Loading...
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9/*
10 * Handle hardware traps and faults.
11 */
12#include <linux/interrupt.h>
13#include <linux/kallsyms.h>
14#include <linux/spinlock.h>
15#include <linux/kprobes.h>
16#include <linux/uaccess.h>
17#include <linux/kdebug.h>
18#include <linux/kgdb.h>
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/ptrace.h>
22#include <linux/string.h>
23#include <linux/delay.h>
24#include <linux/errno.h>
25#include <linux/kexec.h>
26#include <linux/sched.h>
27#include <linux/timer.h>
28#include <linux/init.h>
29#include <linux/bug.h>
30#include <linux/nmi.h>
31#include <linux/mm.h>
32#include <linux/smp.h>
33#include <linux/io.h>
34
35#ifdef CONFIG_EISA
36#include <linux/ioport.h>
37#include <linux/eisa.h>
38#endif
39
40#if defined(CONFIG_EDAC)
41#include <linux/edac.h>
42#endif
43
44#include <asm/kmemcheck.h>
45#include <asm/stacktrace.h>
46#include <asm/processor.h>
47#include <asm/debugreg.h>
48#include <linux/atomic.h>
49#include <asm/ftrace.h>
50#include <asm/traps.h>
51#include <asm/desc.h>
52#include <asm/i387.h>
53#include <asm/fpu-internal.h>
54#include <asm/mce.h>
55
56#include <asm/mach_traps.h>
57
58#ifdef CONFIG_X86_64
59#include <asm/x86_init.h>
60#include <asm/pgalloc.h>
61#include <asm/proto.h>
62#else
63#include <asm/processor-flags.h>
64#include <asm/setup.h>
65
66asmlinkage int system_call(void);
67
68/* Do we ignore FPU interrupts ? */
69char ignore_fpu_irq;
70
71/*
72 * The IDT has to be page-aligned to simplify the Pentium
73 * F0 0F bug workaround.
74 */
75gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, };
76#endif
77
78DECLARE_BITMAP(used_vectors, NR_VECTORS);
79EXPORT_SYMBOL_GPL(used_vectors);
80
81static inline void conditional_sti(struct pt_regs *regs)
82{
83 if (regs->flags & X86_EFLAGS_IF)
84 local_irq_enable();
85}
86
87static inline void preempt_conditional_sti(struct pt_regs *regs)
88{
89 inc_preempt_count();
90 if (regs->flags & X86_EFLAGS_IF)
91 local_irq_enable();
92}
93
94static inline void conditional_cli(struct pt_regs *regs)
95{
96 if (regs->flags & X86_EFLAGS_IF)
97 local_irq_disable();
98}
99
100static inline void preempt_conditional_cli(struct pt_regs *regs)
101{
102 if (regs->flags & X86_EFLAGS_IF)
103 local_irq_disable();
104 dec_preempt_count();
105}
106
107static void __kprobes
108do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
109 long error_code, siginfo_t *info)
110{
111 struct task_struct *tsk = current;
112
113#ifdef CONFIG_X86_32
114 if (regs->flags & X86_VM_MASK) {
115 /*
116 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
117 * On nmi (interrupt 2), do_trap should not be called.
118 */
119 if (trapnr < X86_TRAP_UD)
120 goto vm86_trap;
121 goto trap_signal;
122 }
123#endif
124
125 if (!user_mode(regs))
126 goto kernel_trap;
127
128#ifdef CONFIG_X86_32
129trap_signal:
130#endif
131 /*
132 * We want error_code and trap_nr set for userspace faults and
133 * kernelspace faults which result in die(), but not
134 * kernelspace faults which are fixed up. die() gives the
135 * process no chance to handle the signal and notice the
136 * kernel fault information, so that won't result in polluting
137 * the information about previously queued, but not yet
138 * delivered, faults. See also do_general_protection below.
139 */
140 tsk->thread.error_code = error_code;
141 tsk->thread.trap_nr = trapnr;
142
143#ifdef CONFIG_X86_64
144 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
145 printk_ratelimit()) {
146 printk(KERN_INFO
147 "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
148 tsk->comm, tsk->pid, str,
149 regs->ip, regs->sp, error_code);
150 print_vma_addr(" in ", regs->ip);
151 printk("\n");
152 }
153#endif
154
155 if (info)
156 force_sig_info(signr, info, tsk);
157 else
158 force_sig(signr, tsk);
159 return;
160
161kernel_trap:
162 if (!fixup_exception(regs)) {
163 tsk->thread.error_code = error_code;
164 tsk->thread.trap_nr = trapnr;
165 die(str, regs, error_code);
166 }
167 return;
168
169#ifdef CONFIG_X86_32
170vm86_trap:
171 if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
172 error_code, trapnr))
173 goto trap_signal;
174 return;
175#endif
176}
177
178#define DO_ERROR(trapnr, signr, str, name) \
179dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
180{ \
181 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
182 == NOTIFY_STOP) \
183 return; \
184 conditional_sti(regs); \
185 do_trap(trapnr, signr, str, regs, error_code, NULL); \
186}
187
188#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
189dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
190{ \
191 siginfo_t info; \
192 info.si_signo = signr; \
193 info.si_errno = 0; \
194 info.si_code = sicode; \
195 info.si_addr = (void __user *)siaddr; \
196 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
197 == NOTIFY_STOP) \
198 return; \
199 conditional_sti(regs); \
200 do_trap(trapnr, signr, str, regs, error_code, &info); \
201}
202
203DO_ERROR_INFO(X86_TRAP_DE, SIGFPE, "divide error", divide_error, FPE_INTDIV,
204 regs->ip)
205DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
206DO_ERROR(X86_TRAP_BR, SIGSEGV, "bounds", bounds)
207DO_ERROR_INFO(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN,
208 regs->ip)
209DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",
210 coprocessor_segment_overrun)
211DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
212DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
213#ifdef CONFIG_X86_32
214DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
215#endif
216DO_ERROR_INFO(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check,
217 BUS_ADRALN, 0)
218
219#ifdef CONFIG_X86_64
220/* Runs on IST stack */
221dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
222{
223 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
224 X86_TRAP_SS, SIGBUS) == NOTIFY_STOP)
225 return;
226 preempt_conditional_sti(regs);
227 do_trap(X86_TRAP_SS, SIGBUS, "stack segment", regs, error_code, NULL);
228 preempt_conditional_cli(regs);
229}
230
231dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
232{
233 static const char str[] = "double fault";
234 struct task_struct *tsk = current;
235
236 /* Return not checked because double check cannot be ignored */
237 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
238
239 tsk->thread.error_code = error_code;
240 tsk->thread.trap_nr = X86_TRAP_DF;
241
242 /*
243 * This is always a kernel trap and never fixable (and thus must
244 * never return).
245 */
246 for (;;)
247 die(str, regs, error_code);
248}
249#endif
250
251dotraplinkage void __kprobes
252do_general_protection(struct pt_regs *regs, long error_code)
253{
254 struct task_struct *tsk;
255
256 conditional_sti(regs);
257
258#ifdef CONFIG_X86_32
259 if (regs->flags & X86_VM_MASK)
260 goto gp_in_vm86;
261#endif
262
263 tsk = current;
264 if (!user_mode(regs))
265 goto gp_in_kernel;
266
267 tsk->thread.error_code = error_code;
268 tsk->thread.trap_nr = X86_TRAP_GP;
269
270 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
271 printk_ratelimit()) {
272 printk(KERN_INFO
273 "%s[%d] general protection ip:%lx sp:%lx error:%lx",
274 tsk->comm, task_pid_nr(tsk),
275 regs->ip, regs->sp, error_code);
276 print_vma_addr(" in ", regs->ip);
277 printk("\n");
278 }
279
280 force_sig(SIGSEGV, tsk);
281 return;
282
283#ifdef CONFIG_X86_32
284gp_in_vm86:
285 local_irq_enable();
286 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
287 return;
288#endif
289
290gp_in_kernel:
291 if (fixup_exception(regs))
292 return;
293
294 tsk->thread.error_code = error_code;
295 tsk->thread.trap_nr = X86_TRAP_GP;
296 if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
297 X86_TRAP_GP, SIGSEGV) == NOTIFY_STOP)
298 return;
299 die("general protection fault", regs, error_code);
300}
301
302/* May run on IST stack. */
303dotraplinkage void __kprobes notrace do_int3(struct pt_regs *regs, long error_code)
304{
305#ifdef CONFIG_DYNAMIC_FTRACE
306 /*
307 * ftrace must be first, everything else may cause a recursive crash.
