Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_types.h"
 21#include "xfs_log.h"
 22#include "xfs_trans.h"
 23#include "xfs_sb.h"
 24#include "xfs_ag.h"
 25#include "xfs_mount.h"
 26#include "xfs_trans_priv.h"
 27#include "xfs_bmap_btree.h"
 28#include "xfs_dinode.h"
 29#include "xfs_inode.h"
 
 30#include "xfs_inode_item.h"
 31#include "xfs_error.h"
 32#include "xfs_trace.h"
 
 
 
 
 
 
 33
 
 34
 35kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
 36
 37static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
 38{
 39	return container_of(lip, struct xfs_inode_log_item, ili_item);
 40}
 41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 42
 43/*
 44 * This returns the number of iovecs needed to log the given inode item.
 
 
 
 45 *
 46 * We need one iovec for the inode log format structure, one for the
 47 * inode core, and possibly one for the inode data/extents/b-tree root
 48 * and one for the inode attribute data/extents/b-tree root.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49 */
 50STATIC uint
 51xfs_inode_item_size(
 
 52	struct xfs_log_item	*lip)
 53{
 54	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 55	struct xfs_inode	*ip = iip->ili_inode;
 56	uint			nvecs = 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 57
 58	switch (ip->i_d.di_format) {
 59	case XFS_DINODE_FMT_EXTENTS:
 60		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 61		    ip->i_d.di_nextents > 0 &&
 62		    ip->i_df.if_bytes > 0)
 63			nvecs++;
 
 
 
 64		break;
 65
 66	case XFS_DINODE_FMT_BTREE:
 67		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 68		    ip->i_df.if_broot_bytes > 0)
 69			nvecs++;
 
 
 70		break;
 71
 72	case XFS_DINODE_FMT_LOCAL:
 73		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 74		    ip->i_df.if_bytes > 0)
 75			nvecs++;
 
 
 76		break;
 77
 78	case XFS_DINODE_FMT_DEV:
 79	case XFS_DINODE_FMT_UUID:
 80		break;
 81
 82	default:
 83		ASSERT(0);
 84		break;
 85	}
 
 86
 87	if (!XFS_IFORK_Q(ip))
 88		return nvecs;
 89
 
 
 
 
 90
 91	/*
 92	 * Log any necessary attribute data.
 93	 */
 94	switch (ip->i_d.di_aformat) {
 95	case XFS_DINODE_FMT_EXTENTS:
 96		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 97		    ip->i_d.di_anextents > 0 &&
 98		    ip->i_afp->if_bytes > 0)
 99			nvecs++;
 
 
 
100		break;
101
102	case XFS_DINODE_FMT_BTREE:
103		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
104		    ip->i_afp->if_broot_bytes > 0)
105			nvecs++;
 
 
106		break;
107
108	case XFS_DINODE_FMT_LOCAL:
109		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
110		    ip->i_afp->if_bytes > 0)
111			nvecs++;
 
 
112		break;
113
114	default:
115		ASSERT(0);
116		break;
117	}
118
119	return nvecs;
120}
121
122/*
123 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
124 *
125 * For either the data or attr fork in extent format, we need to endian convert
126 * the in-core extent as we place them into the on-disk inode. In this case, we
127 * need to do this conversion before we write the extents into the log. Because
128 * we don't have the disk inode to write into here, we allocate a buffer and
129 * format the extents into it via xfs_iextents_copy(). We free the buffer in
130 * the unlock routine after the copy for the log has been made.
131 *
132 * In the case of the data fork, the in-core and on-disk fork sizes can be
133 * different due to delayed allocation extents. We only log on-disk extents
134 * here, so always use the physical fork size to determine the size of the
135 * buffer we need to allocate.
136 */
137STATIC void
138xfs_inode_item_format_extents(
139	struct xfs_inode	*ip,
140	struct xfs_log_iovec	*vecp,
141	int			whichfork,
142	int			type)
143{
144	xfs_bmbt_rec_t		*ext_buffer;
145
146	ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
147	if (whichfork == XFS_DATA_FORK)
148		ip->i_itemp->ili_extents_buf = ext_buffer;
149	else
150		ip->i_itemp->ili_aextents_buf = ext_buffer;
151
152	vecp->i_addr = ext_buffer;
153	vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
154	vecp->i_type = type;
 
 
 
 
155}
156
157/*
158 * This is called to fill in the vector of log iovecs for the
159 * given inode log item.  It fills the first item with an inode
160 * log format structure, the second with the on-disk inode structure,
161 * and a possible third and/or fourth with the inode data/extents/b-tree
162 * root and inode attributes data/extents/b-tree root.
163 */
164STATIC void
165xfs_inode_item_format(
166	struct xfs_log_item	*lip,
167	struct xfs_log_iovec	*vecp)
 
 
168{
169	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
170	struct xfs_inode	*ip = iip->ili_inode;
171	uint			nvecs;
172	size_t			data_bytes;
173	xfs_mount_t		*mp;
174
175	vecp->i_addr = &iip->ili_format;
176	vecp->i_len  = sizeof(xfs_inode_log_format_t);
177	vecp->i_type = XLOG_REG_TYPE_IFORMAT;
178	vecp++;
179	nvecs	     = 1;
180
181	vecp->i_addr = &ip->i_d;
182	vecp->i_len  = sizeof(struct xfs_icdinode);
183	vecp->i_type = XLOG_REG_TYPE_ICORE;
184	vecp++;
185	nvecs++;
186
187	/*
188	 * If this is really an old format inode, then we need to
189	 * log it as such.  This means that we have to copy the link
190	 * count from the new field to the old.  We don't have to worry
191	 * about the new fields, because nothing trusts them as long as
192	 * the old inode version number is there.  If the superblock already
193	 * has a new version number, then we don't bother converting back.
194	 */
195	mp = ip->i_mount;
196	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
197	if (ip->i_d.di_version == 1) {
198		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
199			/*
200			 * Convert it back.
201			 */
202			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
203			ip->i_d.di_onlink = ip->i_d.di_nlink;
204		} else {
205			/*
206			 * The superblock version has already been bumped,
207			 * so just make the conversion to the new inode
208			 * format permanent.
209			 */
210			ip->i_d.di_version = 2;
211			ip->i_d.di_onlink = 0;
212			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
213		}
214	}
215
216	switch (ip->i_d.di_format) {
217	case XFS_DINODE_FMT_EXTENTS:
218		iip->ili_fields &=
219			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
220			  XFS_ILOG_DEV | XFS_ILOG_UUID);
221
222		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
223		    ip->i_d.di_nextents > 0 &&
224		    ip->i_df.if_bytes > 0) {
225			ASSERT(ip->i_df.if_u1.if_extents != NULL);
226			ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
227			ASSERT(iip->ili_extents_buf == NULL);
228
229#ifdef XFS_NATIVE_HOST
230                       if (ip->i_d.di_nextents == ip->i_df.if_bytes /
231                                               (uint)sizeof(xfs_bmbt_rec_t)) {
232				/*
233				 * There are no delayed allocation
234				 * extents, so just point to the
235				 * real extents array.
236				 */
237				vecp->i_addr = ip->i_df.if_u1.if_extents;
238				vecp->i_len = ip->i_df.if_bytes;
239				vecp->i_type = XLOG_REG_TYPE_IEXT;
240			} else
241#endif
242			{
243				xfs_inode_item_format_extents(ip, vecp,
244					XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
245			}
246			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
247			iip->ili_format.ilf_dsize = vecp->i_len;
248			vecp++;
249			nvecs++;
250		} else {
251			iip->ili_fields &= ~XFS_ILOG_DEXT;
252		}
253		break;
254
255	case XFS_DINODE_FMT_BTREE:
256		iip->ili_fields &=
257			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
258			  XFS_ILOG_DEV | XFS_ILOG_UUID);
259
260		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
261		    ip->i_df.if_broot_bytes > 0) {
262			ASSERT(ip->i_df.if_broot != NULL);
263			vecp->i_addr = ip->i_df.if_broot;
264			vecp->i_len = ip->i_df.if_broot_bytes;
265			vecp->i_type = XLOG_REG_TYPE_IBROOT;
266			vecp++;
267			nvecs++;
268			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
269		} else {
270			ASSERT(!(iip->ili_fields &
271				 XFS_ILOG_DBROOT));
272#ifdef XFS_TRANS_DEBUG
273			if (iip->ili_root_size > 0) {
274				ASSERT(iip->ili_root_size ==
275				       ip->i_df.if_broot_bytes);
276				ASSERT(memcmp(iip->ili_orig_root,
277					    ip->i_df.if_broot,
278					    iip->ili_root_size) == 0);
279			} else {
280				ASSERT(ip->i_df.if_broot_bytes == 0);
281			}
282#endif
283			iip->ili_fields &= ~XFS_ILOG_DBROOT;
284		}
285		break;
286
287	case XFS_DINODE_FMT_LOCAL:
288		iip->ili_fields &=
289			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
290			  XFS_ILOG_DEV | XFS_ILOG_UUID);
291		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
292		    ip->i_df.if_bytes > 0) {
293			ASSERT(ip->i_df.if_u1.if_data != NULL);
294			ASSERT(ip->i_d.di_size > 0);
295
296			vecp->i_addr = ip->i_df.if_u1.if_data;
297			/*
298			 * Round i_bytes up to a word boundary.
299			 * The underlying memory is guaranteed to
300			 * to be there by xfs_idata_realloc().
301			 */
302			data_bytes = roundup(ip->i_df.if_bytes, 4);
303			ASSERT((ip->i_df.if_real_bytes == 0) ||
304			       (ip->i_df.if_real_bytes == data_bytes));
305			vecp->i_len = (int)data_bytes;
306			vecp->i_type = XLOG_REG_TYPE_ILOCAL;
307			vecp++;
308			nvecs++;
309			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
310		} else {
311			iip->ili_fields &= ~XFS_ILOG_DDATA;
312		}
313		break;
314
315	case XFS_DINODE_FMT_DEV:
316		iip->ili_fields &=
317			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
318			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
319		if (iip->ili_fields & XFS_ILOG_DEV) {
320			iip->ili_format.ilf_u.ilfu_rdev =
321				ip->i_df.if_u2.if_rdev;
322		}
323		break;
324
325	case XFS_DINODE_FMT_UUID:
326		iip->ili_fields &=
327			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
328			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
329		if (iip->ili_fields & XFS_ILOG_UUID) {
330			iip->ili_format.ilf_u.ilfu_uuid =
331				ip->i_df.if_u2.if_uuid;
332		}
333		break;
334
335	default:
336		ASSERT(0);
337		break;
338	}
 
