Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_types.h"
 21#include "xfs_log.h"
 22#include "xfs_trans.h"
 23#include "xfs_sb.h"
 24#include "xfs_ag.h"
 25#include "xfs_mount.h"
 26#include "xfs_trans_priv.h"
 27#include "xfs_bmap_btree.h"
 28#include "xfs_dinode.h"
 29#include "xfs_inode.h"
 
 30#include "xfs_inode_item.h"
 31#include "xfs_error.h"
 32#include "xfs_trace.h"
 
 
 
 
 33
 
 34
 35kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
 36
 37static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
 38{
 39	return container_of(lip, struct xfs_inode_log_item, ili_item);
 40}
 41
 42
 43/*
 44 * This returns the number of iovecs needed to log the given inode item.
 45 *
 46 * We need one iovec for the inode log format structure, one for the
 47 * inode core, and possibly one for the inode data/extents/b-tree root
 48 * and one for the inode attribute data/extents/b-tree root.
 49 */
 50STATIC uint
 51xfs_inode_item_size(
 52	struct xfs_log_item	*lip)
 53{
 54	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 55	struct xfs_inode	*ip = iip->ili_inode;
 56	uint			nvecs = 2;
 57
 58	switch (ip->i_d.di_format) {
 59	case XFS_DINODE_FMT_EXTENTS:
 60		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 61		    ip->i_d.di_nextents > 0 &&
 62		    ip->i_df.if_bytes > 0)
 63			nvecs++;
 
 
 
 64		break;
 65
 66	case XFS_DINODE_FMT_BTREE:
 67		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 68		    ip->i_df.if_broot_bytes > 0)
 69			nvecs++;
 
 
 70		break;
 71
 72	case XFS_DINODE_FMT_LOCAL:
 73		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 74		    ip->i_df.if_bytes > 0)
 75			nvecs++;
 
 
 76		break;
 77
 78	case XFS_DINODE_FMT_DEV:
 79	case XFS_DINODE_FMT_UUID:
 80		break;
 81
 82	default:
 83		ASSERT(0);
 84		break;
 85	}
 
 86
 87	if (!XFS_IFORK_Q(ip))
 88		return nvecs;
 89
 
 
 
 
 90
 91	/*
 92	 * Log any necessary attribute data.
 93	 */
 94	switch (ip->i_d.di_aformat) {
 95	case XFS_DINODE_FMT_EXTENTS:
 96		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 97		    ip->i_d.di_anextents > 0 &&
 98		    ip->i_afp->if_bytes > 0)
 99			nvecs++;
 
 
 
100		break;
101
102	case XFS_DINODE_FMT_BTREE:
103		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
104		    ip->i_afp->if_broot_bytes > 0)
105			nvecs++;
 
 
106		break;
107
108	case XFS_DINODE_FMT_LOCAL:
109		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
110		    ip->i_afp->if_bytes > 0)
111			nvecs++;
 
 
112		break;
113
114	default:
115		ASSERT(0);
116		break;
117	}
118
119	return nvecs;
120}
121
122/*
123 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
124 *
125 * For either the data or attr fork in extent format, we need to endian convert
126 * the in-core extent as we place them into the on-disk inode. In this case, we
127 * need to do this conversion before we write the extents into the log. Because
128 * we don't have the disk inode to write into here, we allocate a buffer and
129 * format the extents into it via xfs_iextents_copy(). We free the buffer in
130 * the unlock routine after the copy for the log has been made.
131 *
132 * In the case of the data fork, the in-core and on-disk fork sizes can be
133 * different due to delayed allocation extents. We only log on-disk extents
134 * here, so always use the physical fork size to determine the size of the
135 * buffer we need to allocate.
136 */
137STATIC void
138xfs_inode_item_format_extents(
139	struct xfs_inode	*ip,
140	struct xfs_log_iovec	*vecp,
141	int			whichfork,
142	int			type)
143{
144	xfs_bmbt_rec_t		*ext_buffer;
145
146	ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
147	if (whichfork == XFS_DATA_FORK)
148		ip->i_itemp->ili_extents_buf = ext_buffer;
149	else
150		ip->i_itemp->ili_aextents_buf = ext_buffer;
151
152	vecp->i_addr = ext_buffer;
153	vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
154	vecp->i_type = type;
 
 
 
 
155}
156
157/*
158 * This is called to fill in the vector of log iovecs for the
159 * given inode log item.  It fills the first item with an inode
160 * log format structure, the second with the on-disk inode structure,
161 * and a possible third and/or fourth with the inode data/extents/b-tree
162 * root and inode attributes data/extents/b-tree root.
163 */
164STATIC void
165xfs_inode_item_format(
166	struct xfs_log_item	*lip,
167	struct xfs_log_iovec	*vecp)
 
