092		}
4093
4094		/*
4095		 * For i217 Intel Rapid Start Technology support,
4096		 * when the system is going into Sx and no manageability engine
4097		 * is present, the driver must configure proxy to reset only on
4098		 * power good.  LPI (Low Power Idle) state must also reset only
4099		 * on power good, as well as the MTA (Multicast table array).
4100		 * The SMBus release must also be disabled on LCD reset.
4101		 */
4102		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4103
4104			/* Enable proxy to reset only on power good. */
4105			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4106			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4107			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4108
4109			/*
4110			 * Set bit enable LPI (EEE) to reset only on
4111			 * power good.
4112			 */
4113			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4114			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4115			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4116
4117			/* Disable the SMB release on LCD reset. */
4118			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4119			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4120			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4121		}
4122
4123		/*
4124		 * Enable MTA to reset for Intel Rapid Start Technology
4125		 * Support
4126		 */
4127		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4128		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4129		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4130
4131release:
4132		hw->phy.ops.release(hw);
4133	}
4134out:
4135	ew32(PHY_CTRL, phy_ctrl);
4136
4137	if (hw->mac.type == e1000_ich8lan)
4138		e1000e_gig_downshift_workaround_ich8lan(hw);
4139
4140	if (hw->mac.type >= e1000_pchlan) {
4141		e1000_oem_bits_config_ich8lan(hw, false);
4142
4143		/* Reset PHY to activate OEM bits on 82577/8 */
4144		if (hw->mac.type == e1000_pchlan)
4145			e1000e_phy_hw_reset_generic(hw);
4146
4147		ret_val = hw->phy.ops.acquire(hw);
4148		if (ret_val)
4149			return;
4150		e1000_write_smbus_addr(hw);
4151		hw->phy.ops.release(hw);
4152	}
4153}
4154
4155/**
4156 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4157 *  @hw: pointer to the HW structure
4158 *
4159 *  During Sx to S0 transitions on non-managed devices or managed devices
4160 *  on which PHY resets are not blocked, if the PHY registers cannot be
4161 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4162 *  the PHY.
4163 *  On i217, setup Intel Rapid Start Technology.
4164 **/
4165void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4166{
4167	s32 ret_val;
4168
4169	if (hw->mac.type < e1000_pch2lan)
4170		return;
4171
4172	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4173	if (ret_val) {
4174		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4175		return;
4176	}
4177
4178	/*
4179	 * For i217 Intel Rapid Start Technology support when the system
4180	 * is transitioning from Sx and no manageability engine is present
4181	 * configure SMBus to restore on reset, disable proxy, and enable
4182	 * the reset on MTA (Multicast table array).
4183	 */
4184	if (hw->phy.type == e1000_phy_i217) {
4185		u16 phy_reg;
4186
4187		ret_val = hw->phy.ops.acquire(hw);
4188		if (ret_val) {
4189			e_dbg("Failed to setup iRST\n");
4190			return;
4191		}
4192
 
 
 
 
 
4193		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4194			/*
4195			 * Restore clear on SMB if no manageability engine
4196			 * is present
4197			 */
4198			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4199			if (ret_val)
4200				goto release;
4201			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4202			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4203
4204			/* Disable Proxy */
4205			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4206		}
4207		/* Enable reset on MTA */
4208		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4209		if (ret_val)
4210			goto release;
4211		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4212		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4213release:
4214		if (ret_val)
4215			e_dbg("Error %d in resume workarounds\n", ret_val);
4216		hw->phy.ops.release(hw);
4217	}
4218}
4219
4220/**
4221 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4222 *  @hw: pointer to the HW structure
4223 *
4224 *  Return the LED back to the default configuration.
4225 **/
4226static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4227{
4228	if (hw->phy.type == e1000_phy_ife)
4229		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4230
4231	ew32(LEDCTL, hw->mac.ledctl_default);
4232	return 0;
4233}
4234
4235/**
4236 *  e1000_led_on_ich8lan - Turn LEDs on
4237 *  @hw: pointer to the HW structure
4238 *
4239 *  Turn on the LEDs.
4240 **/
4241static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4242{
4243	if (hw->phy.type == e1000_phy_ife)
4244		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4245				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4246
4247	ew32(LEDCTL, hw->mac.ledctl_mode2);
4248	return 0;
4249}
4250
4251/**
4252 *  e1000_led_off_ich8lan - Turn LEDs off
4253 *  @hw: pointer to the HW structure
4254 *
4255 *  Turn off the LEDs.
4256 **/
4257static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4258{
4259	if (hw->phy.type == e1000_phy_ife)
4260		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4261				(IFE_PSCL_PROBE_MODE |
4262				 IFE_PSCL_PROBE_LEDS_OFF));
4263
4264	ew32(LEDCTL, hw->mac.ledctl_mode1);
4265	return 0;
4266}
4267
4268/**
4269 *  e1000_setup_led_pchlan - Configures SW controllable LED
4270 *  @hw: pointer to the HW structure
4271 *
4272 *  This prepares the SW controllable LED for use.
4273 **/
4274static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4275{
4276	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4277}
4278
4279/**
4280 *  e1000_cleanup_led_pchlan - Restore the default LED operation
4281 *  @hw: pointer to the HW structure
4282 *
4283 *  Return the LED back to the default configuration.
4284 **/
4285static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4286{
4287	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4288}
4289
4290/**
4291 *  e1000_led_on_pchlan - Turn LEDs on
4292 *  @hw: pointer to the HW structure
4293 *
4294 *  Turn on the LEDs.
4295 **/
4296static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4297{
4298	u16 data = (u16)hw->mac.ledctl_mode2;
4299	u32 i, led;
4300
4301	/*
4302	 * If no link, then turn LED on by setting the invert bit
4303	 * for each LED that's mode is "link_up" in ledctl_mode2.
4304	 */
4305	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4306		for (i = 0; i < 3; i++) {
4307			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4308			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4309			    E1000_LEDCTL_MODE_LINK_UP)
4310				continue;
4311			if (led & E1000_PHY_LED0_IVRT)
4312				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4313			else
4314				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4315		}
4316	}
4317
4318	return e1e_wphy(hw, HV_LED_CONFIG, data);
4319}
4320
4321/**
4322 *  e1000_led_off_pchlan - Turn LEDs off
4323 *  @hw: pointer to the HW structure
4324 *
4325 *  Turn off the LEDs.
4326 **/
4327static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4328{
4329	u16 data = (u16)hw->mac.ledctl_mode1;
4330	u32 i, led;
4331
4332	/*
4333	 * If no link, then turn LED off by clearing the invert bit
4334	 * for each LED that's mode is "link_up" in ledctl_mode1.
4335	 */
4336	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4337		for (i = 0; i < 3; i++) {
4338			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4339			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4340			    E1000_LEDCTL_MODE_LINK_UP)
4341				continue;
4342			if (led & E1000_PHY_LED0_IVRT)
4343				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4344			else
4345				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4346		}
4347	}
4348
4349	return e1e_wphy(hw, HV_LED_CONFIG, data);
4350}
4351
4352/**
4353 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4354 *  @hw: pointer to the HW structure
4355 *
4356 *  Read appropriate register for the config done bit for completion status
4357 *  and configure the PHY through s/w for EEPROM-less parts.
4358 *
4359 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4360 *  config done bit, so only an error is logged and continues.  If we were
4361 *  to return with error, EEPROM-less silicon would not be able to be reset
4362 *  or change link.
4363 **/
4364static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4365{
4366	s32 ret_val = 0;
4367	u32 bank = 0;
4368	u32 status;
4369
4370	e1000e_get_cfg_done(hw);
4371
4372	/* Wait for indication from h/w that it has completed basic config */
4373	if (hw->mac.type >= e1000_ich10lan) {
4374		e1000_lan_init_done_ich8lan(hw);
4375	} else {
4376		ret_val = e1000e_get_auto_rd_done(hw);
4377		if (ret_val) {
4378			/*
4379			 * When auto config read does not complete, do not
4380			 * return with an error. This can happen in situations
4381			 * where there is no eeprom and prevents getting link.
4382			 */
4383			e_dbg("Auto Read Done did not complete\n");
4384			ret_val = 0;
4385		}
4386	}
4387
4388	/* Clear PHY Reset Asserted bit */
4389	status = er32(STATUS);
4390	if (status & E1000_STATUS_PHYRA)
4391		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4392	else
4393		e_dbg("PHY Reset Asserted not set - needs delay\n");
4394
4395	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4396	if (hw->mac.type <= e1000_ich9lan) {
4397		if (!(er32(EECD) & E1000_EECD_PRES) &&
4398		    (hw->phy.type == e1000_phy_igp_3)) {
4399			e1000e_phy_init_script_igp3(hw);
4400		}
4401	} else {
4402		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4403			/* Maybe we should do a basic PHY config */
4404			e_dbg("EEPROM not present\n");
4405			ret_val = -E1000_ERR_CONFIG;
4406		}
4407	}
4408
4409	return ret_val;
4410}
4411
4412/**
4413 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4414 * @hw: pointer to the HW structure
4415 *
4416 * In the case of a PHY power down to save power, or to turn off link during a
4417 * driver unload, or wake on lan is not enabled, remove the link.
4418 **/
4419static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4420{
4421	/* If the management interface is not enabled, then power down */
4422	if (!(hw->mac.ops.check_mng_mode(hw) ||
4423	      hw->phy.ops.check_reset_block(hw)))
4424		e1000_power_down_phy_copper(hw);
4425}
4426
4427/**
4428 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4429 *  @hw: pointer to the HW structure
4430 *
4431 *  Clears hardware counters specific to the silicon family and calls
4432 *  clear_hw_cntrs_generic to clear all general purpose counters.
4433 **/
4434static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4435{
4436	u16 phy_data;
4437	s32 ret_val;
4438
4439	e1000e_clear_hw_cntrs_base(hw);
4440
4441	er32(ALGNERRC);
4442	er32(RXERRC);
4443	er32(TNCRS);
4444	er32(CEXTERR);
4445	er32(TSCTC);
4446	er32(TSCTFC);
4447
4448	er32(MGTPRC);
4449	er32(MGTPDC);
4450	er32(MGTPTC);
4451
4452	er32(IAC);
4453	er32(ICRXOC);
4454
4455	/* Clear PHY statistics registers */
4456	if ((hw->phy.type == e1000_phy_82578) ||
4457	    (hw->phy.type == e1000_phy_82579) ||
4458	    (hw->phy.type == e1000_phy_i217) ||
4459	    (hw->phy.type == e1000_phy_82577)) {
4460		ret_val = hw->phy.ops.acquire(hw);
4461		if (ret_val)
4462			return;
4463		ret_val = hw->phy.ops.set_page(hw,
4464					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4465		if (ret_val)
4466			goto release;
4467		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4468		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4469		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4470		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4471		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4472		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4473		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4474		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4475		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4476		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4477		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4478		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4479		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4480		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4481release:
4482		hw->phy.ops.release(hw);
4483	}
4484}
4485
4486static const struct e1000_mac_operations ich8_mac_ops = {
4487	/* check_mng_mode dependent on mac type */
4488	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4489	/* cleanup_led dependent on mac type */
4490	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4491	.get_bus_info		= e1000_get_bus_info_ich8lan,
4492	.set_lan_id		= e1000_set_lan_id_single_port,
4493	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4494	/* led_on dependent on mac type */
4495	/* led_off dependent on mac type */
4496	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4497	.reset_hw		= e1000_reset_hw_ich8lan,
4498	.init_hw		= e1000_init_hw_ich8lan,
4499	.setup_link		= e1000_setup_link_ich8lan,
4500	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4501	/* id_led_init dependent on mac type */
4502	.config_collision_dist	= e1000e_config_collision_dist_generic,
4503	.rar_set		= e1000e_rar_set_generic,
 
4504};
4505
4506static const struct e1000_phy_operations ich8_phy_ops = {
4507	.acquire		= e1000_acquire_swflag_ich8lan,
4508	.check_reset_block	= e1000_check_reset_block_ich8lan,
4509	.commit			= NULL,
4510	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4511	.get_cable_length	= e1000e_get_cable_length_igp_2,
4512	.read_reg		= e1000e_read_phy_reg_igp,
4513	.release		= e1000_release_swflag_ich8lan,
4514	.reset			= e1000_phy_hw_reset_ich8lan,
4515	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4516	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4517	.write_reg		= e1000e_write_phy_reg_igp,
4518};
4519
4520static const struct e1000_nvm_operations ich8_nvm_ops = {
4521	.acquire		= e1000_acquire_nvm_ich8lan,
4522	.read		 	= e1000_read_nvm_ich8lan,
4523	.release		= e1000_release_nvm_ich8lan,
4524	.reload			= e1000e_reload_nvm_generic,
4525	.update			= e1000_update_nvm_checksum_ich8lan,
4526	.valid_led_default	= e1000_valid_led_default_ich8lan,
4527	.validate		= e1000_validate_nvm_checksum_ich8lan,
4528	.write			= e1000_write_nvm_ich8lan,
4529};
4530
 
 
 
 
 
 
 
 
 
 
 
4531const struct e1000_info e1000_ich8_info = {
4532	.mac			= e1000_ich8lan,
4533	.flags			= FLAG_HAS_WOL
4534				  | FLAG_IS_ICH
4535				  | FLAG_HAS_CTRLEXT_ON_LOAD
4536				  | FLAG_HAS_AMT
4537				  | FLAG_HAS_FLASH
4538				  | FLAG_APME_IN_WUC,
4539	.pba			= 8,
4540	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4541	.get_variants		= e1000_get_variants_ich8lan,
4542	.mac_ops		= &ich8_mac_ops,
4543	.phy_ops		= &ich8_phy_ops,
4544	.nvm_ops		= &ich8_nvm_ops,
4545};
4546
4547const struct e1000_info e1000_ich9_info = {
4548	.mac			= e1000_ich9lan,
4549	.flags			= FLAG_HAS_JUMBO_FRAMES
4550				  | FLAG_IS_ICH
4551				  | FLAG_HAS_WOL
4552				  | FLAG_HAS_CTRLEXT_ON_LOAD
4553				  | FLAG_HAS_AMT
4554				  | FLAG_HAS_FLASH
4555				  | FLAG_APME_IN_WUC,
4556	.pba			= 18,
4557	.max_hw_frame_size	= DEFAULT_JUMBO,
4558	.get_variants		= e1000_get_variants_ich8lan,
4559	.mac_ops		= &ich8_mac_ops,
4560	.phy_ops		= &ich8_phy_ops,
4561	.nvm_ops		= &ich8_nvm_ops,
4562};
4563
4564const struct e1000_info e1000_ich10_info = {
4565	.mac			= e1000_ich10lan,
4566	.flags			= FLAG_HAS_JUMBO_FRAMES
4567				  | FLAG_IS_ICH
4568				  | FLAG_HAS_WOL
4569				  | FLAG_HAS_CTRLEXT_ON_LOAD
4570				  | FLAG_HAS_AMT
4571				  | FLAG_HAS_FLASH
4572				  | FLAG_APME_IN_WUC,
4573	.pba			= 18,
4574	.max_hw_frame_size	= DEFAULT_JUMBO,
4575	.get_variants		= e1000_get_variants_ich8lan,
4576	.mac_ops		= &ich8_mac_ops,
4577	.phy_ops		= &ich8_phy_ops,
4578	.nvm_ops		= &ich8_nvm_ops,
4579};
4580
4581const struct e1000_info e1000_pch_info = {
4582	.mac			= e1000_pchlan,
4583	.flags			= FLAG_IS_ICH
4584				  | FLAG_HAS_WOL
4585				  | FLAG_HAS_CTRLEXT_ON_LOAD
4586				  | FLAG_HAS_AMT
4587				  | FLAG_HAS_FLASH
4588				  | FLAG_HAS_JUMBO_FRAMES
4589				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4590				  | FLAG_APME_IN_WUC,
4591	.flags2			= FLAG2_HAS_PHY_STATS,
4592	.pba			= 26,
4593	.max_hw_frame_size	= 4096,
4594	.get_variants		= e1000_get_variants_ich8lan,
4595	.mac_ops		= &ich8_mac_ops,
4596	.phy_ops		= &ich8_phy_ops,
4597	.nvm_ops		= &ich8_nvm_ops,
4598};
4599
4600const struct e1000_info e1000_pch2_info = {
4601	.mac			= e1000_pch2lan,
4602	.flags			= FLAG_IS_ICH
4603				  | FLAG_HAS_WOL
 
4604				  | FLAG_HAS_CTRLEXT_ON_LOAD
4605				  | FLAG_HAS_AMT
4606				  | FLAG_HAS_FLASH
4607				  | FLAG_HAS_JUMBO_FRAMES
4608				  | FLAG_APME_IN_WUC,
4609	.flags2			= FLAG2_HAS_PHY_STATS
4610				  | FLAG2_HAS_EEE,
4611	.pba			= 26,
4612	.max_hw_frame_size	= DEFAULT_JUMBO,
4613	.get_variants		= e1000_get_variants_ich8lan,
4614	.mac_ops		= &ich8_mac_ops,
4615	.phy_ops		= &ich8_phy_ops,
4616	.nvm_ops		= &ich8_nvm_ops,
4617};
4618
4619const struct e1000_info e1000_pch_lpt_info = {
4620	.mac			= e1000_pch_lpt,
4621	.flags			= FLAG_IS_ICH
4622				  | FLAG_HAS_WOL
 
4623				  | FLAG_HAS_CTRLEXT_ON_LOAD
4624				  | FLAG_HAS_AMT
4625				  | FLAG_HAS_FLASH
4626				  | FLAG_HAS_JUMBO_FRAMES
4627				  | FLAG_APME_IN_WUC,
4628	.flags2			= FLAG2_HAS_PHY_STATS
4629				  | FLAG2_HAS_EEE,
 
4630	.pba			= 26,
4631	.max_hw_frame_size	= DEFAULT_JUMBO,
4632	.get_variants		= e1000_get_variants_ich8lan,
4633	.mac_ops		= &ich8_mac_ops,
4634	.phy_ops		= &ich8_phy_ops,
4635	.nvm_ops		= &ich8_nvm_ops,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4636};
v4.10.11
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
 
 
 
 
 
 
 
  21
  22/* 82562G 10/100 Network Connection
 
  23 * 82562G-2 10/100 Network Connection
  24 * 82562GT 10/100 Network Connection
  25 * 82562GT-2 10/100 Network Connection
  26 * 82562V 10/100 Network Connection
  27 * 82562V-2 10/100 Network Connection
  28 * 82566DC-2 Gigabit Network Connection
  29 * 82566DC Gigabit Network Connection
  30 * 82566DM-2 Gigabit Network Connection
  31 * 82566DM Gigabit Network Connection
  32 * 82566MC Gigabit Network Connection
  33 * 82566MM Gigabit Network Connection
  34 * 82567LM Gigabit Network Connection
  35 * 82567LF Gigabit Network Connection
  36 * 82567V Gigabit Network Connection
  37 * 82567LM-2 Gigabit Network Connection
  38 * 82567LF-2 Gigabit Network Connection
  39 * 82567V-2 Gigabit Network Connection
  40 * 82567LF-3 Gigabit Network Connection
  41 * 82567LM-3 Gigabit Network Connection
  42 * 82567LM-4 Gigabit Network Connection
  43 * 82577LM Gigabit Network Connection
  44 * 82577LC Gigabit Network Connection
  45 * 82578DM Gigabit Network Connection
  46 * 82578DC Gigabit Network Connection
  47 * 82579LM Gigabit Network Connection
  48 * 82579V Gigabit Network Connection
  49 * Ethernet Connection I217-LM
  50 * Ethernet Connection I217-V
  51 * Ethernet Connection I218-V
  52 * Ethernet Connection I218-LM
  53 * Ethernet Connection (2) I218-LM
  54 * Ethernet Connection (2) I218-V
  55 * Ethernet Connection (3) I218-LM
  56 * Ethernet Connection (3) I218-V
  57 */
  58
  59#include "e1000.h"
  60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  62/* Offset 04h HSFSTS */
  63union ich8_hws_flash_status {
  64	struct ich8_hsfsts {
  65		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  66		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  67		u16 dael:1;	/* bit 2 Direct Access error Log */
  68		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  69		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  70		u16 reserved1:2;	/* bit 13:6 Reserved */
  71		u16 reserved2:6;	/* bit 13:6 Reserved */
  72		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  73		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  74	} hsf_status;
  75	u16 regval;
  76};
  77
  78/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  79/* Offset 06h FLCTL */
  80union ich8_hws_flash_ctrl {
  81	struct ich8_hsflctl {
  82		u16 flcgo:1;	/* 0 Flash Cycle Go */
  83		u16 flcycle:2;	/* 2:1 Flash Cycle */
  84		u16 reserved:5;	/* 7:3 Reserved  */
  85		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  86		u16 flockdn:6;	/* 15:10 Reserved */
  87	} hsf_ctrl;
  88	u16 regval;
  89};
  90
  91/* ICH Flash Region Access Permissions */
  92union ich8_hws_flash_regacc {
  93	struct ich8_flracc {
  94		u32 grra:8;	/* 0:7 GbE region Read Access */
  95		u32 grwa:8;	/* 8:15 GbE region Write Access */
  96		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  97		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  98	} hsf_flregacc;
  99	u16 regval;
 100};
 101
 102/* ICH Flash Protected Region */
 103union ich8_flash_protected_range {
 104	struct ich8_pr {
 105		u32 base:13;	/* 0:12 Protected Range Base */
 106		u32 reserved1:2;	/* 13:14 Reserved */
 107		u32 rpe:1;	/* 15 Read Protection Enable */
 108		u32 limit:13;	/* 16:28 Protected Range Limit */
 109		u32 reserved2:2;	/* 29:30 Reserved */
 110		u32 wpe:1;	/* 31 Write Protection Enable */
 111	} range;
 112	u32 regval;
 113};
 114
 
 115static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 116static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 118static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 119						u32 offset, u8 byte);
 120static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 121					 u8 *data);
 122static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 123					 u16 *data);
 124static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 125					 u8 size, u16 *data);
 126static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 127					   u32 *data);
 128static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 129					  u32 offset, u32 *data);
 130static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 131					    u32 offset, u32 data);
 132static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 133						 u32 offset, u32 dword);
 134static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 
 135static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 136static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 137static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 138static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 139static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 140static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 141static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 142static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 143static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 144static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 145static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 146static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 147static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 148static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 149static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 150static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 151static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 152static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 153static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 154static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 155static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 156static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 157static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 158
 159static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 160{
 161	return readw(hw->flash_address + reg);
 162}
 163
 164static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 165{
 166	return readl(hw->flash_address + reg);
 167}
 168
 169static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 170{
 171	writew(val, hw->flash_address + reg);
 172}
 173
 174static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 175{
 176	writel(val, hw->flash_address + reg);
 177}
 178
 179#define er16flash(reg)		__er16flash(hw, (reg))
 180#define er32flash(reg)		__er32flash(hw, (reg))
 181#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 182#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 183
 184/**
 185 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 186 *  @hw: pointer to the HW structure
 187 *
 188 *  Test access to the PHY registers by reading the PHY ID registers.  If
 189 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 190 *  otherwise assume the read PHY ID is correct if it is valid.
 191 *
 192 *  Assumes the sw/fw/hw semaphore is already acquired.
 193 **/
 194static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 195{
 196	u16 phy_reg = 0;
 197	u32 phy_id = 0;
 198	s32 ret_val = 0;
 199	u16 retry_count;
 200	u32 mac_reg = 0;
 201
 202	for (retry_count = 0; retry_count < 2; retry_count++) {
 203		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 204		if (ret_val || (phy_reg == 0xFFFF))
 205			continue;
 206		phy_id = (u32)(phy_reg << 16);
 207
 208		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 209		if (ret_val || (phy_reg == 0xFFFF)) {
 210			phy_id = 0;
 211			continue;
 212		}
 213		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 214		break;
 215	}
 216
 217	if (hw->phy.id) {
 218		if (hw->phy.id == phy_id)
 219			goto out;
 220	} else if (phy_id) {
 221		hw->phy.id = phy_id;
 222		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 223		goto out;
 224	}
 225
 226	/* In case the PHY needs to be in mdio slow mode,
 