339
340	/*
341	 * If there are no attributes associated with the file, then we're done.
342	 */
343	if (!XFS_IFORK_Q(ip)) {
344		iip->ili_fields &=
345			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
346		goto out;
347	}
 
348
349	switch (ip->i_d.di_aformat) {
350	case XFS_DINODE_FMT_EXTENTS:
351		iip->ili_fields &=
352			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
353
354		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
355		    ip->i_d.di_anextents > 0 &&
356		    ip->i_afp->if_bytes > 0) {
357			ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
358				ip->i_d.di_anextents);
359			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
360#ifdef XFS_NATIVE_HOST
361			/*
362			 * There are not delayed allocation extents
363			 * for attributes, so just point at the array.
364			 */
365			vecp->i_addr = ip->i_afp->if_u1.if_extents;
366			vecp->i_len = ip->i_afp->if_bytes;
367			vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
368#else
369			ASSERT(iip->ili_aextents_buf == NULL);
370			xfs_inode_item_format_extents(ip, vecp,
371					XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
372#endif
373			iip->ili_format.ilf_asize = vecp->i_len;
374			vecp++;
375			nvecs++;
376		} else {
377			iip->ili_fields &= ~XFS_ILOG_AEXT;
378		}
379		break;
380
381	case XFS_DINODE_FMT_BTREE:
382		iip->ili_fields &=
383			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
384
385		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
386		    ip->i_afp->if_broot_bytes > 0) {
387			ASSERT(ip->i_afp->if_broot != NULL);
388
389			vecp->i_addr = ip->i_afp->if_broot;
390			vecp->i_len = ip->i_afp->if_broot_bytes;
391			vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
392			vecp++;
393			nvecs++;
394			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
395		} else {
396			iip->ili_fields &= ~XFS_ILOG_ABROOT;
397		}
398		break;
399
400	case XFS_DINODE_FMT_LOCAL:
401		iip->ili_fields &=
402			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
403
404		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
405		    ip->i_afp->if_bytes > 0) {
406			ASSERT(ip->i_afp->if_u1.if_data != NULL);
407
408			vecp->i_addr = ip->i_afp->if_u1.if_data;
409			/*
410			 * Round i_bytes up to a word boundary.
411			 * The underlying memory is guaranteed to
412			 * to be there by xfs_idata_realloc().
413			 */
414			data_bytes = roundup(ip->i_afp->if_bytes, 4);
415			ASSERT((ip->i_afp->if_real_bytes == 0) ||
416			       (ip->i_afp->if_real_bytes == data_bytes));
417			vecp->i_len = (int)data_bytes;
418			vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
419			vecp++;
420			nvecs++;
421			iip->ili_format.ilf_asize = (unsigned)data_bytes;
422		} else {
423			iip->ili_fields &= ~XFS_ILOG_ADATA;
424		}
425		break;
426
427	default:
428		ASSERT(0);
429		break;
430	}
 
431
432out:
433	/*
434	 * Now update the log format that goes out to disk from the in-core
435	 * values.  We always write the inode core to make the arithmetic
436	 * games in recovery easier, which isn't a big deal as just about any
437	 * transaction would dirty it anyway.
438	 */
439	iip->ili_format.ilf_fields = XFS_ILOG_CORE |
440		(iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
441	iip->ili_format.ilf_size = nvecs;
 
 
 
 
 
 
 
 
 
 
442}
443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444
445/*
446 * This is called to pin the inode associated with the inode log
447 * item in memory so it cannot be written out.
448 */
449STATIC void
450xfs_inode_item_pin(
451	struct xfs_log_item	*lip)
452{
453	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
454
455	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 
456
457	trace_xfs_inode_pin(ip, _RET_IP_);
458	atomic_inc(&ip->i_pincount);
459}
460
461
462/*
463 * This is called to unpin the inode associated with the inode log
464 * item which was previously pinned with a call to xfs_inode_item_pin().
465 *
466 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 
 
 
 
 
 
467 */
468STATIC void
469xfs_inode_item_unpin(
470	struct xfs_log_item	*lip,
471	int			remove)
472{
473	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
474
475	trace_xfs_inode_unpin(ip, _RET_IP_);
 
476	ASSERT(atomic_read(&ip->i_pincount) > 0);
477	if (atomic_dec_and_test(&ip->i_pincount))
478		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
479}
480
481STATIC uint
482xfs_inode_item_push(
483	struct xfs_log_item	*lip,
484	struct list_head	*buffer_list)
 
 
485{
486	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
487	struct xfs_inode	*ip = iip->ili_inode;
488	struct xfs_buf		*bp = NULL;
489	uint			rval = XFS_ITEM_SUCCESS;
490	int			error;
491
492	if (xfs_ipincount(ip) > 0)
 
 
 
 
 
 
493		return XFS_ITEM_PINNED;
494
495	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
496		return XFS_ITEM_LOCKED;
497
498	/*
499	 * Re-check the pincount now that we stabilized the value by
500	 * taking the ilock.
501	 */
502	if (xfs_ipincount(ip) > 0) {
503		rval = XFS_ITEM_PINNED;
504		goto out_unlock;
505	}
506
507	/*
508	 * Stale inode items should force out the iclog.
509	 */
510	if (ip->i_flags & XFS_ISTALE) {
511		rval = XFS_ITEM_PINNED;
512		goto out_unlock;
513	}
514
515	/*
516	 * Someone else is already flushing the inode.  Nothing we can do
517	 * here but wait for the flush to finish and remove the item from
518	 * the AIL.
519	 */
520	if (!xfs_iflock_nowait(ip)) {
521		rval = XFS_ITEM_FLUSHING;
522		goto out_unlock;
523	}
524
525	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
526	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
527
528	spin_unlock(&lip->li_ailp->xa_lock);
529
530	error = xfs_iflush(ip, &bp);
 
 
 
 
 
 
 
531	if (!error) {
532		if (!xfs_buf_delwri_queue(bp, buffer_list))
533			rval = XFS_ITEM_FLUSHING;
534		xfs_buf_relse(bp);
 
 
 
 
 
 
 