308 * See note by declaration of modifying_ftrace_code in ftrace.c
309 */
310 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
311 ftrace_int3_handler(regs))
312 return;
313#endif
314#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
315 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
316 SIGTRAP) == NOTIFY_STOP)
317 return;
318#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
319
320 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
321 SIGTRAP) == NOTIFY_STOP)
322 return;
323
324 /*
325 * Let others (NMI) know that the debug stack is in use
326 * as we may switch to the interrupt stack.
327 */
328 debug_stack_usage_inc();
329 preempt_conditional_sti(regs);
330 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
331 preempt_conditional_cli(regs);
332 debug_stack_usage_dec();
333}
334
335#ifdef CONFIG_X86_64
336/*
337 * Help handler running on IST stack to switch back to user stack
338 * for scheduling or signal handling. The actual stack switch is done in
339 * entry.S
340 */
341asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
342{
343 struct pt_regs *regs = eregs;
344 /* Did already sync */
345 if (eregs == (struct pt_regs *)eregs->sp)
346 ;
347 /* Exception from user space */
348 else if (user_mode(eregs))
349 regs = task_pt_regs(current);
350 /*
351 * Exception from kernel and interrupts are enabled. Move to
352 * kernel process stack.
353 */
354 else if (eregs->flags & X86_EFLAGS_IF)
355 regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
356 if (eregs != regs)
357 *regs = *eregs;
358 return regs;
359}
360#endif
361
362/*
363 * Our handling of the processor debug registers is non-trivial.
364 * We do not clear them on entry and exit from the kernel. Therefore
365 * it is possible to get a watchpoint trap here from inside the kernel.
366 * However, the code in ./ptrace.c has ensured that the user can
367 * only set watchpoints on userspace addresses. Therefore the in-kernel
368 * watchpoint trap can only occur in code which is reading/writing
369 * from user space. Such code must not hold kernel locks (since it
370 * can equally take a page fault), therefore it is safe to call
371 * force_sig_info even though that claims and releases locks.
372 *
373 * Code in ./signal.c ensures that the debug control register
374 * is restored before we deliver any signal, and therefore that
375 * user code runs with the correct debug control register even though
376 * we clear it here.
377 *
378 * Being careful here means that we don't have to be as careful in a
379 * lot of more complicated places (task switching can be a bit lazy
380 * about restoring all the debug state, and ptrace doesn't have to
381 * find every occurrence of the TF bit that could be saved away even
382 * by user code)
383 *
384 * May run on IST stack.
385 */
386dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
387{
388 struct task_struct *tsk = current;
389 int user_icebp = 0;
390 unsigned long dr6;
391 int si_code;
392
393 get_debugreg(dr6, 6);
394
395 /* Filter out all the reserved bits which are preset to 1 */
396 dr6 &= ~DR6_RESERVED;
397
398 /*
399 * If dr6 has no reason to give us about the origin of this trap,
400 * then it's very likely the result of an icebp/int01 trap.
401 * User wants a sigtrap for that.
402 */
403 if (!dr6 && user_mode(regs))
404 user_icebp = 1;
405
406 /* Catch kmemcheck conditions first of all! */
407 if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
408 return;
409
410 /* DR6 may or may not be cleared by the CPU */
411 set_debugreg(0, 6);
412
413 /*
414 * The processor cleared BTF, so don't mark that we need it set.
415 */
416 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
417
418 /* Store the virtualized DR6 value */
419 tsk->thread.debugreg6 = dr6;
420
421 if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
422 SIGTRAP) == NOTIFY_STOP)
423 return;
424
425 /*
426 * Let others (NMI) know that the debug stack is in use
427 * as we may switch to the interrupt stack.
428 */
429 debug_stack_usage_inc();
430
431 /* It's safe to allow irq's after DR6 has been saved */
432 preempt_conditional_sti(regs);
433
434 if (regs->flags & X86_VM_MASK) {
435 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
436 X86_TRAP_DB);
437 preempt_conditional_cli(regs);
438 debug_stack_usage_dec();
439 return;
440 }
441
442 /*
443 * Single-stepping through system calls: ignore any exceptions in
444 * kernel space, but re-enable TF when returning to user mode.
445 *
446 * We already checked v86 mode above, so we can check for kernel mode
447 * by just checking the CPL of CS.
448 */
449 if ((dr6 & DR_STEP) && !user_mode(regs)) {
450 tsk->thread.debugreg6 &= ~DR_STEP;
451 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
452 regs->flags &= ~X86_EFLAGS_TF;
453 }
454 si_code = get_si_code(tsk->thread.debugreg6);
455 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
456 send_sigtrap(tsk, regs, error_code, si_code);
457 preempt_conditional_cli(regs);
458 debug_stack_usage_dec();
459
460 return;
461}
462
463/*
464 * Note that we play around with the 'TS' bit in an attempt to get
465 * the correct behaviour even in the presence of the asynchronous
466 * IRQ13 behaviour
467 */
468void math_error(struct pt_regs *regs, int error_code, int trapnr)
469{
470 struct task_struct *task = current;
471 siginfo_t info;
472 unsigned short err;
473 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
474 "simd exception";
475
476 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
477 return;
478 conditional_sti(regs);
479
480 if (!user_mode_vm(regs))
481 {
482 if (!fixup_exception(regs)) {
483 task->thread.error_code = error_code;
484 task->thread.trap_nr = trapnr;
485 die(str, regs, error_code);
486 }
487 return;
488 }
489
490 /*
491 * Save the info for the exception handler and clear the error.
492 */
493 save_init_fpu(task);
494 task->thread.trap_nr = trapnr;
495 task->thread.error_code = error_code;
496 info.si_signo = SIGFPE;
497 info.si_errno = 0;
498 info.si_addr = (void __user *)regs->ip;
499 if (trapnr == X86_TRAP_MF) {
500 unsigned short cwd, swd;
501 /*
502 * (~cwd & swd) will mask out exceptions that are not set to unmasked
503 * status. 0x3f is the exception bits in these regs, 0x200 is the
504 * C1 reg you need in case of a stack fault, 0x040 is the stack
505 * fault bit. We should only be taking one exception at a time,
506 * so if this combination doesn't produce any single exception,
507 * then we have a bad program that isn't synchronizing its FPU usage
508 * and it will suffer the consequences since we won't be able to
509 * fully reproduce the context of the exception
510 */
511 cwd = get_fpu_cwd(task);
512 swd = get_fpu_swd(task);
513
514 err = swd & ~cwd;
515 } else {
516 /*
517 * The SIMD FPU exceptions are handled a little differently, as there
518 * is only a single status/control register. Thus, to determine which
519 * unmasked exception was caught we must mask the exception mask bits
520 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
521 */
522 unsigned short mxcsr = get_fpu_mxcsr(task);
523 err = ~(mxcsr >> 7) & mxcsr;
524 }
525
526 if (err & 0x001) { /* Invalid op */
527 /*
528 * swd & 0x240 == 0x040: Stack Underflow
529 * swd & 0x240 == 0x240: Stack Overflow
530 * User must clear the SF bit (0x40) if set
531 */
532 info.si_code = FPE_FLTINV;
533 } else if (err & 0x004) { /* Divide by Zero */
534 info.si_code = FPE_FLTDIV;
535 } else if (err & 0x008) { /* Overflow */
536 info.si_code = FPE_FLTOVF;
537 } else if (err & 0x012) { /* Denormal, Underflow */
538 info.si_code = FPE_FLTUND;
539 } else if (err & 0x020) { /* Precision */
540 info.si_code = FPE_FLTRES;
541 } else {
542 /*
543 * If we're using IRQ 13, or supposedly even some trap
544 * X86_TRAP_MF implementations, it's possible
545 * we get a spurious trap, which is not an error.
546 */
547 return;
548 }
549 force_sig_info(SIGFPE, &info, task);
550}
551
552dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
553{
554#ifdef CONFIG_X86_32
555 ignore_fpu_irq = 1;
556#endif
557
558 math_error(regs, error_code, X86_TRAP_MF);
559}
560
561dotraplinkage void
562do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
563{
564 math_error(regs, error_code, X86_TRAP_XF);
565}
566
567dotraplinkage void
568do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
569{
570 conditional_sti(regs);
571#if 0
572 /* No need to warn about this any longer. */
573 printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
574#endif
575}
576
577asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
578{
579}
580
581asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
582{
583}
584
585/*
586 * 'math_state_restore()' saves the current math information in the
587 * old math state array, and gets the new ones from the current task
588 *
589 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
590 * Don't touch unless you *really* know how it works.