 227	 * set slow mode and try to get the PHY id again.
 228	 */
 229	if (hw->mac.type < e1000_pch_lpt) {
 230		hw->phy.ops.release(hw);
 231		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 232		if (!ret_val)
 233			ret_val = e1000e_get_phy_id(hw);
 234		hw->phy.ops.acquire(hw);
 235	}
 236
 237	if (ret_val)
 238		return false;
 239out:
 240	if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
 241		/* Only unforce SMBus if ME is not active */
 242		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 243			/* Unforce SMBus mode in PHY */
 244			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 245			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 246			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 247
 248			/* Unforce SMBus mode in MAC */
 249			mac_reg = er32(CTRL_EXT);
 250			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 251			ew32(CTRL_EXT, mac_reg);
 252		}
 253	}
 254
 255	return true;
 256}
 257
 258/**
 259 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 260 *  @hw: pointer to the HW structure
 261 *
 262 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 263 *  used to reset the PHY to a quiescent state when necessary.
 264 **/
 265static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 266{
 267	u32 mac_reg;
 268
 269	/* Set Phy Config Counter to 50msec */
 270	mac_reg = er32(FEXTNVM3);
 271	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 272	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 273	ew32(FEXTNVM3, mac_reg);
 274
 275	/* Toggle LANPHYPC Value bit */
 276	mac_reg = er32(CTRL);
 277	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 278	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 279	ew32(CTRL, mac_reg);
 280	e1e_flush();
 281	usleep_range(10, 20);
 282	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 283	ew32(CTRL, mac_reg);
 284	e1e_flush();
 285
 286	if (hw->mac.type < e1000_pch_lpt) {
 287		msleep(50);
 288	} else {
 289		u16 count = 20;
 290
 291		do {
 292			usleep_range(5000, 10000);
 293		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 294
 295		msleep(30);
 296	}
 297}
 298
 299/**
 300 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 301 *  @hw: pointer to the HW structure
 302 *
 303 *  Workarounds/flow necessary for PHY initialization during driver load
 304 *  and resume paths.
 305 **/
 306static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 307{
 308	struct e1000_adapter *adapter = hw->adapter;
 309	u32 mac_reg, fwsm = er32(FWSM);
 310	s32 ret_val;
 311
 312	/* Gate automatic PHY configuration by hardware on managed and
 313	 * non-managed 82579 and newer adapters.
 314	 */
 315	e1000_gate_hw_phy_config_ich8lan(hw, true);
 316
 317	/* It is not possible to be certain of the current state of ULP
 318	 * so forcibly disable it.
 319	 */
 320	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 321	e1000_disable_ulp_lpt_lp(hw, true);
 322
 323	ret_val = hw->phy.ops.acquire(hw);
 324	if (ret_val) {
 325		e_dbg("Failed to initialize PHY flow\n");
 326		goto out;
 327	}
 328
 329	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 
 330	 * inaccessible and resetting the PHY is not blocked, toggle the
 331	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 332	 */
 333	switch (hw->mac.type) {
 334	case e1000_pch_lpt:
 335	case e1000_pch_spt:
 336		if (e1000_phy_is_accessible_pchlan(hw))
 337			break;
 338
 339		/* Before toggling LANPHYPC, see if PHY is accessible by
 
 340		 * forcing MAC to SMBus mode first.
 341		 */
 342		mac_reg = er32(CTRL_EXT);
 343		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 344		ew32(CTRL_EXT, mac_reg);
 345
 346		/* Wait 50 milliseconds for MAC to finish any retries
 347		 * that it might be trying to perform from previous
 348		 * attempts to acknowledge any phy read requests.
 
 
 349		 */
 350		msleep(50);
 
 
 351
 352		/* fall-through */
 353	case e1000_pch2lan:
 354		if (e1000_phy_is_accessible_pchlan(hw))
 
 
 
 
 
 
 
 
 
 355			break;
 
 356
 357		/* fall-through */
 358	case e1000_pchlan:
 359		if ((hw->mac.type == e1000_pchlan) &&
 360		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 361			break;
 362
 363		if (hw->phy.ops.check_reset_block(hw)) {
 364			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 365			ret_val = -E1000_ERR_PHY;
 366			break;
 367		}
 368
 369		/* Toggle LANPHYPC Value bit */
 370		e1000_toggle_lanphypc_pch_lpt(hw);
 371		if (hw->mac.type >= e1000_pch_lpt) {
 372			if (e1000_phy_is_accessible_pchlan(hw))
 373				break;
 374
 375			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 376			 * so ensure that the MAC is also out of SMBus mode
 377			 */
 378			mac_reg = er32(CTRL_EXT);
 379			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 380			ew32(CTRL_EXT, mac_reg);
 381
 382			if (e1000_phy_is_accessible_pchlan(hw))
 383				break;
 384
 385			ret_val = -E1000_ERR_PHY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 386		}
 387		break;
 388	default:
 389		break;
 390	}
 391
 392	hw->phy.ops.release(hw);
 393	if (!ret_val) {
 394
 395		/* Check to see if able to reset PHY.  Print error if not */
 396		if (hw->phy.ops.check_reset_block(hw)) {
 397			e_err("Reset blocked by ME\n");
 398			goto out;
 399		}
 
 
 400
 401		/* Reset the PHY before any access to it.  Doing so, ensures
 402		 * that the PHY is in a known good state before we read/write
 403		 * PHY registers.  The generic reset is sufficient here,
 404		 * because we haven't determined the PHY type yet.
 405		 */
 406		ret_val = e1000e_phy_hw_reset_generic(hw);
 407		if (ret_val)
 408			goto out;
 409
 410		/* On a successful reset, possibly need to wait for the PHY
 411		 * to quiesce to an accessible state before returning control
 412		 * to the calling function.  If the PHY does not quiesce, then
 413		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 414		 *  the PHY is in.
 415		 */
 416		ret_val = hw->phy.ops.check_reset_block(hw);
 417		if (ret_val)
 418			e_err("ME blocked access to PHY after reset\n");
 419	}
 420
 421out:
 422	/* Ungate automatic PHY configuration on non-managed 82579 */
 423	if ((hw->mac.type == e1000_pch2lan) &&
 424	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 425		usleep_range(10000, 20000);
 426		e1000_gate_hw_phy_config_ich8lan(hw, false);
 427	}
 428
 429	return ret_val;
 430}
 431
 432/**
 433 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 434 *  @hw: pointer to the HW structure
 435 *
 436 *  Initialize family-specific PHY parameters and function pointers.
 437 **/
 438static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 439{
 440	struct e1000_phy_info *phy = &hw->phy;
 441	s32 ret_val;
 442
 443	phy->addr = 1;
 444	phy->reset_delay_us = 100;
 445
 446	phy->ops.set_page = e1000_set_page_igp;
 447	phy->ops.read_reg = e1000_read_phy_reg_hv;
 448	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 449	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 450	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 451	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 452	phy->ops.write_reg = e1000_write_phy_reg_hv;
 453	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 454	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 455	phy->ops.power_up = e1000_power_up_phy_copper;
 456	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 457	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 458
 459	phy->id = e1000_phy_unknown;
 460
 461	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 462	if (ret_val)
 463		return ret_val;
 464
 465	if (phy->id == e1000_phy_unknown)
 466		switch (hw->mac.type) {
 467		default:
 468			ret_val = e1000e_get_phy_id(hw);
 469			if (ret_val)
 470				return ret_val;
 471			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 472				break;
 473			/* fall-through */
 474		case e1000_pch2lan:
 475		case e1000_pch_lpt:
 476		case e1000_pch_spt:
 477			/* In case the PHY needs to be in mdio slow mode,
 478			 * set slow mode and try to get the PHY id again.
 479			 */
 480			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 481			if (ret_val)
 482				return ret_val;
 483			ret_val = e1000e_get_phy_id(hw);
 484			if (ret_val)
 485				return ret_val;
 486			break;
 487		}
 488	phy->type = e1000e_get_phy_type_from_id(phy->id);
 489
 490	switch (phy->type) {
 491	case e1000_phy_82577:
 492	case e1000_phy_82579:
 493	case e1000_phy_i217:
 494		phy->ops.check_polarity = e1000_check_polarity_82577;
 495		phy->ops.force_speed_duplex =
 496		    e1000_phy_force_speed_duplex_82577;
 497		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 498		phy->ops.get_info = e1000_get_phy_info_82577;
 499		phy->ops.commit = e1000e_phy_sw_reset;
 500		break;
 501	case e1000_phy_82578:
 502		phy->ops.check_polarity = e1000_check_polarity_m88;
 503		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 504		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 505		phy->ops.get_info = e1000e_get_phy_info_m88;
 506		break;
 507	default:
 508		ret_val = -E1000_ERR_PHY;
 509		break;
 510	}
 511
 512	return ret_val;
 513}
 514
 515/**
 516 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 517 *  @hw: pointer to the HW structure
 518 *
 519 *  Initialize family-specific PHY parameters and function pointers.
 520 **/
 521static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 522{
 523	struct e1000_phy_info *phy = &hw->phy;
 524	s32 ret_val;
 525	u16 i = 0;
 526
 527	phy->addr = 1;
 528	phy->reset_delay_us = 100;
 529
 530	phy->ops.power_up = e1000_power_up_phy_copper;
 531	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 532
 533	/* We may need to do this twice - once for IGP and if that fails,
 
 534	 * we'll set BM func pointers and try again
 535	 */
 536	ret_val = e1000e_determine_phy_address(hw);
 537	if (ret_val) {
 538		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 539		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 540		ret_val = e1000e_determine_phy_address(hw);
 541		if (ret_val) {
 542			e_dbg("Cannot determine PHY addr. Erroring out\n");
 543			return ret_val;
 544		}
 545	}
 546
 547	phy->id = 0;
 548	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 549	       (i++ < 100)) {
 550		usleep_range(1000, 2000);
 551		ret_val = e1000e_get_phy_id(hw);
 552		if (ret_val)
 553			return ret_val;
 554	}
 555
 556	/* Verify phy id */
 557	switch (phy->id) {
 558	case IGP03E1000_E_PHY_ID:
 559		phy->type = e1000_phy_igp_3;
 560		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 561		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 562		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 563		phy->ops.get_info = e1000e_get_phy_info_igp;
 564		phy->ops.check_polarity = e1000_check_polarity_igp;
 565		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 566		break;
 567	case IFE_E_PHY_ID:
 568	case IFE_PLUS_E_PHY_ID:
 569	case IFE_C_E_PHY_ID:
 570		phy->type = e1000_phy_ife;
 571		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 572		phy->ops.get_info = e1000_get_phy_info_ife;
 573		phy->ops.check_polarity = e1000_check_polarity_ife;
 574		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 575		break;
 576	case BME1000_E_PHY_ID:
 577		phy->type = e1000_phy_bm;
 578		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 579		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 580		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 581		phy->ops.commit = e1000e_phy_sw_reset;
 582		phy->ops.get_info = e1000e_get_phy_info_m88;
 583		phy->ops.check_polarity = e1000_check_polarity_m88;
 584		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 585		break;
 586	default:
 587		return -E1000_ERR_PHY;
 
 588	}
 589
 590	return 0;
 591}
 592
 593/**
 594 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 595 *  @hw: pointer to the HW structure
 596 *
 597 *  Initialize family-specific NVM parameters and function
 598 *  pointers.
 599 **/
 600static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 601{
 602	struct e1000_nvm_info *nvm = &hw->nvm;
 603	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 604	u32 gfpreg, sector_base_addr, sector_end_addr;
 605	u16 i;
 606	u32 nvm_size;
 
 
 
 
 
 607
 608	nvm->type = e1000_nvm_flash_sw;
 609
 610	if (hw->mac.type == e1000_pch_spt) {
 611		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 612		 * STRAP register. This is because in SPT the GbE Flash region
 613		 * is no longer accessed through the flash registers. Instead,
 614		 * the mechanism has changed, and the Flash region access
 615		 * registers are now implemented in GbE memory space.
 616		 */
 617		nvm->flash_base_addr = 0;
 618		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 619		    * NVM_SIZE_MULTIPLIER;
 620		nvm->flash_bank_size = nvm_size / 2;
 621		/* Adjust to word count */
 622		nvm->flash_bank_size /= sizeof(u16);
 623		/* Set the base address for flash register access */
 624		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 625	} else {
 626		/* Can't read flash registers if register set isn't mapped. */
 627		if (!hw->flash_address) {
 628			e_dbg("ERROR: Flash registers not mapped\n");
 629			return -E1000_ERR_CONFIG;
 630		}
 631
 632		gfpreg = er32flash(ICH_FLASH_GFPREG);
 633
 634		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 635		 * Add 1 to sector_end_addr since this sector is included in
 636		 * the overall size.
 637		 */
 638		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 639		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 640
 641		/* flash_base_addr is byte-aligned */
 642		nvm->flash_base_addr = sector_base_addr
 643		    << FLASH_SECTOR_ADDR_SHIFT;
 644
 645		/* find total size of the NVM, then cut in half since the total
 646		 * size represents two separate NVM banks.
 647		 */
 648		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 649					<< FLASH_SECTOR_ADDR_SHIFT);
 650		nvm->flash_bank_size /= 2;
 651		/* Adjust to word count */
 652		nvm->flash_bank_size /= sizeof(u16);
 653	}
 654
 655	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 656
 657	/* Clear shadow ram */
 658	for (i = 0; i < nvm->word_size; i++) {
 659		dev_spec->shadow_ram[i].modified = false;
 660		dev_spec->shadow_ram[i].value = 0xFFFF;
 661	}
 662
 663	return 0;
 664}
 665
 666/**
 667 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 668 *  @hw: pointer to the HW structure
 669 *
 670 *  Initialize family-specific MAC parameters and function
 671 *  pointers.
 672 **/
 673static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 674{
 675	struct e1000_mac_info *mac = &hw->mac;
 676
 677	/* Set media type function pointer */
 678	hw->phy.media_type = e1000_media_type_copper;
 679
 680	/* Set mta register count */
 681	mac->mta_reg_count = 32;
 682	/* Set rar entry count */
 683	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 684	if (mac->type == e1000_ich8lan)
 685		mac->rar_entry_count--;
 686	/* FWSM register */
 687	mac->has_fwsm = true;
 688	/* ARC subsystem not supported */
 689	mac->arc_subsystem_valid = false;
 690	/* Adaptive IFS supported */
 691	mac->adaptive_ifs = true;
 692
 693	/* LED and other operations */
 694	switch (mac->type) {
 695	case e1000_ich8lan:
 696	case e1000_ich9lan:
 697	case e1000_ich10lan:
 698		/* check management mode */
 699		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 700		/* ID LED init */
 701		mac->ops.id_led_init = e1000e_id_led_init_generic;
 702		/* blink LED */
 703		mac->ops.blink_led = e1000e_blink_led_generic;
 704		/* setup LED */
 705		mac->ops.setup_led = e1000e_setup_led_generic;
 706		/* cleanup LED */
 707		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 708		/* turn on/off LED */
 709		mac->ops.led_on = e1000_led_on_ich8lan;
 710		mac->ops.led_off = e1000_led_off_ich8lan;
 711		break;
 712	case e1000_pch2lan:
 713		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 714		mac->ops.rar_set = e1000_rar_set_pch2lan;
 715		/* fall-through */
 716	case e1000_pch_lpt:
 717	case e1000_pch_spt:
 718	case e1000_pchlan:
 719		/* check management mode */
 720		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 721		/* ID LED init */
 722		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 723		/* setup LED */
 724		mac->ops.setup_led = e1000_setup_led_pchlan;
 725		/* cleanup LED */
 726		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 727		/* turn on/off LED */
 728		mac->ops.led_on = e1000_led_on_pchlan;
 729		mac->ops.led_off = e1000_led_off_pchlan;
 730		break;
 731	default:
 732		break;
 733	}
 734
 735	if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
 736		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 737		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 738		mac->ops.setup_physical_interface =
 739		    e1000_setup_copper_link_pch_lpt;
 740		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 741	}
 742
 743	/* Enable PCS Lock-loss workaround for ICH8 */
 744	if (mac->type == e1000_ich8lan)
 745		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 746
 
 
 
 
 
 
 
 
 747	return 0;
 748}
 749
 750/**
 751 *  __e1000_access_emi_reg_locked - Read/write EMI register
 752 *  @hw: pointer to the HW structure
 753 *  @addr: EMI address to program
 754 *  @data: pointer to value to read/write from/to the EMI address
 755 *  @read: boolean flag to indicate read or write
 756 *
 757 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 758 **/
 759static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 760					 u16 *data, bool read)
 761{
 762	s32 ret_val;
 763
 764	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 765	if (ret_val)
 766		return ret_val;
 767
 768	if (read)
 769		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 770	else
 771		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 772
 773	return ret_val;
 774}
 775
 776/**
 777 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 778 *  @hw: pointer to the HW structure
 779 *  @addr: EMI address to program
 780 *  @data: value to be read from the EMI address
 781 *
 782 *  Assumes the SW/FW/HW Semaphore is already acquired.
 783 **/
 784s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 785{
 786	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 787}
 788
 789/**
 790 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 791 *  @hw: pointer to the HW structure
 792 *  @addr: EMI address to program
 793 *  @data: value to be written to the EMI address
 794 *
 795 *  Assumes the SW/FW/HW Semaphore is already acquired.
 796 **/
 797s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 798{
 799	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 800}
 801
 802/**
 803 *  e1000_set_eee_pchlan - Enable/disable EEE support
 804 *  @hw: pointer to the HW structure
 805 *
 806 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 807 *  the link and the EEE capabilities of the link partner.  The LPI Control
 808 *  register bits will remain set only if/when link is up.
 809 *
 810 *  EEE LPI must not be asserted earlier than one second after link is up.
 811 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 812 *  can be link issues with some switches.  Other devices can have EEE LPI
 813 *  enabled immediately upon link up since they have a timer in hardware which
 814 *  prevents LPI from being asserted too early.
 815 **/
 816s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 817{
 818	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 819	s32 ret_val;
 820	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 821
 822	switch (hw->phy.type) {
 823	case e1000_phy_82579:
 824		lpa = I82579_EEE_LP_ABILITY;
 825		pcs_status = I82579_EEE_PCS_STATUS;
 826		adv_addr = I82579_EEE_ADVERTISEMENT;
 827		break;
 828	case e1000_phy_i217:
 829		lpa = I217_EEE_LP_ABILITY;
 830		pcs_status = I217_EEE_PCS_STATUS;
 831		adv_addr = I217_EEE_ADVERTISEMENT;
 832		break;
 833	default:
 834		return 0;
 835	}
 836
 837	ret_val = hw->phy.ops.acquire(hw);
 838	if (ret_val)
 839		return ret_val;
 840
 841	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 
 
 
 
 
 842	if (ret_val)
 843		goto release;
 844
 845	/* Clear bits that enable EEE in various speeds */
 846	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 847
 848	/* Enable EEE if not disabled by user */
 849	if (!dev_spec->eee_disable) {
 850		/* Save off link partner's EEE ability */
 851		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 852						    &dev_spec->eee_lp_ability);
 853		if (ret_val)
 854			goto release;
 855
 856		/* Read EEE advertisement */
 857		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 858		if (ret_val)
 859			goto release;
 860
 861		/* Enable EEE only for speeds in which the link partner is
 862		 * EEE capable and for which we advertise EEE.
 863		 */
 864		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 865			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 866
 867		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 868			e1e_rphy_locked(hw, MII_LPA, &data);
 869			if (data & LPA_100FULL)
 870				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 871			else
 872				/* EEE is not supported in 100Half, so ignore
 873				 * partner's EEE in 100 ability if full-duplex
 874				 * is not advertised.
 875				 */
 876				dev_spec->eee_lp_ability &=
 877				    ~I82579_EEE_100_SUPPORTED;
 878		}
 879	}
 880
 881	if (hw->phy.type == e1000_phy_82579) {
 882		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 883						    &data);
 884		if (ret_val)
 885			goto release;
 886
 887		data &= ~I82579_LPI_100_PLL_SHUT;
 888		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 889						     data);
 890	}
 891
 892	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 893	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 894	if (ret_val)
 895		goto release;
 896
 897	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 898release:
 899	hw->phy.ops.release(hw);
 900
 901	return ret_val;
 902}
 903
 904/**
 905 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 906 *  @hw:   pointer to the HW structure
 907 *  @link: link up bool flag
 908 *
 909 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 910 *  preventing further DMA write requests.  Workaround the issue by disabling
 911 *  the de-assertion of the clock request when in 1Gpbs mode.
 912 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 913 *  speeds in order to avoid Tx hangs.
 914 **/
 915static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 916{
 917	u32 fextnvm6 = er32(FEXTNVM6);
 918	u32 status = er32(STATUS);
 919	s32 ret_val = 0;
 920	u16 reg;
 921
 922	if (link && (status & E1000_STATUS_SPEED_1000)) {
 923		ret_val = hw->phy.ops.acquire(hw);
 924		if (ret_val)
 925			return ret_val;
 926
 927		ret_val =
 928		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 929						&reg);
 930		if (ret_val)
 931			goto release;
 932
 933		ret_val =
 934		    e1000e_write_kmrn_reg_locked(hw,
 935						 E1000_KMRNCTRLSTA_K1_CONFIG,
 936						 reg &
 937						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 938		if (ret_val)
 939			goto release;
 
