Loading...
Note: File does not exist in v3.5.6.
1/*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11/* start node id of a node block dedicated to the given node id */
12#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14/* node block offset on the NAT area dedicated to the given start node id */
15#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
16
17/* # of pages to perform synchronous readahead before building free nids */
18#define FREE_NID_PAGES 8
19#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20
21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23/* maximum readahead size for node during getting data blocks */
24#define MAX_RA_NODE 128
25
26/* control the memory footprint threshold (10MB per 1GB ram) */
27#define DEF_RAM_THRESHOLD 1
28
29/* control dirty nats ratio threshold (default: 10% over max nid count) */
30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31/* control total # of nats */
32#define DEF_NAT_CACHE_THRESHOLD 100000
33
34/* vector size for gang look-up from nat cache that consists of radix tree */
35#define NATVEC_SIZE 64
36#define SETVEC_SIZE 32
37
38/* return value for read_node_page */
39#define LOCKED_PAGE 1
40
41/* For flag in struct node_info */
42enum {
43 IS_CHECKPOINTED, /* is it checkpointed before? */
44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
46 IS_DIRTY, /* this nat entry is dirty? */
47 IS_PREALLOC, /* nat entry is preallocated */
48};
49
50/*
51 * For node information
52 */
53struct node_info {
54 nid_t nid; /* node id */
55 nid_t ino; /* inode number of the node's owner */
56 block_t blk_addr; /* block address of the node */
57 unsigned char version; /* version of the node */
58 unsigned char flag; /* for node information bits */
59};
60
61struct nat_entry {
62 struct list_head list; /* for clean or dirty nat list */
63 struct node_info ni; /* in-memory node information */
64};
65
66#define nat_get_nid(nat) ((nat)->ni.nid)
67#define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
68#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
69#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
70#define nat_get_ino(nat) ((nat)->ni.ino)
71#define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
72#define nat_get_version(nat) ((nat)->ni.version)
73#define nat_set_version(nat, v) ((nat)->ni.version = (v))
74
75#define inc_node_version(version) (++(version))
76
77static inline void copy_node_info(struct node_info *dst,
78 struct node_info *src)
79{
80 dst->nid = src->nid;
81 dst->ino = src->ino;
82 dst->blk_addr = src->blk_addr;
83 dst->version = src->version;
84 /* should not copy flag here */
85}
86
87static inline void set_nat_flag(struct nat_entry *ne,
88 unsigned int type, bool set)
89{
90 unsigned char mask = 0x01 << type;
91 if (set)
92 ne->ni.flag |= mask;
93 else
94 ne->ni.flag &= ~mask;
95}
96
97static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
98{
99 unsigned char mask = 0x01 << type;
100 return ne->ni.flag & mask;
101}
102
103static inline void nat_reset_flag(struct nat_entry *ne)
104{
105 /* these states can be set only after checkpoint was done */
106 set_nat_flag(ne, IS_CHECKPOINTED, true);
107 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
108 set_nat_flag(ne, HAS_LAST_FSYNC, true);
109}
110
111static inline void node_info_from_raw_nat(struct node_info *ni,
112 struct f2fs_nat_entry *raw_ne)
113{
114 ni->ino = le32_to_cpu(raw_ne->ino);
115 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
116 ni->version = raw_ne->version;
117}
118
119static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
120 struct node_info *ni)
121{
122 raw_ne->ino = cpu_to_le32(ni->ino);
123 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
124 raw_ne->version = ni->version;
125}
126
127static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
128{
129 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
130 NM_I(sbi)->dirty_nats_ratio / 100;
131}
132
133static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
134{
135 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
136}
137
138enum mem_type {
139 FREE_NIDS, /* indicates the free nid list */
140 NAT_ENTRIES, /* indicates the cached nat entry */
141 DIRTY_DENTS, /* indicates dirty dentry pages */
142 INO_ENTRIES, /* indicates inode entries */
143 EXTENT_CACHE, /* indicates extent cache */
144 INMEM_PAGES, /* indicates inmemory pages */
145 BASE_CHECK, /* check kernel status */
146};
147
148struct nat_entry_set {
149 struct list_head set_list; /* link with other nat sets */
150 struct list_head entry_list; /* link with dirty nat entries */
151 nid_t set; /* set number*/
152 unsigned int entry_cnt; /* the # of nat entries in set */
153};
154
155struct free_nid {
156 struct list_head list; /* for free node id list */