591 *
592 * Must be called with kernel preemption disabled (eg with local
593 * local interrupts as in the case of do_device_not_available).
594 */
595void math_state_restore(void)
596{
597 struct task_struct *tsk = current;
598
599 if (!tsk_used_math(tsk)) {
600 local_irq_enable();
601 /*
602 * does a slab alloc which can sleep
603 */
604 if (init_fpu(tsk)) {
605 /*
606 * ran out of memory!
607 */
608 do_group_exit(SIGKILL);
609 return;
610 }
611 local_irq_disable();
612 }
613
614 __thread_fpu_begin(tsk);
615 /*
616 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
617 */
618 if (unlikely(restore_fpu_checking(tsk))) {
619 __thread_fpu_end(tsk);
620 force_sig(SIGSEGV, tsk);
621 return;
622 }
623
624 tsk->fpu_counter++;
625}
626EXPORT_SYMBOL_GPL(math_state_restore);
627
628dotraplinkage void __kprobes
629do_device_not_available(struct pt_regs *regs, long error_code)
630{
631#ifdef CONFIG_MATH_EMULATION
632 if (read_cr0() & X86_CR0_EM) {
633 struct math_emu_info info = { };
634
635 conditional_sti(regs);
636
637 info.regs = regs;
638 math_emulate(&info);
639 return;
640 }
641#endif
642 math_state_restore(); /* interrupts still off */
643#ifdef CONFIG_X86_32
644 conditional_sti(regs);
645#endif
646}
647
648#ifdef CONFIG_X86_32
649dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
650{
651 siginfo_t info;
652 local_irq_enable();
653
654 info.si_signo = SIGILL;
655 info.si_errno = 0;
656 info.si_code = ILL_BADSTK;
657 info.si_addr = NULL;
658 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
659 X86_TRAP_IRET, SIGILL) == NOTIFY_STOP)
660 return;
661 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
662 &info);
663}
664#endif
665
666/* Set of traps needed for early debugging. */
667void __init early_trap_init(void)
668{
669 set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
670 /* int3 can be called from all */
671 set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
672 set_intr_gate(X86_TRAP_PF, &page_fault);
673 load_idt(&idt_descr);
674}
675
676void __init trap_init(void)
677{
678 int i;
679
680#ifdef CONFIG_EISA
681 void __iomem *p = early_ioremap(0x0FFFD9, 4);
682
683 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
684 EISA_bus = 1;
685 early_iounmap(p, 4);
686#endif
687
688 set_intr_gate(X86_TRAP_DE, ÷_error);
689 set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
690 /* int4 can be called from all */
691 set_system_intr_gate(X86_TRAP_OF, &overflow);
692 set_intr_gate(X86_TRAP_BR, &bounds);
693 set_intr_gate(X86_TRAP_UD, &invalid_op);
694 set_intr_gate(X86_TRAP_NM, &device_not_available);
695#ifdef CONFIG_X86_32
696 set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
697#else
698 set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
699#endif
700 set_intr_gate(X86_TRAP_OLD_MF, &coprocessor_segment_overrun);
701 set_intr_gate(X86_TRAP_TS, &invalid_TSS);
702 set_intr_gate(X86_TRAP_NP, &segment_not_present);
703 set_intr_gate_ist(X86_TRAP_SS, &stack_segment, STACKFAULT_STACK);
704 set_intr_gate(X86_TRAP_GP, &general_protection);
705 set_intr_gate(X86_TRAP_SPURIOUS, &spurious_interrupt_bug);
706 set_intr_gate(X86_TRAP_MF, &coprocessor_error);
707 set_intr_gate(X86_TRAP_AC, &alignment_check);
708#ifdef CONFIG_X86_MCE
709 set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
710#endif
711 set_intr_gate(X86_TRAP_XF, &simd_coprocessor_error);
712
713 /* Reserve all the builtin and the syscall vector: */
714 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
715 set_bit(i, used_vectors);
716
717#ifdef CONFIG_IA32_EMULATION
718 set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
719 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
720#endif
721
722#ifdef CONFIG_X86_32
723 set_system_trap_gate(SYSCALL_VECTOR, &system_call);
724 set_bit(SYSCALL_VECTOR, used_vectors);
725#endif
726
727 /*
728 * Should be a barrier for any external CPU state:
729 */
730 cpu_init();
731
732 x86_init.irqs.trap_init();
733
734#ifdef CONFIG_X86_64
735 memcpy(&nmi_idt_table, &idt_table, IDT_ENTRIES * 16);
736 set_nmi_gate(X86_TRAP_DB, &debug);
737 set_nmi_gate(X86_TRAP_BP, &int3);
738#endif
739}
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9/*
10 * Handle hardware traps and faults.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/context_tracking.h>
16#include <linux/interrupt.h>
17#include <linux/kallsyms.h>
18#include <linux/kmsan.h>
19#include <linux/spinlock.h>
20#include <linux/kprobes.h>
21#include <linux/uaccess.h>
22#include <linux/kdebug.h>
23#include <linux/kgdb.h>
24#include <linux/kernel.h>
25#include <linux/export.h>
26#include <linux/ptrace.h>
27#include <linux/uprobes.h>
28#include <linux/string.h>
29#include <linux/delay.h>
30#include <linux/errno.h>
31#include <linux/kexec.h>
32#include <linux/sched.h>
33#include <linux/sched/task_stack.h>
34#include <linux/timer.h>
35#include <linux/init.h>
36#include <linux/bug.h>
37#include <linux/nmi.h>
38#include <linux/mm.h>
39#include <linux/smp.h>
40#include <linux/io.h>
41#include <linux/hardirq.h>
42#include <linux/atomic.h>
43#include <linux/ioasid.h>
44
45#include <asm/stacktrace.h>
46#include <asm/processor.h>
47#include <asm/debugreg.h>
48#include <asm/realmode.h>
49#include <asm/text-patching.h>
50#include <asm/ftrace.h>
51#include <asm/traps.h>
52#include <asm/desc.h>
53#include <asm/fpu/api.h>
54#include <asm/cpu.h>
55#include <asm/cpu_entry_area.h>
56#include <asm/mce.h>
57#include <asm/fixmap.h>
58#include <asm/mach_traps.h>
59#include <asm/alternative.h>
60#include <asm/fpu/xstate.h>
61#include <asm/vm86.h>
62#include <asm/umip.h>
63#include <asm/insn.h>
64#include <asm/insn-eval.h>
65#include <asm/vdso.h>
66#include <asm/tdx.h>
67#include <asm/cfi.h>
68
69#ifdef CONFIG_X86_64
70#include <asm/x86_init.h>
71#else
72#include <asm/processor-flags.h>
73#include <asm/setup.h>
74#endif
75
76#include <asm/proto.h>
77
78DECLARE_BITMAP(system_vectors, NR_VECTORS);
79
80static inline void cond_local_irq_enable(struct pt_regs *regs)
81{
82 if (regs->flags & X86_EFLAGS_IF)
83 local_irq_enable();
84}
85
86static inline void cond_local_irq_disable(struct pt_regs *regs)
87{
88 if (regs->flags & X86_EFLAGS_IF)
89 local_irq_disable();
90}
91
92__always_inline int is_valid_bugaddr(unsigned long addr)
93{
94 if (addr < TASK_SIZE_MAX)
95 return 0;
96
97 /*
98 * We got #UD, if the text isn't readable we'd have gotten
99 * a different exception.
100 */
101 return *(unsigned short *)addr == INSN_UD2;
102}
103
104static nokprobe_inline int
105do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
106 struct pt_regs *regs, long error_code)
107{
108 if (v8086_mode(regs)) {
109 /*
110 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
111 * On nmi (interrupt 2), do_trap should not be called.