 940
 941		usleep_range(10, 20);
 942
 943		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 944
 945		ret_val =
 946		    e1000e_write_kmrn_reg_locked(hw,
 947						 E1000_KMRNCTRLSTA_K1_CONFIG,
 948						 reg);
 949release:
 950		hw->phy.ops.release(hw);
 951	} else {
 952		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 953		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 954
 955		if ((hw->phy.revision > 5) || !link ||
 956		    ((status & E1000_STATUS_SPEED_100) &&
 957		     (status & E1000_STATUS_FD)))
 958			goto update_fextnvm6;
 959
 960		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 961		if (ret_val)
 962			return ret_val;
 963
 964		/* Clear link status transmit timeout */
 965		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 966
 967		if (status & E1000_STATUS_SPEED_100) {
 968			/* Set inband Tx timeout to 5x10us for 100Half */
 969			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 970
 971			/* Do not extend the K1 entry latency for 100Half */
 972			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 973		} else {
 974			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 975			reg |= 50 <<
 976			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 977
 978			/* Extend the K1 entry latency for 10 Mbps */
 979			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 980		}
 981
 982		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 983		if (ret_val)
 984			return ret_val;
 985
 986update_fextnvm6:
 987		ew32(FEXTNVM6, fextnvm6);
 988	}
 989
 990	return ret_val;
 991}
 992
 993/**
 994 *  e1000_platform_pm_pch_lpt - Set platform power management values
 995 *  @hw: pointer to the HW structure
 996 *  @link: bool indicating link status
 997 *
 998 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 999 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000 *  when link is up (which must not exceed the maximum latency supported
1001 *  by the platform), otherwise specify there is no LTR requirement.
1002 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1004 *  Capability register set, on this device LTR is set by writing the
1005 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007 *  message to the PMC.
1008 **/
1009static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1010{
1011	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1012	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1013	u16 lat_enc = 0;	/* latency encoded */
1014
1015	if (link) {
1016		u16 speed, duplex, scale = 0;
1017		u16 max_snoop, max_nosnoop;
1018		u16 max_ltr_enc;	/* max LTR latency encoded */
1019		u64 value;
1020		u32 rxa;
1021
1022		if (!hw->adapter->max_frame_size) {
1023			e_dbg("max_frame_size not set.\n");
1024			return -E1000_ERR_CONFIG;
1025		}
1026
1027		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1028		if (!speed) {
1029			e_dbg("Speed not set.\n");
1030			return -E1000_ERR_CONFIG;
1031		}
1032
1033		/* Rx Packet Buffer Allocation size (KB) */
1034		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1035
1036		/* Determine the maximum latency tolerated by the device.
1037		 *
1038		 * Per the PCIe spec, the tolerated latencies are encoded as
1039		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1040		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1041		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1042		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1043		 */
1044		rxa *= 512;
1045		value = (rxa > hw->adapter->max_frame_size) ?
1046			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1047			0;
1048
1049		while (value > PCI_LTR_VALUE_MASK) {
1050			scale++;
1051			value = DIV_ROUND_UP(value, BIT(5));
1052		}
1053		if (scale > E1000_LTRV_SCALE_MAX) {
1054			e_dbg("Invalid LTR latency scale %d\n", scale);
1055			return -E1000_ERR_CONFIG;
1056		}
1057		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1058
1059		/* Determine the maximum latency tolerated by the platform */
1060		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1061				     &max_snoop);
1062		pci_read_config_word(hw->adapter->pdev,
1063				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1064		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1065
1066		if (lat_enc > max_ltr_enc)
1067			lat_enc = max_ltr_enc;
1068	}
1069
1070	/* Set Snoop and No-Snoop latencies the same */
1071	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1072	ew32(LTRV, reg);
1073
1074	return 0;
1075}
1076
1077/**
1078 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1079 *  @hw: pointer to the HW structure
1080 *  @to_sx: boolean indicating a system power state transition to Sx
1081 *
1082 *  When link is down, configure ULP mode to significantly reduce the power
1083 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1084 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1085 *  system, configure the ULP mode by software.
1086 */
1087s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1088{
1089	u32 mac_reg;
1090	s32 ret_val = 0;
1091	u16 phy_reg;
1092	u16 oem_reg = 0;
1093
1094	if ((hw->mac.type < e1000_pch_lpt) ||
1095	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1096	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1097	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1098	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1099	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1100		return 0;
1101
1102	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1103		/* Request ME configure ULP mode in the PHY */
1104		mac_reg = er32(H2ME);
1105		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1106		ew32(H2ME, mac_reg);
1107
1108		goto out;
1109	}
1110
1111	if (!to_sx) {
1112		int i = 0;
1113
1114		/* Poll up to 5 seconds for Cable Disconnected indication */
1115		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1116			/* Bail if link is re-acquired */
1117			if (er32(STATUS) & E1000_STATUS_LU)
1118				return -E1000_ERR_PHY;
1119
1120			if (i++ == 100)
1121				break;
1122
1123			msleep(50);
1124		}
1125		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1126		      (er32(FEXT) &
1127		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1128	}
1129
1130	ret_val = hw->phy.ops.acquire(hw);
1131	if (ret_val)
1132		goto out;
1133
1134	/* Force SMBus mode in PHY */
1135	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1136	if (ret_val)
1137		goto release;
1138	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1139	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1140
1141	/* Force SMBus mode in MAC */
1142	mac_reg = er32(CTRL_EXT);
1143	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1144	ew32(CTRL_EXT, mac_reg);
1145
1146	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1147	 * LPLU and disable Gig speed when entering ULP
1148	 */
1149	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1150		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1151						       &oem_reg);
1152		if (ret_val)
1153			goto release;
1154
1155		phy_reg = oem_reg;
1156		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1157
1158		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1159							phy_reg);
1160
1161		if (ret_val)
1162			goto release;
1163	}
1164
1165	/* Set Inband ULP Exit, Reset to SMBus mode and
1166	 * Disable SMBus Release on PERST# in PHY
1167	 */
1168	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1169	if (ret_val)
1170		goto release;
1171	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1172		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1173	if (to_sx) {
1174		if (er32(WUFC) & E1000_WUFC_LNKC)
1175			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1176		else
1177			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1178
1179		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1180		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1181	} else {
1182		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1183		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1184		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1185	}
1186	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1187
1188	/* Set Disable SMBus Release on PERST# in MAC */
1189	mac_reg = er32(FEXTNVM7);
1190	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1191	ew32(FEXTNVM7, mac_reg);
1192
1193	/* Commit ULP changes in PHY by starting auto ULP configuration */
1194	phy_reg |= I218_ULP_CONFIG1_START;
1195	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1196
1197	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1198	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1199		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1200							oem_reg);
1201		if (ret_val)
1202			goto release;
1203	}
1204
1205release:
1206	hw->phy.ops.release(hw);
1207out:
1208	if (ret_val)
1209		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1210	else
1211		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1212
1213	return ret_val;
1214}
1215
1216/**
1217 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1218 *  @hw: pointer to the HW structure
1219 *  @force: boolean indicating whether or not to force disabling ULP
1220 *
1221 *  Un-configure ULP mode when link is up, the system is transitioned from
1222 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1223 *  system, poll for an indication from ME that ULP has been un-configured.
1224 *  If not on an ME enabled system, un-configure the ULP mode by software.
1225 *
1226 *  During nominal operation, this function is called when link is acquired
1227 *  to disable ULP mode (force=false); otherwise, for example when unloading
1228 *  the driver or during Sx->S0 transitions, this is called with force=true
1229 *  to forcibly disable ULP.
1230 */
1231static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1232{
1233	s32 ret_val = 0;
1234	u32 mac_reg;
1235	u16 phy_reg;
1236	int i = 0;
1237
1238	if ((hw->mac.type < e1000_pch_lpt) ||
1239	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1240	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1241	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1242	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1243	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1244		return 0;
1245
1246	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1247		if (force) {
1248			/* Request ME un-configure ULP mode in the PHY */
1249			mac_reg = er32(H2ME);
1250			mac_reg &= ~E1000_H2ME_ULP;
1251			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1252			ew32(H2ME, mac_reg);
1253		}
1254
1255		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1256		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1257			if (i++ == 30) {
1258				ret_val = -E1000_ERR_PHY;
1259				goto out;
1260			}
1261
1262			usleep_range(10000, 20000);
1263		}
1264		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1265
1266		if (force) {
1267			mac_reg = er32(H2ME);
1268			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1269			ew32(H2ME, mac_reg);
1270		} else {
1271			/* Clear H2ME.ULP after ME ULP configuration */
1272			mac_reg = er32(H2ME);
1273			mac_reg &= ~E1000_H2ME_ULP;
1274			ew32(H2ME, mac_reg);
1275		}
1276
1277		goto out;
1278	}
1279
1280	ret_val = hw->phy.ops.acquire(hw);
1281	if (ret_val)
1282		goto out;
1283
1284	if (force)
1285		/* Toggle LANPHYPC Value bit */
1286		e1000_toggle_lanphypc_pch_lpt(hw);
1287
1288	/* Unforce SMBus mode in PHY */
1289	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1290	if (ret_val) {
1291		/* The MAC might be in PCIe mode, so temporarily force to
1292		 * SMBus mode in order to access the PHY.
1293		 */
1294		mac_reg = er32(CTRL_EXT);
1295		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1296		ew32(CTRL_EXT, mac_reg);
1297
1298		msleep(50);
1299
1300		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1301						       &phy_reg);
1302		if (ret_val)
1303			goto release;
1304	}
1305	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1306	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1307
1308	/* Unforce SMBus mode in MAC */
1309	mac_reg = er32(CTRL_EXT);
1310	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1311	ew32(CTRL_EXT, mac_reg);
1312
1313	/* When ULP mode was previously entered, K1 was disabled by the
1314	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1315	 */
1316	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1317	if (ret_val)
1318		goto release;
1319	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1320	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1321
1322	/* Clear ULP enabled configuration */
1323	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1324	if (ret_val)
1325		goto release;
1326	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1327		     I218_ULP_CONFIG1_STICKY_ULP |
1328		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1329		     I218_ULP_CONFIG1_WOL_HOST |
1330		     I218_ULP_CONFIG1_INBAND_EXIT |
1331		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1332		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1333		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1334	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1335
1336	/* Commit ULP changes by starting auto ULP configuration */
1337	phy_reg |= I218_ULP_CONFIG1_START;
1338	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1339
1340	/* Clear Disable SMBus Release on PERST# in MAC */
1341	mac_reg = er32(FEXTNVM7);
1342	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1343	ew32(FEXTNVM7, mac_reg);
1344
1345release:
1346	hw->phy.ops.release(hw);
1347	if (force) {
1348		e1000_phy_hw_reset(hw);
1349		msleep(50);
1350	}
1351out:
1352	if (ret_val)
1353		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1354	else
1355		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1356
1357	return ret_val;
1358}
1359
1360/**
1361 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1362 *  @hw: pointer to the HW structure
1363 *
1364 *  Checks to see of the link status of the hardware has changed.  If a
1365 *  change in link status has been detected, then we read the PHY registers
1366 *  to get the current speed/duplex if link exists.
1367 **/
1368static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1369{
1370	struct e1000_mac_info *mac = &hw->mac;
1371	s32 ret_val, tipg_reg = 0;
1372	u16 emi_addr, emi_val = 0;
1373	bool link;
1374	u16 phy_reg;
1375
1376	/* We only want to go out to the PHY registers to see if Auto-Neg
 
1377	 * has completed and/or if our link status has changed.  The
1378	 * get_link_status flag is set upon receiving a Link Status
1379	 * Change or Rx Sequence Error interrupt.
1380	 */
1381	if (!mac->get_link_status)
1382		return 0;
1383
1384	/* First we want to see if the MII Status Register reports
 
1385	 * link.  If so, then we want to get the current speed/duplex
1386	 * of the PHY.
1387	 */
1388	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1389	if (ret_val)
1390		return ret_val;
1391
1392	if (hw->mac.type == e1000_pchlan) {
1393		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1394		if (ret_val)
1395			return ret_val;
1396	}
1397
1398	/* When connected at 10Mbps half-duplex, some parts are excessively
1399	 * aggressive resulting in many collisions. To avoid this, increase
1400	 * the IPG and reduce Rx latency in the PHY.
1401	 */
1402	if (((hw->mac.type == e1000_pch2lan) ||
1403	     (hw->mac.type == e1000_pch_lpt) ||
1404	     (hw->mac.type == e1000_pch_spt)) && link) {
1405		u16 speed, duplex;
1406
1407		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1408		tipg_reg = er32(TIPG);
1409		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1410
1411		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1412			tipg_reg |= 0xFF;
1413			/* Reduce Rx latency in analog PHY */
1414			emi_val = 0;
1415		} else if (hw->mac.type == e1000_pch_spt &&
1416			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1417			tipg_reg |= 0xC;
1418			emi_val = 1;
1419		} else {
1420
1421			/* Roll back the default values */
1422			tipg_reg |= 0x08;
1423			emi_val = 1;
1424		}
1425
1426		ew32(TIPG, tipg_reg);
1427
1428		ret_val = hw->phy.ops.acquire(hw);
1429		if (ret_val)
1430			return ret_val;
1431
1432		if (hw->mac.type == e1000_pch2lan)
1433			emi_addr = I82579_RX_CONFIG;
1434		else
1435			emi_addr = I217_RX_CONFIG;
1436		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1437
1438		if (hw->mac.type == e1000_pch_lpt ||
1439		    hw->mac.type == e1000_pch_spt) {
1440			u16 phy_reg;
1441
1442			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1443			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1444			if (speed == SPEED_100 || speed == SPEED_10)
1445				phy_reg |= 0x3E8;
1446			else
1447				phy_reg |= 0xFA;
1448			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1449		}
1450		hw->phy.ops.release(hw);
1451
1452		if (ret_val)
1453			return ret_val;
1454
1455		if (hw->mac.type == e1000_pch_spt) {
1456			u16 data;
1457			u16 ptr_gap;
1458
1459			if (speed == SPEED_1000) {
1460				ret_val = hw->phy.ops.acquire(hw);
1461				if (ret_val)
1462					return ret_val;
1463
1464				ret_val = e1e_rphy_locked(hw,
1465							  PHY_REG(776, 20),
1466							  &data);
1467				if (ret_val) {
1468					hw->phy.ops.release(hw);
1469					return ret_val;
1470				}
1471
1472				ptr_gap = (data & (0x3FF << 2)) >> 2;
1473				if (ptr_gap < 0x18) {
1474					data &= ~(0x3FF << 2);
1475					data |= (0x18 << 2);
1476					ret_val =
1477					    e1e_wphy_locked(hw,
1478							    PHY_REG(776, 20),
1479							    data);
1480				}
1481				hw->phy.ops.release(hw);
1482				if (ret_val)
1483					return ret_val;
1484			} else {
1485				ret_val = hw->phy.ops.acquire(hw);
1486				if (ret_val)
1487					return ret_val;
1488
1489				ret_val = e1e_wphy_locked(hw,
1490							  PHY_REG(776, 20),
1491							  0xC023);
1492				hw->phy.ops.release(hw);
1493				if (ret_val)
1494					return ret_val;
1495
1496			}
1497		}
1498	}
1499
1500	/* I217 Packet Loss issue:
1501	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1502	 * on power up.
1503	 * Set the Beacon Duration for I217 to 8 usec
1504	 */
1505	if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
1506		u32 mac_reg;
1507
1508		mac_reg = er32(FEXTNVM4);
1509		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1510		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1511		ew32(FEXTNVM4, mac_reg);
1512	}
1513
1514	/* Work-around I218 hang issue */
1515	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1516	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1517	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1518	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1519		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1520		if (ret_val)
1521			return ret_val;
1522	}
1523	if ((hw->mac.type == e1000_pch_lpt) ||
1524	    (hw->mac.type == e1000_pch_spt)) {
1525		/* Set platform power management values for
1526		 * Latency Tolerance Reporting (LTR)
1527		 */
1528		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1529		if (ret_val)
1530			return ret_val;
1531	}
1532
1533	/* Clear link partner's EEE ability */
1534	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1535
1536	/* FEXTNVM6 K1-off workaround */
1537	if (hw->mac.type == e1000_pch_spt) {
1538		u32 pcieanacfg = er32(PCIEANACFG);
1539		u32 fextnvm6 = er32(FEXTNVM6);
1540
1541		if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1542			fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1543		else
1544			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1545
1546		ew32(FEXTNVM6, fextnvm6);
1547	}
1548
1549	if (!link)
1550		return 0;	/* No link detected */
1551
1552	mac->get_link_status = false;
1553
1554	switch (hw->mac.type) {
1555	case e1000_pch2lan:
1556		ret_val = e1000_k1_workaround_lv(hw);
1557		if (ret_val)
1558			return ret_val;
1559		/* fall-thru */
1560	case e1000_pchlan:
1561		if (hw->phy.type == e1000_phy_82578) {
1562			ret_val = e1000_link_stall_workaround_hv(hw);
1563			if (ret_val)
1564				return ret_val;
1565		}
1566
1567		/* Workaround for PCHx parts in half-duplex:
 
1568		 * Set the number of preambles removed from the packet
1569		 * when it is passed from the PHY to the MAC to prevent
1570		 * the MAC from misinterpreting the packet type.
1571		 */
1572		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1573		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1574
1575		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1576			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1577
1578		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1579		break;
1580	default:
1581		break;
1582	}
1583
1584	/* Check if there was DownShift, must be checked
 
1585	 * immediately after link-up
1586	 */
1587	e1000e_check_downshift(hw);
1588
1589	/* Enable/Disable EEE after link up */
1590	if (hw->phy.type > e1000_phy_82579) {
1591		ret_val = e1000_set_eee_pchlan(hw);
1592		if (ret_val)
1593			return ret_val;
1594	}
1595
1596	/* If we are forcing speed/duplex, then we simply return since
 
1597	 * we have already determined whether we have link or not.
1598	 */
1599	if (!mac->autoneg)
1600		return -E1000_ERR_CONFIG;
1601
1602	/* Auto-Neg is enabled.  Auto Speed Detection takes care
 
1603	 * of MAC speed/duplex configuration.  So we only need to
1604	 * configure Collision Distance in the MAC.
1605	 */
1606	mac->ops.config_collision_dist(hw);
1607
1608	/* Configure Flow Control now that Auto-Neg has completed.
 
1609	 * First, we need to restore the desired flow control
1610	 * settings because we may have had to re-autoneg with a
1611	 * different link partner.
1612	 */
1613	ret_val = e1000e_config_fc_after_link_up(hw);
1614	if (ret_val)
1615		e_dbg("Error configuring flow control\n");
1616
1617	return ret_val;
1618}
1619
1620static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1621{
1622	struct e1000_hw *hw = &adapter->hw;
1623	s32 rc;
1624
1625	rc = e1000_init_mac_params_ich8lan(hw);
1626	if (rc)
1627		return rc;
1628
1629	rc = e1000_init_nvm_params_ich8lan(hw);
1630	if (rc)
1631		return rc;
1632
1633	switch (hw->mac.type) {
1634	case e1000_ich8lan:
1635	case e1000_ich9lan:
1636	case e1000_ich10lan:
1637		rc = e1000_init_phy_params_ich8lan(hw);
1638		break;
1639	case e1000_pchlan:
1640	case e1000_pch2lan:
1641	case e1000_pch_lpt:
1642	case e1000_pch_spt:
1643		rc = e1000_init_phy_params_pchlan(hw);
1644		break;
1645	default:
1646		break;
1647	}
1648	if (rc)
1649		return rc;
1650
1651	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
 
1652	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1653	 */
1654	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1655	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1656	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1657		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1658		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1659
1660		hw->mac.ops.blink_led = NULL;
1661	}
1662
1663	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1664	    (adapter->hw.phy.type != e1000_phy_ife))
1665		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1666
1667	/* Enable workaround for 82579 w/ ME enabled */
1668	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1669	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1670		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1671
 
 
 
 
1672	return 0;
1673}
1674
1675static DEFINE_MUTEX(nvm_mutex);
1676
1677/**
1678 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1679 *  @hw: pointer to the HW structure
1680 *
1681 *  Acquires the mutex for performing NVM operations.
1682 **/
1683static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1684{
1685	mutex_lock(&nvm_mutex);
1686
1687	return 0;
1688}
1689
1690/**
1691 *  e1000_release_nvm_ich8lan - Release NVM mutex
1692 *  @hw: pointer to the HW structure
1693 *
1694 *  Releases the mutex used while performing NVM operations.
1695 **/
1696static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1697{
1698	mutex_unlock(&nvm_mutex);
1699}
1700
1701/**
1702 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1703 *  @hw: pointer to the HW structure
1704 *
1705 *  Acquires the software control flag for performing PHY and select
1706 *  MAC CSR accesses.
1707 **/
1708static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1709{
1710	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1711	s32 ret_val = 0;
1712
1713	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1714			     &hw->adapter->state)) {
1715		e_dbg("contention for Phy access\n");
1716		return -E1000_ERR_PHY;
1717	}
1718
1719	while (timeout) {
1720		extcnf_ctrl = er32(EXTCNF_CTRL);
1721		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1722			break;
1723
1724		mdelay(1);
1725		timeout--;
1726	}
1727
1728	if (!timeout) {
1729		e_dbg("SW has already locked the resource.\n");
1730		ret_val = -E1000_ERR_CONFIG;
1731		goto out;
1732	}
1733
1734	timeout = SW_FLAG_TIMEOUT;
1735
1736	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1737	ew32(EXTCNF_CTRL, extcnf_ctrl);
1738
1739	while (timeout) {
1740		extcnf_ctrl = er32(EXTCNF_CTRL);
1741		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1742			break;
1743
1744		mdelay(1);
1745		timeout--;
1746	}
1747
1748	if (!timeout) {
1749		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1750		      er32(FWSM), extcnf_ctrl);
1751		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1752		ew32(EXTCNF_CTRL, extcnf_ctrl);
1753		ret_val = -E1000_ERR_CONFIG;
1754		goto out;
1755	}
1756
1757out:
1758	if (ret_val)
1759		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1760
1761	return ret_val;
1762}
1763
1764/**
1765 *  e1000_release_swflag_ich8lan - Release software control flag
1766 *  @hw: pointer to the HW structure
1767 *
1768 *  Releases the software control flag for performing PHY and select
1769 *  MAC CSR accesses.
1770 **/
1771static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1772{
1773	u32 extcnf_ctrl;
1774
1775	extcnf_ctrl = er32(EXTCNF_CTRL);
1776
1777	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1778		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1779		ew32(EXTCNF_CTRL, extcnf_ctrl);
1780	} else {
1781		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1782	}
1783
1784	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1785}
1786
1787/**
1788 *  e1000_check_mng_mode_ich8lan - Checks management mode
1789 *  @hw: pointer to the HW structure
1790 *
1791 *  This checks if the adapter has any manageability enabled.
1792 *  This is a function pointer entry point only called by read/write
1793 *  routines for the PHY and NVM parts.
1794 **/
1795static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1796{
1797	u32 fwsm;
1798
1799	fwsm = er32(FWSM);
1800	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1801		((fwsm & E1000_FWSM_MODE_MASK) ==
1802		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1803}
1804
1805/**
1806 *  e1000_check_mng_mode_pchlan - Checks management mode
1807 *  @hw: pointer to the HW structure
1808 *
1809 *  This checks if the adapter has iAMT enabled.
1810 *  This is a function pointer entry point only called by read/write
1811 *  routines for the PHY and NVM parts.
1812 **/
1813static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1814{
1815	u32 fwsm;
1816
1817	fwsm = er32(FWSM);
1818	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1819	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1820}
1821
1822/**
1823 *  e1000_rar_set_pch2lan - Set receive address register
1824 *  @hw: pointer to the HW structure
1825 *  @addr: pointer to the receive address
1826 *  @index: receive address array register
1827 *
1828 *  Sets the receive address array register at index to the address passed
1829 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1830 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1831 *  Use SHRA[0-3] in place of those reserved for ME.
1832 **/
1833static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1834{
1835	u32 rar_low, rar_high;
1836
1837	/* HW expects these in little endian so we reverse the byte order
 
