Loading...
Note: File does not exist in v3.5.6.
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8/* start node id of a node block dedicated to the given node id */
9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11/* node block offset on the NAT area dedicated to the given start node id */
12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14/* # of pages to perform synchronous readahead before building free nids */
15#define FREE_NID_PAGES 8
16#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18/* size of free nid batch when shrinking */
19#define SHRINK_NID_BATCH_SIZE 8
20
21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23/* maximum readahead size for node during getting data blocks */
24#define MAX_RA_NODE 128
25
26/* control the memory footprint threshold (10MB per 1GB ram) */
27#define DEF_RAM_THRESHOLD 1
28
29/* control dirty nats ratio threshold (default: 10% over max nid count) */
30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31/* control total # of nats */
32#define DEF_NAT_CACHE_THRESHOLD 100000
33
34/* control total # of node writes used for roll-fowrad recovery */
35#define DEF_RF_NODE_BLOCKS 0
36
37/* vector size for gang look-up from nat cache that consists of radix tree */
38#define NATVEC_SIZE 64
39#define SETVEC_SIZE 32
40
41/* return value for read_node_page */
42#define LOCKED_PAGE 1
43
44/* check pinned file's alignment status of physical blocks */
45#define FILE_NOT_ALIGNED 1
46
47/* For flag in struct node_info */
48enum {
49 IS_CHECKPOINTED, /* is it checkpointed before? */
50 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
51 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
52 IS_DIRTY, /* this nat entry is dirty? */
53 IS_PREALLOC, /* nat entry is preallocated */
54};
55
56/*
57 * For node information
58 */
59struct node_info {
60 nid_t nid; /* node id */
61 nid_t ino; /* inode number of the node's owner */
62 block_t blk_addr; /* block address of the node */
63 unsigned char version; /* version of the node */
64 unsigned char flag; /* for node information bits */
65};
66
67struct nat_entry {
68 struct list_head list; /* for clean or dirty nat list */
69 struct node_info ni; /* in-memory node information */
70};
71
72#define nat_get_nid(nat) ((nat)->ni.nid)
73#define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
74#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
75#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
76#define nat_get_ino(nat) ((nat)->ni.ino)
77#define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
78#define nat_get_version(nat) ((nat)->ni.version)
79#define nat_set_version(nat, v) ((nat)->ni.version = (v))
80
81#define inc_node_version(version) (++(version))
82
83static inline void copy_node_info(struct node_info *dst,
84 struct node_info *src)
85{
86 dst->nid = src->nid;
87 dst->ino = src->ino;
88 dst->blk_addr = src->blk_addr;
89 dst->version = src->version;
90 /* should not copy flag here */
91}
92
93static inline void set_nat_flag(struct nat_entry *ne,
94 unsigned int type, bool set)
95{
96 unsigned char mask = 0x01 << type;
97 if (set)
98 ne->ni.flag |= mask;
99 else
100 ne->ni.flag &= ~mask;
101}
102
103static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
104{
105 unsigned char mask = 0x01 << type;
106 return ne->ni.flag & mask;
107}
108
109static inline void nat_reset_flag(struct nat_entry *ne)
110{
111 /* these states can be set only after checkpoint was done */
112 set_nat_flag(ne, IS_CHECKPOINTED, true);
113 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
114 set_nat_flag(ne, HAS_LAST_FSYNC, true);
115}
116
117static inline void node_info_from_raw_nat(struct node_info *ni,
118 struct f2fs_nat_entry *raw_ne)
119{
120 ni->ino = le32_to_cpu(raw_ne->ino);
121 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
122 ni->version = raw_ne->version;
123}
124
125static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
126 struct node_info *ni)
127{
128 raw_ne->ino = cpu_to_le32(ni->ino);
129 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
130 raw_ne->version = ni->version;
131}
132
133static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
134{
135 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
136 NM_I(sbi)->dirty_nats_ratio / 100;
137}
138
139static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
140{
141 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
142}
143
144enum mem_type {
145 FREE_NIDS, /* indicates the free nid list */
146 NAT_ENTRIES, /* indicates the cached nat entry */
147 DIRTY_DENTS, /* indicates dirty dentry pages */
148 INO_ENTRIES, /* indicates inode entries */
149 READ_EXTENT_CACHE, /* indicates read extent cache */
150 AGE_EXTENT_CACHE, /* indicates age extent cache */
151 DISCARD_CACHE, /* indicates memory of cached discard cmds */
152 COMPRESS_PAGE, /* indicates memory of cached compressed pages */
153 BASE_CHECK, /* check kernel status */
154};
155
156struct nat_entry_set {
157 struct list_head set_list; /* link with other nat sets */
