Loading...
1/*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * Copyright (C) 2010 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19#include "xfs.h"
20#include "xfs_fs.h"
21#include "xfs_types.h"
22#include "xfs_log.h"
23#include "xfs_trans.h"
24#include "xfs_sb.h"
25#include "xfs_ag.h"
26#include "xfs_mount.h"
27#include "xfs_error.h"
28#include "xfs_da_btree.h"
29#include "xfs_bmap_btree.h"
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
32#include "xfs_dinode.h"
33#include "xfs_inode.h"
34#include "xfs_btree.h"
35#include "xfs_ialloc.h"
36#include "xfs_alloc.h"
37#include "xfs_extent_busy.h"
38#include "xfs_bmap.h"
39#include "xfs_quota.h"
40#include "xfs_trans_priv.h"
41#include "xfs_trans_space.h"
42#include "xfs_inode_item.h"
43#include "xfs_trace.h"
44
45kmem_zone_t *xfs_trans_zone;
46kmem_zone_t *xfs_log_item_desc_zone;
47
48
49/*
50 * Various log reservation values.
51 *
52 * These are based on the size of the file system block because that is what
53 * most transactions manipulate. Each adds in an additional 128 bytes per
54 * item logged to try to account for the overhead of the transaction mechanism.
55 *
56 * Note: Most of the reservations underestimate the number of allocation
57 * groups into which they could free extents in the xfs_bmap_finish() call.
58 * This is because the number in the worst case is quite high and quite
59 * unusual. In order to fix this we need to change xfs_bmap_finish() to free
60 * extents in only a single AG at a time. This will require changes to the
61 * EFI code as well, however, so that the EFI for the extents not freed is
62 * logged again in each transaction. See SGI PV #261917.
63 *
64 * Reservation functions here avoid a huge stack in xfs_trans_init due to
65 * register overflow from temporaries in the calculations.
66 */
67
68
69/*
70 * In a write transaction we can allocate a maximum of 2
71 * extents. This gives:
72 * the inode getting the new extents: inode size
73 * the inode's bmap btree: max depth * block size
74 * the agfs of the ags from which the extents are allocated: 2 * sector
75 * the superblock free block counter: sector size
76 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
77 * And the bmap_finish transaction can free bmap blocks in a join:
78 * the agfs of the ags containing the blocks: 2 * sector size
79 * the agfls of the ags containing the blocks: 2 * sector size
80 * the super block free block counter: sector size
81 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
82 */
83STATIC uint
84xfs_calc_write_reservation(
85 struct xfs_mount *mp)
86{
87 return XFS_DQUOT_LOGRES(mp) +
88 MAX((mp->m_sb.sb_inodesize +
89 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
90 2 * mp->m_sb.sb_sectsize +
91 mp->m_sb.sb_sectsize +
92 XFS_ALLOCFREE_LOG_RES(mp, 2) +
93 128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
94 XFS_ALLOCFREE_LOG_COUNT(mp, 2))),
95 (2 * mp->m_sb.sb_sectsize +
96 2 * mp->m_sb.sb_sectsize +
97 mp->m_sb.sb_sectsize +
98 XFS_ALLOCFREE_LOG_RES(mp, 2) +
99 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
100}
101
102/*
103 * In truncating a file we free up to two extents at once. We can modify:
104 * the inode being truncated: inode size
105 * the inode's bmap btree: (max depth + 1) * block size
106 * And the bmap_finish transaction can free the blocks and bmap blocks:
107 * the agf for each of the ags: 4 * sector size
108 * the agfl for each of the ags: 4 * sector size
109 * the super block to reflect the freed blocks: sector size
110 * worst case split in allocation btrees per extent assuming 4 extents:
111 * 4 exts * 2 trees * (2 * max depth - 1) * block size
112 * the inode btree: max depth * blocksize
113 * the allocation btrees: 2 trees * (max depth - 1) * block size
114 */
115STATIC uint
116xfs_calc_itruncate_reservation(
117 struct xfs_mount *mp)
118{
119 return XFS_DQUOT_LOGRES(mp) +
120 MAX((mp->m_sb.sb_inodesize +
121 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) +
122 128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
123 (4 * mp->m_sb.sb_sectsize +
124 4 * mp->m_sb.sb_sectsize +
125 mp->m_sb.sb_sectsize +
126 XFS_ALLOCFREE_LOG_RES(mp, 4) +
127 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) +
128 128 * 5 +
129 XFS_ALLOCFREE_LOG_RES(mp, 1) +
130 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
131 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
132}
133
134/*
135 * In renaming a files we can modify:
136 * the four inodes involved: 4 * inode size
137 * the two directory btrees: 2 * (max depth + v2) * dir block size
138 * the two directory bmap btrees: 2 * max depth * block size
139 * And the bmap_finish transaction can free dir and bmap blocks (two sets
140 * of bmap blocks) giving:
141 * the agf for the ags in which the blocks live: 3 * sector size
142 * the agfl for the ags in which the blocks live: 3 * sector size
143 * the superblock for the free block count: sector size
144 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
145 */
146STATIC uint
147xfs_calc_rename_reservation(
148 struct xfs_mount *mp)
149{
150 return XFS_DQUOT_LOGRES(mp) +
151 MAX((4 * mp->m_sb.sb_inodesize +
152 2 * XFS_DIROP_LOG_RES(mp) +
153 128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))),
154 (3 * mp->m_sb.sb_sectsize +
155 3 * mp->m_sb.sb_sectsize +
156 mp->m_sb.sb_sectsize +
157 XFS_ALLOCFREE_LOG_RES(mp, 3) +
158 128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3))));
159}
160
161/*
162 * For creating a link to an inode:
163 * the parent directory inode: inode size
164 * the linked inode: inode size
165 * the directory btree could split: (max depth + v2) * dir block size
166 * the directory bmap btree could join or split: (max depth + v2) * blocksize
167 * And the bmap_finish transaction can free some bmap blocks giving:
168 * the agf for the ag in which the blocks live: sector size
169 * the agfl for the ag in which the blocks live: sector size
170 * the superblock for the free block count: sector size
171 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
172 */
173STATIC uint
174xfs_calc_link_reservation(
175 struct xfs_mount *mp)
176{
177 return XFS_DQUOT_LOGRES(mp) +
178 MAX((mp->m_sb.sb_inodesize +
179 mp->m_sb.sb_inodesize +
180 XFS_DIROP_LOG_RES(mp) +
181 128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
182 (mp->m_sb.sb_sectsize +
183 mp->m_sb.sb_sectsize +
184 mp->m_sb.sb_sectsize +
185 XFS_ALLOCFREE_LOG_RES(mp, 1) +
186 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
187}
188
189/*
190 * For removing a directory entry we can modify:
191 * the parent directory inode: inode size
192 * the removed inode: inode size
193 * the directory btree could join: (max depth + v2) * dir block size
194 * the directory bmap btree could join or split: (max depth + v2) * blocksize
195 * And the bmap_finish transaction can free the dir and bmap blocks giving:
196 * the agf for the ag in which the blocks live: 2 * sector size
197 * the agfl for the ag in which the blocks live: 2 * sector size
198 * the superblock for the free block count: sector size
199 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
200 */
201STATIC uint
202xfs_calc_remove_reservation(
203 struct xfs_mount *mp)
204{
205 return XFS_DQUOT_LOGRES(mp) +
206 MAX((mp->m_sb.sb_inodesize +
207 mp->m_sb.sb_inodesize +
208 XFS_DIROP_LOG_RES(mp) +
209 128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
210 (2 * mp->m_sb.sb_sectsize +
211 2 * mp->m_sb.sb_sectsize +
212 mp->m_sb.sb_sectsize +
213 XFS_ALLOCFREE_LOG_RES(mp, 2) +
214 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
215}
216
217/*
218 * For symlink we can modify:
219 * the parent directory inode: inode size
220 * the new inode: inode size
221 * the inode btree entry: 1 block
222 * the directory btree: (max depth + v2) * dir block size
223 * the directory inode's bmap btree: (max depth + v2) * block size
224 * the blocks for the symlink: 1 kB
225 * Or in the first xact we allocate some inodes giving:
226 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
227 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
228 * the inode btree: max depth * blocksize
229 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
230 */
231STATIC uint
232xfs_calc_symlink_reservation(
233 struct xfs_mount *mp)
234{
235 return XFS_DQUOT_LOGRES(mp) +
236 MAX((mp->m_sb.sb_inodesize +
237 mp->m_sb.sb_inodesize +
238 XFS_FSB_TO_B(mp, 1) +
239 XFS_DIROP_LOG_RES(mp) +
240 1024 +
241 128 * (4 + XFS_DIROP_LOG_COUNT(mp))),
242 (2 * mp->m_sb.sb_sectsize +
243 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
244 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
245 XFS_ALLOCFREE_LOG_RES(mp, 1) +
246 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
247 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
248}
249
250/*
251 * For create we can modify:
252 * the parent directory inode: inode size
253 * the new inode: inode size
254 * the inode btree entry: block size
255 * the superblock for the nlink flag: sector size
256 * the directory btree: (max depth + v2) * dir block size
257 * the directory inode's bmap btree: (max depth + v2) * block size
258 * Or in the first xact we allocate some inodes giving:
259 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
260 * the superblock for the nlink flag: sector size
261 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
262 * the inode btree: max depth * blocksize
263 * the allocation btrees: 2 trees * (max depth - 1) * block size
264 */
265STATIC uint
266xfs_calc_create_reservation(
267 struct xfs_mount *mp)
268{
269 return XFS_DQUOT_LOGRES(mp) +
270 MAX((mp->m_sb.sb_inodesize +
271 mp->m_sb.sb_inodesize +
272 mp->m_sb.sb_sectsize +
273 XFS_FSB_TO_B(mp, 1) +
274 XFS_DIROP_LOG_RES(mp) +
275 128 * (3 + XFS_DIROP_LOG_COUNT(mp))),
276 (3 * mp->m_sb.sb_sectsize +
277 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
278 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
279 XFS_ALLOCFREE_LOG_RES(mp, 1) +
280 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
281 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
282}
283
284/*
285 * Making a new directory is the same as creating a new file.