112 */
113 if (trapnr < X86_TRAP_UD) {
114 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
115 error_code, trapnr))
116 return 0;
117 }
118 } else if (!user_mode(regs)) {
119 if (fixup_exception(regs, trapnr, error_code, 0))
120 return 0;
121
122 tsk->thread.error_code = error_code;
123 tsk->thread.trap_nr = trapnr;
124 die(str, regs, error_code);
125 } else {
126 if (fixup_vdso_exception(regs, trapnr, error_code, 0))
127 return 0;
128 }
129
130 /*
131 * We want error_code and trap_nr set for userspace faults and
132 * kernelspace faults which result in die(), but not
133 * kernelspace faults which are fixed up. die() gives the
134 * process no chance to handle the signal and notice the
135 * kernel fault information, so that won't result in polluting
136 * the information about previously queued, but not yet
137 * delivered, faults. See also exc_general_protection below.
138 */
139 tsk->thread.error_code = error_code;
140 tsk->thread.trap_nr = trapnr;
141
142 return -1;
143}
144
145static void show_signal(struct task_struct *tsk, int signr,
146 const char *type, const char *desc,
147 struct pt_regs *regs, long error_code)
148{
149 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
150 printk_ratelimit()) {
151 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
152 tsk->comm, task_pid_nr(tsk), type, desc,
153 regs->ip, regs->sp, error_code);
154 print_vma_addr(KERN_CONT " in ", regs->ip);
155 pr_cont("\n");
156 }
157}
158
159static void
160do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
161 long error_code, int sicode, void __user *addr)
162{
163 struct task_struct *tsk = current;
164
165 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
166 return;
167
168 show_signal(tsk, signr, "trap ", str, regs, error_code);
169
170 if (!sicode)
171 force_sig(signr);
172 else
173 force_sig_fault(signr, sicode, addr);
174}
175NOKPROBE_SYMBOL(do_trap);
176
177static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
178 unsigned long trapnr, int signr, int sicode, void __user *addr)
179{
180 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
181
182 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
183 NOTIFY_STOP) {
184 cond_local_irq_enable(regs);
185 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
186 cond_local_irq_disable(regs);
187 }
188}
189
190/*
191 * Posix requires to provide the address of the faulting instruction for
192 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
193 *
194 * This address is usually regs->ip, but when an uprobe moved the code out
195 * of line then regs->ip points to the XOL code which would confuse
196 * anything which analyzes the fault address vs. the unmodified binary. If
197 * a trap happened in XOL code then uprobe maps regs->ip back to the
198 * original instruction address.
199 */
200static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
201{
202 return (void __user *)uprobe_get_trap_addr(regs);
203}
204
205DEFINE_IDTENTRY(exc_divide_error)
206{
207 do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
208 FPE_INTDIV, error_get_trap_addr(regs));
209}
210
211DEFINE_IDTENTRY(exc_overflow)
212{
213 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
214}
215
216#ifdef CONFIG_X86_KERNEL_IBT
217
218static __ro_after_init bool ibt_fatal = true;
219
220extern void ibt_selftest_ip(void); /* code label defined in asm below */
221
222enum cp_error_code {
223 CP_EC = (1 << 15) - 1,
224
225 CP_RET = 1,
226 CP_IRET = 2,
227 CP_ENDBR = 3,
228 CP_RSTRORSSP = 4,
229 CP_SETSSBSY = 5,
230
231 CP_ENCL = 1 << 15,
232};
233
234DEFINE_IDTENTRY_ERRORCODE(exc_control_protection)
235{
236 if (!cpu_feature_enabled(X86_FEATURE_IBT)) {
237 pr_err("Unexpected #CP\n");
238 BUG();
239 }
240
241 if (WARN_ON_ONCE(user_mode(regs) || (error_code & CP_EC) != CP_ENDBR))
242 return;
243
244 if (unlikely(regs->ip == (unsigned long)&ibt_selftest_ip)) {
245 regs->ax = 0;
246 return;
247 }
248
249 pr_err("Missing ENDBR: %pS\n", (void *)instruction_pointer(regs));
250 if (!ibt_fatal) {
251 printk(KERN_DEFAULT CUT_HERE);
252 __warn(__FILE__, __LINE__, (void *)regs->ip, TAINT_WARN, regs, NULL);
253 return;
254 }
255 BUG();
256}
257
258/* Must be noinline to ensure uniqueness of ibt_selftest_ip. */
259noinline bool ibt_selftest(void)
260{
261 unsigned long ret;
262
263 asm (" lea ibt_selftest_ip(%%rip), %%rax\n\t"
264 ANNOTATE_RETPOLINE_SAFE
265 " jmp *%%rax\n\t"
266 "ibt_selftest_ip:\n\t"
267 UNWIND_HINT_FUNC
268 ANNOTATE_NOENDBR
269 " nop\n\t"
270
271 : "=a" (ret) : : "memory");
272
273 return !ret;
274}
275
276static int __init ibt_setup(char *str)
277{
278 if (!strcmp(str, "off"))
279 setup_clear_cpu_cap(X86_FEATURE_IBT);
280
281 if (!strcmp(str, "warn"))
282 ibt_fatal = false;
283
284 return 1;
285}
286
287__setup("ibt=", ibt_setup);
288
289#endif /* CONFIG_X86_KERNEL_IBT */
290
291#ifdef CONFIG_X86_F00F_BUG
292void handle_invalid_op(struct pt_regs *regs)
293#else
294static inline void handle_invalid_op(struct pt_regs *regs)
295#endif
296{
297 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
298 ILL_ILLOPN, error_get_trap_addr(regs));
299}
300
301static noinstr bool handle_bug(struct pt_regs *regs)
302{
303 bool handled = false;
304
305 /*
306 * Normally @regs are unpoisoned by irqentry_enter(), but handle_bug()
307 * is a rare case that uses @regs without passing them to
308 * irqentry_enter().
309 */
310 kmsan_unpoison_entry_regs(regs);
311 if (!is_valid_bugaddr(regs->ip))
312 return handled;
313
314 /*
315 * All lies, just get the WARN/BUG out.
316 */
317 instrumentation_begin();
318 /*
319 * Since we're emulating a CALL with exceptions, restore the interrupt
320 * state to what it was at the exception site.
321 */
322 if (regs->flags & X86_EFLAGS_IF)
323 raw_local_irq_enable();
324 if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN ||
325 handle_cfi_failure(regs) == BUG_TRAP_TYPE_WARN) {
326 regs->ip += LEN_UD2;
327 handled = true;
328 }
329 if (regs->flags & X86_EFLAGS_IF)
330 raw_local_irq_disable();
331 instrumentation_end();
332
333 return handled;
334}
335
336DEFINE_IDTENTRY_RAW(exc_invalid_op)
337{
338 irqentry_state_t state;
339
340 /*
341 * We use UD2 as a short encoding for 'CALL __WARN', as such
342 * handle it before exception entry to avoid recursive WARN
343 * in case exception entry is the one triggering WARNs.
344 */
345 if (!user_mode(regs) && handle_bug(regs))
346 return;
347
348 state = irqentry_enter(regs);
349 instrumentation_begin();
350 handle_invalid_op(regs);
351 instrumentation_end();
352 irqentry_exit(regs, state);
353}
354
355DEFINE_IDTENTRY(exc_coproc_segment_overrun)
356{
357 do_error_trap(regs, 0, "coprocessor segment overrun",
358 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
359}
360
361DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
362{
363 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
364 0, NULL);
365}
366
367DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
368{
369 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
370 SIGBUS, 0, NULL);
371}
372
373DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
374{
375 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
376 0, NULL);
377}
378
379DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
380{
381 char *str = "alignment check";
382
383 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
384 return;
385
386 if (!user_mode(regs))
387 die("Split lock detected\n", regs, error_code);
388
389 local_irq_enable();
390
391 if (handle_user_split_lock(regs, error_code))
392 goto out;
393
394 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
395 error_code, BUS_ADRALN, NULL);
396
397out:
398 local_irq_disable();
399}
400
401#ifdef CONFIG_VMAP_STACK
402__visible void __noreturn handle_stack_overflow(struct pt_regs *regs,
403 unsigned long fault_address,
404 struct stack_info *info)
405{
406 const char *name = stack_type_name(info->type);
407
408 printk(KERN_EMERG "BUG: %s stack guard page was hit at %p (stack is %p..%p)\n",
409 name, (void *)fault_address, info->begin, info->end);
410
411 die("stack guard page", regs, 0);
412
413 /* Be absolutely certain we don't return. */
414 panic("%s stack guard hit", name);
415}
416#endif
417
418/*
419 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
420 *
421 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
422 * SDM's warnings about double faults being unrecoverable, returning works as
423 * expected. Presumably what the SDM actually means is that the CPU may get
424 * the register state wrong on entry, so returning could be a bad idea.