158 struct list_head entry_list; /* link with dirty nat entries */
159 nid_t set; /* set number*/
160 unsigned int entry_cnt; /* the # of nat entries in set */
161};
162
163struct free_nid {
164 struct list_head list; /* for free node id list */
165 nid_t nid; /* node id */
166 int state; /* in use or not: FREE_NID or PREALLOC_NID */
167};
168
169static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
170{
171 struct f2fs_nm_info *nm_i = NM_I(sbi);
172 struct free_nid *fnid;
173
174 spin_lock(&nm_i->nid_list_lock);
175 if (nm_i->nid_cnt[FREE_NID] <= 0) {
176 spin_unlock(&nm_i->nid_list_lock);
177 return;
178 }
179 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
180 *nid = fnid->nid;
181 spin_unlock(&nm_i->nid_list_lock);
182}
183
184/*
185 * inline functions
186 */
187static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
188{
189 struct f2fs_nm_info *nm_i = NM_I(sbi);
190
191#ifdef CONFIG_F2FS_CHECK_FS
192 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
193 nm_i->bitmap_size))
194 f2fs_bug_on(sbi, 1);
195#endif
196 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
197}
198
199static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
200{
201 struct f2fs_nm_info *nm_i = NM_I(sbi);
202 pgoff_t block_off;
203 pgoff_t block_addr;
204
205 /*
206 * block_off = segment_off * 512 + off_in_segment
207 * OLD = (segment_off * 512) * 2 + off_in_segment
208 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
209 */
210 block_off = NAT_BLOCK_OFFSET(start);
211
212 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
213 (block_off << 1) -
214 (block_off & (sbi->blocks_per_seg - 1)));
215
216 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
217 block_addr += sbi->blocks_per_seg;
218
219 return block_addr;
220}
221
222static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
223 pgoff_t block_addr)
224{
225 struct f2fs_nm_info *nm_i = NM_I(sbi);
226
227 block_addr -= nm_i->nat_blkaddr;
228 block_addr ^= 1 << sbi->log_blocks_per_seg;
229 return block_addr + nm_i->nat_blkaddr;
230}
231
232static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
233{
234 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
235
236 f2fs_change_bit(block_off, nm_i->nat_bitmap);
237#ifdef CONFIG_F2FS_CHECK_FS
238 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
239#endif
240}
241
242static inline nid_t ino_of_node(struct page *node_page)
243{
244 struct f2fs_node *rn = F2FS_NODE(node_page);
245 return le32_to_cpu(rn->footer.ino);
246}
247
248static inline nid_t nid_of_node(struct page *node_page)
249{
250 struct f2fs_node *rn = F2FS_NODE(node_page);
251 return le32_to_cpu(rn->footer.nid);
252}
253
254static inline unsigned int ofs_of_node(struct page *node_page)
255{
256 struct f2fs_node *rn = F2FS_NODE(node_page);
257 unsigned flag = le32_to_cpu(rn->footer.flag);
258 return flag >> OFFSET_BIT_SHIFT;
259}
260
261static inline __u64 cpver_of_node(struct page *node_page)
262{
263 struct f2fs_node *rn = F2FS_NODE(node_page);
264 return le64_to_cpu(rn->footer.cp_ver);
265}
266
267static inline block_t next_blkaddr_of_node(struct page *node_page)
268{
269 struct f2fs_node *rn = F2FS_NODE(node_page);
270 return le32_to_cpu(rn->footer.next_blkaddr);
271}
272
273static inline void fill_node_footer(struct page *page, nid_t nid,
274 nid_t ino, unsigned int ofs, bool reset)
275{
276 struct f2fs_node *rn = F2FS_NODE(page);
277 unsigned int old_flag = 0;
278
279 if (reset)
280 memset(rn, 0, sizeof(*rn));
281 else
282 old_flag = le32_to_cpu(rn->footer.flag);
283
284 rn->footer.nid = cpu_to_le32(nid);
285 rn->footer.ino = cpu_to_le32(ino);
286
287 /* should remain old flag bits such as COLD_BIT_SHIFT */
288 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
289 (old_flag & OFFSET_BIT_MASK));
290}
291
292static inline void copy_node_footer(struct page *dst, struct page *src)
293{
294 struct f2fs_node *src_rn = F2FS_NODE(src);
295 struct f2fs_node *dst_rn = F2FS_NODE(dst);
296 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
297}
298
299static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
300{
301 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
302 struct f2fs_node *rn = F2FS_NODE(page);
303 __u64 cp_ver = cur_cp_version(ckpt);
304
305 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
306 cp_ver |= (cur_cp_crc(ckpt) << 32);
307
308 rn->footer.cp_ver = cpu_to_le64(cp_ver);
309 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
310}
311
312static inline bool is_recoverable_dnode(struct page *page)
313{
314 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
315 __u64 cp_ver = cur_cp_version(ckpt);
316
317 /* Don't care crc part, if fsck.f2fs sets it. */
318 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
319 return (cp_ver << 32) == (cpver_of_node(page) << 32);
320
321 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
322 cp_ver |= (cur_cp_crc(ckpt) << 32);
323
324 return cp_ver == cpver_of_node(page);
325}
326
327/*
328 * f2fs assigns the following node offsets described as (num).