286 */
287STATIC uint
288xfs_calc_mkdir_reservation(
289 struct xfs_mount *mp)
290{
291 return xfs_calc_create_reservation(mp);
292}
293
294/*
295 * In freeing an inode we can modify:
296 * the inode being freed: inode size
297 * the super block free inode counter: sector size
298 * the agi hash list and counters: sector size
299 * the inode btree entry: block size
300 * the on disk inode before ours in the agi hash list: inode cluster size
301 * the inode btree: max depth * blocksize
302 * the allocation btrees: 2 trees * (max depth - 1) * block size
303 */
304STATIC uint
305xfs_calc_ifree_reservation(
306 struct xfs_mount *mp)
307{
308 return XFS_DQUOT_LOGRES(mp) +
309 mp->m_sb.sb_inodesize +
310 mp->m_sb.sb_sectsize +
311 mp->m_sb.sb_sectsize +
312 XFS_FSB_TO_B(mp, 1) +
313 MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
314 XFS_INODE_CLUSTER_SIZE(mp)) +
315 128 * 5 +
316 XFS_ALLOCFREE_LOG_RES(mp, 1) +
317 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
318 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
319}
320
321/*
322 * When only changing the inode we log the inode and possibly the superblock
323 * We also add a bit of slop for the transaction stuff.
324 */
325STATIC uint
326xfs_calc_ichange_reservation(
327 struct xfs_mount *mp)
328{
329 return XFS_DQUOT_LOGRES(mp) +
330 mp->m_sb.sb_inodesize +
331 mp->m_sb.sb_sectsize +
332 512;
333
334}
335
336/*
337 * Growing the data section of the filesystem.
338 * superblock
339 * agi and agf
340 * allocation btrees
341 */
342STATIC uint
343xfs_calc_growdata_reservation(
344 struct xfs_mount *mp)
345{
346 return mp->m_sb.sb_sectsize * 3 +
347 XFS_ALLOCFREE_LOG_RES(mp, 1) +
348 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1));
349}
350
351/*
352 * Growing the rt section of the filesystem.
353 * In the first set of transactions (ALLOC) we allocate space to the
354 * bitmap or summary files.
355 * superblock: sector size
356 * agf of the ag from which the extent is allocated: sector size
357 * bmap btree for bitmap/summary inode: max depth * blocksize
358 * bitmap/summary inode: inode size
359 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
360 */
361STATIC uint
362xfs_calc_growrtalloc_reservation(
363 struct xfs_mount *mp)
364{
365 return 2 * mp->m_sb.sb_sectsize +
366 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
367 mp->m_sb.sb_inodesize +
368 XFS_ALLOCFREE_LOG_RES(mp, 1) +
369 128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
370 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
371}
372
373/*
374 * Growing the rt section of the filesystem.
375 * In the second set of transactions (ZERO) we zero the new metadata blocks.
376 * one bitmap/summary block: blocksize
377 */
378STATIC uint
379xfs_calc_growrtzero_reservation(
380 struct xfs_mount *mp)
381{
382 return mp->m_sb.sb_blocksize + 128;
383}
384
385/*
386 * Growing the rt section of the filesystem.
387 * In the third set of transactions (FREE) we update metadata without
388 * allocating any new blocks.
389 * superblock: sector size
390 * bitmap inode: inode size
391 * summary inode: inode size
392 * one bitmap block: blocksize
393 * summary blocks: new summary size
394 */
395STATIC uint
396xfs_calc_growrtfree_reservation(
397 struct xfs_mount *mp)
398{
399 return mp->m_sb.sb_sectsize +
400 2 * mp->m_sb.sb_inodesize +
401 mp->m_sb.sb_blocksize +
402 mp->m_rsumsize +
403 128 * 5;
404}
405
406/*
407 * Logging the inode modification timestamp on a synchronous write.
408 * inode
409 */
410STATIC uint
411xfs_calc_swrite_reservation(
412 struct xfs_mount *mp)
413{
414 return mp->m_sb.sb_inodesize + 128;
415}
416
417/*
418 * Logging the inode mode bits when writing a setuid/setgid file
419 * inode
420 */
421STATIC uint
422xfs_calc_writeid_reservation(xfs_mount_t *mp)
423{
424 return mp->m_sb.sb_inodesize + 128;
425}
426
427/*
428 * Converting the inode from non-attributed to attributed.
429 * the inode being converted: inode size
430 * agf block and superblock (for block allocation)
431 * the new block (directory sized)
432 * bmap blocks for the new directory block
433 * allocation btrees
434 */
435STATIC uint
436xfs_calc_addafork_reservation(
437 struct xfs_mount *mp)
438{
439 return XFS_DQUOT_LOGRES(mp) +
440 mp->m_sb.sb_inodesize +
441 mp->m_sb.sb_sectsize * 2 +
442 mp->m_dirblksize +
443 XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) +
444 XFS_ALLOCFREE_LOG_RES(mp, 1) +
445 128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 +
446 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
447}
448
449/*
450 * Removing the attribute fork of a file
451 * the inode being truncated: inode size
452 * the inode's bmap btree: max depth * block size
453 * And the bmap_finish transaction can free the blocks and bmap blocks:
454 * the agf for each of the ags: 4 * sector size
455 * the agfl for each of the ags: 4 * sector size
456 * the super block to reflect the freed blocks: sector size
457 * worst case split in allocation btrees per extent assuming 4 extents:
458 * 4 exts * 2 trees * (2 * max depth - 1) * block size
459 */
460STATIC uint
461xfs_calc_attrinval_reservation(
462 struct xfs_mount *mp)
463{
464 return MAX((mp->m_sb.sb_inodesize +
465 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
466 128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))),
467 (4 * mp->m_sb.sb_sectsize +
468 4 * mp->m_sb.sb_sectsize +
469 mp->m_sb.sb_sectsize +
470 XFS_ALLOCFREE_LOG_RES(mp, 4) +
471 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4))));
472}
473
474/*
475 * Setting an attribute.
476 * the inode getting the attribute
477 * the superblock for allocations
478 * the agfs extents are allocated from
479 * the attribute btree * max depth
480 * the inode allocation btree
481 * Since attribute transaction space is dependent on the size of the attribute,
482 * the calculation is done partially at mount time and partially at runtime.
483 */
484STATIC uint
485xfs_calc_attrset_reservation(
486 struct xfs_mount *mp)
487{
488 return XFS_DQUOT_LOGRES(mp) +
489 mp->m_sb.sb_inodesize +
490 mp->m_sb.sb_sectsize +
491 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
492 128 * (2 + XFS_DA_NODE_MAXDEPTH);
493}
494
495/*
496 * Removing an attribute.
497 * the inode: inode size
498 * the attribute btree could join: max depth * block size
499 * the inode bmap btree could join or split: max depth * block size
500 * And the bmap_finish transaction can free the attr blocks freed giving:
501 * the agf for the ag in which the blocks live: 2 * sector size
502 * the agfl for the ag in which the blocks live: 2 * sector size
503 * the superblock for the free block count: sector size
504 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
505 */
506STATIC uint
507xfs_calc_attrrm_reservation(
508 struct xfs_mount *mp)
509{
510 return XFS_DQUOT_LOGRES(mp) +
511 MAX((mp->m_sb.sb_inodesize +
512 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
513 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
514 128 * (1 + XFS_DA_NODE_MAXDEPTH +
515 XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
516 (2 * mp->m_sb.sb_sectsize +
517 2 * mp->m_sb.sb_sectsize +
518 mp->m_sb.sb_sectsize +
519 XFS_ALLOCFREE_LOG_RES(mp, 2) +
520 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
521}
522
523/*
524 * Clearing a bad agino number in an agi hash bucket.
525 */
526STATIC uint
527xfs_calc_clear_agi_bucket_reservation(
528 struct xfs_mount *mp)
529{
530 return mp->m_sb.sb_sectsize + 128;
531}
532
533/*
534 * Initialize the precomputed transaction reservation values
535 * in the mount structure.
536 */
537void
538xfs_trans_init(
539 struct xfs_mount *mp)
540{
541 struct xfs_trans_reservations *resp = &mp->m_reservations;
542
543 resp->tr_write = xfs_calc_write_reservation(mp);
544 resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
545 resp->tr_rename = xfs_calc_rename_reservation(mp);
546 resp->tr_link = xfs_calc_link_reservation(mp);
547 resp->tr_remove = xfs_calc_remove_reservation(mp);
548 resp->tr_symlink = xfs_calc_symlink_reservation(mp);
549 resp->tr_create = xfs_calc_create_reservation(mp);
550 resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
551 resp->tr_ifree = xfs_calc_ifree_reservation(mp);
552 resp->tr_ichange = xfs_calc_ichange_reservation(mp);
553 resp->tr_growdata = xfs_calc_growdata_reservation(mp);
554 resp->tr_swrite = xfs_calc_swrite_reservation(mp);
555 resp->tr_writeid = xfs_calc_writeid_reservation(mp);
556 resp->tr_addafork = xfs_calc_addafork_reservation(mp);
557 resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
558 resp->tr_attrset = xfs_calc_attrset_reservation(mp);
559 resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
560 resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
561 resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
562 resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
563 resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
564}
565
566/*
567 * This routine is called to allocate a transaction structure.
568 * The type parameter indicates the type of the transaction. These
569 * are enumerated in xfs_trans.h.
570 *
571 * Dynamically allocate the transaction structure from the transaction
572 * zone, initialize it, and return it to the caller.
573 */
574xfs_trans_t *
575xfs_trans_alloc(
576 xfs_mount_t *mp,
577 uint type)
578{
579 xfs_wait_for_freeze(mp, SB_FREEZE_TRANS);
580 return _xfs_trans_alloc(mp, type, KM_SLEEP);
581}
582
583xfs_trans_t *
584_xfs_trans_alloc(
585 xfs_mount_t *mp,
586 uint type,
587 xfs_km_flags_t memflags)
588{
589 xfs_trans_t *tp;
590
591 atomic_inc(&mp->m_active_trans);
592
593 tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
594 tp->t_magic = XFS_TRANS_MAGIC;
595 tp->t_type = type;
596 tp->t_mountp = mp;
597 INIT_LIST_HEAD(&tp->t_items);
598 INIT_LIST_HEAD(&tp->t_busy);
599 return tp;
600}
601
602/*
603 * Free the transaction structure. If there is more clean up
604 * to do when the structure is freed, add it here.