1838	 * from network order (big endian) to little endian
1839	 */
1840	rar_low = ((u32)addr[0] |
1841		   ((u32)addr[1] << 8) |
1842		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1843
1844	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1845
1846	/* If MAC address zero, no need to set the AV bit */
1847	if (rar_low || rar_high)
1848		rar_high |= E1000_RAH_AV;
1849
1850	if (index == 0) {
1851		ew32(RAL(index), rar_low);
1852		e1e_flush();
1853		ew32(RAH(index), rar_high);
1854		e1e_flush();
1855		return 0;
1856	}
1857
1858	/* RAR[1-6] are owned by manageability.  Skip those and program the
1859	 * next address into the SHRA register array.
1860	 */
1861	if (index < (u32)(hw->mac.rar_entry_count)) {
1862		s32 ret_val;
1863
1864		ret_val = e1000_acquire_swflag_ich8lan(hw);
1865		if (ret_val)
1866			goto out;
1867
1868		ew32(SHRAL(index - 1), rar_low);
1869		e1e_flush();
1870		ew32(SHRAH(index - 1), rar_high);
1871		e1e_flush();
1872
1873		e1000_release_swflag_ich8lan(hw);
1874
1875		/* verify the register updates */
1876		if ((er32(SHRAL(index - 1)) == rar_low) &&
1877		    (er32(SHRAH(index - 1)) == rar_high))
1878			return 0;
1879
1880		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1881		      (index - 1), er32(FWSM));
1882	}
1883
1884out:
1885	e_dbg("Failed to write receive address at index %d\n", index);
1886	return -E1000_ERR_CONFIG;
1887}
1888
1889/**
1890 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1891 *  @hw: pointer to the HW structure
1892 *
1893 *  Get the number of available receive registers that the Host can
1894 *  program. SHRA[0-10] are the shared receive address registers
1895 *  that are shared between the Host and manageability engine (ME).
1896 *  ME can reserve any number of addresses and the host needs to be
1897 *  able to tell how many available registers it has access to.
1898 **/
1899static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1900{
1901	u32 wlock_mac;
1902	u32 num_entries;
1903
1904	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1905	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1906
1907	switch (wlock_mac) {
1908	case 0:
1909		/* All SHRA[0..10] and RAR[0] available */
1910		num_entries = hw->mac.rar_entry_count;
1911		break;
1912	case 1:
1913		/* Only RAR[0] available */
1914		num_entries = 1;
1915		break;
1916	default:
1917		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1918		num_entries = wlock_mac + 1;
1919		break;
1920	}
1921
1922	return num_entries;
1923}
1924
1925/**
1926 *  e1000_rar_set_pch_lpt - Set receive address registers
1927 *  @hw: pointer to the HW structure
1928 *  @addr: pointer to the receive address
1929 *  @index: receive address array register
1930 *
1931 *  Sets the receive address register array at index to the address passed
1932 *  in by addr. For LPT, RAR[0] is the base address register that is to
1933 *  contain the MAC address. SHRA[0-10] are the shared receive address
1934 *  registers that are shared between the Host and manageability engine (ME).
1935 **/
1936static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1937{
1938	u32 rar_low, rar_high;
1939	u32 wlock_mac;
1940
1941	/* HW expects these in little endian so we reverse the byte order
 
1942	 * from network order (big endian) to little endian
1943	 */
1944	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1945		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1946
1947	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1948
1949	/* If MAC address zero, no need to set the AV bit */
1950	if (rar_low || rar_high)
1951		rar_high |= E1000_RAH_AV;
1952
1953	if (index == 0) {
1954		ew32(RAL(index), rar_low);
1955		e1e_flush();
1956		ew32(RAH(index), rar_high);
1957		e1e_flush();
1958		return 0;
1959	}
1960
1961	/* The manageability engine (ME) can lock certain SHRAR registers that
 
1962	 * it is using - those registers are unavailable for use.
1963	 */
1964	if (index < hw->mac.rar_entry_count) {
1965		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1966		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1967
1968		/* Check if all SHRAR registers are locked */
1969		if (wlock_mac == 1)
1970			goto out;
1971
1972		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1973			s32 ret_val;
1974
1975			ret_val = e1000_acquire_swflag_ich8lan(hw);
1976
1977			if (ret_val)
1978				goto out;
1979
1980			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1981			e1e_flush();
1982			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1983			e1e_flush();
1984
1985			e1000_release_swflag_ich8lan(hw);
1986
1987			/* verify the register updates */
1988			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1989			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1990				return 0;
1991		}
1992	}
1993
1994out:
1995	e_dbg("Failed to write receive address at index %d\n", index);
1996	return -E1000_ERR_CONFIG;
1997}
1998
1999/**
2000 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2001 *  @hw: pointer to the HW structure
2002 *
2003 *  Checks if firmware is blocking the reset of the PHY.
2004 *  This is a function pointer entry point only called by
2005 *  reset routines.
2006 **/
2007static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2008{
2009	bool blocked = false;
2010	int i = 0;
2011
2012	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2013	       (i++ < 30))
2014		usleep_range(10000, 20000);
2015	return blocked ? E1000_BLK_PHY_RESET : 0;
2016}
2017
2018/**
2019 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2020 *  @hw: pointer to the HW structure
2021 *
2022 *  Assumes semaphore already acquired.
2023 *
2024 **/
2025static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2026{
2027	u16 phy_data;
2028	u32 strap = er32(STRAP);
2029	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2030	    E1000_STRAP_SMT_FREQ_SHIFT;
2031	s32 ret_val;
2032
2033	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2034
2035	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2036	if (ret_val)
2037		return ret_val;
2038
2039	phy_data &= ~HV_SMB_ADDR_MASK;
2040	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2041	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2042
2043	if (hw->phy.type == e1000_phy_i217) {
2044		/* Restore SMBus frequency */
2045		if (freq--) {
2046			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2047			phy_data |= (freq & BIT(0)) <<
2048			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2049			phy_data |= (freq & BIT(1)) <<
2050			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2051		} else {
2052			e_dbg("Unsupported SMB frequency in PHY\n");
2053		}
2054	}
2055
2056	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2057}
2058
2059/**
2060 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2061 *  @hw:   pointer to the HW structure
2062 *
2063 *  SW should configure the LCD from the NVM extended configuration region
2064 *  as a workaround for certain parts.
2065 **/
2066static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2067{
2068	struct e1000_phy_info *phy = &hw->phy;
2069	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2070	s32 ret_val = 0;
2071	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2072
2073	/* Initialize the PHY from the NVM on ICH platforms.  This
 
2074	 * is needed due to an issue where the NVM configuration is
2075	 * not properly autoloaded after power transitions.
2076	 * Therefore, after each PHY reset, we will load the
2077	 * configuration data out of the NVM manually.
2078	 */
2079	switch (hw->mac.type) {
2080	case e1000_ich8lan:
2081		if (phy->type != e1000_phy_igp_3)
2082			return ret_val;
2083
2084		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2085		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2086			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2087			break;
2088		}
2089		/* Fall-thru */
2090	case e1000_pchlan:
2091	case e1000_pch2lan:
2092	case e1000_pch_lpt:
2093	case e1000_pch_spt:
2094		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2095		break;
2096	default:
2097		return ret_val;
2098	}
2099
2100	ret_val = hw->phy.ops.acquire(hw);
2101	if (ret_val)
2102		return ret_val;
2103
2104	data = er32(FEXTNVM);
2105	if (!(data & sw_cfg_mask))
2106		goto release;
2107
2108	/* Make sure HW does not configure LCD from PHY
 
2109	 * extended configuration before SW configuration
2110	 */
2111	data = er32(EXTCNF_CTRL);
2112	if ((hw->mac.type < e1000_pch2lan) &&
2113	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2114		goto release;
2115
2116	cnf_size = er32(EXTCNF_SIZE);
2117	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2118	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2119	if (!cnf_size)
2120		goto release;
2121
2122	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2123	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2124
2125	if (((hw->mac.type == e1000_pchlan) &&
2126	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2127	    (hw->mac.type > e1000_pchlan)) {
2128		/* HW configures the SMBus address and LEDs when the
 
2129		 * OEM and LCD Write Enable bits are set in the NVM.
2130		 * When both NVM bits are cleared, SW will configure
2131		 * them instead.
2132		 */
2133		ret_val = e1000_write_smbus_addr(hw);
2134		if (ret_val)
2135			goto release;
2136
2137		data = er32(LEDCTL);
2138		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2139							(u16)data);
2140		if (ret_val)
2141			goto release;
2142	}
2143
2144	/* Configure LCD from extended configuration region. */
2145
2146	/* cnf_base_addr is in DWORD */
2147	word_addr = (u16)(cnf_base_addr << 1);
2148
2149	for (i = 0; i < cnf_size; i++) {
2150		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
 
2151		if (ret_val)
2152			goto release;
2153
2154		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2155					 1, &reg_addr);
2156		if (ret_val)
2157			goto release;
2158
2159		/* Save off the PHY page for future writes. */
2160		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2161			phy_page = reg_data;
2162			continue;
2163		}
2164
2165		reg_addr &= PHY_REG_MASK;
2166		reg_addr |= phy_page;
2167
2168		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2169		if (ret_val)
2170			goto release;
2171	}
2172
2173release:
2174	hw->phy.ops.release(hw);
2175	return ret_val;
2176}
2177
2178/**
2179 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2180 *  @hw:   pointer to the HW structure
2181 *  @link: link up bool flag
2182 *
2183 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2184 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2185 *  If link is down, the function will restore the default K1 setting located
2186 *  in the NVM.
2187 **/
2188static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2189{
2190	s32 ret_val = 0;
2191	u16 status_reg = 0;
2192	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2193
2194	if (hw->mac.type != e1000_pchlan)
2195		return 0;
2196
2197	/* Wrap the whole flow with the sw flag */
2198	ret_val = hw->phy.ops.acquire(hw);
2199	if (ret_val)
2200		return ret_val;
2201
2202	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2203	if (link) {
2204		if (hw->phy.type == e1000_phy_82578) {
2205			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2206						  &status_reg);
2207			if (ret_val)
2208				goto release;
2209
2210			status_reg &= (BM_CS_STATUS_LINK_UP |
2211				       BM_CS_STATUS_RESOLVED |
2212				       BM_CS_STATUS_SPEED_MASK);
2213
2214			if (status_reg == (BM_CS_STATUS_LINK_UP |
2215					   BM_CS_STATUS_RESOLVED |
2216					   BM_CS_STATUS_SPEED_1000))
2217				k1_enable = false;
2218		}
2219
2220		if (hw->phy.type == e1000_phy_82577) {
2221			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2222			if (ret_val)
2223				goto release;
2224
2225			status_reg &= (HV_M_STATUS_LINK_UP |
2226				       HV_M_STATUS_AUTONEG_COMPLETE |
2227				       HV_M_STATUS_SPEED_MASK);
2228
2229			if (status_reg == (HV_M_STATUS_LINK_UP |
2230					   HV_M_STATUS_AUTONEG_COMPLETE |
2231					   HV_M_STATUS_SPEED_1000))
2232				k1_enable = false;
2233		}
2234
2235		/* Link stall fix for link up */
2236		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2237		if (ret_val)
2238			goto release;
2239
2240	} else {
2241		/* Link stall fix for link down */
2242		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2243		if (ret_val)
2244			goto release;
2245	}
2246
2247	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2248
2249release:
2250	hw->phy.ops.release(hw);
2251
2252	return ret_val;
2253}
2254
2255/**
2256 *  e1000_configure_k1_ich8lan - Configure K1 power state
2257 *  @hw: pointer to the HW structure
2258 *  @enable: K1 state to configure
2259 *
2260 *  Configure the K1 power state based on the provided parameter.
2261 *  Assumes semaphore already acquired.
2262 *
2263 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2264 **/
2265s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2266{
2267	s32 ret_val;
2268	u32 ctrl_reg = 0;
2269	u32 ctrl_ext = 0;
2270	u32 reg = 0;
2271	u16 kmrn_reg = 0;
2272
2273	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2274					      &kmrn_reg);
2275	if (ret_val)
2276		return ret_val;
2277
2278	if (k1_enable)
2279		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2280	else
2281		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2282
2283	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2284					       kmrn_reg);
2285	if (ret_val)
2286		return ret_val;
2287
2288	usleep_range(20, 40);
2289	ctrl_ext = er32(CTRL_EXT);
2290	ctrl_reg = er32(CTRL);
2291
2292	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2293	reg |= E1000_CTRL_FRCSPD;
2294	ew32(CTRL, reg);
2295
2296	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2297	e1e_flush();
2298	usleep_range(20, 40);
2299	ew32(CTRL, ctrl_reg);
2300	ew32(CTRL_EXT, ctrl_ext);
2301	e1e_flush();
2302	usleep_range(20, 40);
2303
2304	return 0;
2305}
2306
2307/**
2308 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2309 *  @hw:       pointer to the HW structure
2310 *  @d0_state: boolean if entering d0 or d3 device state
2311 *
2312 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2313 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2314 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2315 **/
2316static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2317{
2318	s32 ret_val = 0;
2319	u32 mac_reg;
2320	u16 oem_reg;
2321
2322	if (hw->mac.type < e1000_pchlan)
2323		return ret_val;
2324
2325	ret_val = hw->phy.ops.acquire(hw);
2326	if (ret_val)
2327		return ret_val;
2328
2329	if (hw->mac.type == e1000_pchlan) {
2330		mac_reg = er32(EXTCNF_CTRL);
2331		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2332			goto release;
2333	}
2334
2335	mac_reg = er32(FEXTNVM);
2336	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2337		goto release;
2338
2339	mac_reg = er32(PHY_CTRL);
2340
2341	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2342	if (ret_val)
2343		goto release;
2344
2345	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2346
2347	if (d0_state) {
2348		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2349			oem_reg |= HV_OEM_BITS_GBE_DIS;
2350
2351		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2352			oem_reg |= HV_OEM_BITS_LPLU;
2353	} else {
2354		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2355			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2356			oem_reg |= HV_OEM_BITS_GBE_DIS;
2357
2358		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2359			       E1000_PHY_CTRL_NOND0A_LPLU))
2360			oem_reg |= HV_OEM_BITS_LPLU;
2361	}
2362
2363	/* Set Restart auto-neg to activate the bits */
2364	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2365	    !hw->phy.ops.check_reset_block(hw))
2366		oem_reg |= HV_OEM_BITS_RESTART_AN;
2367
2368	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2369
2370release:
2371	hw->phy.ops.release(hw);
2372
2373	return ret_val;
2374}
2375
 
2376/**
2377 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2378 *  @hw:   pointer to the HW structure
2379 **/
2380static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2381{
2382	s32 ret_val;
2383	u16 data;
2384
2385	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2386	if (ret_val)
2387		return ret_val;
2388
2389	data |= HV_KMRN_MDIO_SLOW;
2390
2391	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2392
2393	return ret_val;
2394}
2395
2396/**
2397 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2398 *  done after every PHY reset.
2399 **/
2400static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2401{
2402	s32 ret_val = 0;
2403	u16 phy_data;
2404
2405	if (hw->mac.type != e1000_pchlan)
2406		return 0;
2407
2408	/* Set MDIO slow mode before any other MDIO access */
2409	if (hw->phy.type == e1000_phy_82577) {
2410		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2411		if (ret_val)
2412			return ret_val;
2413	}
2414
2415	if (((hw->phy.type == e1000_phy_82577) &&
2416	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2417	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2418		/* Disable generation of early preamble */
2419		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2420		if (ret_val)
2421			return ret_val;
2422
2423		/* Preamble tuning for SSC */
2424		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2425		if (ret_val)
2426			return ret_val;
2427	}
2428
2429	if (hw->phy.type == e1000_phy_82578) {
2430		/* Return registers to default by doing a soft reset then
 
2431		 * writing 0x3140 to the control register.
2432		 */
2433		if (hw->phy.revision < 2) {
2434			e1000e_phy_sw_reset(hw);
2435			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2436		}
2437	}
2438
2439	/* Select page 0 */
2440	ret_val = hw->phy.ops.acquire(hw);
2441	if (ret_val)
2442		return ret_val;
2443
2444	hw->phy.addr = 1;
2445	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2446	hw->phy.ops.release(hw);
2447	if (ret_val)
2448		return ret_val;
2449
2450	/* Configure the K1 Si workaround during phy reset assuming there is
 
2451	 * link so that it disables K1 if link is in 1Gbps.
2452	 */
2453	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2454	if (ret_val)
2455		return ret_val;
2456
2457	/* Workaround for link disconnects on a busy hub in half duplex */
2458	ret_val = hw->phy.ops.acquire(hw);
2459	if (ret_val)
2460		return ret_val;
2461	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2462	if (ret_val)
2463		goto release;
2464	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2465	if (ret_val)
2466		goto release;
2467
2468	/* set MSE higher to enable link to stay up when noise is high */
2469	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2470release:
2471	hw->phy.ops.release(hw);
2472
2473	return ret_val;
2474}
2475
2476/**
2477 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2478 *  @hw:   pointer to the HW structure
2479 **/
2480void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2481{
2482	u32 mac_reg;
2483	u16 i, phy_reg = 0;
2484	s32 ret_val;
2485
2486	ret_val = hw->phy.ops.acquire(hw);
2487	if (ret_val)
2488		return;
2489	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2490	if (ret_val)
2491		goto release;
2492
2493	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2494	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2495		mac_reg = er32(RAL(i));
2496		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2497					   (u16)(mac_reg & 0xFFFF));
2498		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2499					   (u16)((mac_reg >> 16) & 0xFFFF));
2500
2501		mac_reg = er32(RAH(i));
2502		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2503					   (u16)(mac_reg & 0xFFFF));
2504		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2505					   (u16)((mac_reg & E1000_RAH_AV)
2506						 >> 16));
2507	}
2508
2509	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2510
2511release:
2512	hw->phy.ops.release(hw);
2513}
2514
2515/**
2516 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2517 *  with 82579 PHY
2518 *  @hw: pointer to the HW structure
2519 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2520 **/
2521s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2522{
2523	s32 ret_val = 0;
2524	u16 phy_reg, data;
2525	u32 mac_reg;
2526	u16 i;
2527
2528	if (hw->mac.type < e1000_pch2lan)
2529		return 0;
2530
2531	/* disable Rx path while enabling/disabling workaround */
2532	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2533	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2534	if (ret_val)
2535		return ret_val;
2536
2537	if (enable) {
2538		/* Write Rx addresses (rar_entry_count for RAL/H, and
 
2539		 * SHRAL/H) and initial CRC values to the MAC
2540		 */
2541		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2542			u8 mac_addr[ETH_ALEN] = { 0 };
2543			u32 addr_high, addr_low;
2544
2545			addr_high = er32(RAH(i));
2546			if (!(addr_high & E1000_RAH_AV))
2547				continue;
2548			addr_low = er32(RAL(i));
2549			mac_addr[0] = (addr_low & 0xFF);
2550			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2551			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2552			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2553			mac_addr[4] = (addr_high & 0xFF);
2554			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2555
2556			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2557		}
2558
2559		/* Write Rx addresses to the PHY */
2560		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2561
2562		/* Enable jumbo frame workaround in the MAC */
2563		mac_reg = er32(FFLT_DBG);
2564		mac_reg &= ~BIT(14);
2565		mac_reg |= (7 << 15);
2566		ew32(FFLT_DBG, mac_reg);
2567
2568		mac_reg = er32(RCTL);
2569		mac_reg |= E1000_RCTL_SECRC;
2570		ew32(RCTL, mac_reg);
2571
2572		ret_val = e1000e_read_kmrn_reg(hw,
2573					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2574					       &data);
2575		if (ret_val)
2576			return ret_val;
2577		ret_val = e1000e_write_kmrn_reg(hw,
2578						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2579						data | BIT(0));
2580		if (ret_val)
2581			return ret_val;
2582		ret_val = e1000e_read_kmrn_reg(hw,
2583					       E1000_KMRNCTRLSTA_HD_CTRL,
2584					       &data);
2585		if (ret_val)
2586			return ret_val;
2587		data &= ~(0xF << 8);
2588		data |= (0xB << 8);
2589		ret_val = e1000e_write_kmrn_reg(hw,
2590						E1000_KMRNCTRLSTA_HD_CTRL,
2591						data);
2592		if (ret_val)
2593			return ret_val;
2594
2595		/* Enable jumbo frame workaround in the PHY */
2596		e1e_rphy(hw, PHY_REG(769, 23), &data);
2597		data &= ~(0x7F << 5);
2598		data |= (0x37 << 5);
2599		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2600		if (ret_val)
2601			return ret_val;
2602		e1e_rphy(hw, PHY_REG(769, 16), &data);
2603		data &= ~BIT(13);
2604		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2605		if (ret_val)
2606			return ret_val;
2607		e1e_rphy(hw, PHY_REG(776, 20), &data);
2608		data &= ~(0x3FF << 2);
2609		data |= (E1000_TX_PTR_GAP << 2);
2610		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2611		if (ret_val)
2612			return ret_val;
2613		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2614		if (ret_val)
2615			return ret_val;
2616		e1e_rphy(hw, HV_PM_CTRL, &data);
2617		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2618		if (ret_val)
2619			return ret_val;
2620	} else {
2621		/* Write MAC register values back to h/w defaults */
2622		mac_reg = er32(FFLT_DBG);
2623		mac_reg &= ~(0xF << 14);
2624		ew32(FFLT_DBG, mac_reg);
2625
2626		mac_reg = er32(RCTL);
2627		mac_reg &= ~E1000_RCTL_SECRC;
2628		ew32(RCTL, mac_reg);
2629
2630		ret_val = e1000e_read_kmrn_reg(hw,
2631					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2632					       &data);
2633		if (ret_val)
2634			return ret_val;
2635		ret_val = e1000e_write_kmrn_reg(hw,
2636						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2637						data & ~BIT(0));
2638		if (ret_val)
2639			return ret_val;
2640		ret_val = e1000e_read_kmrn_reg(hw,
2641					       E1000_KMRNCTRLSTA_HD_CTRL,
2642					       &data);
2643		if (ret_val)
2644			return ret_val;
2645		data &= ~(0xF << 8);
2646		data |= (0xB << 8);
2647		ret_val = e1000e_write_kmrn_reg(hw,
2648						E1000_KMRNCTRLSTA_HD_CTRL,
2649						data);
2650		if (ret_val)
2651			return ret_val;
2652
2653		/* Write PHY register values back to h/w defaults */
2654		e1e_rphy(hw, PHY_REG(769, 23), &data);
2655		data &= ~(0x7F << 5);
2656		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2657		if (ret_val)
2658			return ret_val;
2659		e1e_rphy(hw, PHY_REG(769, 16), &data);
2660		data |= BIT(13);
2661		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2662		if (ret_val)
2663			return ret_val;
2664		e1e_rphy(hw, PHY_REG(776, 20), &data);
2665		data &= ~(0x3FF << 2);
2666		data |= (0x8 << 2);
2667		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2668		if (ret_val)
2669			return ret_val;
2670		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2671		if (ret_val)
2672			return ret_val;
2673		e1e_rphy(hw, HV_PM_CTRL, &data);
2674		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2675		if (ret_val)
2676			return ret_val;
2677	}
2678
2679	/* re-enable Rx path after enabling/disabling workaround */
2680	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2681}
2682
2683/**
2684 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2685 *  done after every PHY reset.
2686 **/
2687static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2688{
2689	s32 ret_val = 0;
2690
2691	if (hw->mac.type != e1000_pch2lan)
2692		return 0;
2693
2694	/* Set MDIO slow mode before any other MDIO access */
2695	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2696	if (ret_val)
2697		return ret_val;
2698
2699	ret_val = hw->phy.ops.acquire(hw);
2700	if (ret_val)
2701		return ret_val;
 
 
 
2702	/* set MSE higher to enable link to stay up when noise is high */
2703	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
 
 
 
2704	if (ret_val)
2705		goto release;
2706	/* drop link after 5 times MSE threshold was reached */
2707	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2708release:
2709	hw->phy.ops.release(hw);
2710
2711	return ret_val;
2712}
2713
2714/**
2715 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2716 *  @hw:   pointer to the HW structure
2717 *
2718 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2719 *  Disable K1 in 1000Mbps and 100Mbps
2720 **/
2721static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2722{
2723	s32 ret_val = 0;
2724	u16 status_reg = 0;
 
 
2725
2726	if (hw->mac.type != e1000_pch2lan)
2727		return 0;
2728
2729	/* Set K1 beacon duration based on 10Mbs speed */
2730	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2731	if (ret_val)
2732		return ret_val;
2733
2734	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2735	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2736		if (status_reg &
2737		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
 
 
 
 
 
 
2738			u16 pm_phy_reg;
2739
2740			/* LV 1G/100 Packet drop issue wa  */
 
 
2741			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2742			if (ret_val)
2743				return ret_val;
2744			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2745			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2746			if (ret_val)
2747				return ret_val;
2748		} else {
2749			u32 mac_reg;
2750
2751			mac_reg = er32(FEXTNVM4);
2752			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2753			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2754			ew32(FEXTNVM4, mac_reg);
2755		}
 
