Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.5.6
 
   1/*
   2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
   3 * Copyright (C) 2010 Red Hat, Inc.
   4 * All Rights Reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it would be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write the Free Software Foundation,
  17 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  18 */
  19#include "xfs.h"
  20#include "xfs_fs.h"
  21#include "xfs_types.h"
  22#include "xfs_log.h"
  23#include "xfs_trans.h"
  24#include "xfs_sb.h"
  25#include "xfs_ag.h"
  26#include "xfs_mount.h"
  27#include "xfs_error.h"
  28#include "xfs_da_btree.h"
  29#include "xfs_bmap_btree.h"
  30#include "xfs_alloc_btree.h"
  31#include "xfs_ialloc_btree.h"
  32#include "xfs_dinode.h"
  33#include "xfs_inode.h"
  34#include "xfs_btree.h"
  35#include "xfs_ialloc.h"
  36#include "xfs_alloc.h"
  37#include "xfs_extent_busy.h"
  38#include "xfs_bmap.h"
  39#include "xfs_quota.h"
 
  40#include "xfs_trans_priv.h"
  41#include "xfs_trans_space.h"
  42#include "xfs_inode_item.h"
  43#include "xfs_trace.h"
 
 
 
 
 
 
 
 
 
  44
  45kmem_zone_t	*xfs_trans_zone;
  46kmem_zone_t	*xfs_log_item_desc_zone;
  47
  48
  49/*
  50 * Various log reservation values.
  51 *
  52 * These are based on the size of the file system block because that is what
  53 * most transactions manipulate.  Each adds in an additional 128 bytes per
  54 * item logged to try to account for the overhead of the transaction mechanism.
  55 *
  56 * Note:  Most of the reservations underestimate the number of allocation
  57 * groups into which they could free extents in the xfs_bmap_finish() call.
  58 * This is because the number in the worst case is quite high and quite
  59 * unusual.  In order to fix this we need to change xfs_bmap_finish() to free
  60 * extents in only a single AG at a time.  This will require changes to the
  61 * EFI code as well, however, so that the EFI for the extents not freed is
  62 * logged again in each transaction.  See SGI PV #261917.
  63 *
  64 * Reservation functions here avoid a huge stack in xfs_trans_init due to
  65 * register overflow from temporaries in the calculations.
  66 */
  67
  68
  69/*
  70 * In a write transaction we can allocate a maximum of 2
  71 * extents.  This gives:
  72 *    the inode getting the new extents: inode size
  73 *    the inode's bmap btree: max depth * block size
  74 *    the agfs of the ags from which the extents are allocated: 2 * sector
  75 *    the superblock free block counter: sector size
  76 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
  77 * And the bmap_finish transaction can free bmap blocks in a join:
  78 *    the agfs of the ags containing the blocks: 2 * sector size
  79 *    the agfls of the ags containing the blocks: 2 * sector size
  80 *    the super block free block counter: sector size
  81 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
  82 */
  83STATIC uint
  84xfs_calc_write_reservation(
  85	struct xfs_mount	*mp)
  86{
  87	return XFS_DQUOT_LOGRES(mp) +
  88		MAX((mp->m_sb.sb_inodesize +
  89		     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
  90		     2 * mp->m_sb.sb_sectsize +
  91		     mp->m_sb.sb_sectsize +
  92		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
  93		     128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
  94			    XFS_ALLOCFREE_LOG_COUNT(mp, 2))),
  95		    (2 * mp->m_sb.sb_sectsize +
  96		     2 * mp->m_sb.sb_sectsize +
  97		     mp->m_sb.sb_sectsize +
  98		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
  99		     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
 100}
 101
 102/*
 103 * In truncating a file we free up to two extents at once.  We can modify:
 104 *    the inode being truncated: inode size
 105 *    the inode's bmap btree: (max depth + 1) * block size
 106 * And the bmap_finish transaction can free the blocks and bmap blocks:
 107 *    the agf for each of the ags: 4 * sector size
 108 *    the agfl for each of the ags: 4 * sector size
 109 *    the super block to reflect the freed blocks: sector size
 110 *    worst case split in allocation btrees per extent assuming 4 extents:
 111 *		4 exts * 2 trees * (2 * max depth - 1) * block size
 112 *    the inode btree: max depth * blocksize
 113 *    the allocation btrees: 2 trees * (max depth - 1) * block size
 114 */
 115STATIC uint
 116xfs_calc_itruncate_reservation(
 117	struct xfs_mount	*mp)
 118{
 119	return XFS_DQUOT_LOGRES(mp) +
 120		MAX((mp->m_sb.sb_inodesize +
 121		     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) +
 122		     128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
 123		    (4 * mp->m_sb.sb_sectsize +
 124		     4 * mp->m_sb.sb_sectsize +
 125		     mp->m_sb.sb_sectsize +
 126		     XFS_ALLOCFREE_LOG_RES(mp, 4) +
 127		     128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) +
 128		     128 * 5 +
 129		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
 130		     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
 131			    XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
 132}
 133
 134/*
 135 * In renaming a files we can modify:
 136 *    the four inodes involved: 4 * inode size
 137 *    the two directory btrees: 2 * (max depth + v2) * dir block size
 138 *    the two directory bmap btrees: 2 * max depth * block size
 139 * And the bmap_finish transaction can free dir and bmap blocks (two sets
 140 *	of bmap blocks) giving:
 141 *    the agf for the ags in which the blocks live: 3 * sector size
 142 *    the agfl for the ags in which the blocks live: 3 * sector size
 143 *    the superblock for the free block count: sector size
 144 *    the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
 145 */
 146STATIC uint
 147xfs_calc_rename_reservation(
 148	struct xfs_mount	*mp)
 149{
 150	return XFS_DQUOT_LOGRES(mp) +
 151		MAX((4 * mp->m_sb.sb_inodesize +
 152		     2 * XFS_DIROP_LOG_RES(mp) +
 153		     128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))),
 154		    (3 * mp->m_sb.sb_sectsize +
 155		     3 * mp->m_sb.sb_sectsize +
 156		     mp->m_sb.sb_sectsize +
 157		     XFS_ALLOCFREE_LOG_RES(mp, 3) +
 158		     128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3))));
 159}
 160
 161/*
 162 * For creating a link to an inode:
 163 *    the parent directory inode: inode size
 164 *    the linked inode: inode size
 165 *    the directory btree could split: (max depth + v2) * dir block size
 166 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
 167 * And the bmap_finish transaction can free some bmap blocks giving:
 168 *    the agf for the ag in which the blocks live: sector size
 169 *    the agfl for the ag in which the blocks live: sector size
 170 *    the superblock for the free block count: sector size
 171 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
 172 */
 173STATIC uint
 174xfs_calc_link_reservation(
 175	struct xfs_mount	*mp)
 176{
 177	return XFS_DQUOT_LOGRES(mp) +
 178		MAX((mp->m_sb.sb_inodesize +
 179		     mp->m_sb.sb_inodesize +
 180		     XFS_DIROP_LOG_RES(mp) +
 181		     128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
 182		    (mp->m_sb.sb_sectsize +
 183		     mp->m_sb.sb_sectsize +
 184		     mp->m_sb.sb_sectsize +
 185		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
 186		     128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
 187}
 188
 189/*
 190 * For removing a directory entry we can modify:
 191 *    the parent directory inode: inode size
 192 *    the removed inode: inode size
 193 *    the directory btree could join: (max depth + v2) * dir block size
 194 *    the directory bmap btree could join or split: (max depth + v2) * blocksize
 195 * And the bmap_finish transaction can free the dir and bmap blocks giving:
 196 *    the agf for the ag in which the blocks live: 2 * sector size
 197 *    the agfl for the ag in which the blocks live: 2 * sector size
 198 *    the superblock for the free block count: sector size
 199 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 200 */
 201STATIC uint
 202xfs_calc_remove_reservation(
 203	struct xfs_mount	*mp)
 204{
 205	return XFS_DQUOT_LOGRES(mp) +
 206		MAX((mp->m_sb.sb_inodesize +
 207		     mp->m_sb.sb_inodesize +
 208		     XFS_DIROP_LOG_RES(mp) +
 209		     128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
 210		    (2 * mp->m_sb.sb_sectsize +
 211		     2 * mp->m_sb.sb_sectsize +
 212		     mp->m_sb.sb_sectsize +
 213		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
 214		     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
 215}
 216
 217/*
 218 * For symlink we can modify:
 219 *    the parent directory inode: inode size
 220 *    the new inode: inode size
 221 *    the inode btree entry: 1 block
 222 *    the directory btree: (max depth + v2) * dir block size
 223 *    the directory inode's bmap btree: (max depth + v2) * block size
 224 *    the blocks for the symlink: 1 kB
 225 * Or in the first xact we allocate some inodes giving:
 226 *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
 227 *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
 228 *    the inode btree: max depth * blocksize
 229 *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size
 230 */
 231STATIC uint
 232xfs_calc_symlink_reservation(
 233	struct xfs_mount	*mp)
 234{
 235	return XFS_DQUOT_LOGRES(mp) +
 236		MAX((mp->m_sb.sb_inodesize +
 237		     mp->m_sb.sb_inodesize +
 238		     XFS_FSB_TO_B(mp, 1) +
 239		     XFS_DIROP_LOG_RES(mp) +
 240		     1024 +
 241		     128 * (4 + XFS_DIROP_LOG_COUNT(mp))),
 242		    (2 * mp->m_sb.sb_sectsize +
 243		     XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
 244		     XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
 245		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
 246		     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
 247			    XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
 248}
 249
 250/*
 251 * For create we can modify:
 252 *    the parent directory inode: inode size
 253 *    the new inode: inode size
 254 *    the inode btree entry: block size
 255 *    the superblock for the nlink flag: sector size
 256 *    the directory btree: (max depth + v2) * dir block size
 257 *    the directory inode's bmap btree: (max depth + v2) * block size
 258 * Or in the first xact we allocate some inodes giving:
 259 *    the agi and agf of the ag getting the new inodes: 2 * sectorsize
 260 *    the superblock for the nlink flag: sector size
 261 *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
 262 *    the inode btree: max depth * blocksize
 263 *    the allocation btrees: 2 trees * (max depth - 1) * block size
 264 */
 265STATIC uint
 266xfs_calc_create_reservation(
 267	struct xfs_mount	*mp)
 268{
 269	return XFS_DQUOT_LOGRES(mp) +
 270		MAX((mp->m_sb.sb_inodesize +
 271		     mp->m_sb.sb_inodesize +
 272		     mp->m_sb.sb_sectsize +
 273		     XFS_FSB_TO_B(mp, 1) +
 274		     XFS_DIROP_LOG_RES(mp) +
 275		     128 * (3 + XFS_DIROP_LOG_COUNT(mp))),
 276		    (3 * mp->m_sb.sb_sectsize +
 277		     XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
 278		     XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
 279		     XFS_ALLOCFREE_LOG_RES(mp, 1) +
 280		     128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
 281			    XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
 282}
 283
 284/*
 285 * Making a new directory is the same as creating a new file.
 286 */
 287STATIC uint
 288xfs_calc_mkdir_reservation(
 289	struct xfs_mount	*mp)
 290{
 291	return xfs_calc_create_reservation(mp);
 292}
 293
 294/*
 295 * In freeing an inode we can modify:
 296 *    the inode being freed: inode size
 297 *    the super block free inode counter: sector size
 298 *    the agi hash list and counters: sector size
 299 *    the inode btree entry: block size
 300 *    the on disk inode before ours in the agi hash list: inode cluster size
 301 *    the inode btree: max depth * blocksize
 302 *    the allocation btrees: 2 trees * (max depth - 1) * block size
 303 */
 304STATIC uint
 305xfs_calc_ifree_reservation(
 306	struct xfs_mount	*mp)
 307{
 308	return XFS_DQUOT_LOGRES(mp) +
 309		mp->m_sb.sb_inodesize +
 310		mp->m_sb.sb_sectsize +
 311		mp->m_sb.sb_sectsize +
 312		XFS_FSB_TO_B(mp, 1) +
 313		MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
 314		    XFS_INODE_CLUSTER_SIZE(mp)) +
 315		128 * 5 +
 316		XFS_ALLOCFREE_LOG_RES(mp, 1) +
 317		128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
 318		       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
 319}
 320
 321/*
 322 * When only changing the inode we log the inode and possibly the superblock
 323 * We also add a bit of slop for the transaction stuff.
 324 */
 325STATIC uint
 326xfs_calc_ichange_reservation(
 327	struct xfs_mount	*mp)
 328{
 329	return XFS_DQUOT_LOGRES(mp) +
 330		mp->m_sb.sb_inodesize +
 331		mp->m_sb.sb_sectsize +
 332		512;
 333
 334}
 335
 336/*
 337 * Growing the data section of the filesystem.
 338 *	superblock
 339 *	agi and agf
 340 *	allocation btrees
 341 */
 342STATIC uint
 343xfs_calc_growdata_reservation(
 344	struct xfs_mount	*mp)
 345{
 346	return mp->m_sb.sb_sectsize * 3 +
 347		XFS_ALLOCFREE_LOG_RES(mp, 1) +
 348		128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1));
 349}
 350
 351/*
 352 * Growing the rt section of the filesystem.
 353 * In the first set of transactions (ALLOC) we allocate space to the
 354 * bitmap or summary files.
 355 *	superblock: sector size
 356 *	agf of the ag from which the extent is allocated: sector size
 357 *	bmap btree for bitmap/summary inode: max depth * blocksize
 358 *	bitmap/summary inode: inode size
 359 *	allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
 360 */
 361STATIC uint
 362xfs_calc_growrtalloc_reservation(
 363	struct xfs_mount	*mp)
 364{
 365	return 2 * mp->m_sb.sb_sectsize +
 366		XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
 367		mp->m_sb.sb_inodesize +
 368		XFS_ALLOCFREE_LOG_RES(mp, 1) +
 369		128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
 370		       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
 371}
 372
 373/*
 374 * Growing the rt section of the filesystem.
 375 * In the second set of transactions (ZERO) we zero the new metadata blocks.
 376 *	one bitmap/summary block: blocksize
 377 */
 378STATIC uint
 379xfs_calc_growrtzero_reservation(
 380	struct xfs_mount	*mp)
 381{
 382	return mp->m_sb.sb_blocksize + 128;
 383}
 384
 385/*
 386 * Growing the rt section of the filesystem.
 387 * In the third set of transactions (FREE) we update metadata without
 388 * allocating any new blocks.
 389 *	superblock: sector size
 390 *	bitmap inode: inode size
 391 *	summary inode: inode size
 392 *	one bitmap block: blocksize
 393 *	summary blocks: new summary size
 394 */
 395STATIC uint
 396xfs_calc_growrtfree_reservation(
 397	struct xfs_mount	*mp)
 398{
 399	return mp->m_sb.sb_sectsize +
 400		2 * mp->m_sb.sb_inodesize +
 401		mp->m_sb.sb_blocksize +
 402		mp->m_rsumsize +
 403		128 * 5;
 404}
 405
 406/*
 407 * Logging the inode modification timestamp on a synchronous write.
 408 *	inode
 409 */
 410STATIC uint
 411xfs_calc_swrite_reservation(
 412	struct xfs_mount	*mp)
 413{
 414	return mp->m_sb.sb_inodesize + 128;
 415}
 416
 417/*
 418 * Logging the inode mode bits when writing a setuid/setgid file
 419 *	inode
 420 */
 421STATIC uint
 422xfs_calc_writeid_reservation(xfs_mount_t *mp)
 423{
 424	return mp->m_sb.sb_inodesize + 128;
 425}
 426
 427/*
 428 * Converting the inode from non-attributed to attributed.
 429 *	the inode being converted: inode size
 430 *	agf block and superblock (for block allocation)
 431 *	the new block (directory sized)
 432 *	bmap blocks for the new directory block
 433 *	allocation btrees
 434 */
 435STATIC uint
 436xfs_calc_addafork_reservation(
 437	struct xfs_mount	*mp)
 438{
 439	return XFS_DQUOT_LOGRES(mp) +
 440		mp->m_sb.sb_inodesize +
 441		mp->m_sb.sb_sectsize * 2 +
 442		mp->m_dirblksize +
 443		XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) +
 444		XFS_ALLOCFREE_LOG_RES(mp, 1) +
 445		128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 +
 446		       XFS_ALLOCFREE_LOG_COUNT(mp, 1));
 447}
 448
 449/*
 450 * Removing the attribute fork of a file
 451 *    the inode being truncated: inode size
 452 *    the inode's bmap btree: max depth * block size
 453 * And the bmap_finish transaction can free the blocks and bmap blocks:
 454 *    the agf for each of the ags: 4 * sector size
 455 *    the agfl for each of the ags: 4 * sector size
 456 *    the super block to reflect the freed blocks: sector size
 457 *    worst case split in allocation btrees per extent assuming 4 extents:
 458 *		4 exts * 2 trees * (2 * max depth - 1) * block size
 459 */
 460STATIC uint
 461xfs_calc_attrinval_reservation(
 462	struct xfs_mount	*mp)
 463{
 464	return MAX((mp->m_sb.sb_inodesize +
 465		    XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
 466		    128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))),
 467		   (4 * mp->m_sb.sb_sectsize +
 468		    4 * mp->m_sb.sb_sectsize +
 469		    mp->m_sb.sb_sectsize +
 470		    XFS_ALLOCFREE_LOG_RES(mp, 4) +
 471		    128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4))));
 472}
 473
 474/*
 475 * Setting an attribute.
 476 *	the inode getting the attribute
 477 *	the superblock for allocations
 478 *	the agfs extents are allocated from
 479 *	the attribute btree * max depth
 480 *	the inode allocation btree
 481 * Since attribute transaction space is dependent on the size of the attribute,
 482 * the calculation is done partially at mount time and partially at runtime.
 483 */
 484STATIC uint
 485xfs_calc_attrset_reservation(
 486	struct xfs_mount	*mp)
 487{
 488	return XFS_DQUOT_LOGRES(mp) +
 489		mp->m_sb.sb_inodesize +
 490		mp->m_sb.sb_sectsize +
 491		XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
 492		128 * (2 + XFS_DA_NODE_MAXDEPTH);
 493}
 494
 495/*
 496 * Removing an attribute.
 497 *    the inode: inode size
 498 *    the attribute btree could join: max depth * block size
 499 *    the inode bmap btree could join or split: max depth * block size
 500 * And the bmap_finish transaction can free the attr blocks freed giving:
 501 *    the agf for the ag in which the blocks live: 2 * sector size
 502 *    the agfl for the ag in which the blocks live: 2 * sector size
 503 *    the superblock for the free block count: sector size
 504 *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
 505 */
 506STATIC uint
 507xfs_calc_attrrm_reservation(
 508	struct xfs_mount	*mp)
 509{
 510	return XFS_DQUOT_LOGRES(mp) +
 511		MAX((mp->m_sb.sb_inodesize +
 512		     XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
 513		     XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
 514		     128 * (1 + XFS_DA_NODE_MAXDEPTH +
 515			    XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
 516		    (2 * mp->m_sb.sb_sectsize +
 517		     2 * mp->m_sb.sb_sectsize +
 518		     mp->m_sb.sb_sectsize +
 519		     XFS_ALLOCFREE_LOG_RES(mp, 2) +
 520		     128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
 521}
 522
 523/*
 524 * Clearing a bad agino number in an agi hash bucket.
 525 */
 526STATIC uint
 527xfs_calc_clear_agi_bucket_reservation(
 528	struct xfs_mount	*mp)
 529{
 530	return mp->m_sb.sb_sectsize + 128;
 531}
 