 
535	}
536
537	spin_lock(&lip->li_ailp->xa_lock);
538out_unlock:
539	xfs_iunlock(ip, XFS_ILOCK_SHARED);
540	return rval;
541}
542
543/*
544 * Unlock the inode associated with the inode log item.
545 * Clear the fields of the inode and inode log item that
546 * are specific to the current transaction.  If the
547 * hold flags is set, do not unlock the inode.
548 */
549STATIC void
550xfs_inode_item_unlock(
551	struct xfs_log_item	*lip)
552{
553	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
554	struct xfs_inode	*ip = iip->ili_inode;
555	unsigned short		lock_flags;
556
557	ASSERT(ip->i_itemp != NULL);
558	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
559
560	/*
561	 * If the inode needed a separate buffer with which to log
562	 * its extents, then free it now.
563	 */
564	if (iip->ili_extents_buf != NULL) {
565		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
566		ASSERT(ip->i_d.di_nextents > 0);
567		ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
568		ASSERT(ip->i_df.if_bytes > 0);
569		kmem_free(iip->ili_extents_buf);
570		iip->ili_extents_buf = NULL;
571	}
572	if (iip->ili_aextents_buf != NULL) {
573		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
574		ASSERT(ip->i_d.di_anextents > 0);
575		ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
576		ASSERT(ip->i_afp->if_bytes > 0);
577		kmem_free(iip->ili_aextents_buf);
578		iip->ili_aextents_buf = NULL;
579	}
580
581	lock_flags = iip->ili_lock_flags;
582	iip->ili_lock_flags = 0;
583	if (lock_flags)
584		xfs_iunlock(ip, lock_flags);
585}
586
587/*
588 * This is called to find out where the oldest active copy of the inode log
589 * item in the on disk log resides now that the last log write of it completed
590 * at the given lsn.  Since we always re-log all dirty data in an inode, the
591 * latest copy in the on disk log is the only one that matters.  Therefore,
592 * simply return the given lsn.
593 *
594 * If the inode has been marked stale because the cluster is being freed, we
595 * don't want to (re-)insert this inode into the AIL. There is a race condition
596 * where the cluster buffer may be unpinned before the inode is inserted into
597 * the AIL during transaction committed processing. If the buffer is unpinned
598 * before the inode item has been committed and inserted, then it is possible
599 * for the buffer to be written and IO completes before the inode is inserted
600 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
601 * AIL which will never get removed. It will, however, get reclaimed which
602 * triggers an assert in xfs_inode_free() complaining about freein an inode
603 * still in the AIL.
604 *
605 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
606 * transaction committed code knows that it does not need to do any further
607 * processing on the item.
608 */
609STATIC xfs_lsn_t
610xfs_inode_item_committed(
611	struct xfs_log_item	*lip,
612	xfs_lsn_t		lsn)
613{
614	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
615	struct xfs_inode	*ip = iip->ili_inode;
616
617	if (xfs_iflags_test(ip, XFS_ISTALE)) {
618		xfs_inode_item_unpin(lip, 0);
619		return -1;
620	}
621	return lsn;
622}
623
624/*
625 * XXX rcc - this one really has to do something.  Probably needs
626 * to stamp in a new field in the incore inode.
627 */
628STATIC void
629xfs_inode_item_committing(
630	struct xfs_log_item	*lip,
631	xfs_lsn_t		lsn)
632{
633	INODE_ITEM(lip)->ili_last_lsn = lsn;
 
634}
635
636/*
637 * This is the ops vector shared by all buf log items.
638 */
639static const struct xfs_item_ops xfs_inode_item_ops = {
 
 
640	.iop_size	= xfs_inode_item_size,
641	.iop_format	= xfs_inode_item_format,
642	.iop_pin	= xfs_inode_item_pin,
643	.iop_unpin	= xfs_inode_item_unpin,
644	.iop_unlock	= xfs_inode_item_unlock,
645	.iop_committed	= xfs_inode_item_committed,
646	.iop_push	= xfs_inode_item_push,
647	.iop_committing = xfs_inode_item_committing
648};
649
650
651/*
652 * Initialize the inode log item for a newly allocated (in-core) inode.
653 */
654void
655xfs_inode_item_init(
656	struct xfs_inode	*ip,
657	struct xfs_mount	*mp)
658{
659	struct xfs_inode_log_item *iip;
660
661	ASSERT(ip->i_itemp == NULL);
662	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
 
663
664	iip->ili_inode = ip;
 
665	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
666						&xfs_inode_item_ops);
667	iip->ili_format.ilf_type = XFS_LI_INODE;
668	iip->ili_format.ilf_ino = ip->i_ino;
669	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
670	iip->ili_format.ilf_len = ip->i_imap.im_len;
671	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
672}
673
674/*
675 * Free the inode log item and any memory hanging off of it.
676 */
677void
678xfs_inode_item_destroy(
679	xfs_inode_t	*ip)
680{
681#ifdef XFS_TRANS_DEBUG
682	if (ip->i_itemp->ili_root_size != 0) {
683		kmem_free(ip->i_itemp->ili_orig_root);
684	}
685#endif
686	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
 
687}
688
689
690/*
691 * This is the inode flushing I/O completion routine.  It is called
692 * from interrupt level when the buffer containing the inode is
693 * flushed to disk.  It is responsible for removing the inode item
694 * from the AIL if it has not been re-logged, and unlocking the inode's
695 * flush lock.
696 *
697 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
698 * list for other inodes that will run this function. We remove them from the
699 * buffer list so we can process all the inode IO completions in one AIL lock
700 * traversal.
701 */
702void
703xfs_iflush_done(
704	struct xfs_buf		*bp,
705	struct xfs_log_item	*lip)
706{
707	struct xfs_inode_log_item *iip;
708	struct xfs_log_item	*blip;
709	struct xfs_log_item	*next;
710	struct xfs_log_item	*prev;
711	struct xfs_ail		*ailp = lip->li_ailp;
712	int			need_ail = 0;
713
714	/*
715	 * Scan the buffer IO completions for other inodes being completed and
716	 * attach them to the current inode log item.
717	 */
718	blip = bp->b_fspriv;
719	prev = NULL;
720	while (blip != NULL) {
721		if (lip->li_cb != xfs_iflush_done) {
722			prev = blip;
723			blip = blip->li_bio_list;
724			continue;
725		}
726
727		/* remove from list */
728		next = blip->li_bio_list;
729		if (!prev) {
730			bp->b_fspriv = next;
731		} else {
732			prev->li_bio_list = next;
 
 
 
733		}
734
735		/* add to current list */
736		blip->li_bio_list = lip->li_bio_list;
737		lip->li_bio_list = blip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
738
739		/*
740		 * while we have the item, do the unlocked check for needing
741		 * the AIL lock.
 
742		 */
743		iip = INODE_ITEM(blip);
744		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
745			need_ail++;
746
747		blip = next;
 
 
 
 
 
 
 
 
748	}
 
749
750	/* make sure we capture the state of the initial inode. */
751	iip = INODE_ITEM(lip);
752	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
753		need_ail++;
 
 
 
 
 
 
 
 
754
755	/*
756	 * We only want to pull the item from the AIL if it is
757	 * actually there and its location in the log has not
758	 * changed since we started the flush.  Thus, we only bother
759	 * if the ili_logged flag is set and the inode's lsn has not
760	 * changed.  First we check the lsn outside
761	 * the lock since it's cheaper, and then we recheck while
762	 * holding the lock before removing the inode from the AIL.
763	 */
764	if (need_ail) {
765		struct xfs_log_item *log_items[need_ail];
766		int i = 0;
767		spin_lock(&ailp->xa_lock);
768		for (blip = lip; blip; blip = blip->li_bio_list) {
769			iip = INODE_ITEM(blip);
770			if (iip->ili_logged &&
771			    blip->li_lsn == iip->ili_flush_lsn) {
772				log_items[i++] = blip;
773			}
774			ASSERT(i <= need_ail);
775		}
776		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
777		xfs_trans_ail_delete_bulk(ailp, log_items, i,
778					  SHUTDOWN_CORRUPT_INCORE);
 
 
 
 
 
 
779	}
780
 
 
 
 
781
782	/*
783	 * clean up and unlock the flush lock now we are done. We can clear the
784	 * ili_last_fields bits now that we know that the data corresponding to
785	 * them is safely on disk.
786	 */
787	for (blip = lip; blip; blip = next) {
788		next = blip->li_bio_list;
789		blip->li_bio_list = NULL;
790
791		iip = INODE_ITEM(blip);
792		iip->ili_logged = 0;
793		iip->ili_last_fields = 0;
794		xfs_ifunlock(iip->ili_inode);
 
 
 
 
 
795	}
796}
797
798/*
799 * This is the inode flushing abort routine.  It is called from xfs_iflush when
800 * the filesystem is shutting down to clean up the inode state.  It is
801 * responsible for removing the inode item from the AIL if it has not been
802 * re-logged, and unlocking the inode's flush lock.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
803 */
804void
805xfs_iflush_abort(
806	xfs_inode_t		*ip,
807	bool			stale)
808{
809	xfs_inode_log_item_t	*iip = ip->i_itemp;
 
810
811	if (iip) {
812		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
813		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
814			spin_lock(&ailp->xa_lock);
815			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
816				/* xfs_trans_ail_delete() drops the AIL lock. */
817				xfs_trans_ail_delete(ailp, &iip->ili_item,
818						stale ?
819						     SHUTDOWN_LOG_IO_ERROR :
820						     SHUTDOWN_CORRUPT_INCORE);
821			} else
822				spin_unlock(&ailp->xa_lock);
823		}
824		iip->ili_logged = 0;
825		/*
826		 * Clear the ili_last_fields bits now that we know that the
827		 * data corresponding to them is safely on disk.
828		 */
829		iip->ili_last_fields = 0;
830		/*
831		 * Clear the inode logging fields so no more flushes are
832		 * attempted.
833		 */
834		iip->ili_fields = 0;
835	}
 
836	/*
837	 * Release the inode's flush lock since we're done with it.
 