605 */
606STATIC void
607xfs_trans_free(
608 struct xfs_trans *tp)
609{
610 xfs_extent_busy_sort(&tp->t_busy);
611 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
612
613 atomic_dec(&tp->t_mountp->m_active_trans);
614 xfs_trans_free_dqinfo(tp);
615 kmem_zone_free(xfs_trans_zone, tp);
616}
617
618/*
619 * This is called to create a new transaction which will share the
620 * permanent log reservation of the given transaction. The remaining
621 * unused block and rt extent reservations are also inherited. This
622 * implies that the original transaction is no longer allowed to allocate
623 * blocks. Locks and log items, however, are no inherited. They must
624 * be added to the new transaction explicitly.
625 */
626xfs_trans_t *
627xfs_trans_dup(
628 xfs_trans_t *tp)
629{
630 xfs_trans_t *ntp;
631
632 ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
633
634 /*
635 * Initialize the new transaction structure.
636 */
637 ntp->t_magic = XFS_TRANS_MAGIC;
638 ntp->t_type = tp->t_type;
639 ntp->t_mountp = tp->t_mountp;
640 INIT_LIST_HEAD(&ntp->t_items);
641 INIT_LIST_HEAD(&ntp->t_busy);
642
643 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
644 ASSERT(tp->t_ticket != NULL);
645
646 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE);
647 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
648 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
649 tp->t_blk_res = tp->t_blk_res_used;
650 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
651 tp->t_rtx_res = tp->t_rtx_res_used;
652 ntp->t_pflags = tp->t_pflags;
653
654 xfs_trans_dup_dqinfo(tp, ntp);
655
656 atomic_inc(&tp->t_mountp->m_active_trans);
657 return ntp;
658}
659
660/*
661 * This is called to reserve free disk blocks and log space for the
662 * given transaction. This must be done before allocating any resources
663 * within the transaction.
664 *
665 * This will return ENOSPC if there are not enough blocks available.
666 * It will sleep waiting for available log space.
667 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
668 * is used by long running transactions. If any one of the reservations
669 * fails then they will all be backed out.
670 *
671 * This does not do quota reservations. That typically is done by the
672 * caller afterwards.
673 */
674int
675xfs_trans_reserve(
676 xfs_trans_t *tp,
677 uint blocks,
678 uint logspace,
679 uint rtextents,
680 uint flags,
681 uint logcount)
682{
683 int error = 0;
684 int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
685
686 /* Mark this thread as being in a transaction */
687 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
688
689 /*
690 * Attempt to reserve the needed disk blocks by decrementing
691 * the number needed from the number available. This will
692 * fail if the count would go below zero.
693 */
694 if (blocks > 0) {
695 error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
696 -((int64_t)blocks), rsvd);
697 if (error != 0) {
698 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
699 return (XFS_ERROR(ENOSPC));
700 }
701 tp->t_blk_res += blocks;
702 }
703
704 /*
705 * Reserve the log space needed for this transaction.
706 */
707 if (logspace > 0) {
708 bool permanent = false;
709
710 ASSERT(tp->t_log_res == 0 || tp->t_log_res == logspace);
711 ASSERT(tp->t_log_count == 0 || tp->t_log_count == logcount);
712
713 if (flags & XFS_TRANS_PERM_LOG_RES) {
714 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
715 permanent = true;
716 } else {
717 ASSERT(tp->t_ticket == NULL);
718 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
719 }
720
721 if (tp->t_ticket != NULL) {
722 ASSERT(flags & XFS_TRANS_PERM_LOG_RES);
723 error = xfs_log_regrant(tp->t_mountp, tp->t_ticket);
724 } else {
725 error = xfs_log_reserve(tp->t_mountp, logspace,
726 logcount, &tp->t_ticket,
727 XFS_TRANSACTION, permanent,
728 tp->t_type);
729 }
730
731 if (error)
732 goto undo_blocks;
733
734 tp->t_log_res = logspace;
735 tp->t_log_count = logcount;
736 }
737
738 /*
739 * Attempt to reserve the needed realtime extents by decrementing
740 * the number needed from the number available. This will
741 * fail if the count would go below zero.
742 */
743 if (rtextents > 0) {
744 error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
745 -((int64_t)rtextents), rsvd);
746 if (error) {
747 error = XFS_ERROR(ENOSPC);
748 goto undo_log;
749 }
750 tp->t_rtx_res += rtextents;
751 }
752
753 return 0;
754
755 /*
756 * Error cases jump to one of these labels to undo any
757 * reservations which have already been performed.
758 */
759undo_log:
760 if (logspace > 0) {
761 int log_flags;
762
763 if (flags & XFS_TRANS_PERM_LOG_RES) {
764 log_flags = XFS_LOG_REL_PERM_RESERV;
765 } else {
766 log_flags = 0;
767 }
768 xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
769 tp->t_ticket = NULL;
770 tp->t_log_res = 0;
771 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
772 }
773
774undo_blocks:
775 if (blocks > 0) {
776 xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
777 (int64_t)blocks, rsvd);
778 tp->t_blk_res = 0;
779 }
780
781 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
782
783 return error;
784}
785
786/*
787 * Record the indicated change to the given field for application
788 * to the file system's superblock when the transaction commits.
789 * For now, just store the change in the transaction structure.
790 *
791 * Mark the transaction structure to indicate that the superblock
792 * needs to be updated before committing.
793 *
794 * Because we may not be keeping track of allocated/free inodes and
795 * used filesystem blocks in the superblock, we do not mark the
796 * superblock dirty in this transaction if we modify these fields.
797 * We still need to update the transaction deltas so that they get
798 * applied to the incore superblock, but we don't want them to
799 * cause the superblock to get locked and logged if these are the
800 * only fields in the superblock that the transaction modifies.
801 */
802void
803xfs_trans_mod_sb(
804 xfs_trans_t *tp,
805 uint field,
806 int64_t delta)
807{
808 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
809 xfs_mount_t *mp = tp->t_mountp;
810
811 switch (field) {
812 case XFS_TRANS_SB_ICOUNT:
813 tp->t_icount_delta += delta;
814 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
815 flags &= ~XFS_TRANS_SB_DIRTY;
816 break;
817 case XFS_TRANS_SB_IFREE:
818 tp->t_ifree_delta += delta;
819 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
820 flags &= ~XFS_TRANS_SB_DIRTY;
821 break;
822 case XFS_TRANS_SB_FDBLOCKS:
823 /*
824 * Track the number of blocks allocated in the
825 * transaction. Make sure it does not exceed the
826 * number reserved.
827 */
828 if (delta < 0) {
829 tp->t_blk_res_used += (uint)-delta;
830 ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
831 }
832 tp->t_fdblocks_delta += delta;
833 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
834 flags &= ~XFS_TRANS_SB_DIRTY;
835 break;
836 case XFS_TRANS_SB_RES_FDBLOCKS:
837 /*
838 * The allocation has already been applied to the
839 * in-core superblock's counter. This should only
840 * be applied to the on-disk superblock.
841 */
842 ASSERT(delta < 0);
843 tp->t_res_fdblocks_delta += delta;
844 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
845 flags &= ~XFS_TRANS_SB_DIRTY;
846 break;
847 case XFS_TRANS_SB_FREXTENTS:
848 /*
849 * Track the number of blocks allocated in the
850 * transaction. Make sure it does not exceed the
851 * number reserved.
852 */
853 if (delta < 0) {
854 tp->t_rtx_res_used += (uint)-delta;
855 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
856 }
857 tp->t_frextents_delta += delta;
858 break;
859 case XFS_TRANS_SB_RES_FREXTENTS:
860 /*
861 * The allocation has already been applied to the
862 * in-core superblock's counter. This should only
863 * be applied to the on-disk superblock.
864 */
865 ASSERT(delta < 0);
866 tp->t_res_frextents_delta += delta;
867 break;
868 case XFS_TRANS_SB_DBLOCKS:
869 ASSERT(delta > 0);
870 tp->t_dblocks_delta += delta;
871 break;
872 case XFS_TRANS_SB_AGCOUNT:
873 ASSERT(delta > 0);
874 tp->t_agcount_delta += delta;
875 break;
876 case XFS_TRANS_SB_IMAXPCT:
877 tp->t_imaxpct_delta += delta;
878 break;
879 case XFS_TRANS_SB_REXTSIZE:
880 tp->t_rextsize_delta += delta;
881 break;
882 case XFS_TRANS_SB_RBMBLOCKS:
883 tp->t_rbmblocks_delta += delta;
884 break;
885 case XFS_TRANS_SB_RBLOCKS:
886 tp->t_rblocks_delta += delta;
887 break;
888 case XFS_TRANS_SB_REXTENTS:
889 tp->t_rextents_delta += delta;
890 break;
891 case XFS_TRANS_SB_REXTSLOG:
892 tp->t_rextslog_delta += delta;
893 break;
894 default:
895 ASSERT(0);
896 return;
897 }
898
899 tp->t_flags |= flags;
900}
901
902/*
903 * xfs_trans_apply_sb_deltas() is called from the commit code
904 * to bring the superblock buffer into the current transaction
905 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
906 *
907 * For now we just look at each field allowed to change and change
908 * it if necessary.
909 */
910STATIC void
911xfs_trans_apply_sb_deltas(
912 xfs_trans_t *tp)
913{
914 xfs_dsb_t *sbp;
915 xfs_buf_t *bp;
916 int whole = 0;
917
918 bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
919 sbp = XFS_BUF_TO_SBP(bp);
920
921 /*
922 * Check that superblock mods match the mods made to AGF counters.