 
 
 532
 533/*
 534 * Initialize the precomputed transaction reservation values
 535 * in the mount structure.
 536 */
 537void
 538xfs_trans_init(
 539	struct xfs_mount	*mp)
 540{
 541	struct xfs_trans_reservations *resp = &mp->m_reservations;
 542
 543	resp->tr_write = xfs_calc_write_reservation(mp);
 544	resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
 545	resp->tr_rename = xfs_calc_rename_reservation(mp);
 546	resp->tr_link = xfs_calc_link_reservation(mp);
 547	resp->tr_remove = xfs_calc_remove_reservation(mp);
 548	resp->tr_symlink = xfs_calc_symlink_reservation(mp);
 549	resp->tr_create = xfs_calc_create_reservation(mp);
 550	resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
 551	resp->tr_ifree = xfs_calc_ifree_reservation(mp);
 552	resp->tr_ichange = xfs_calc_ichange_reservation(mp);
 553	resp->tr_growdata = xfs_calc_growdata_reservation(mp);
 554	resp->tr_swrite = xfs_calc_swrite_reservation(mp);
 555	resp->tr_writeid = xfs_calc_writeid_reservation(mp);
 556	resp->tr_addafork = xfs_calc_addafork_reservation(mp);
 557	resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
 558	resp->tr_attrset = xfs_calc_attrset_reservation(mp);
 559	resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
 560	resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
 561	resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
 562	resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
 563	resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
 564}
 565
 566/*
 567 * This routine is called to allocate a transaction structure.
 568 * The type parameter indicates the type of the transaction.  These
 569 * are enumerated in xfs_trans.h.
 570 *
 571 * Dynamically allocate the transaction structure from the transaction
 572 * zone, initialize it, and return it to the caller.
 573 */
 574xfs_trans_t *
 575xfs_trans_alloc(
 576	xfs_mount_t	*mp,
 577	uint		type)
 578{
 579	xfs_wait_for_freeze(mp, SB_FREEZE_TRANS);
 580	return _xfs_trans_alloc(mp, type, KM_SLEEP);
 581}
 582
 583xfs_trans_t *
 584_xfs_trans_alloc(
 585	xfs_mount_t	*mp,
 586	uint		type,
 587	xfs_km_flags_t	memflags)
 588{
 589	xfs_trans_t	*tp;
 590
 591	atomic_inc(&mp->m_active_trans);
 592
 593	tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
 594	tp->t_magic = XFS_TRANS_MAGIC;
 595	tp->t_type = type;
 596	tp->t_mountp = mp;
 597	INIT_LIST_HEAD(&tp->t_items);
 598	INIT_LIST_HEAD(&tp->t_busy);
 599	return tp;
 600}
 601
 602/*
 603 * Free the transaction structure.  If there is more clean up
 604 * to do when the structure is freed, add it here.
 605 */
 606STATIC void
 607xfs_trans_free(
 608	struct xfs_trans	*tp)
 609{
 610	xfs_extent_busy_sort(&tp->t_busy);
 611	xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
 612
 613	atomic_dec(&tp->t_mountp->m_active_trans);
 
 
 
 614	xfs_trans_free_dqinfo(tp);
 615	kmem_zone_free(xfs_trans_zone, tp);
 616}
 617
 618/*
 619 * This is called to create a new transaction which will share the
 620 * permanent log reservation of the given transaction.  The remaining
 621 * unused block and rt extent reservations are also inherited.  This
 622 * implies that the original transaction is no longer allowed to allocate
 623 * blocks.  Locks and log items, however, are no inherited.  They must
 624 * be added to the new transaction explicitly.
 625 */
 626xfs_trans_t *
 627xfs_trans_dup(
 628	xfs_trans_t	*tp)
 629{
 630	xfs_trans_t	*ntp;
 631
 632	ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
 
 
 633
 634	/*
 635	 * Initialize the new transaction structure.
 636	 */
 637	ntp->t_magic = XFS_TRANS_MAGIC;
 638	ntp->t_type = tp->t_type;
 639	ntp->t_mountp = tp->t_mountp;
 640	INIT_LIST_HEAD(&ntp->t_items);
 641	INIT_LIST_HEAD(&ntp->t_busy);
 
 
 642
 643	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 644	ASSERT(tp->t_ticket != NULL);
 645
 646	ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE);
 
 
 
 
 
 647	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
 
 
 648	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
 649	tp->t_blk_res = tp->t_blk_res_used;
 
 650	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
 651	tp->t_rtx_res = tp->t_rtx_res_used;
 652	ntp->t_pflags = tp->t_pflags;
 653
 654	xfs_trans_dup_dqinfo(tp, ntp);
 655
 656	atomic_inc(&tp->t_mountp->m_active_trans);
 
 
 
 657	return ntp;
 658}
 659
 660/*
 661 * This is called to reserve free disk blocks and log space for the
 662 * given transaction.  This must be done before allocating any resources
 663 * within the transaction.
 664 *
 665 * This will return ENOSPC if there are not enough blocks available.
 666 * It will sleep waiting for available log space.
 667 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
 668 * is used by long running transactions.  If any one of the reservations
 669 * fails then they will all be backed out.
 670 *
 671 * This does not do quota reservations. That typically is done by the
 672 * caller afterwards.
 673 */
 674int
 675xfs_trans_reserve(
 676	xfs_trans_t	*tp,
 677	uint		blocks,
 678	uint		logspace,
 679	uint		rtextents,
 680	uint		flags,
 681	uint		logcount)
 682{
 683	int		error = 0;
 684	int		rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
 685
 686	/* Mark this thread as being in a transaction */
 687	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
 688
 689	/*
 690	 * Attempt to reserve the needed disk blocks by decrementing
 691	 * the number needed from the number available.  This will
 692	 * fail if the count would go below zero.
 693	 */
 694	if (blocks > 0) {
 695		error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
 696					  -((int64_t)blocks), rsvd);
 697		if (error != 0) {
 698			current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 699			return (XFS_ERROR(ENOSPC));
 700		}
 701		tp->t_blk_res += blocks;
 702	}
 703
 704	/*
 705	 * Reserve the log space needed for this transaction.
 706	 */
 707	if (logspace > 0) {
 708		bool	permanent = false;
 709
 710		ASSERT(tp->t_log_res == 0 || tp->t_log_res == logspace);
 711		ASSERT(tp->t_log_count == 0 || tp->t_log_count == logcount);
 