425 *
426 * Various CPU engineers have promised that double faults due to an IRET fault
427 * while the stack is read-only are, in fact, recoverable.
428 *
429 * On x86_32, this is entered through a task gate, and regs are synthesized
430 * from the TSS. Returning is, in principle, okay, but changes to regs will
431 * be lost. If, for some reason, we need to return to a context with modified
432 * regs, the shim code could be adjusted to synchronize the registers.
433 *
434 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
435 * to be read before doing anything else.
436 */
437DEFINE_IDTENTRY_DF(exc_double_fault)
438{
439 static const char str[] = "double fault";
440 struct task_struct *tsk = current;
441
442#ifdef CONFIG_VMAP_STACK
443 unsigned long address = read_cr2();
444 struct stack_info info;
445#endif
446
447#ifdef CONFIG_X86_ESPFIX64
448 extern unsigned char native_irq_return_iret[];
449
450 /*
451 * If IRET takes a non-IST fault on the espfix64 stack, then we
452 * end up promoting it to a doublefault. In that case, take
453 * advantage of the fact that we're not using the normal (TSS.sp0)
454 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
455 * and then modify our own IRET frame so that, when we return,
456 * we land directly at the #GP(0) vector with the stack already
457 * set up according to its expectations.
458 *
459 * The net result is that our #GP handler will think that we
460 * entered from usermode with the bad user context.
461 *
462 * No need for nmi_enter() here because we don't use RCU.
463 */
464 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
465 regs->cs == __KERNEL_CS &&
466 regs->ip == (unsigned long)native_irq_return_iret)
467 {
468 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
469 unsigned long *p = (unsigned long *)regs->sp;
470
471 /*
472 * regs->sp points to the failing IRET frame on the
473 * ESPFIX64 stack. Copy it to the entry stack. This fills
474 * in gpregs->ss through gpregs->ip.
475 *
476 */
477 gpregs->ip = p[0];
478 gpregs->cs = p[1];
479 gpregs->flags = p[2];
480 gpregs->sp = p[3];
481 gpregs->ss = p[4];
482 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
483
484 /*
485 * Adjust our frame so that we return straight to the #GP
486 * vector with the expected RSP value. This is safe because
487 * we won't enable interrupts or schedule before we invoke
488 * general_protection, so nothing will clobber the stack
489 * frame we just set up.
490 *
491 * We will enter general_protection with kernel GSBASE,
492 * which is what the stub expects, given that the faulting
493 * RIP will be the IRET instruction.
494 */
495 regs->ip = (unsigned long)asm_exc_general_protection;
496 regs->sp = (unsigned long)&gpregs->orig_ax;
497
498 return;
499 }
500#endif
501
502 irqentry_nmi_enter(regs);
503 instrumentation_begin();
504 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
505
506 tsk->thread.error_code = error_code;
507 tsk->thread.trap_nr = X86_TRAP_DF;
508
509#ifdef CONFIG_VMAP_STACK
510 /*
511 * If we overflow the stack into a guard page, the CPU will fail
512 * to deliver #PF and will send #DF instead. Similarly, if we
513 * take any non-IST exception while too close to the bottom of
514 * the stack, the processor will get a page fault while
515 * delivering the exception and will generate a double fault.
516 *
517 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
518 * Page-Fault Exception (#PF):
519 *
520 * Processors update CR2 whenever a page fault is detected. If a
521 * second page fault occurs while an earlier page fault is being
522 * delivered, the faulting linear address of the second fault will
523 * overwrite the contents of CR2 (replacing the previous
524 * address). These updates to CR2 occur even if the page fault
525 * results in a double fault or occurs during the delivery of a
526 * double fault.
527 *
528 * The logic below has a small possibility of incorrectly diagnosing
529 * some errors as stack overflows. For example, if the IDT or GDT
530 * gets corrupted such that #GP delivery fails due to a bad descriptor
531 * causing #GP and we hit this condition while CR2 coincidentally
532 * points to the stack guard page, we'll think we overflowed the
533 * stack. Given that we're going to panic one way or another
534 * if this happens, this isn't necessarily worth fixing.
535 *
536 * If necessary, we could improve the test by only diagnosing
537 * a stack overflow if the saved RSP points within 47 bytes of
538 * the bottom of the stack: if RSP == tsk_stack + 48 and we
539 * take an exception, the stack is already aligned and there
540 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
541 * possible error code, so a stack overflow would *not* double
542 * fault. With any less space left, exception delivery could
543 * fail, and, as a practical matter, we've overflowed the
544 * stack even if the actual trigger for the double fault was
545 * something else.
546 */
547 if (get_stack_guard_info((void *)address, &info))
548 handle_stack_overflow(regs, address, &info);
549#endif
550
551 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
552 die("double fault", regs, error_code);
553 panic("Machine halted.");
554 instrumentation_end();
555}
556
557DEFINE_IDTENTRY(exc_bounds)
558{
559 if (notify_die(DIE_TRAP, "bounds", regs, 0,
560 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
561 return;
562 cond_local_irq_enable(regs);
563
564 if (!user_mode(regs))
565 die("bounds", regs, 0);
566
567 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
568
569 cond_local_irq_disable(regs);
570}
571
572enum kernel_gp_hint {
573 GP_NO_HINT,
574 GP_NON_CANONICAL,
575 GP_CANONICAL
576};
577
578/*
579 * When an uncaught #GP occurs, try to determine the memory address accessed by
580 * the instruction and return that address to the caller. Also, try to figure
581 * out whether any part of the access to that address was non-canonical.
582 */
583static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
584 unsigned long *addr)
585{
586 u8 insn_buf[MAX_INSN_SIZE];
587 struct insn insn;
588 int ret;
589
590 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
591 MAX_INSN_SIZE))
592 return GP_NO_HINT;
593
594 ret = insn_decode_kernel(&insn, insn_buf);
595 if (ret < 0)
596 return GP_NO_HINT;
597
598 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
599 if (*addr == -1UL)
600 return GP_NO_HINT;
601
602#ifdef CONFIG_X86_64
603 /*
604 * Check that:
605 * - the operand is not in the kernel half
606 * - the last byte of the operand is not in the user canonical half
607 */
608 if (*addr < ~__VIRTUAL_MASK &&
609 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
610 return GP_NON_CANONICAL;
611#endif
612
613 return GP_CANONICAL;
614}
615
616#define GPFSTR "general protection fault"
617
618static bool fixup_iopl_exception(struct pt_regs *regs)
619{
620 struct thread_struct *t = ¤t->thread;
621 unsigned char byte;
622 unsigned long ip;
623
624 if (!IS_ENABLED(CONFIG_X86_IOPL_IOPERM) || t->iopl_emul != 3)
625 return false;
626
627 if (insn_get_effective_ip(regs, &ip))
628 return false;
629
630 if (get_user(byte, (const char __user *)ip))
631 return false;
632
633 if (byte != 0xfa && byte != 0xfb)
634 return false;
635
636 if (!t->iopl_warn && printk_ratelimit()) {
637 pr_err("%s[%d] attempts to use CLI/STI, pretending it's a NOP, ip:%lx",
638 current->comm, task_pid_nr(current), ip);
639 print_vma_addr(KERN_CONT " in ", ip);
640 pr_cont("\n");
641 t->iopl_warn = 1;
642 }
643
644 regs->ip += 1;
645 return true;
646}
647
648/*
649 * The unprivileged ENQCMD instruction generates #GPs if the
650 * IA32_PASID MSR has not been populated. If possible, populate
651 * the MSR from a PASID previously allocated to the mm.
652 */
653static bool try_fixup_enqcmd_gp(void)
654{
655#ifdef CONFIG_IOMMU_SVA
656 u32 pasid;
657
658 /*
659 * MSR_IA32_PASID is managed using XSAVE. Directly
660 * writing to the MSR is only possible when fpregs
661 * are valid and the fpstate is not. This is
662 * guaranteed when handling a userspace exception
663 * in *before* interrupts are re-enabled.
664 */
665 lockdep_assert_irqs_disabled();
666
667 /*
668 * Hardware without ENQCMD will not generate
669 * #GPs that can be fixed up here.