 
168{
169	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
170	struct xfs_inode	*ip = iip->ili_inode;
171	uint			nvecs;
172	size_t			data_bytes;
173	xfs_mount_t		*mp;
174
175	vecp->i_addr = &iip->ili_format;
176	vecp->i_len  = sizeof(xfs_inode_log_format_t);
177	vecp->i_type = XLOG_REG_TYPE_IFORMAT;
178	vecp++;
179	nvecs	     = 1;
180
181	vecp->i_addr = &ip->i_d;
182	vecp->i_len  = sizeof(struct xfs_icdinode);
183	vecp->i_type = XLOG_REG_TYPE_ICORE;
184	vecp++;
185	nvecs++;
186
187	/*
188	 * If this is really an old format inode, then we need to
189	 * log it as such.  This means that we have to copy the link
190	 * count from the new field to the old.  We don't have to worry
191	 * about the new fields, because nothing trusts them as long as
192	 * the old inode version number is there.  If the superblock already
193	 * has a new version number, then we don't bother converting back.
194	 */
195	mp = ip->i_mount;
196	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
197	if (ip->i_d.di_version == 1) {
198		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
199			/*
200			 * Convert it back.
201			 */
202			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
203			ip->i_d.di_onlink = ip->i_d.di_nlink;
204		} else {
205			/*
206			 * The superblock version has already been bumped,
207			 * so just make the conversion to the new inode
208			 * format permanent.
209			 */
210			ip->i_d.di_version = 2;
211			ip->i_d.di_onlink = 0;
212			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
213		}
214	}
215
216	switch (ip->i_d.di_format) {
217	case XFS_DINODE_FMT_EXTENTS:
218		iip->ili_fields &=
219			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
220			  XFS_ILOG_DEV | XFS_ILOG_UUID);
221
222		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
223		    ip->i_d.di_nextents > 0 &&
224		    ip->i_df.if_bytes > 0) {
225			ASSERT(ip->i_df.if_u1.if_extents != NULL);
226			ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
227			ASSERT(iip->ili_extents_buf == NULL);
228
229#ifdef XFS_NATIVE_HOST
230                       if (ip->i_d.di_nextents == ip->i_df.if_bytes /
231                                               (uint)sizeof(xfs_bmbt_rec_t)) {
232				/*
233				 * There are no delayed allocation
234				 * extents, so just point to the
235				 * real extents array.
236				 */
237				vecp->i_addr = ip->i_df.if_u1.if_extents;
238				vecp->i_len = ip->i_df.if_bytes;
239				vecp->i_type = XLOG_REG_TYPE_IEXT;
240			} else
241#endif
242			{
243				xfs_inode_item_format_extents(ip, vecp,
244					XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
245			}
246			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
247			iip->ili_format.ilf_dsize = vecp->i_len;
248			vecp++;
249			nvecs++;
250		} else {
251			iip->ili_fields &= ~XFS_ILOG_DEXT;
252		}
253		break;
254
255	case XFS_DINODE_FMT_BTREE:
256		iip->ili_fields &=
257			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
258			  XFS_ILOG_DEV | XFS_ILOG_UUID);
259
260		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
261		    ip->i_df.if_broot_bytes > 0) {
262			ASSERT(ip->i_df.if_broot != NULL);
263			vecp->i_addr = ip->i_df.if_broot;
264			vecp->i_len = ip->i_df.if_broot_bytes;
265			vecp->i_type = XLOG_REG_TYPE_IBROOT;
266			vecp++;
267			nvecs++;
268			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
269		} else {
270			ASSERT(!(iip->ili_fields &
271				 XFS_ILOG_DBROOT));
272#ifdef XFS_TRANS_DEBUG
273			if (iip->ili_root_size > 0) {
274				ASSERT(iip->ili_root_size ==
275				       ip->i_df.if_broot_bytes);
276				ASSERT(memcmp(iip->ili_orig_root,
277					    ip->i_df.if_broot,
278					    iip->ili_root_size) == 0);
279			} else {
280				ASSERT(ip->i_df.if_broot_bytes == 0);
281			}
282#endif
283			iip->ili_fields &= ~XFS_ILOG_DBROOT;
284		}
285		break;
286
287	case XFS_DINODE_FMT_LOCAL:
288		iip->ili_fields &=
289			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
290			  XFS_ILOG_DEV | XFS_ILOG_UUID);
291		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
292		    ip->i_df.if_bytes > 0) {
293			ASSERT(ip->i_df.if_u1.if_data != NULL);
294			ASSERT(ip->i_d.di_size > 0);
295
296			vecp->i_addr = ip->i_df.if_u1.if_data;
297			/*
298			 * Round i_bytes up to a word boundary.
299			 * The underlying memory is guaranteed to
300			 * to be there by xfs_idata_realloc().
301			 */
302			data_bytes = roundup(ip->i_df.if_bytes, 4);
303			ASSERT((ip->i_df.if_real_bytes == 0) ||
304			       (ip->i_df.if_real_bytes == data_bytes));
305			vecp->i_len = (int)data_bytes;
306			vecp->i_type = XLOG_REG_TYPE_ILOCAL;
307			vecp++;
308			nvecs++;
309			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
310		} else {
311			iip->ili_fields &= ~XFS_ILOG_DDATA;
312		}
313		break;
314
315	case XFS_DINODE_FMT_DEV:
316		iip->ili_fields &=
317			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
318			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
319		if (iip->ili_fields & XFS_ILOG_DEV) {
320			iip->ili_format.ilf_u.ilfu_rdev =
321				ip->i_df.if_u2.if_rdev;
322		}
323		break;
324
325	case XFS_DINODE_FMT_UUID:
326		iip->ili_fields &=
327			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
328			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
329		if (iip->ili_fields & XFS_ILOG_UUID) {
330			iip->ili_format.ilf_u.ilfu_uuid =
331				ip->i_df.if_u2.if_uuid;
332		}
333		break;
334
335	default:
336		ASSERT(0);
337		break;
338	}
 