 
 
 
 
 
 
 
838	 */
839	xfs_ifunlock(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
840}
841
 
 
 
 
 
 
842void
843xfs_istale_done(
844	struct xfs_buf		*bp,
845	struct xfs_log_item	*lip)
846{
847	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848}
849
 
850/*
851 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
852 * (which can have different field alignments) to the native version
853 */
854int
855xfs_inode_item_format_convert(
856	xfs_log_iovec_t		*buf,
857	xfs_inode_log_format_t	*in_f)
858{
859	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
860		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
861
862		in_f->ilf_type = in_f32->ilf_type;
863		in_f->ilf_size = in_f32->ilf_size;
864		in_f->ilf_fields = in_f32->ilf_fields;
865		in_f->ilf_asize = in_f32->ilf_asize;
866		in_f->ilf_dsize = in_f32->ilf_dsize;
867		in_f->ilf_ino = in_f32->ilf_ino;
868		/* copy biggest field of ilf_u */
869		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
870		       in_f32->ilf_u.ilfu_uuid.__u_bits,
871		       sizeof(uuid_t));
872		in_f->ilf_blkno = in_f32->ilf_blkno;
873		in_f->ilf_len = in_f32->ilf_len;
874		in_f->ilf_boffset = in_f32->ilf_boffset;
875		return 0;
876	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
877		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
878
879		in_f->ilf_type = in_f64->ilf_type;
880		in_f->ilf_size = in_f64->ilf_size;
881		in_f->ilf_fields = in_f64->ilf_fields;
882		in_f->ilf_asize = in_f64->ilf_asize;
883		in_f->ilf_dsize = in_f64->ilf_dsize;
884		in_f->ilf_ino = in_f64->ilf_ino;
885		/* copy biggest field of ilf_u */
886		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
887		       in_f64->ilf_u.ilfu_uuid.__u_bits,
888		       sizeof(uuid_t));
889		in_f->ilf_blkno = in_f64->ilf_blkno;
890		in_f->ilf_len = in_f64->ilf_len;
891		in_f->ilf_boffset = in_f64->ilf_boffset;
892		return 0;
893	}
894	return EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 
 
895}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
 
  12#include "xfs_mount.h"
 
 
 
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_inode_item.h"
 
  16#include "xfs_trace.h"
  17#include "xfs_trans_priv.h"
  18#include "xfs_buf_item.h"
  19#include "xfs_log.h"
  20#include "xfs_log_priv.h"
  21#include "xfs_error.h"
  22#include "xfs_rtbitmap.h"
  23
  24#include <linux/iversion.h>
  25
  26struct kmem_cache	*xfs_ili_cache;		/* inode log item */
  27
  28static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
  29{
  30	return container_of(lip, struct xfs_inode_log_item, ili_item);
  31}
  32
  33static uint64_t
  34xfs_inode_item_sort(
  35	struct xfs_log_item	*lip)
  36{
  37	return INODE_ITEM(lip)->ili_inode->i_ino;
  38}
  39
  40#ifdef DEBUG_EXPENSIVE
  41static void
  42xfs_inode_item_precommit_check(
  43	struct xfs_inode	*ip)
  44{
  45	struct xfs_mount	*mp = ip->i_mount;
  46	struct xfs_dinode	*dip;
  47	xfs_failaddr_t		fa;
  48
  49	dip = kzalloc(mp->m_sb.sb_inodesize, GFP_KERNEL | GFP_NOFS);
  50	if (!dip) {
  51		ASSERT(dip != NULL);
  52		return;
  53	}
  54
  55	xfs_inode_to_disk(ip, dip, 0);
  56	xfs_dinode_calc_crc(mp, dip);
  57	fa = xfs_dinode_verify(mp, ip->i_ino, dip);
  58	if (fa) {
  59		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
  60				sizeof(*dip), fa);
  61		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  62		ASSERT(fa == NULL);
  63	}
  64	kfree(dip);
  65}
  66#else
  67# define xfs_inode_item_precommit_check(ip)	((void)0)
  68#endif
  69
  70/*
  71 * Prior to finally logging the inode, we have to ensure that all the
  72 * per-modification inode state changes are applied. This includes VFS inode
  73 * state updates, format conversions, verifier state synchronisation and
  74 * ensuring the inode buffer remains in memory whilst the inode is dirty.
  75 *
  76 * We have to be careful when we grab the inode cluster buffer due to lock
  77 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
  78 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
  79 * not locked until ->precommit, so it happens after everything else has been
  80 * modified.
  81 *
  82 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
  83 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
  84 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
  85 * it can be called on a inode (e.g. via bumplink/droplink) before we take the
  86 * AGF lock modifying directory blocks.
  87 *
  88 * Rather than force a complete rework of all the transactions to call
  89 * xfs_trans_log_inode() once and once only at the end of every transaction, we
  90 * move the pinning of the inode cluster buffer to a ->precommit operation. This
  91 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
  92 * ensures that the inode cluster buffer locking is always done last in a
  93 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
  94 * cluster buffer.
  95 *
  96 * If we return the inode number as the precommit sort key then we'll also
  97 * guarantee that the order all inode cluster buffer locking is the same all the
  98 * inodes and unlink items in the transaction.
  99 */
 100static int
 101xfs_inode_item_precommit(
 102	struct xfs_trans	*tp,
 103	struct xfs_log_item	*lip)
 104{
 105	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 106	struct xfs_inode	*ip = iip->ili_inode;
 107	struct inode		*inode = VFS_I(ip);
 108	unsigned int		flags = iip->ili_dirty_flags;
 109
 110	/*
 111	 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
 112	 * don't matter - we either will need an extra transaction in 24 hours
 113	 * to log the timestamps, or will clear already cleared fields in the
 114	 * worst case.
 115	 */
 116	if (inode->i_state & I_DIRTY_TIME) {
 117		spin_lock(&inode->i_lock);
 118		inode->i_state &= ~I_DIRTY_TIME;
 119		spin_unlock(&inode->i_lock);
 120	}
 121
 122	/*
 123	 * If we're updating the inode core or the timestamps and it's possible
 124	 * to upgrade this inode to bigtime format, do so now.
 125	 */
 126	if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
 127	    xfs_has_bigtime(ip->i_mount) &&
 128	    !xfs_inode_has_bigtime(ip)) {
 129		ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
 130		flags |= XFS_ILOG_CORE;
 131	}
 132
 133	/*
 134	 * Inode verifiers do not check that the extent size hint is an integer
 135	 * multiple of the rt extent size on a directory with both rtinherit
 136	 * and extszinherit flags set.  If we're logging a directory that is
 137	 * misconfigured in this way, clear the hint.
 138	 */
 139	if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
 140	    (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
 141	    xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) {
 142		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
 143				   XFS_DIFLAG_EXTSZINHERIT);
 144		ip->i_extsize = 0;
 145		flags |= XFS_ILOG_CORE;
 146	}
 147
 148	/*
 149	 * Record the specific change for fdatasync optimisation. This allows
 150	 * fdatasync to skip log forces for inodes that are only timestamp
 151	 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
 152	 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
 153	 * (ili_fields) correctly tracks that the version has changed.
 154	 */
 155	spin_lock(&iip->ili_lock);
 156	iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
 157	if (flags & XFS_ILOG_IVERSION)
 158		flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
 159
 160	if (!iip->ili_item.li_buf) {
 161		struct xfs_buf	*bp;
 162		int		error;
 163
 164		/*
 165		 * We hold the ILOCK here, so this inode is not going to be
 166		 * flushed while we are here. Further, because there is no
 167		 * buffer attached to the item, we know that there is no IO in
 168		 * progress, so nothing will clear the ili_fields while we read
 169		 * in the buffer. Hence we can safely drop the spin lock and
 170		 * read the buffer knowing that the state will not change from
 171		 * here.
 172		 */
 173		spin_unlock(&iip->ili_lock);
 174		error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
 175		if (error)
 176			return error;
 177
 178		/*
 179		 * We need an explicit buffer reference for the log item but
 180		 * don't want the buffer to remain attached to the transaction.
 181		 * Hold the buffer but release the transaction reference once
 182		 * we've attached the inode log item to the buffer log item
 183		 * list.
 184		 */
 185		xfs_buf_hold(bp);
 186		spin_lock(&iip->ili_lock);
 187		iip->ili_item.li_buf = bp;
 188		bp->b_flags |= _XBF_INODES;
 189		list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
 190		xfs_trans_brelse(tp, bp);
 191	}
 192
 193	/*
 194	 * Always OR in the bits from the ili_last_fields field.  This is to
 195	 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
 196	 * in the eventual clearing of the ili_fields bits.  See the big comment
 197	 * in xfs_iflush() for an explanation of this coordination mechanism.
 198	 */
 199	iip->ili_fields |= (flags | iip->ili_last_fields);
 200	spin_unlock(&iip->ili_lock);
 201
 202	xfs_inode_item_precommit_check(ip);
 203
 204	/*
 205	 * We are done with the log item transaction dirty state, so clear it so
 206	 * that it doesn't pollute future transactions.
 207	 */
 208	iip->ili_dirty_flags = 0;
 209	return 0;
 210}
 211
 212/*
 213 * The logged size of an inode fork is always the current size of the inode
 214 * fork. This means that when an inode fork is relogged, the size of the logged
 215 * region is determined by the current state, not the combination of the
 216 * previously logged state + the current state. This is different relogging
 217 * behaviour to most other log items which will retain the size of the
 218 * previously logged changes when smaller regions are relogged.
 219 *
 220 * Hence operations that remove data from the inode fork (e.g. shortform
 221 * dir/attr remove, extent form extent removal, etc), the size of the relogged
 222 * inode gets -smaller- rather than stays the same size as the previously logged
 223 * size and this can result in the committing transaction reducing the amount of
 224 * space being consumed by the CIL.
 225 */
 226STATIC void
 227xfs_inode_item_data_fork_size(
 228	struct xfs_inode_log_item *iip,
 229	int			*nvecs,
 230	int			*nbytes)
 231{
 232	struct xfs_inode	*ip = iip->ili_inode;
 233
 234	switch (ip->i_df.if_format) {
 235	case XFS_DINODE_FMT_EXTENTS:
 236		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 237		    ip->i_df.if_nextents > 0 &&
 238		    ip->i_df.if_bytes > 0) {
 239			/* worst case, doesn't subtract delalloc extents */
 240			*nbytes += xfs_inode_data_fork_size(ip);
 241			*nvecs += 1;
 242		}
 243		break;
 