 
 712
 713		if (flags & XFS_TRANS_PERM_LOG_RES) {
 714			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
 715			permanent = true;
 716		} else {
 717			ASSERT(tp->t_ticket == NULL);
 718			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
 719		}
 720
 721		if (tp->t_ticket != NULL) {
 722			ASSERT(flags & XFS_TRANS_PERM_LOG_RES);
 723			error = xfs_log_regrant(tp->t_mountp, tp->t_ticket);
 724		} else {
 725			error = xfs_log_reserve(tp->t_mountp, logspace,
 726						logcount, &tp->t_ticket,
 727						XFS_TRANSACTION, permanent,
 728						tp->t_type);
 729		}
 730
 731		if (error)
 732			goto undo_blocks;
 733
 734		tp->t_log_res = logspace;
 735		tp->t_log_count = logcount;
 736	}
 737
 738	/*
 739	 * Attempt to reserve the needed realtime extents by decrementing
 740	 * the number needed from the number available.  This will
 741	 * fail if the count would go below zero.
 742	 */
 743	if (rtextents > 0) {
 744		error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
 745					  -((int64_t)rtextents), rsvd);
 746		if (error) {
 747			error = XFS_ERROR(ENOSPC);
 748			goto undo_log;
 749		}
 750		tp->t_rtx_res += rtextents;
 751	}
 752
 753	return 0;
 754
 755	/*
 756	 * Error cases jump to one of these labels to undo any
 757	 * reservations which have already been performed.
 758	 */
 759undo_log:
 760	if (logspace > 0) {
 761		int		log_flags;
 762
 763		if (flags & XFS_TRANS_PERM_LOG_RES) {
 764			log_flags = XFS_LOG_REL_PERM_RESERV;
 765		} else {
 766			log_flags = 0;
 767		}
 768		xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
 769		tp->t_ticket = NULL;
 770		tp->t_log_res = 0;
 771		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
 772	}
 773
 774undo_blocks:
 775	if (blocks > 0) {
 776		xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
 777					 (int64_t)blocks, rsvd);
 778		tp->t_blk_res = 0;
 779	}
 
 
 780
 781	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
 
 
 
 
 
 
 
 
 
 
 
 782
 783	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784}
 785
 786/*
 787 * Record the indicated change to the given field for application
 788 * to the file system's superblock when the transaction commits.
 789 * For now, just store the change in the transaction structure.
 790 *
 791 * Mark the transaction structure to indicate that the superblock
 792 * needs to be updated before committing.
 793 *
 794 * Because we may not be keeping track of allocated/free inodes and
 795 * used filesystem blocks in the superblock, we do not mark the
 796 * superblock dirty in this transaction if we modify these fields.
 797 * We still need to update the transaction deltas so that they get
 798 * applied to the incore superblock, but we don't want them to
 799 * cause the superblock to get locked and logged if these are the
 800 * only fields in the superblock that the transaction modifies.
 801 */
 802void
 803xfs_trans_mod_sb(
 804	xfs_trans_t	*tp,
 805	uint		field,
 806	int64_t		delta)
 807{
 808	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
 809	xfs_mount_t	*mp = tp->t_mountp;
 810
 811	switch (field) {
 812	case XFS_TRANS_SB_ICOUNT:
 813		tp->t_icount_delta += delta;
 814		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 815			flags &= ~XFS_TRANS_SB_DIRTY;
 816		break;
 817	case XFS_TRANS_SB_IFREE:
 818		tp->t_ifree_delta += delta;
 819		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 820			flags &= ~XFS_TRANS_SB_DIRTY;
 821		break;
 822	case XFS_TRANS_SB_FDBLOCKS:
 823		/*
 824		 * Track the number of blocks allocated in the
 825		 * transaction.  Make sure it does not exceed the
 826		 * number reserved.
 827		 */
 828		if (delta < 0) {
 829			tp->t_blk_res_used += (uint)-delta;
 830			ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831		}
 832		tp->t_fdblocks_delta += delta;
 833		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 834			flags &= ~XFS_TRANS_SB_DIRTY;
 835		break;
 836	case XFS_TRANS_SB_RES_FDBLOCKS:
 837		/*
 838		 * The allocation has already been applied to the
 839		 * in-core superblock's counter.  This should only
 840		 * be applied to the on-disk superblock.
 841		 */
 842		ASSERT(delta < 0);
 843		tp->t_res_fdblocks_delta += delta;
 844		if (xfs_sb_version_haslazysbcount(&mp->m_sb))
 845			flags &= ~XFS_TRANS_SB_DIRTY;
 846		break;
 847	case XFS_TRANS_SB_FREXTENTS:
 848		/*
 849		 * Track the number of blocks allocated in the
 850		 * transaction.  Make sure it does not exceed the
 851		 * number reserved.
 852		 */
 853		if (delta < 0) {
 854			tp->t_rtx_res_used += (uint)-delta;
 855			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
 856		}
 857		tp->t_frextents_delta += delta;
 
 
 858		break;
 859	case XFS_TRANS_SB_RES_FREXTENTS:
 860		/*
 861		 * The allocation has already been applied to the
 862		 * in-core superblock's counter.  This should only
 863		 * be applied to the on-disk superblock.
 864		 */
 865		ASSERT(delta < 0);
 866		tp->t_res_frextents_delta += delta;
 
 
 867		break;
 868	case XFS_TRANS_SB_DBLOCKS:
 869		ASSERT(delta > 0);
 870		tp->t_dblocks_delta += delta;
 871		break;
 872	case XFS_TRANS_SB_AGCOUNT:
 873		ASSERT(delta > 0);
 874		tp->t_agcount_delta += delta;
 875		break;
 876	case XFS_TRANS_SB_IMAXPCT:
 877		tp->t_imaxpct_delta += delta;
 878		break;
 879	case XFS_TRANS_SB_REXTSIZE:
 880		tp->t_rextsize_delta += delta;
 881		break;
 882	case XFS_TRANS_SB_RBMBLOCKS:
 883		tp->t_rbmblocks_delta += delta;
 884		break;
 885	case XFS_TRANS_SB_RBLOCKS:
 886		tp->t_rblocks_delta += delta;
 887		break;
 888	case XFS_TRANS_SB_REXTENTS:
 889		tp->t_rextents_delta += delta;
 890		break;
 891	case XFS_TRANS_SB_REXTSLOG:
 892		tp->t_rextslog_delta += delta;
 893		break;
 
 
 
 
 894	default:
 895		ASSERT(0);
 896		return;
 897	}
 898
 899	tp->t_flags |= flags;
 900}
 901
 902/*
 903 * xfs_trans_apply_sb_deltas() is called from the commit code
 904 * to bring the superblock buffer into the current transaction
 905 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
 906 *
 907 * For now we just look at each field allowed to change and change
 908 * it if necessary.
 909 */
 910STATIC void
 911xfs_trans_apply_sb_deltas(
 912	xfs_trans_t	*tp)
 913{
 914	xfs_dsb_t	*sbp;
 915	xfs_buf_t	*bp;
 916	int		whole = 0;
 917
 918	bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
 919	sbp = XFS_BUF_TO_SBP(bp);
 920
 921	/*
 922	 * Check that superblock mods match the mods made to AGF counters.
 923	 */
 924	ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
 925	       (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
 926		tp->t_ag_btree_delta));
 927
 928	/*
 929	 * Only update the superblock counters if we are logging them
 930	 */
 931	if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
 932		if (tp->t_icount_delta)
 933			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
 934		if (tp->t_ifree_delta)
 935			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
 936		if (tp->t_fdblocks_delta)
 937			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
 938		if (tp->t_res_fdblocks_delta)
 939			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
 940	}
 941
 942	if (tp->t_frextents_delta)
 943		be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
 944	if (tp->t_res_frextents_delta)
 945		be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 946
 947	if (tp->t_dblocks_delta) {
 948		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
 949		whole = 1;
 950	}
 951	if (tp->t_agcount_delta) {
 952		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
 953		whole = 1;
 954	}
 955	if (tp->t_imaxpct_delta) {
 956		sbp->sb_imax_pct += tp->t_imaxpct_delta;
 957		whole = 1;
 958	}
 959	if (tp->t_rextsize_delta) {
 960		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
 
 
 
 
 
 
 
 
 
 
 
 
 961		whole = 1;
 962	}
 963	if (tp->t_rbmblocks_delta) {
 964		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
 965		whole = 1;
 966	}
 967	if (tp->t_rblocks_delta) {
 968		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
 969		whole = 1;
 970	}
 971	if (tp->t_rextents_delta) {
 972		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
 973		whole = 1;
 974	}
 975	if (tp->t_rextslog_delta) {
 976		sbp->sb_rextslog += tp->t_rextslog_delta;
 977		whole = 1;
 978	}
 
 
 
 
 979
 
 980	if (whole)
 981		/*
 982		 * Log the whole thing, the fields are noncontiguous.
 983		 */
 984		xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
 985	else
 986		/*
 987		 * Since all the modifiable fields are contiguous, we
 988		 * can get away with this.
 989		 */
 990		xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
 991				  offsetof(xfs_dsb_t, sb_frextents) +
 992				  sizeof(sbp->sb_frextents) - 1);
 993}
 994
 995/*
 996 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
 997 * and apply superblock counter changes to the in-core superblock.  The
 998 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
 999 * applied to the in-core superblock.  The idea is that that has already been
1000 * done.
1001 *
1002 * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
1003 * However, we have to ensure that we only modify each superblock field only
1004 * once because the application of the delta values may not be atomic. That can
1005 * lead to ENOSPC races occurring if we have two separate modifcations of the
1006 * free space counter to put back the entire reservation and then take away
1007 * what we used.
1008 *
1009 * If we are not logging superblock counters, then the inode allocated/free and
1010 * used block counts are not updated in the on disk superblock. In this case,
1011 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1012 * still need to update the incore superblock with the changes.
 
 
 
1013 */
 
 
1014void
1015xfs_trans_unreserve_and_mod_sb(
1016	xfs_trans_t	*tp)
1017{
1018	xfs_mod_sb_t	msb[9];	/* If you add cases, add entries */
1019	xfs_mod_sb_t	*msbp;
1020	xfs_mount_t	*mp = tp->t_mountp;
1021	/* REFERENCED */
1022	int		error;
1023	int		rsvd;
1024	int64_t		blkdelta = 0;
1025	int64_t		rtxdelta = 0;
1026	int64_t		idelta = 0;
1027	int64_t		ifreedelta = 0;
1028
1029	msbp = msb;
1030	rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1031
1032	/* calculate deltas */
1033	if (tp->t_blk_res > 0)
1034		blkdelta = tp->t_blk_res;
1035	if ((tp->t_fdblocks_delta != 0) &&
1036	    (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1037	     (tp->t_flags & XFS_TRANS_SB_DIRTY)))
 
1038	        blkdelta += tp->t_fdblocks_delta;
 
 
1039
1040	if (tp->t_rtx_res > 0)
1041		rtxdelta = tp->t_rtx_res;
1042	if ((tp->t_frextents_delta != 0) &&
1043	    (tp->t_flags & XFS_TRANS_SB_DIRTY))
1044		rtxdelta += tp->t_frextents_delta;
 
 
1045
1046	if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1047	     (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1048		idelta = tp->t_icount_delta;
1049		ifreedelta = tp->t_ifree_delta;
1050	}
1051
1052	/* apply the per-cpu counters */
1053	if (blkdelta) {
1054		error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
1055						 blkdelta, rsvd);
1056		if (error)
1057			goto out;
1058	}
1059
1060	if (idelta) {
1061		error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
1062						 idelta, rsvd);
1063		if (error)
1064			goto out_undo_fdblocks;
1065	}
1066
1067	if (ifreedelta) {
1068		error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
1069						 ifreedelta, rsvd);
1070		if (error)
1071			goto out_undo_icount;
1072	}
1073
1074	/* apply remaining deltas */
1075	if (rtxdelta != 0) {
1076		msbp->msb_field = XFS_SBS_FREXTENTS;
1077		msbp->msb_delta = rtxdelta;
1078		msbp++;
1079	}
1080
1081	if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1082		if (tp->t_dblocks_delta != 0) {
1083			msbp->msb_field = XFS_SBS_DBLOCKS;
1084			msbp->msb_delta = tp->t_dblocks_delta;
1085			msbp++;
1086		}
1087		if (tp->t_agcount_delta != 0) {
1088			msbp->msb_field = XFS_SBS_AGCOUNT;
1089			msbp->msb_delta = tp->t_agcount_delta;
1090			msbp++;
1091		}
1092		if (tp->t_imaxpct_delta != 0) {
1093			msbp->msb_field = XFS_SBS_IMAX_PCT;
1094			msbp->msb_delta = tp->t_imaxpct_delta;
1095			msbp++;
1096		}
1097		if (tp->t_rextsize_delta != 0) {
1098			msbp->msb_field = XFS_SBS_REXTSIZE;
1099			msbp->msb_delta = tp->t_rextsize_delta;
1100			msbp++;
1101		}
1102		if (tp->t_rbmblocks_delta != 0) {
1103			msbp->msb_field = XFS_SBS_RBMBLOCKS;
1104			msbp->msb_delta = tp->t_rbmblocks_delta;
1105			msbp++;
1106		}
1107		if (tp->t_rblocks_delta != 0) {
1108			msbp->msb_field = XFS_SBS_RBLOCKS;
1109			msbp->msb_delta = tp->t_rblocks_delta;
1110			msbp++;
1111		}
1112		if (tp->t_rextents_delta != 0) {
1113			msbp->msb_field = XFS_SBS_REXTENTS;
1114			msbp->msb_delta = tp->t_rextents_delta;
1115			msbp++;
1116		}
1117		if (tp->t_rextslog_delta != 0) {
1118			msbp->msb_field = XFS_SBS_REXTSLOG;
1119			msbp->msb_delta = tp->t_rextslog_delta;
1120			msbp++;
1121		}
1122	}
1123
1124	/*
1125	 * If we need to change anything, do it.
 