339
340	/*
341	 * If there are no attributes associated with the file, then we're done.
342	 */
343	if (!XFS_IFORK_Q(ip)) {
344		iip->ili_fields &=
345			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
346		goto out;
347	}
 
348
349	switch (ip->i_d.di_aformat) {
350	case XFS_DINODE_FMT_EXTENTS:
351		iip->ili_fields &=
352			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
353
354		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
355		    ip->i_d.di_anextents > 0 &&
356		    ip->i_afp->if_bytes > 0) {
357			ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
358				ip->i_d.di_anextents);
359			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
360#ifdef XFS_NATIVE_HOST
361			/*
362			 * There are not delayed allocation extents
363			 * for attributes, so just point at the array.
364			 */
365			vecp->i_addr = ip->i_afp->if_u1.if_extents;
366			vecp->i_len = ip->i_afp->if_bytes;
367			vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
368#else
369			ASSERT(iip->ili_aextents_buf == NULL);
370			xfs_inode_item_format_extents(ip, vecp,
371					XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
372#endif
373			iip->ili_format.ilf_asize = vecp->i_len;
374			vecp++;
375			nvecs++;
376		} else {
377			iip->ili_fields &= ~XFS_ILOG_AEXT;
378		}
379		break;
380
381	case XFS_DINODE_FMT_BTREE:
382		iip->ili_fields &=
383			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
384
385		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
386		    ip->i_afp->if_broot_bytes > 0) {
387			ASSERT(ip->i_afp->if_broot != NULL);
388
389			vecp->i_addr = ip->i_afp->if_broot;
390			vecp->i_len = ip->i_afp->if_broot_bytes;
391			vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
392			vecp++;
393			nvecs++;
394			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
395		} else {
396			iip->ili_fields &= ~XFS_ILOG_ABROOT;
397		}
398		break;
399
400	case XFS_DINODE_FMT_LOCAL:
401		iip->ili_fields &=
402			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
403
404		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
405		    ip->i_afp->if_bytes > 0) {
406			ASSERT(ip->i_afp->if_u1.if_data != NULL);
407
408			vecp->i_addr = ip->i_afp->if_u1.if_data;
409			/*
410			 * Round i_bytes up to a word boundary.
411			 * The underlying memory is guaranteed to
412			 * to be there by xfs_idata_realloc().
413			 */
414			data_bytes = roundup(ip->i_afp->if_bytes, 4);
415			ASSERT((ip->i_afp->if_real_bytes == 0) ||
416			       (ip->i_afp->if_real_bytes == data_bytes));
417			vecp->i_len = (int)data_bytes;
418			vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
419			vecp++;
420			nvecs++;
421			iip->ili_format.ilf_asize = (unsigned)data_bytes;
422		} else {
423			iip->ili_fields &= ~XFS_ILOG_ADATA;
424		}
425		break;
426
427	default:
428		ASSERT(0);
429		break;
430	}
 
431
432out:
433	/*
434	 * Now update the log format that goes out to disk from the in-core
435	 * values.  We always write the inode core to make the arithmetic
436	 * games in recovery easier, which isn't a big deal as just about any
437	 * transaction would dirty it anyway.
438	 */
439	iip->ili_format.ilf_fields = XFS_ILOG_CORE |
440		(iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
441	iip->ili_format.ilf_size = nvecs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442}
443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
444
445/*
446 * This is called to pin the inode associated with the inode log
447 * item in memory so it cannot be written out.
448 */
449STATIC void
450xfs_inode_item_pin(
451	struct xfs_log_item	*lip)
452{
453	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
454
455	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 
456
457	trace_xfs_inode_pin(ip, _RET_IP_);
458	atomic_inc(&ip->i_pincount);
459}
460
461
462/*
463 * This is called to unpin the inode associated with the inode log
464 * item which was previously pinned with a call to xfs_inode_item_pin().
465 *
466 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
 
 
 
 
 
 
467 */
468STATIC void
469xfs_inode_item_unpin(
470	struct xfs_log_item	*lip,
471	int			remove)
472{
473	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
474
475	trace_xfs_inode_unpin(ip, _RET_IP_);
 