923 */
924 ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
925 (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
926 tp->t_ag_btree_delta));
927
928 /*
929 * Only update the superblock counters if we are logging them
930 */
931 if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
932 if (tp->t_icount_delta)
933 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
934 if (tp->t_ifree_delta)
935 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
936 if (tp->t_fdblocks_delta)
937 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
938 if (tp->t_res_fdblocks_delta)
939 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
940 }
941
942 if (tp->t_frextents_delta)
943 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
944 if (tp->t_res_frextents_delta)
945 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
946
947 if (tp->t_dblocks_delta) {
948 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
949 whole = 1;
950 }
951 if (tp->t_agcount_delta) {
952 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
953 whole = 1;
954 }
955 if (tp->t_imaxpct_delta) {
956 sbp->sb_imax_pct += tp->t_imaxpct_delta;
957 whole = 1;
958 }
959 if (tp->t_rextsize_delta) {
960 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
961 whole = 1;
962 }
963 if (tp->t_rbmblocks_delta) {
964 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
965 whole = 1;
966 }
967 if (tp->t_rblocks_delta) {
968 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
969 whole = 1;
970 }
971 if (tp->t_rextents_delta) {
972 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
973 whole = 1;
974 }
975 if (tp->t_rextslog_delta) {
976 sbp->sb_rextslog += tp->t_rextslog_delta;
977 whole = 1;
978 }
979
980 if (whole)
981 /*
982 * Log the whole thing, the fields are noncontiguous.
983 */
984 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
985 else
986 /*
987 * Since all the modifiable fields are contiguous, we
988 * can get away with this.
989 */
990 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
991 offsetof(xfs_dsb_t, sb_frextents) +
992 sizeof(sbp->sb_frextents) - 1);
993}
994
995/*
996 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
997 * and apply superblock counter changes to the in-core superblock. The
998 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
999 * applied to the in-core superblock. The idea is that that has already been
1000 * done.
1001 *
1002 * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
1003 * However, we have to ensure that we only modify each superblock field only
1004 * once because the application of the delta values may not be atomic. That can
1005 * lead to ENOSPC races occurring if we have two separate modifcations of the
1006 * free space counter to put back the entire reservation and then take away
1007 * what we used.
1008 *
1009 * If we are not logging superblock counters, then the inode allocated/free and
1010 * used block counts are not updated in the on disk superblock. In this case,
1011 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1012 * still need to update the incore superblock with the changes.
1013 */
1014void
1015xfs_trans_unreserve_and_mod_sb(
1016 xfs_trans_t *tp)
1017{
1018 xfs_mod_sb_t msb[9]; /* If you add cases, add entries */
1019 xfs_mod_sb_t *msbp;
1020 xfs_mount_t *mp = tp->t_mountp;
1021 /* REFERENCED */
1022 int error;
1023 int rsvd;
1024 int64_t blkdelta = 0;
1025 int64_t rtxdelta = 0;
1026 int64_t idelta = 0;
1027 int64_t ifreedelta = 0;
1028
1029 msbp = msb;
1030 rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1031
1032 /* calculate deltas */
1033 if (tp->t_blk_res > 0)
1034 blkdelta = tp->t_blk_res;
1035 if ((tp->t_fdblocks_delta != 0) &&
1036 (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1037 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
1038 blkdelta += tp->t_fdblocks_delta;
1039
1040 if (tp->t_rtx_res > 0)
1041 rtxdelta = tp->t_rtx_res;
1042 if ((tp->t_frextents_delta != 0) &&
1043 (tp->t_flags & XFS_TRANS_SB_DIRTY))
1044 rtxdelta += tp->t_frextents_delta;
1045
1046 if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1047 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1048 idelta = tp->t_icount_delta;
1049 ifreedelta = tp->t_ifree_delta;
1050 }
1051
1052 /* apply the per-cpu counters */
1053 if (blkdelta) {
1054 error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
1055 blkdelta, rsvd);
1056 if (error)
1057 goto out;
1058 }
1059
1060 if (idelta) {
1061 error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
1062 idelta, rsvd);
1063 if (error)
1064 goto out_undo_fdblocks;
1065 }
1066
1067 if (ifreedelta) {
1068 error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
1069 ifreedelta, rsvd);
1070 if (error)
1071 goto out_undo_icount;
1072 }
1073
1074 /* apply remaining deltas */
1075 if (rtxdelta != 0) {
1076 msbp->msb_field = XFS_SBS_FREXTENTS;
1077 msbp->msb_delta = rtxdelta;
1078 msbp++;
1079 }
1080
1081 if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1082 if (tp->t_dblocks_delta != 0) {
1083 msbp->msb_field = XFS_SBS_DBLOCKS;
1084 msbp->msb_delta = tp->t_dblocks_delta;
1085 msbp++;
1086 }
1087 if (tp->t_agcount_delta != 0) {
1088 msbp->msb_field = XFS_SBS_AGCOUNT;
1089 msbp->msb_delta = tp->t_agcount_delta;
1090 msbp++;
1091 }
1092 if (tp->t_imaxpct_delta != 0) {
1093 msbp->msb_field = XFS_SBS_IMAX_PCT;
1094 msbp->msb_delta = tp->t_imaxpct_delta;
1095 msbp++;
1096 }
1097 if (tp->t_rextsize_delta != 0) {
1098 msbp->msb_field = XFS_SBS_REXTSIZE;
1099 msbp->msb_delta = tp->t_rextsize_delta;
1100 msbp++;
1101 }
1102 if (tp->t_rbmblocks_delta != 0) {
1103 msbp->msb_field = XFS_SBS_RBMBLOCKS;
1104 msbp->msb_delta = tp->t_rbmblocks_delta;
1105 msbp++;
1106 }
1107 if (tp->t_rblocks_delta != 0) {
1108 msbp->msb_field = XFS_SBS_RBLOCKS;
1109 msbp->msb_delta = tp->t_rblocks_delta;
1110 msbp++;
1111 }
1112 if (tp->t_rextents_delta != 0) {
1113 msbp->msb_field = XFS_SBS_REXTENTS;
1114 msbp->msb_delta = tp->t_rextents_delta;
1115 msbp++;
1116 }
1117 if (tp->t_rextslog_delta != 0) {
1118 msbp->msb_field = XFS_SBS_REXTSLOG;
1119 msbp->msb_delta = tp->t_rextslog_delta;
1120 msbp++;
1121 }
1122 }
1123
1124 /*
1125 * If we need to change anything, do it.
1126 */
1127 if (msbp > msb) {
1128 error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1129 (uint)(msbp - msb), rsvd);
1130 if (error)
1131 goto out_undo_ifreecount;
1132 }
1133
1134 return;
1135
1136out_undo_ifreecount:
1137 if (ifreedelta)
1138 xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
1139out_undo_icount:
1140 if (idelta)
1141 xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
1142out_undo_fdblocks:
1143 if (blkdelta)
1144 xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
1145out:
1146 ASSERT(error == 0);
1147 return;
1148}
1149
1150/*
1151 * Add the given log item to the transaction's list of log items.
1152 *
1153 * The log item will now point to its new descriptor with its li_desc field.
1154 */
1155void
1156xfs_trans_add_item(
1157 struct xfs_trans *tp,
1158 struct xfs_log_item *lip)
1159{
1160 struct xfs_log_item_desc *lidp;
1161
1162 ASSERT(lip->li_mountp == tp->t_mountp);
1163 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
1164
1165 lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
1166
1167 lidp->lid_item = lip;
1168 lidp->lid_flags = 0;
1169 list_add_tail(&lidp->lid_trans, &tp->t_items);
1170
1171 lip->li_desc = lidp;
1172}
1173
1174STATIC void
1175xfs_trans_free_item_desc(
1176 struct xfs_log_item_desc *lidp)
1177{
1178 list_del_init(&lidp->lid_trans);
1179 kmem_zone_free(xfs_log_item_desc_zone, lidp);
1180}
1181
1182/*
1183 * Unlink and free the given descriptor.
1184 */
1185void
1186xfs_trans_del_item(
1187 struct xfs_log_item *lip)
1188{
1189 xfs_trans_free_item_desc(lip->li_desc);
1190 lip->li_desc = NULL;
1191}
1192
1193/*
1194 * Unlock all of the items of a transaction and free all the descriptors
1195 * of that transaction.
1196 */
1197void
1198xfs_trans_free_items(
1199 struct xfs_trans *tp,
1200 xfs_lsn_t commit_lsn,
1201 int flags)
1202{
1203 struct xfs_log_item_desc *lidp, *next;
1204
1205 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1206 struct xfs_log_item *lip = lidp->lid_item;
1207
1208 lip->li_desc = NULL;
1209
1210 if (commit_lsn != NULLCOMMITLSN)
1211 IOP_COMMITTING(lip, commit_lsn);
1212 if (flags & XFS_TRANS_ABORT)
1213 lip->li_flags |= XFS_LI_ABORTED;
1214 IOP_UNLOCK(lip);
1215
1216 xfs_trans_free_item_desc(lidp);
1217 }
1218}
1219
1220static inline void
1221xfs_log_item_batch_insert(
1222 struct xfs_ail *ailp,
1223 struct xfs_ail_cursor *cur,
1224 struct xfs_log_item **log_items,
1225 int nr_items,
1226 xfs_lsn_t commit_lsn)
1227{
1228 int i;
1229
1230 spin_lock(&ailp->xa_lock);
1231 /* xfs_trans_ail_update_bulk drops ailp->xa_lock */
1232 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
1233
1234 for (i = 0; i < nr_items; i++)
1235 IOP_UNPIN(log_items[i], 0);
1236}
1237
1238/*
1239 * Bulk operation version of xfs_trans_committed that takes a log vector of
1240 * items to insert into the AIL. This uses bulk AIL insertion techniques to
1241 * minimise lock traffic.
1242 *
1243 * If we are called with the aborted flag set, it is because a log write during
1244 * a CIL checkpoint commit has failed. In this case, all the items in the
1245 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1246 * means that checkpoint commit abort handling is treated exactly the same
1247 * as an iclog write error even though we haven't started any IO yet. Hence in
1248 * this case all we need to do is IOP_COMMITTED processing, followed by an
1249 * IOP_UNPIN(aborted) call.
1250 *
1251 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
1252 * at the end of the AIL, the insert cursor avoids the need to walk
1253 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
1254 * call. This saves a lot of needless list walking and is a net win, even
1255 * though it slightly increases that amount of AIL lock traffic to set it up
1256 * and tear it down.
