Loading...
1/*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * Copyright (C) 2010 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19#include "xfs.h"
20#include "xfs_fs.h"
21#include "xfs_types.h"
22#include "xfs_log.h"
23#include "xfs_trans.h"
24#include "xfs_sb.h"
25#include "xfs_ag.h"
26#include "xfs_mount.h"
27#include "xfs_error.h"
28#include "xfs_da_btree.h"
29#include "xfs_bmap_btree.h"
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
32#include "xfs_dinode.h"
33#include "xfs_inode.h"
34#include "xfs_btree.h"
35#include "xfs_ialloc.h"
36#include "xfs_alloc.h"
37#include "xfs_extent_busy.h"
38#include "xfs_bmap.h"
39#include "xfs_quota.h"
40#include "xfs_trans_priv.h"
41#include "xfs_trans_space.h"
42#include "xfs_inode_item.h"
43#include "xfs_trace.h"
44
45kmem_zone_t *xfs_trans_zone;
46kmem_zone_t *xfs_log_item_desc_zone;
47
48
49/*
50 * Various log reservation values.
51 *
52 * These are based on the size of the file system block because that is what
53 * most transactions manipulate. Each adds in an additional 128 bytes per
54 * item logged to try to account for the overhead of the transaction mechanism.
55 *
56 * Note: Most of the reservations underestimate the number of allocation
57 * groups into which they could free extents in the xfs_bmap_finish() call.
58 * This is because the number in the worst case is quite high and quite
59 * unusual. In order to fix this we need to change xfs_bmap_finish() to free
60 * extents in only a single AG at a time. This will require changes to the
61 * EFI code as well, however, so that the EFI for the extents not freed is
62 * logged again in each transaction. See SGI PV #261917.
63 *
64 * Reservation functions here avoid a huge stack in xfs_trans_init due to
65 * register overflow from temporaries in the calculations.
66 */
67
68
69/*
70 * In a write transaction we can allocate a maximum of 2
71 * extents. This gives:
72 * the inode getting the new extents: inode size
73 * the inode's bmap btree: max depth * block size
74 * the agfs of the ags from which the extents are allocated: 2 * sector
75 * the superblock free block counter: sector size
76 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
77 * And the bmap_finish transaction can free bmap blocks in a join:
78 * the agfs of the ags containing the blocks: 2 * sector size
79 * the agfls of the ags containing the blocks: 2 * sector size
80 * the super block free block counter: sector size
81 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
82 */
83STATIC uint
84xfs_calc_write_reservation(
85 struct xfs_mount *mp)
86{
87 return XFS_DQUOT_LOGRES(mp) +
88 MAX((mp->m_sb.sb_inodesize +
89 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
90 2 * mp->m_sb.sb_sectsize +
91 mp->m_sb.sb_sectsize +
92 XFS_ALLOCFREE_LOG_RES(mp, 2) +
93 128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
94 XFS_ALLOCFREE_LOG_COUNT(mp, 2))),
95 (2 * mp->m_sb.sb_sectsize +
96 2 * mp->m_sb.sb_sectsize +
97 mp->m_sb.sb_sectsize +
98 XFS_ALLOCFREE_LOG_RES(mp, 2) +
99 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
100}
101
102/*
103 * In truncating a file we free up to two extents at once. We can modify:
104 * the inode being truncated: inode size
105 * the inode's bmap btree: (max depth + 1) * block size
106 * And the bmap_finish transaction can free the blocks and bmap blocks:
107 * the agf for each of the ags: 4 * sector size
108 * the agfl for each of the ags: 4 * sector size
109 * the super block to reflect the freed blocks: sector size
110 * worst case split in allocation btrees per extent assuming 4 extents:
111 * 4 exts * 2 trees * (2 * max depth - 1) * block size
112 * the inode btree: max depth * blocksize
113 * the allocation btrees: 2 trees * (max depth - 1) * block size
114 */
115STATIC uint
116xfs_calc_itruncate_reservation(
117 struct xfs_mount *mp)
118{
119 return XFS_DQUOT_LOGRES(mp) +
120 MAX((mp->m_sb.sb_inodesize +
121 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) +
122 128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
123 (4 * mp->m_sb.sb_sectsize +
124 4 * mp->m_sb.sb_sectsize +
125 mp->m_sb.sb_sectsize +
126 XFS_ALLOCFREE_LOG_RES(mp, 4) +
127 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) +
128 128 * 5 +
129 XFS_ALLOCFREE_LOG_RES(mp, 1) +
130 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
131 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
132}
133
134/*
135 * In renaming a files we can modify:
136 * the four inodes involved: 4 * inode size
137 * the two directory btrees: 2 * (max depth + v2) * dir block size
138 * the two directory bmap btrees: 2 * max depth * block size
139 * And the bmap_finish transaction can free dir and bmap blocks (two sets
140 * of bmap blocks) giving:
141 * the agf for the ags in which the blocks live: 3 * sector size
142 * the agfl for the ags in which the blocks live: 3 * sector size
143 * the superblock for the free block count: sector size
144 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
145 */
146STATIC uint
147xfs_calc_rename_reservation(
148 struct xfs_mount *mp)
149{
150 return XFS_DQUOT_LOGRES(mp) +
151 MAX((4 * mp->m_sb.sb_inodesize +
152 2 * XFS_DIROP_LOG_RES(mp) +
153 128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))),
154 (3 * mp->m_sb.sb_sectsize +
155 3 * mp->m_sb.sb_sectsize +
156 mp->m_sb.sb_sectsize +
157 XFS_ALLOCFREE_LOG_RES(mp, 3) +
158 128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3))));
159}
160
161/*
162 * For creating a link to an inode:
163 * the parent directory inode: inode size
164 * the linked inode: inode size
165 * the directory btree could split: (max depth + v2) * dir block size
166 * the directory bmap btree could join or split: (max depth + v2) * blocksize
167 * And the bmap_finish transaction can free some bmap blocks giving:
168 * the agf for the ag in which the blocks live: sector size
169 * the agfl for the ag in which the blocks live: sector size
170 * the superblock for the free block count: sector size
171 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
172 */
173STATIC uint
174xfs_calc_link_reservation(
175 struct xfs_mount *mp)
176{
177 return XFS_DQUOT_LOGRES(mp) +
178 MAX((mp->m_sb.sb_inodesize +
179 mp->m_sb.sb_inodesize +
180 XFS_DIROP_LOG_RES(mp) +
181 128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
182 (mp->m_sb.sb_sectsize +
183 mp->m_sb.sb_sectsize +
184 mp->m_sb.sb_sectsize +
185 XFS_ALLOCFREE_LOG_RES(mp, 1) +
186 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
187}
188
189/*
190 * For removing a directory entry we can modify:
191 * the parent directory inode: inode size
192 * the removed inode: inode size
193 * the directory btree could join: (max depth + v2) * dir block size
194 * the directory bmap btree could join or split: (max depth + v2) * blocksize
195 * And the bmap_finish transaction can free the dir and bmap blocks giving:
196 * the agf for the ag in which the blocks live: 2 * sector size
197 * the agfl for the ag in which the blocks live: 2 * sector size
198 * the superblock for the free block count: sector size
199 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
200 */
201STATIC uint
202xfs_calc_remove_reservation(
203 struct xfs_mount *mp)
204{
205 return XFS_DQUOT_LOGRES(mp) +
206 MAX((mp->m_sb.sb_inodesize +
207 mp->m_sb.sb_inodesize +
208 XFS_DIROP_LOG_RES(mp) +
209 128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
210 (2 * mp->m_sb.sb_sectsize +
211 2 * mp->m_sb.sb_sectsize +
212 mp->m_sb.sb_sectsize +
213 XFS_ALLOCFREE_LOG_RES(mp, 2) +
214 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
215}
216
217/*
218 * For symlink we can modify:
219 * the parent directory inode: inode size
220 * the new inode: inode size
221 * the inode btree entry: 1 block
222 * the directory btree: (max depth + v2) * dir block size
223 * the directory inode's bmap btree: (max depth + v2) * block size
224 * the blocks for the symlink: 1 kB
225 * Or in the first xact we allocate some inodes giving:
226 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
227 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
228 * the inode btree: max depth * blocksize
229 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
230 */
231STATIC uint
232xfs_calc_symlink_reservation(
233 struct xfs_mount *mp)
234{
235 return XFS_DQUOT_LOGRES(mp) +
236 MAX((mp->m_sb.sb_inodesize +
237 mp->m_sb.sb_inodesize +
238 XFS_FSB_TO_B(mp, 1) +
239 XFS_DIROP_LOG_RES(mp) +
240 1024 +
241 128 * (4 + XFS_DIROP_LOG_COUNT(mp))),
242 (2 * mp->m_sb.sb_sectsize +
243 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
244 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
245 XFS_ALLOCFREE_LOG_RES(mp, 1) +
246 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
247 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
248}
249
250/*
251 * For create we can modify:
252 * the parent directory inode: inode size
253 * the new inode: inode size
254 * the inode btree entry: block size
255 * the superblock for the nlink flag: sector size
256 * the directory btree: (max depth + v2) * dir block size
257 * the directory inode's bmap btree: (max depth + v2) * block size
258 * Or in the first xact we allocate some inodes giving:
259 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
260 * the superblock for the nlink flag: sector size
261 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
262 * the inode btree: max depth * blocksize
263 * the allocation btrees: 2 trees * (max depth - 1) * block size
264 */
265STATIC uint
266xfs_calc_create_reservation(
267 struct xfs_mount *mp)
268{
269 return XFS_DQUOT_LOGRES(mp) +
270 MAX((mp->m_sb.sb_inodesize +
271 mp->m_sb.sb_inodesize +
272 mp->m_sb.sb_sectsize +
273 XFS_FSB_TO_B(mp, 1) +
274 XFS_DIROP_LOG_RES(mp) +
275 128 * (3 + XFS_DIROP_LOG_COUNT(mp))),
276 (3 * mp->m_sb.sb_sectsize +
277 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
278 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
279 XFS_ALLOCFREE_LOG_RES(mp, 1) +
280 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
281 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
282}
283
284/*
285 * Making a new directory is the same as creating a new file.
286 */
287STATIC uint
288xfs_calc_mkdir_reservation(
289 struct xfs_mount *mp)
290{
291 return xfs_calc_create_reservation(mp);
292}
293
294/*
295 * In freeing an inode we can modify:
296 * the inode being freed: inode size
297 * the super block free inode counter: sector size
298 * the agi hash list and counters: sector size
299 * the inode btree entry: block size
300 * the on disk inode before ours in the agi hash list: inode cluster size
301 * the inode btree: max depth * blocksize
302 * the allocation btrees: 2 trees * (max depth - 1) * block size
303 */
304STATIC uint
305xfs_calc_ifree_reservation(
306 struct xfs_mount *mp)
307{
308 return XFS_DQUOT_LOGRES(mp) +
309 mp->m_sb.sb_inodesize +
310 mp->m_sb.sb_sectsize +
311 mp->m_sb.sb_sectsize +
312 XFS_FSB_TO_B(mp, 1) +
313 MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
314 XFS_INODE_CLUSTER_SIZE(mp)) +
315 128 * 5 +
316 XFS_ALLOCFREE_LOG_RES(mp, 1) +
317 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
318 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
319}
320
321/*
322 * When only changing the inode we log the inode and possibly the superblock
323 * We also add a bit of slop for the transaction stuff.
324 */
325STATIC uint
326xfs_calc_ichange_reservation(
327 struct xfs_mount *mp)
328{
329 return XFS_DQUOT_LOGRES(mp) +
330 mp->m_sb.sb_inodesize +
331 mp->m_sb.sb_sectsize +
332 512;
333
334}
335
336/*
337 * Growing the data section of the filesystem.