476	ASSERT(atomic_read(&ip->i_pincount) > 0);
477	if (atomic_dec_and_test(&ip->i_pincount))
478		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
479}
480
481STATIC uint
482xfs_inode_item_push(
483	struct xfs_log_item	*lip,
484	struct list_head	*buffer_list)
 
 
485{
486	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
487	struct xfs_inode	*ip = iip->ili_inode;
488	struct xfs_buf		*bp = NULL;
489	uint			rval = XFS_ITEM_SUCCESS;
490	int			error;
491
492	if (xfs_ipincount(ip) > 0)
 
 
 
493		return XFS_ITEM_PINNED;
494
495	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
496		return XFS_ITEM_LOCKED;
 
497
498	/*
499	 * Re-check the pincount now that we stabilized the value by
500	 * taking the ilock.
501	 */
502	if (xfs_ipincount(ip) > 0) {
503		rval = XFS_ITEM_PINNED;
504		goto out_unlock;
505	}
506
507	/*
508	 * Stale inode items should force out the iclog.
509	 */
510	if (ip->i_flags & XFS_ISTALE) {
511		rval = XFS_ITEM_PINNED;
512		goto out_unlock;
513	}
514
515	/*
516	 * Someone else is already flushing the inode.  Nothing we can do
517	 * here but wait for the flush to finish and remove the item from
518	 * the AIL.
 
519	 */
520	if (!xfs_iflock_nowait(ip)) {
521		rval = XFS_ITEM_FLUSHING;
522		goto out_unlock;
523	}
524
525	ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
526	ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
527
528	spin_unlock(&lip->li_ailp->xa_lock);
529
530	error = xfs_iflush(ip, &bp);
531	if (!error) {
532		if (!xfs_buf_delwri_queue(bp, buffer_list))
533			rval = XFS_ITEM_FLUSHING;
534		xfs_buf_relse(bp);
 
 
 
 
 
 
 
 
535	}
536
537	spin_lock(&lip->li_ailp->xa_lock);
538out_unlock:
539	xfs_iunlock(ip, XFS_ILOCK_SHARED);
540	return rval;
541}
542
543/*
544 * Unlock the inode associated with the inode log item.
545 * Clear the fields of the inode and inode log item that
546 * are specific to the current transaction.  If the
547 * hold flags is set, do not unlock the inode.
548 */
549STATIC void
550xfs_inode_item_unlock(
551	struct xfs_log_item	*lip)
552{
553	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
554	struct xfs_inode	*ip = iip->ili_inode;
555	unsigned short		lock_flags;
556
557	ASSERT(ip->i_itemp != NULL);
558	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
559
560	/*
561	 * If the inode needed a separate buffer with which to log
562	 * its extents, then free it now.
563	 */
564	if (iip->ili_extents_buf != NULL) {
565		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
566		ASSERT(ip->i_d.di_nextents > 0);
567		ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
568		ASSERT(ip->i_df.if_bytes > 0);
569		kmem_free(iip->ili_extents_buf);
570		iip->ili_extents_buf = NULL;
571	}
572	if (iip->ili_aextents_buf != NULL) {
573		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
574		ASSERT(ip->i_d.di_anextents > 0);
575		ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
576		ASSERT(ip->i_afp->if_bytes > 0);
577		kmem_free(iip->ili_aextents_buf);
578		iip->ili_aextents_buf = NULL;
579	}
580
581	lock_flags = iip->ili_lock_flags;
582	iip->ili_lock_flags = 0;
583	if (lock_flags)
584		xfs_iunlock(ip, lock_flags);
585}
586
587/*
588 * This is called to find out where the oldest active copy of the inode log
589 * item in the on disk log resides now that the last log write of it completed
590 * at the given lsn.  Since we always re-log all dirty data in an inode, the
591 * latest copy in the on disk log is the only one that matters.  Therefore,
592 * simply return the given lsn.
593 *
594 * If the inode has been marked stale because the cluster is being freed, we
595 * don't want to (re-)insert this inode into the AIL. There is a race condition
596 * where the cluster buffer may be unpinned before the inode is inserted into
597 * the AIL during transaction committed processing. If the buffer is unpinned
598 * before the inode item has been committed and inserted, then it is possible
599 * for the buffer to be written and IO completes before the inode is inserted
600 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
601 * AIL which will never get removed. It will, however, get reclaimed which
602 * triggers an assert in xfs_inode_free() complaining about freein an inode
603 * still in the AIL.
604 *
605 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
606 * transaction committed code knows that it does not need to do any further
607 * processing on the item.
608 */
609STATIC xfs_lsn_t
610xfs_inode_item_committed(
611	struct xfs_log_item	*lip,
612	xfs_lsn_t		lsn)
613{
614	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
615	struct xfs_inode	*ip = iip->ili_inode;
616
617	if (xfs_iflags_test(ip, XFS_ISTALE)) {
618		xfs_inode_item_unpin(lip, 0);
619		return -1;
620	}
621	return lsn;
622}
623
624/*
625 * XXX rcc - this one really has to do something.  Probably needs
626 * to stamp in a new field in the incore inode.
627 */
628STATIC void
629xfs_inode_item_committing(
630	struct xfs_log_item	*lip,
631	xfs_lsn_t		lsn)
632{
633	INODE_ITEM(lip)->ili_last_lsn = lsn;
 