 
2756	}
2757
2758	return ret_val;
2759}
2760
2761/**
2762 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2763 *  @hw:   pointer to the HW structure
2764 *  @gate: boolean set to true to gate, false to ungate
2765 *
2766 *  Gate/ungate the automatic PHY configuration via hardware; perform
2767 *  the configuration via software instead.
2768 **/
2769static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2770{
2771	u32 extcnf_ctrl;
2772
2773	if (hw->mac.type < e1000_pch2lan)
2774		return;
2775
2776	extcnf_ctrl = er32(EXTCNF_CTRL);
2777
2778	if (gate)
2779		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2780	else
2781		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2782
2783	ew32(EXTCNF_CTRL, extcnf_ctrl);
2784}
2785
2786/**
2787 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2788 *  @hw: pointer to the HW structure
2789 *
2790 *  Check the appropriate indication the MAC has finished configuring the
2791 *  PHY after a software reset.
2792 **/
2793static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2794{
2795	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2796
2797	/* Wait for basic configuration completes before proceeding */
2798	do {
2799		data = er32(STATUS);
2800		data &= E1000_STATUS_LAN_INIT_DONE;
2801		usleep_range(100, 200);
2802	} while ((!data) && --loop);
2803
2804	/* If basic configuration is incomplete before the above loop
 
2805	 * count reaches 0, loading the configuration from NVM will
2806	 * leave the PHY in a bad state possibly resulting in no link.
2807	 */
2808	if (loop == 0)
2809		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2810
2811	/* Clear the Init Done bit for the next init event */
2812	data = er32(STATUS);
2813	data &= ~E1000_STATUS_LAN_INIT_DONE;
2814	ew32(STATUS, data);
2815}
2816
2817/**
2818 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2819 *  @hw: pointer to the HW structure
2820 **/
2821static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2822{
2823	s32 ret_val = 0;
2824	u16 reg;
2825
2826	if (hw->phy.ops.check_reset_block(hw))
2827		return 0;
2828
2829	/* Allow time for h/w to get to quiescent state after reset */
2830	usleep_range(10000, 20000);
2831
2832	/* Perform any necessary post-reset workarounds */
2833	switch (hw->mac.type) {
2834	case e1000_pchlan:
2835		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2836		if (ret_val)
2837			return ret_val;
2838		break;
2839	case e1000_pch2lan:
2840		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2841		if (ret_val)
2842			return ret_val;
2843		break;
2844	default:
2845		break;
2846	}
2847
2848	/* Clear the host wakeup bit after lcd reset */
2849	if (hw->mac.type >= e1000_pchlan) {
2850		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2851		reg &= ~BM_WUC_HOST_WU_BIT;
2852		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2853	}
2854
2855	/* Configure the LCD with the extended configuration region in NVM */
2856	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2857	if (ret_val)
2858		return ret_val;
2859
2860	/* Configure the LCD with the OEM bits in NVM */
2861	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2862
2863	if (hw->mac.type == e1000_pch2lan) {
2864		/* Ungate automatic PHY configuration on non-managed 82579 */
2865		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2866			usleep_range(10000, 20000);
2867			e1000_gate_hw_phy_config_ich8lan(hw, false);
2868		}
2869
2870		/* Set EEE LPI Update Timer to 200usec */
2871		ret_val = hw->phy.ops.acquire(hw);
2872		if (ret_val)
2873			return ret_val;
2874		ret_val = e1000_write_emi_reg_locked(hw,
2875						     I82579_LPI_UPDATE_TIMER,
2876						     0x1387);
 
2877		hw->phy.ops.release(hw);
2878	}
2879
2880	return ret_val;
2881}
2882
2883/**
2884 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2885 *  @hw: pointer to the HW structure
2886 *
2887 *  Resets the PHY
2888 *  This is a function pointer entry point called by drivers
2889 *  or other shared routines.
2890 **/
2891static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2892{
2893	s32 ret_val = 0;
2894
2895	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2896	if ((hw->mac.type == e1000_pch2lan) &&
2897	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2898		e1000_gate_hw_phy_config_ich8lan(hw, true);
2899
2900	ret_val = e1000e_phy_hw_reset_generic(hw);
2901	if (ret_val)
2902		return ret_val;
2903
2904	return e1000_post_phy_reset_ich8lan(hw);
2905}
2906
2907/**
2908 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2909 *  @hw: pointer to the HW structure
2910 *  @active: true to enable LPLU, false to disable
2911 *
2912 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2913 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2914 *  the phy speed. This function will manually set the LPLU bit and restart
2915 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2916 *  since it configures the same bit.
2917 **/
2918static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2919{
2920	s32 ret_val;
2921	u16 oem_reg;
2922
2923	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2924	if (ret_val)
2925		return ret_val;
2926
2927	if (active)
2928		oem_reg |= HV_OEM_BITS_LPLU;
2929	else
2930		oem_reg &= ~HV_OEM_BITS_LPLU;
2931
2932	if (!hw->phy.ops.check_reset_block(hw))
2933		oem_reg |= HV_OEM_BITS_RESTART_AN;
2934
2935	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2936}
2937
2938/**
2939 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2940 *  @hw: pointer to the HW structure
2941 *  @active: true to enable LPLU, false to disable
2942 *
2943 *  Sets the LPLU D0 state according to the active flag.  When
2944 *  activating LPLU this function also disables smart speed
2945 *  and vice versa.  LPLU will not be activated unless the
2946 *  device autonegotiation advertisement meets standards of
2947 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2948 *  This is a function pointer entry point only called by
2949 *  PHY setup routines.
2950 **/
2951static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2952{
2953	struct e1000_phy_info *phy = &hw->phy;
2954	u32 phy_ctrl;
2955	s32 ret_val = 0;
2956	u16 data;
2957
2958	if (phy->type == e1000_phy_ife)
2959		return 0;
2960
2961	phy_ctrl = er32(PHY_CTRL);
2962
2963	if (active) {
2964		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2965		ew32(PHY_CTRL, phy_ctrl);
2966
2967		if (phy->type != e1000_phy_igp_3)
2968			return 0;
2969
2970		/* Call gig speed drop workaround on LPLU before accessing
 
2971		 * any PHY registers
2972		 */
2973		if (hw->mac.type == e1000_ich8lan)
2974			e1000e_gig_downshift_workaround_ich8lan(hw);
2975
2976		/* When LPLU is enabled, we should disable SmartSpeed */
2977		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2978		if (ret_val)
2979			return ret_val;
2980		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2981		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2982		if (ret_val)
2983			return ret_val;
2984	} else {
2985		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2986		ew32(PHY_CTRL, phy_ctrl);
2987
2988		if (phy->type != e1000_phy_igp_3)
2989			return 0;
2990
2991		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
2992		 * during Dx states where the power conservation is most
2993		 * important.  During driver activity we should enable
2994		 * SmartSpeed, so performance is maintained.
2995		 */
2996		if (phy->smart_speed == e1000_smart_speed_on) {
2997			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2998					   &data);
2999			if (ret_val)
3000				return ret_val;
3001
3002			data |= IGP01E1000_PSCFR_SMART_SPEED;
3003			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3004					   data);
3005			if (ret_val)
3006				return ret_val;
3007		} else if (phy->smart_speed == e1000_smart_speed_off) {
3008			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3009					   &data);
3010			if (ret_val)
3011				return ret_val;
3012
3013			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3014			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3015					   data);
3016			if (ret_val)
3017				return ret_val;
3018		}
3019	}
3020
3021	return 0;
3022}
3023
3024/**
3025 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3026 *  @hw: pointer to the HW structure
3027 *  @active: true to enable LPLU, false to disable
3028 *
3029 *  Sets the LPLU D3 state according to the active flag.  When
3030 *  activating LPLU this function also disables smart speed
3031 *  and vice versa.  LPLU will not be activated unless the
3032 *  device autonegotiation advertisement meets standards of
3033 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3034 *  This is a function pointer entry point only called by
3035 *  PHY setup routines.
3036 **/
3037static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3038{
3039	struct e1000_phy_info *phy = &hw->phy;
3040	u32 phy_ctrl;
3041	s32 ret_val = 0;
3042	u16 data;
3043
3044	phy_ctrl = er32(PHY_CTRL);
3045
3046	if (!active) {
3047		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3048		ew32(PHY_CTRL, phy_ctrl);
3049
3050		if (phy->type != e1000_phy_igp_3)
3051			return 0;
3052
3053		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 
3054		 * during Dx states where the power conservation is most
3055		 * important.  During driver activity we should enable
3056		 * SmartSpeed, so performance is maintained.
3057		 */
3058		if (phy->smart_speed == e1000_smart_speed_on) {
3059			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060					   &data);
3061			if (ret_val)
3062				return ret_val;
3063
3064			data |= IGP01E1000_PSCFR_SMART_SPEED;
3065			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066					   data);
3067			if (ret_val)
3068				return ret_val;
3069		} else if (phy->smart_speed == e1000_smart_speed_off) {
3070			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3071					   &data);
3072			if (ret_val)
3073				return ret_val;
3074
3075			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3076			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077					   data);
3078			if (ret_val)
3079				return ret_val;
3080		}
3081	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3082		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3083		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3084		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3085		ew32(PHY_CTRL, phy_ctrl);
3086
3087		if (phy->type != e1000_phy_igp_3)
3088			return 0;
3089
3090		/* Call gig speed drop workaround on LPLU before accessing
 
3091		 * any PHY registers
3092		 */
3093		if (hw->mac.type == e1000_ich8lan)
3094			e1000e_gig_downshift_workaround_ich8lan(hw);
3095
3096		/* When LPLU is enabled, we should disable SmartSpeed */
3097		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3098		if (ret_val)
3099			return ret_val;
3100
3101		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3102		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3103	}
3104
3105	return ret_val;
3106}
3107
3108/**
3109 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3110 *  @hw: pointer to the HW structure
3111 *  @bank:  pointer to the variable that returns the active bank
3112 *
3113 *  Reads signature byte from the NVM using the flash access registers.
3114 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3115 **/
3116static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3117{
3118	u32 eecd;
3119	struct e1000_nvm_info *nvm = &hw->nvm;
3120	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3121	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3122	u32 nvm_dword = 0;
3123	u8 sig_byte = 0;
3124	s32 ret_val;
3125
3126	switch (hw->mac.type) {
3127	case e1000_pch_spt:
3128		bank1_offset = nvm->flash_bank_size;
3129		act_offset = E1000_ICH_NVM_SIG_WORD;
3130
3131		/* set bank to 0 in case flash read fails */
3132		*bank = 0;
3133
3134		/* Check bank 0 */
3135		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3136							 &nvm_dword);
3137		if (ret_val)
3138			return ret_val;
3139		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3140		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3141		    E1000_ICH_NVM_SIG_VALUE) {
3142			*bank = 0;
3143			return 0;
3144		}
3145
3146		/* Check bank 1 */
3147		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3148							 bank1_offset,
3149							 &nvm_dword);
3150		if (ret_val)
3151			return ret_val;
3152		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3153		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3154		    E1000_ICH_NVM_SIG_VALUE) {
3155			*bank = 1;
3156			return 0;
3157		}
3158
3159		e_dbg("ERROR: No valid NVM bank present\n");
3160		return -E1000_ERR_NVM;
3161	case e1000_ich8lan:
3162	case e1000_ich9lan:
3163		eecd = er32(EECD);
3164		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3165		    E1000_EECD_SEC1VAL_VALID_MASK) {
3166			if (eecd & E1000_EECD_SEC1VAL)
3167				*bank = 1;
3168			else
3169				*bank = 0;
3170
3171			return 0;
3172		}
3173		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3174		/* fall-thru */
3175	default:
3176		/* set bank to 0 in case flash read fails */
3177		*bank = 0;
3178
3179		/* Check bank 0 */
3180		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3181							&sig_byte);
3182		if (ret_val)
3183			return ret_val;
3184		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3185		    E1000_ICH_NVM_SIG_VALUE) {
3186			*bank = 0;
3187			return 0;
3188		}
3189
3190		/* Check bank 1 */
3191		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3192							bank1_offset,
3193							&sig_byte);
3194		if (ret_val)
3195			return ret_val;
3196		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3197		    E1000_ICH_NVM_SIG_VALUE) {
3198			*bank = 1;
3199			return 0;
3200		}
3201
3202		e_dbg("ERROR: No valid NVM bank present\n");
3203		return -E1000_ERR_NVM;
3204	}
3205}
3206
3207/**
3208 *  e1000_read_nvm_spt - NVM access for SPT
3209 *  @hw: pointer to the HW structure
3210 *  @offset: The offset (in bytes) of the word(s) to read.
3211 *  @words: Size of data to read in words.
3212 *  @data: pointer to the word(s) to read at offset.
3213 *
3214 *  Reads a word(s) from the NVM
3215 **/
3216static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3217			      u16 *data)
3218{
3219	struct e1000_nvm_info *nvm = &hw->nvm;
3220	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3221	u32 act_offset;
3222	s32 ret_val = 0;
3223	u32 bank = 0;
3224	u32 dword = 0;
3225	u16 offset_to_read;
3226	u16 i;
3227
3228	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3229	    (words == 0)) {
3230		e_dbg("nvm parameter(s) out of bounds\n");
3231		ret_val = -E1000_ERR_NVM;
3232		goto out;
3233	}
3234
3235	nvm->ops.acquire(hw);
3236
3237	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3238	if (ret_val) {
3239		e_dbg("Could not detect valid bank, assuming bank 0\n");
3240		bank = 0;
3241	}
3242
3243	act_offset = (bank) ? nvm->flash_bank_size : 0;
3244	act_offset += offset;
3245
3246	ret_val = 0;
3247
3248	for (i = 0; i < words; i += 2) {
3249		if (words - i == 1) {
3250			if (dev_spec->shadow_ram[offset + i].modified) {
3251				data[i] =
3252				    dev_spec->shadow_ram[offset + i].value;
3253			} else {
3254				offset_to_read = act_offset + i -
3255				    ((act_offset + i) % 2);
3256				ret_val =
3257				  e1000_read_flash_dword_ich8lan(hw,
3258								 offset_to_read,
3259								 &dword);
3260				if (ret_val)
3261					break;
3262				if ((act_offset + i) % 2 == 0)
3263					data[i] = (u16)(dword & 0xFFFF);
3264				else
3265					data[i] = (u16)((dword >> 16) & 0xFFFF);
3266			}
3267		} else {
3268			offset_to_read = act_offset + i;
3269			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3270			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3271				ret_val =
3272				  e1000_read_flash_dword_ich8lan(hw,
3273								 offset_to_read,
3274								 &dword);
3275				if (ret_val)
3276					break;
3277			}
3278			if (dev_spec->shadow_ram[offset + i].modified)
3279				data[i] =
3280				    dev_spec->shadow_ram[offset + i].value;
3281			else
3282				data[i] = (u16)(dword & 0xFFFF);
3283			if (dev_spec->shadow_ram[offset + i].modified)
3284				data[i + 1] =
3285				    dev_spec->shadow_ram[offset + i + 1].value;
3286			else
3287				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3288		}
3289	}
3290
3291	nvm->ops.release(hw);
3292
3293out:
3294	if (ret_val)
3295		e_dbg("NVM read error: %d\n", ret_val);
3296
3297	return ret_val;
3298}
3299
3300/**
3301 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3302 *  @hw: pointer to the HW structure
3303 *  @offset: The offset (in bytes) of the word(s) to read.
3304 *  @words: Size of data to read in words
3305 *  @data: Pointer to the word(s) to read at offset.
3306 *
3307 *  Reads a word(s) from the NVM using the flash access registers.
3308 **/
3309static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3310				  u16 *data)
3311{
3312	struct e1000_nvm_info *nvm = &hw->nvm;
3313	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3314	u32 act_offset;
3315	s32 ret_val = 0;
3316	u32 bank = 0;
3317	u16 i, word;
3318
3319	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3320	    (words == 0)) {
3321		e_dbg("nvm parameter(s) out of bounds\n");
3322		ret_val = -E1000_ERR_NVM;
3323		goto out;
3324	}
3325
3326	nvm->ops.acquire(hw);
3327
3328	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3329	if (ret_val) {
3330		e_dbg("Could not detect valid bank, assuming bank 0\n");
3331		bank = 0;
3332	}
3333
3334	act_offset = (bank) ? nvm->flash_bank_size : 0;
3335	act_offset += offset;
3336
3337	ret_val = 0;
3338	for (i = 0; i < words; i++) {
3339		if (dev_spec->shadow_ram[offset + i].modified) {
3340			data[i] = dev_spec->shadow_ram[offset + i].value;
3341		} else {
3342			ret_val = e1000_read_flash_word_ich8lan(hw,
3343								act_offset + i,
3344								&word);
3345			if (ret_val)
3346				break;
3347			data[i] = word;
3348		}
3349	}
3350
3351	nvm->ops.release(hw);
3352
3353out:
3354	if (ret_val)
3355		e_dbg("NVM read error: %d\n", ret_val);
3356
3357	return ret_val;
3358}
3359
3360/**
3361 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3362 *  @hw: pointer to the HW structure
3363 *
3364 *  This function does initial flash setup so that a new read/write/erase cycle
3365 *  can be started.
3366 **/
3367static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3368{
3369	union ich8_hws_flash_status hsfsts;
3370	s32 ret_val = -E1000_ERR_NVM;
3371
3372	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3373
3374	/* Check if the flash descriptor is valid */
3375	if (!hsfsts.hsf_status.fldesvalid) {
3376		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3377		return -E1000_ERR_NVM;
3378	}
3379
3380	/* Clear FCERR and DAEL in hw status by writing 1 */
3381	hsfsts.hsf_status.flcerr = 1;
3382	hsfsts.hsf_status.dael = 1;
3383	if (hw->mac.type == e1000_pch_spt)
3384		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3385	else
3386		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3387
3388	/* Either we should have a hardware SPI cycle in progress
 
 
 
3389	 * bit to check against, in order to start a new cycle or
3390	 * FDONE bit should be changed in the hardware so that it
3391	 * is 1 after hardware reset, which can then be used as an
3392	 * indication whether a cycle is in progress or has been
3393	 * completed.
3394	 */
3395
3396	if (!hsfsts.hsf_status.flcinprog) {
3397		/* There is no cycle running at present,
 
3398		 * so we can start a cycle.
3399		 * Begin by setting Flash Cycle Done.
3400		 */
3401		hsfsts.hsf_status.flcdone = 1;
3402		if (hw->mac.type == e1000_pch_spt)
3403			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3404		else
3405			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3406		ret_val = 0;
3407	} else {
3408		s32 i;
3409
3410		/* Otherwise poll for sometime so the current
 
3411		 * cycle has a chance to end before giving up.
3412		 */
3413		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3414			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3415			if (!hsfsts.hsf_status.flcinprog) {
3416				ret_val = 0;
3417				break;
3418			}
3419			udelay(1);
3420		}
3421		if (!ret_val) {
3422			/* Successful in waiting for previous cycle to timeout,
 
3423			 * now set the Flash Cycle Done.
3424			 */
3425			hsfsts.hsf_status.flcdone = 1;
3426			if (hw->mac.type == e1000_pch_spt)
3427				ew32flash(ICH_FLASH_HSFSTS,
3428					  hsfsts.regval & 0xFFFF);
3429			else
3430				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3431		} else {
3432			e_dbg("Flash controller busy, cannot get access\n");
3433		}
3434	}
3435
3436	return ret_val;
3437}
3438
3439/**
3440 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3441 *  @hw: pointer to the HW structure
3442 *  @timeout: maximum time to wait for completion
3443 *
3444 *  This function starts a flash cycle and waits for its completion.
3445 **/
3446static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3447{
3448	union ich8_hws_flash_ctrl hsflctl;
3449	union ich8_hws_flash_status hsfsts;
3450	u32 i = 0;
3451
3452	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3453	if (hw->mac.type == e1000_pch_spt)
3454		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3455	else
3456		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3457	hsflctl.hsf_ctrl.flcgo = 1;
3458
3459	if (hw->mac.type == e1000_pch_spt)
3460		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3461	else
3462		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3463
3464	/* wait till FDONE bit is set to 1 */
3465	do {
3466		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3467		if (hsfsts.hsf_status.flcdone)
3468			break;
3469		udelay(1);
3470	} while (i++ < timeout);
3471
3472	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3473		return 0;
3474
3475	return -E1000_ERR_NVM;
3476}
3477
3478/**
3479 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3480 *  @hw: pointer to the HW structure
3481 *  @offset: offset to data location
3482 *  @data: pointer to the location for storing the data
3483 *
3484 *  Reads the flash dword at offset into data.  Offset is converted
3485 *  to bytes before read.
3486 **/
3487static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3488					  u32 *data)
3489{
3490	/* Must convert word offset into bytes. */
3491	offset <<= 1;
3492	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3493}
3494
3495/**
3496 *  e1000_read_flash_word_ich8lan - Read word from flash
3497 *  @hw: pointer to the HW structure
3498 *  @offset: offset to data location
3499 *  @data: pointer to the location for storing the data
3500 *
3501 *  Reads the flash word at offset into data.  Offset is converted
3502 *  to bytes before read.
3503 **/
3504static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3505					 u16 *data)
3506{
3507	/* Must convert offset into bytes. */
3508	offset <<= 1;
3509
3510	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3511}
3512
3513/**
3514 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3515 *  @hw: pointer to the HW structure
3516 *  @offset: The offset of the byte to read.
3517 *  @data: Pointer to a byte to store the value read.
3518 *
3519 *  Reads a single byte from the NVM using the flash access registers.
3520 **/
3521static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3522					 u8 *data)
3523{
3524	s32 ret_val;
3525	u16 word = 0;
3526
3527	/* In SPT, only 32 bits access is supported,
3528	 * so this function should not be called.
3529	 */
3530	if (hw->mac.type == e1000_pch_spt)
3531		return -E1000_ERR_NVM;
3532	else
3533		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3534
3535	if (ret_val)
3536		return ret_val;
3537
3538	*data = (u8)word;
3539
3540	return 0;
3541}
3542
3543/**
3544 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3545 *  @hw: pointer to the HW structure
3546 *  @offset: The offset (in bytes) of the byte or word to read.
3547 *  @size: Size of data to read, 1=byte 2=word
3548 *  @data: Pointer to the word to store the value read.
3549 *
3550 *  Reads a byte or word from the NVM using the flash access registers.
3551 **/
3552static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3553					 u8 size, u16 *data)
3554{
3555	union ich8_hws_flash_status hsfsts;
3556	union ich8_hws_flash_ctrl hsflctl;
3557	u32 flash_linear_addr;
3558	u32 flash_data = 0;
3559	s32 ret_val = -E1000_ERR_NVM;
3560	u8 count = 0;
3561
3562	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3563		return -E1000_ERR_NVM;
3564
3565	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3566			     hw->nvm.flash_base_addr);
3567
3568	do {
3569		udelay(1);
3570		/* Steps */
3571		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3572		if (ret_val)
3573			break;
3574
3575		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3576		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3577		hsflctl.hsf_ctrl.fldbcount = size - 1;
3578		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3579		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3580
3581		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3582
3583		ret_val =
3584		    e1000_flash_cycle_ich8lan(hw,
3585					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3586
3587		/* Check if FCERR is set to 1, if set to 1, clear it
 