338 * superblock
339 * agi and agf
340 * allocation btrees
341 */
342STATIC uint
343xfs_calc_growdata_reservation(
344 struct xfs_mount *mp)
345{
346 return mp->m_sb.sb_sectsize * 3 +
347 XFS_ALLOCFREE_LOG_RES(mp, 1) +
348 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1));
349}
350
351/*
352 * Growing the rt section of the filesystem.
353 * In the first set of transactions (ALLOC) we allocate space to the
354 * bitmap or summary files.
355 * superblock: sector size
356 * agf of the ag from which the extent is allocated: sector size
357 * bmap btree for bitmap/summary inode: max depth * blocksize
358 * bitmap/summary inode: inode size
359 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
360 */
361STATIC uint
362xfs_calc_growrtalloc_reservation(
363 struct xfs_mount *mp)
364{
365 return 2 * mp->m_sb.sb_sectsize +
366 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
367 mp->m_sb.sb_inodesize +
368 XFS_ALLOCFREE_LOG_RES(mp, 1) +
369 128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
370 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
371}
372
373/*
374 * Growing the rt section of the filesystem.
375 * In the second set of transactions (ZERO) we zero the new metadata blocks.
376 * one bitmap/summary block: blocksize
377 */
378STATIC uint
379xfs_calc_growrtzero_reservation(
380 struct xfs_mount *mp)
381{
382 return mp->m_sb.sb_blocksize + 128;
383}
384
385/*
386 * Growing the rt section of the filesystem.
387 * In the third set of transactions (FREE) we update metadata without
388 * allocating any new blocks.
389 * superblock: sector size
390 * bitmap inode: inode size
391 * summary inode: inode size
392 * one bitmap block: blocksize
393 * summary blocks: new summary size
394 */
395STATIC uint
396xfs_calc_growrtfree_reservation(
397 struct xfs_mount *mp)
398{
399 return mp->m_sb.sb_sectsize +
400 2 * mp->m_sb.sb_inodesize +
401 mp->m_sb.sb_blocksize +
402 mp->m_rsumsize +
403 128 * 5;
404}
405
406/*
407 * Logging the inode modification timestamp on a synchronous write.
408 * inode
409 */
410STATIC uint
411xfs_calc_swrite_reservation(
412 struct xfs_mount *mp)
413{
414 return mp->m_sb.sb_inodesize + 128;
415}
416
417/*
418 * Logging the inode mode bits when writing a setuid/setgid file
419 * inode
420 */
421STATIC uint
422xfs_calc_writeid_reservation(xfs_mount_t *mp)
423{
424 return mp->m_sb.sb_inodesize + 128;
425}
426
427/*
428 * Converting the inode from non-attributed to attributed.
429 * the inode being converted: inode size
430 * agf block and superblock (for block allocation)
431 * the new block (directory sized)
432 * bmap blocks for the new directory block
433 * allocation btrees
434 */
435STATIC uint
436xfs_calc_addafork_reservation(
437 struct xfs_mount *mp)
438{
439 return XFS_DQUOT_LOGRES(mp) +
440 mp->m_sb.sb_inodesize +
441 mp->m_sb.sb_sectsize * 2 +
442 mp->m_dirblksize +
443 XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) +
444 XFS_ALLOCFREE_LOG_RES(mp, 1) +
445 128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 +
446 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
447}
448
449/*
450 * Removing the attribute fork of a file
451 * the inode being truncated: inode size
452 * the inode's bmap btree: max depth * block size
453 * And the bmap_finish transaction can free the blocks and bmap blocks:
454 * the agf for each of the ags: 4 * sector size
455 * the agfl for each of the ags: 4 * sector size
456 * the super block to reflect the freed blocks: sector size
457 * worst case split in allocation btrees per extent assuming 4 extents:
458 * 4 exts * 2 trees * (2 * max depth - 1) * block size
459 */
460STATIC uint
461xfs_calc_attrinval_reservation(
462 struct xfs_mount *mp)
463{
464 return MAX((mp->m_sb.sb_inodesize +
465 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
466 128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))),
467 (4 * mp->m_sb.sb_sectsize +
468 4 * mp->m_sb.sb_sectsize +
469 mp->m_sb.sb_sectsize +
470 XFS_ALLOCFREE_LOG_RES(mp, 4) +
471 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4))));
472}
473
474/*
475 * Setting an attribute.
476 * the inode getting the attribute
477 * the superblock for allocations
478 * the agfs extents are allocated from
479 * the attribute btree * max depth
480 * the inode allocation btree
481 * Since attribute transaction space is dependent on the size of the attribute,
482 * the calculation is done partially at mount time and partially at runtime.
483 */
484STATIC uint
485xfs_calc_attrset_reservation(
486 struct xfs_mount *mp)
487{
488 return XFS_DQUOT_LOGRES(mp) +
489 mp->m_sb.sb_inodesize +
490 mp->m_sb.sb_sectsize +
491 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
492 128 * (2 + XFS_DA_NODE_MAXDEPTH);
493}
494
495/*
496 * Removing an attribute.
497 * the inode: inode size
498 * the attribute btree could join: max depth * block size
499 * the inode bmap btree could join or split: max depth * block size
500 * And the bmap_finish transaction can free the attr blocks freed giving:
501 * the agf for the ag in which the blocks live: 2 * sector size
502 * the agfl for the ag in which the blocks live: 2 * sector size
503 * the superblock for the free block count: sector size
504 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
505 */
506STATIC uint
507xfs_calc_attrrm_reservation(
508 struct xfs_mount *mp)
509{
510 return XFS_DQUOT_LOGRES(mp) +
511 MAX((mp->m_sb.sb_inodesize +
512 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
513 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
514 128 * (1 + XFS_DA_NODE_MAXDEPTH +
515 XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
516 (2 * mp->m_sb.sb_sectsize +
517 2 * mp->m_sb.sb_sectsize +
518 mp->m_sb.sb_sectsize +
519 XFS_ALLOCFREE_LOG_RES(mp, 2) +
520 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
521}
522
523/*
524 * Clearing a bad agino number in an agi hash bucket.
525 */
526STATIC uint
527xfs_calc_clear_agi_bucket_reservation(
528 struct xfs_mount *mp)
529{
530 return mp->m_sb.sb_sectsize + 128;
531}
532
533/*
534 * Initialize the precomputed transaction reservation values
535 * in the mount structure.
536 */
537void
538xfs_trans_init(
539 struct xfs_mount *mp)
540{
541 struct xfs_trans_reservations *resp = &mp->m_reservations;
542
543 resp->tr_write = xfs_calc_write_reservation(mp);
544 resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
545 resp->tr_rename = xfs_calc_rename_reservation(mp);
546 resp->tr_link = xfs_calc_link_reservation(mp);
547 resp->tr_remove = xfs_calc_remove_reservation(mp);
548 resp->tr_symlink = xfs_calc_symlink_reservation(mp);
549 resp->tr_create = xfs_calc_create_reservation(mp);
550 resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
551 resp->tr_ifree = xfs_calc_ifree_reservation(mp);
552 resp->tr_ichange = xfs_calc_ichange_reservation(mp);
553 resp->tr_growdata = xfs_calc_growdata_reservation(mp);
554 resp->tr_swrite = xfs_calc_swrite_reservation(mp);
555 resp->tr_writeid = xfs_calc_writeid_reservation(mp);
556 resp->tr_addafork = xfs_calc_addafork_reservation(mp);
557 resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
558 resp->tr_attrset = xfs_calc_attrset_reservation(mp);
559 resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
560 resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
561 resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
562 resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
563 resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
564}
565
566/*
567 * This routine is called to allocate a transaction structure.
568 * The type parameter indicates the type of the transaction. These
569 * are enumerated in xfs_trans.h.
570 *
571 * Dynamically allocate the transaction structure from the transaction
572 * zone, initialize it, and return it to the caller.
573 */
574xfs_trans_t *
575xfs_trans_alloc(
576 xfs_mount_t *mp,
577 uint type)
578{
579 xfs_wait_for_freeze(mp, SB_FREEZE_TRANS);
580 return _xfs_trans_alloc(mp, type, KM_SLEEP);
581}
582
583xfs_trans_t *
584_xfs_trans_alloc(
585 xfs_mount_t *mp,
586 uint type,
587 xfs_km_flags_t memflags)
588{
589 xfs_trans_t *tp;
590
591 atomic_inc(&mp->m_active_trans);
592
593 tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
594 tp->t_magic = XFS_TRANS_MAGIC;
595 tp->t_type = type;
596 tp->t_mountp = mp;
597 INIT_LIST_HEAD(&tp->t_items);
598 INIT_LIST_HEAD(&tp->t_busy);
599 return tp;
600}
601
602/*
603 * Free the transaction structure. If there is more clean up
604 * to do when the structure is freed, add it here.
605 */
606STATIC void
607xfs_trans_free(
608 struct xfs_trans *tp)
609{
610 xfs_extent_busy_sort(&tp->t_busy);
611 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
612
613 atomic_dec(&tp->t_mountp->m_active_trans);
614 xfs_trans_free_dqinfo(tp);
615 kmem_zone_free(xfs_trans_zone, tp);
616}
617
618/*
619 * This is called to create a new transaction which will share the
620 * permanent log reservation of the given transaction. The remaining
621 * unused block and rt extent reservations are also inherited. This
622 * implies that the original transaction is no longer allowed to allocate
623 * blocks. Locks and log items, however, are no inherited. They must
624 * be added to the new transaction explicitly.
625 */
626xfs_trans_t *
627xfs_trans_dup(
628 xfs_trans_t *tp)
629{
630 xfs_trans_t *ntp;
631
632 ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
633
634 /*
635 * Initialize the new transaction structure.
636 */
637 ntp->t_magic = XFS_TRANS_MAGIC;
638 ntp->t_type = tp->t_type;
639 ntp->t_mountp = tp->t_mountp;
640 INIT_LIST_HEAD(&ntp->t_items);
641 INIT_LIST_HEAD(&ntp->t_busy);
642
643 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
644 ASSERT(tp->t_ticket != NULL);
645
646 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE);
647 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
648 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
649 tp->t_blk_res = tp->t_blk_res_used;
650 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
651 tp->t_rtx_res = tp->t_rtx_res_used;
652 ntp->t_pflags = tp->t_pflags;
653
654 xfs_trans_dup_dqinfo(tp, ntp);
655
656 atomic_inc(&tp->t_mountp->m_active_trans);
657 return ntp;
658}
659
660/*
661 * This is called to reserve free disk blocks and log space for the
662 * given transaction. This must be done before allocating any resources
663 * within the transaction.
664 *
665 * This will return ENOSPC if there are not enough blocks available.
666 * It will sleep waiting for available log space.
667 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
668 * is used by long running transactions. If any one of the reservations
669 * fails then they will all be backed out.
670 *
671 * This does not do quota reservations. That typically is done by the
672 * caller afterwards.
673 */
674int
675xfs_trans_reserve(
676 xfs_trans_t *tp,
677 uint blocks,
678 uint logspace,
679 uint rtextents,
680 uint flags,
681 uint logcount)
682{
683 int error = 0;
684 int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
685
686 /* Mark this thread as being in a transaction */
687 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
688
689 /*
690 * Attempt to reserve the needed disk blocks by decrementing
691 * the number needed from the number available. This will
692 * fail if the count would go below zero.
693 */
694 if (blocks > 0) {
695 error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
696 -((int64_t)blocks), rsvd);
697 if (error != 0) {
698 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
699 return (XFS_ERROR(ENOSPC));
700 }
701 tp->t_blk_res += blocks;
702 }
703
704 /*
705 * Reserve the log space needed for this transaction.