634}
635
636/*
637 * This is the ops vector shared by all buf log items.
638 */
639static const struct xfs_item_ops xfs_inode_item_ops = {
640	.iop_size	= xfs_inode_item_size,
641	.iop_format	= xfs_inode_item_format,
642	.iop_pin	= xfs_inode_item_pin,
643	.iop_unpin	= xfs_inode_item_unpin,
644	.iop_unlock	= xfs_inode_item_unlock,
645	.iop_committed	= xfs_inode_item_committed,
646	.iop_push	= xfs_inode_item_push,
647	.iop_committing = xfs_inode_item_committing
648};
649
650
651/*
652 * Initialize the inode log item for a newly allocated (in-core) inode.
653 */
654void
655xfs_inode_item_init(
656	struct xfs_inode	*ip,
657	struct xfs_mount	*mp)
658{
659	struct xfs_inode_log_item *iip;
660
661	ASSERT(ip->i_itemp == NULL);
662	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
 
663
664	iip->ili_inode = ip;
 
665	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
666						&xfs_inode_item_ops);
667	iip->ili_format.ilf_type = XFS_LI_INODE;
668	iip->ili_format.ilf_ino = ip->i_ino;
669	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
670	iip->ili_format.ilf_len = ip->i_imap.im_len;
671	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
672}
673
674/*
675 * Free the inode log item and any memory hanging off of it.
676 */
677void
678xfs_inode_item_destroy(
679	xfs_inode_t	*ip)
680{
681#ifdef XFS_TRANS_DEBUG
682	if (ip->i_itemp->ili_root_size != 0) {
683		kmem_free(ip->i_itemp->ili_orig_root);
684	}
685#endif
686	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
 
687}
688
689
690/*
691 * This is the inode flushing I/O completion routine.  It is called
692 * from interrupt level when the buffer containing the inode is
693 * flushed to disk.  It is responsible for removing the inode item
694 * from the AIL if it has not been re-logged, and unlocking the inode's
695 * flush lock.
696 *
697 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
698 * list for other inodes that will run this function. We remove them from the
699 * buffer list so we can process all the inode IO completions in one AIL lock
700 * traversal.
701 */
702void
703xfs_iflush_done(
704	struct xfs_buf		*bp,
705	struct xfs_log_item	*lip)
706{
707	struct xfs_inode_log_item *iip;
708	struct xfs_log_item	*blip;
709	struct xfs_log_item	*next;
710	struct xfs_log_item	*prev;
711	struct xfs_ail		*ailp = lip->li_ailp;
712	int			need_ail = 0;
713
714	/*
715	 * Scan the buffer IO completions for other inodes being completed and
716	 * attach them to the current inode log item.
717	 */
718	blip = bp->b_fspriv;
719	prev = NULL;
720	while (blip != NULL) {
721		if (lip->li_cb != xfs_iflush_done) {
722			prev = blip;
723			blip = blip->li_bio_list;
724			continue;
725		}
726
727		/* remove from list */
728		next = blip->li_bio_list;
729		if (!prev) {
730			bp->b_fspriv = next;
731		} else {
732			prev->li_bio_list = next;
733		}
 
 
 
 
 
 
 
 
 
 
 
 
734
735		/* add to current list */
736		blip->li_bio_list = lip->li_bio_list;
737		lip->li_bio_list = blip;
 
 
738
739		/*
740		 * while we have the item, do the unlocked check for needing
741		 * the AIL lock.
 
742		 */
743		iip = INODE_ITEM(blip);
744		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
745			need_ail++;
746
747		blip = next;
 
 
 
 
 
 
 
748	}
 
749
750	/* make sure we capture the state of the initial inode. */
751	iip = INODE_ITEM(lip);
752	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
753		need_ail++;
 
 
 
 
 
 
 
 
754
755	/*
756	 * We only want to pull the item from the AIL if it is
757	 * actually there and its location in the log has not
758	 * changed since we started the flush.  Thus, we only bother
759	 * if the ili_logged flag is set and the inode's lsn has not
760	 * changed.  First we check the lsn outside
761	 * the lock since it's cheaper, and then we recheck while
762	 * holding the lock before removing the inode from the AIL.
763	 */
764	if (need_ail) {
765		struct xfs_log_item *log_items[need_ail];
766		int i = 0;
767		spin_lock(&ailp->xa_lock);
768		for (blip = lip; blip; blip = blip->li_bio_list) {
769			iip = INODE_ITEM(blip);
770			if (iip->ili_logged &&
771			    blip->li_lsn == iip->ili_flush_lsn) {
772				log_items[i++] = blip;
773			}
774			ASSERT(i <= need_ail);
775		}
776		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
777		xfs_trans_ail_delete_bulk(ailp, log_items, i,
778					  SHUTDOWN_CORRUPT_INCORE);
779	}
780
781
782	/*
783	 * clean up and unlock the flush lock now we are done. We can clear the
784	 * ili_last_fields bits now that we know that the data corresponding to
785	 * them is safely on disk.
786	 */
787	for (blip = lip; blip; blip = next) {
788		next = blip->li_bio_list;
789		blip->li_bio_list = NULL;
790
791		iip = INODE_ITEM(blip);
792		iip->ili_logged = 0;
793		iip->ili_last_fields = 0;
794		xfs_ifunlock(iip->ili_inode);
795	}
 