670 */
671 if (!cpu_feature_enabled(X86_FEATURE_ENQCMD))
672 return false;
673
674 pasid = current->mm->pasid;
675
676 /*
677 * If the mm has not been allocated a
678 * PASID, the #GP can not be fixed up.
679 */
680 if (!pasid_valid(pasid))
681 return false;
682
683 /*
684 * Did this thread already have its PASID activated?
685 * If so, the #GP must be from something else.
686 */
687 if (current->pasid_activated)
688 return false;
689
690 wrmsrl(MSR_IA32_PASID, pasid | MSR_IA32_PASID_VALID);
691 current->pasid_activated = 1;
692
693 return true;
694#else
695 return false;
696#endif
697}
698
699static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr,
700 unsigned long error_code, const char *str)
701{
702 if (fixup_exception(regs, trapnr, error_code, 0))
703 return true;
704
705 current->thread.error_code = error_code;
706 current->thread.trap_nr = trapnr;
707
708 /*
709 * To be potentially processing a kprobe fault and to trust the result
710 * from kprobe_running(), we have to be non-preemptible.
711 */
712 if (!preemptible() && kprobe_running() &&
713 kprobe_fault_handler(regs, trapnr))
714 return true;
715
716 return notify_die(DIE_GPF, str, regs, error_code, trapnr, SIGSEGV) == NOTIFY_STOP;
717}
718
719static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr,
720 unsigned long error_code, const char *str)
721{
722 current->thread.error_code = error_code;
723 current->thread.trap_nr = trapnr;
724 show_signal(current, SIGSEGV, "", str, regs, error_code);
725 force_sig(SIGSEGV);
726}
727
728DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
729{
730 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
731 enum kernel_gp_hint hint = GP_NO_HINT;
732 unsigned long gp_addr;
733
734 if (user_mode(regs) && try_fixup_enqcmd_gp())
735 return;
736
737 cond_local_irq_enable(regs);
738
739 if (static_cpu_has(X86_FEATURE_UMIP)) {
740 if (user_mode(regs) && fixup_umip_exception(regs))
741 goto exit;
742 }
743
744 if (v8086_mode(regs)) {
745 local_irq_enable();
746 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
747 local_irq_disable();
748 return;
749 }
750
751 if (user_mode(regs)) {
752 if (fixup_iopl_exception(regs))
753 goto exit;
754
755 if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
756 goto exit;
757
758 gp_user_force_sig_segv(regs, X86_TRAP_GP, error_code, desc);
759 goto exit;
760 }
761
762 if (gp_try_fixup_and_notify(regs, X86_TRAP_GP, error_code, desc))
763 goto exit;
764
765 if (error_code)
766 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
767 else
768 hint = get_kernel_gp_address(regs, &gp_addr);
769
770 if (hint != GP_NO_HINT)
771 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
772 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
773 : "maybe for address",
774 gp_addr);
775
776 /*
777 * KASAN is interested only in the non-canonical case, clear it
778 * otherwise.
779 */
780 if (hint != GP_NON_CANONICAL)
781 gp_addr = 0;
782
783 die_addr(desc, regs, error_code, gp_addr);
784
785exit:
786 cond_local_irq_disable(regs);
787}
788
789static bool do_int3(struct pt_regs *regs)
790{
791 int res;
792
793#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
794 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
795 SIGTRAP) == NOTIFY_STOP)
796 return true;
797#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
798
799#ifdef CONFIG_KPROBES
800 if (kprobe_int3_handler(regs))
801 return true;
802#endif
803 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
804
805 return res == NOTIFY_STOP;
806}
807NOKPROBE_SYMBOL(do_int3);
808
809static void do_int3_user(struct pt_regs *regs)
810{
811 if (do_int3(regs))
812 return;
813
814 cond_local_irq_enable(regs);
815 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
816 cond_local_irq_disable(regs);
817}
818
819DEFINE_IDTENTRY_RAW(exc_int3)
820{
821 /*
822 * poke_int3_handler() is completely self contained code; it does (and
823 * must) *NOT* call out to anything, lest it hits upon yet another
824 * INT3.
825 */
826 if (poke_int3_handler(regs))
827 return;
828
829 /*
830 * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
831 * and therefore can trigger INT3, hence poke_int3_handler() must
832 * be done before. If the entry came from kernel mode, then use
833 * nmi_enter() because the INT3 could have been hit in any context
834 * including NMI.
835 */
836 if (user_mode(regs)) {
837 irqentry_enter_from_user_mode(regs);
838 instrumentation_begin();
839 do_int3_user(regs);
840 instrumentation_end();
841 irqentry_exit_to_user_mode(regs);
842 } else {
843 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
844
845 instrumentation_begin();
846 if (!do_int3(regs))
847 die("int3", regs, 0);
848 instrumentation_end();
849 irqentry_nmi_exit(regs, irq_state);
850 }
851}
852
853#ifdef CONFIG_X86_64
854/*
855 * Help handler running on a per-cpu (IST or entry trampoline) stack
856 * to switch to the normal thread stack if the interrupted code was in
857 * user mode. The actual stack switch is done in entry_64.S
858 */
859asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
860{
861 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(pcpu_hot.top_of_stack) - 1;
862 if (regs != eregs)
863 *regs = *eregs;
864 return regs;
865}
866
867#ifdef CONFIG_AMD_MEM_ENCRYPT
868asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
869{
870 unsigned long sp, *stack;
871 struct stack_info info;
872 struct pt_regs *regs_ret;
873
874 /*
875 * In the SYSCALL entry path the RSP value comes from user-space - don't
876 * trust it and switch to the current kernel stack
877 */
878 if (ip_within_syscall_gap(regs)) {
879 sp = this_cpu_read(pcpu_hot.top_of_stack);
880 goto sync;
881 }
882
883 /*
884 * From here on the RSP value is trusted. Now check whether entry
885 * happened from a safe stack. Not safe are the entry or unknown stacks,
886 * use the fall-back stack instead in this case.
887 */
888 sp = regs->sp;
889 stack = (unsigned long *)sp;
890
891 if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
892 info.type > STACK_TYPE_EXCEPTION_LAST)
893 sp = __this_cpu_ist_top_va(VC2);
894
895sync:
896 /*
897 * Found a safe stack - switch to it as if the entry didn't happen via
898 * IST stack. The code below only copies pt_regs, the real switch happens
899 * in assembly code.
900 */
901 sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
902
903 regs_ret = (struct pt_regs *)sp;
904 *regs_ret = *regs;
905
906 return regs_ret;
907}
908#endif
909
910asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs)
911{
912 struct pt_regs tmp, *new_stack;
913
914 /*
915 * This is called from entry_64.S early in handling a fault
916 * caused by a bad iret to user mode. To handle the fault
917 * correctly, we want to move our stack frame to where it would
918 * be had we entered directly on the entry stack (rather than
919 * just below the IRET frame) and we want to pretend that the
920 * exception came from the IRET target.
921 */
922 new_stack = (struct pt_regs *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
923
924 /* Copy the IRET target to the temporary storage. */
925 __memcpy(&tmp.ip, (void *)bad_regs->sp, 5*8);
926
927 /* Copy the remainder of the stack from the current stack. */
928 __memcpy(&tmp, bad_regs, offsetof(struct pt_regs, ip));
929
930 /* Update the entry stack */
931 __memcpy(new_stack, &tmp, sizeof(tmp));
932
933 BUG_ON(!user_mode(new_stack));
934 return new_stack;
935}
936#endif
937
938static bool is_sysenter_singlestep(struct pt_regs *regs)
939{
940 /*
941 * We don't try for precision here. If we're anywhere in the region of
942 * code that can be single-stepped in the SYSENTER entry path, then
943 * assume that this is a useless single-step trap due to SYSENTER
944 * being invoked with TF set. (We don't know in advance exactly
945 * which instructions will be hit because BTF could plausibly
946 * be set.)
947 */
948#ifdef CONFIG_X86_32
949 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
950 (unsigned long)__end_SYSENTER_singlestep_region -
951 (unsigned long)__begin_SYSENTER_singlestep_region;
952#elif defined(CONFIG_IA32_EMULATION)
953 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
954 (unsigned long)__end_entry_SYSENTER_compat -
955 (unsigned long)entry_SYSENTER_compat;
956#else
957 return false;
958#endif
959}
960
961static __always_inline unsigned long debug_read_clear_dr6(void)
962{
963 unsigned long dr6;
964
965 /*
966 * The Intel SDM says:
967 *
968 * Certain debug exceptions may clear bits 0-3. The remaining
969 * contents of the DR6 register are never cleared by the
970 * processor. To avoid confusion in identifying debug
971 * exceptions, debug handlers should clear the register before
972 * returning to the interrupted task.