1126	 */
1127	if (msbp > msb) {
1128		error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1129			(uint)(msbp - msb), rsvd);
1130		if (error)
1131			goto out_undo_ifreecount;
1132	}
1133
1134	return;
1135
1136out_undo_ifreecount:
1137	if (ifreedelta)
1138		xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
1139out_undo_icount:
1140	if (idelta)
1141		xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
1142out_undo_fdblocks:
1143	if (blkdelta)
1144		xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
1145out:
1146	ASSERT(error == 0);
1147	return;
1148}
1149
1150/*
1151 * Add the given log item to the transaction's list of log items.
1152 *
1153 * The log item will now point to its new descriptor with its li_desc field.
1154 */
1155void
1156xfs_trans_add_item(
1157	struct xfs_trans	*tp,
1158	struct xfs_log_item	*lip)
1159{
1160	struct xfs_log_item_desc *lidp;
1161
1162	ASSERT(lip->li_mountp == tp->t_mountp);
1163	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
 
 
1164
1165	lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
1166
1167	lidp->lid_item = lip;
1168	lidp->lid_flags = 0;
1169	list_add_tail(&lidp->lid_trans, &tp->t_items);
1170
1171	lip->li_desc = lidp;
1172}
1173
1174STATIC void
1175xfs_trans_free_item_desc(
1176	struct xfs_log_item_desc *lidp)
1177{
1178	list_del_init(&lidp->lid_trans);
1179	kmem_zone_free(xfs_log_item_desc_zone, lidp);
1180}
1181
1182/*
1183 * Unlink and free the given descriptor.
 
 
1184 */
1185void
1186xfs_trans_del_item(
1187	struct xfs_log_item	*lip)
1188{
1189	xfs_trans_free_item_desc(lip->li_desc);
1190	lip->li_desc = NULL;
1191}
1192
1193/*
1194 * Unlock all of the items of a transaction and free all the descriptors
1195 * of that transaction.
1196 */
1197void
1198xfs_trans_free_items(
1199	struct xfs_trans	*tp,
1200	xfs_lsn_t		commit_lsn,
1201	int			flags)
1202{
1203	struct xfs_log_item_desc *lidp, *next;
1204
1205	list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1206		struct xfs_log_item	*lip = lidp->lid_item;
1207
1208		lip->li_desc = NULL;
1209
1210		if (commit_lsn != NULLCOMMITLSN)
1211			IOP_COMMITTING(lip, commit_lsn);
1212		if (flags & XFS_TRANS_ABORT)
1213			lip->li_flags |= XFS_LI_ABORTED;
1214		IOP_UNLOCK(lip);
1215
1216		xfs_trans_free_item_desc(lidp);
1217	}
1218}
1219
1220static inline void
1221xfs_log_item_batch_insert(
1222	struct xfs_ail		*ailp,
1223	struct xfs_ail_cursor	*cur,
1224	struct xfs_log_item	**log_items,
1225	int			nr_items,
1226	xfs_lsn_t		commit_lsn)
1227{
1228	int	i;
1229
1230	spin_lock(&ailp->xa_lock);
1231	/* xfs_trans_ail_update_bulk drops ailp->xa_lock */
1232	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
1233
1234	for (i = 0; i < nr_items; i++)
1235		IOP_UNPIN(log_items[i], 0);
1236}
1237
1238/*
1239 * Bulk operation version of xfs_trans_committed that takes a log vector of
1240 * items to insert into the AIL. This uses bulk AIL insertion techniques to
1241 * minimise lock traffic.
 
1242 *
1243 * If we are called with the aborted flag set, it is because a log write during
1244 * a CIL checkpoint commit has failed. In this case, all the items in the
1245 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1246 * means that checkpoint commit abort handling is treated exactly the same
1247 * as an iclog write error even though we haven't started any IO yet. Hence in
1248 * this case all we need to do is IOP_COMMITTED processing, followed by an
1249 * IOP_UNPIN(aborted) call.
1250 *
1251 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
1252 * at the end of the AIL, the insert cursor avoids the need to walk
1253 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
1254 * call. This saves a lot of needless list walking and is a net win, even
1255 * though it slightly increases that amount of AIL lock traffic to set it up
1256 * and tear it down.
1257 */
1258void
1259xfs_trans_committed_bulk(
1260	struct xfs_ail		*ailp,
1261	struct xfs_log_vec	*log_vector,
1262	xfs_lsn_t		commit_lsn,
1263	int			aborted)
1264{
1265#define LOG_ITEM_BATCH_SIZE	32
1266	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
1267	struct xfs_log_vec	*lv;
1268	struct xfs_ail_cursor	cur;
1269	int			i = 0;
1270
1271	spin_lock(&ailp->xa_lock);
1272	xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
1273	spin_unlock(&ailp->xa_lock);
1274
1275	/* unpin all the log items */
1276	for (lv = log_vector; lv; lv = lv->lv_next ) {
1277		struct xfs_log_item	*lip = lv->lv_item;
1278		xfs_lsn_t		item_lsn;
1279
1280		if (aborted)
1281			lip->li_flags |= XFS_LI_ABORTED;
1282		item_lsn = IOP_COMMITTED(lip, commit_lsn);
1283
1284		/* item_lsn of -1 means the item needs no further processing */
1285		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1286			continue;
 
1287
1288		/*
1289		 * if we are aborting the operation, no point in inserting the
1290		 * object into the AIL as we are in a shutdown situation.
1291		 */
1292		if (aborted) {
1293			ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1294			IOP_UNPIN(lip, 1);
1295			continue;
1296		}
 
 
 
 
 
1297
1298		if (item_lsn != commit_lsn) {
 
 
 
 
 
1299
1300			/*
1301			 * Not a bulk update option due to unusual item_lsn.
1302			 * Push into AIL immediately, rechecking the lsn once
1303			 * we have the ail lock. Then unpin the item. This does
1304			 * not affect the AIL cursor the bulk insert path is
1305			 * using.
1306			 */
1307			spin_lock(&ailp->xa_lock);
1308			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
1309				xfs_trans_ail_update(ailp, lip, item_lsn);
1310			else
1311				spin_unlock(&ailp->xa_lock);
1312			IOP_UNPIN(lip, 0);
1313			continue;
1314		}
1315
1316		/* Item is a candidate for bulk AIL insert.  */
1317		log_items[i++] = lv->lv_item;
1318		if (i >= LOG_ITEM_BATCH_SIZE) {
1319			xfs_log_item_batch_insert(ailp, &cur, log_items,
1320					LOG_ITEM_BATCH_SIZE, commit_lsn);
1321			i = 0;
1322		}
1323	}
1324
1325	/* make sure we insert the remainder! */
1326	if (i)
1327		xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
1328
1329	spin_lock(&ailp->xa_lock);
1330	xfs_trans_ail_cursor_done(ailp, &cur);
1331	spin_unlock(&ailp->xa_lock);
1332}
1333
1334/*
1335 * Commit the given transaction to the log.
1336 *
1337 * XFS disk error handling mechanism is not based on a typical
1338 * transaction abort mechanism. Logically after the filesystem
1339 * gets marked 'SHUTDOWN', we can't let any new transactions
1340 * be durable - ie. committed to disk - because some metadata might
1341 * be inconsistent. In such cases, this returns an error, and the
1342 * caller may assume that all locked objects joined to the transaction
1343 * have already been unlocked as if the commit had succeeded.
1344 * Do not reference the transaction structure after this call.
1345 */
1346int
1347xfs_trans_commit(
1348	struct xfs_trans	*tp,
1349	uint			flags)
1350{
1351	struct xfs_mount	*mp = tp->t_mountp;
1352	xfs_lsn_t		commit_lsn = -1;
 
1353	int			error = 0;
1354	int			log_flags = 0;
1355	int			sync = tp->t_flags & XFS_TRANS_SYNC;
1356
 
 
1357	/*
1358	 * Determine whether this commit is releasing a permanent
1359	 * log reservation or not.
1360	 */
1361	if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1362		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1363		log_flags = XFS_LOG_REL_PERM_RESERV;
1364	}
 
 
 
1365
1366	/*
1367	 * If there is nothing to be logged by the transaction,
1368	 * then unlock all of the items associated with the
1369	 * transaction and free the transaction structure.
1370	 * Also make sure to return any reserved blocks to
1371	 * the free pool.
1372	 */
1373	if (!(tp->t_flags & XFS_TRANS_DIRTY))
1374		goto out_unreserve;
1375
1376	if (XFS_FORCED_SHUTDOWN(mp)) {
1377		error = XFS_ERROR(EIO);
 
 
 
 
 
 
1378		goto out_unreserve;
1379	}
1380
1381	ASSERT(tp->t_ticket != NULL);
1382
1383	/*
1384	 * If we need to update the superblock, then do it now.
1385	 */
1386	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1387		xfs_trans_apply_sb_deltas(tp);
1388	xfs_trans_apply_dquot_deltas(tp);
1389
1390	error = xfs_log_commit_cil(mp, tp, &commit_lsn, flags);
1391	if (error == ENOMEM) {
1392		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1393		error = XFS_ERROR(EIO);
1394		goto out_unreserve;
1395	}
1396
1397	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1398	xfs_trans_free(tp);
1399
1400	/*
1401	 * If the transaction needs to be synchronous, then force the
1402	 * log out now and wait for it.
1403	 */
1404	if (sync) {
1405		if (!error) {
1406			error = _xfs_log_force_lsn(mp, commit_lsn,
1407				      XFS_LOG_SYNC, NULL);
1408		}
1409		XFS_STATS_INC(xs_trans_sync);
1410	} else {
1411		XFS_STATS_INC(xs_trans_async);
1412	}
1413
1414	return error;
1415
1416out_unreserve:
1417	xfs_trans_unreserve_and_mod_sb(tp);
1418
1419	/*
1420	 * It is indeed possible for the transaction to be not dirty but
1421	 * the dqinfo portion to be.  All that means is that we have some
1422	 * (non-persistent) quota reservations that need to be unreserved.
1423	 */
1424	xfs_trans_unreserve_and_mod_dquots(tp);
1425	if (tp->t_ticket) {
1426		commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1427		if (commit_lsn == -1 && !error)
1428			error = XFS_ERROR(EIO);
 
 
1429	}
1430	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1431	xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1432	xfs_trans_free(tp);
1433
1434	XFS_STATS_INC(xs_trans_empty);
1435	return error;
1436}
1437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438/*
1439 * Unlock all of the transaction's items and free the transaction.
1440 * The transaction must not have modified any of its items, because
1441 * there is no way to restore them to their previous state.
 
 
 
1442 *
1443 * If the transaction has made a log reservation, make sure to release
1444 * it as well.
 
 
 
 
 
1445 */
1446void
1447xfs_trans_cancel(
1448	xfs_trans_t		*tp,
1449	int			flags)
1450{
1451	int			log_flags;
1452	xfs_mount_t		*mp = tp->t_mountp;
 
 
 
1453
1454	/*
1455	 * See if the caller is being too lazy to figure out if
1456	 * the transaction really needs an abort.
 
 
1457	 */
1458	if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1459		flags &= ~XFS_TRANS_ABORT;
 
 
 
 
1460	/*
1461	 * See if the caller is relying on us to shut down the
1462	 * filesystem.  This happens in paths where we detect
1463	 * corruption and decide to give up.
 
