Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fs/f2fs/node.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
  7 */
  8/* start node id of a node block dedicated to the given node id */
  9#define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 10
 11/* node block offset on the NAT area dedicated to the given start node id */
 12#define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
 13
 14/* # of pages to perform synchronous readahead before building free nids */
 15#define FREE_NID_PAGES	8
 16#define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
 17
 18/* size of free nid batch when shrinking */
 19#define SHRINK_NID_BATCH_SIZE	8
 20
 21#define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
 22
 23/* maximum readahead size for node during getting data blocks */
 24#define MAX_RA_NODE		128
 25
 26/* control the memory footprint threshold (10MB per 1GB ram) */
 27#define DEF_RAM_THRESHOLD	1
 28
 29/* control dirty nats ratio threshold (default: 10% over max nid count) */
 30#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
 31/* control total # of nats */
 32#define DEF_NAT_CACHE_THRESHOLD			100000
 33
 34/* vector size for gang look-up from nat cache that consists of radix tree */
 35#define NATVEC_SIZE	64
 36#define SETVEC_SIZE	32
 37
 38/* return value for read_node_page */
 39#define LOCKED_PAGE	1
 40
 41/* For flag in struct node_info */
 42enum {
 43	IS_CHECKPOINTED,	/* is it checkpointed before? */
 44	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
 45	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
 46	IS_DIRTY,		/* this nat entry is dirty? */
 47	IS_PREALLOC,		/* nat entry is preallocated */
 48};
 49
 50/*
 51 * For node information
 52 */
 53struct node_info {
 54	nid_t nid;		/* node id */
 55	nid_t ino;		/* inode number of the node's owner */
 56	block_t	blk_addr;	/* block address of the node */
 57	unsigned char version;	/* version of the node */
 58	unsigned char flag;	/* for node information bits */
 59};
 60
 61struct nat_entry {
 62	struct list_head list;	/* for clean or dirty nat list */
 63	struct node_info ni;	/* in-memory node information */
 64};
 65
 66#define nat_get_nid(nat)		((nat)->ni.nid)
 67#define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
 68#define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
 69#define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
 70#define nat_get_ino(nat)		((nat)->ni.ino)
 71#define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
 72#define nat_get_version(nat)		((nat)->ni.version)
 73#define nat_set_version(nat, v)		((nat)->ni.version = (v))
 74
 75#define inc_node_version(version)	(++(version))
 76
 77static inline void copy_node_info(struct node_info *dst,
 78						struct node_info *src)
 79{
 80	dst->nid = src->nid;
 81	dst->ino = src->ino;
 82	dst->blk_addr = src->blk_addr;
 83	dst->version = src->version;
 84	/* should not copy flag here */
 85}
 86
 87static inline void set_nat_flag(struct nat_entry *ne,
 88				unsigned int type, bool set)
 89{
 90	unsigned char mask = 0x01 << type;
 91	if (set)
 92		ne->ni.flag |= mask;
 93	else
 94		ne->ni.flag &= ~mask;
 95}
 96
 97static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
 98{
 99	unsigned char mask = 0x01 << type;
100	return ne->ni.flag & mask;
101}
102
103static inline void nat_reset_flag(struct nat_entry *ne)
104{
105	/* these states can be set only after checkpoint was done */
106	set_nat_flag(ne, IS_CHECKPOINTED, true);
107	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
108	set_nat_flag(ne, HAS_LAST_FSYNC, true);
109}
110
111static inline void node_info_from_raw_nat(struct node_info *ni,
112						struct f2fs_nat_entry *raw_ne)
113{
114	ni->ino = le32_to_cpu(raw_ne->ino);
115	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
116	ni->version = raw_ne->version;
117}
118
119static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
120						struct node_info *ni)
121{
122	raw_ne->ino = cpu_to_le32(ni->ino);
123	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
124	raw_ne->version = ni->version;
125}
126
127static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
128{
129	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
130					NM_I(sbi)->dirty_nats_ratio / 100;
131}
132
133static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
134{
135	return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
136}
137
138static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
139{
140	return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
141}
142
143enum mem_type {
144	FREE_NIDS,	/* indicates the free nid list */
145	NAT_ENTRIES,	/* indicates the cached nat entry */
146	DIRTY_DENTS,	/* indicates dirty dentry pages */
147	INO_ENTRIES,	/* indicates inode entries */
148	EXTENT_CACHE,	/* indicates extent cache */
149	INMEM_PAGES,	/* indicates inmemory pages */
150	BASE_CHECK,	/* check kernel status */
151};
152
153struct nat_entry_set {
154	struct list_head set_list;	/* link with other nat sets */