706 */
707 if (logspace > 0) {
708 bool permanent = false;
709
710 ASSERT(tp->t_log_res == 0 || tp->t_log_res == logspace);
711 ASSERT(tp->t_log_count == 0 || tp->t_log_count == logcount);
712
713 if (flags & XFS_TRANS_PERM_LOG_RES) {
714 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
715 permanent = true;
716 } else {
717 ASSERT(tp->t_ticket == NULL);
718 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
719 }
720
721 if (tp->t_ticket != NULL) {
722 ASSERT(flags & XFS_TRANS_PERM_LOG_RES);
723 error = xfs_log_regrant(tp->t_mountp, tp->t_ticket);
724 } else {
725 error = xfs_log_reserve(tp->t_mountp, logspace,
726 logcount, &tp->t_ticket,
727 XFS_TRANSACTION, permanent,
728 tp->t_type);
729 }
730
731 if (error)
732 goto undo_blocks;
733
734 tp->t_log_res = logspace;
735 tp->t_log_count = logcount;
736 }
737
738 /*
739 * Attempt to reserve the needed realtime extents by decrementing
740 * the number needed from the number available. This will
741 * fail if the count would go below zero.
742 */
743 if (rtextents > 0) {
744 error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
745 -((int64_t)rtextents), rsvd);
746 if (error) {
747 error = XFS_ERROR(ENOSPC);
748 goto undo_log;
749 }
750 tp->t_rtx_res += rtextents;
751 }
752
753 return 0;
754
755 /*
756 * Error cases jump to one of these labels to undo any
757 * reservations which have already been performed.
758 */
759undo_log:
760 if (logspace > 0) {
761 int log_flags;
762
763 if (flags & XFS_TRANS_PERM_LOG_RES) {
764 log_flags = XFS_LOG_REL_PERM_RESERV;
765 } else {
766 log_flags = 0;
767 }
768 xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
769 tp->t_ticket = NULL;
770 tp->t_log_res = 0;
771 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
772 }
773
774undo_blocks:
775 if (blocks > 0) {
776 xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
777 (int64_t)blocks, rsvd);
778 tp->t_blk_res = 0;
779 }
780
781 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
782
783 return error;
784}
785
786/*
787 * Record the indicated change to the given field for application
788 * to the file system's superblock when the transaction commits.
789 * For now, just store the change in the transaction structure.
790 *
791 * Mark the transaction structure to indicate that the superblock
792 * needs to be updated before committing.
793 *
794 * Because we may not be keeping track of allocated/free inodes and
795 * used filesystem blocks in the superblock, we do not mark the
796 * superblock dirty in this transaction if we modify these fields.
797 * We still need to update the transaction deltas so that they get
798 * applied to the incore superblock, but we don't want them to
799 * cause the superblock to get locked and logged if these are the
800 * only fields in the superblock that the transaction modifies.
801 */
802void
803xfs_trans_mod_sb(
804 xfs_trans_t *tp,
805 uint field,
806 int64_t delta)
807{
808 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
809 xfs_mount_t *mp = tp->t_mountp;
810
811 switch (field) {
812 case XFS_TRANS_SB_ICOUNT:
813 tp->t_icount_delta += delta;
814 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
815 flags &= ~XFS_TRANS_SB_DIRTY;
816 break;
817 case XFS_TRANS_SB_IFREE:
818 tp->t_ifree_delta += delta;
819 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
820 flags &= ~XFS_TRANS_SB_DIRTY;
821 break;
822 case XFS_TRANS_SB_FDBLOCKS:
823 /*
824 * Track the number of blocks allocated in the
825 * transaction. Make sure it does not exceed the
826 * number reserved.
827 */
828 if (delta < 0) {
829 tp->t_blk_res_used += (uint)-delta;
830 ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
831 }
832 tp->t_fdblocks_delta += delta;
833 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
834 flags &= ~XFS_TRANS_SB_DIRTY;
835 break;
836 case XFS_TRANS_SB_RES_FDBLOCKS:
837 /*
838 * The allocation has already been applied to the
839 * in-core superblock's counter. This should only
840 * be applied to the on-disk superblock.
841 */
842 ASSERT(delta < 0);
843 tp->t_res_fdblocks_delta += delta;
844 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
845 flags &= ~XFS_TRANS_SB_DIRTY;
846 break;
847 case XFS_TRANS_SB_FREXTENTS:
848 /*
849 * Track the number of blocks allocated in the
850 * transaction. Make sure it does not exceed the
851 * number reserved.
852 */
853 if (delta < 0) {
854 tp->t_rtx_res_used += (uint)-delta;
855 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
856 }
857 tp->t_frextents_delta += delta;
858 break;
859 case XFS_TRANS_SB_RES_FREXTENTS:
860 /*
861 * The allocation has already been applied to the
862 * in-core superblock's counter. This should only
863 * be applied to the on-disk superblock.
864 */
865 ASSERT(delta < 0);
866 tp->t_res_frextents_delta += delta;
867 break;
868 case XFS_TRANS_SB_DBLOCKS:
869 ASSERT(delta > 0);
870 tp->t_dblocks_delta += delta;
871 break;
872 case XFS_TRANS_SB_AGCOUNT:
873 ASSERT(delta > 0);
874 tp->t_agcount_delta += delta;
875 break;
876 case XFS_TRANS_SB_IMAXPCT:
877 tp->t_imaxpct_delta += delta;
878 break;
879 case XFS_TRANS_SB_REXTSIZE:
880 tp->t_rextsize_delta += delta;
881 break;
882 case XFS_TRANS_SB_RBMBLOCKS:
883 tp->t_rbmblocks_delta += delta;
884 break;
885 case XFS_TRANS_SB_RBLOCKS:
886 tp->t_rblocks_delta += delta;
887 break;
888 case XFS_TRANS_SB_REXTENTS:
889 tp->t_rextents_delta += delta;
890 break;
891 case XFS_TRANS_SB_REXTSLOG:
892 tp->t_rextslog_delta += delta;
893 break;
894 default:
895 ASSERT(0);
896 return;
897 }
898
899 tp->t_flags |= flags;
900}
901
902/*
903 * xfs_trans_apply_sb_deltas() is called from the commit code
904 * to bring the superblock buffer into the current transaction
905 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
906 *
907 * For now we just look at each field allowed to change and change
908 * it if necessary.
909 */
910STATIC void
911xfs_trans_apply_sb_deltas(
912 xfs_trans_t *tp)
913{
914 xfs_dsb_t *sbp;
915 xfs_buf_t *bp;
916 int whole = 0;
917
918 bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
919 sbp = XFS_BUF_TO_SBP(bp);
920
921 /*
922 * Check that superblock mods match the mods made to AGF counters.
923 */
924 ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
925 (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
926 tp->t_ag_btree_delta));
927
928 /*
929 * Only update the superblock counters if we are logging them
930 */
931 if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
932 if (tp->t_icount_delta)
933 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
934 if (tp->t_ifree_delta)
935 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
936 if (tp->t_fdblocks_delta)
937 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
938 if (tp->t_res_fdblocks_delta)
939 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
940 }
941
942 if (tp->t_frextents_delta)
943 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
944 if (tp->t_res_frextents_delta)
945 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
946
947 if (tp->t_dblocks_delta) {
948 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
949 whole = 1;
950 }
951 if (tp->t_agcount_delta) {
952 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
953 whole = 1;
954 }
955 if (tp->t_imaxpct_delta) {
956 sbp->sb_imax_pct += tp->t_imaxpct_delta;
957 whole = 1;
958 }
959 if (tp->t_rextsize_delta) {
960 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
961 whole = 1;
962 }
963 if (tp->t_rbmblocks_delta) {
964 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
965 whole = 1;
966 }
967 if (tp->t_rblocks_delta) {
968 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
969 whole = 1;
970 }
971 if (tp->t_rextents_delta) {
972 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
973 whole = 1;
974 }
975 if (tp->t_rextslog_delta) {
976 sbp->sb_rextslog += tp->t_rextslog_delta;
977 whole = 1;
978 }
979
980 if (whole)
981 /*
982 * Log the whole thing, the fields are noncontiguous.
983 */
984 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
985 else
986 /*
987 * Since all the modifiable fields are contiguous, we
988 * can get away with this.
989 */
990 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
991 offsetof(xfs_dsb_t, sb_frextents) +
992 sizeof(sbp->sb_frextents) - 1);
993}
994
995/*
996 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
997 * and apply superblock counter changes to the in-core superblock. The
998 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
999 * applied to the in-core superblock. The idea is that that has already been
1000 * done.
1001 *
1002 * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
1003 * However, we have to ensure that we only modify each superblock field only
1004 * once because the application of the delta values may not be atomic. That can
1005 * lead to ENOSPC races occurring if we have two separate modifcations of the
1006 * free space counter to put back the entire reservation and then take away
1007 * what we used.
1008 *
1009 * If we are not logging superblock counters, then the inode allocated/free and
1010 * used block counts are not updated in the on disk superblock. In this case,
1011 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1012 * still need to update the incore superblock with the changes.
1013 */
1014void
1015xfs_trans_unreserve_and_mod_sb(
1016 xfs_trans_t *tp)
1017{
1018 xfs_mod_sb_t msb[9]; /* If you add cases, add entries */
1019 xfs_mod_sb_t *msbp;
1020 xfs_mount_t *mp = tp->t_mountp;
1021 /* REFERENCED */
1022 int error;
1023 int rsvd;
1024 int64_t blkdelta = 0;
1025 int64_t rtxdelta = 0;
1026 int64_t idelta = 0;
1027 int64_t ifreedelta = 0;
1028
1029 msbp = msb;
1030 rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1031
1032 /* calculate deltas */
1033 if (tp->t_blk_res > 0)
1034 blkdelta = tp->t_blk_res;
1035 if ((tp->t_fdblocks_delta != 0) &&
1036 (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1037 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
1038 blkdelta += tp->t_fdblocks_delta;
1039
1040 if (tp->t_rtx_res > 0)
1041 rtxdelta = tp->t_rtx_res;
1042 if ((tp->t_frextents_delta != 0) &&
1043 (tp->t_flags & XFS_TRANS_SB_DIRTY))
1044 rtxdelta += tp->t_frextents_delta;
1045
1046 if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1047 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1048 idelta = tp->t_icount_delta;
1049 ifreedelta = tp->t_ifree_delta;
1050 }
1051
1052 /* apply the per-cpu counters */
1053 if (blkdelta) {
1054 error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
1055 blkdelta, rsvd);
1056 if (error)
1057 goto out;
1058 }
1059
1060 if (idelta) {
1061 error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
1062 idelta, rsvd);
1063 if (error)
1064 goto out_undo_fdblocks;
1065 }
1066
1067 if (ifreedelta) {
1068 error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
1069 ifreedelta, rsvd);
1070 if (error)
1071 goto out_undo_icount;
1072 }
1073
1074 /* apply remaining deltas */
1075 if (rtxdelta != 0) {
1076 msbp->msb_field = XFS_SBS_FREXTENTS;
1077 msbp->msb_delta = rtxdelta;
1078 msbp++;
1079 }
1080
1081 if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1082 if (tp->t_dblocks_delta != 0) {
1083 msbp->msb_field = XFS_SBS_DBLOCKS;
1084 msbp->msb_delta = tp->t_dblocks_delta;
1085 msbp++;
1086 }
1087 if (tp->t_agcount_delta != 0) {
1088 msbp->msb_field = XFS_SBS_AGCOUNT;
1089 msbp->msb_delta = tp->t_agcount_delta;
1090 msbp++;
1091 }
1092 if (tp->t_imaxpct_delta != 0) {
1093 msbp->msb_field = XFS_SBS_IMAX_PCT;
1094 msbp->msb_delta = tp->t_imaxpct_delta;
1095 msbp++;
1096 }
1097 if (tp->t_rextsize_delta != 0) {
1098 msbp->msb_field = XFS_SBS_REXTSIZE;
1099 msbp->msb_delta = tp->t_rextsize_delta;
1100 msbp++;
1101 }
1102 if (tp->t_rbmblocks_delta != 0) {
1103 msbp->msb_field = XFS_SBS_RBMBLOCKS;
1104 msbp->msb_delta = tp->t_rbmblocks_delta;
1105 msbp++;
1106 }
1107 if (tp->t_rblocks_delta != 0) {
1108 msbp->msb_field = XFS_SBS_RBLOCKS;
1109 msbp->msb_delta = tp->t_rblocks_delta;
1110 msbp++;
1111 }
1112 if (tp->t_rextents_delta != 0) {
1113 msbp->msb_field = XFS_SBS_REXTENTS;
1114 msbp->msb_delta = tp->t_rextents_delta;
1115 msbp++;
1116 }
1117 if (tp->t_rextslog_delta != 0) {
1118 msbp->msb_field = XFS_SBS_REXTSLOG;
1119 msbp->msb_delta = tp->t_rextslog_delta;
1120 msbp++;
1121 }
1122 }
1123
1124 /*
1125 * If we need to change anything, do it.