 
 
 
 
 
 
 
 
 
 
796}
797
798/*
799 * This is the inode flushing abort routine.  It is called from xfs_iflush when
800 * the filesystem is shutting down to clean up the inode state.  It is
801 * responsible for removing the inode item from the AIL if it has not been
802 * re-logged, and unlocking the inode's flush lock.
803 */
804void
805xfs_iflush_abort(
806	xfs_inode_t		*ip,
807	bool			stale)
808{
809	xfs_inode_log_item_t	*iip = ip->i_itemp;
 
810
811	if (iip) {
812		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
813		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
814			spin_lock(&ailp->xa_lock);
815			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
816				/* xfs_trans_ail_delete() drops the AIL lock. */
817				xfs_trans_ail_delete(ailp, &iip->ili_item,
818						stale ?
819						     SHUTDOWN_LOG_IO_ERROR :
820						     SHUTDOWN_CORRUPT_INCORE);
821			} else
822				spin_unlock(&ailp->xa_lock);
823		}
824		iip->ili_logged = 0;
825		/*
826		 * Clear the ili_last_fields bits now that we know that the
827		 * data corresponding to them is safely on disk.
 
828		 */
829		iip->ili_last_fields = 0;
 
 
830		/*
831		 * Clear the inode logging fields so no more flushes are
832		 * attempted.
833		 */
 
 
834		iip->ili_fields = 0;
 
 
 
 
 
 
835	}
836	/*
837	 * Release the inode's flush lock since we're done with it.
838	 */
839	xfs_ifunlock(ip);
840}
841
842void
843xfs_istale_done(
844	struct xfs_buf		*bp,
845	struct xfs_log_item	*lip)
846{
847	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
848}
849
850/*
851 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
852 * (which can have different field alignments) to the native version
853 */
854int
855xfs_inode_item_format_convert(
856	xfs_log_iovec_t		*buf,
857	xfs_inode_log_format_t	*in_f)
858{
859	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
860		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
861
862		in_f->ilf_type = in_f32->ilf_type;
863		in_f->ilf_size = in_f32->ilf_size;
864		in_f->ilf_fields = in_f32->ilf_fields;
865		in_f->ilf_asize = in_f32->ilf_asize;
866		in_f->ilf_dsize = in_f32->ilf_dsize;
867		in_f->ilf_ino = in_f32->ilf_ino;
868		/* copy biggest field of ilf_u */
869		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
870		       in_f32->ilf_u.ilfu_uuid.__u_bits,
871		       sizeof(uuid_t));
872		in_f->ilf_blkno = in_f32->ilf_blkno;
873		in_f->ilf_len = in_f32->ilf_len;
874		in_f->ilf_boffset = in_f32->ilf_boffset;
875		return 0;
876	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
877		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
878
879		in_f->ilf_type = in_f64->ilf_type;
880		in_f->ilf_size = in_f64->ilf_size;
881		in_f->ilf_fields = in_f64->ilf_fields;
882		in_f->ilf_asize = in_f64->ilf_asize;
883		in_f->ilf_dsize = in_f64->ilf_dsize;
884		in_f->ilf_ino = in_f64->ilf_ino;
885		/* copy biggest field of ilf_u */
886		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
887		       in_f64->ilf_u.ilfu_uuid.__u_bits,
888		       sizeof(uuid_t));
889		in_f->ilf_blkno = in_f64->ilf_blkno;
890		in_f->ilf_len = in_f64->ilf_len;
891		in_f->ilf_boffset = in_f64->ilf_boffset;
892		return 0;
893	}
894	return EFSCORRUPTED;
895}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 
 12#include "xfs_mount.h"
 
 
 
 13#include "xfs_inode.h"
 14#include "xfs_trans.h"
 15#include "xfs_inode_item.h"
 
 16#include "xfs_trace.h"
 17#include "xfs_trans_priv.h"
 18#include "xfs_buf_item.h"
 19#include "xfs_log.h"
 20#include "xfs_error.h"
 21
 22#include <linux/iversion.h>
 23
 24kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
 25
 26static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
 27{
 28	return container_of(lip, struct xfs_inode_log_item, ili_item);
 29}
 30
 31STATIC void
 32xfs_inode_item_data_fork_size(
 33	struct xfs_inode_log_item *iip,
 34	int			*nvecs,
 35	int			*nbytes)
 
 
 
 
 