155	struct list_head entry_list;	/* link with dirty nat entries */
156	nid_t set;			/* set number*/
157	unsigned int entry_cnt;		/* the # of nat entries in set */
158};
159
160struct free_nid {
161	struct list_head list;	/* for free node id list */
162	nid_t nid;		/* node id */
163	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
164};
165
166static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
167{
168	struct f2fs_nm_info *nm_i = NM_I(sbi);
169	struct free_nid *fnid;
170
171	spin_lock(&nm_i->nid_list_lock);
172	if (nm_i->nid_cnt[FREE_NID] <= 0) {
173		spin_unlock(&nm_i->nid_list_lock);
174		return;
175	}
176	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
177	*nid = fnid->nid;
178	spin_unlock(&nm_i->nid_list_lock);
179}
180
181/*
182 * inline functions
183 */
184static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
185{
186	struct f2fs_nm_info *nm_i = NM_I(sbi);
187
188#ifdef CONFIG_F2FS_CHECK_FS
189	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
190						nm_i->bitmap_size))
191		f2fs_bug_on(sbi, 1);
192#endif
193	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
194}
195
196static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
197{
198	struct f2fs_nm_info *nm_i = NM_I(sbi);
199	pgoff_t block_off;
200	pgoff_t block_addr;
201
202	/*
203	 * block_off = segment_off * 512 + off_in_segment
204	 * OLD = (segment_off * 512) * 2 + off_in_segment
205	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
206	 */
207	block_off = NAT_BLOCK_OFFSET(start);
208
209	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
210		(block_off << 1) -
211		(block_off & (sbi->blocks_per_seg - 1)));
212
213	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
214		block_addr += sbi->blocks_per_seg;
215
216	return block_addr;
217}
218
219static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
220						pgoff_t block_addr)
221{
222	struct f2fs_nm_info *nm_i = NM_I(sbi);
223
224	block_addr -= nm_i->nat_blkaddr;
225	block_addr ^= 1 << sbi->log_blocks_per_seg;
226	return block_addr + nm_i->nat_blkaddr;
227}
228
229static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
230{
231	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
232
233	f2fs_change_bit(block_off, nm_i->nat_bitmap);
234#ifdef CONFIG_F2FS_CHECK_FS
235	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
236#endif
237}
238
239static inline nid_t ino_of_node(struct page *node_page)
240{
241	struct f2fs_node *rn = F2FS_NODE(node_page);
242	return le32_to_cpu(rn->footer.ino);
243}
244
245static inline nid_t nid_of_node(struct page *node_page)
246{
247	struct f2fs_node *rn = F2FS_NODE(node_page);
248	return le32_to_cpu(rn->footer.nid);
249}
250
251static inline unsigned int ofs_of_node(struct page *node_page)
252{
253	struct f2fs_node *rn = F2FS_NODE(node_page);
254	unsigned flag = le32_to_cpu(rn->footer.flag);
255	return flag >> OFFSET_BIT_SHIFT;
256}
257
258static inline __u64 cpver_of_node(struct page *node_page)
259{
260	struct f2fs_node *rn = F2FS_NODE(node_page);
261	return le64_to_cpu(rn->footer.cp_ver);
262}
263
264static inline block_t next_blkaddr_of_node(struct page *node_page)
265{
266	struct f2fs_node *rn = F2FS_NODE(node_page);
267	return le32_to_cpu(rn->footer.next_blkaddr);
268}
269
270static inline void fill_node_footer(struct page *page, nid_t nid,
271				nid_t ino, unsigned int ofs, bool reset)
272{
273	struct f2fs_node *rn = F2FS_NODE(page);
274	unsigned int old_flag = 0;
275
276	if (reset)
277		memset(rn, 0, sizeof(*rn));
278	else
279		old_flag = le32_to_cpu(rn->footer.flag);
280
281	rn->footer.nid = cpu_to_le32(nid);
282	rn->footer.ino = cpu_to_le32(ino);
283
284	/* should remain old flag bits such as COLD_BIT_SHIFT */
285	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
286					(old_flag & OFFSET_BIT_MASK));
287}
288
289static inline void copy_node_footer(struct page *dst, struct page *src)
290{
291	struct f2fs_node *src_rn = F2FS_NODE(src);
292	struct f2fs_node *dst_rn = F2FS_NODE(dst);
293	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
294}
295
296static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
297{
298	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
299	struct f2fs_node *rn = F2FS_NODE(page);
300	__u64 cp_ver = cur_cp_version(ckpt);
301
302	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
303		cp_ver |= (cur_cp_crc(ckpt) << 32);
304
305	rn->footer.cp_ver = cpu_to_le64(cp_ver);
306	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
307}
308
309static inline bool is_recoverable_dnode(struct page *page)
310{
311	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
312	__u64 cp_ver = cur_cp_version(ckpt);
313
314	/* Don't care crc part, if fsck.f2fs sets it. */
315	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
316		return (cp_ver << 32) == (cpver_of_node(page) << 32);
317
318	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
319		cp_ver |= (cur_cp_crc(ckpt) << 32);
320
321	return cp_ver == cpver_of_node(page);
322}
323
324/*
325 * f2fs assigns the following node offsets described as (num).