1126 */
1127 if (msbp > msb) {
1128 error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1129 (uint)(msbp - msb), rsvd);
1130 if (error)
1131 goto out_undo_ifreecount;
1132 }
1133
1134 return;
1135
1136out_undo_ifreecount:
1137 if (ifreedelta)
1138 xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
1139out_undo_icount:
1140 if (idelta)
1141 xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
1142out_undo_fdblocks:
1143 if (blkdelta)
1144 xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
1145out:
1146 ASSERT(error == 0);
1147 return;
1148}
1149
1150/*
1151 * Add the given log item to the transaction's list of log items.
1152 *
1153 * The log item will now point to its new descriptor with its li_desc field.
1154 */
1155void
1156xfs_trans_add_item(
1157 struct xfs_trans *tp,
1158 struct xfs_log_item *lip)
1159{
1160 struct xfs_log_item_desc *lidp;
1161
1162 ASSERT(lip->li_mountp == tp->t_mountp);
1163 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
1164
1165 lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
1166
1167 lidp->lid_item = lip;
1168 lidp->lid_flags = 0;
1169 list_add_tail(&lidp->lid_trans, &tp->t_items);
1170
1171 lip->li_desc = lidp;
1172}
1173
1174STATIC void
1175xfs_trans_free_item_desc(
1176 struct xfs_log_item_desc *lidp)
1177{
1178 list_del_init(&lidp->lid_trans);
1179 kmem_zone_free(xfs_log_item_desc_zone, lidp);
1180}
1181
1182/*
1183 * Unlink and free the given descriptor.
1184 */
1185void
1186xfs_trans_del_item(
1187 struct xfs_log_item *lip)
1188{
1189 xfs_trans_free_item_desc(lip->li_desc);
1190 lip->li_desc = NULL;
1191}
1192
1193/*
1194 * Unlock all of the items of a transaction and free all the descriptors
1195 * of that transaction.
1196 */
1197void
1198xfs_trans_free_items(
1199 struct xfs_trans *tp,
1200 xfs_lsn_t commit_lsn,
1201 int flags)
1202{
1203 struct xfs_log_item_desc *lidp, *next;
1204
1205 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1206 struct xfs_log_item *lip = lidp->lid_item;
1207
1208 lip->li_desc = NULL;
1209
1210 if (commit_lsn != NULLCOMMITLSN)
1211 IOP_COMMITTING(lip, commit_lsn);
1212 if (flags & XFS_TRANS_ABORT)
1213 lip->li_flags |= XFS_LI_ABORTED;
1214 IOP_UNLOCK(lip);
1215
1216 xfs_trans_free_item_desc(lidp);
1217 }
1218}
1219
1220static inline void
1221xfs_log_item_batch_insert(
1222 struct xfs_ail *ailp,
1223 struct xfs_ail_cursor *cur,
1224 struct xfs_log_item **log_items,
1225 int nr_items,
1226 xfs_lsn_t commit_lsn)
1227{
1228 int i;
1229
1230 spin_lock(&ailp->xa_lock);
1231 /* xfs_trans_ail_update_bulk drops ailp->xa_lock */
1232 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
1233
1234 for (i = 0; i < nr_items; i++)
1235 IOP_UNPIN(log_items[i], 0);
1236}
1237
1238/*
1239 * Bulk operation version of xfs_trans_committed that takes a log vector of
1240 * items to insert into the AIL. This uses bulk AIL insertion techniques to
1241 * minimise lock traffic.
1242 *
1243 * If we are called with the aborted flag set, it is because a log write during
1244 * a CIL checkpoint commit has failed. In this case, all the items in the
1245 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1246 * means that checkpoint commit abort handling is treated exactly the same
1247 * as an iclog write error even though we haven't started any IO yet. Hence in
1248 * this case all we need to do is IOP_COMMITTED processing, followed by an
1249 * IOP_UNPIN(aborted) call.
1250 *
1251 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
1252 * at the end of the AIL, the insert cursor avoids the need to walk
1253 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
1254 * call. This saves a lot of needless list walking and is a net win, even
1255 * though it slightly increases that amount of AIL lock traffic to set it up
1256 * and tear it down.
1257 */
1258void
1259xfs_trans_committed_bulk(
1260 struct xfs_ail *ailp,
1261 struct xfs_log_vec *log_vector,
1262 xfs_lsn_t commit_lsn,
1263 int aborted)
1264{
1265#define LOG_ITEM_BATCH_SIZE 32
1266 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
1267 struct xfs_log_vec *lv;
1268 struct xfs_ail_cursor cur;
1269 int i = 0;
1270
1271 spin_lock(&ailp->xa_lock);
1272 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
1273 spin_unlock(&ailp->xa_lock);
1274
1275 /* unpin all the log items */
1276 for (lv = log_vector; lv; lv = lv->lv_next ) {
1277 struct xfs_log_item *lip = lv->lv_item;
1278 xfs_lsn_t item_lsn;
1279
1280 if (aborted)
1281 lip->li_flags |= XFS_LI_ABORTED;
1282 item_lsn = IOP_COMMITTED(lip, commit_lsn);
1283
1284 /* item_lsn of -1 means the item needs no further processing */
1285 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1286 continue;
1287
1288 /*
1289 * if we are aborting the operation, no point in inserting the
1290 * object into the AIL as we are in a shutdown situation.
1291 */
1292 if (aborted) {
1293 ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1294 IOP_UNPIN(lip, 1);
1295 continue;
1296 }
1297
1298 if (item_lsn != commit_lsn) {
1299
1300 /*
1301 * Not a bulk update option due to unusual item_lsn.
1302 * Push into AIL immediately, rechecking the lsn once
1303 * we have the ail lock. Then unpin the item. This does
1304 * not affect the AIL cursor the bulk insert path is
1305 * using.
1306 */
1307 spin_lock(&ailp->xa_lock);
1308 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
1309 xfs_trans_ail_update(ailp, lip, item_lsn);
1310 else
1311 spin_unlock(&ailp->xa_lock);
1312 IOP_UNPIN(lip, 0);
1313 continue;
1314 }
1315
1316 /* Item is a candidate for bulk AIL insert. */
1317 log_items[i++] = lv->lv_item;
1318 if (i >= LOG_ITEM_BATCH_SIZE) {
1319 xfs_log_item_batch_insert(ailp, &cur, log_items,
1320 LOG_ITEM_BATCH_SIZE, commit_lsn);
1321 i = 0;
1322 }
1323 }
1324
1325 /* make sure we insert the remainder! */
1326 if (i)
1327 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
1328
1329 spin_lock(&ailp->xa_lock);
1330 xfs_trans_ail_cursor_done(ailp, &cur);
1331 spin_unlock(&ailp->xa_lock);
1332}
1333
1334/*
1335 * Commit the given transaction to the log.
1336 *
1337 * XFS disk error handling mechanism is not based on a typical
1338 * transaction abort mechanism. Logically after the filesystem
1339 * gets marked 'SHUTDOWN', we can't let any new transactions
1340 * be durable - ie. committed to disk - because some metadata might
1341 * be inconsistent. In such cases, this returns an error, and the
1342 * caller may assume that all locked objects joined to the transaction
1343 * have already been unlocked as if the commit had succeeded.
1344 * Do not reference the transaction structure after this call.
1345 */
1346int
1347xfs_trans_commit(
1348 struct xfs_trans *tp,
1349 uint flags)
1350{
1351 struct xfs_mount *mp = tp->t_mountp;
1352 xfs_lsn_t commit_lsn = -1;
1353 int error = 0;
1354 int log_flags = 0;
1355 int sync = tp->t_flags & XFS_TRANS_SYNC;
1356
1357 /*
1358 * Determine whether this commit is releasing a permanent
1359 * log reservation or not.
1360 */
1361 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1362 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1363 log_flags = XFS_LOG_REL_PERM_RESERV;
1364 }
1365
1366 /*
1367 * If there is nothing to be logged by the transaction,
1368 * then unlock all of the items associated with the
1369 * transaction and free the transaction structure.
1370 * Also make sure to return any reserved blocks to
1371 * the free pool.
1372 */
1373 if (!(tp->t_flags & XFS_TRANS_DIRTY))
1374 goto out_unreserve;
1375
1376 if (XFS_FORCED_SHUTDOWN(mp)) {
1377 error = XFS_ERROR(EIO);
1378 goto out_unreserve;
1379 }
1380
1381 ASSERT(tp->t_ticket != NULL);
1382
1383 /*
1384 * If we need to update the superblock, then do it now.
1385 */
1386 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1387 xfs_trans_apply_sb_deltas(tp);
1388 xfs_trans_apply_dquot_deltas(tp);
1389
1390 error = xfs_log_commit_cil(mp, tp, &commit_lsn, flags);
1391 if (error == ENOMEM) {
1392 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1393 error = XFS_ERROR(EIO);
1394 goto out_unreserve;
1395 }
1396
1397 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1398 xfs_trans_free(tp);
1399
1400 /*
1401 * If the transaction needs to be synchronous, then force the
1402 * log out now and wait for it.
1403 */
1404 if (sync) {
1405 if (!error) {
1406 error = _xfs_log_force_lsn(mp, commit_lsn,
1407 XFS_LOG_SYNC, NULL);
1408 }
1409 XFS_STATS_INC(xs_trans_sync);
1410 } else {
1411 XFS_STATS_INC(xs_trans_async);
1412 }
1413
1414 return error;
1415
1416out_unreserve:
1417 xfs_trans_unreserve_and_mod_sb(tp);
1418
1419 /*
1420 * It is indeed possible for the transaction to be not dirty but
1421 * the dqinfo portion to be. All that means is that we have some
1422 * (non-persistent) quota reservations that need to be unreserved.
1423 */
1424 xfs_trans_unreserve_and_mod_dquots(tp);
1425 if (tp->t_ticket) {
1426 commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1427 if (commit_lsn == -1 && !error)
1428 error = XFS_ERROR(EIO);
1429 }
1430 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1431 xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1432 xfs_trans_free(tp);
1433
1434 XFS_STATS_INC(xs_trans_empty);
1435 return error;
1436}
1437
1438/*
1439 * Unlock all of the transaction's items and free the transaction.
1440 * The transaction must not have modified any of its items, because
1441 * there is no way to restore them to their previous state.
1442 *
1443 * If the transaction has made a log reservation, make sure to release
1444 * it as well.
1445 */
1446void
1447xfs_trans_cancel(
1448 xfs_trans_t *tp,
1449 int flags)
1450{
1451 int log_flags;
1452 xfs_mount_t *mp = tp->t_mountp;
1453
1454 /*
1455 * See if the caller is being too lazy to figure out if
1456 * the transaction really needs an abort.
1457 */
1458 if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1459 flags &= ~XFS_TRANS_ABORT;
1460 /*
1461 * See if the caller is relying on us to shut down the
1462 * filesystem. This happens in paths where we detect
1463 * corruption and decide to give up.