 
 36{
 
 37	struct xfs_inode	*ip = iip->ili_inode;
 
 38
 39	switch (ip->i_df.if_format) {
 40	case XFS_DINODE_FMT_EXTENTS:
 41		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
 42		    ip->i_df.if_nextents > 0 &&
 43		    ip->i_df.if_bytes > 0) {
 44			/* worst case, doesn't subtract delalloc extents */
 45			*nbytes += XFS_IFORK_DSIZE(ip);
 46			*nvecs += 1;
 47		}
 48		break;
 
 49	case XFS_DINODE_FMT_BTREE:
 50		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
 51		    ip->i_df.if_broot_bytes > 0) {
 52			*nbytes += ip->i_df.if_broot_bytes;
 53			*nvecs += 1;
 54		}
 55		break;
 
 56	case XFS_DINODE_FMT_LOCAL:
 57		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
 58		    ip->i_df.if_bytes > 0) {
 59			*nbytes += roundup(ip->i_df.if_bytes, 4);
 60			*nvecs += 1;
 61		}
 62		break;
 63
 64	case XFS_DINODE_FMT_DEV:
 
 65		break;
 
 66	default:
 67		ASSERT(0);
 68		break;
 69	}
 70}
 71
 72STATIC void
 73xfs_inode_item_attr_fork_size(
 74	struct xfs_inode_log_item *iip,
 75	int			*nvecs,
 76	int			*nbytes)
 77{
 78	struct xfs_inode	*ip = iip->ili_inode;
 79
 80	switch (ip->i_afp->if_format) {
 
 
 
 81	case XFS_DINODE_FMT_EXTENTS:
 82		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
 83		    ip->i_afp->if_nextents > 0 &&
 84		    ip->i_afp->if_bytes > 0) {
 85			/* worst case, doesn't subtract unused space */
 86			*nbytes += XFS_IFORK_ASIZE(ip);
 87			*nvecs += 1;
 88		}
 89		break;
 
 90	case XFS_DINODE_FMT_BTREE:
 91		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
 92		    ip->i_afp->if_broot_bytes > 0) {
 93			*nbytes += ip->i_afp->if_broot_bytes;
 94			*nvecs += 1;
 95		}
 96		break;
 
 97	case XFS_DINODE_FMT_LOCAL:
 98		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
 99		    ip->i_afp->if_bytes > 0) {
100			*nbytes += roundup(ip->i_afp->if_bytes, 4);
101			*nvecs += 1;
102		}
103		break;
 
104	default:
105		ASSERT(0);
106		break;
107	}
 
 
108}
109
110/*
111 * This returns the number of iovecs needed to log the given inode item.
 
 
 
 
 
 
 
112 *
113 * We need one iovec for the inode log format structure, one for the
114 * inode core, and possibly one for the inode data/extents/b-tree root
115 * and one for the inode attribute data/extents/b-tree root.
 
116 */
117STATIC void
118xfs_inode_item_size(
119	struct xfs_log_item	*lip,
120	int			*nvecs,
121	int			*nbytes)
 
122{
123	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
124	struct xfs_inode	*ip = iip->ili_inode;
 
 
 
 
 
125
126	*nvecs += 2;
127	*nbytes += sizeof(struct xfs_inode_log_format) +
128		   xfs_log_dinode_size(ip->i_mount);
129
130	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
131	if (XFS_IFORK_Q(ip))
132		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
133}
134
 
 
 
 
 
 
 
135STATIC void
136xfs_inode_item_format_data_fork(
137	struct xfs_inode_log_item *iip,
138	struct xfs_inode_log_format *ilf,
139	struct xfs_log_vec	*lv,
140	struct xfs_log_iovec	**vecp)
141{
 
142	struct xfs_inode	*ip = iip->ili_inode;
 
143	size_t			data_bytes;
 
144
145	switch (ip->i_df.if_format) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146	case XFS_DINODE_FMT_EXTENTS:
147		iip->ili_fields &=
148			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 
149
150		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
151		    ip->i_df.if_nextents > 0 &&
152		    ip->i_df.if_bytes > 0) {
153			struct xfs_bmbt_rec *p;
154
155			ASSERT(xfs_iext_count(&ip->i_df) > 0);
156
157			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
158			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
159			xlog_finish_iovec(lv, *vecp, data_bytes);
160
161			ASSERT(data_bytes <= ip->i_df.if_bytes);
162
163			ilf->ilf_dsize = data_bytes;
164			ilf->ilf_size++;
 
 
 
 
 
 
 
 
 
 
 
 
 
165		} else {
166			iip->ili_fields &= ~XFS_ILOG_DEXT;
167		}
168		break;
 
169	case XFS_DINODE_FMT_BTREE:
170		iip->ili_fields &=
171			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
 
172
173		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
174		    ip->i_df.if_broot_bytes > 0) {
175			ASSERT(ip->i_df.if_broot != NULL);
176			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
177					ip->i_df.if_broot,
178					ip->i_df.if_broot_bytes);
179			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
180			ilf->ilf_size++;
 