1464	 */
1465	if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1466		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1467		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1468	}
1469#ifdef DEBUG
1470	if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1471		struct xfs_log_item_desc *lidp;
 
1472
1473		list_for_each_entry(lidp, &tp->t_items, lid_trans)
1474			ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1475	}
1476#endif
1477	xfs_trans_unreserve_and_mod_sb(tp);
1478	xfs_trans_unreserve_and_mod_dquots(tp);
1479
1480	if (tp->t_ticket) {
1481		if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1482			ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1483			log_flags = XFS_LOG_REL_PERM_RESERV;
1484		} else {
1485			log_flags = 0;
1486		}
1487		xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1488	}
1489
1490	/* mark this thread as no longer being in a transaction */
1491	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1492
1493	xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1494	xfs_trans_free(tp);
1495}
1496
1497/*
1498 * Roll from one trans in the sequence of PERMANENT transactions to
1499 * the next: permanent transactions are only flushed out when
1500 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1501 * as possible to let chunks of it go to the log. So we commit the
1502 * chunk we've been working on and get a new transaction to continue.
1503 */
1504int
1505xfs_trans_roll(
1506	struct xfs_trans	**tpp,
1507	struct xfs_inode	*dp)
1508{
1509	struct xfs_trans	*trans;
1510	unsigned int		logres, count;
1511	int			error;
1512
1513	/*
1514	 * Ensure that the inode is always logged.
1515	 */
1516	trans = *tpp;
1517	xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1518
1519	/*
1520	 * Copy the critical parameters from one trans to the next.
1521	 */
1522	logres = trans->t_log_res;
1523	count = trans->t_log_count;
 
1524	*tpp = xfs_trans_dup(trans);
1525
1526	/*
1527	 * Commit the current transaction.
1528	 * If this commit failed, then it'd just unlock those items that
1529	 * are not marked ihold. That also means that a filesystem shutdown
1530	 * is in progress. The caller takes the responsibility to cancel
1531	 * the duplicate transaction that gets returned.
1532	 */
1533	error = xfs_trans_commit(trans, 0);
1534	if (error)
1535		return (error);
1536
1537	trans = *tpp;
1538
1539	/*
1540	 * transaction commit worked ok so we can drop the extra ticket
1541	 * reference that we gained in xfs_trans_dup()
1542	 */
1543	xfs_log_ticket_put(trans->t_ticket);
1544
1545
1546	/*
1547	 * Reserve space in the log for th next transaction.
1548	 * This also pushes items in the "AIL", the list of logged items,
1549	 * out to disk if they are taking up space at the tail of the log
1550	 * that we want to use.  This requires that either nothing be locked
1551	 * across this call, or that anything that is locked be logged in
1552	 * the prior and the next transactions.
1553	 */
1554	error = xfs_trans_reserve(trans, 0, logres, 0,
1555				  XFS_TRANS_PERM_LOG_RES, count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1556	/*
1557	 *  Ensure that the inode is in the new transaction and locked.
1558	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1559	if (error)
1560		return error;
1561
1562	xfs_trans_ijoin(trans, dp, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1563	return 0;
 
 
 
 
 
 
 
1564}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
   4 * Copyright (C) 2010 Red Hat, Inc.
   5 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7#include "xfs.h"
   8#include "xfs_fs.h"
   9#include "xfs_shared.h"
  10#include "xfs_format.h"
  11#include "xfs_log_format.h"
  12#include "xfs_trans_resv.h"
 
  13#include "xfs_mount.h"
 
 
 
 
 
 
 
 
 
 
  14#include "xfs_extent_busy.h"
 
  15#include "xfs_quota.h"
  16#include "xfs_trans.h"
  17#include "xfs_trans_priv.h"
  18#include "xfs_log.h"
  19#include "xfs_log_priv.h"
  20#include "xfs_trace.h"
  21#include "xfs_error.h"
  22#include "xfs_defer.h"
  23#include "xfs_inode.h"
  24#include "xfs_dquot_item.h"
  25#include "xfs_dquot.h"
  26#include "xfs_icache.h"
  27#include "xfs_rtbitmap.h"
  28#include "xfs_rtgroup.h"
  29#include "xfs_sb.h"
  30
  31struct kmem_cache	*xfs_trans_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32
  33#if defined(CONFIG_TRACEPOINTS)
  34static void
  35xfs_trans_trace_reservations(
 
 
 
 
 
 
 
 
 
 
  36	struct xfs_mount	*mp)
  37{
  38	struct xfs_trans_res	*res;
  39	struct xfs_trans_res	*end_res;
  40	int			i;
 
 
 
 
 
 
 
 
 
  41
  42	res = (struct xfs_trans_res *)M_RES(mp);
  43	end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
  44	for (i = 0; res < end_res; i++, res++)
  45		trace_xfs_trans_resv_calc(mp, i, res);
 
 
 
 
  46}
  47#else
  48# define xfs_trans_trace_reservations(mp)
  49#endif
  50
  51/*
  52 * Initialize the precomputed transaction reservation values
  53 * in the mount structure.
  54 */
  55void
  56xfs_trans_init(
  57	struct xfs_mount	*mp)
  58{
  59	xfs_trans_resv_calc(mp, M_RES(mp));
  60	xfs_trans_trace_reservations(mp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61}
  62
  63/*
  64 * Free the transaction structure.  If there is more clean up
  65 * to do when the structure is freed, add it here.
  66 */
  67STATIC void
  68xfs_trans_free(
  69	struct xfs_trans	*tp)
  70{
  71	xfs_extent_busy_sort(&tp->t_busy);
  72	xfs_extent_busy_clear(&tp->t_busy, false);
  73
  74	trace_xfs_trans_free(tp, _RET_IP_);
  75	xfs_trans_clear_context(tp);
  76	if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
  77		sb_end_intwrite(tp->t_mountp->m_super);
  78	xfs_trans_free_dqinfo(tp);
  79	kmem_cache_free(xfs_trans_cache, tp);
  80}
  81
  82/*
  83 * This is called to create a new transaction which will share the
  84 * permanent log reservation of the given transaction.  The remaining
  85 * unused block and rt extent reservations are also inherited.  This
  86 * implies that the original transaction is no longer allowed to allocate
  87 * blocks.  Locks and log items, however, are no inherited.  They must
  88 * be added to the new transaction explicitly.
  89 */
  90STATIC struct xfs_trans *
  91xfs_trans_dup(
  92	struct xfs_trans	*tp)
  93{
  94	struct xfs_trans	*ntp;
  95
  96	trace_xfs_trans_dup(tp, _RET_IP_);
  97
  98	ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
  99
 100	/*
 101	 * Initialize the new transaction structure.
 102	 */
 103	ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
 
 104	ntp->t_mountp = tp->t_mountp;
 105	INIT_LIST_HEAD(&ntp->t_items);
 106	INIT_LIST_HEAD(&ntp->t_busy);
 107	INIT_LIST_HEAD(&ntp->t_dfops);
 108	ntp->t_highest_agno = NULLAGNUMBER;
 109
 110	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 111	ASSERT(tp->t_ticket != NULL);
 112
 113	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
 114		       (tp->t_flags & XFS_TRANS_RESERVE) |
 115		       (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
 116		       (tp->t_flags & XFS_TRANS_RES_FDBLKS);
 117	/* We gave our writer reference to the new transaction */
 118	tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
 119	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
 120
 121	ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
 122	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
 123	tp->t_blk_res = tp->t_blk_res_used;
 124
 125	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
 126	tp->t_rtx_res = tp->t_rtx_res_used;
 
 127
 128	xfs_trans_switch_context(tp, ntp);
 129
 130	/* move deferred ops over to the new tp */
 131	xfs_defer_move(ntp, tp);
 132
 133	xfs_trans_dup_dqinfo(tp, ntp);
 134	return ntp;
 135}
 136
 137/*
 138 * This is called to reserve free disk blocks and log space for the
 139 * given transaction.  This must be done before allocating any resources
 140 * within the transaction.
 141 *
 142 * This will return ENOSPC if there are not enough blocks available.
 143 * It will sleep waiting for available log space.
 144 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
 145 * is used by long running transactions.  If any one of the reservations
 146 * fails then they will all be backed out.
 147 *
 148 * This does not do quota reservations. That typically is done by the
 149 * caller afterwards.
 150 */
 151static int
 152xfs_trans_reserve(
 153	struct xfs_trans	*tp,
 154	struct xfs_trans_res	*resp,
 155	uint			blocks,
 156	uint			rtextents)
 
 
 157{
 158	struct xfs_mount	*mp = tp->t_mountp;
 159	int			error = 0;
 160	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
 
 
 161
 162	/*
 163	 * Attempt to reserve the needed disk blocks by decrementing
 164	 * the number needed from the number available.  This will
 165	 * fail if the count would go below zero.
 166	 */
 167	if (blocks > 0) {
 168		error = xfs_dec_fdblocks(mp, blocks, rsvd);
 169		if (error != 0)
 170			return -ENOSPC;
 
 
 
 171		tp->t_blk_res += blocks;
 172	}
 173
 174	/*
 175	 * Reserve the log space needed for this transaction.
 176	 */
 177	if (resp->tr_logres > 0) {
 178		bool	permanent = false;
 179
 180		ASSERT(tp->t_log_res == 0 ||
 181		       tp->t_log_res == resp->tr_logres);
 182		ASSERT(tp->t_log_count == 0 ||
 183		       tp->t_log_count == resp->tr_logcount);
 184
 185		if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
 186			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
 187			permanent = true;
 188		} else {
 189			ASSERT(tp->t_ticket == NULL);
 190			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
 191		}
 192
 193		if (tp->t_ticket != NULL) {
 194			ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
 195			error = xfs_log_regrant(mp, tp->t_ticket);
 196		} else {
 197			error = xfs_log_reserve(mp, resp->tr_logres,
 198						resp->tr_logcount,
 199						&tp->t_ticket, permanent);
 
 200		}
 201
 202		if (error)
 203			goto undo_blocks;
 204
 205		tp->t_log_res = resp->tr_logres;
 206		tp->t_log_count = resp->tr_logcount;
 207	}
 208
 209	/*
 210	 * Attempt to reserve the needed realtime extents by decrementing
 211	 * the number needed from the number available.  This will
 212	 * fail if the count would go below zero.
 213	 */
 214	if (rtextents > 0) {
 215		error = xfs_dec_frextents(mp, rtextents);
 
 216		if (error) {
 217			error = -ENOSPC;
 218			goto undo_log;
 219		}
 220		tp->t_rtx_res += rtextents;
 221	}
 222
 223	return 0;
 224
 225	/*
 226	 * Error cases jump to one of these labels to undo any
 227	 * reservations which have already been performed.
 228	 */
 229undo_log:
 230	if (resp->tr_logres > 0) {
 231		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
 
 
 
 
 
 
 
 232		tp->t_ticket = NULL;
 233		tp->t_log_res = 0;
 234		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
 235	}
 236
 237undo_blocks:
 238	if (blocks > 0) {
 239		xfs_add_fdblocks(mp, blocks);
 