1464 */
1465 if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1466 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1467 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1468 }
1469#ifdef DEBUG
1470 if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1471 struct xfs_log_item_desc *lidp;
1472
1473 list_for_each_entry(lidp, &tp->t_items, lid_trans)
1474 ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1475 }
1476#endif
1477 xfs_trans_unreserve_and_mod_sb(tp);
1478 xfs_trans_unreserve_and_mod_dquots(tp);
1479
1480 if (tp->t_ticket) {
1481 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1482 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1483 log_flags = XFS_LOG_REL_PERM_RESERV;
1484 } else {
1485 log_flags = 0;
1486 }
1487 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1488 }
1489
1490 /* mark this thread as no longer being in a transaction */
1491 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1492
1493 xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1494 xfs_trans_free(tp);
1495}
1496
1497/*
1498 * Roll from one trans in the sequence of PERMANENT transactions to
1499 * the next: permanent transactions are only flushed out when
1500 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1501 * as possible to let chunks of it go to the log. So we commit the
1502 * chunk we've been working on and get a new transaction to continue.
1503 */
1504int
1505xfs_trans_roll(
1506 struct xfs_trans **tpp,
1507 struct xfs_inode *dp)
1508{
1509 struct xfs_trans *trans;
1510 unsigned int logres, count;
1511 int error;
1512
1513 /*
1514 * Ensure that the inode is always logged.
1515 */
1516 trans = *tpp;
1517 xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1518
1519 /*
1520 * Copy the critical parameters from one trans to the next.
1521 */
1522 logres = trans->t_log_res;
1523 count = trans->t_log_count;
1524 *tpp = xfs_trans_dup(trans);
1525
1526 /*
1527 * Commit the current transaction.
1528 * If this commit failed, then it'd just unlock those items that
1529 * are not marked ihold. That also means that a filesystem shutdown
1530 * is in progress. The caller takes the responsibility to cancel
1531 * the duplicate transaction that gets returned.
1532 */
1533 error = xfs_trans_commit(trans, 0);
1534 if (error)
1535 return (error);
1536
1537 trans = *tpp;
1538
1539 /*
1540 * transaction commit worked ok so we can drop the extra ticket
1541 * reference that we gained in xfs_trans_dup()
1542 */
1543 xfs_log_ticket_put(trans->t_ticket);
1544
1545
1546 /*
1547 * Reserve space in the log for th next transaction.
1548 * This also pushes items in the "AIL", the list of logged items,
1549 * out to disk if they are taking up space at the tail of the log
1550 * that we want to use. This requires that either nothing be locked
1551 * across this call, or that anything that is locked be logged in
1552 * the prior and the next transactions.
1553 */
1554 error = xfs_trans_reserve(trans, 0, logres, 0,
1555 XFS_TRANS_PERM_LOG_RES, count);
1556 /*
1557 * Ensure that the inode is in the new transaction and locked.
1558 */
1559 if (error)
1560 return error;
1561
1562 xfs_trans_ijoin(trans, dp, 0);
1563 return 0;
1564}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_extent_busy.h"
15#include "xfs_quota.h"
16#include "xfs_trans.h"
17#include "xfs_trans_priv.h"
18#include "xfs_log.h"
19#include "xfs_log_priv.h"
20#include "xfs_trace.h"
21#include "xfs_error.h"
22#include "xfs_defer.h"
23#include "xfs_inode.h"
24#include "xfs_dquot_item.h"
25#include "xfs_dquot.h"
26#include "xfs_icache.h"
27
28struct kmem_cache *xfs_trans_cache;
29
30#if defined(CONFIG_TRACEPOINTS)
31static void
32xfs_trans_trace_reservations(
33 struct xfs_mount *mp)
34{
35 struct xfs_trans_res *res;
36 struct xfs_trans_res *end_res;
37 int i;
38
39 res = (struct xfs_trans_res *)M_RES(mp);
40 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
41 for (i = 0; res < end_res; i++, res++)
42 trace_xfs_trans_resv_calc(mp, i, res);
43}
44#else
45# define xfs_trans_trace_reservations(mp)
46#endif
47
48/*
49 * Initialize the precomputed transaction reservation values
50 * in the mount structure.
51 */
52void
53xfs_trans_init(
54 struct xfs_mount *mp)
55{
56 xfs_trans_resv_calc(mp, M_RES(mp));
57 xfs_trans_trace_reservations(mp);
58}
59
60/*
61 * Free the transaction structure. If there is more clean up
62 * to do when the structure is freed, add it here.
63 */
64STATIC void
65xfs_trans_free(
66 struct xfs_trans *tp)
67{
68 xfs_extent_busy_sort(&tp->t_busy);
69 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
70
71 trace_xfs_trans_free(tp, _RET_IP_);
72 xfs_trans_clear_context(tp);
73 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
74 sb_end_intwrite(tp->t_mountp->m_super);
75 xfs_trans_free_dqinfo(tp);
76 kmem_cache_free(xfs_trans_cache, tp);
77}
78
79/*
80 * This is called to create a new transaction which will share the
81 * permanent log reservation of the given transaction. The remaining
82 * unused block and rt extent reservations are also inherited. This
83 * implies that the original transaction is no longer allowed to allocate
84 * blocks. Locks and log items, however, are no inherited. They must
85 * be added to the new transaction explicitly.
86 */
87STATIC struct xfs_trans *
88xfs_trans_dup(
89 struct xfs_trans *tp)
90{
91 struct xfs_trans *ntp;
92
93 trace_xfs_trans_dup(tp, _RET_IP_);
94
95 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
96
97 /*
98 * Initialize the new transaction structure.
99 */
100 ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
101 ntp->t_mountp = tp->t_mountp;
102 INIT_LIST_HEAD(&ntp->t_items);
103 INIT_LIST_HEAD(&ntp->t_busy);
104 INIT_LIST_HEAD(&ntp->t_dfops);
105 ntp->t_firstblock = NULLFSBLOCK;
106
107 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
108 ASSERT(tp->t_ticket != NULL);
109
110 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
111 (tp->t_flags & XFS_TRANS_RESERVE) |
112 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
113 (tp->t_flags & XFS_TRANS_RES_FDBLKS);
114 /* We gave our writer reference to the new transaction */
115 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
116 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
117
118 ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
119 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
120 tp->t_blk_res = tp->t_blk_res_used;
121
122 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
123 tp->t_rtx_res = tp->t_rtx_res_used;
124
125 xfs_trans_switch_context(tp, ntp);
126
127 /* move deferred ops over to the new tp */
128 xfs_defer_move(ntp, tp);
129
130 xfs_trans_dup_dqinfo(tp, ntp);
131 return ntp;
132}
133
134/*
135 * This is called to reserve free disk blocks and log space for the
136 * given transaction. This must be done before allocating any resources
137 * within the transaction.
138 *
139 * This will return ENOSPC if there are not enough blocks available.
140 * It will sleep waiting for available log space.
141 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
142 * is used by long running transactions. If any one of the reservations
143 * fails then they will all be backed out.
144 *
145 * This does not do quota reservations. That typically is done by the
146 * caller afterwards.
147 */
148static int
149xfs_trans_reserve(
150 struct xfs_trans *tp,
151 struct xfs_trans_res *resp,
152 uint blocks,
153 uint rtextents)
154{
155 struct xfs_mount *mp = tp->t_mountp;
156 int error = 0;
157 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
158
159 /*
160 * Attempt to reserve the needed disk blocks by decrementing
161 * the number needed from the number available. This will
162 * fail if the count would go below zero.
163 */
164 if (blocks > 0) {
165 error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
166 if (error != 0)
167 return -ENOSPC;
168 tp->t_blk_res += blocks;
169 }
170
171 /*
172 * Reserve the log space needed for this transaction.
173 */
174 if (resp->tr_logres > 0) {
175 bool permanent = false;
176
177 ASSERT(tp->t_log_res == 0 ||
178 tp->t_log_res == resp->tr_logres);
179 ASSERT(tp->t_log_count == 0 ||
180 tp->t_log_count == resp->tr_logcount);
181
182 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
183 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
184 permanent = true;
185 } else {
186 ASSERT(tp->t_ticket == NULL);
187 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
188 }
189
190 if (tp->t_ticket != NULL) {
191 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
192 error = xfs_log_regrant(mp, tp->t_ticket);
193 } else {
194 error = xfs_log_reserve(mp, resp->tr_logres,
195 resp->tr_logcount,
196 &tp->t_ticket, permanent);
197 }
198
199 if (error)
200 goto undo_blocks;
201
202 tp->t_log_res = resp->tr_logres;
203 tp->t_log_count = resp->tr_logcount;
204 }
205
206 /*
207 * Attempt to reserve the needed realtime extents by decrementing
208 * the number needed from the number available. This will
209 * fail if the count would go below zero.
210 */
211 if (rtextents > 0) {
212 error = xfs_mod_frextents(mp, -((int64_t)rtextents));
213 if (error) {
214 error = -ENOSPC;
215 goto undo_log;
216 }
217 tp->t_rtx_res += rtextents;
218 }
219
220 return 0;
221
222 /*
223 * Error cases jump to one of these labels to undo any
224 * reservations which have already been performed.
225 */
226undo_log:
227 if (resp->tr_logres > 0) {
228 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
229 tp->t_ticket = NULL;
230 tp->t_log_res = 0;
231 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
232 }
233
234undo_blocks:
235 if (blocks > 0) {
236 xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
237 tp->t_blk_res = 0;
238 }
239 return error;
240}
241
242int
243xfs_trans_alloc(
244 struct xfs_mount *mp,
245 struct xfs_trans_res *resp,
246 uint blocks,
247 uint rtextents,
248 uint flags,
249 struct xfs_trans **tpp)
250{
251 struct xfs_trans *tp;
252 bool want_retry = true;
253 int error;
254
255 /*
256 * Allocate the handle before we do our freeze accounting and setting up
257 * GFP_NOFS allocation context so that we avoid lockdep false positives
258 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
259 */
260retry:
261 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
262 if (!(flags & XFS_TRANS_NO_WRITECOUNT))
263 sb_start_intwrite(mp->m_super);
264 xfs_trans_set_context(tp);
265
266 /*
267 * Zero-reservation ("empty") transactions can't modify anything, so
268 * they're allowed to run while we're frozen.
269 */
270 WARN_ON(resp->tr_logres > 0 &&
271 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
272 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
273 xfs_has_lazysbcount(mp));
274
275 tp->t_magic = XFS_TRANS_HEADER_MAGIC;
276 tp->t_flags = flags;
277 tp->t_mountp = mp;
278 INIT_LIST_HEAD(&tp->t_items);
279 INIT_LIST_HEAD(&tp->t_busy);
280 INIT_LIST_HEAD(&tp->t_dfops);
281 tp->t_firstblock = NULLFSBLOCK;
282
283 error = xfs_trans_reserve(tp, resp, blocks, rtextents);
284 if (error == -ENOSPC && want_retry) {
285 xfs_trans_cancel(tp);
286
287 /*
288 * We weren't able to reserve enough space for the transaction.
289 * Flush the other speculative space allocations to free space.
290 * Do not perform a synchronous scan because callers can hold
291 * other locks.
292 */
293 xfs_blockgc_flush_all(mp);
294 want_retry = false;
295 goto retry;
296 }
297 if (error) {
298 xfs_trans_cancel(tp);
299 return error;
300 }
301
302 trace_xfs_trans_alloc(tp, _RET_IP_);
303
304 *tpp = tp;
305 return 0;
306}
307
308/*
309 * Create an empty transaction with no reservation. This is a defensive
310 * mechanism for routines that query metadata without actually modifying them --
311 * if the metadata being queried is somehow cross-linked (think a btree block
312 * pointer that points higher in the tree), we risk deadlock. However, blocks
313 * grabbed as part of a transaction can be re-grabbed. The verifiers will
314 * notice the corrupt block and the operation will fail back to userspace
315 * without deadlocking.