 244	case XFS_DINODE_FMT_BTREE:
 245		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 246		    ip->i_df.if_broot_bytes > 0) {
 247			*nbytes += ip->i_df.if_broot_bytes;
 248			*nvecs += 1;
 249		}
 250		break;
 
 251	case XFS_DINODE_FMT_LOCAL:
 252		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 253		    ip->i_df.if_bytes > 0) {
 254			*nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
 255			*nvecs += 1;
 256		}
 257		break;
 258
 259	case XFS_DINODE_FMT_DEV:
 
 260		break;
 
 261	default:
 262		ASSERT(0);
 263		break;
 264	}
 265}
 266
 267STATIC void
 268xfs_inode_item_attr_fork_size(
 269	struct xfs_inode_log_item *iip,
 270	int			*nvecs,
 271	int			*nbytes)
 272{
 273	struct xfs_inode	*ip = iip->ili_inode;
 274
 275	switch (ip->i_af.if_format) {
 
 
 
 276	case XFS_DINODE_FMT_EXTENTS:
 277		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 278		    ip->i_af.if_nextents > 0 &&
 279		    ip->i_af.if_bytes > 0) {
 280			/* worst case, doesn't subtract unused space */
 281			*nbytes += xfs_inode_attr_fork_size(ip);
 282			*nvecs += 1;
 283		}
 284		break;
 
 285	case XFS_DINODE_FMT_BTREE:
 286		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 287		    ip->i_af.if_broot_bytes > 0) {
 288			*nbytes += ip->i_af.if_broot_bytes;
 289			*nvecs += 1;
 290		}
 291		break;
 
 292	case XFS_DINODE_FMT_LOCAL:
 293		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 294		    ip->i_af.if_bytes > 0) {
 295			*nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
 296			*nvecs += 1;
 297		}
 298		break;
 
 299	default:
 300		ASSERT(0);
 301		break;
 302	}
 
 
 303}
 304
 305/*
 306 * This returns the number of iovecs needed to log the given inode item.
 
 
 
 
 
 
 
 307 *
 308 * We need one iovec for the inode log format structure, one for the
 309 * inode core, and possibly one for the inode data/extents/b-tree root
 310 * and one for the inode attribute data/extents/b-tree root.
 
 311 */
 312STATIC void
 313xfs_inode_item_size(
 314	struct xfs_log_item	*lip,
 315	int			*nvecs,
 316	int			*nbytes)
 
 317{
 318	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 319	struct xfs_inode	*ip = iip->ili_inode;
 
 
 
 
 
 320
 321	*nvecs += 2;
 322	*nbytes += sizeof(struct xfs_inode_log_format) +
 323		   xfs_log_dinode_size(ip->i_mount);
 324
 325	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
 326	if (xfs_inode_has_attr_fork(ip))
 327		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
 328}
 329
 
 
 
 
 
 
 
 330STATIC void
 331xfs_inode_item_format_data_fork(
 332	struct xfs_inode_log_item *iip,
 333	struct xfs_inode_log_format *ilf,
 334	struct xfs_log_vec	*lv,
 335	struct xfs_log_iovec	**vecp)
 336{
 
 337	struct xfs_inode	*ip = iip->ili_inode;
 
 338	size_t			data_bytes;
 
 339
 340	switch (ip->i_df.if_format) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 341	case XFS_DINODE_FMT_EXTENTS:
 342		iip->ili_fields &=
 343			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 
 344
 345		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 346		    ip->i_df.if_nextents > 0 &&
 347		    ip->i_df.if_bytes > 0) {
 348			struct xfs_bmbt_rec *p;
 349
 350			ASSERT(xfs_iext_count(&ip->i_df) > 0);
 351
 352			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
 353			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
 354			xlog_finish_iovec(lv, *vecp, data_bytes);
 355
 356			ASSERT(data_bytes <= ip->i_df.if_bytes);
 357
 358			ilf->ilf_dsize = data_bytes;
 359			ilf->ilf_size++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 360		} else {
 361			iip->ili_fields &= ~XFS_ILOG_DEXT;
 362		}
 363		break;
 
 364	case XFS_DINODE_FMT_BTREE:
 365		iip->ili_fields &=
 366			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
 
 367
 368		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 369		    ip->i_df.if_broot_bytes > 0) {
 370			ASSERT(ip->i_df.if_broot != NULL);
 371			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
 372					ip->i_df.if_broot,
 373					ip->i_df.if_broot_bytes);
 374			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
 375			ilf->ilf_size++;
 
 376		} else {
 377			ASSERT(!(iip->ili_fields &
 378				 XFS_ILOG_DBROOT));
 
 
 
 
 
 
 
 
 
 
 
 379			iip->ili_fields &= ~XFS_ILOG_DBROOT;
 380		}
 381		break;
 
 382	case XFS_DINODE_FMT_LOCAL:
 383		iip->ili_fields &=
 384			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 
 385		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 386		    ip->i_df.if_bytes > 0) {
 387			ASSERT(ip->i_df.if_data != NULL);
 388			ASSERT(ip->i_disk_size > 0);
 389			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
 390					ip->i_df.if_data, ip->i_df.if_bytes);
 391			ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
 392			ilf->ilf_size++;
 
 
 
 
 
 
 
 
 
 
 
 393		} else {
 394			iip->ili_fields &= ~XFS_ILOG_DDATA;
 395		}
 396		break;
 
 397	case XFS_DINODE_FMT_DEV:
 398		iip->ili_fields &=
 399			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
 400		if (iip->ili_fields & XFS_ILOG_DEV)
 401			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 402		break;
 
 403	default:
 404		ASSERT(0);
 405		break;
 406	}
 407}
 408
 409STATIC void
 410xfs_inode_item_format_attr_fork(
 411	struct xfs_inode_log_item *iip,
 412	struct xfs_inode_log_format *ilf,
 413	struct xfs_log_vec	*lv,
 414	struct xfs_log_iovec	**vecp)
 415{
 416	struct xfs_inode	*ip = iip->ili_inode;
 417	size_t			data_bytes;
 418
 419	switch (ip->i_af.if_format) {
 420	case XFS_DINODE_FMT_EXTENTS:
 421		iip->ili_fields &=
 422			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
 423
 424		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 425		    ip->i_af.if_nextents > 0 &&
 426		    ip->i_af.if_bytes > 0) {
 427			struct xfs_bmbt_rec *p;
 428
 429			ASSERT(xfs_iext_count(&ip->i_af) ==
 430				ip->i_af.if_nextents);
 431
 432			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
 433			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
 434			xlog_finish_iovec(lv, *vecp, data_bytes);
 435
 436			ilf->ilf_asize = data_bytes;
 437			ilf->ilf_size++;
 
 
 
 
 
 
 
 
 438		} else {
 439			iip->ili_fields &= ~XFS_ILOG_AEXT;
 440		}
 441		break;
 
 442	case XFS_DINODE_FMT_BTREE:
 443		iip->ili_fields &=
 444			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
 445
 446		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 447		    ip->i_af.if_broot_bytes > 0) {
 448			ASSERT(ip->i_af.if_broot != NULL);
 449
 450			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
 451					ip->i_af.if_broot,
 452					ip->i_af.if_broot_bytes);
 453			ilf->ilf_asize = ip->i_af.if_broot_bytes;
 454			ilf->ilf_size++;
 
 455		} else {
 456			iip->ili_fields &= ~XFS_ILOG_ABROOT;
 457		}
 458		break;
 