 240		tp->t_blk_res = 0;
 241	}
 242	return error;
 243}
 244
 245int
 246xfs_trans_alloc(
 247	struct xfs_mount	*mp,
 248	struct xfs_trans_res	*resp,
 249	uint			blocks,
 250	uint			rtextents,
 251	uint			flags,
 252	struct xfs_trans	**tpp)
 253{
 254	struct xfs_trans	*tp;
 255	bool			want_retry = true;
 256	int			error;
 257
 258	/*
 259	 * Allocate the handle before we do our freeze accounting and setting up
 260	 * GFP_NOFS allocation context so that we avoid lockdep false positives
 261	 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
 262	 */
 263retry:
 264	tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
 265	if (!(flags & XFS_TRANS_NO_WRITECOUNT))
 266		sb_start_intwrite(mp->m_super);
 267	xfs_trans_set_context(tp);
 268
 269	/*
 270	 * Zero-reservation ("empty") transactions can't modify anything, so
 271	 * they're allowed to run while we're frozen.
 272	 */
 273	WARN_ON(resp->tr_logres > 0 &&
 274		mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
 275	ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
 276	       xfs_has_lazysbcount(mp));
 277
 278	tp->t_magic = XFS_TRANS_HEADER_MAGIC;
 279	tp->t_flags = flags;
 280	tp->t_mountp = mp;
 281	INIT_LIST_HEAD(&tp->t_items);
 282	INIT_LIST_HEAD(&tp->t_busy);
 283	INIT_LIST_HEAD(&tp->t_dfops);
 284	tp->t_highest_agno = NULLAGNUMBER;
 285
 286	error = xfs_trans_reserve(tp, resp, blocks, rtextents);
 287	if (error == -ENOSPC && want_retry) {
 288		xfs_trans_cancel(tp);
 289
 290		/*
 291		 * We weren't able to reserve enough space for the transaction.
 292		 * Flush the other speculative space allocations to free space.
 293		 * Do not perform a synchronous scan because callers can hold
 294		 * other locks.
 295		 */
 296		error = xfs_blockgc_flush_all(mp);
 297		if (error)
 298			return error;
 299		want_retry = false;
 300		goto retry;
 301	}
 302	if (error) {
 303		xfs_trans_cancel(tp);
 304		return error;
 305	}
 306
 307	trace_xfs_trans_alloc(tp, _RET_IP_);
 308
 309	*tpp = tp;
 310	return 0;
 311}
 312
 313/*
 314 * Create an empty transaction with no reservation.  This is a defensive
 315 * mechanism for routines that query metadata without actually modifying them --
 316 * if the metadata being queried is somehow cross-linked (think a btree block
 317 * pointer that points higher in the tree), we risk deadlock.  However, blocks
 318 * grabbed as part of a transaction can be re-grabbed.  The verifiers will
 319 * notice the corrupt block and the operation will fail back to userspace
 320 * without deadlocking.
 321 *
 322 * Note the zero-length reservation; this transaction MUST be cancelled without
 323 * any dirty data.
 324 *
 325 * Callers should obtain freeze protection to avoid a conflict with fs freezing
 326 * where we can be grabbing buffers at the same time that freeze is trying to
 327 * drain the buffer LRU list.
 328 */
 329int
 330xfs_trans_alloc_empty(
 331	struct xfs_mount		*mp,
 332	struct xfs_trans		**tpp)
 333{
 334	struct xfs_trans_res		resv = {0};
 335
 336	return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
 337}
 338
 339/*
 340 * Record the indicated change to the given field for application
 341 * to the file system's superblock when the transaction commits.
 342 * For now, just store the change in the transaction structure.
 343 *
 344 * Mark the transaction structure to indicate that the superblock
 345 * needs to be updated before committing.
 346 *
 347 * Because we may not be keeping track of allocated/free inodes and
 348 * used filesystem blocks in the superblock, we do not mark the
 349 * superblock dirty in this transaction if we modify these fields.
 350 * We still need to update the transaction deltas so that they get
 351 * applied to the incore superblock, but we don't want them to
 352 * cause the superblock to get locked and logged if these are the
 353 * only fields in the superblock that the transaction modifies.
 354 */
 355void
 356xfs_trans_mod_sb(
 357	xfs_trans_t	*tp,
 358	uint		field,
 359	int64_t		delta)
 360{
 361	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
 362	xfs_mount_t	*mp = tp->t_mountp;
 363
 364	switch (field) {
 365	case XFS_TRANS_SB_ICOUNT:
 366		tp->t_icount_delta += delta;
 367		if (xfs_has_lazysbcount(mp))
 368			flags &= ~XFS_TRANS_SB_DIRTY;
 369		break;
 370	case XFS_TRANS_SB_IFREE:
 371		tp->t_ifree_delta += delta;
 372		if (xfs_has_lazysbcount(mp))
 373			flags &= ~XFS_TRANS_SB_DIRTY;
 374		break;
 375	case XFS_TRANS_SB_FDBLOCKS:
 376		/*
 377		 * Track the number of blocks allocated in the transaction.
 378		 * Make sure it does not exceed the number reserved. If so,
 379		 * shutdown as this can lead to accounting inconsistency.
 380		 */
 381		if (delta < 0) {
 382			tp->t_blk_res_used += (uint)-delta;
 383			if (tp->t_blk_res_used > tp->t_blk_res)
 384				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 385		} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
 386			int64_t	blkres_delta;
 387
 388			/*
 389			 * Return freed blocks directly to the reservation
 390			 * instead of the global pool, being careful not to
 391			 * overflow the trans counter. This is used to preserve
 392			 * reservation across chains of transaction rolls that
 393			 * repeatedly free and allocate blocks.
 394			 */
 395			blkres_delta = min_t(int64_t, delta,
 396					     UINT_MAX - tp->t_blk_res);
 397			tp->t_blk_res += blkres_delta;
 398			delta -= blkres_delta;
 399		}
 400		tp->t_fdblocks_delta += delta;
 401		if (xfs_has_lazysbcount(mp))
 402			flags &= ~XFS_TRANS_SB_DIRTY;
 403		break;
 404	case XFS_TRANS_SB_RES_FDBLOCKS:
 405		/*
 406		 * The allocation has already been applied to the
 407		 * in-core superblock's counter.  This should only
 408		 * be applied to the on-disk superblock.
 409		 */
 
 410		tp->t_res_fdblocks_delta += delta;
 411		if (xfs_has_lazysbcount(mp))
 412			flags &= ~XFS_TRANS_SB_DIRTY;
 413		break;
 414	case XFS_TRANS_SB_FREXTENTS:
 415		/*
 416		 * Track the number of blocks allocated in the
 417		 * transaction.  Make sure it does not exceed the
 418		 * number reserved.
 419		 */
 420		if (delta < 0) {
 421			tp->t_rtx_res_used += (uint)-delta;
 422			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
 423		}
 424		tp->t_frextents_delta += delta;
 425		if (xfs_has_rtgroups(mp))
 426			flags &= ~XFS_TRANS_SB_DIRTY;
 427		break;
 428	case XFS_TRANS_SB_RES_FREXTENTS:
 429		/*
 430		 * The allocation has already been applied to the
 431		 * in-core superblock's counter.  This should only
 432		 * be applied to the on-disk superblock.
 433		 */
 434		ASSERT(delta < 0);
 435		tp->t_res_frextents_delta += delta;
 436		if (xfs_has_rtgroups(mp))
 437			flags &= ~XFS_TRANS_SB_DIRTY;
 438		break;
 439	case XFS_TRANS_SB_DBLOCKS:
 
 440		tp->t_dblocks_delta += delta;
 441		break;
 442	case XFS_TRANS_SB_AGCOUNT:
 443		ASSERT(delta > 0);
 444		tp->t_agcount_delta += delta;
 445		break;
 446	case XFS_TRANS_SB_IMAXPCT:
 447		tp->t_imaxpct_delta += delta;
 448		break;
 449	case XFS_TRANS_SB_REXTSIZE:
 450		tp->t_rextsize_delta += delta;
 451		break;
 452	case XFS_TRANS_SB_RBMBLOCKS:
 453		tp->t_rbmblocks_delta += delta;
 454		break;
 455	case XFS_TRANS_SB_RBLOCKS:
 456		tp->t_rblocks_delta += delta;
 457		break;
 458	case XFS_TRANS_SB_REXTENTS:
 459		tp->t_rextents_delta += delta;
 460		break;
 461	case XFS_TRANS_SB_REXTSLOG:
 462		tp->t_rextslog_delta += delta;
 463		break;
 464	case XFS_TRANS_SB_RGCOUNT:
 465		ASSERT(delta > 0);
 466		tp->t_rgcount_delta += delta;
 467		break;
 468	default:
 469		ASSERT(0);
 470		return;
 471	}
 472
 473	tp->t_flags |= flags;
 474}
 475
 476/*
 477 * xfs_trans_apply_sb_deltas() is called from the commit code
 478 * to bring the superblock buffer into the current transaction
 479 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
 480 *
 481 * For now we just look at each field allowed to change and change
 482 * it if necessary.
 483 */
 484STATIC void
 485xfs_trans_apply_sb_deltas(
 486	xfs_trans_t	*tp)
 487{
 488	struct xfs_dsb	*sbp;
 489	struct xfs_buf	*bp;
 490	int		whole = 0;
 491
 492	bp = xfs_trans_getsb(tp);
 493	sbp = bp->b_addr;
 
 
 
 
 
 
 
 494
 495	/*
 496	 * Only update the superblock counters if we are logging them
 497	 */
 498	if (!xfs_has_lazysbcount((tp->t_mountp))) {
 499		if (tp->t_icount_delta)
 500			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
 501		if (tp->t_ifree_delta)
 502			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
 503		if (tp->t_fdblocks_delta)
 504			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
 505		if (tp->t_res_fdblocks_delta)
 506			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
 507	}
 508
 509	/*
 510	 * sb_frextents was added to the lazy sb counters when the rt groups
 511	 * feature was introduced.  This is possible because we know that all
 512	 * kernels supporting rtgroups will also recompute frextents from the
 513	 * realtime bitmap.
 514	 *
 515	 * For older file systems, updating frextents requires careful handling
 516	 * because we cannot rely on log recovery in older kernels to recompute
 517	 * the value from the rtbitmap.  This means that the ondisk frextents
 518	 * must be consistent with the rtbitmap.
 519	 *
 520	 * Therefore, log the frextents change to the ondisk superblock and
 521	 * update the incore superblock so that future calls to xfs_log_sb
 522	 * write the correct value ondisk.
 523	 */
 524	if ((tp->t_frextents_delta || tp->t_res_frextents_delta) &&
 525	    !xfs_has_rtgroups(tp->t_mountp)) {
 526		struct xfs_mount	*mp = tp->t_mountp;
 527		int64_t			rtxdelta;
 528
 529		rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
 530
 531		spin_lock(&mp->m_sb_lock);
 532		be64_add_cpu(&sbp->sb_frextents, rtxdelta);
 533		mp->m_sb.sb_frextents += rtxdelta;
 534		spin_unlock(&mp->m_sb_lock);
 535	}
 536
 537	if (tp->t_dblocks_delta) {
 538		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
 539		whole = 1;
 540	}
 541	if (tp->t_agcount_delta) {
 542		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
 543		whole = 1;
 544	}
 545	if (tp->t_imaxpct_delta) {
 546		sbp->sb_imax_pct += tp->t_imaxpct_delta;
 547		whole = 1;
 548	}
 549	if (tp->t_rextsize_delta) {
 550		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
 551
 552		/*
 553		 * Because the ondisk sb records rtgroup size in units of rt
 554		 * extents, any time we update the rt extent size we have to
 555		 * recompute the ondisk rtgroup block log.  The incore values
 556		 * will be recomputed in xfs_trans_unreserve_and_mod_sb.
 557		 */
 558		if (xfs_has_rtgroups(tp->t_mountp)) {
 559			sbp->sb_rgblklog = xfs_compute_rgblklog(
 560						be32_to_cpu(sbp->sb_rgextents),
 561						be32_to_cpu(sbp->sb_rextsize));
 562		}
 563		whole = 1;
 564	}
 565	if (tp->t_rbmblocks_delta) {
 566		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
 567		whole = 1;
 568	}
 569	if (tp->t_rblocks_delta) {
 570		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
 571		whole = 1;
 572	}
 573	if (tp->t_rextents_delta) {
 574		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
 575		whole = 1;
 576	}
 577	if (tp->t_rextslog_delta) {
 578		sbp->sb_rextslog += tp->t_rextslog_delta;
 579		whole = 1;
 580	}
 581	if (tp->t_rgcount_delta) {
 582		be32_add_cpu(&sbp->sb_rgcount, tp->t_rgcount_delta);
 583		whole = 1;
 584	}
 585
 586	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
 587	if (whole)
 588		/*
 589		 * Log the whole thing, the fields are noncontiguous.
 590		 */
 591		xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
 592	else
 593		/*
 594		 * Since all the modifiable fields are contiguous, we
 595		 * can get away with this.
 596		 */
 597		xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
 598				  offsetof(struct xfs_dsb, sb_frextents) +
 599				  sizeof(sbp->sb_frextents) - 1);
 600}
 601
 602/*
 603 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
 604 * apply superblock counter changes to the in-core superblock.  The
 605 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
 606 * applied to the in-core superblock.  The idea is that that has already been
 607 * done.
 608 *
 
 
 
 
 
 
 
 609 * If we are not logging superblock counters, then the inode allocated/free and
 610 * used block counts are not updated in the on disk superblock. In this case,
 611 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
 612 * still need to update the incore superblock with the changes.
 613 *
 614 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
 615 * so we don't need to take the counter lock on every update.
 616 */
 617#define XFS_ICOUNT_BATCH	128
 618
 619void
 620xfs_trans_unreserve_and_mod_sb(
 621	struct xfs_trans	*tp)
 622{
 623	struct xfs_mount	*mp = tp->t_mountp;
 624	int64_t			blkdelta = tp->t_blk_res;
 625	int64_t			rtxdelta = tp->t_rtx_res;
 626	int64_t			idelta = 0;
 627	int64_t			ifreedelta = 0;
 628
 629	/*
 630	 * Calculate the deltas.
 631	 *
 632	 * t_fdblocks_delta and t_frextents_delta can be positive or negative:
 633	 *
 634	 *  - positive values indicate blocks freed in the transaction.
 635	 *  - negative values indicate blocks allocated in the transaction
 636	 *
 637	 * Negative values can only happen if the transaction has a block
 638	 * reservation that covers the allocated block.  The end result is
 639	 * that the calculated delta values must always be positive and we
 640	 * can only put back previous allocated or reserved blocks here.
 641	 */
 642	ASSERT(tp->t_blk_res || tp->t_fdblocks_delta >= 0);
 643	if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
 644	        blkdelta += tp->t_fdblocks_delta;
 645		ASSERT(blkdelta >= 0);
 646	}
 647
 648	ASSERT(tp->t_rtx_res || tp->t_frextents_delta >= 0);
 649	if (xfs_has_rtgroups(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
 
 
 650		rtxdelta += tp->t_frextents_delta;
 651		ASSERT(rtxdelta >= 0);
 652	}
 653
 654	if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
 
 655		idelta = tp->t_icount_delta;
 656		ifreedelta = tp->t_ifree_delta;
 657	}
 658
 659	/* apply the per-cpu counters */
 660	if (blkdelta)
 661		xfs_add_fdblocks(mp, blkdelta);
 
 
 
 
 662
 663	if (idelta)
 664		percpu_counter_add_batch(&mp->m_icount, idelta,
 665					 XFS_ICOUNT_BATCH);
 
 
 