316 *
317 * Note the zero-length reservation; this transaction MUST be cancelled without
318 * any dirty data.
319 *
320 * Callers should obtain freeze protection to avoid a conflict with fs freezing
321 * where we can be grabbing buffers at the same time that freeze is trying to
322 * drain the buffer LRU list.
323 */
324int
325xfs_trans_alloc_empty(
326 struct xfs_mount *mp,
327 struct xfs_trans **tpp)
328{
329 struct xfs_trans_res resv = {0};
330
331 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
332}
333
334/*
335 * Record the indicated change to the given field for application
336 * to the file system's superblock when the transaction commits.
337 * For now, just store the change in the transaction structure.
338 *
339 * Mark the transaction structure to indicate that the superblock
340 * needs to be updated before committing.
341 *
342 * Because we may not be keeping track of allocated/free inodes and
343 * used filesystem blocks in the superblock, we do not mark the
344 * superblock dirty in this transaction if we modify these fields.
345 * We still need to update the transaction deltas so that they get
346 * applied to the incore superblock, but we don't want them to
347 * cause the superblock to get locked and logged if these are the
348 * only fields in the superblock that the transaction modifies.
349 */
350void
351xfs_trans_mod_sb(
352 xfs_trans_t *tp,
353 uint field,
354 int64_t delta)
355{
356 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
357 xfs_mount_t *mp = tp->t_mountp;
358
359 switch (field) {
360 case XFS_TRANS_SB_ICOUNT:
361 tp->t_icount_delta += delta;
362 if (xfs_has_lazysbcount(mp))
363 flags &= ~XFS_TRANS_SB_DIRTY;
364 break;
365 case XFS_TRANS_SB_IFREE:
366 tp->t_ifree_delta += delta;
367 if (xfs_has_lazysbcount(mp))
368 flags &= ~XFS_TRANS_SB_DIRTY;
369 break;
370 case XFS_TRANS_SB_FDBLOCKS:
371 /*
372 * Track the number of blocks allocated in the transaction.
373 * Make sure it does not exceed the number reserved. If so,
374 * shutdown as this can lead to accounting inconsistency.
375 */
376 if (delta < 0) {
377 tp->t_blk_res_used += (uint)-delta;
378 if (tp->t_blk_res_used > tp->t_blk_res)
379 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
380 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
381 int64_t blkres_delta;
382
383 /*
384 * Return freed blocks directly to the reservation
385 * instead of the global pool, being careful not to
386 * overflow the trans counter. This is used to preserve
387 * reservation across chains of transaction rolls that
388 * repeatedly free and allocate blocks.
389 */
390 blkres_delta = min_t(int64_t, delta,
391 UINT_MAX - tp->t_blk_res);
392 tp->t_blk_res += blkres_delta;
393 delta -= blkres_delta;
394 }
395 tp->t_fdblocks_delta += delta;
396 if (xfs_has_lazysbcount(mp))
397 flags &= ~XFS_TRANS_SB_DIRTY;
398 break;
399 case XFS_TRANS_SB_RES_FDBLOCKS:
400 /*
401 * The allocation has already been applied to the
402 * in-core superblock's counter. This should only
403 * be applied to the on-disk superblock.
404 */
405 tp->t_res_fdblocks_delta += delta;
406 if (xfs_has_lazysbcount(mp))
407 flags &= ~XFS_TRANS_SB_DIRTY;
408 break;
409 case XFS_TRANS_SB_FREXTENTS:
410 /*
411 * Track the number of blocks allocated in the
412 * transaction. Make sure it does not exceed the
413 * number reserved.
414 */
415 if (delta < 0) {
416 tp->t_rtx_res_used += (uint)-delta;
417 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
418 }
419 tp->t_frextents_delta += delta;
420 break;
421 case XFS_TRANS_SB_RES_FREXTENTS:
422 /*
423 * The allocation has already been applied to the
424 * in-core superblock's counter. This should only
425 * be applied to the on-disk superblock.
426 */
427 ASSERT(delta < 0);
428 tp->t_res_frextents_delta += delta;
429 break;
430 case XFS_TRANS_SB_DBLOCKS:
431 tp->t_dblocks_delta += delta;
432 break;
433 case XFS_TRANS_SB_AGCOUNT:
434 ASSERT(delta > 0);
435 tp->t_agcount_delta += delta;
436 break;
437 case XFS_TRANS_SB_IMAXPCT:
438 tp->t_imaxpct_delta += delta;
439 break;
440 case XFS_TRANS_SB_REXTSIZE:
441 tp->t_rextsize_delta += delta;
442 break;
443 case XFS_TRANS_SB_RBMBLOCKS:
444 tp->t_rbmblocks_delta += delta;
445 break;
446 case XFS_TRANS_SB_RBLOCKS:
447 tp->t_rblocks_delta += delta;
448 break;
449 case XFS_TRANS_SB_REXTENTS:
450 tp->t_rextents_delta += delta;
451 break;
452 case XFS_TRANS_SB_REXTSLOG:
453 tp->t_rextslog_delta += delta;
454 break;
455 default:
456 ASSERT(0);
457 return;
458 }
459
460 tp->t_flags |= flags;
461}
462
463/*
464 * xfs_trans_apply_sb_deltas() is called from the commit code
465 * to bring the superblock buffer into the current transaction
466 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
467 *
468 * For now we just look at each field allowed to change and change
469 * it if necessary.
470 */
471STATIC void
472xfs_trans_apply_sb_deltas(
473 xfs_trans_t *tp)
474{
475 struct xfs_dsb *sbp;
476 struct xfs_buf *bp;
477 int whole = 0;
478
479 bp = xfs_trans_getsb(tp);
480 sbp = bp->b_addr;
481
482 /*
483 * Only update the superblock counters if we are logging them
484 */
485 if (!xfs_has_lazysbcount((tp->t_mountp))) {
486 if (tp->t_icount_delta)
487 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
488 if (tp->t_ifree_delta)
489 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
490 if (tp->t_fdblocks_delta)
491 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
492 if (tp->t_res_fdblocks_delta)
493 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
494 }
495
496 /*
497 * Updating frextents requires careful handling because it does not
498 * behave like the lazysb counters because we cannot rely on log
499 * recovery in older kenels to recompute the value from the rtbitmap.
500 * This means that the ondisk frextents must be consistent with the
501 * rtbitmap.
502 *
503 * Therefore, log the frextents change to the ondisk superblock and
504 * update the incore superblock so that future calls to xfs_log_sb
505 * write the correct value ondisk.
506 *
507 * Don't touch m_frextents because it includes incore reservations,
508 * and those are handled by the unreserve function.
509 */
510 if (tp->t_frextents_delta || tp->t_res_frextents_delta) {
511 struct xfs_mount *mp = tp->t_mountp;
512 int64_t rtxdelta;
513
514 rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
515
516 spin_lock(&mp->m_sb_lock);
517 be64_add_cpu(&sbp->sb_frextents, rtxdelta);
518 mp->m_sb.sb_frextents += rtxdelta;
519 spin_unlock(&mp->m_sb_lock);
520 }
521
522 if (tp->t_dblocks_delta) {
523 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
524 whole = 1;
525 }
526 if (tp->t_agcount_delta) {
527 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
528 whole = 1;
529 }
530 if (tp->t_imaxpct_delta) {
531 sbp->sb_imax_pct += tp->t_imaxpct_delta;
532 whole = 1;
533 }
534 if (tp->t_rextsize_delta) {
535 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
536 whole = 1;
537 }
538 if (tp->t_rbmblocks_delta) {
539 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
540 whole = 1;
541 }
542 if (tp->t_rblocks_delta) {
543 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
544 whole = 1;
545 }
546 if (tp->t_rextents_delta) {
547 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
548 whole = 1;
549 }
550 if (tp->t_rextslog_delta) {
551 sbp->sb_rextslog += tp->t_rextslog_delta;
552 whole = 1;
553 }
554
555 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
556 if (whole)
557 /*
558 * Log the whole thing, the fields are noncontiguous.
559 */
560 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
561 else
562 /*
563 * Since all the modifiable fields are contiguous, we
564 * can get away with this.
565 */
566 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
567 offsetof(struct xfs_dsb, sb_frextents) +
568 sizeof(sbp->sb_frextents) - 1);
569}
570
571/*
572 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
573 * apply superblock counter changes to the in-core superblock. The
574 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
575 * applied to the in-core superblock. The idea is that that has already been
576 * done.
577 *
578 * If we are not logging superblock counters, then the inode allocated/free and
579 * used block counts are not updated in the on disk superblock. In this case,
580 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
581 * still need to update the incore superblock with the changes.
582 *
583 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
584 * so we don't need to take the counter lock on every update.
585 */
586#define XFS_ICOUNT_BATCH 128
587
588void
589xfs_trans_unreserve_and_mod_sb(
590 struct xfs_trans *tp)
591{
592 struct xfs_mount *mp = tp->t_mountp;
593 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
594 int64_t blkdelta = 0;
595 int64_t rtxdelta = 0;
596 int64_t idelta = 0;
597 int64_t ifreedelta = 0;
598 int error;
599
600 /* calculate deltas */
601 if (tp->t_blk_res > 0)
602 blkdelta = tp->t_blk_res;
603 if ((tp->t_fdblocks_delta != 0) &&
604 (xfs_has_lazysbcount(mp) ||
605 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
606 blkdelta += tp->t_fdblocks_delta;
607
608 if (tp->t_rtx_res > 0)
609 rtxdelta = tp->t_rtx_res;
610 if ((tp->t_frextents_delta != 0) &&
611 (tp->t_flags & XFS_TRANS_SB_DIRTY))
612 rtxdelta += tp->t_frextents_delta;
613
614 if (xfs_has_lazysbcount(mp) ||
615 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
616 idelta = tp->t_icount_delta;
617 ifreedelta = tp->t_ifree_delta;
618 }
619
620 /* apply the per-cpu counters */
621 if (blkdelta) {
622 error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
623 ASSERT(!error);
624 }
625
626 if (idelta)
627 percpu_counter_add_batch(&mp->m_icount, idelta,
628 XFS_ICOUNT_BATCH);
629
630 if (ifreedelta)
631 percpu_counter_add(&mp->m_ifree, ifreedelta);
632
633 if (rtxdelta) {
634 error = xfs_mod_frextents(mp, rtxdelta);
635 ASSERT(!error);
636 }
637
638 if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
639 return;
640
641 /* apply remaining deltas */
642 spin_lock(&mp->m_sb_lock);
643 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
644 mp->m_sb.sb_icount += idelta;
645 mp->m_sb.sb_ifree += ifreedelta;
646 /*
647 * Do not touch sb_frextents here because we are dealing with incore
648 * reservation. sb_frextents is not part of the lazy sb counters so it
649 * must be consistent with the ondisk rtbitmap and must never include
650 * incore reservations.
651 */
652 mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
653 mp->m_sb.sb_agcount += tp->t_agcount_delta;
654 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
655 mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
656 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
657 mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
658 mp->m_sb.sb_rextents += tp->t_rextents_delta;
659 mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
660 spin_unlock(&mp->m_sb_lock);
661
662 /*
663 * Debug checks outside of the spinlock so they don't lock up the
664 * machine if they fail.
665 */
666 ASSERT(mp->m_sb.sb_imax_pct >= 0);
667 ASSERT(mp->m_sb.sb_rextslog >= 0);
668 return;
669}
670
671/* Add the given log item to the transaction's list of log items. */
672void
673xfs_trans_add_item(
674 struct xfs_trans *tp,
675 struct xfs_log_item *lip)
676{
677 ASSERT(lip->li_log == tp->t_mountp->m_log);
678 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
679 ASSERT(list_empty(&lip->li_trans));
680 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
681
682 list_add_tail(&lip->li_trans, &tp->t_items);
683 trace_xfs_trans_add_item(tp, _RET_IP_);
684}
685
686/*
687 * Unlink the log item from the transaction. the log item is no longer
688 * considered dirty in this transaction, as the linked transaction has
689 * finished, either by abort or commit completion.