 459	case XFS_DINODE_FMT_LOCAL:
 460		iip->ili_fields &=
 461			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
 462
 463		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 464		    ip->i_af.if_bytes > 0) {
 465			ASSERT(ip->i_af.if_data != NULL);
 466			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
 467					ip->i_af.if_data, ip->i_af.if_bytes);
 468			ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
 469			ilf->ilf_size++;
 
 
 
 
 
 
 
 
 
 
 
 470		} else {
 471			iip->ili_fields &= ~XFS_ILOG_ADATA;
 472		}
 473		break;
 
 474	default:
 475		ASSERT(0);
 476		break;
 477	}
 478}
 479
 480/*
 481 * Convert an incore timestamp to a log timestamp.  Note that the log format
 482 * specifies host endian format!
 483 */
 484static inline xfs_log_timestamp_t
 485xfs_inode_to_log_dinode_ts(
 486	struct xfs_inode		*ip,
 487	const struct timespec64		tv)
 488{
 489	struct xfs_log_legacy_timestamp	*lits;
 490	xfs_log_timestamp_t		its;
 491
 492	if (xfs_inode_has_bigtime(ip))
 493		return xfs_inode_encode_bigtime(tv);
 494
 495	lits = (struct xfs_log_legacy_timestamp *)&its;
 496	lits->t_sec = tv.tv_sec;
 497	lits->t_nsec = tv.tv_nsec;
 498
 499	return its;
 500}
 501
 502/*
 503 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
 504 * but not in the in-memory one.  But we are guaranteed to have an inode buffer
 505 * in memory when logging an inode, so we can just copy it from the on-disk
 506 * inode to the in-log inode here so that recovery of file system with these
 507 * fields set to non-zero values doesn't lose them.  For all other cases we zero
 508 * the fields.
 509 */
 510static void
 511xfs_copy_dm_fields_to_log_dinode(
 512	struct xfs_inode	*ip,
 513	struct xfs_log_dinode	*to)
 514{
 515	struct xfs_dinode	*dip;
 516
 517	dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
 518			     ip->i_imap.im_boffset);
 519
 520	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
 521		to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
 522		to->di_dmstate = be16_to_cpu(dip->di_dmstate);
 523	} else {
 524		to->di_dmevmask = 0;
 525		to->di_dmstate = 0;
 526	}
 527}
 528
 529static inline void
 530xfs_inode_to_log_dinode_iext_counters(
 531	struct xfs_inode	*ip,
 532	struct xfs_log_dinode	*to)
 533{
 534	if (xfs_inode_has_large_extent_counts(ip)) {
 535		to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
 536		to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
 537		to->di_nrext64_pad = 0;
 538	} else {
 539		to->di_nextents = xfs_ifork_nextents(&ip->i_df);
 540		to->di_anextents = xfs_ifork_nextents(&ip->i_af);
 541	}
 542}
 543
 544static void
 545xfs_inode_to_log_dinode(
 546	struct xfs_inode	*ip,
 547	struct xfs_log_dinode	*to,
 548	xfs_lsn_t		lsn)
 549{
 550	struct inode		*inode = VFS_I(ip);
 551
 552	to->di_magic = XFS_DINODE_MAGIC;
 553	to->di_format = xfs_ifork_format(&ip->i_df);
 554	to->di_uid = i_uid_read(inode);
 555	to->di_gid = i_gid_read(inode);
 556	to->di_projid_lo = ip->i_projid & 0xffff;
 557	to->di_projid_hi = ip->i_projid >> 16;
 558
 559	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode));
 560	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode));
 561	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
 562	to->di_nlink = inode->i_nlink;
 563	to->di_gen = inode->i_generation;
 564	to->di_mode = inode->i_mode;
 565
 566	to->di_size = ip->i_disk_size;
 567	to->di_nblocks = ip->i_nblocks;
 568	to->di_extsize = ip->i_extsize;
 569	to->di_forkoff = ip->i_forkoff;
 570	to->di_aformat = xfs_ifork_format(&ip->i_af);
 571	to->di_flags = ip->i_diflags;
 572
 573	xfs_copy_dm_fields_to_log_dinode(ip, to);
 574
 575	/* log a dummy value to ensure log structure is fully initialised */
 576	to->di_next_unlinked = NULLAGINO;
 577
 578	if (xfs_has_v3inodes(ip->i_mount)) {
 579		to->di_version = 3;
 580		to->di_changecount = inode_peek_iversion(inode);
 581		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
 582		to->di_flags2 = ip->i_diflags2;
 583		to->di_cowextsize = ip->i_cowextsize;
 584		to->di_ino = ip->i_ino;
 585		to->di_lsn = lsn;
 586		memset(to->di_pad2, 0, sizeof(to->di_pad2));
 587		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
 588		to->di_v3_pad = 0;
 589
 590		/* dummy value for initialisation */
 591		to->di_crc = 0;
 592
 593		if (xfs_is_metadir_inode(ip))
 594			to->di_metatype = ip->i_metatype;
 595		else
 596			to->di_metatype = 0;
 597	} else {
 598		to->di_version = 2;
 599		to->di_flushiter = ip->i_flushiter;
 600		memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
 601		to->di_metatype = 0;
 602	}
 603
 604	xfs_inode_to_log_dinode_iext_counters(ip, to);
 605}
 606
 607/*
 608 * Format the inode core. Current timestamp data is only in the VFS inode
 609 * fields, so we need to grab them from there. Hence rather than just copying
 610 * the XFS inode core structure, format the fields directly into the iovec.
 611 */
 612static void
 613xfs_inode_item_format_core(
 614	struct xfs_inode	*ip,
 615	struct xfs_log_vec	*lv,
 616	struct xfs_log_iovec	**vecp)
 617{
 618	struct xfs_log_dinode	*dic;
 619
 620	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
 621	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
 622	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
 623}
 624
 625/*
 626 * This is called to fill in the vector of log iovecs for the given inode
 627 * log item.  It fills the first item with an inode log format structure,
 628 * the second with the on-disk inode structure, and a possible third and/or
 629 * fourth with the inode data/extents/b-tree root and inode attributes
 630 * data/extents/b-tree root.
 631 *
 632 * Note: Always use the 64 bit inode log format structure so we don't
 633 * leave an uninitialised hole in the format item on 64 bit systems. Log
 634 * recovery on 32 bit systems handles this just fine, so there's no reason
 635 * for not using an initialising the properly padded structure all the time.
 636 */
 637STATIC void
 638xfs_inode_item_format(
 639	struct xfs_log_item	*lip,
 640	struct xfs_log_vec	*lv)
 641{
 642	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 643	struct xfs_inode	*ip = iip->ili_inode;
 644	struct xfs_log_iovec	*vecp = NULL;
 645	struct xfs_inode_log_format *ilf;
 646
 647	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
 648	ilf->ilf_type = XFS_LI_INODE;
 649	ilf->ilf_ino = ip->i_ino;
 650	ilf->ilf_blkno = ip->i_imap.im_blkno;
 651	ilf->ilf_len = ip->i_imap.im_len;
 652	ilf->ilf_boffset = ip->i_imap.im_boffset;
 653	ilf->ilf_fields = XFS_ILOG_CORE;
 654	ilf->ilf_size = 2; /* format + core */
 655
 656	/*
 657	 * make sure we don't leak uninitialised data into the log in the case
 658	 * when we don't log every field in the inode.
 659	 */
 660	ilf->ilf_dsize = 0;
 661	ilf->ilf_asize = 0;
 662	ilf->ilf_pad = 0;
 663	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
 664
 665	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
 666
 667	xfs_inode_item_format_core(ip, lv, &vecp);
 668	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
 669	if (xfs_inode_has_attr_fork(ip)) {
 670		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
 671	} else {
 672		iip->ili_fields &=
 673			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
 674	}
 675
 676	/* update the format with the exact fields we actually logged */
 677	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
 678}
 679
 680/*
 681 * This is called to pin the inode associated with the inode log
 682 * item in memory so it cannot be written out.
 683 */
 684STATIC void
 685xfs_inode_item_pin(
 686	struct xfs_log_item	*lip)
 687{
 688	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 689
 690	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
 691	ASSERT(lip->li_buf);
 692
 693	trace_xfs_inode_pin(ip, _RET_IP_);
 694	atomic_inc(&ip->i_pincount);
 695}
 696
 697
 698/*
 699 * This is called to unpin the inode associated with the inode log
 700 * item which was previously pinned with a call to xfs_inode_item_pin().
 701 *
 702 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 703 *
 704 * Note that unpin can race with inode cluster buffer freeing marking the buffer
 705 * stale. In that case, flush completions are run from the buffer unpin call,
 706 * which may happen before the inode is unpinned. If we lose the race, there
 707 * will be no buffer attached to the log item, but the inode will be marked
 708 * XFS_ISTALE.
 709 */
 710STATIC void
 711xfs_inode_item_unpin(
 712	struct xfs_log_item	*lip,
 713	int			remove)
 714{
 715	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
 716
 717	trace_xfs_inode_unpin(ip, _RET_IP_);
 718	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
 719	ASSERT(atomic_read(&ip->i_pincount) > 0);
 720	if (atomic_dec_and_test(&ip->i_pincount))
 721		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
 722}
 723
 724STATIC uint
 725xfs_inode_item_push(
 726	struct xfs_log_item	*lip,
 727	struct list_head	*buffer_list)
 728		__releases(&lip->li_ailp->ail_lock)
 729		__acquires(&lip->li_ailp->ail_lock)
 730{
 731	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 732	struct xfs_inode	*ip = iip->ili_inode;
 733	struct xfs_buf		*bp = lip->li_buf;
 734	uint			rval = XFS_ITEM_SUCCESS;
 735	int			error;
 736
 737	if (!bp || (ip->i_flags & XFS_ISTALE)) {
 738		/*
 739		 * Inode item/buffer is being aborted due to cluster
 740		 * buffer deletion. Trigger a log force to have that operation
 741		 * completed and items removed from the AIL before the next push
 742		 * attempt.
 743		 */
 744		return XFS_ITEM_PINNED;
 