3588		 * and try the whole sequence a few more times, else
3589		 * read in (shift in) the Flash Data0, the order is
3590		 * least significant byte first msb to lsb
3591		 */
3592		if (!ret_val) {
3593			flash_data = er32flash(ICH_FLASH_FDATA0);
3594			if (size == 1)
3595				*data = (u8)(flash_data & 0x000000FF);
3596			else if (size == 2)
3597				*data = (u16)(flash_data & 0x0000FFFF);
3598			break;
3599		} else {
3600			/* If we've gotten here, then things are probably
3601			 * completely hosed, but if the error condition is
3602			 * detected, it won't hurt to give it another try...
3603			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3604			 */
3605			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3606			if (hsfsts.hsf_status.flcerr) {
3607				/* Repeat for some time before giving up. */
3608				continue;
3609			} else if (!hsfsts.hsf_status.flcdone) {
3610				e_dbg("Timeout error - flash cycle did not complete.\n");
3611				break;
3612			}
3613		}
3614	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3615
3616	return ret_val;
3617}
3618
3619/**
3620 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3621 *  @hw: pointer to the HW structure
3622 *  @offset: The offset (in bytes) of the dword to read.
3623 *  @data: Pointer to the dword to store the value read.
3624 *
3625 *  Reads a byte or word from the NVM using the flash access registers.
3626 **/
3627
3628static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3629					   u32 *data)
3630{
3631	union ich8_hws_flash_status hsfsts;
3632	union ich8_hws_flash_ctrl hsflctl;
3633	u32 flash_linear_addr;
3634	s32 ret_val = -E1000_ERR_NVM;
3635	u8 count = 0;
3636
3637	if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3638	    hw->mac.type != e1000_pch_spt)
3639		return -E1000_ERR_NVM;
3640	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3641			     hw->nvm.flash_base_addr);
3642
3643	do {
3644		udelay(1);
3645		/* Steps */
3646		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3647		if (ret_val)
3648			break;
3649		/* In SPT, This register is in Lan memory space, not flash.
3650		 * Therefore, only 32 bit access is supported
3651		 */
3652		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3653
3654		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3655		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3656		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3657		/* In SPT, This register is in Lan memory space, not flash.
3658		 * Therefore, only 32 bit access is supported
3659		 */
3660		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3661		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3662
3663		ret_val =
3664		   e1000_flash_cycle_ich8lan(hw,
3665					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3666
3667		/* Check if FCERR is set to 1, if set to 1, clear it
3668		 * and try the whole sequence a few more times, else
3669		 * read in (shift in) the Flash Data0, the order is
3670		 * least significant byte first msb to lsb
3671		 */
3672		if (!ret_val) {
3673			*data = er32flash(ICH_FLASH_FDATA0);
3674			break;
3675		} else {
3676			/* If we've gotten here, then things are probably
3677			 * completely hosed, but if the error condition is
3678			 * detected, it won't hurt to give it another try...
3679			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3680			 */
3681			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3682			if (hsfsts.hsf_status.flcerr) {
3683				/* Repeat for some time before giving up. */
3684				continue;
3685			} else if (!hsfsts.hsf_status.flcdone) {
3686				e_dbg("Timeout error - flash cycle did not complete.\n");
3687				break;
3688			}
3689		}
3690	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3691
3692	return ret_val;
3693}
3694
3695/**
3696 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3697 *  @hw: pointer to the HW structure
3698 *  @offset: The offset (in bytes) of the word(s) to write.
3699 *  @words: Size of data to write in words
3700 *  @data: Pointer to the word(s) to write at offset.
3701 *
3702 *  Writes a byte or word to the NVM using the flash access registers.
3703 **/
3704static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3705				   u16 *data)
3706{
3707	struct e1000_nvm_info *nvm = &hw->nvm;
3708	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3709	u16 i;
3710
3711	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3712	    (words == 0)) {
3713		e_dbg("nvm parameter(s) out of bounds\n");
3714		return -E1000_ERR_NVM;
3715	}
3716
3717	nvm->ops.acquire(hw);
3718
3719	for (i = 0; i < words; i++) {
3720		dev_spec->shadow_ram[offset + i].modified = true;
3721		dev_spec->shadow_ram[offset + i].value = data[i];
3722	}
3723
3724	nvm->ops.release(hw);
3725
3726	return 0;
3727}
3728
3729/**
3730 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3731 *  @hw: pointer to the HW structure
3732 *
3733 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3734 *  which writes the checksum to the shadow ram.  The changes in the shadow
3735 *  ram are then committed to the EEPROM by processing each bank at a time
3736 *  checking for the modified bit and writing only the pending changes.
3737 *  After a successful commit, the shadow ram is cleared and is ready for
3738 *  future writes.
3739 **/
3740static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3741{
3742	struct e1000_nvm_info *nvm = &hw->nvm;
3743	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3744	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3745	s32 ret_val;
3746	u32 dword = 0;
3747
3748	ret_val = e1000e_update_nvm_checksum_generic(hw);
3749	if (ret_val)
3750		goto out;
3751
3752	if (nvm->type != e1000_nvm_flash_sw)
3753		goto out;
3754
3755	nvm->ops.acquire(hw);
3756
3757	/* We're writing to the opposite bank so if we're on bank 1,
 
3758	 * write to bank 0 etc.  We also need to erase the segment that
3759	 * is going to be written
3760	 */
3761	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3762	if (ret_val) {
3763		e_dbg("Could not detect valid bank, assuming bank 0\n");
3764		bank = 0;
3765	}
3766
3767	if (bank == 0) {
3768		new_bank_offset = nvm->flash_bank_size;
3769		old_bank_offset = 0;
3770		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3771		if (ret_val)
3772			goto release;
3773	} else {
3774		old_bank_offset = nvm->flash_bank_size;
3775		new_bank_offset = 0;
3776		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3777		if (ret_val)
3778			goto release;
3779	}
3780	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3781		/* Determine whether to write the value stored
 
 
3782		 * in the other NVM bank or a modified value stored
3783		 * in the shadow RAM
3784		 */
3785		ret_val = e1000_read_flash_dword_ich8lan(hw,
3786							 i + old_bank_offset,
3787							 &dword);
3788
3789		if (dev_spec->shadow_ram[i].modified) {
3790			dword &= 0xffff0000;
3791			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3792		}
3793		if (dev_spec->shadow_ram[i + 1].modified) {
3794			dword &= 0x0000ffff;
3795			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3796				  << 16);
3797		}
3798		if (ret_val)
3799			break;
3800
3801		/* If the word is 0x13, then make sure the signature bits
3802		 * (15:14) are 11b until the commit has completed.
3803		 * This will allow us to write 10b which indicates the
3804		 * signature is valid.  We want to do this after the write
3805		 * has completed so that we don't mark the segment valid
3806		 * while the write is still in progress
3807		 */
3808		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3809			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3810
3811		/* Convert offset to bytes. */
3812		act_offset = (i + new_bank_offset) << 1;
3813
3814		usleep_range(100, 200);
3815
3816		/* Write the data to the new bank. Offset in words */
3817		act_offset = i + new_bank_offset;
3818		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3819								dword);
3820		if (ret_val)
3821			break;
3822	}
3823
3824	/* Don't bother writing the segment valid bits if sector
3825	 * programming failed.
3826	 */
3827	if (ret_val) {
3828		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3829		e_dbg("Flash commit failed.\n");
3830		goto release;
3831	}
3832
3833	/* Finally validate the new segment by setting bit 15:14
3834	 * to 10b in word 0x13 , this can be done without an
3835	 * erase as well since these bits are 11 to start with
3836	 * and we need to change bit 14 to 0b
3837	 */
3838	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3839
3840	/*offset in words but we read dword */
3841	--act_offset;
3842	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3843
3844	if (ret_val)
3845		goto release;
3846
3847	dword &= 0xBFFFFFFF;
3848	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3849
3850	if (ret_val)
3851		goto release;
3852
3853	/* And invalidate the previously valid segment by setting
3854	 * its signature word (0x13) high_byte to 0b. This can be
3855	 * done without an erase because flash erase sets all bits
3856	 * to 1's. We can write 1's to 0's without an erase
3857	 */
3858	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3859
3860	/* offset in words but we read dword */
3861	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3862	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3863
3864	if (ret_val)
3865		goto release;
3866
3867	dword &= 0x00FFFFFF;
3868	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3869
3870	if (ret_val)
3871		goto release;
3872
3873	/* Great!  Everything worked, we can now clear the cached entries. */
3874	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3875		dev_spec->shadow_ram[i].modified = false;
3876		dev_spec->shadow_ram[i].value = 0xFFFF;
3877	}
3878
3879release:
3880	nvm->ops.release(hw);
3881
3882	/* Reload the EEPROM, or else modifications will not appear
3883	 * until after the next adapter reset.
3884	 */
3885	if (!ret_val) {
3886		nvm->ops.reload(hw);
3887		usleep_range(10000, 20000);
3888	}
3889
3890out:
3891	if (ret_val)
3892		e_dbg("NVM update error: %d\n", ret_val);
3893
3894	return ret_val;
3895}
3896
3897/**
3898 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3899 *  @hw: pointer to the HW structure
3900 *
3901 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3902 *  which writes the checksum to the shadow ram.  The changes in the shadow
3903 *  ram are then committed to the EEPROM by processing each bank at a time
3904 *  checking for the modified bit and writing only the pending changes.
3905 *  After a successful commit, the shadow ram is cleared and is ready for
3906 *  future writes.
3907 **/
3908static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3909{
3910	struct e1000_nvm_info *nvm = &hw->nvm;
3911	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3912	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3913	s32 ret_val;
3914	u16 data = 0;
3915
3916	ret_val = e1000e_update_nvm_checksum_generic(hw);
3917	if (ret_val)
3918		goto out;
3919
3920	if (nvm->type != e1000_nvm_flash_sw)
3921		goto out;
3922
3923	nvm->ops.acquire(hw);
3924
3925	/* We're writing to the opposite bank so if we're on bank 1,
3926	 * write to bank 0 etc.  We also need to erase the segment that
3927	 * is going to be written
3928	 */
3929	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3930	if (ret_val) {
3931		e_dbg("Could not detect valid bank, assuming bank 0\n");
3932		bank = 0;
3933	}
3934
3935	if (bank == 0) {
3936		new_bank_offset = nvm->flash_bank_size;
3937		old_bank_offset = 0;
3938		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3939		if (ret_val)
3940			goto release;
3941	} else {
3942		old_bank_offset = nvm->flash_bank_size;
3943		new_bank_offset = 0;
3944		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3945		if (ret_val)
3946			goto release;
3947	}
3948	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3949		if (dev_spec->shadow_ram[i].modified) {
3950			data = dev_spec->shadow_ram[i].value;
3951		} else {
3952			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3953								old_bank_offset,
3954								&data);
3955			if (ret_val)
3956				break;
3957		}
3958
3959		/* If the word is 0x13, then make sure the signature bits
 
3960		 * (15:14) are 11b until the commit has completed.
3961		 * This will allow us to write 10b which indicates the
3962		 * signature is valid.  We want to do this after the write
3963		 * has completed so that we don't mark the segment valid
3964		 * while the write is still in progress
3965		 */
3966		if (i == E1000_ICH_NVM_SIG_WORD)
3967			data |= E1000_ICH_NVM_SIG_MASK;
3968
3969		/* Convert offset to bytes. */
3970		act_offset = (i + new_bank_offset) << 1;
3971
3972		usleep_range(100, 200);
3973		/* Write the bytes to the new bank. */
3974		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3975							       act_offset,
3976							       (u8)data);
3977		if (ret_val)
3978			break;
3979
3980		usleep_range(100, 200);
3981		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3982							       act_offset + 1,
3983							       (u8)(data >> 8));
3984		if (ret_val)
3985			break;
3986	}
3987
3988	/* Don't bother writing the segment valid bits if sector
 
3989	 * programming failed.
3990	 */
3991	if (ret_val) {
3992		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3993		e_dbg("Flash commit failed.\n");
3994		goto release;
3995	}
3996
3997	/* Finally validate the new segment by setting bit 15:14
 
3998	 * to 10b in word 0x13 , this can be done without an
3999	 * erase as well since these bits are 11 to start with
4000	 * and we need to change bit 14 to 0b
4001	 */
4002	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4003	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4004	if (ret_val)
4005		goto release;
4006
4007	data &= 0xBFFF;
4008	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4009						       act_offset * 2 + 1,
4010						       (u8)(data >> 8));
4011	if (ret_val)
4012		goto release;
4013
4014	/* And invalidate the previously valid segment by setting
 
4015	 * its signature word (0x13) high_byte to 0b. This can be
4016	 * done without an erase because flash erase sets all bits
4017	 * to 1's. We can write 1's to 0's without an erase
4018	 */
4019	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4020	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4021	if (ret_val)
4022		goto release;
4023
4024	/* Great!  Everything worked, we can now clear the cached entries. */
4025	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4026		dev_spec->shadow_ram[i].modified = false;
4027		dev_spec->shadow_ram[i].value = 0xFFFF;
4028	}
4029
4030release:
4031	nvm->ops.release(hw);
4032
4033	/* Reload the EEPROM, or else modifications will not appear
 
4034	 * until after the next adapter reset.
4035	 */
4036	if (!ret_val) {
4037		nvm->ops.reload(hw);
4038		usleep_range(10000, 20000);
4039	}
4040
4041out:
4042	if (ret_val)
4043		e_dbg("NVM update error: %d\n", ret_val);
4044
4045	return ret_val;
4046}
4047
4048/**
4049 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4050 *  @hw: pointer to the HW structure
4051 *
4052 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4053 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4054 *  calculated, in which case we need to calculate the checksum and set bit 6.
4055 **/
4056static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4057{
4058	s32 ret_val;
4059	u16 data;
4060	u16 word;
4061	u16 valid_csum_mask;
4062
4063	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4064	 * the checksum needs to be fixed.  This bit is an indication that
4065	 * the NVM was prepared by OEM software and did not calculate
4066	 * the checksum...a likely scenario.
 
4067	 */
4068	switch (hw->mac.type) {
4069	case e1000_pch_lpt:
4070	case e1000_pch_spt:
4071		word = NVM_COMPAT;
4072		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4073		break;
4074	default:
4075		word = NVM_FUTURE_INIT_WORD1;
4076		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4077		break;
4078	}
4079
4080	ret_val = e1000_read_nvm(hw, word, 1, &data);
4081	if (ret_val)
4082		return ret_val;
4083
4084	if (!(data & valid_csum_mask)) {
4085		data |= valid_csum_mask;
4086		ret_val = e1000_write_nvm(hw, word, 1, &data);
4087		if (ret_val)
4088			return ret_val;
4089		ret_val = e1000e_update_nvm_checksum(hw);
4090		if (ret_val)
4091			return ret_val;
4092	}
4093
4094	return e1000e_validate_nvm_checksum_generic(hw);
4095}
4096
4097/**
4098 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4099 *  @hw: pointer to the HW structure
4100 *
4101 *  To prevent malicious write/erase of the NVM, set it to be read-only
4102 *  so that the hardware ignores all write/erase cycles of the NVM via
4103 *  the flash control registers.  The shadow-ram copy of the NVM will
4104 *  still be updated, however any updates to this copy will not stick
4105 *  across driver reloads.
4106 **/
4107void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4108{
4109	struct e1000_nvm_info *nvm = &hw->nvm;
4110	union ich8_flash_protected_range pr0;
4111	union ich8_hws_flash_status hsfsts;
4112	u32 gfpreg;
4113
4114	nvm->ops.acquire(hw);
4115
4116	gfpreg = er32flash(ICH_FLASH_GFPREG);
4117
4118	/* Write-protect GbE Sector of NVM */
4119	pr0.regval = er32flash(ICH_FLASH_PR0);
4120	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4121	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4122	pr0.range.wpe = true;
4123	ew32flash(ICH_FLASH_PR0, pr0.regval);
4124
4125	/* Lock down a subset of GbE Flash Control Registers, e.g.
 
4126	 * PR0 to prevent the write-protection from being lifted.
4127	 * Once FLOCKDN is set, the registers protected by it cannot
4128	 * be written until FLOCKDN is cleared by a hardware reset.
4129	 */
4130	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4131	hsfsts.hsf_status.flockdn = true;
4132	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4133
4134	nvm->ops.release(hw);
4135}
4136
4137/**
4138 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4139 *  @hw: pointer to the HW structure
4140 *  @offset: The offset (in bytes) of the byte/word to read.
4141 *  @size: Size of data to read, 1=byte 2=word
4142 *  @data: The byte(s) to write to the NVM.
4143 *
4144 *  Writes one/two bytes to the NVM using the flash access registers.
4145 **/
4146static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4147					  u8 size, u16 data)
4148{
4149	union ich8_hws_flash_status hsfsts;
4150	union ich8_hws_flash_ctrl hsflctl;
4151	u32 flash_linear_addr;
4152	u32 flash_data = 0;
4153	s32 ret_val;
4154	u8 count = 0;
4155
4156	if (hw->mac.type == e1000_pch_spt) {
4157		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4158			return -E1000_ERR_NVM;
4159	} else {
4160		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4161			return -E1000_ERR_NVM;
4162	}
4163
4164	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4165			     hw->nvm.flash_base_addr);
4166
4167	do {
4168		udelay(1);
4169		/* Steps */
4170		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4171		if (ret_val)
4172			break;
4173		/* In SPT, This register is in Lan memory space, not
4174		 * flash.  Therefore, only 32 bit access is supported
4175		 */
4176		if (hw->mac.type == e1000_pch_spt)
4177			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4178		else
4179			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4180
 
4181		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4182		hsflctl.hsf_ctrl.fldbcount = size - 1;
4183		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4184		/* In SPT, This register is in Lan memory space,
4185		 * not flash.  Therefore, only 32 bit access is
4186		 * supported
4187		 */
4188		if (hw->mac.type == e1000_pch_spt)
4189			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4190		else
4191			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4192
4193		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4194
4195		if (size == 1)
4196			flash_data = (u32)data & 0x00FF;
4197		else
4198			flash_data = (u32)data;
4199
4200		ew32flash(ICH_FLASH_FDATA0, flash_data);
4201
4202		/* check if FCERR is set to 1 , if set to 1, clear it
4203		 * and try the whole sequence a few more times else done
4204		 */
4205		ret_val =
4206		    e1000_flash_cycle_ich8lan(hw,
4207					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4208		if (!ret_val)
4209			break;
4210
4211		/* If we're here, then things are most likely
4212		 * completely hosed, but if the error condition
4213		 * is detected, it won't hurt to give it another
4214		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4215		 */
4216		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4217		if (hsfsts.hsf_status.flcerr)
4218			/* Repeat for some time before giving up. */
4219			continue;
4220		if (!hsfsts.hsf_status.flcdone) {
4221			e_dbg("Timeout error - flash cycle did not complete.\n");
4222			break;
4223		}
4224	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4225
4226	return ret_val;
4227}
4228
4229/**
4230*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4231*  @hw: pointer to the HW structure
4232*  @offset: The offset (in bytes) of the dwords to read.
4233*  @data: The 4 bytes to write to the NVM.
4234*
4235*  Writes one/two/four bytes to the NVM using the flash access registers.
4236**/
4237static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4238					    u32 data)
4239{
4240	union ich8_hws_flash_status hsfsts;
4241	union ich8_hws_flash_ctrl hsflctl;
4242	u32 flash_linear_addr;
4243	s32 ret_val;
4244	u8 count = 0;
4245
4246	if (hw->mac.type == e1000_pch_spt) {
4247		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4248			return -E1000_ERR_NVM;
4249	}
4250	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4251			     hw->nvm.flash_base_addr);
4252	do {
4253		udelay(1);
4254		/* Steps */
4255		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4256		if (ret_val)
4257			break;
4258
4259		/* In SPT, This register is in Lan memory space, not
4260		 * flash.  Therefore, only 32 bit access is supported
4261		 */
4262		if (hw->mac.type == e1000_pch_spt)
4263			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4264			    >> 16;
4265		else
4266			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4267
4268		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4269		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4270
4271		/* In SPT, This register is in Lan memory space,
4272		 * not flash.  Therefore, only 32 bit access is
4273		 * supported
4274		 */
4275		if (hw->mac.type == e1000_pch_spt)
4276			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4277		else
4278			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4279
4280		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4281
4282		ew32flash(ICH_FLASH_FDATA0, data);
4283
4284		/* check if FCERR is set to 1 , if set to 1, clear it
4285		 * and try the whole sequence a few more times else done
4286		 */
4287		ret_val =
4288		   e1000_flash_cycle_ich8lan(hw,
4289					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4290
4291		if (!ret_val)
4292			break;
4293
4294		/* If we're here, then things are most likely
 
4295		 * completely hosed, but if the error condition
4296		 * is detected, it won't hurt to give it another
4297		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4298		 */
4299		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4300
4301		if (hsfsts.hsf_status.flcerr)
4302			/* Repeat for some time before giving up. */
4303			continue;
4304		if (!hsfsts.hsf_status.flcdone) {
4305			e_dbg("Timeout error - flash cycle did not complete.\n");
4306			break;
4307		}
4308	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4309
4310	return ret_val;
4311}
4312
4313/**
4314 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4315 *  @hw: pointer to the HW structure
4316 *  @offset: The index of the byte to read.
4317 *  @data: The byte to write to the NVM.
4318 *
4319 *  Writes a single byte to the NVM using the flash access registers.
4320 **/
4321static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4322					  u8 data)
4323{
4324	u16 word = (u16)data;
4325
4326	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4327}
4328
4329/**
4330*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4331*  @hw: pointer to the HW structure
4332*  @offset: The offset of the word to write.
4333*  @dword: The dword to write to the NVM.
4334*
4335*  Writes a single dword to the NVM using the flash access registers.
4336*  Goes through a retry algorithm before giving up.
4337**/
4338static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4339						 u32 offset, u32 dword)
4340{
4341	s32 ret_val;
4342	u16 program_retries;
4343
4344	/* Must convert word offset into bytes. */
4345	offset <<= 1;
4346	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4347
4348	if (!ret_val)
4349		return ret_val;
4350	for (program_retries = 0; program_retries < 100; program_retries++) {
4351		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4352		usleep_range(100, 200);
4353		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4354		if (!ret_val)
4355			break;
4356	}
4357	if (program_retries == 100)
4358		return -E1000_ERR_NVM;
4359
4360	return 0;
4361}
4362
4363/**
4364 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4365 *  @hw: pointer to the HW structure
4366 *  @offset: The offset of the byte to write.
4367 *  @byte: The byte to write to the NVM.
4368 *
4369 *  Writes a single byte to the NVM using the flash access registers.
4370 *  Goes through a retry algorithm before giving up.
4371 **/
4372static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4373						u32 offset, u8 byte)
4374{
4375	s32 ret_val;
4376	u16 program_retries;
4377
4378	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4379	if (!ret_val)
4380		return ret_val;
4381
4382	for (program_retries = 0; program_retries < 100; program_retries++) {
4383		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4384		usleep_range(100, 200);
4385		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4386		if (!ret_val)
4387			break;
4388	}
4389	if (program_retries == 100)
4390		return -E1000_ERR_NVM;
4391
4392	return 0;
4393}
4394
4395/**
4396 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4397 *  @hw: pointer to the HW structure
4398 *  @bank: 0 for first bank, 1 for second bank, etc.
4399 *
4400 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4401 *  bank N is 4096 * N + flash_reg_addr.
4402 **/
4403static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4404{
4405	struct e1000_nvm_info *nvm = &hw->nvm;
4406	union ich8_hws_flash_status hsfsts;
4407	union ich8_hws_flash_ctrl hsflctl;
4408	u32 flash_linear_addr;
4409	/* bank size is in 16bit words - adjust to bytes */
4410	u32 flash_bank_size = nvm->flash_bank_size * 2;
4411	s32 ret_val;
4412	s32 count = 0;
4413	s32 j, iteration, sector_size;
4414
4415	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4416
4417	/* Determine HW Sector size: Read BERASE bits of hw flash status
 