690 */
691void
692xfs_trans_del_item(
693 struct xfs_log_item *lip)
694{
695 clear_bit(XFS_LI_DIRTY, &lip->li_flags);
696 list_del_init(&lip->li_trans);
697}
698
699/* Detach and unlock all of the items in a transaction */
700static void
701xfs_trans_free_items(
702 struct xfs_trans *tp,
703 bool abort)
704{
705 struct xfs_log_item *lip, *next;
706
707 trace_xfs_trans_free_items(tp, _RET_IP_);
708
709 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
710 xfs_trans_del_item(lip);
711 if (abort)
712 set_bit(XFS_LI_ABORTED, &lip->li_flags);
713 if (lip->li_ops->iop_release)
714 lip->li_ops->iop_release(lip);
715 }
716}
717
718static inline void
719xfs_log_item_batch_insert(
720 struct xfs_ail *ailp,
721 struct xfs_ail_cursor *cur,
722 struct xfs_log_item **log_items,
723 int nr_items,
724 xfs_lsn_t commit_lsn)
725{
726 int i;
727
728 spin_lock(&ailp->ail_lock);
729 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */
730 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
731
732 for (i = 0; i < nr_items; i++) {
733 struct xfs_log_item *lip = log_items[i];
734
735 if (lip->li_ops->iop_unpin)
736 lip->li_ops->iop_unpin(lip, 0);
737 }
738}
739
740/*
741 * Bulk operation version of xfs_trans_committed that takes a log vector of
742 * items to insert into the AIL. This uses bulk AIL insertion techniques to
743 * minimise lock traffic.
744 *
745 * If we are called with the aborted flag set, it is because a log write during
746 * a CIL checkpoint commit has failed. In this case, all the items in the
747 * checkpoint have already gone through iop_committed and iop_committing, which
748 * means that checkpoint commit abort handling is treated exactly the same
749 * as an iclog write error even though we haven't started any IO yet. Hence in
750 * this case all we need to do is iop_committed processing, followed by an
751 * iop_unpin(aborted) call.
752 *
753 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
754 * at the end of the AIL, the insert cursor avoids the need to walk
755 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
756 * call. This saves a lot of needless list walking and is a net win, even
757 * though it slightly increases that amount of AIL lock traffic to set it up
758 * and tear it down.
759 */
760void
761xfs_trans_committed_bulk(
762 struct xfs_ail *ailp,
763 struct list_head *lv_chain,
764 xfs_lsn_t commit_lsn,
765 bool aborted)
766{
767#define LOG_ITEM_BATCH_SIZE 32
768 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
769 struct xfs_log_vec *lv;
770 struct xfs_ail_cursor cur;
771 int i = 0;
772
773 spin_lock(&ailp->ail_lock);
774 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
775 spin_unlock(&ailp->ail_lock);
776
777 /* unpin all the log items */
778 list_for_each_entry(lv, lv_chain, lv_list) {
779 struct xfs_log_item *lip = lv->lv_item;
780 xfs_lsn_t item_lsn;
781
782 if (aborted)
783 set_bit(XFS_LI_ABORTED, &lip->li_flags);
784
785 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
786 lip->li_ops->iop_release(lip);
787 continue;
788 }
789
790 if (lip->li_ops->iop_committed)
791 item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
792 else
793 item_lsn = commit_lsn;
794
795 /* item_lsn of -1 means the item needs no further processing */
796 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
797 continue;
798
799 /*
800 * if we are aborting the operation, no point in inserting the
801 * object into the AIL as we are in a shutdown situation.
802 */
803 if (aborted) {
804 ASSERT(xlog_is_shutdown(ailp->ail_log));
805 if (lip->li_ops->iop_unpin)
806 lip->li_ops->iop_unpin(lip, 1);
807 continue;
808 }
809
810 if (item_lsn != commit_lsn) {
811
812 /*
813 * Not a bulk update option due to unusual item_lsn.
814 * Push into AIL immediately, rechecking the lsn once
815 * we have the ail lock. Then unpin the item. This does
816 * not affect the AIL cursor the bulk insert path is
817 * using.
818 */
819 spin_lock(&ailp->ail_lock);
820 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
821 xfs_trans_ail_update(ailp, lip, item_lsn);
822 else
823 spin_unlock(&ailp->ail_lock);
824 if (lip->li_ops->iop_unpin)
825 lip->li_ops->iop_unpin(lip, 0);
826 continue;
827 }
828
829 /* Item is a candidate for bulk AIL insert. */
830 log_items[i++] = lv->lv_item;
831 if (i >= LOG_ITEM_BATCH_SIZE) {
832 xfs_log_item_batch_insert(ailp, &cur, log_items,
833 LOG_ITEM_BATCH_SIZE, commit_lsn);
834 i = 0;
835 }
836 }
837
838 /* make sure we insert the remainder! */
839 if (i)
840 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
841
842 spin_lock(&ailp->ail_lock);
843 xfs_trans_ail_cursor_done(&cur);
844 spin_unlock(&ailp->ail_lock);
845}
846
847/*
848 * Sort transaction items prior to running precommit operations. This will
849 * attempt to order the items such that they will always be locked in the same
850 * order. Items that have no sort function are moved to the end of the list
851 * and so are locked last.
852 *
853 * This may need refinement as different types of objects add sort functions.
854 *
855 * Function is more complex than it needs to be because we are comparing 64 bit
856 * values and the function only returns 32 bit values.
857 */
858static int
859xfs_trans_precommit_sort(
860 void *unused_arg,
861 const struct list_head *a,
862 const struct list_head *b)
863{
864 struct xfs_log_item *lia = container_of(a,
865 struct xfs_log_item, li_trans);
866 struct xfs_log_item *lib = container_of(b,
867 struct xfs_log_item, li_trans);
868 int64_t diff;
869
870 /*
871 * If both items are non-sortable, leave them alone. If only one is
872 * sortable, move the non-sortable item towards the end of the list.
873 */
874 if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
875 return 0;
876 if (!lia->li_ops->iop_sort)
877 return 1;
878 if (!lib->li_ops->iop_sort)
879 return -1;
880
881 diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
882 if (diff < 0)
883 return -1;
884 if (diff > 0)
885 return 1;
886 return 0;
887}
888
889/*
890 * Run transaction precommit functions.
891 *
892 * If there is an error in any of the callouts, then stop immediately and
893 * trigger a shutdown to abort the transaction. There is no recovery possible
894 * from errors at this point as the transaction is dirty....
895 */
896static int
897xfs_trans_run_precommits(
898 struct xfs_trans *tp)
899{
900 struct xfs_mount *mp = tp->t_mountp;
901 struct xfs_log_item *lip, *n;
902 int error = 0;
903
904 /*
905 * Sort the item list to avoid ABBA deadlocks with other transactions
906 * running precommit operations that lock multiple shared items such as
907 * inode cluster buffers.
908 */
909 list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
910
911 /*
912 * Precommit operations can remove the log item from the transaction
913 * if the log item exists purely to delay modifications until they
914 * can be ordered against other operations. Hence we have to use
915 * list_for_each_entry_safe() here.
916 */
917 list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
918 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
919 continue;
920 if (lip->li_ops->iop_precommit) {
921 error = lip->li_ops->iop_precommit(tp, lip);
922 if (error)
923 break;
924 }
925 }
926 if (error)
927 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
928 return error;
929}
930
931/*
932 * Commit the given transaction to the log.
933 *
934 * XFS disk error handling mechanism is not based on a typical
935 * transaction abort mechanism. Logically after the filesystem
936 * gets marked 'SHUTDOWN', we can't let any new transactions
937 * be durable - ie. committed to disk - because some metadata might
938 * be inconsistent. In such cases, this returns an error, and the
939 * caller may assume that all locked objects joined to the transaction
940 * have already been unlocked as if the commit had succeeded.
941 * Do not reference the transaction structure after this call.
942 */
943static int
944__xfs_trans_commit(
945 struct xfs_trans *tp,
946 bool regrant)
947{
948 struct xfs_mount *mp = tp->t_mountp;
949 struct xlog *log = mp->m_log;
950 xfs_csn_t commit_seq = 0;
951 int error = 0;
952 int sync = tp->t_flags & XFS_TRANS_SYNC;
953
954 trace_xfs_trans_commit(tp, _RET_IP_);
955
956 error = xfs_trans_run_precommits(tp);
957 if (error) {
958 if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
959 xfs_defer_cancel(tp);
960 goto out_unreserve;
961 }
962
963 /*
964 * Finish deferred items on final commit. Only permanent transactions
965 * should ever have deferred ops.
966 */
967 WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
968 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
969 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
970 error = xfs_defer_finish_noroll(&tp);
971 if (error)
972 goto out_unreserve;
973 }
974
975 /*
976 * If there is nothing to be logged by the transaction,
977 * then unlock all of the items associated with the
978 * transaction and free the transaction structure.
979 * Also make sure to return any reserved blocks to
980 * the free pool.
981 */
982 if (!(tp->t_flags & XFS_TRANS_DIRTY))
983 goto out_unreserve;
984
985 /*
986 * We must check against log shutdown here because we cannot abort log
987 * items and leave them dirty, inconsistent and unpinned in memory while
988 * the log is active. This leaves them open to being written back to
989 * disk, and that will lead to on-disk corruption.
990 */
991 if (xlog_is_shutdown(log)) {
992 error = -EIO;
993 goto out_unreserve;
994 }
995
996 ASSERT(tp->t_ticket != NULL);
997
998 /*
999 * If we need to update the superblock, then do it now.
1000 */
1001 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1002 xfs_trans_apply_sb_deltas(tp);
1003 xfs_trans_apply_dquot_deltas(tp);
1004
1005 xlog_cil_commit(log, tp, &commit_seq, regrant);
1006
1007 xfs_trans_free(tp);
1008
1009 /*
1010 * If the transaction needs to be synchronous, then force the
1011 * log out now and wait for it.
1012 */
1013 if (sync) {
1014 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
1015 XFS_STATS_INC(mp, xs_trans_sync);
1016 } else {
1017 XFS_STATS_INC(mp, xs_trans_async);
1018 }
1019
1020 return error;
1021
1022out_unreserve:
1023 xfs_trans_unreserve_and_mod_sb(tp);
1024
1025 /*
1026 * It is indeed possible for the transaction to be not dirty but
1027 * the dqinfo portion to be. All that means is that we have some
1028 * (non-persistent) quota reservations that need to be unreserved.
1029 */
1030 xfs_trans_unreserve_and_mod_dquots(tp);
1031 if (tp->t_ticket) {
1032 if (regrant && !xlog_is_shutdown(log))
1033 xfs_log_ticket_regrant(log, tp->t_ticket);
1034 else
1035 xfs_log_ticket_ungrant(log, tp->t_ticket);
1036 tp->t_ticket = NULL;
1037 }
1038 xfs_trans_free_items(tp, !!error);
1039 xfs_trans_free(tp);
1040
1041 XFS_STATS_INC(mp, xs_trans_empty);
1042 return error;
1043}
1044
1045int
1046xfs_trans_commit(
1047 struct xfs_trans *tp)
1048{
1049 return __xfs_trans_commit(tp, false);
1050}
1051
1052/*
1053 * Unlock all of the transaction's items and free the transaction. If the
1054 * transaction is dirty, we must shut down the filesystem because there is no
1055 * way to restore them to their previous state.
1056 *
1057 * If the transaction has made a log reservation, make sure to release it as
1058 * well.