 666
 667	if (ifreedelta)
 668		percpu_counter_add(&mp->m_ifree, ifreedelta);
 
 
 
 
 669
 670	if (rtxdelta)
 671		xfs_add_frextents(mp, rtxdelta);
 
 
 
 
 672
 673	if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
 674		return;
 675
 676	/* apply remaining deltas */
 677	spin_lock(&mp->m_sb_lock);
 678	mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
 679	mp->m_sb.sb_icount += idelta;
 680	mp->m_sb.sb_ifree += ifreedelta;
 681	/*
 682	 * Do not touch sb_frextents here because it is handled in
 683	 * xfs_trans_apply_sb_deltas for file systems where it isn't a lazy
 684	 * counter anyway.
 685	 */
 686	mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
 687	mp->m_sb.sb_agcount += tp->t_agcount_delta;
 688	mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
 689	if (tp->t_rextsize_delta)
 690		xfs_mount_sb_set_rextsize(mp, &mp->m_sb,
 691				mp->m_sb.sb_rextsize + tp->t_rextsize_delta);
 692	mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
 693	mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
 694	mp->m_sb.sb_rextents += tp->t_rextents_delta;
 695	mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
 696	mp->m_sb.sb_rgcount += tp->t_rgcount_delta;
 697	spin_unlock(&mp->m_sb_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698
 699	/*
 700	 * Debug checks outside of the spinlock so they don't lock up the
 701	 * machine if they fail.
 702	 */
 703	ASSERT(mp->m_sb.sb_imax_pct >= 0);
 704	ASSERT(mp->m_sb.sb_rextslog >= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705}
 706
 707/* Add the given log item to the transaction's list of log items. */
 
 
 
 
 708void
 709xfs_trans_add_item(
 710	struct xfs_trans	*tp,
 711	struct xfs_log_item	*lip)
 712{
 713	ASSERT(lip->li_log == tp->t_mountp->m_log);
 
 
 714	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
 715	ASSERT(list_empty(&lip->li_trans));
 716	ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
 717
 718	list_add_tail(&lip->li_trans, &tp->t_items);
 719	trace_xfs_trans_add_item(tp, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 720}
 721
 722/*
 723 * Unlink the log item from the transaction. the log item is no longer
 724 * considered dirty in this transaction, as the linked transaction has
 725 * finished, either by abort or commit completion.
 726 */
 727void
 728xfs_trans_del_item(
 729	struct xfs_log_item	*lip)
 730{
 731	clear_bit(XFS_LI_DIRTY, &lip->li_flags);
 732	list_del_init(&lip->li_trans);
 733}
 734
 735/* Detach and unlock all of the items in a transaction */
 736static void
 
 
 
 737xfs_trans_free_items(
 738	struct xfs_trans	*tp,
 739	bool			abort)
 
 740{
 741	struct xfs_log_item	*lip, *next;
 
 
 
 742
 743	trace_xfs_trans_free_items(tp, _RET_IP_);
 744
 745	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
 746		xfs_trans_del_item(lip);
 747		if (abort)
 748			set_bit(XFS_LI_ABORTED, &lip->li_flags);
 749		if (lip->li_ops->iop_release)
 750			lip->li_ops->iop_release(lip);
 
 751	}
 752}
 753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754/*
 755 * Sort transaction items prior to running precommit operations. This will
 756 * attempt to order the items such that they will always be locked in the same
 757 * order. Items that have no sort function are moved to the end of the list
 758 * and so are locked last.
 759 *
 760 * This may need refinement as different types of objects add sort functions.
 
 
 
 
 
 
 761 *
 762 * Function is more complex than it needs to be because we are comparing 64 bit
 763 * values and the function only returns 32 bit values.
 
 
 
 
 764 */
 765static int
 766xfs_trans_precommit_sort(
 767	void			*unused_arg,
 768	const struct list_head	*a,
 769	const struct list_head	*b)
 770{
 771	struct xfs_log_item	*lia = container_of(a,
 772					struct xfs_log_item, li_trans);
 773	struct xfs_log_item	*lib = container_of(b,
 774					struct xfs_log_item, li_trans);
 775	int64_t			diff;
 776
 777	/*
 778	 * If both items are non-sortable, leave them alone. If only one is
 779	 * sortable, move the non-sortable item towards the end of the list.
 780	 */
 781	if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
 782		return 0;
 783	if (!lia->li_ops->iop_sort)
 784		return 1;
 785	if (!lib->li_ops->iop_sort)
 786		return -1;
 787
 788	diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
 789	if (diff < 0)
 790		return -1;
 791	if (diff > 0)
 792		return 1;
 793	return 0;
 794}
 795
 796/*
 797 * Run transaction precommit functions.
 798 *
 799 * If there is an error in any of the callouts, then stop immediately and
 800 * trigger a shutdown to abort the transaction. There is no recovery possible
 801 * from errors at this point as the transaction is dirty....
 802 */
 803static int
 804xfs_trans_run_precommits(
 805	struct xfs_trans	*tp)
 806{
 807	struct xfs_mount	*mp = tp->t_mountp;
 808	struct xfs_log_item	*lip, *n;
 809	int			error = 0;
 810
 811	/*
 812	 * Sort the item list to avoid ABBA deadlocks with other transactions
 813	 * running precommit operations that lock multiple shared items such as
 814	 * inode cluster buffers.
 815	 */
 816	list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
 817
 818	/*
 819	 * Precommit operations can remove the log item from the transaction
 820	 * if the log item exists purely to delay modifications until they
 821	 * can be ordered against other operations. Hence we have to use
 822	 * list_for_each_entry_safe() here.
 823	 */
 824	list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
 825		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
 
 
 
 
 
 826			continue;
 827		if (lip->li_ops->iop_precommit) {
 828			error = lip->li_ops->iop_precommit(tp, lip);
 829			if (error)
 830				break;
 
 
 
 
 831		}
 832	}
 833	if (error)
 834		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 835	return error;
 
 
 
 
 
 836}
 837
 838/*
 839 * Commit the given transaction to the log.
 840 *
 841 * XFS disk error handling mechanism is not based on a typical
 842 * transaction abort mechanism. Logically after the filesystem
 843 * gets marked 'SHUTDOWN', we can't let any new transactions
 844 * be durable - ie. committed to disk - because some metadata might
 845 * be inconsistent. In such cases, this returns an error, and the
 846 * caller may assume that all locked objects joined to the transaction
 847 * have already been unlocked as if the commit had succeeded.
 848 * Do not reference the transaction structure after this call.
 849 */
 850static int
 851__xfs_trans_commit(
 852	struct xfs_trans	*tp,
 853	bool			regrant)
 854{
 855	struct xfs_mount	*mp = tp->t_mountp;
 856	struct xlog		*log = mp->m_log;
 857	xfs_csn_t		commit_seq = 0;
 858	int			error = 0;
 
 859	int			sync = tp->t_flags & XFS_TRANS_SYNC;
 860
 861	trace_xfs_trans_commit(tp, _RET_IP_);
 862
 863	/*
 864	 * Commit per-transaction changes that are not already tracked through
 865	 * log items.  This can add dirty log items to the transaction.
 866	 */
 867	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
 868		xfs_trans_apply_sb_deltas(tp);
 869	xfs_trans_apply_dquot_deltas(tp);
 870
 871	error = xfs_trans_run_precommits(tp);
 872	if (error)
 873		goto out_unreserve;
 874
 875	/*
 876	 * If there is nothing to be logged by the transaction,
 877	 * then unlock all of the items associated with the
 878	 * transaction and free the transaction structure.
 879	 * Also make sure to return any reserved blocks to
 880	 * the free pool.
 881	 */
 882	if (!(tp->t_flags & XFS_TRANS_DIRTY))
 883		goto out_unreserve;
 884
 885	/*
 886	 * We must check against log shutdown here because we cannot abort log
 887	 * items and leave them dirty, inconsistent and unpinned in memory while
 888	 * the log is active. This leaves them open to being written back to
 889	 * disk, and that will lead to on-disk corruption.
 890	 */
 891	if (xlog_is_shutdown(log)) {
 892		error = -EIO;
 893		goto out_unreserve;
 894	}
 895
 896	ASSERT(tp->t_ticket != NULL);
 897
 898	xlog_cil_commit(log, tp, &commit_seq, regrant);
 
 
 
 
 
 
 
 
 
 
 
 
 899
 
 900	xfs_trans_free(tp);
 901
 902	/*
 903	 * If the transaction needs to be synchronous, then force the
 904	 * log out now and wait for it.
 905	 */
 906	if (sync) {
 907		error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
 908		XFS_STATS_INC(mp, xs_trans_sync);
 
 
 
 909	} else {
 910		XFS_STATS_INC(mp, xs_trans_async);
 911	}
 912
 913	return error;
 914
 915out_unreserve:
 916	xfs_trans_unreserve_and_mod_sb(tp);
 917
 918	/*
 919	 * It is indeed possible for the transaction to be not dirty but
 920	 * the dqinfo portion to be.  All that means is that we have some
 921	 * (non-persistent) quota reservations that need to be unreserved.
 922	 */
 923	xfs_trans_unreserve_and_mod_dquots(tp, true);
 924	if (tp->t_ticket) {
 925		if (regrant && !xlog_is_shutdown(log))
 926			xfs_log_ticket_regrant(log, tp->t_ticket);
 927		else
 928			xfs_log_ticket_ungrant(log, tp->t_ticket);
 929		tp->t_ticket = NULL;
 930	}
 931	xfs_trans_free_items(tp, !!error);
 
 932	xfs_trans_free(tp);
 933
 934	XFS_STATS_INC(mp, xs_trans_empty);
 935	return error;
 936}
 937
 938int
 939xfs_trans_commit(
 940	struct xfs_trans	*tp)
 941{
 942	/*
 943	 * Finish deferred items on final commit. Only permanent transactions
 944	 * should ever have deferred ops.
 945	 */
 946	WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
 947		     !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
 948	if (tp->t_flags & XFS_TRANS_PERM_LOG_RES) {
 949		int error = xfs_defer_finish_noroll(&tp);
 950		if (error) {
 951			xfs_trans_cancel(tp);
 952			return error;
 953		}
 954	}
 955
 956	return __xfs_trans_commit(tp, false);
 957}
 958
 959/*
 960 * Unlock all of the transaction's items and free the transaction.  If the
 961 * transaction is dirty, we must shut down the filesystem because there is no
 962 * way to restore them to their previous state.
 963 *
 964 * If the transaction has made a log reservation, make sure to release it as
 965 * well.
 966 *
 967 * This is a high level function (equivalent to xfs_trans_commit()) and so can
 968 * be called after the transaction has effectively been aborted due to the mount
 969 * being shut down. However, if the mount has not been shut down and the
 970 * transaction is dirty we will shut the mount down and, in doing so, that
 971 * guarantees that the log is shut down, too. Hence we don't need to be as
 972 * careful with shutdown state and dirty items here as we need to be in
 973 * xfs_trans_commit().
 974 */
 975void
 976xfs_trans_cancel(
 977	struct xfs_trans	*tp)
 
 978{
 979	struct xfs_mount	*mp = tp->t_mountp;
 980	struct xlog		*log = mp->m_log;
 981	bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY);
 982
 983	trace_xfs_trans_cancel(tp, _RET_IP_);
 984
 985	/*
 986	 * It's never valid to cancel a transaction with deferred ops attached,
 987	 * because the transaction is effectively dirty.  Complain about this
 988	 * loudly before freeing the in-memory defer items and shutting down the
 989	 * filesystem.
 990	 */
 991	if (!list_empty(&tp->t_dfops)) {
 992		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 993		dirty = true;
 994		xfs_defer_cancel(tp);
 995	}
 996
 997	/*
 998	 * See if the caller is relying on us to shut down the filesystem. We
 999	 * only want an error report if there isn't already a shutdown in
1000	 * progress, so we only need to check against the mount shutdown state
1001	 * here.
1002	 */
1003	if (dirty && !xfs_is_shutdown(mp)) {
1004		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1005		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1006	}
1007#ifdef DEBUG
1008	/* Log items need to be consistent until the log is shut down. */
1009	if (!dirty && !xlog_is_shutdown(log)) {
1010		struct xfs_log_item *lip;
1011
1012		list_for_each_entry(lip, &tp->t_items, li_trans)
1013			ASSERT(!xlog_item_is_intent_done(lip));
1014	}
1015#endif
1016	xfs_trans_unreserve_and_mod_sb(tp);
1017	xfs_trans_unreserve_and_mod_dquots(tp, false);
1018
1019	if (tp->t_ticket) {
1020		xfs_log_ticket_ungrant(log, tp->t_ticket);
1021		tp->t_ticket = NULL;
 
 
 
 
 
1022	}
1023
1024	xfs_trans_free_items(tp, dirty);
 
 
 