4418	 * register
4419	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4420	 *     consecutive sectors.  The start index for the nth Hw sector
4421	 *     can be calculated as = bank * 4096 + n * 256
4422	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4423	 *     The start index for the nth Hw sector can be calculated
4424	 *     as = bank * 4096
4425	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4426	 *     (ich9 only, otherwise error condition)
4427	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4428	 */
4429	switch (hsfsts.hsf_status.berasesz) {
4430	case 0:
4431		/* Hw sector size 256 */
4432		sector_size = ICH_FLASH_SEG_SIZE_256;
4433		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4434		break;
4435	case 1:
4436		sector_size = ICH_FLASH_SEG_SIZE_4K;
4437		iteration = 1;
4438		break;
4439	case 2:
4440		sector_size = ICH_FLASH_SEG_SIZE_8K;
4441		iteration = 1;
4442		break;
4443	case 3:
4444		sector_size = ICH_FLASH_SEG_SIZE_64K;
4445		iteration = 1;
4446		break;
4447	default:
4448		return -E1000_ERR_NVM;
4449	}
4450
4451	/* Start with the base address, then add the sector offset. */
4452	flash_linear_addr = hw->nvm.flash_base_addr;
4453	flash_linear_addr += (bank) ? flash_bank_size : 0;
4454
4455	for (j = 0; j < iteration; j++) {
4456		do {
4457			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4458
4459			/* Steps */
4460			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4461			if (ret_val)
4462				return ret_val;
4463
4464			/* Write a value 11 (block Erase) in Flash
 
4465			 * Cycle field in hw flash control
4466			 */
4467			if (hw->mac.type == e1000_pch_spt)
4468				hsflctl.regval =
4469				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4470			else
4471				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4472
4473			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4474			if (hw->mac.type == e1000_pch_spt)
4475				ew32flash(ICH_FLASH_HSFSTS,
4476					  hsflctl.regval << 16);
4477			else
4478				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4479
4480			/* Write the last 24 bits of an index within the
 
4481			 * block into Flash Linear address field in Flash
4482			 * Address.
4483			 */
4484			flash_linear_addr += (j * sector_size);
4485			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4486
4487			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
 
4488			if (!ret_val)
4489				break;
4490
4491			/* Check if FCERR is set to 1.  If 1,
 
4492			 * clear it and try the whole sequence
4493			 * a few more times else Done
4494			 */
4495			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4496			if (hsfsts.hsf_status.flcerr)
4497				/* repeat for some time before giving up */
4498				continue;
4499			else if (!hsfsts.hsf_status.flcdone)
4500				return ret_val;
4501		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4502	}
4503
4504	return 0;
4505}
4506
4507/**
4508 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4509 *  @hw: pointer to the HW structure
4510 *  @data: Pointer to the LED settings
4511 *
4512 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4513 *  settings is all 0's or F's, set the LED default to a valid LED default
4514 *  setting.
4515 **/
4516static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4517{
4518	s32 ret_val;
4519
4520	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4521	if (ret_val) {
4522		e_dbg("NVM Read Error\n");
4523		return ret_val;
4524	}
4525
4526	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
 
4527		*data = ID_LED_DEFAULT_ICH8LAN;
4528
4529	return 0;
4530}
4531
4532/**
4533 *  e1000_id_led_init_pchlan - store LED configurations
4534 *  @hw: pointer to the HW structure
4535 *
4536 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4537 *  the PHY LED configuration register.
4538 *
4539 *  PCH also does not have an "always on" or "always off" mode which
4540 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4541 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4542 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4543 *  link based on logic in e1000_led_[on|off]_pchlan().
4544 **/
4545static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4546{
4547	struct e1000_mac_info *mac = &hw->mac;
4548	s32 ret_val;
4549	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4550	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4551	u16 data, i, temp, shift;
4552
4553	/* Get default ID LED modes */
4554	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4555	if (ret_val)
4556		return ret_val;
4557
4558	mac->ledctl_default = er32(LEDCTL);
4559	mac->ledctl_mode1 = mac->ledctl_default;
4560	mac->ledctl_mode2 = mac->ledctl_default;
4561
4562	for (i = 0; i < 4; i++) {
4563		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4564		shift = (i * 5);
4565		switch (temp) {
4566		case ID_LED_ON1_DEF2:
4567		case ID_LED_ON1_ON2:
4568		case ID_LED_ON1_OFF2:
4569			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4570			mac->ledctl_mode1 |= (ledctl_on << shift);
4571			break;
4572		case ID_LED_OFF1_DEF2:
4573		case ID_LED_OFF1_ON2:
4574		case ID_LED_OFF1_OFF2:
4575			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4576			mac->ledctl_mode1 |= (ledctl_off << shift);
4577			break;
4578		default:
4579			/* Do nothing */
4580			break;
4581		}
4582		switch (temp) {
4583		case ID_LED_DEF1_ON2:
4584		case ID_LED_ON1_ON2:
4585		case ID_LED_OFF1_ON2:
4586			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4587			mac->ledctl_mode2 |= (ledctl_on << shift);
4588			break;
4589		case ID_LED_DEF1_OFF2:
4590		case ID_LED_ON1_OFF2:
4591		case ID_LED_OFF1_OFF2:
4592			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4593			mac->ledctl_mode2 |= (ledctl_off << shift);
4594			break;
4595		default:
4596			/* Do nothing */
4597			break;
4598		}
4599	}
4600
4601	return 0;
4602}
4603
4604/**
4605 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4606 *  @hw: pointer to the HW structure
4607 *
4608 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4609 *  register, so the the bus width is hard coded.
4610 **/
4611static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4612{
4613	struct e1000_bus_info *bus = &hw->bus;
4614	s32 ret_val;
4615
4616	ret_val = e1000e_get_bus_info_pcie(hw);
4617
4618	/* ICH devices are "PCI Express"-ish.  They have
 
4619	 * a configuration space, but do not contain
4620	 * PCI Express Capability registers, so bus width
4621	 * must be hardcoded.
4622	 */
4623	if (bus->width == e1000_bus_width_unknown)
4624		bus->width = e1000_bus_width_pcie_x1;
4625
4626	return ret_val;
4627}
4628
4629/**
4630 *  e1000_reset_hw_ich8lan - Reset the hardware
4631 *  @hw: pointer to the HW structure
4632 *
4633 *  Does a full reset of the hardware which includes a reset of the PHY and
4634 *  MAC.
4635 **/
4636static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4637{
4638	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4639	u16 kum_cfg;
4640	u32 ctrl, reg;
4641	s32 ret_val;
4642
4643	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 
4644	 * on the last TLP read/write transaction when MAC is reset.
4645	 */
4646	ret_val = e1000e_disable_pcie_master(hw);
4647	if (ret_val)
4648		e_dbg("PCI-E Master disable polling has failed.\n");
4649
4650	e_dbg("Masking off all interrupts\n");
4651	ew32(IMC, 0xffffffff);
4652
4653	/* Disable the Transmit and Receive units.  Then delay to allow
 
4654	 * any pending transactions to complete before we hit the MAC
4655	 * with the global reset.
4656	 */
4657	ew32(RCTL, 0);
4658	ew32(TCTL, E1000_TCTL_PSP);
4659	e1e_flush();
4660
4661	usleep_range(10000, 20000);
4662
4663	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4664	if (hw->mac.type == e1000_ich8lan) {
4665		/* Set Tx and Rx buffer allocation to 8k apiece. */
4666		ew32(PBA, E1000_PBA_8K);
4667		/* Set Packet Buffer Size to 16k. */
4668		ew32(PBS, E1000_PBS_16K);
4669	}
4670
4671	if (hw->mac.type == e1000_pchlan) {
4672		/* Save the NVM K1 bit setting */
4673		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4674		if (ret_val)
4675			return ret_val;
4676
4677		if (kum_cfg & E1000_NVM_K1_ENABLE)
4678			dev_spec->nvm_k1_enabled = true;
4679		else
4680			dev_spec->nvm_k1_enabled = false;
4681	}
4682
4683	ctrl = er32(CTRL);
4684
4685	if (!hw->phy.ops.check_reset_block(hw)) {
4686		/* Full-chip reset requires MAC and PHY reset at the same
 
4687		 * time to make sure the interface between MAC and the
4688		 * external PHY is reset.
4689		 */
4690		ctrl |= E1000_CTRL_PHY_RST;
4691
4692		/* Gate automatic PHY configuration by hardware on
 
4693		 * non-managed 82579
4694		 */
4695		if ((hw->mac.type == e1000_pch2lan) &&
4696		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4697			e1000_gate_hw_phy_config_ich8lan(hw, true);
4698	}
4699	ret_val = e1000_acquire_swflag_ich8lan(hw);
4700	e_dbg("Issuing a global reset to ich8lan\n");
4701	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4702	/* cannot issue a flush here because it hangs the hardware */
4703	msleep(20);
4704
4705	/* Set Phy Config Counter to 50msec */
4706	if (hw->mac.type == e1000_pch2lan) {
4707		reg = er32(FEXTNVM3);
4708		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4709		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4710		ew32(FEXTNVM3, reg);
4711	}
4712
4713	if (!ret_val)
4714		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4715
4716	if (ctrl & E1000_CTRL_PHY_RST) {
4717		ret_val = hw->phy.ops.get_cfg_done(hw);
4718		if (ret_val)
4719			return ret_val;
4720
4721		ret_val = e1000_post_phy_reset_ich8lan(hw);
4722		if (ret_val)
4723			return ret_val;
4724	}
4725
4726	/* For PCH, this write will make sure that any noise
 
4727	 * will be detected as a CRC error and be dropped rather than show up
4728	 * as a bad packet to the DMA engine.
4729	 */
4730	if (hw->mac.type == e1000_pchlan)
4731		ew32(CRC_OFFSET, 0x65656565);
4732
4733	ew32(IMC, 0xffffffff);
4734	er32(ICR);
4735
4736	reg = er32(KABGTXD);
4737	reg |= E1000_KABGTXD_BGSQLBIAS;
4738	ew32(KABGTXD, reg);
4739
4740	return 0;
4741}
4742
4743/**
4744 *  e1000_init_hw_ich8lan - Initialize the hardware
4745 *  @hw: pointer to the HW structure
4746 *
4747 *  Prepares the hardware for transmit and receive by doing the following:
4748 *   - initialize hardware bits
4749 *   - initialize LED identification
4750 *   - setup receive address registers
4751 *   - setup flow control
4752 *   - setup transmit descriptors
4753 *   - clear statistics
4754 **/
4755static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4756{
4757	struct e1000_mac_info *mac = &hw->mac;
4758	u32 ctrl_ext, txdctl, snoop;
4759	s32 ret_val;
4760	u16 i;
4761
4762	e1000_initialize_hw_bits_ich8lan(hw);
4763
4764	/* Initialize identification LED */
4765	ret_val = mac->ops.id_led_init(hw);
4766	/* An error is not fatal and we should not stop init due to this */
4767	if (ret_val)
4768		e_dbg("Error initializing identification LED\n");
 
4769
4770	/* Setup the receive address. */
4771	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4772
4773	/* Zero out the Multicast HASH table */
4774	e_dbg("Zeroing the MTA\n");
4775	for (i = 0; i < mac->mta_reg_count; i++)
4776		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4777
4778	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
 
4779	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4780	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4781	 */
4782	if (hw->phy.type == e1000_phy_82578) {
4783		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4784		i &= ~BM_WUC_HOST_WU_BIT;
4785		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4786		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4787		if (ret_val)
4788			return ret_val;
4789	}
4790
4791	/* Setup link and flow control */
4792	ret_val = mac->ops.setup_link(hw);
4793
4794	/* Set the transmit descriptor write-back policy for both queues */
4795	txdctl = er32(TXDCTL(0));
4796	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4797		  E1000_TXDCTL_FULL_TX_DESC_WB);
4798	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4799		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4800	ew32(TXDCTL(0), txdctl);
4801	txdctl = er32(TXDCTL(1));
4802	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4803		  E1000_TXDCTL_FULL_TX_DESC_WB);
4804	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4805		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4806	ew32(TXDCTL(1), txdctl);
4807
4808	/* ICH8 has opposite polarity of no_snoop bits.
 
4809	 * By default, we should use snoop behavior.
4810	 */
4811	if (mac->type == e1000_ich8lan)
4812		snoop = PCIE_ICH8_SNOOP_ALL;
4813	else
4814		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4815	e1000e_set_pcie_no_snoop(hw, snoop);
4816
4817	ctrl_ext = er32(CTRL_EXT);
4818	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4819	ew32(CTRL_EXT, ctrl_ext);
4820
4821	/* Clear all of the statistics registers (clear on read).  It is
 
4822	 * important that we do this after we have tried to establish link
4823	 * because the symbol error count will increment wildly if there
4824	 * is no link.
4825	 */
4826	e1000_clear_hw_cntrs_ich8lan(hw);
4827
4828	return ret_val;
4829}
4830
4831/**
4832 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4833 *  @hw: pointer to the HW structure
4834 *
4835 *  Sets/Clears required hardware bits necessary for correctly setting up the
4836 *  hardware for transmit and receive.
4837 **/
4838static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4839{
4840	u32 reg;
4841
4842	/* Extended Device Control */
4843	reg = er32(CTRL_EXT);
4844	reg |= BIT(22);
4845	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4846	if (hw->mac.type >= e1000_pchlan)
4847		reg |= E1000_CTRL_EXT_PHYPDEN;
4848	ew32(CTRL_EXT, reg);
4849
4850	/* Transmit Descriptor Control 0 */
4851	reg = er32(TXDCTL(0));
4852	reg |= BIT(22);
4853	ew32(TXDCTL(0), reg);
4854
4855	/* Transmit Descriptor Control 1 */
4856	reg = er32(TXDCTL(1));
4857	reg |= BIT(22);
4858	ew32(TXDCTL(1), reg);
4859
4860	/* Transmit Arbitration Control 0 */
4861	reg = er32(TARC(0));
4862	if (hw->mac.type == e1000_ich8lan)
4863		reg |= BIT(28) | BIT(29);
4864	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4865	ew32(TARC(0), reg);
4866
4867	/* Transmit Arbitration Control 1 */
4868	reg = er32(TARC(1));
4869	if (er32(TCTL) & E1000_TCTL_MULR)
4870		reg &= ~BIT(28);
4871	else
4872		reg |= BIT(28);
4873	reg |= BIT(24) | BIT(26) | BIT(30);
4874	ew32(TARC(1), reg);
4875
4876	/* Device Status */
4877	if (hw->mac.type == e1000_ich8lan) {
4878		reg = er32(STATUS);
4879		reg &= ~BIT(31);
4880		ew32(STATUS, reg);
4881	}
4882
4883	/* work-around descriptor data corruption issue during nfs v2 udp
 
4884	 * traffic, just disable the nfs filtering capability
4885	 */
4886	reg = er32(RFCTL);
4887	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4888
4889	/* Disable IPv6 extension header parsing because some malformed
 
4890	 * IPv6 headers can hang the Rx.
4891	 */
4892	if (hw->mac.type == e1000_ich8lan)
4893		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4894	ew32(RFCTL, reg);
4895
4896	/* Enable ECC on Lynxpoint */
4897	if ((hw->mac.type == e1000_pch_lpt) ||
4898	    (hw->mac.type == e1000_pch_spt)) {
4899		reg = er32(PBECCSTS);
4900		reg |= E1000_PBECCSTS_ECC_ENABLE;
4901		ew32(PBECCSTS, reg);
4902
4903		reg = er32(CTRL);
4904		reg |= E1000_CTRL_MEHE;
4905		ew32(CTRL, reg);
4906	}
4907}
4908
4909/**
4910 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4911 *  @hw: pointer to the HW structure
4912 *
4913 *  Determines which flow control settings to use, then configures flow
4914 *  control.  Calls the appropriate media-specific link configuration
4915 *  function.  Assuming the adapter has a valid link partner, a valid link
4916 *  should be established.  Assumes the hardware has previously been reset
4917 *  and the transmitter and receiver are not enabled.
4918 **/
4919static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4920{
4921	s32 ret_val;
4922
4923	if (hw->phy.ops.check_reset_block(hw))
4924		return 0;
4925
4926	/* ICH parts do not have a word in the NVM to determine
 
4927	 * the default flow control setting, so we explicitly
4928	 * set it to full.
4929	 */
4930	if (hw->fc.requested_mode == e1000_fc_default) {
4931		/* Workaround h/w hang when Tx flow control enabled */
4932		if (hw->mac.type == e1000_pchlan)
4933			hw->fc.requested_mode = e1000_fc_rx_pause;
4934		else
4935			hw->fc.requested_mode = e1000_fc_full;
4936	}
4937
4938	/* Save off the requested flow control mode for use later.  Depending
 
4939	 * on the link partner's capabilities, we may or may not use this mode.
4940	 */
4941	hw->fc.current_mode = hw->fc.requested_mode;
4942
4943	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 
4944
4945	/* Continue to configure the copper link. */
4946	ret_val = hw->mac.ops.setup_physical_interface(hw);
4947	if (ret_val)
4948		return ret_val;
4949
4950	ew32(FCTTV, hw->fc.pause_time);
4951	if ((hw->phy.type == e1000_phy_82578) ||
4952	    (hw->phy.type == e1000_phy_82579) ||
4953	    (hw->phy.type == e1000_phy_i217) ||
4954	    (hw->phy.type == e1000_phy_82577)) {
4955		ew32(FCRTV_PCH, hw->fc.refresh_time);
4956
4957		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4958				   hw->fc.pause_time);
4959		if (ret_val)
4960			return ret_val;
4961	}
4962
4963	return e1000e_set_fc_watermarks(hw);
4964}
4965
4966/**
4967 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4968 *  @hw: pointer to the HW structure
4969 *
4970 *  Configures the kumeran interface to the PHY to wait the appropriate time
4971 *  when polling the PHY, then call the generic setup_copper_link to finish
4972 *  configuring the copper link.
4973 **/
4974static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4975{
4976	u32 ctrl;
4977	s32 ret_val;
4978	u16 reg_data;
4979
4980	ctrl = er32(CTRL);
4981	ctrl |= E1000_CTRL_SLU;
4982	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4983	ew32(CTRL, ctrl);
4984
4985	/* Set the mac to wait the maximum time between each iteration
 
4986	 * and increase the max iterations when polling the phy;
4987	 * this fixes erroneous timeouts at 10Mbps.
4988	 */
4989	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4990	if (ret_val)
4991		return ret_val;
4992	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4993				       &reg_data);
4994	if (ret_val)
4995		return ret_val;
4996	reg_data |= 0x3F;
4997	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4998					reg_data);
4999	if (ret_val)
5000		return ret_val;
5001
5002	switch (hw->phy.type) {
5003	case e1000_phy_igp_3:
5004		ret_val = e1000e_copper_link_setup_igp(hw);
5005		if (ret_val)
5006			return ret_val;
5007		break;
5008	case e1000_phy_bm:
5009	case e1000_phy_82578:
5010		ret_val = e1000e_copper_link_setup_m88(hw);
5011		if (ret_val)
5012			return ret_val;
5013		break;
5014	case e1000_phy_82577:
5015	case e1000_phy_82579:
 
5016		ret_val = e1000_copper_link_setup_82577(hw);
5017		if (ret_val)
5018			return ret_val;
5019		break;
5020	case e1000_phy_ife:
5021		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5022		if (ret_val)
5023			return ret_val;
5024
5025		reg_data &= ~IFE_PMC_AUTO_MDIX;
5026
5027		switch (hw->phy.mdix) {
5028		case 1:
5029			reg_data &= ~IFE_PMC_FORCE_MDIX;
5030			break;
5031		case 2:
5032			reg_data |= IFE_PMC_FORCE_MDIX;
5033			break;
5034		case 0:
5035		default:
5036			reg_data |= IFE_PMC_AUTO_MDIX;
5037			break;
5038		}
5039		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5040		if (ret_val)
5041			return ret_val;
5042		break;
5043	default:
5044		break;
5045	}
5046
5047	return e1000e_setup_copper_link(hw);
5048}
5049
5050/**
5051 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5052 *  @hw: pointer to the HW structure
5053 *
5054 *  Calls the PHY specific link setup function and then calls the
5055 *  generic setup_copper_link to finish configuring the link for
5056 *  Lynxpoint PCH devices
5057 **/
5058static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5059{
5060	u32 ctrl;
5061	s32 ret_val;
5062
5063	ctrl = er32(CTRL);
5064	ctrl |= E1000_CTRL_SLU;
5065	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5066	ew32(CTRL, ctrl);
5067
5068	ret_val = e1000_copper_link_setup_82577(hw);
5069	if (ret_val)
5070		return ret_val;
5071
5072	return e1000e_setup_copper_link(hw);
5073}
5074
5075/**
5076 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5077 *  @hw: pointer to the HW structure
5078 *  @speed: pointer to store current link speed
5079 *  @duplex: pointer to store the current link duplex
5080 *
5081 *  Calls the generic get_speed_and_duplex to retrieve the current link
5082 *  information and then calls the Kumeran lock loss workaround for links at
5083 *  gigabit speeds.
5084 **/
5085static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5086					  u16 *duplex)
5087{
5088	s32 ret_val;
5089
5090	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5091	if (ret_val)
5092		return ret_val;
5093
5094	if ((hw->mac.type == e1000_ich8lan) &&
5095	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
 
5096		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5097	}
5098
5099	return ret_val;
5100}
5101
5102/**
5103 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5104 *  @hw: pointer to the HW structure
5105 *
5106 *  Work-around for 82566 Kumeran PCS lock loss:
5107 *  On link status change (i.e. PCI reset, speed change) and link is up and
5108 *  speed is gigabit-
5109 *    0) if workaround is optionally disabled do nothing
5110 *    1) wait 1ms for Kumeran link to come up
5111 *    2) check Kumeran Diagnostic register PCS lock loss bit
5112 *    3) if not set the link is locked (all is good), otherwise...
5113 *    4) reset the PHY
5114 *    5) repeat up to 10 times
5115 *  Note: this is only called for IGP3 copper when speed is 1gb.
5116 **/
5117static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5118{
5119	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5120	u32 phy_ctrl;
5121	s32 ret_val;
5122	u16 i, data;
5123	bool link;
5124
5125	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5126		return 0;
5127
5128	/* Make sure link is up before proceeding.  If not just return.
 