1059 *
1060 * This is a high level function (equivalent to xfs_trans_commit()) and so can
1061 * be called after the transaction has effectively been aborted due to the mount
1062 * being shut down. However, if the mount has not been shut down and the
1063 * transaction is dirty we will shut the mount down and, in doing so, that
1064 * guarantees that the log is shut down, too. Hence we don't need to be as
1065 * careful with shutdown state and dirty items here as we need to be in
1066 * xfs_trans_commit().
1067 */
1068void
1069xfs_trans_cancel(
1070 struct xfs_trans *tp)
1071{
1072 struct xfs_mount *mp = tp->t_mountp;
1073 struct xlog *log = mp->m_log;
1074 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY);
1075
1076 trace_xfs_trans_cancel(tp, _RET_IP_);
1077
1078 /*
1079 * It's never valid to cancel a transaction with deferred ops attached,
1080 * because the transaction is effectively dirty. Complain about this
1081 * loudly before freeing the in-memory defer items.
1082 */
1083 if (!list_empty(&tp->t_dfops)) {
1084 ASSERT(xfs_is_shutdown(mp) || list_empty(&tp->t_dfops));
1085 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1086 dirty = true;
1087 xfs_defer_cancel(tp);
1088 }
1089
1090 /*
1091 * See if the caller is relying on us to shut down the filesystem. We
1092 * only want an error report if there isn't already a shutdown in
1093 * progress, so we only need to check against the mount shutdown state
1094 * here.
1095 */
1096 if (dirty && !xfs_is_shutdown(mp)) {
1097 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1098 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1099 }
1100#ifdef DEBUG
1101 /* Log items need to be consistent until the log is shut down. */
1102 if (!dirty && !xlog_is_shutdown(log)) {
1103 struct xfs_log_item *lip;
1104
1105 list_for_each_entry(lip, &tp->t_items, li_trans)
1106 ASSERT(!xlog_item_is_intent_done(lip));
1107 }
1108#endif
1109 xfs_trans_unreserve_and_mod_sb(tp);
1110 xfs_trans_unreserve_and_mod_dquots(tp);
1111
1112 if (tp->t_ticket) {
1113 xfs_log_ticket_ungrant(log, tp->t_ticket);
1114 tp->t_ticket = NULL;
1115 }
1116
1117 xfs_trans_free_items(tp, dirty);
1118 xfs_trans_free(tp);
1119}
1120
1121/*
1122 * Roll from one trans in the sequence of PERMANENT transactions to
1123 * the next: permanent transactions are only flushed out when
1124 * committed with xfs_trans_commit(), but we still want as soon
1125 * as possible to let chunks of it go to the log. So we commit the
1126 * chunk we've been working on and get a new transaction to continue.
1127 */
1128int
1129xfs_trans_roll(
1130 struct xfs_trans **tpp)
1131{
1132 struct xfs_trans *trans = *tpp;
1133 struct xfs_trans_res tres;
1134 int error;
1135
1136 trace_xfs_trans_roll(trans, _RET_IP_);
1137
1138 /*
1139 * Copy the critical parameters from one trans to the next.
1140 */
1141 tres.tr_logres = trans->t_log_res;
1142 tres.tr_logcount = trans->t_log_count;
1143
1144 *tpp = xfs_trans_dup(trans);
1145
1146 /*
1147 * Commit the current transaction.
1148 * If this commit failed, then it'd just unlock those items that
1149 * are not marked ihold. That also means that a filesystem shutdown
1150 * is in progress. The caller takes the responsibility to cancel
1151 * the duplicate transaction that gets returned.
1152 */
1153 error = __xfs_trans_commit(trans, true);
1154 if (error)
1155 return error;
1156
1157 /*
1158 * Reserve space in the log for the next transaction.
1159 * This also pushes items in the "AIL", the list of logged items,
1160 * out to disk if they are taking up space at the tail of the log
1161 * that we want to use. This requires that either nothing be locked
1162 * across this call, or that anything that is locked be logged in
1163 * the prior and the next transactions.
1164 */
1165 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1166 return xfs_trans_reserve(*tpp, &tres, 0, 0);
1167}
1168
1169/*
1170 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1171 *
1172 * The caller must ensure that the on-disk dquots attached to this inode have
1173 * already been allocated and initialized. The caller is responsible for
1174 * releasing ILOCK_EXCL if a new transaction is returned.
1175 */
1176int
1177xfs_trans_alloc_inode(
1178 struct xfs_inode *ip,
1179 struct xfs_trans_res *resv,
1180 unsigned int dblocks,
1181 unsigned int rblocks,
1182 bool force,
1183 struct xfs_trans **tpp)
1184{
1185 struct xfs_trans *tp;
1186 struct xfs_mount *mp = ip->i_mount;
1187 bool retried = false;
1188 int error;
1189
1190retry:
1191 error = xfs_trans_alloc(mp, resv, dblocks,
1192 rblocks / mp->m_sb.sb_rextsize,
1193 force ? XFS_TRANS_RESERVE : 0, &tp);
1194 if (error)
1195 return error;
1196
1197 xfs_ilock(ip, XFS_ILOCK_EXCL);
1198 xfs_trans_ijoin(tp, ip, 0);
1199
1200 error = xfs_qm_dqattach_locked(ip, false);
1201 if (error) {
1202 /* Caller should have allocated the dquots! */
1203 ASSERT(error != -ENOENT);
1204 goto out_cancel;
1205 }
1206
1207 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1208 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1209 xfs_trans_cancel(tp);
1210 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1211 xfs_blockgc_free_quota(ip, 0);
1212 retried = true;
1213 goto retry;
1214 }
1215 if (error)
1216 goto out_cancel;
1217
1218 *tpp = tp;
1219 return 0;
1220
1221out_cancel:
1222 xfs_trans_cancel(tp);
1223 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1224 return error;
1225}
1226
1227/*
1228 * Allocate an transaction in preparation for inode creation by reserving quota
1229 * against the given dquots. Callers are not required to hold any inode locks.
1230 */
1231int
1232xfs_trans_alloc_icreate(
1233 struct xfs_mount *mp,
1234 struct xfs_trans_res *resv,
1235 struct xfs_dquot *udqp,
1236 struct xfs_dquot *gdqp,
1237 struct xfs_dquot *pdqp,
1238 unsigned int dblocks,
1239 struct xfs_trans **tpp)
1240{
1241 struct xfs_trans *tp;
1242 bool retried = false;
1243 int error;
1244
1245retry:
1246 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1247 if (error)
1248 return error;
1249
1250 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1251 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1252 xfs_trans_cancel(tp);
1253 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1254 retried = true;
1255 goto retry;
1256 }
1257 if (error) {
1258 xfs_trans_cancel(tp);
1259 return error;
1260 }
1261
1262 *tpp = tp;
1263 return 0;
1264}
1265
1266/*
1267 * Allocate an transaction, lock and join the inode to it, and reserve quota
1268 * in preparation for inode attribute changes that include uid, gid, or prid
1269 * changes.
1270 *
1271 * The caller must ensure that the on-disk dquots attached to this inode have
1272 * already been allocated and initialized. The ILOCK will be dropped when the
1273 * transaction is committed or cancelled.
1274 */
1275int
1276xfs_trans_alloc_ichange(
1277 struct xfs_inode *ip,
1278 struct xfs_dquot *new_udqp,
1279 struct xfs_dquot *new_gdqp,
1280 struct xfs_dquot *new_pdqp,
1281 bool force,
1282 struct xfs_trans **tpp)
1283{
1284 struct xfs_trans *tp;
1285 struct xfs_mount *mp = ip->i_mount;
1286 struct xfs_dquot *udqp;
1287 struct xfs_dquot *gdqp;
1288 struct xfs_dquot *pdqp;
1289 bool retried = false;
1290 int error;
1291
1292retry:
1293 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1294 if (error)
1295 return error;
1296
1297 xfs_ilock(ip, XFS_ILOCK_EXCL);
1298 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1299
1300 error = xfs_qm_dqattach_locked(ip, false);
1301 if (error) {
1302 /* Caller should have allocated the dquots! */
1303 ASSERT(error != -ENOENT);
1304 goto out_cancel;
1305 }
1306
1307 /*
1308 * For each quota type, skip quota reservations if the inode's dquots
1309 * now match the ones that came from the caller, or the caller didn't
1310 * pass one in. The inode's dquots can change if we drop the ILOCK to
1311 * perform a blockgc scan, so we must preserve the caller's arguments.
1312 */
1313 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1314 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1315 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1316 if (udqp || gdqp || pdqp) {
1317 unsigned int qflags = XFS_QMOPT_RES_REGBLKS;
1318
1319 if (force)
1320 qflags |= XFS_QMOPT_FORCE_RES;
1321
1322 /*
1323 * Reserve enough quota to handle blocks on disk and reserved
1324 * for a delayed allocation. We'll actually transfer the
1325 * delalloc reservation between dquots at chown time, even
1326 * though that part is only semi-transactional.
1327 */
1328 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1329 pdqp, ip->i_nblocks + ip->i_delayed_blks,
1330 1, qflags);
1331 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1332 xfs_trans_cancel(tp);
1333 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1334 retried = true;
1335 goto retry;
1336 }
1337 if (error)
1338 goto out_cancel;
1339 }
1340
1341 *tpp = tp;
1342 return 0;
1343
1344out_cancel:
1345 xfs_trans_cancel(tp);
1346 return error;
1347}
1348
1349/*
1350 * Allocate an transaction, lock and join the directory and child inodes to it,
1351 * and reserve quota for a directory update. If there isn't sufficient space,
1352 * @dblocks will be set to zero for a reservationless directory update and
1353 * @nospace_error will be set to a negative errno describing the space
1354 * constraint we hit.
1355 *
1356 * The caller must ensure that the on-disk dquots attached to this inode have
1357 * already been allocated and initialized. The ILOCKs will be dropped when the
1358 * transaction is committed or cancelled.
1359 */
1360int
1361xfs_trans_alloc_dir(
1362 struct xfs_inode *dp,
1363 struct xfs_trans_res *resv,
1364 struct xfs_inode *ip,
1365 unsigned int *dblocks,
1366 struct xfs_trans **tpp,
1367 int *nospace_error)
1368{
1369 struct xfs_trans *tp;
1370 struct xfs_mount *mp = ip->i_mount;
1371 unsigned int resblks;
1372 bool retried = false;
1373 int error;
1374
1375retry:
1376 *nospace_error = 0;
1377 resblks = *dblocks;
1378 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1379 if (error == -ENOSPC) {
1380 *nospace_error = error;
1381 resblks = 0;
1382 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1383 }
1384 if (error)
1385 return error;
1386
1387 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1388
1389 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1390 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1391
1392 error = xfs_qm_dqattach_locked(dp, false);
1393 if (error) {
1394 /* Caller should have allocated the dquots! */
1395 ASSERT(error != -ENOENT);
1396 goto out_cancel;
1397 }
1398
1399 error = xfs_qm_dqattach_locked(ip, false);
1400 if (error) {
1401 /* Caller should have allocated the dquots! */
1402 ASSERT(error != -ENOENT);
1403 goto out_cancel;
1404 }
1405
1406 if (resblks == 0)
1407 goto done;
1408
1409 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1410 if (error == -EDQUOT || error == -ENOSPC) {
1411 if (!retried) {
1412 xfs_trans_cancel(tp);
1413 xfs_blockgc_free_quota(dp, 0);
1414 retried = true;
1415 goto retry;
1416 }
1417
1418 *nospace_error = error;
1419 resblks = 0;
1420 error = 0;
1421 }
1422 if (error)
1423 goto out_cancel;
1424
1425done:
1426 *tpp = tp;
1427 *dblocks = resblks;
1428 return 0;
1429
1430out_cancel:
1431 xfs_trans_cancel(tp);
1432 return error;
1433}