973 *
974 * Keep it simple: clear DR6 immediately.
975 */
976 get_debugreg(dr6, 6);
977 set_debugreg(DR6_RESERVED, 6);
978 dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
979
980 return dr6;
981}
982
983/*
984 * Our handling of the processor debug registers is non-trivial.
985 * We do not clear them on entry and exit from the kernel. Therefore
986 * it is possible to get a watchpoint trap here from inside the kernel.
987 * However, the code in ./ptrace.c has ensured that the user can
988 * only set watchpoints on userspace addresses. Therefore the in-kernel
989 * watchpoint trap can only occur in code which is reading/writing
990 * from user space. Such code must not hold kernel locks (since it
991 * can equally take a page fault), therefore it is safe to call
992 * force_sig_info even though that claims and releases locks.
993 *
994 * Code in ./signal.c ensures that the debug control register
995 * is restored before we deliver any signal, and therefore that
996 * user code runs with the correct debug control register even though
997 * we clear it here.
998 *
999 * Being careful here means that we don't have to be as careful in a
1000 * lot of more complicated places (task switching can be a bit lazy
1001 * about restoring all the debug state, and ptrace doesn't have to
1002 * find every occurrence of the TF bit that could be saved away even
1003 * by user code)
1004 *
1005 * May run on IST stack.
1006 */
1007
1008static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
1009{
1010 /*
1011 * Notifiers will clear bits in @dr6 to indicate the event has been
1012 * consumed - hw_breakpoint_handler(), single_stop_cont().
1013 *
1014 * Notifiers will set bits in @virtual_dr6 to indicate the desire
1015 * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
1016 */
1017 if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
1018 return true;
1019
1020 return false;
1021}
1022
1023static __always_inline void exc_debug_kernel(struct pt_regs *regs,
1024 unsigned long dr6)
1025{
1026 /*
1027 * Disable breakpoints during exception handling; recursive exceptions
1028 * are exceedingly 'fun'.
1029 *
1030 * Since this function is NOKPROBE, and that also applies to
1031 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
1032 * HW_BREAKPOINT_W on our stack)
1033 *
1034 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
1035 * includes the entry stack is excluded for everything.
1036 */
1037 unsigned long dr7 = local_db_save();
1038 irqentry_state_t irq_state = irqentry_nmi_enter(regs);
1039 instrumentation_begin();
1040
1041 /*
1042 * If something gets miswired and we end up here for a user mode
1043 * #DB, we will malfunction.
1044 */
1045 WARN_ON_ONCE(user_mode(regs));
1046
1047 if (test_thread_flag(TIF_BLOCKSTEP)) {
1048 /*
1049 * The SDM says "The processor clears the BTF flag when it
1050 * generates a debug exception." but PTRACE_BLOCKSTEP requested
1051 * it for userspace, but we just took a kernel #DB, so re-set
1052 * BTF.
1053 */
1054 unsigned long debugctl;
1055
1056 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1057 debugctl |= DEBUGCTLMSR_BTF;
1058 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1059 }
1060
1061 /*
1062 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
1063 * watchpoint at the same time then that will still be handled.
1064 */
1065 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
1066 dr6 &= ~DR_STEP;
1067
1068 /*
1069 * The kernel doesn't use INT1
1070 */
1071 if (!dr6)
1072 goto out;
1073
1074 if (notify_debug(regs, &dr6))
1075 goto out;
1076
1077 /*
1078 * The kernel doesn't use TF single-step outside of:
1079 *
1080 * - Kprobes, consumed through kprobe_debug_handler()
1081 * - KGDB, consumed through notify_debug()
1082 *
1083 * So if we get here with DR_STEP set, something is wonky.
1084 *
1085 * A known way to trigger this is through QEMU's GDB stub,
1086 * which leaks #DB into the guest and causes IST recursion.
1087 */
1088 if (WARN_ON_ONCE(dr6 & DR_STEP))
1089 regs->flags &= ~X86_EFLAGS_TF;
1090out:
1091 instrumentation_end();
1092 irqentry_nmi_exit(regs, irq_state);
1093
1094 local_db_restore(dr7);
1095}
1096
1097static __always_inline void exc_debug_user(struct pt_regs *regs,
1098 unsigned long dr6)
1099{
1100 bool icebp;
1101
1102 /*
1103 * If something gets miswired and we end up here for a kernel mode
1104 * #DB, we will malfunction.
1105 */
1106 WARN_ON_ONCE(!user_mode(regs));
1107
1108 /*
1109 * NB: We can't easily clear DR7 here because
1110 * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
1111 * user memory, etc. This means that a recursive #DB is possible. If
1112 * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
1113 * Since we're not on the IST stack right now, everything will be
1114 * fine.
1115 */
1116
1117 irqentry_enter_from_user_mode(regs);
1118 instrumentation_begin();
1119
1120 /*
1121 * Start the virtual/ptrace DR6 value with just the DR_STEP mask
1122 * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
1123 *
1124 * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
1125 * even if it is not the result of PTRACE_SINGLESTEP.
1126 */
1127 current->thread.virtual_dr6 = (dr6 & DR_STEP);
1128
1129 /*
1130 * The SDM says "The processor clears the BTF flag when it
1131 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
1132 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
1133 */
1134 clear_thread_flag(TIF_BLOCKSTEP);
1135
1136 /*
1137 * If dr6 has no reason to give us about the origin of this trap,
1138 * then it's very likely the result of an icebp/int01 trap.
1139 * User wants a sigtrap for that.
1140 */
1141 icebp = !dr6;
1142
1143 if (notify_debug(regs, &dr6))
1144 goto out;
1145
1146 /* It's safe to allow irq's after DR6 has been saved */
1147 local_irq_enable();
1148
1149 if (v8086_mode(regs)) {
1150 handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
1151 goto out_irq;
1152 }
1153
1154 /* #DB for bus lock can only be triggered from userspace. */
1155 if (dr6 & DR_BUS_LOCK)
1156 handle_bus_lock(regs);
1157
1158 /* Add the virtual_dr6 bits for signals. */
1159 dr6 |= current->thread.virtual_dr6;
1160 if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
1161 send_sigtrap(regs, 0, get_si_code(dr6));
1162
1163out_irq:
1164 local_irq_disable();
1165out:
1166 instrumentation_end();
1167 irqentry_exit_to_user_mode(regs);
1168}
1169
1170#ifdef CONFIG_X86_64
1171/* IST stack entry */
1172DEFINE_IDTENTRY_DEBUG(exc_debug)
1173{
1174 exc_debug_kernel(regs, debug_read_clear_dr6());
1175}
1176
1177/* User entry, runs on regular task stack */
1178DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1179{
1180 exc_debug_user(regs, debug_read_clear_dr6());
1181}
1182#else
1183/* 32 bit does not have separate entry points. */
1184DEFINE_IDTENTRY_RAW(exc_debug)
1185{
1186 unsigned long dr6 = debug_read_clear_dr6();
1187
1188 if (user_mode(regs))
1189 exc_debug_user(regs, dr6);
1190 else
1191 exc_debug_kernel(regs, dr6);
1192}
1193#endif
1194
1195/*
1196 * Note that we play around with the 'TS' bit in an attempt to get
1197 * the correct behaviour even in the presence of the asynchronous
1198 * IRQ13 behaviour
1199 */
1200static void math_error(struct pt_regs *regs, int trapnr)
1201{
1202 struct task_struct *task = current;
1203 struct fpu *fpu = &task->thread.fpu;
1204 int si_code;
1205 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1206 "simd exception";
1207
1208 cond_local_irq_enable(regs);
1209
1210 if (!user_mode(regs)) {
1211 if (fixup_exception(regs, trapnr, 0, 0))
1212 goto exit;
1213
1214 task->thread.error_code = 0;
1215 task->thread.trap_nr = trapnr;
1216
1217 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1218 SIGFPE) != NOTIFY_STOP)
1219 die(str, regs, 0);
1220 goto exit;
1221 }
1222
1223 /*
1224 * Synchronize the FPU register state to the memory register state
1225 * if necessary. This allows the exception handler to inspect it.