1257 */
1258void
1259xfs_trans_committed_bulk(
1260 struct xfs_ail *ailp,
1261 struct xfs_log_vec *log_vector,
1262 xfs_lsn_t commit_lsn,
1263 int aborted)
1264{
1265#define LOG_ITEM_BATCH_SIZE 32
1266 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
1267 struct xfs_log_vec *lv;
1268 struct xfs_ail_cursor cur;
1269 int i = 0;
1270
1271 spin_lock(&ailp->xa_lock);
1272 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
1273 spin_unlock(&ailp->xa_lock);
1274
1275 /* unpin all the log items */
1276 for (lv = log_vector; lv; lv = lv->lv_next ) {
1277 struct xfs_log_item *lip = lv->lv_item;
1278 xfs_lsn_t item_lsn;
1279
1280 if (aborted)
1281 lip->li_flags |= XFS_LI_ABORTED;
1282 item_lsn = IOP_COMMITTED(lip, commit_lsn);
1283
1284 /* item_lsn of -1 means the item needs no further processing */
1285 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1286 continue;
1287
1288 /*
1289 * if we are aborting the operation, no point in inserting the
1290 * object into the AIL as we are in a shutdown situation.
1291 */
1292 if (aborted) {
1293 ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1294 IOP_UNPIN(lip, 1);
1295 continue;
1296 }
1297
1298 if (item_lsn != commit_lsn) {
1299
1300 /*
1301 * Not a bulk update option due to unusual item_lsn.
1302 * Push into AIL immediately, rechecking the lsn once
1303 * we have the ail lock. Then unpin the item. This does
1304 * not affect the AIL cursor the bulk insert path is
1305 * using.
1306 */
1307 spin_lock(&ailp->xa_lock);
1308 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
1309 xfs_trans_ail_update(ailp, lip, item_lsn);
1310 else
1311 spin_unlock(&ailp->xa_lock);
1312 IOP_UNPIN(lip, 0);
1313 continue;
1314 }
1315
1316 /* Item is a candidate for bulk AIL insert. */
1317 log_items[i++] = lv->lv_item;
1318 if (i >= LOG_ITEM_BATCH_SIZE) {
1319 xfs_log_item_batch_insert(ailp, &cur, log_items,
1320 LOG_ITEM_BATCH_SIZE, commit_lsn);
1321 i = 0;
1322 }
1323 }
1324
1325 /* make sure we insert the remainder! */
1326 if (i)
1327 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
1328
1329 spin_lock(&ailp->xa_lock);
1330 xfs_trans_ail_cursor_done(ailp, &cur);
1331 spin_unlock(&ailp->xa_lock);
1332}
1333
1334/*
1335 * Commit the given transaction to the log.
1336 *
1337 * XFS disk error handling mechanism is not based on a typical
1338 * transaction abort mechanism. Logically after the filesystem
1339 * gets marked 'SHUTDOWN', we can't let any new transactions
1340 * be durable - ie. committed to disk - because some metadata might
1341 * be inconsistent. In such cases, this returns an error, and the
1342 * caller may assume that all locked objects joined to the transaction
1343 * have already been unlocked as if the commit had succeeded.
1344 * Do not reference the transaction structure after this call.
1345 */
1346int
1347xfs_trans_commit(
1348 struct xfs_trans *tp,
1349 uint flags)
1350{
1351 struct xfs_mount *mp = tp->t_mountp;
1352 xfs_lsn_t commit_lsn = -1;
1353 int error = 0;
1354 int log_flags = 0;
1355 int sync = tp->t_flags & XFS_TRANS_SYNC;
1356
1357 /*
1358 * Determine whether this commit is releasing a permanent
1359 * log reservation or not.
1360 */
1361 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1362 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1363 log_flags = XFS_LOG_REL_PERM_RESERV;
1364 }
1365
1366 /*
1367 * If there is nothing to be logged by the transaction,
1368 * then unlock all of the items associated with the
1369 * transaction and free the transaction structure.
1370 * Also make sure to return any reserved blocks to
1371 * the free pool.
1372 */
1373 if (!(tp->t_flags & XFS_TRANS_DIRTY))
1374 goto out_unreserve;
1375
1376 if (XFS_FORCED_SHUTDOWN(mp)) {
1377 error = XFS_ERROR(EIO);
1378 goto out_unreserve;
1379 }
1380
1381 ASSERT(tp->t_ticket != NULL);
1382
1383 /*
1384 * If we need to update the superblock, then do it now.
1385 */
1386 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1387 xfs_trans_apply_sb_deltas(tp);
1388 xfs_trans_apply_dquot_deltas(tp);
1389
1390 error = xfs_log_commit_cil(mp, tp, &commit_lsn, flags);
1391 if (error == ENOMEM) {
1392 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1393 error = XFS_ERROR(EIO);
1394 goto out_unreserve;
1395 }
1396
1397 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1398 xfs_trans_free(tp);
1399
1400 /*
1401 * If the transaction needs to be synchronous, then force the
1402 * log out now and wait for it.
1403 */
1404 if (sync) {
1405 if (!error) {
1406 error = _xfs_log_force_lsn(mp, commit_lsn,
1407 XFS_LOG_SYNC, NULL);
1408 }
1409 XFS_STATS_INC(xs_trans_sync);
1410 } else {
1411 XFS_STATS_INC(xs_trans_async);
1412 }
1413
1414 return error;
1415
1416out_unreserve:
1417 xfs_trans_unreserve_and_mod_sb(tp);
1418
1419 /*
1420 * It is indeed possible for the transaction to be not dirty but
1421 * the dqinfo portion to be. All that means is that we have some
1422 * (non-persistent) quota reservations that need to be unreserved.
1423 */
1424 xfs_trans_unreserve_and_mod_dquots(tp);
1425 if (tp->t_ticket) {
1426 commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1427 if (commit_lsn == -1 && !error)
1428 error = XFS_ERROR(EIO);
1429 }
1430 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1431 xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1432 xfs_trans_free(tp);
1433
1434 XFS_STATS_INC(xs_trans_empty);
1435 return error;
1436}
1437
1438/*
1439 * Unlock all of the transaction's items and free the transaction.
1440 * The transaction must not have modified any of its items, because
1441 * there is no way to restore them to their previous state.
1442 *
1443 * If the transaction has made a log reservation, make sure to release
1444 * it as well.
1445 */
1446void
1447xfs_trans_cancel(
1448 xfs_trans_t *tp,
1449 int flags)
1450{
1451 int log_flags;
1452 xfs_mount_t *mp = tp->t_mountp;
1453
1454 /*
1455 * See if the caller is being too lazy to figure out if
1456 * the transaction really needs an abort.
1457 */
1458 if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1459 flags &= ~XFS_TRANS_ABORT;
1460 /*
1461 * See if the caller is relying on us to shut down the
1462 * filesystem. This happens in paths where we detect
1463 * corruption and decide to give up.
1464 */
1465 if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1466 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1467 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1468 }
1469#ifdef DEBUG
1470 if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1471 struct xfs_log_item_desc *lidp;
1472
1473 list_for_each_entry(lidp, &tp->t_items, lid_trans)
1474 ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1475 }
1476#endif
1477 xfs_trans_unreserve_and_mod_sb(tp);
1478 xfs_trans_unreserve_and_mod_dquots(tp);
1479
1480 if (tp->t_ticket) {
1481 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1482 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1483 log_flags = XFS_LOG_REL_PERM_RESERV;
1484 } else {
1485 log_flags = 0;
1486 }
1487 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1488 }
1489
1490 /* mark this thread as no longer being in a transaction */
1491 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1492
1493 xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1494 xfs_trans_free(tp);
1495}
1496
1497/*
1498 * Roll from one trans in the sequence of PERMANENT transactions to
1499 * the next: permanent transactions are only flushed out when
1500 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1501 * as possible to let chunks of it go to the log. So we commit the
1502 * chunk we've been working on and get a new transaction to continue.
1503 */
1504int
1505xfs_trans_roll(
1506 struct xfs_trans **tpp,
1507 struct xfs_inode *dp)
1508{
1509 struct xfs_trans *trans;
1510 unsigned int logres, count;
1511 int error;
1512
1513 /*
1514 * Ensure that the inode is always logged.
1515 */
1516 trans = *tpp;
1517 xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1518
1519 /*
1520 * Copy the critical parameters from one trans to the next.
1521 */
1522 logres = trans->t_log_res;
1523 count = trans->t_log_count;
1524 *tpp = xfs_trans_dup(trans);
1525
1526 /*
1527 * Commit the current transaction.
1528 * If this commit failed, then it'd just unlock those items that
1529 * are not marked ihold. That also means that a filesystem shutdown
1530 * is in progress. The caller takes the responsibility to cancel
1531 * the duplicate transaction that gets returned.
1532 */
1533 error = xfs_trans_commit(trans, 0);
1534 if (error)
1535 return (error);
1536
1537 trans = *tpp;
1538
1539 /*
1540 * transaction commit worked ok so we can drop the extra ticket
1541 * reference that we gained in xfs_trans_dup()
1542 */
1543 xfs_log_ticket_put(trans->t_ticket);
1544
1545
1546 /*
1547 * Reserve space in the log for th next transaction.
1548 * This also pushes items in the "AIL", the list of logged items,
1549 * out to disk if they are taking up space at the tail of the log
1550 * that we want to use. This requires that either nothing be locked
1551 * across this call, or that anything that is locked be logged in
1552 * the prior and the next transactions.
1553 */
1554 error = xfs_trans_reserve(trans, 0, logres, 0,
1555 XFS_TRANS_PERM_LOG_RES, count);
1556 /*
1557 * Ensure that the inode is in the new transaction and locked.
1558 */
1559 if (error)
1560 return error;
1561
1562 xfs_trans_ijoin(trans, dp, 0);
1563 return 0;
1564}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_log_priv.h"
13#include "xfs_trans_resv.h"
14#include "xfs_mount.h"
15#include "xfs_extent_busy.h"
16#include "xfs_quota.h"
17#include "xfs_trans.h"
18#include "xfs_trans_priv.h"
19#include "xfs_log.h"
20#include "xfs_trace.h"
21#include "xfs_error.h"
22#include "xfs_defer.h"
23
24kmem_zone_t *xfs_trans_zone;
25
26#if defined(CONFIG_TRACEPOINTS)
27static void
28xfs_trans_trace_reservations(
29 struct xfs_mount *mp)
30{
31 struct xfs_trans_res resv;
32 struct xfs_trans_res *res;
33 struct xfs_trans_res *end_res;
34 int i;
35
36 res = (struct xfs_trans_res *)M_RES(mp);
37 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
38 for (i = 0; res < end_res; i++, res++)
39 trace_xfs_trans_resv_calc(mp, i, res);
40 xfs_log_get_max_trans_res(mp, &resv);
41 trace_xfs_trans_resv_calc(mp, -1, &resv);
42}
43#else
44# define xfs_trans_trace_reservations(mp)
45#endif
46
47/*
48 * Initialize the precomputed transaction reservation values
49 * in the mount structure.