 
 
 
 
 
 
 
 
 
 
 745	}
 746
 747	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
 748		return XFS_ITEM_PINNED;
 
 
 
 
 
 749
 750	if (xfs_iflags_test(ip, XFS_IFLUSHING))
 751		return XFS_ITEM_FLUSHING;
 
 
 
 
 
 
 
 752
 753	if (!xfs_buf_trylock(bp))
 754		return XFS_ITEM_LOCKED;
 755
 756	spin_unlock(&lip->li_ailp->ail_lock);
 757
 758	/*
 759	 * We need to hold a reference for flushing the cluster buffer as it may
 760	 * fail the buffer without IO submission. In which case, we better get a
 761	 * reference for that completion because otherwise we don't get a
 762	 * reference for IO until we queue the buffer for delwri submission.
 763	 */
 764	xfs_buf_hold(bp);
 765	error = xfs_iflush_cluster(bp);
 766	if (!error) {
 767		if (!xfs_buf_delwri_queue(bp, buffer_list))
 768			rval = XFS_ITEM_FLUSHING;
 769		xfs_buf_relse(bp);
 770	} else {
 771		/*
 772		 * Release the buffer if we were unable to flush anything. On
 773		 * any other error, the buffer has already been released.
 774		 */
 775		if (error == -EAGAIN)
 776			xfs_buf_relse(bp);
 777		rval = XFS_ITEM_LOCKED;
 778	}
 779
 780	spin_lock(&lip->li_ailp->ail_lock);
 
 
 781	return rval;
 782}
 783
 784/*
 785 * Unlock the inode associated with the inode log item.
 
 
 
 786 */
 787STATIC void
 788xfs_inode_item_release(
 789	struct xfs_log_item	*lip)
 790{
 791	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 792	struct xfs_inode	*ip = iip->ili_inode;
 793	unsigned short		lock_flags;
 794
 795	ASSERT(ip->i_itemp != NULL);
 796	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797
 798	lock_flags = iip->ili_lock_flags;
 799	iip->ili_lock_flags = 0;
 800	if (lock_flags)
 801		xfs_iunlock(ip, lock_flags);
 802}
 803
 804/*
 805 * This is called to find out where the oldest active copy of the inode log
 806 * item in the on disk log resides now that the last log write of it completed
 807 * at the given lsn.  Since we always re-log all dirty data in an inode, the
 808 * latest copy in the on disk log is the only one that matters.  Therefore,
 809 * simply return the given lsn.
 810 *
 811 * If the inode has been marked stale because the cluster is being freed, we
 812 * don't want to (re-)insert this inode into the AIL. There is a race condition
 813 * where the cluster buffer may be unpinned before the inode is inserted into
 814 * the AIL during transaction committed processing. If the buffer is unpinned
 815 * before the inode item has been committed and inserted, then it is possible
 816 * for the buffer to be written and IO completes before the inode is inserted
 817 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
 818 * AIL which will never get removed. It will, however, get reclaimed which
 819 * triggers an assert in xfs_inode_free() complaining about freein an inode
 820 * still in the AIL.
 821 *
 822 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
 823 * transaction committed code knows that it does not need to do any further
 824 * processing on the item.
 825 */
 826STATIC xfs_lsn_t
 827xfs_inode_item_committed(
 828	struct xfs_log_item	*lip,
 829	xfs_lsn_t		lsn)
 830{
 831	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 832	struct xfs_inode	*ip = iip->ili_inode;
 833
 834	if (xfs_iflags_test(ip, XFS_ISTALE)) {
 835		xfs_inode_item_unpin(lip, 0);
 836		return -1;
 837	}
 838	return lsn;
 839}
 840
 
 
 
 
 841STATIC void
 842xfs_inode_item_committing(
 843	struct xfs_log_item	*lip,
 844	xfs_csn_t		seq)
 845{
 846	INODE_ITEM(lip)->ili_commit_seq = seq;
 847	return xfs_inode_item_release(lip);
 848}
 849
 
 
 
 850static const struct xfs_item_ops xfs_inode_item_ops = {
 851	.iop_sort	= xfs_inode_item_sort,
 852	.iop_precommit	= xfs_inode_item_precommit,
 853	.iop_size	= xfs_inode_item_size,
 854	.iop_format	= xfs_inode_item_format,
 855	.iop_pin	= xfs_inode_item_pin,
 856	.iop_unpin	= xfs_inode_item_unpin,
 857	.iop_release	= xfs_inode_item_release,
 858	.iop_committed	= xfs_inode_item_committed,
 859	.iop_push	= xfs_inode_item_push,
 860	.iop_committing	= xfs_inode_item_committing,
 861};
 862
 863
 864/*
 865 * Initialize the inode log item for a newly allocated (in-core) inode.
 866 */
 867void
 868xfs_inode_item_init(
 869	struct xfs_inode	*ip,
 870	struct xfs_mount	*mp)
 871{
 872	struct xfs_inode_log_item *iip;
 873
 874	ASSERT(ip->i_itemp == NULL);
 875	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
 876					      GFP_KERNEL | __GFP_NOFAIL);
 877
 878	iip->ili_inode = ip;
 879	spin_lock_init(&iip->ili_lock);
 880	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
 881						&xfs_inode_item_ops);
 
 
 
 
 
 882}
 883
 884/*
 885 * Free the inode log item and any memory hanging off of it.
 886 */
 887void
 888xfs_inode_item_destroy(
 889	struct xfs_inode	*ip)
 890{
 891	struct xfs_inode_log_item *iip = ip->i_itemp;
 892
 893	ASSERT(iip->ili_item.li_buf == NULL);
 894
 895	ip->i_itemp = NULL;
 896	kvfree(iip->ili_item.li_lv_shadow);
 897	kmem_cache_free(xfs_ili_cache, iip);
 898}
 899
 900
 901/*
 902 * We only want to pull the item from the AIL if it is actually there
 903 * and its location in the log has not changed since we started the
 904 * flush.  Thus, we only bother if the inode's lsn has not changed.
 
 
 
 
 
 
 
 905 */
 906static void
 907xfs_iflush_ail_updates(
 908	struct xfs_ail		*ailp,
 909	struct list_head	*list)
 910{
 911	struct xfs_log_item	*lip;
 912	xfs_lsn_t		tail_lsn = 0;
 913
 914	/* this is an opencoded batch version of xfs_trans_ail_delete */
 915	spin_lock(&ailp->ail_lock);
 916	list_for_each_entry(lip, list, li_bio_list) {
 917		xfs_lsn_t	lsn;
 918
 919		clear_bit(XFS_LI_FAILED, &lip->li_flags);
 920		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
 
 
 
 
 
 
 
 921			continue;
 
 922
 923		/*
 924		 * dgc: Not sure how this happens, but it happens very
 925		 * occassionaly via generic/388.  xfs_iflush_abort() also
 926		 * silently handles this same "under writeback but not in AIL at
 927		 * shutdown" condition via xfs_trans_ail_delete().
 928		 */
 929		if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
 930			ASSERT(xlog_is_shutdown(lip->li_log));
 931			continue;
 932		}
 933
 934		lsn = xfs_ail_delete_one(ailp, lip);
 935		if (!tail_lsn && lsn)
 936			tail_lsn = lsn;
 937	}
 938	xfs_ail_update_finish(ailp, tail_lsn);
 939}
 940
 941/*
 942 * Walk the list of inodes that have completed their IOs. If they are clean
 943 * remove them from the list and dissociate them from the buffer. Buffers that
 944 * are still dirty remain linked to the buffer and on the list. Caller must
 945 * handle them appropriately.
 946 */
 947static void
 948xfs_iflush_finish(
 949	struct xfs_buf		*bp,
 950	struct list_head	*list)
 951{
 952	struct xfs_log_item	*lip, *n;
 953
 954	list_for_each_entry_safe(lip, n, list, li_bio_list) {
 955		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 956		bool	drop_buffer = false;
 957
 958		spin_lock(&iip->ili_lock);
 959
 960		/*
 961		 * Remove the reference to the cluster buffer if the inode is
 962		 * clean in memory and drop the buffer reference once we've
 963		 * dropped the locks we hold.
 964		 */
 965		ASSERT(iip->ili_item.li_buf == bp);
 966		if (!iip->ili_fields) {
 967			iip->ili_item.li_buf = NULL;
 968			list_del_init(&lip->li_bio_list);
 969			drop_buffer = true;
 970		}
 971		iip->ili_last_fields = 0;
 972		iip->ili_flush_lsn = 0;
 973		clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
 974		spin_unlock(&iip->ili_lock);
 975		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
 976		if (drop_buffer)
 977			xfs_buf_rele(bp);
 978	}
 979}
 980
 981/*
 982 * Inode buffer IO completion routine.  It is responsible for removing inodes
 983 * attached to the buffer from the AIL if they have not been re-logged and
 984 * completing the inode flush.
 985 */
 986void
 987xfs_buf_inode_iodone(
 988	struct xfs_buf		*bp)
 989{
 990	struct xfs_log_item	*lip, *n;
 991	LIST_HEAD(flushed_inodes);
 992	LIST_HEAD(ail_updates);
 993
 994	/*
 995	 * Pull the attached inodes from the buffer one at a time and take the
 996	 * appropriate action on them.
 