1025	xfs_trans_free(tp);
1026}
1027
1028/*
1029 * Roll from one trans in the sequence of PERMANENT transactions to
1030 * the next: permanent transactions are only flushed out when
1031 * committed with xfs_trans_commit(), but we still want as soon
1032 * as possible to let chunks of it go to the log. So we commit the
1033 * chunk we've been working on and get a new transaction to continue.
1034 */
1035int
1036xfs_trans_roll(
1037	struct xfs_trans	**tpp)
 
1038{
1039	struct xfs_trans	*trans = *tpp;
1040	struct xfs_trans_res	tres;
1041	int			error;
1042
1043	trace_xfs_trans_roll(trans, _RET_IP_);
 
 
 
 
1044
1045	/*
1046	 * Copy the critical parameters from one trans to the next.
1047	 */
1048	tres.tr_logres = trans->t_log_res;
1049	tres.tr_logcount = trans->t_log_count;
1050
1051	*tpp = xfs_trans_dup(trans);
1052
1053	/*
1054	 * Commit the current transaction.
1055	 * If this commit failed, then it'd just unlock those items that
1056	 * are not marked ihold. That also means that a filesystem shutdown
1057	 * is in progress. The caller takes the responsibility to cancel
1058	 * the duplicate transaction that gets returned.
1059	 */
1060	error = __xfs_trans_commit(trans, true);
1061	if (error)
1062		return error;
 
 
 
 
 
 
 
 
 
1063
1064	/*
1065	 * Reserve space in the log for the next transaction.
1066	 * This also pushes items in the "AIL", the list of logged items,
1067	 * out to disk if they are taking up space at the tail of the log
1068	 * that we want to use.  This requires that either nothing be locked
1069	 * across this call, or that anything that is locked be logged in
1070	 * the prior and the next transactions.
1071	 */
1072	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1073	return xfs_trans_reserve(*tpp, &tres, 0, 0);
1074}
1075
1076/*
1077 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1078 *
1079 * The caller must ensure that the on-disk dquots attached to this inode have
1080 * already been allocated and initialized.  The caller is responsible for
1081 * releasing ILOCK_EXCL if a new transaction is returned.
1082 */
1083int
1084xfs_trans_alloc_inode(
1085	struct xfs_inode	*ip,
1086	struct xfs_trans_res	*resv,
1087	unsigned int		dblocks,
1088	unsigned int		rblocks,
1089	bool			force,
1090	struct xfs_trans	**tpp)
1091{
1092	struct xfs_trans	*tp;
1093	struct xfs_mount	*mp = ip->i_mount;
1094	bool			retried = false;
1095	int			error;
1096
1097retry:
1098	error = xfs_trans_alloc(mp, resv, dblocks,
1099			xfs_extlen_to_rtxlen(mp, rblocks),
1100			force ? XFS_TRANS_RESERVE : 0, &tp);
1101	if (error)
1102		return error;
1103
1104	xfs_ilock(ip, XFS_ILOCK_EXCL);
1105	xfs_trans_ijoin(tp, ip, 0);
1106
1107	error = xfs_qm_dqattach_locked(ip, false);
1108	if (error) {
1109		/* Caller should have allocated the dquots! */
1110		ASSERT(error != -ENOENT);
1111		goto out_cancel;
1112	}
1113
1114	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1115	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1116		xfs_trans_cancel(tp);
1117		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1118		xfs_blockgc_free_quota(ip, 0);
1119		retried = true;
1120		goto retry;
1121	}
1122	if (error)
1123		goto out_cancel;
1124
1125	*tpp = tp;
1126	return 0;
1127
1128out_cancel:
1129	xfs_trans_cancel(tp);
1130	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1131	return error;
1132}
1133
1134/*
1135 * Try to reserve more blocks for a transaction.
1136 *
1137 * This is for callers that need to attach resources to a transaction, scan
1138 * those resources to determine the space reservation requirements, and then
1139 * modify the attached resources.  In other words, online repair.  This can
1140 * fail due to ENOSPC, so the caller must be able to cancel the transaction
1141 * without shutting down the fs.
1142 */
1143int
1144xfs_trans_reserve_more(
1145	struct xfs_trans	*tp,
1146	unsigned int		blocks,
1147	unsigned int		rtextents)
1148{
1149	struct xfs_trans_res	resv = { };
1150
1151	return xfs_trans_reserve(tp, &resv, blocks, rtextents);
1152}
1153
1154/*
1155 * Try to reserve more blocks and file quota for a transaction.  Same
1156 * conditions of usage as xfs_trans_reserve_more.
1157 */
1158int
1159xfs_trans_reserve_more_inode(
1160	struct xfs_trans	*tp,
1161	struct xfs_inode	*ip,
1162	unsigned int		dblocks,
1163	unsigned int		rblocks,
1164	bool			force_quota)
1165{
1166	struct xfs_trans_res	resv = { };
1167	struct xfs_mount	*mp = ip->i_mount;
1168	unsigned int		rtx = xfs_extlen_to_rtxlen(mp, rblocks);
1169	int			error;
1170
1171	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1172
1173	error = xfs_trans_reserve(tp, &resv, dblocks, rtx);
1174	if (error)
1175		return error;
1176
1177	if (!XFS_IS_QUOTA_ON(mp) || xfs_is_quota_inode(&mp->m_sb, ip->i_ino))
1178		return 0;
1179
1180	if (tp->t_flags & XFS_TRANS_RESERVE)
1181		force_quota = true;
1182
1183	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks,
1184			force_quota);
1185	if (!error)
1186		return 0;
1187
1188	/* Quota failed, give back the new reservation. */
1189	xfs_add_fdblocks(mp, dblocks);
1190	tp->t_blk_res -= dblocks;
1191	xfs_add_frextents(mp, rtx);
1192	tp->t_rtx_res -= rtx;
1193	return error;
1194}
1195
1196/*
1197 * Allocate an transaction in preparation for inode creation by reserving quota
1198 * against the given dquots.  Callers are not required to hold any inode locks.
1199 */
1200int
1201xfs_trans_alloc_icreate(
1202	struct xfs_mount	*mp,
1203	struct xfs_trans_res	*resv,
1204	struct xfs_dquot	*udqp,
1205	struct xfs_dquot	*gdqp,
1206	struct xfs_dquot	*pdqp,
1207	unsigned int		dblocks,
1208	struct xfs_trans	**tpp)
1209{
1210	struct xfs_trans	*tp;
1211	bool			retried = false;
1212	int			error;
1213
1214retry:
1215	error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1216	if (error)
1217		return error;
1218
1219	error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1220	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1221		xfs_trans_cancel(tp);
1222		xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1223		retried = true;
1224		goto retry;
1225	}
1226	if (error) {
1227		xfs_trans_cancel(tp);
1228		return error;
1229	}
1230
1231	*tpp = tp;
1232	return 0;
1233}
1234
1235/*
1236 * Allocate an transaction, lock and join the inode to it, and reserve quota
1237 * in preparation for inode attribute changes that include uid, gid, or prid
1238 * changes.
1239 *
1240 * The caller must ensure that the on-disk dquots attached to this inode have
1241 * already been allocated and initialized.  The ILOCK will be dropped when the
1242 * transaction is committed or cancelled.
1243 */
1244int
1245xfs_trans_alloc_ichange(
1246	struct xfs_inode	*ip,
1247	struct xfs_dquot	*new_udqp,
1248	struct xfs_dquot	*new_gdqp,
1249	struct xfs_dquot	*new_pdqp,
1250	bool			force,
1251	struct xfs_trans	**tpp)
1252{
1253	struct xfs_trans	*tp;
1254	struct xfs_mount	*mp = ip->i_mount;
1255	struct xfs_dquot	*udqp;
1256	struct xfs_dquot	*gdqp;
1257	struct xfs_dquot	*pdqp;
1258	bool			retried = false;
1259	int			error;
1260
1261retry:
1262	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1263	if (error)
1264		return error;
1265
1266	xfs_ilock(ip, XFS_ILOCK_EXCL);
1267	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1268
1269	error = xfs_qm_dqattach_locked(ip, false);
1270	if (error) {
1271		/* Caller should have allocated the dquots! */
1272		ASSERT(error != -ENOENT);
1273		goto out_cancel;
1274	}
1275
1276	/*
1277	 * For each quota type, skip quota reservations if the inode's dquots
1278	 * now match the ones that came from the caller, or the caller didn't
1279	 * pass one in.  The inode's dquots can change if we drop the ILOCK to
1280	 * perform a blockgc scan, so we must preserve the caller's arguments.
1281	 */
1282	udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1283	gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1284	pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1285	if (udqp || gdqp || pdqp) {
1286		xfs_filblks_t	dblocks, rblocks;
1287		unsigned int	qflags = XFS_QMOPT_RES_REGBLKS;
1288		bool		isrt = XFS_IS_REALTIME_INODE(ip);
1289
1290		if (force)
1291			qflags |= XFS_QMOPT_FORCE_RES;
1292
1293		if (isrt) {
1294			error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1295			if (error)
1296				goto out_cancel;
1297		}
1298
1299		xfs_inode_count_blocks(tp, ip, &dblocks, &rblocks);
1300
1301		if (isrt)
1302			rblocks += ip->i_delayed_blks;
1303		else
1304			dblocks += ip->i_delayed_blks;
1305
1306		/*
1307		 * Reserve enough quota to handle blocks on disk and reserved
1308		 * for a delayed allocation.  We'll actually transfer the
1309		 * delalloc reservation between dquots at chown time, even
1310		 * though that part is only semi-transactional.
1311		 */
1312		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1313				pdqp, dblocks, 1, qflags);
1314		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1315			xfs_trans_cancel(tp);
1316			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1317			retried = true;
1318			goto retry;
1319		}
1320		if (error)
1321			goto out_cancel;
1322
1323		/* Do the same for realtime. */
1324		qflags = XFS_QMOPT_RES_RTBLKS | (qflags & XFS_QMOPT_FORCE_RES);
1325		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1326				pdqp, rblocks, 0, qflags);
1327		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1328			xfs_trans_cancel(tp);
1329			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1330			retried = true;
1331			goto retry;
1332		}
1333		if (error)
1334			goto out_cancel;
1335	}
1336
1337	*tpp = tp;
1338	return 0;
1339
1340out_cancel:
1341	xfs_trans_cancel(tp);
1342	return error;
1343}
1344
1345/*
1346 * Allocate an transaction, lock and join the directory and child inodes to it,
1347 * and reserve quota for a directory update.  If there isn't sufficient space,
1348 * @dblocks will be set to zero for a reservationless directory update and
1349 * @nospace_error will be set to a negative errno describing the space
1350 * constraint we hit.
1351 *
1352 * The caller must ensure that the on-disk dquots attached to this inode have
1353 * already been allocated and initialized.  The ILOCKs will be dropped when the
1354 * transaction is committed or cancelled.
1355 *
1356 * Caller is responsible for unlocking the inodes manually upon return
1357 */
1358int
1359xfs_trans_alloc_dir(
1360	struct xfs_inode	*dp,
1361	struct xfs_trans_res	*resv,
1362	struct xfs_inode	*ip,
1363	unsigned int		*dblocks,
1364	struct xfs_trans	**tpp,
1365	int			*nospace_error)
1366{
1367	struct xfs_trans	*tp;
1368	struct xfs_mount	*mp = ip->i_mount;
1369	unsigned int		resblks;
1370	bool			retried = false;
1371	int			error;
1372
1373retry:
1374	*nospace_error = 0;
1375	resblks = *dblocks;
1376	error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1377	if (error == -ENOSPC) {
1378		*nospace_error = error;
1379		resblks = 0;
1380		error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1381	}
1382	if (error)
1383		return error;
1384
1385	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1386
1387	xfs_trans_ijoin(tp, dp, 0);
1388	xfs_trans_ijoin(tp, ip, 0);
1389
1390	error = xfs_qm_dqattach_locked(dp, false);
1391	if (error) {
1392		/* Caller should have allocated the dquots! */
1393		ASSERT(error != -ENOENT);
1394		goto out_cancel;
1395	}
1396
1397	error = xfs_qm_dqattach_locked(ip, false);
1398	if (error) {
1399		/* Caller should have allocated the dquots! */
1400		ASSERT(error != -ENOENT);
1401		goto out_cancel;
1402	}
1403
1404	if (resblks == 0)
1405		goto done;
1406
1407	error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1408	if (error == -EDQUOT || error == -ENOSPC) {
1409		if (!retried) {
1410			xfs_trans_cancel(tp);
1411			xfs_iunlock(dp, XFS_ILOCK_EXCL);
1412			if (dp != ip)
1413				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1414			xfs_blockgc_free_quota(dp, 0);
1415			retried = true;
1416			goto retry;
1417		}
1418
1419		*nospace_error = error;
1420		resblks = 0;
1421		error = 0;
1422	}
1423	if (error)
1424		goto out_cancel;
1425
1426done:
1427	*tpp = tp;
1428	*dblocks = resblks;
1429	return 0;
1430
1431out_cancel:
1432	xfs_trans_cancel(tp);
1433	xfs_iunlock(dp, XFS_ILOCK_EXCL);
1434	if (dp != ip)
1435		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1436	return error;
1437}