1226 */
1227 fpu_sync_fpstate(fpu);
1228
1229 task->thread.trap_nr = trapnr;
1230 task->thread.error_code = 0;
1231
1232 si_code = fpu__exception_code(fpu, trapnr);
1233 /* Retry when we get spurious exceptions: */
1234 if (!si_code)
1235 goto exit;
1236
1237 if (fixup_vdso_exception(regs, trapnr, 0, 0))
1238 goto exit;
1239
1240 force_sig_fault(SIGFPE, si_code,
1241 (void __user *)uprobe_get_trap_addr(regs));
1242exit:
1243 cond_local_irq_disable(regs);
1244}
1245
1246DEFINE_IDTENTRY(exc_coprocessor_error)
1247{
1248 math_error(regs, X86_TRAP_MF);
1249}
1250
1251DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1252{
1253 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1254 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1255 if (!static_cpu_has(X86_FEATURE_XMM)) {
1256 __exc_general_protection(regs, 0);
1257 return;
1258 }
1259 }
1260 math_error(regs, X86_TRAP_XF);
1261}
1262
1263DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1264{
1265 /*
1266 * This addresses a Pentium Pro Erratum:
1267 *
1268 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1269 * Virtual Wire mode implemented through the local APIC, an
1270 * interrupt vector of 0Fh (Intel reserved encoding) may be
1271 * generated by the local APIC (Int 15). This vector may be
1272 * generated upon receipt of a spurious interrupt (an interrupt
1273 * which is removed before the system receives the INTA sequence)
1274 * instead of the programmed 8259 spurious interrupt vector.
1275 *
1276 * IMPLICATION: The spurious interrupt vector programmed in the
1277 * 8259 is normally handled by an operating system's spurious
1278 * interrupt handler. However, a vector of 0Fh is unknown to some
1279 * operating systems, which would crash if this erratum occurred.
1280 *
1281 * In theory this could be limited to 32bit, but the handler is not
1282 * hurting and who knows which other CPUs suffer from this.
1283 */
1284}
1285
1286static bool handle_xfd_event(struct pt_regs *regs)
1287{
1288 u64 xfd_err;
1289 int err;
1290
1291 if (!IS_ENABLED(CONFIG_X86_64) || !cpu_feature_enabled(X86_FEATURE_XFD))
1292 return false;
1293
1294 rdmsrl(MSR_IA32_XFD_ERR, xfd_err);
1295 if (!xfd_err)
1296 return false;
1297
1298 wrmsrl(MSR_IA32_XFD_ERR, 0);
1299
1300 /* Die if that happens in kernel space */
1301 if (WARN_ON(!user_mode(regs)))
1302 return false;
1303
1304 local_irq_enable();
1305
1306 err = xfd_enable_feature(xfd_err);
1307
1308 switch (err) {
1309 case -EPERM:
1310 force_sig_fault(SIGILL, ILL_ILLOPC, error_get_trap_addr(regs));
1311 break;
1312 case -EFAULT:
1313 force_sig(SIGSEGV);
1314 break;
1315 }
1316
1317 local_irq_disable();
1318 return true;
1319}
1320
1321DEFINE_IDTENTRY(exc_device_not_available)
1322{
1323 unsigned long cr0 = read_cr0();
1324
1325 if (handle_xfd_event(regs))
1326 return;
1327
1328#ifdef CONFIG_MATH_EMULATION
1329 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1330 struct math_emu_info info = { };
1331
1332 cond_local_irq_enable(regs);
1333
1334 info.regs = regs;
1335 math_emulate(&info);
1336
1337 cond_local_irq_disable(regs);
1338 return;
1339 }
1340#endif
1341
1342 /* This should not happen. */
1343 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1344 /* Try to fix it up and carry on. */
1345 write_cr0(cr0 & ~X86_CR0_TS);
1346 } else {
1347 /*
1348 * Something terrible happened, and we're better off trying
1349 * to kill the task than getting stuck in a never-ending
1350 * loop of #NM faults.
1351 */
1352 die("unexpected #NM exception", regs, 0);
1353 }
1354}
1355
1356#ifdef CONFIG_INTEL_TDX_GUEST
1357
1358#define VE_FAULT_STR "VE fault"
1359
1360static void ve_raise_fault(struct pt_regs *regs, long error_code)
1361{
1362 if (user_mode(regs)) {
1363 gp_user_force_sig_segv(regs, X86_TRAP_VE, error_code, VE_FAULT_STR);
1364 return;
1365 }
1366
1367 if (gp_try_fixup_and_notify(regs, X86_TRAP_VE, error_code, VE_FAULT_STR))
1368 return;
1369
1370 die_addr(VE_FAULT_STR, regs, error_code, 0);
1371}
1372
1373/*
1374 * Virtualization Exceptions (#VE) are delivered to TDX guests due to
1375 * specific guest actions which may happen in either user space or the
1376 * kernel:
1377 *
1378 * * Specific instructions (WBINVD, for example)
1379 * * Specific MSR accesses
1380 * * Specific CPUID leaf accesses
1381 * * Access to specific guest physical addresses
1382 *
1383 * In the settings that Linux will run in, virtualization exceptions are
1384 * never generated on accesses to normal, TD-private memory that has been
1385 * accepted (by BIOS or with tdx_enc_status_changed()).
1386 *
1387 * Syscall entry code has a critical window where the kernel stack is not
1388 * yet set up. Any exception in this window leads to hard to debug issues
1389 * and can be exploited for privilege escalation. Exceptions in the NMI
1390 * entry code also cause issues. Returning from the exception handler with
1391 * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack.
1392 *
1393 * For these reasons, the kernel avoids #VEs during the syscall gap and
1394 * the NMI entry code. Entry code paths do not access TD-shared memory,
1395 * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves
1396 * that might generate #VE. VMM can remove memory from TD at any point,
1397 * but access to unaccepted (or missing) private memory leads to VM
1398 * termination, not to #VE.
1399 *
1400 * Similarly to page faults and breakpoints, #VEs are allowed in NMI
1401 * handlers once the kernel is ready to deal with nested NMIs.
1402 *
1403 * During #VE delivery, all interrupts, including NMIs, are blocked until
1404 * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads
1405 * the VE info.
1406 *
1407 * If a guest kernel action which would normally cause a #VE occurs in
1408 * the interrupt-disabled region before TDGETVEINFO, a #DF (fault
1409 * exception) is delivered to the guest which will result in an oops.
1410 *
1411 * The entry code has been audited carefully for following these expectations.
1412 * Changes in the entry code have to be audited for correctness vs. this
1413 * aspect. Similarly to #PF, #VE in these places will expose kernel to
1414 * privilege escalation or may lead to random crashes.
1415 */
1416DEFINE_IDTENTRY(exc_virtualization_exception)
1417{
1418 struct ve_info ve;
1419
1420 /*
1421 * NMIs/Machine-checks/Interrupts will be in a disabled state
1422 * till TDGETVEINFO TDCALL is executed. This ensures that VE
1423 * info cannot be overwritten by a nested #VE.
1424 */
1425 tdx_get_ve_info(&ve);
1426
1427 cond_local_irq_enable(regs);
1428
1429 /*
1430 * If tdx_handle_virt_exception() could not process
1431 * it successfully, treat it as #GP(0) and handle it.
1432 */
1433 if (!tdx_handle_virt_exception(regs, &ve))
1434 ve_raise_fault(regs, 0);
1435
1436 cond_local_irq_disable(regs);
1437}
1438
1439#endif
1440
1441#ifdef CONFIG_X86_32
1442DEFINE_IDTENTRY_SW(iret_error)
1443{
1444 local_irq_enable();
1445 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1446 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1447 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1448 ILL_BADSTK, (void __user *)NULL);
1449 }
1450 local_irq_disable();
1451}
1452#endif
1453
1454void __init trap_init(void)
1455{
1456 /* Init cpu_entry_area before IST entries are set up */
1457 setup_cpu_entry_areas();
1458
1459 /* Init GHCB memory pages when running as an SEV-ES guest */
1460 sev_es_init_vc_handling();
1461
1462 /* Initialize TSS before setting up traps so ISTs work */
1463 cpu_init_exception_handling();
1464 /* Setup traps as cpu_init() might #GP */
1465 idt_setup_traps();
1466 cpu_init();
1467}