326 * N = NIDS_PER_BLOCK
327 *
328 *  Inode block (0)
329 *    |- direct node (1)
330 *    |- direct node (2)
331 *    |- indirect node (3)
332 *    |            `- direct node (4 => 4 + N - 1)
333 *    |- indirect node (4 + N)
334 *    |            `- direct node (5 + N => 5 + 2N - 1)
335 *    `- double indirect node (5 + 2N)
336 *                 `- indirect node (6 + 2N)
337 *                       `- direct node
338 *                 ......
339 *                 `- indirect node ((6 + 2N) + x(N + 1))
340 *                       `- direct node
341 *                 ......
342 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
343 *                       `- direct node
344 */
345static inline bool IS_DNODE(struct page *node_page)
346{
347	unsigned int ofs = ofs_of_node(node_page);
348
349	if (f2fs_has_xattr_block(ofs))
350		return true;
351
352	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
353			ofs == 5 + 2 * NIDS_PER_BLOCK)
354		return false;
355	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
356		ofs -= 6 + 2 * NIDS_PER_BLOCK;
357		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
358			return false;
359	}
360	return true;
361}
362
363static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
364{
365	struct f2fs_node *rn = F2FS_NODE(p);
366
367	f2fs_wait_on_page_writeback(p, NODE, true, true);
368
369	if (i)
370		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
371	else
372		rn->in.nid[off] = cpu_to_le32(nid);
373	return set_page_dirty(p);
374}
375
376static inline nid_t get_nid(struct page *p, int off, bool i)
377{
378	struct f2fs_node *rn = F2FS_NODE(p);
379
380	if (i)
381		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
382	return le32_to_cpu(rn->in.nid[off]);
383}
384
385/*
386 * Coldness identification:
387 *  - Mark cold files in f2fs_inode_info
388 *  - Mark cold node blocks in their node footer
389 *  - Mark cold data pages in page cache
390 */
391static inline int is_cold_data(struct page *page)
392{
393	return PageChecked(page);
394}
395
396static inline void set_cold_data(struct page *page)
397{
398	SetPageChecked(page);
399}
400
401static inline void clear_cold_data(struct page *page)
402{
403	ClearPageChecked(page);
404}
405
406static inline int is_node(struct page *page, int type)
407{
408	struct f2fs_node *rn = F2FS_NODE(page);
409	return le32_to_cpu(rn->footer.flag) & (1 << type);
410}
411
412#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
413#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
414#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
415
416static inline int is_inline_node(struct page *page)
417{
418	return PageChecked(page);
419}
420
421static inline void set_inline_node(struct page *page)
422{
423	SetPageChecked(page);
424}
425
426static inline void clear_inline_node(struct page *page)
427{
428	ClearPageChecked(page);
429}
430
431static inline void set_cold_node(struct page *page, bool is_dir)
432{
433	struct f2fs_node *rn = F2FS_NODE(page);
434	unsigned int flag = le32_to_cpu(rn->footer.flag);
435
436	if (is_dir)
437		flag &= ~(0x1 << COLD_BIT_SHIFT);
438	else
439		flag |= (0x1 << COLD_BIT_SHIFT);
440	rn->footer.flag = cpu_to_le32(flag);
441}
442
443static inline void set_mark(struct page *page, int mark, int type)
444{
445	struct f2fs_node *rn = F2FS_NODE(page);
446	unsigned int flag = le32_to_cpu(rn->footer.flag);
447	if (mark)
448		flag |= (0x1 << type);
449	else
450		flag &= ~(0x1 << type);
451	rn->footer.flag = cpu_to_le32(flag);
452
453#ifdef CONFIG_F2FS_CHECK_FS
454	f2fs_inode_chksum_set(F2FS_P_SB(page), page);
455#endif
456}
457#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
458#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)