5129	 * Attempting this while link is negotiating fouled up link
5130	 * stability
5131	 */
5132	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5133	if (!link)
5134		return 0;
5135
5136	for (i = 0; i < 10; i++) {
5137		/* read once to clear */
5138		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5139		if (ret_val)
5140			return ret_val;
5141		/* and again to get new status */
5142		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5143		if (ret_val)
5144			return ret_val;
5145
5146		/* check for PCS lock */
5147		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5148			return 0;
5149
5150		/* Issue PHY reset */
5151		e1000_phy_hw_reset(hw);
5152		mdelay(5);
5153	}
5154	/* Disable GigE link negotiation */
5155	phy_ctrl = er32(PHY_CTRL);
5156	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5157		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5158	ew32(PHY_CTRL, phy_ctrl);
5159
5160	/* Call gig speed drop workaround on Gig disable before accessing
 
5161	 * any PHY registers
5162	 */
5163	e1000e_gig_downshift_workaround_ich8lan(hw);
5164
5165	/* unable to acquire PCS lock */
5166	return -E1000_ERR_PHY;
5167}
5168
5169/**
5170 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5171 *  @hw: pointer to the HW structure
5172 *  @state: boolean value used to set the current Kumeran workaround state
5173 *
5174 *  If ICH8, set the current Kumeran workaround state (enabled - true
5175 *  /disabled - false).
5176 **/
5177void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5178						  bool state)
5179{
5180	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5181
5182	if (hw->mac.type != e1000_ich8lan) {
5183		e_dbg("Workaround applies to ICH8 only.\n");
5184		return;
5185	}
5186
5187	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5188}
5189
5190/**
5191 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5192 *  @hw: pointer to the HW structure
5193 *
5194 *  Workaround for 82566 power-down on D3 entry:
5195 *    1) disable gigabit link
5196 *    2) write VR power-down enable
5197 *    3) read it back
5198 *  Continue if successful, else issue LCD reset and repeat
5199 **/
5200void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5201{
5202	u32 reg;
5203	u16 data;
5204	u8 retry = 0;
5205
5206	if (hw->phy.type != e1000_phy_igp_3)
5207		return;
5208
5209	/* Try the workaround twice (if needed) */
5210	do {
5211		/* Disable link */
5212		reg = er32(PHY_CTRL);
5213		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5214			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5215		ew32(PHY_CTRL, reg);
5216
5217		/* Call gig speed drop workaround on Gig disable before
 
5218		 * accessing any PHY registers
5219		 */
5220		if (hw->mac.type == e1000_ich8lan)
5221			e1000e_gig_downshift_workaround_ich8lan(hw);
5222
5223		/* Write VR power-down enable */
5224		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5225		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5226		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5227
5228		/* Read it back and test */
5229		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5230		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5231		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5232			break;
5233
5234		/* Issue PHY reset and repeat at most one more time */
5235		reg = er32(CTRL);
5236		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5237		retry++;
5238	} while (retry);
5239}
5240
5241/**
5242 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5243 *  @hw: pointer to the HW structure
5244 *
5245 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5246 *  LPLU, Gig disable, MDIC PHY reset):
5247 *    1) Set Kumeran Near-end loopback
5248 *    2) Clear Kumeran Near-end loopback
5249 *  Should only be called for ICH8[m] devices with any 1G Phy.
5250 **/
5251void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5252{
5253	s32 ret_val;
5254	u16 reg_data;
5255
5256	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5257		return;
5258
5259	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5260				       &reg_data);
5261	if (ret_val)
5262		return;
5263	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5264	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5265					reg_data);
5266	if (ret_val)
5267		return;
5268	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5269	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
 
5270}
5271
5272/**
5273 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5274 *  @hw: pointer to the HW structure
5275 *
5276 *  During S0 to Sx transition, it is possible the link remains at gig
5277 *  instead of negotiating to a lower speed.  Before going to Sx, set
5278 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5279 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5280 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5281 *  needs to be written.
5282 *  Parts that support (and are linked to a partner which support) EEE in
5283 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5284 *  than 10Mbps w/o EEE.
5285 **/
5286void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5287{
5288	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5289	u32 phy_ctrl;
5290	s32 ret_val;
5291
5292	phy_ctrl = er32(PHY_CTRL);
5293	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5294
5295	if (hw->phy.type == e1000_phy_i217) {
5296		u16 phy_reg, device_id = hw->adapter->pdev->device;
5297
5298		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5299		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5300		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5301		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5302		    (hw->mac.type == e1000_pch_spt)) {
5303			u32 fextnvm6 = er32(FEXTNVM6);
5304
5305			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5306		}
5307
5308		ret_val = hw->phy.ops.acquire(hw);
5309		if (ret_val)
5310			goto out;
5311
5312		if (!dev_spec->eee_disable) {
5313			u16 eee_advert;
5314
5315			ret_val =
5316			    e1000_read_emi_reg_locked(hw,
5317						      I217_EEE_ADVERTISEMENT,
5318						      &eee_advert);
5319			if (ret_val)
5320				goto release;
 
5321
5322			/* Disable LPLU if both link partners support 100BaseT
 
5323			 * EEE and 100Full is advertised on both ends of the
5324			 * link, and enable Auto Enable LPI since there will
5325			 * be no driver to enable LPI while in Sx.
5326			 */
5327			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5328			    (dev_spec->eee_lp_ability &
5329			     I82579_EEE_100_SUPPORTED) &&
5330			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5331				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5332					      E1000_PHY_CTRL_NOND0A_LPLU);
5333
5334				/* Set Auto Enable LPI after link up */
5335				e1e_rphy_locked(hw,
5336						I217_LPI_GPIO_CTRL, &phy_reg);
5337				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5338				e1e_wphy_locked(hw,
5339						I217_LPI_GPIO_CTRL, phy_reg);
5340			}
5341		}
5342
5343		/* For i217 Intel Rapid Start Technology support,
 
5344		 * when the system is going into Sx and no manageability engine
5345		 * is present, the driver must configure proxy to reset only on
5346		 * power good.  LPI (Low Power Idle) state must also reset only
5347		 * on power good, as well as the MTA (Multicast table array).
5348		 * The SMBus release must also be disabled on LCD reset.
5349		 */
5350		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 
5351			/* Enable proxy to reset only on power good. */
5352			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5353			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5354			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5355
5356			/* Set bit enable LPI (EEE) to reset only on
 
5357			 * power good.
5358			 */
5359			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5360			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5361			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5362
5363			/* Disable the SMB release on LCD reset. */
5364			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5365			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5366			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5367		}
5368
5369		/* Enable MTA to reset for Intel Rapid Start Technology
 
5370		 * Support
5371		 */
5372		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5373		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5374		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5375
5376release:
5377		hw->phy.ops.release(hw);
5378	}
5379out:
5380	ew32(PHY_CTRL, phy_ctrl);
5381
5382	if (hw->mac.type == e1000_ich8lan)
5383		e1000e_gig_downshift_workaround_ich8lan(hw);
5384
5385	if (hw->mac.type >= e1000_pchlan) {
5386		e1000_oem_bits_config_ich8lan(hw, false);
5387
5388		/* Reset PHY to activate OEM bits on 82577/8 */
5389		if (hw->mac.type == e1000_pchlan)
5390			e1000e_phy_hw_reset_generic(hw);
5391
5392		ret_val = hw->phy.ops.acquire(hw);
5393		if (ret_val)
5394			return;
5395		e1000_write_smbus_addr(hw);
5396		hw->phy.ops.release(hw);
5397	}
5398}
5399
5400/**
5401 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5402 *  @hw: pointer to the HW structure
5403 *
5404 *  During Sx to S0 transitions on non-managed devices or managed devices
5405 *  on which PHY resets are not blocked, if the PHY registers cannot be
5406 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5407 *  the PHY.
5408 *  On i217, setup Intel Rapid Start Technology.
5409 **/
5410void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5411{
5412	s32 ret_val;
5413
5414	if (hw->mac.type < e1000_pch2lan)
5415		return;
5416
5417	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5418	if (ret_val) {
5419		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5420		return;
5421	}
5422
5423	/* For i217 Intel Rapid Start Technology support when the system
 
5424	 * is transitioning from Sx and no manageability engine is present
5425	 * configure SMBus to restore on reset, disable proxy, and enable
5426	 * the reset on MTA (Multicast table array).
5427	 */
5428	if (hw->phy.type == e1000_phy_i217) {
5429		u16 phy_reg;
5430
5431		ret_val = hw->phy.ops.acquire(hw);
5432		if (ret_val) {
5433			e_dbg("Failed to setup iRST\n");
5434			return;
5435		}
5436
5437		/* Clear Auto Enable LPI after link up */
5438		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5439		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5440		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5441
5442		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5443			/* Restore clear on SMB if no manageability engine
 
5444			 * is present
5445			 */
5446			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5447			if (ret_val)
5448				goto release;
5449			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5450			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5451
5452			/* Disable Proxy */
5453			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5454		}
5455		/* Enable reset on MTA */
5456		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5457		if (ret_val)
5458			goto release;
5459		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5460		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5461release:
5462		if (ret_val)
5463			e_dbg("Error %d in resume workarounds\n", ret_val);
5464		hw->phy.ops.release(hw);
5465	}
5466}
5467
5468/**
5469 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5470 *  @hw: pointer to the HW structure
5471 *
5472 *  Return the LED back to the default configuration.
5473 **/
5474static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5475{
5476	if (hw->phy.type == e1000_phy_ife)
5477		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5478
5479	ew32(LEDCTL, hw->mac.ledctl_default);
5480	return 0;
5481}
5482
5483/**
5484 *  e1000_led_on_ich8lan - Turn LEDs on
5485 *  @hw: pointer to the HW structure
5486 *
5487 *  Turn on the LEDs.
5488 **/
5489static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5490{
5491	if (hw->phy.type == e1000_phy_ife)
5492		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5493				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5494
5495	ew32(LEDCTL, hw->mac.ledctl_mode2);
5496	return 0;
5497}
5498
5499/**
5500 *  e1000_led_off_ich8lan - Turn LEDs off
5501 *  @hw: pointer to the HW structure
5502 *
5503 *  Turn off the LEDs.
5504 **/
5505static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5506{
5507	if (hw->phy.type == e1000_phy_ife)
5508		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5509				(IFE_PSCL_PROBE_MODE |
5510				 IFE_PSCL_PROBE_LEDS_OFF));
5511
5512	ew32(LEDCTL, hw->mac.ledctl_mode1);
5513	return 0;
5514}
5515
5516/**
5517 *  e1000_setup_led_pchlan - Configures SW controllable LED
5518 *  @hw: pointer to the HW structure
5519 *
5520 *  This prepares the SW controllable LED for use.
5521 **/
5522static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5523{
5524	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5525}
5526
5527/**
5528 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5529 *  @hw: pointer to the HW structure
5530 *
5531 *  Return the LED back to the default configuration.
5532 **/
5533static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5534{
5535	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5536}
5537
5538/**
5539 *  e1000_led_on_pchlan - Turn LEDs on
5540 *  @hw: pointer to the HW structure
5541 *
5542 *  Turn on the LEDs.
5543 **/
5544static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5545{
5546	u16 data = (u16)hw->mac.ledctl_mode2;
5547	u32 i, led;
5548
5549	/* If no link, then turn LED on by setting the invert bit
 
5550	 * for each LED that's mode is "link_up" in ledctl_mode2.
5551	 */
5552	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5553		for (i = 0; i < 3; i++) {
5554			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5555			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5556			    E1000_LEDCTL_MODE_LINK_UP)
5557				continue;
5558			if (led & E1000_PHY_LED0_IVRT)
5559				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5560			else
5561				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5562		}
5563	}
5564
5565	return e1e_wphy(hw, HV_LED_CONFIG, data);
5566}
5567
5568/**
5569 *  e1000_led_off_pchlan - Turn LEDs off
5570 *  @hw: pointer to the HW structure
5571 *
5572 *  Turn off the LEDs.
5573 **/
5574static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5575{
5576	u16 data = (u16)hw->mac.ledctl_mode1;
5577	u32 i, led;
5578
5579	/* If no link, then turn LED off by clearing the invert bit
 
5580	 * for each LED that's mode is "link_up" in ledctl_mode1.
5581	 */
5582	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5583		for (i = 0; i < 3; i++) {
5584			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5585			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5586			    E1000_LEDCTL_MODE_LINK_UP)
5587				continue;
5588			if (led & E1000_PHY_LED0_IVRT)
5589				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5590			else
5591				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5592		}
5593	}
5594
5595	return e1e_wphy(hw, HV_LED_CONFIG, data);
5596}
5597
5598/**
5599 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5600 *  @hw: pointer to the HW structure
5601 *
5602 *  Read appropriate register for the config done bit for completion status
5603 *  and configure the PHY through s/w for EEPROM-less parts.
5604 *
5605 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5606 *  config done bit, so only an error is logged and continues.  If we were
5607 *  to return with error, EEPROM-less silicon would not be able to be reset
5608 *  or change link.
5609 **/
5610static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5611{
5612	s32 ret_val = 0;
5613	u32 bank = 0;
5614	u32 status;
5615
5616	e1000e_get_cfg_done_generic(hw);
5617
5618	/* Wait for indication from h/w that it has completed basic config */
5619	if (hw->mac.type >= e1000_ich10lan) {
5620		e1000_lan_init_done_ich8lan(hw);
5621	} else {
5622		ret_val = e1000e_get_auto_rd_done(hw);
5623		if (ret_val) {
5624			/* When auto config read does not complete, do not
 
5625			 * return with an error. This can happen in situations
5626			 * where there is no eeprom and prevents getting link.
5627			 */
5628			e_dbg("Auto Read Done did not complete\n");
5629			ret_val = 0;
5630		}
5631	}
5632
5633	/* Clear PHY Reset Asserted bit */
5634	status = er32(STATUS);
5635	if (status & E1000_STATUS_PHYRA)
5636		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5637	else
5638		e_dbg("PHY Reset Asserted not set - needs delay\n");
5639
5640	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5641	if (hw->mac.type <= e1000_ich9lan) {
5642		if (!(er32(EECD) & E1000_EECD_PRES) &&
5643		    (hw->phy.type == e1000_phy_igp_3)) {
5644			e1000e_phy_init_script_igp3(hw);
5645		}
5646	} else {
5647		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5648			/* Maybe we should do a basic PHY config */
5649			e_dbg("EEPROM not present\n");
5650			ret_val = -E1000_ERR_CONFIG;
5651		}
5652	}
5653
5654	return ret_val;
5655}
5656
5657/**
5658 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5659 * @hw: pointer to the HW structure
5660 *
5661 * In the case of a PHY power down to save power, or to turn off link during a
5662 * driver unload, or wake on lan is not enabled, remove the link.
5663 **/
5664static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5665{
5666	/* If the management interface is not enabled, then power down */
5667	if (!(hw->mac.ops.check_mng_mode(hw) ||
5668	      hw->phy.ops.check_reset_block(hw)))
5669		e1000_power_down_phy_copper(hw);
5670}
5671
5672/**
5673 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5674 *  @hw: pointer to the HW structure
5675 *
5676 *  Clears hardware counters specific to the silicon family and calls
5677 *  clear_hw_cntrs_generic to clear all general purpose counters.
5678 **/
5679static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5680{
5681	u16 phy_data;
5682	s32 ret_val;
5683
5684	e1000e_clear_hw_cntrs_base(hw);
5685
5686	er32(ALGNERRC);
5687	er32(RXERRC);
5688	er32(TNCRS);
5689	er32(CEXTERR);
5690	er32(TSCTC);
5691	er32(TSCTFC);
5692
5693	er32(MGTPRC);
5694	er32(MGTPDC);
5695	er32(MGTPTC);
5696
5697	er32(IAC);
5698	er32(ICRXOC);
5699
5700	/* Clear PHY statistics registers */
5701	if ((hw->phy.type == e1000_phy_82578) ||
5702	    (hw->phy.type == e1000_phy_82579) ||
5703	    (hw->phy.type == e1000_phy_i217) ||
5704	    (hw->phy.type == e1000_phy_82577)) {
5705		ret_val = hw->phy.ops.acquire(hw);
5706		if (ret_val)
5707			return;
5708		ret_val = hw->phy.ops.set_page(hw,
5709					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5710		if (ret_val)
5711			goto release;
5712		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5713		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5714		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5715		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5716		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5717		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5718		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5719		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5720		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5721		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5722		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5723		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5724		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5725		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5726release:
5727		hw->phy.ops.release(hw);
5728	}
5729}
5730
5731static const struct e1000_mac_operations ich8_mac_ops = {
5732	/* check_mng_mode dependent on mac type */
5733	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5734	/* cleanup_led dependent on mac type */
5735	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5736	.get_bus_info		= e1000_get_bus_info_ich8lan,
5737	.set_lan_id		= e1000_set_lan_id_single_port,
5738	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5739	/* led_on dependent on mac type */
5740	/* led_off dependent on mac type */
5741	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5742	.reset_hw		= e1000_reset_hw_ich8lan,
5743	.init_hw		= e1000_init_hw_ich8lan,
5744	.setup_link		= e1000_setup_link_ich8lan,
5745	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5746	/* id_led_init dependent on mac type */
5747	.config_collision_dist	= e1000e_config_collision_dist_generic,
5748	.rar_set		= e1000e_rar_set_generic,
5749	.rar_get_count		= e1000e_rar_get_count_generic,
5750};
5751
5752static const struct e1000_phy_operations ich8_phy_ops = {
5753	.acquire		= e1000_acquire_swflag_ich8lan,
5754	.check_reset_block	= e1000_check_reset_block_ich8lan,
5755	.commit			= NULL,
5756	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5757	.get_cable_length	= e1000e_get_cable_length_igp_2,
5758	.read_reg		= e1000e_read_phy_reg_igp,
5759	.release		= e1000_release_swflag_ich8lan,
5760	.reset			= e1000_phy_hw_reset_ich8lan,
5761	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5762	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5763	.write_reg		= e1000e_write_phy_reg_igp,
5764};
5765
5766static const struct e1000_nvm_operations ich8_nvm_ops = {
5767	.acquire		= e1000_acquire_nvm_ich8lan,
5768	.read			= e1000_read_nvm_ich8lan,
5769	.release		= e1000_release_nvm_ich8lan,
5770	.reload			= e1000e_reload_nvm_generic,
5771	.update			= e1000_update_nvm_checksum_ich8lan,
5772	.valid_led_default	= e1000_valid_led_default_ich8lan,
5773	.validate		= e1000_validate_nvm_checksum_ich8lan,
5774	.write			= e1000_write_nvm_ich8lan,
5775};
5776
5777static const struct e1000_nvm_operations spt_nvm_ops = {
5778	.acquire		= e1000_acquire_nvm_ich8lan,
5779	.release		= e1000_release_nvm_ich8lan,
5780	.read			= e1000_read_nvm_spt,
5781	.update			= e1000_update_nvm_checksum_spt,
5782	.reload			= e1000e_reload_nvm_generic,
5783	.valid_led_default	= e1000_valid_led_default_ich8lan,
5784	.validate		= e1000_validate_nvm_checksum_ich8lan,
5785	.write			= e1000_write_nvm_ich8lan,
5786};
5787
5788const struct e1000_info e1000_ich8_info = {
5789	.mac			= e1000_ich8lan,
5790	.flags			= FLAG_HAS_WOL
5791				  | FLAG_IS_ICH
5792				  | FLAG_HAS_CTRLEXT_ON_LOAD
5793				  | FLAG_HAS_AMT
5794				  | FLAG_HAS_FLASH
5795				  | FLAG_APME_IN_WUC,
5796	.pba			= 8,
5797	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5798	.get_variants		= e1000_get_variants_ich8lan,
5799	.mac_ops		= &ich8_mac_ops,
5800	.phy_ops		= &ich8_phy_ops,
5801	.nvm_ops		= &ich8_nvm_ops,
5802};
5803
5804const struct e1000_info e1000_ich9_info = {
5805	.mac			= e1000_ich9lan,
5806	.flags			= FLAG_HAS_JUMBO_FRAMES
5807				  | FLAG_IS_ICH
5808				  | FLAG_HAS_WOL
5809				  | FLAG_HAS_CTRLEXT_ON_LOAD
5810				  | FLAG_HAS_AMT
5811				  | FLAG_HAS_FLASH
5812				  | FLAG_APME_IN_WUC,
5813	.pba			= 18,
5814	.max_hw_frame_size	= DEFAULT_JUMBO,
5815	.get_variants		= e1000_get_variants_ich8lan,
5816	.mac_ops		= &ich8_mac_ops,
5817	.phy_ops		= &ich8_phy_ops,
5818	.nvm_ops		= &ich8_nvm_ops,
5819};
5820
5821const struct e1000_info e1000_ich10_info = {
5822	.mac			= e1000_ich10lan,
5823	.flags			= FLAG_HAS_JUMBO_FRAMES
5824				  | FLAG_IS_ICH
5825				  | FLAG_HAS_WOL
5826				  | FLAG_HAS_CTRLEXT_ON_LOAD
5827				  | FLAG_HAS_AMT
5828				  | FLAG_HAS_FLASH
5829				  | FLAG_APME_IN_WUC,
5830	.pba			= 18,
5831	.max_hw_frame_size	= DEFAULT_JUMBO,
5832	.get_variants		= e1000_get_variants_ich8lan,
5833	.mac_ops		= &ich8_mac_ops,
5834	.phy_ops		= &ich8_phy_ops,
5835	.nvm_ops		= &ich8_nvm_ops,
5836};
5837
5838const struct e1000_info e1000_pch_info = {
5839	.mac			= e1000_pchlan,
5840	.flags			= FLAG_IS_ICH
5841				  | FLAG_HAS_WOL
5842				  | FLAG_HAS_CTRLEXT_ON_LOAD
5843				  | FLAG_HAS_AMT
5844				  | FLAG_HAS_FLASH
5845				  | FLAG_HAS_JUMBO_FRAMES
5846				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5847				  | FLAG_APME_IN_WUC,
5848	.flags2			= FLAG2_HAS_PHY_STATS,
5849	.pba			= 26,
5850	.max_hw_frame_size	= 4096,
5851	.get_variants		= e1000_get_variants_ich8lan,
5852	.mac_ops		= &ich8_mac_ops,
5853	.phy_ops		= &ich8_phy_ops,
5854	.nvm_ops		= &ich8_nvm_ops,
5855};
5856
5857const struct e1000_info e1000_pch2_info = {
5858	.mac			= e1000_pch2lan,
5859	.flags			= FLAG_IS_ICH
5860				  | FLAG_HAS_WOL
5861				  | FLAG_HAS_HW_TIMESTAMP
5862				  | FLAG_HAS_CTRLEXT_ON_LOAD
5863				  | FLAG_HAS_AMT
5864				  | FLAG_HAS_FLASH
5865				  | FLAG_HAS_JUMBO_FRAMES
5866				  | FLAG_APME_IN_WUC,
5867	.flags2			= FLAG2_HAS_PHY_STATS
5868				  | FLAG2_HAS_EEE,
5869	.pba			= 26,
5870	.max_hw_frame_size	= 9022,
5871	.get_variants		= e1000_get_variants_ich8lan,
5872	.mac_ops		= &ich8_mac_ops,
5873	.phy_ops		= &ich8_phy_ops,
5874	.nvm_ops		= &ich8_nvm_ops,
5875};
5876
5877const struct e1000_info e1000_pch_lpt_info = {
5878	.mac			= e1000_pch_lpt,
5879	.flags			= FLAG_IS_ICH
5880				  | FLAG_HAS_WOL
5881				  | FLAG_HAS_HW_TIMESTAMP
5882				  | FLAG_HAS_CTRLEXT_ON_LOAD
5883				  | FLAG_HAS_AMT
5884				  | FLAG_HAS_FLASH
5885				  | FLAG_HAS_JUMBO_FRAMES
5886				  | FLAG_APME_IN_WUC,
5887	.flags2			= FLAG2_HAS_PHY_STATS
5888				  | FLAG2_HAS_EEE
5889				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5890	.pba			= 26,
5891	.max_hw_frame_size	= 9022,
5892	.get_variants		= e1000_get_variants_ich8lan,
5893	.mac_ops		= &ich8_mac_ops,
5894	.phy_ops		= &ich8_phy_ops,
5895	.nvm_ops		= &ich8_nvm_ops,
5896};
5897
5898const struct e1000_info e1000_pch_spt_info = {
5899	.mac			= e1000_pch_spt,
5900	.flags			= FLAG_IS_ICH
5901				  | FLAG_HAS_WOL
5902				  | FLAG_HAS_HW_TIMESTAMP
5903				  | FLAG_HAS_CTRLEXT_ON_LOAD
5904				  | FLAG_HAS_AMT
5905				  | FLAG_HAS_FLASH
5906				  | FLAG_HAS_JUMBO_FRAMES
5907				  | FLAG_APME_IN_WUC,
5908	.flags2			= FLAG2_HAS_PHY_STATS
5909				  | FLAG2_HAS_EEE,
5910	.pba			= 26,
5911	.max_hw_frame_size	= 9022,
5912	.get_variants		= e1000_get_variants_ich8lan,
5913	.mac_ops		= &ich8_mac_ops,
5914	.phy_ops		= &ich8_phy_ops,
5915	.nvm_ops		= &spt_nvm_ops,
5916};