50 */
51void
52xfs_trans_init(
53 struct xfs_mount *mp)
54{
55 xfs_trans_resv_calc(mp, M_RES(mp));
56 xfs_trans_trace_reservations(mp);
57}
58
59/*
60 * Free the transaction structure. If there is more clean up
61 * to do when the structure is freed, add it here.
62 */
63STATIC void
64xfs_trans_free(
65 struct xfs_trans *tp)
66{
67 xfs_extent_busy_sort(&tp->t_busy);
68 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
69
70 trace_xfs_trans_free(tp, _RET_IP_);
71 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
72 sb_end_intwrite(tp->t_mountp->m_super);
73 xfs_trans_free_dqinfo(tp);
74 kmem_cache_free(xfs_trans_zone, tp);
75}
76
77/*
78 * This is called to create a new transaction which will share the
79 * permanent log reservation of the given transaction. The remaining
80 * unused block and rt extent reservations are also inherited. This
81 * implies that the original transaction is no longer allowed to allocate
82 * blocks. Locks and log items, however, are no inherited. They must
83 * be added to the new transaction explicitly.
84 */
85STATIC struct xfs_trans *
86xfs_trans_dup(
87 struct xfs_trans *tp)
88{
89 struct xfs_trans *ntp;
90
91 trace_xfs_trans_dup(tp, _RET_IP_);
92
93 ntp = kmem_cache_zalloc(xfs_trans_zone, GFP_KERNEL | __GFP_NOFAIL);
94
95 /*
96 * Initialize the new transaction structure.
97 */
98 ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
99 ntp->t_mountp = tp->t_mountp;
100 INIT_LIST_HEAD(&ntp->t_items);
101 INIT_LIST_HEAD(&ntp->t_busy);
102 INIT_LIST_HEAD(&ntp->t_dfops);
103 ntp->t_firstblock = NULLFSBLOCK;
104
105 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
106 ASSERT(tp->t_ticket != NULL);
107
108 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
109 (tp->t_flags & XFS_TRANS_RESERVE) |
110 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
111 (tp->t_flags & XFS_TRANS_RES_FDBLKS);
112 /* We gave our writer reference to the new transaction */
113 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
114 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
115
116 ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
117 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
118 tp->t_blk_res = tp->t_blk_res_used;
119
120 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
121 tp->t_rtx_res = tp->t_rtx_res_used;
122 ntp->t_pflags = tp->t_pflags;
123
124 /* move deferred ops over to the new tp */
125 xfs_defer_move(ntp, tp);
126
127 xfs_trans_dup_dqinfo(tp, ntp);
128 return ntp;
129}
130
131/*
132 * This is called to reserve free disk blocks and log space for the
133 * given transaction. This must be done before allocating any resources
134 * within the transaction.
135 *
136 * This will return ENOSPC if there are not enough blocks available.
137 * It will sleep waiting for available log space.
138 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
139 * is used by long running transactions. If any one of the reservations
140 * fails then they will all be backed out.
141 *
142 * This does not do quota reservations. That typically is done by the
143 * caller afterwards.
144 */
145static int
146xfs_trans_reserve(
147 struct xfs_trans *tp,
148 struct xfs_trans_res *resp,
149 uint blocks,
150 uint rtextents)
151{
152 struct xfs_mount *mp = tp->t_mountp;
153 int error = 0;
154 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
155
156 /* Mark this thread as being in a transaction */
157 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
158
159 /*
160 * Attempt to reserve the needed disk blocks by decrementing
161 * the number needed from the number available. This will
162 * fail if the count would go below zero.
163 */
164 if (blocks > 0) {
165 error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
166 if (error != 0) {
167 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
168 return -ENOSPC;
169 }
170 tp->t_blk_res += blocks;
171 }
172
173 /*
174 * Reserve the log space needed for this transaction.
175 */
176 if (resp->tr_logres > 0) {
177 bool permanent = false;
178
179 ASSERT(tp->t_log_res == 0 ||
180 tp->t_log_res == resp->tr_logres);
181 ASSERT(tp->t_log_count == 0 ||
182 tp->t_log_count == resp->tr_logcount);
183
184 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
185 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
186 permanent = true;
187 } else {
188 ASSERT(tp->t_ticket == NULL);
189 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
190 }
191
192 if (tp->t_ticket != NULL) {
193 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
194 error = xfs_log_regrant(mp, tp->t_ticket);
195 } else {
196 error = xfs_log_reserve(mp,
197 resp->tr_logres,
198 resp->tr_logcount,
199 &tp->t_ticket, XFS_TRANSACTION,
200 permanent);
201 }
202
203 if (error)
204 goto undo_blocks;
205
206 tp->t_log_res = resp->tr_logres;
207 tp->t_log_count = resp->tr_logcount;
208 }
209
210 /*
211 * Attempt to reserve the needed realtime extents by decrementing
212 * the number needed from the number available. This will
213 * fail if the count would go below zero.
214 */
215 if (rtextents > 0) {
216 error = xfs_mod_frextents(mp, -((int64_t)rtextents));
217 if (error) {
218 error = -ENOSPC;
219 goto undo_log;
220 }
221 tp->t_rtx_res += rtextents;
222 }
223
224 return 0;
225
226 /*
227 * Error cases jump to one of these labels to undo any
228 * reservations which have already been performed.
229 */
230undo_log:
231 if (resp->tr_logres > 0) {
232 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
233 tp->t_ticket = NULL;
234 tp->t_log_res = 0;
235 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
236 }
237
238undo_blocks:
239 if (blocks > 0) {
240 xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
241 tp->t_blk_res = 0;
242 }
243
244 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
245
246 return error;
247}
248
249int
250xfs_trans_alloc(
251 struct xfs_mount *mp,
252 struct xfs_trans_res *resp,
253 uint blocks,
254 uint rtextents,
255 uint flags,
256 struct xfs_trans **tpp)
257{
258 struct xfs_trans *tp;
259 int error;
260
261 /*
262 * Allocate the handle before we do our freeze accounting and setting up
263 * GFP_NOFS allocation context so that we avoid lockdep false positives
264 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
265 */
266 tp = kmem_cache_zalloc(xfs_trans_zone, GFP_KERNEL | __GFP_NOFAIL);
267 if (!(flags & XFS_TRANS_NO_WRITECOUNT))
268 sb_start_intwrite(mp->m_super);
269
270 /*
271 * Zero-reservation ("empty") transactions can't modify anything, so
272 * they're allowed to run while we're frozen.
273 */
274 WARN_ON(resp->tr_logres > 0 &&
275 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
276 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
277 xfs_sb_version_haslazysbcount(&mp->m_sb));
278
279 tp->t_magic = XFS_TRANS_HEADER_MAGIC;
280 tp->t_flags = flags;
281 tp->t_mountp = mp;
282 INIT_LIST_HEAD(&tp->t_items);
283 INIT_LIST_HEAD(&tp->t_busy);
284 INIT_LIST_HEAD(&tp->t_dfops);
285 tp->t_firstblock = NULLFSBLOCK;
286
287 error = xfs_trans_reserve(tp, resp, blocks, rtextents);
288 if (error) {
289 xfs_trans_cancel(tp);
290 return error;
291 }
292
293 trace_xfs_trans_alloc(tp, _RET_IP_);
294
295 *tpp = tp;
296 return 0;
297}
298
299/*
300 * Create an empty transaction with no reservation. This is a defensive
301 * mechanism for routines that query metadata without actually modifying them --
302 * if the metadata being queried is somehow cross-linked (think a btree block
303 * pointer that points higher in the tree), we risk deadlock. However, blocks
304 * grabbed as part of a transaction can be re-grabbed. The verifiers will
305 * notice the corrupt block and the operation will fail back to userspace
306 * without deadlocking.
307 *
308 * Note the zero-length reservation; this transaction MUST be cancelled without
309 * any dirty data.
310 *
311 * Callers should obtain freeze protection to avoid a conflict with fs freezing
312 * where we can be grabbing buffers at the same time that freeze is trying to
313 * drain the buffer LRU list.
314 */
315int
316xfs_trans_alloc_empty(
317 struct xfs_mount *mp,
318 struct xfs_trans **tpp)
319{
320 struct xfs_trans_res resv = {0};
321
322 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
323}
324
325/*
326 * Record the indicated change to the given field for application
327 * to the file system's superblock when the transaction commits.
328 * For now, just store the change in the transaction structure.
329 *
330 * Mark the transaction structure to indicate that the superblock
331 * needs to be updated before committing.
332 *
333 * Because we may not be keeping track of allocated/free inodes and
334 * used filesystem blocks in the superblock, we do not mark the
335 * superblock dirty in this transaction if we modify these fields.
336 * We still need to update the transaction deltas so that they get
337 * applied to the incore superblock, but we don't want them to
338 * cause the superblock to get locked and logged if these are the
339 * only fields in the superblock that the transaction modifies.
340 */
341void
342xfs_trans_mod_sb(
343 xfs_trans_t *tp,
344 uint field,
345 int64_t delta)
346{
347 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
348 xfs_mount_t *mp = tp->t_mountp;
349
350 switch (field) {
351 case XFS_TRANS_SB_ICOUNT:
352 tp->t_icount_delta += delta;
353 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
354 flags &= ~XFS_TRANS_SB_DIRTY;
355 break;
356 case XFS_TRANS_SB_IFREE:
357 tp->t_ifree_delta += delta;
358 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
359 flags &= ~XFS_TRANS_SB_DIRTY;
360 break;
361 case XFS_TRANS_SB_FDBLOCKS:
362 /*
363 * Track the number of blocks allocated in the transaction.
364 * Make sure it does not exceed the number reserved. If so,
365 * shutdown as this can lead to accounting inconsistency.