157 nid_t nid; /* node id */
158 int state; /* in use or not: FREE_NID or PREALLOC_NID */
159};
160
161static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
162{
163 struct f2fs_nm_info *nm_i = NM_I(sbi);
164 struct free_nid *fnid;
165
166 spin_lock(&nm_i->nid_list_lock);
167 if (nm_i->nid_cnt[FREE_NID] <= 0) {
168 spin_unlock(&nm_i->nid_list_lock);
169 return;
170 }
171 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
172 *nid = fnid->nid;
173 spin_unlock(&nm_i->nid_list_lock);
174}
175
176/*
177 * inline functions
178 */
179static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
180{
181 struct f2fs_nm_info *nm_i = NM_I(sbi);
182
183#ifdef CONFIG_F2FS_CHECK_FS
184 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
185 nm_i->bitmap_size))
186 f2fs_bug_on(sbi, 1);
187#endif
188 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
189}
190
191static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
192{
193 struct f2fs_nm_info *nm_i = NM_I(sbi);
194 pgoff_t block_off;
195 pgoff_t block_addr;
196
197 /*
198 * block_off = segment_off * 512 + off_in_segment
199 * OLD = (segment_off * 512) * 2 + off_in_segment
200 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
201 */
202 block_off = NAT_BLOCK_OFFSET(start);
203
204 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
205 (block_off << 1) -
206 (block_off & (sbi->blocks_per_seg - 1)));
207
208 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
209 block_addr += sbi->blocks_per_seg;
210
211 return block_addr;
212}
213
214static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
215 pgoff_t block_addr)
216{
217 struct f2fs_nm_info *nm_i = NM_I(sbi);
218
219 block_addr -= nm_i->nat_blkaddr;
220 block_addr ^= 1 << sbi->log_blocks_per_seg;
221 return block_addr + nm_i->nat_blkaddr;
222}
223
224static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
225{
226 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
227
228 f2fs_change_bit(block_off, nm_i->nat_bitmap);
229#ifdef CONFIG_F2FS_CHECK_FS
230 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
231#endif
232}
233
234static inline nid_t ino_of_node(struct page *node_page)
235{
236 struct f2fs_node *rn = F2FS_NODE(node_page);
237 return le32_to_cpu(rn->footer.ino);
238}
239
240static inline nid_t nid_of_node(struct page *node_page)
241{
242 struct f2fs_node *rn = F2FS_NODE(node_page);
243 return le32_to_cpu(rn->footer.nid);
244}
245
246static inline unsigned int ofs_of_node(struct page *node_page)
247{
248 struct f2fs_node *rn = F2FS_NODE(node_page);
249 unsigned flag = le32_to_cpu(rn->footer.flag);
250 return flag >> OFFSET_BIT_SHIFT;
251}
252
253static inline __u64 cpver_of_node(struct page *node_page)
254{
255 struct f2fs_node *rn = F2FS_NODE(node_page);
256 return le64_to_cpu(rn->footer.cp_ver);
257}
258
259static inline block_t next_blkaddr_of_node(struct page *node_page)
260{
261 struct f2fs_node *rn = F2FS_NODE(node_page);
262 return le32_to_cpu(rn->footer.next_blkaddr);
263}
264
265static inline void fill_node_footer(struct page *page, nid_t nid,
266 nid_t ino, unsigned int ofs, bool reset)
267{
268 struct f2fs_node *rn = F2FS_NODE(page);
269 unsigned int old_flag = 0;
270
271 if (reset)
272 memset(rn, 0, sizeof(*rn));
273 else
274 old_flag = le32_to_cpu(rn->footer.flag);
275
276 rn->footer.nid = cpu_to_le32(nid);
277 rn->footer.ino = cpu_to_le32(ino);
278
279 /* should remain old flag bits such as COLD_BIT_SHIFT */
280 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
281 (old_flag & OFFSET_BIT_MASK));
282}
283
284static inline void copy_node_footer(struct page *dst, struct page *src)
285{
286 struct f2fs_node *src_rn = F2FS_NODE(src);
287 struct f2fs_node *dst_rn = F2FS_NODE(dst);
288 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
289}
290
291static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
292{
293 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
294 struct f2fs_node *rn = F2FS_NODE(page);
295 __u64 cp_ver = cur_cp_version(ckpt);
296
297 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
298 cp_ver |= (cur_cp_crc(ckpt) << 32);
299
300 rn->footer.cp_ver = cpu_to_le64(cp_ver);
301 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
302}
303
304static inline bool is_recoverable_dnode(struct page *page)
305{
306 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
307 __u64 cp_ver = cur_cp_version(ckpt);
308
309 /* Don't care crc part, if fsck.f2fs sets it. */
310 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
311 return (cp_ver << 32) == (cpver_of_node(page) << 32);
312
313 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
314 cp_ver |= (cur_cp_crc(ckpt) << 32);
315
316 return cp_ver == cpver_of_node(page);
317}
318
319/*
320 * f2fs assigns the following node offsets described as (num).