 
 
 
 
 997	 */
 998	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
 999		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
1000
1001		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
1002			xfs_iflush_abort(iip->ili_inode);
1003			continue;
 
 
 
 
 
1004		}
1005		if (!iip->ili_last_fields)
1006			continue;
1007
1008		/* Do an unlocked check for needing the AIL lock. */
1009		if (iip->ili_flush_lsn == lip->li_lsn ||
1010		    test_bit(XFS_LI_FAILED, &lip->li_flags))
1011			list_move_tail(&lip->li_bio_list, &ail_updates);
1012		else
1013			list_move_tail(&lip->li_bio_list, &flushed_inodes);
1014	}
1015
1016	if (!list_empty(&ail_updates)) {
1017		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
1018		list_splice_tail(&ail_updates, &flushed_inodes);
1019	}
1020
1021	xfs_iflush_finish(bp, &flushed_inodes);
1022	if (!list_empty(&flushed_inodes))
1023		list_splice_tail(&flushed_inodes, &bp->b_li_list);
1024}
 
 
 
 
1025
1026void
1027xfs_buf_inode_io_fail(
1028	struct xfs_buf		*bp)
1029{
1030	struct xfs_log_item	*lip;
1031
1032	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1033		set_bit(XFS_LI_FAILED, &lip->li_flags);
1034		clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
1035	}
1036}
1037
1038/*
1039 * Clear the inode logging fields so no more flushes are attempted.  If we are
1040 * on a buffer list, it is now safe to remove it because the buffer is
1041 * guaranteed to be locked. The caller will drop the reference to the buffer
1042 * the log item held.
1043 */
1044static void
1045xfs_iflush_abort_clean(
1046	struct xfs_inode_log_item *iip)
1047{
1048	iip->ili_last_fields = 0;
1049	iip->ili_fields = 0;
1050	iip->ili_fsync_fields = 0;
1051	iip->ili_flush_lsn = 0;
1052	iip->ili_item.li_buf = NULL;
1053	list_del_init(&iip->ili_item.li_bio_list);
1054	clear_bit(XFS_LI_FLUSHING, &iip->ili_item.li_flags);
1055}
1056
1057/*
1058 * Abort flushing the inode from a context holding the cluster buffer locked.
1059 *
1060 * This is the normal runtime method of aborting writeback of an inode that is
1061 * attached to a cluster buffer. It occurs when the inode and the backing
1062 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1063 * flushing or buffer IO completion encounters a log shutdown situation.
1064 *
1065 * If we need to abort inode writeback and we don't already hold the buffer
1066 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1067 * necessary in a shutdown situation.
1068 */
1069void
1070xfs_iflush_abort(
1071	struct xfs_inode	*ip)
 
1072{
1073	struct xfs_inode_log_item *iip = ip->i_itemp;
1074	struct xfs_buf		*bp;
1075
1076	if (!iip) {
1077		/* clean inode, nothing to do */
1078		xfs_iflags_clear(ip, XFS_IFLUSHING);
1079		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080	}
1081
1082	/*
1083	 * Remove the inode item from the AIL before we clear its internal
1084	 * state. Whilst the inode is in the AIL, it should have a valid buffer
1085	 * pointer for push operations to access - it is only safe to remove the
1086	 * inode from the buffer once it has been removed from the AIL.
1087	 *
1088	 * We also clear the failed bit before removing the item from the AIL
1089	 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1090	 * references the inode item owns and needs to hold until we've fully
1091	 * aborted the inode log item and detached it from the buffer.
1092	 */
1093	clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1094	xfs_trans_ail_delete(&iip->ili_item, 0);
1095
1096	/*
1097	 * Grab the inode buffer so can we release the reference the inode log
1098	 * item holds on it.
1099	 */
1100	spin_lock(&iip->ili_lock);
1101	bp = iip->ili_item.li_buf;
1102	xfs_iflush_abort_clean(iip);
1103	spin_unlock(&iip->ili_lock);
1104
1105	xfs_iflags_clear(ip, XFS_IFLUSHING);
1106	if (bp)
1107		xfs_buf_rele(bp);
1108}
1109
1110/*
1111 * Abort an inode flush in the case of a shutdown filesystem. This can be called
1112 * from anywhere with just an inode reference and does not require holding the
1113 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1114 * it will grab and lock it safely, then abort the inode flush.
1115 */
1116void
1117xfs_iflush_shutdown_abort(
1118	struct xfs_inode	*ip)
 
1119{
1120	struct xfs_inode_log_item *iip = ip->i_itemp;
1121	struct xfs_buf		*bp;
1122
1123	if (!iip) {
1124		/* clean inode, nothing to do */
1125		xfs_iflags_clear(ip, XFS_IFLUSHING);
1126		return;
1127	}
1128
1129	spin_lock(&iip->ili_lock);
1130	bp = iip->ili_item.li_buf;
1131	if (!bp) {
1132		spin_unlock(&iip->ili_lock);
1133		xfs_iflush_abort(ip);
1134		return;
1135	}
1136
1137	/*
1138	 * We have to take a reference to the buffer so that it doesn't get
1139	 * freed when we drop the ili_lock and then wait to lock the buffer.
1140	 * We'll clean up the extra reference after we pick up the ili_lock
1141	 * again.
1142	 */
1143	xfs_buf_hold(bp);
1144	spin_unlock(&iip->ili_lock);
1145	xfs_buf_lock(bp);
1146
1147	spin_lock(&iip->ili_lock);
1148	if (!iip->ili_item.li_buf) {
1149		/*
1150		 * Raced with another removal, hold the only reference
1151		 * to bp now. Inode should not be in the AIL now, so just clean
1152		 * up and return;
1153		 */
1154		ASSERT(list_empty(&iip->ili_item.li_bio_list));
1155		ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1156		xfs_iflush_abort_clean(iip);
1157		spin_unlock(&iip->ili_lock);
1158		xfs_iflags_clear(ip, XFS_IFLUSHING);
1159		xfs_buf_relse(bp);
1160		return;
1161	}
1162
1163	/*
1164	 * Got two references to bp. The first will get dropped by
1165	 * xfs_iflush_abort() when the item is removed from the buffer list, but
1166	 * we can't drop our reference until _abort() returns because we have to
1167	 * unlock the buffer as well. Hence we abort and then unlock and release
1168	 * our reference to the buffer.
1169	 */
1170	ASSERT(iip->ili_item.li_buf == bp);
1171	spin_unlock(&iip->ili_lock);
1172	xfs_iflush_abort(ip);
1173	xfs_buf_relse(bp);
1174}
1175
1176
1177/*
1178 * convert an xfs_inode_log_format struct from the old 32 bit version
1179 * (which can have different field alignments) to the native 64 bit version
1180 */
1181int
1182xfs_inode_item_format_convert(
1183	struct xfs_log_iovec		*buf,
1184	struct xfs_inode_log_format	*in_f)
1185{
1186	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
 
1187
1188	if (buf->i_len != sizeof(*in_f32)) {
1189		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1190		return -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191	}
1192
1193	in_f->ilf_type = in_f32->ilf_type;
1194	in_f->ilf_size = in_f32->ilf_size;
1195	in_f->ilf_fields = in_f32->ilf_fields;
1196	in_f->ilf_asize = in_f32->ilf_asize;
1197	in_f->ilf_dsize = in_f32->ilf_dsize;
1198	in_f->ilf_ino = in_f32->ilf_ino;
1199	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1200	in_f->ilf_blkno = in_f32->ilf_blkno;
1201	in_f->ilf_len = in_f32->ilf_len;
1202	in_f->ilf_boffset = in_f32->ilf_boffset;
1203	return 0;
1204}