366 */
367 if (delta < 0) {
368 tp->t_blk_res_used += (uint)-delta;
369 if (tp->t_blk_res_used > tp->t_blk_res)
370 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
371 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
372 int64_t blkres_delta;
373
374 /*
375 * Return freed blocks directly to the reservation
376 * instead of the global pool, being careful not to
377 * overflow the trans counter. This is used to preserve
378 * reservation across chains of transaction rolls that
379 * repeatedly free and allocate blocks.
380 */
381 blkres_delta = min_t(int64_t, delta,
382 UINT_MAX - tp->t_blk_res);
383 tp->t_blk_res += blkres_delta;
384 delta -= blkres_delta;
385 }
386 tp->t_fdblocks_delta += delta;
387 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
388 flags &= ~XFS_TRANS_SB_DIRTY;
389 break;
390 case XFS_TRANS_SB_RES_FDBLOCKS:
391 /*
392 * The allocation has already been applied to the
393 * in-core superblock's counter. This should only
394 * be applied to the on-disk superblock.
395 */
396 tp->t_res_fdblocks_delta += delta;
397 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
398 flags &= ~XFS_TRANS_SB_DIRTY;
399 break;
400 case XFS_TRANS_SB_FREXTENTS:
401 /*
402 * Track the number of blocks allocated in the
403 * transaction. Make sure it does not exceed the
404 * number reserved.
405 */
406 if (delta < 0) {
407 tp->t_rtx_res_used += (uint)-delta;
408 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
409 }
410 tp->t_frextents_delta += delta;
411 break;
412 case XFS_TRANS_SB_RES_FREXTENTS:
413 /*
414 * The allocation has already been applied to the
415 * in-core superblock's counter. This should only
416 * be applied to the on-disk superblock.
417 */
418 ASSERT(delta < 0);
419 tp->t_res_frextents_delta += delta;
420 break;
421 case XFS_TRANS_SB_DBLOCKS:
422 ASSERT(delta > 0);
423 tp->t_dblocks_delta += delta;
424 break;
425 case XFS_TRANS_SB_AGCOUNT:
426 ASSERT(delta > 0);
427 tp->t_agcount_delta += delta;
428 break;
429 case XFS_TRANS_SB_IMAXPCT:
430 tp->t_imaxpct_delta += delta;
431 break;
432 case XFS_TRANS_SB_REXTSIZE:
433 tp->t_rextsize_delta += delta;
434 break;
435 case XFS_TRANS_SB_RBMBLOCKS:
436 tp->t_rbmblocks_delta += delta;
437 break;
438 case XFS_TRANS_SB_RBLOCKS:
439 tp->t_rblocks_delta += delta;
440 break;
441 case XFS_TRANS_SB_REXTENTS:
442 tp->t_rextents_delta += delta;
443 break;
444 case XFS_TRANS_SB_REXTSLOG:
445 tp->t_rextslog_delta += delta;
446 break;
447 default:
448 ASSERT(0);
449 return;
450 }
451
452 tp->t_flags |= flags;
453}
454
455/*
456 * xfs_trans_apply_sb_deltas() is called from the commit code
457 * to bring the superblock buffer into the current transaction
458 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
459 *
460 * For now we just look at each field allowed to change and change
461 * it if necessary.
462 */
463STATIC void
464xfs_trans_apply_sb_deltas(
465 xfs_trans_t *tp)
466{
467 xfs_dsb_t *sbp;
468 xfs_buf_t *bp;
469 int whole = 0;
470
471 bp = xfs_trans_getsb(tp, tp->t_mountp);
472 sbp = bp->b_addr;
473
474 /*
475 * Check that superblock mods match the mods made to AGF counters.
476 */
477 ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
478 (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
479 tp->t_ag_btree_delta));
480
481 /*
482 * Only update the superblock counters if we are logging them
483 */
484 if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
485 if (tp->t_icount_delta)
486 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
487 if (tp->t_ifree_delta)
488 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
489 if (tp->t_fdblocks_delta)
490 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
491 if (tp->t_res_fdblocks_delta)
492 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
493 }
494
495 if (tp->t_frextents_delta)
496 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
497 if (tp->t_res_frextents_delta)
498 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
499
500 if (tp->t_dblocks_delta) {
501 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
502 whole = 1;
503 }
504 if (tp->t_agcount_delta) {
505 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
506 whole = 1;
507 }
508 if (tp->t_imaxpct_delta) {
509 sbp->sb_imax_pct += tp->t_imaxpct_delta;
510 whole = 1;
511 }
512 if (tp->t_rextsize_delta) {
513 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
514 whole = 1;
515 }
516 if (tp->t_rbmblocks_delta) {
517 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
518 whole = 1;
519 }
520 if (tp->t_rblocks_delta) {
521 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
522 whole = 1;
523 }
524 if (tp->t_rextents_delta) {
525 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
526 whole = 1;
527 }
528 if (tp->t_rextslog_delta) {
529 sbp->sb_rextslog += tp->t_rextslog_delta;
530 whole = 1;
531 }
532
533 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
534 if (whole)
535 /*
536 * Log the whole thing, the fields are noncontiguous.
537 */
538 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
539 else
540 /*
541 * Since all the modifiable fields are contiguous, we
542 * can get away with this.
543 */
544 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
545 offsetof(xfs_dsb_t, sb_frextents) +
546 sizeof(sbp->sb_frextents) - 1);
547}
548
549/*
550 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
551 * apply superblock counter changes to the in-core superblock. The
552 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
553 * applied to the in-core superblock. The idea is that that has already been
554 * done.
555 *
556 * If we are not logging superblock counters, then the inode allocated/free and
557 * used block counts are not updated in the on disk superblock. In this case,
558 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
559 * still need to update the incore superblock with the changes.
560 *
561 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
562 * so we don't need to take the counter lock on every update.
563 */
564#define XFS_ICOUNT_BATCH 128
565
566void
567xfs_trans_unreserve_and_mod_sb(
568 struct xfs_trans *tp)
569{
570 struct xfs_mount *mp = tp->t_mountp;
571 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
572 int64_t blkdelta = 0;
573 int64_t rtxdelta = 0;
574 int64_t idelta = 0;
575 int64_t ifreedelta = 0;
576 int error;
577
578 /* calculate deltas */
579 if (tp->t_blk_res > 0)
580 blkdelta = tp->t_blk_res;
581 if ((tp->t_fdblocks_delta != 0) &&
582 (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
583 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
584 blkdelta += tp->t_fdblocks_delta;
585
586 if (tp->t_rtx_res > 0)
587 rtxdelta = tp->t_rtx_res;
588 if ((tp->t_frextents_delta != 0) &&
589 (tp->t_flags & XFS_TRANS_SB_DIRTY))
590 rtxdelta += tp->t_frextents_delta;
591
592 if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
593 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
594 idelta = tp->t_icount_delta;
595 ifreedelta = tp->t_ifree_delta;
596 }
597
598 /* apply the per-cpu counters */
599 if (blkdelta) {
600 error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
601 ASSERT(!error);
602 }
603
604 if (idelta) {
605 percpu_counter_add_batch(&mp->m_icount, idelta,
606 XFS_ICOUNT_BATCH);
607 if (idelta < 0)
608 ASSERT(__percpu_counter_compare(&mp->m_icount, 0,
609 XFS_ICOUNT_BATCH) >= 0);
610 }
611
612 if (ifreedelta) {
613 percpu_counter_add(&mp->m_ifree, ifreedelta);
614 if (ifreedelta < 0)
615 ASSERT(percpu_counter_compare(&mp->m_ifree, 0) >= 0);
616 }
617
618 if (rtxdelta == 0 && !(tp->t_flags & XFS_TRANS_SB_DIRTY))
619 return;
620
621 /* apply remaining deltas */
622 spin_lock(&mp->m_sb_lock);
623 mp->m_sb.sb_frextents += rtxdelta;
624 mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
625 mp->m_sb.sb_agcount += tp->t_agcount_delta;
626 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
627 mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
628 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
629 mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
630 mp->m_sb.sb_rextents += tp->t_rextents_delta;
631 mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
632 spin_unlock(&mp->m_sb_lock);
633
634 /*
635 * Debug checks outside of the spinlock so they don't lock up the
636 * machine if they fail.
637 */
638 ASSERT(mp->m_sb.sb_imax_pct >= 0);
639 ASSERT(mp->m_sb.sb_rextslog >= 0);
640 return;
641}
642
643/* Add the given log item to the transaction's list of log items. */
644void
645xfs_trans_add_item(
646 struct xfs_trans *tp,
647 struct xfs_log_item *lip)
648{
649 ASSERT(lip->li_mountp == tp->t_mountp);
650 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
651 ASSERT(list_empty(&lip->li_trans));
652 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
653
654 list_add_tail(&lip->li_trans, &tp->t_items);
655 trace_xfs_trans_add_item(tp, _RET_IP_);
656}
657
658/*
659 * Unlink the log item from the transaction. the log item is no longer
660 * considered dirty in this transaction, as the linked transaction has
661 * finished, either by abort or commit completion.
662 */
663void
664xfs_trans_del_item(
665 struct xfs_log_item *lip)
666{
667 clear_bit(XFS_LI_DIRTY, &lip->li_flags);
668 list_del_init(&lip->li_trans);
669}
670
671/* Detach and unlock all of the items in a transaction */
672static void
673xfs_trans_free_items(
674 struct xfs_trans *tp,
675 bool abort)
676{
677 struct xfs_log_item *lip, *next;
678
679 trace_xfs_trans_free_items(tp, _RET_IP_);
680
681 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
682 xfs_trans_del_item(lip);
683 if (abort)
684 set_bit(XFS_LI_ABORTED, &lip->li_flags);
685 if (lip->li_ops->iop_release)
686 lip->li_ops->iop_release(lip);
687 }
688}
689
690static inline void
691xfs_log_item_batch_insert(
692 struct xfs_ail *ailp,
693 struct xfs_ail_cursor *cur,
694 struct xfs_log_item **log_items,
695 int nr_items,
696 xfs_lsn_t commit_lsn)
697{
698 int i;
699
700 spin_lock(&ailp->ail_lock);
701 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */
702 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
703
704 for (i = 0; i < nr_items; i++) {
705 struct xfs_log_item *lip = log_items[i];
706
707 if (lip->li_ops->iop_unpin)
708 lip->li_ops->iop_unpin(lip, 0);
709 }
710}
711
712/*
713 * Bulk operation version of xfs_trans_committed that takes a log vector of
714 * items to insert into the AIL. This uses bulk AIL insertion techniques to
715 * minimise lock traffic.