329 * N = NIDS_PER_BLOCK
330 *
331 * Inode block (0)
332 * |- direct node (1)
333 * |- direct node (2)
334 * |- indirect node (3)
335 * | `- direct node (4 => 4 + N - 1)
336 * |- indirect node (4 + N)
337 * | `- direct node (5 + N => 5 + 2N - 1)
338 * `- double indirect node (5 + 2N)
339 * `- indirect node (6 + 2N)
340 * `- direct node
341 * ......
342 * `- indirect node ((6 + 2N) + x(N + 1))
343 * `- direct node
344 * ......
345 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
346 * `- direct node
347 */
348static inline bool IS_DNODE(struct page *node_page)
349{
350 unsigned int ofs = ofs_of_node(node_page);
351
352 if (f2fs_has_xattr_block(ofs))
353 return true;
354
355 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
356 ofs == 5 + 2 * NIDS_PER_BLOCK)
357 return false;
358 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
359 ofs -= 6 + 2 * NIDS_PER_BLOCK;
360 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
361 return false;
362 }
363 return true;
364}
365
366static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
367{
368 struct f2fs_node *rn = F2FS_NODE(p);
369
370 f2fs_wait_on_page_writeback(p, NODE, true, true);
371
372 if (i)
373 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
374 else
375 rn->in.nid[off] = cpu_to_le32(nid);
376 return set_page_dirty(p);
377}
378
379static inline nid_t get_nid(struct page *p, int off, bool i)
380{
381 struct f2fs_node *rn = F2FS_NODE(p);
382
383 if (i)
384 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
385 return le32_to_cpu(rn->in.nid[off]);
386}
387
388/*
389 * Coldness identification:
390 * - Mark cold files in f2fs_inode_info
391 * - Mark cold node blocks in their node footer
392 * - Mark cold data pages in page cache
393 */
394
395static inline int is_node(struct page *page, int type)
396{
397 struct f2fs_node *rn = F2FS_NODE(page);
398 return le32_to_cpu(rn->footer.flag) & (1 << type);
399}
400
401#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
402#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
403#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
404
405static inline void set_cold_node(struct page *page, bool is_dir)
406{
407 struct f2fs_node *rn = F2FS_NODE(page);
408 unsigned int flag = le32_to_cpu(rn->footer.flag);
409
410 if (is_dir)
411 flag &= ~(0x1 << COLD_BIT_SHIFT);
412 else
413 flag |= (0x1 << COLD_BIT_SHIFT);
414 rn->footer.flag = cpu_to_le32(flag);
415}
416
417static inline void set_mark(struct page *page, int mark, int type)
418{
419 struct f2fs_node *rn = F2FS_NODE(page);
420 unsigned int flag = le32_to_cpu(rn->footer.flag);
421 if (mark)
422 flag |= (0x1 << type);
423 else
424 flag &= ~(0x1 << type);
425 rn->footer.flag = cpu_to_le32(flag);
426
427#ifdef CONFIG_F2FS_CHECK_FS
428 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
429#endif
430}
431#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
432#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)