321 * N = NIDS_PER_BLOCK
322 *
323 * Inode block (0)
324 * |- direct node (1)
325 * |- direct node (2)
326 * |- indirect node (3)
327 * | `- direct node (4 => 4 + N - 1)
328 * |- indirect node (4 + N)
329 * | `- direct node (5 + N => 5 + 2N - 1)
330 * `- double indirect node (5 + 2N)
331 * `- indirect node (6 + 2N)
332 * `- direct node
333 * ......
334 * `- indirect node ((6 + 2N) + x(N + 1))
335 * `- direct node
336 * ......
337 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
338 * `- direct node
339 */
340static inline bool IS_DNODE(struct page *node_page)
341{
342 unsigned int ofs = ofs_of_node(node_page);
343
344 if (f2fs_has_xattr_block(ofs))
345 return true;
346
347 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
348 ofs == 5 + 2 * NIDS_PER_BLOCK)
349 return false;
350 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
351 ofs -= 6 + 2 * NIDS_PER_BLOCK;
352 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
353 return false;
354 }
355 return true;
356}
357
358static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
359{
360 struct f2fs_node *rn = F2FS_NODE(p);
361
362 f2fs_wait_on_page_writeback(p, NODE, true);
363
364 if (i)
365 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
366 else
367 rn->in.nid[off] = cpu_to_le32(nid);
368 return set_page_dirty(p);
369}
370
371static inline nid_t get_nid(struct page *p, int off, bool i)
372{
373 struct f2fs_node *rn = F2FS_NODE(p);
374
375 if (i)
376 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
377 return le32_to_cpu(rn->in.nid[off]);
378}
379
380/*
381 * Coldness identification:
382 * - Mark cold files in f2fs_inode_info
383 * - Mark cold node blocks in their node footer
384 * - Mark cold data pages in page cache
385 */
386static inline int is_cold_data(struct page *page)
387{
388 return PageChecked(page);
389}
390
391static inline void set_cold_data(struct page *page)
392{
393 SetPageChecked(page);
394}
395
396static inline void clear_cold_data(struct page *page)
397{
398 ClearPageChecked(page);
399}
400
401static inline int is_node(struct page *page, int type)
402{
403 struct f2fs_node *rn = F2FS_NODE(page);
404 return le32_to_cpu(rn->footer.flag) & (1 << type);
405}
406
407#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
408#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
409#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
410
411static inline int is_inline_node(struct page *page)
412{
413 return PageChecked(page);
414}
415
416static inline void set_inline_node(struct page *page)
417{
418 SetPageChecked(page);
419}
420
421static inline void clear_inline_node(struct page *page)
422{
423 ClearPageChecked(page);
424}
425
426static inline void set_cold_node(struct page *page, bool is_dir)
427{
428 struct f2fs_node *rn = F2FS_NODE(page);
429 unsigned int flag = le32_to_cpu(rn->footer.flag);
430
431 if (is_dir)
432 flag &= ~(0x1 << COLD_BIT_SHIFT);
433 else
434 flag |= (0x1 << COLD_BIT_SHIFT);
435 rn->footer.flag = cpu_to_le32(flag);
436}
437
438static inline void set_mark(struct page *page, int mark, int type)
439{
440 struct f2fs_node *rn = F2FS_NODE(page);
441 unsigned int flag = le32_to_cpu(rn->footer.flag);
442 if (mark)
443 flag |= (0x1 << type);
444 else
445 flag &= ~(0x1 << type);
446 rn->footer.flag = cpu_to_le32(flag);
447}
448#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
449#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)