716 *
717 * If we are called with the aborted flag set, it is because a log write during
718 * a CIL checkpoint commit has failed. In this case, all the items in the
719 * checkpoint have already gone through iop_committed and iop_committing, which
720 * means that checkpoint commit abort handling is treated exactly the same
721 * as an iclog write error even though we haven't started any IO yet. Hence in
722 * this case all we need to do is iop_committed processing, followed by an
723 * iop_unpin(aborted) call.
724 *
725 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
726 * at the end of the AIL, the insert cursor avoids the need to walk
727 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
728 * call. This saves a lot of needless list walking and is a net win, even
729 * though it slightly increases that amount of AIL lock traffic to set it up
730 * and tear it down.
731 */
732void
733xfs_trans_committed_bulk(
734 struct xfs_ail *ailp,
735 struct xfs_log_vec *log_vector,
736 xfs_lsn_t commit_lsn,
737 bool aborted)
738{
739#define LOG_ITEM_BATCH_SIZE 32
740 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
741 struct xfs_log_vec *lv;
742 struct xfs_ail_cursor cur;
743 int i = 0;
744
745 spin_lock(&ailp->ail_lock);
746 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
747 spin_unlock(&ailp->ail_lock);
748
749 /* unpin all the log items */
750 for (lv = log_vector; lv; lv = lv->lv_next ) {
751 struct xfs_log_item *lip = lv->lv_item;
752 xfs_lsn_t item_lsn;
753
754 if (aborted)
755 set_bit(XFS_LI_ABORTED, &lip->li_flags);
756
757 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
758 lip->li_ops->iop_release(lip);
759 continue;
760 }
761
762 if (lip->li_ops->iop_committed)
763 item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
764 else
765 item_lsn = commit_lsn;
766
767 /* item_lsn of -1 means the item needs no further processing */
768 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
769 continue;
770
771 /*
772 * if we are aborting the operation, no point in inserting the
773 * object into the AIL as we are in a shutdown situation.
774 */
775 if (aborted) {
776 ASSERT(XFS_FORCED_SHUTDOWN(ailp->ail_mount));
777 if (lip->li_ops->iop_unpin)
778 lip->li_ops->iop_unpin(lip, 1);
779 continue;
780 }
781
782 if (item_lsn != commit_lsn) {
783
784 /*
785 * Not a bulk update option due to unusual item_lsn.
786 * Push into AIL immediately, rechecking the lsn once
787 * we have the ail lock. Then unpin the item. This does
788 * not affect the AIL cursor the bulk insert path is
789 * using.
790 */
791 spin_lock(&ailp->ail_lock);
792 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
793 xfs_trans_ail_update(ailp, lip, item_lsn);
794 else
795 spin_unlock(&ailp->ail_lock);
796 if (lip->li_ops->iop_unpin)
797 lip->li_ops->iop_unpin(lip, 0);
798 continue;
799 }
800
801 /* Item is a candidate for bulk AIL insert. */
802 log_items[i++] = lv->lv_item;
803 if (i >= LOG_ITEM_BATCH_SIZE) {
804 xfs_log_item_batch_insert(ailp, &cur, log_items,
805 LOG_ITEM_BATCH_SIZE, commit_lsn);
806 i = 0;
807 }
808 }
809
810 /* make sure we insert the remainder! */
811 if (i)
812 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
813
814 spin_lock(&ailp->ail_lock);
815 xfs_trans_ail_cursor_done(&cur);
816 spin_unlock(&ailp->ail_lock);
817}
818
819/*
820 * Commit the given transaction to the log.
821 *
822 * XFS disk error handling mechanism is not based on a typical
823 * transaction abort mechanism. Logically after the filesystem
824 * gets marked 'SHUTDOWN', we can't let any new transactions
825 * be durable - ie. committed to disk - because some metadata might
826 * be inconsistent. In such cases, this returns an error, and the
827 * caller may assume that all locked objects joined to the transaction
828 * have already been unlocked as if the commit had succeeded.
829 * Do not reference the transaction structure after this call.
830 */
831static int
832__xfs_trans_commit(
833 struct xfs_trans *tp,
834 bool regrant)
835{
836 struct xfs_mount *mp = tp->t_mountp;
837 xfs_lsn_t commit_lsn = -1;
838 int error = 0;
839 int sync = tp->t_flags & XFS_TRANS_SYNC;
840
841 trace_xfs_trans_commit(tp, _RET_IP_);
842
843 /*
844 * Finish deferred items on final commit. Only permanent transactions
845 * should ever have deferred ops.
846 */
847 WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
848 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
849 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
850 error = xfs_defer_finish_noroll(&tp);
851 if (error)
852 goto out_unreserve;
853 }
854
855 /*
856 * If there is nothing to be logged by the transaction,
857 * then unlock all of the items associated with the
858 * transaction and free the transaction structure.
859 * Also make sure to return any reserved blocks to
860 * the free pool.
861 */
862 if (!(tp->t_flags & XFS_TRANS_DIRTY))
863 goto out_unreserve;
864
865 if (XFS_FORCED_SHUTDOWN(mp)) {
866 error = -EIO;
867 goto out_unreserve;
868 }
869
870 ASSERT(tp->t_ticket != NULL);
871
872 /*
873 * If we need to update the superblock, then do it now.
874 */
875 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
876 xfs_trans_apply_sb_deltas(tp);
877 xfs_trans_apply_dquot_deltas(tp);
878
879 xfs_log_commit_cil(mp, tp, &commit_lsn, regrant);
880
881 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
882 xfs_trans_free(tp);
883
884 /*
885 * If the transaction needs to be synchronous, then force the
886 * log out now and wait for it.
887 */
888 if (sync) {
889 error = xfs_log_force_lsn(mp, commit_lsn, XFS_LOG_SYNC, NULL);
890 XFS_STATS_INC(mp, xs_trans_sync);
891 } else {
892 XFS_STATS_INC(mp, xs_trans_async);
893 }
894
895 return error;
896
897out_unreserve:
898 xfs_trans_unreserve_and_mod_sb(tp);
899
900 /*
901 * It is indeed possible for the transaction to be not dirty but
902 * the dqinfo portion to be. All that means is that we have some
903 * (non-persistent) quota reservations that need to be unreserved.
904 */
905 xfs_trans_unreserve_and_mod_dquots(tp);
906 if (tp->t_ticket) {
907 if (regrant && !XLOG_FORCED_SHUTDOWN(mp->m_log))
908 xfs_log_ticket_regrant(mp->m_log, tp->t_ticket);
909 else
910 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
911 tp->t_ticket = NULL;
912 }
913 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
914 xfs_trans_free_items(tp, !!error);
915 xfs_trans_free(tp);
916
917 XFS_STATS_INC(mp, xs_trans_empty);
918 return error;
919}
920
921int
922xfs_trans_commit(
923 struct xfs_trans *tp)
924{
925 return __xfs_trans_commit(tp, false);
926}
927
928/*
929 * Unlock all of the transaction's items and free the transaction.
930 * The transaction must not have modified any of its items, because
931 * there is no way to restore them to their previous state.
932 *
933 * If the transaction has made a log reservation, make sure to release
934 * it as well.
935 */
936void
937xfs_trans_cancel(
938 struct xfs_trans *tp)
939{
940 struct xfs_mount *mp = tp->t_mountp;
941 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY);
942
943 trace_xfs_trans_cancel(tp, _RET_IP_);
944
945 if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
946 xfs_defer_cancel(tp);
947
948 /*
949 * See if the caller is relying on us to shut down the
950 * filesystem. This happens in paths where we detect
951 * corruption and decide to give up.
952 */
953 if (dirty && !XFS_FORCED_SHUTDOWN(mp)) {
954 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
955 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
956 }
957#ifdef DEBUG
958 if (!dirty && !XFS_FORCED_SHUTDOWN(mp)) {
959 struct xfs_log_item *lip;
960
961 list_for_each_entry(lip, &tp->t_items, li_trans)
962 ASSERT(!(lip->li_type == XFS_LI_EFD));
963 }
964#endif
965 xfs_trans_unreserve_and_mod_sb(tp);
966 xfs_trans_unreserve_and_mod_dquots(tp);
967
968 if (tp->t_ticket) {
969 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
970 tp->t_ticket = NULL;
971 }
972
973 /* mark this thread as no longer being in a transaction */
974 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
975
976 xfs_trans_free_items(tp, dirty);
977 xfs_trans_free(tp);
978}
979
980/*
981 * Roll from one trans in the sequence of PERMANENT transactions to
982 * the next: permanent transactions are only flushed out when
983 * committed with xfs_trans_commit(), but we still want as soon
984 * as possible to let chunks of it go to the log. So we commit the
985 * chunk we've been working on and get a new transaction to continue.
986 */
987int
988xfs_trans_roll(
989 struct xfs_trans **tpp)
990{
991 struct xfs_trans *trans = *tpp;
992 struct xfs_trans_res tres;
993 int error;
994
995 trace_xfs_trans_roll(trans, _RET_IP_);
996
997 /*
998 * Copy the critical parameters from one trans to the next.
999 */
1000 tres.tr_logres = trans->t_log_res;
1001 tres.tr_logcount = trans->t_log_count;
1002
1003 *tpp = xfs_trans_dup(trans);
1004
1005 /*
1006 * Commit the current transaction.
1007 * If this commit failed, then it'd just unlock those items that
1008 * are not marked ihold. That also means that a filesystem shutdown
1009 * is in progress. The caller takes the responsibility to cancel
1010 * the duplicate transaction that gets returned.
1011 */
1012 error = __xfs_trans_commit(trans, true);
1013 if (error)
1014 return error;
1015
1016 /*
1017 * Reserve space in the log for the next transaction.
1018 * This also pushes items in the "AIL", the list of logged items,
1019 * out to disk if they are taking up space at the tail of the log
1020 * that we want to use. This requires that either nothing be locked
1021 * across this call, or that anything that is locked be logged in
1022 * the prior and the next transactions.
1023 */
1024 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1025 return xfs_trans_reserve(*tpp, &tres, 0, 0);
1026}