181		} else {
182			ASSERT(!(iip->ili_fields &
183				 XFS_ILOG_DBROOT));
 
 
 
 
 
 
 
 
 
 
 
184			iip->ili_fields &= ~XFS_ILOG_DBROOT;
185		}
186		break;
 
187	case XFS_DINODE_FMT_LOCAL:
188		iip->ili_fields &=
189			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
 
190		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
191		    ip->i_df.if_bytes > 0) {
 
 
 
 
192			/*
193			 * Round i_bytes up to a word boundary.
194			 * The underlying memory is guaranteed
195			 * to be there by xfs_idata_realloc().
196			 */
197			data_bytes = roundup(ip->i_df.if_bytes, 4);
198			ASSERT(ip->i_df.if_u1.if_data != NULL);
199			ASSERT(ip->i_d.di_size > 0);
200			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
201					ip->i_df.if_u1.if_data, data_bytes);
202			ilf->ilf_dsize = (unsigned)data_bytes;
203			ilf->ilf_size++;
 
204		} else {
205			iip->ili_fields &= ~XFS_ILOG_DDATA;
206		}
207		break;
 
208	case XFS_DINODE_FMT_DEV:
209		iip->ili_fields &=
210			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
211		if (iip->ili_fields & XFS_ILOG_DEV)
212			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
213		break;
 
214	default:
215		ASSERT(0);
216		break;
217	}
218}
219
220STATIC void
221xfs_inode_item_format_attr_fork(
222	struct xfs_inode_log_item *iip,
223	struct xfs_inode_log_format *ilf,
224	struct xfs_log_vec	*lv,
225	struct xfs_log_iovec	**vecp)
226{
227	struct xfs_inode	*ip = iip->ili_inode;
228	size_t			data_bytes;
229
230	switch (ip->i_afp->if_format) {
231	case XFS_DINODE_FMT_EXTENTS:
232		iip->ili_fields &=
233			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
234
235		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
236		    ip->i_afp->if_nextents > 0 &&
237		    ip->i_afp->if_bytes > 0) {
238			struct xfs_bmbt_rec *p;
239
240			ASSERT(xfs_iext_count(ip->i_afp) ==
241				ip->i_afp->if_nextents);
242
243			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
244			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
245			xlog_finish_iovec(lv, *vecp, data_bytes);
246
247			ilf->ilf_asize = data_bytes;
248			ilf->ilf_size++;
 
 
 
 
 
 
 
 
249		} else {
250			iip->ili_fields &= ~XFS_ILOG_AEXT;
251		}
252		break;
 
253	case XFS_DINODE_FMT_BTREE:
254		iip->ili_fields &=
255			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
256
257		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
258		    ip->i_afp->if_broot_bytes > 0) {
259			ASSERT(ip->i_afp->if_broot != NULL);
260
261			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
262					ip->i_afp->if_broot,
263					ip->i_afp->if_broot_bytes);
264			ilf->ilf_asize = ip->i_afp->if_broot_bytes;
265			ilf->ilf_size++;
 
266		} else {
267			iip->ili_fields &= ~XFS_ILOG_ABROOT;
268		}
269		break;
 
270	case XFS_DINODE_FMT_LOCAL:
271		iip->ili_fields &=
272			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
273
274		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
275		    ip->i_afp->if_bytes > 0) {
 
 
 
276			/*
277			 * Round i_bytes up to a word boundary.
278			 * The underlying memory is guaranteed
279			 * to be there by xfs_idata_realloc().
280			 */
281			data_bytes = roundup(ip->i_afp->if_bytes, 4);
282			ASSERT(ip->i_afp->if_u1.if_data != NULL);
283			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
284					ip->i_afp->if_u1.if_data,
285					data_bytes);
286			ilf->ilf_asize = (unsigned)data_bytes;
287			ilf->ilf_size++;
 
288		} else {
289			iip->ili_fields &= ~XFS_ILOG_ADATA;
290		}
291		break;
 
292	default:
293		ASSERT(0);
294		break;
295	}
296}
297
298static void
299xfs_inode_to_log_dinode(
300	struct xfs_inode	*ip,
301	struct xfs_log_dinode	*to,
302	xfs_lsn_t		lsn)
303{
304	struct xfs_icdinode	*from = &ip->i_d;
305	struct inode		*inode = VFS_I(ip);
306
307	to->di_magic = XFS_DINODE_MAGIC;
308	to->di_format = xfs_ifork_format(&ip->i_df);
309	to->di_uid = i_uid_read(inode);
310	to->di_gid = i_gid_read(inode);
311	to->di_projid_lo = from->di_projid & 0xffff;
312	to->di_projid_hi = from->di_projid >> 16;
313
314	memset(to->di_pad, 0, sizeof(to->di_pad));
315	memset(to->di_pad3, 0, sizeof(to->di_pad3));
316	to->di_atime.t_sec = inode->i_atime.tv_sec;
317	to->di_atime.t_nsec = inode->i_atime.tv_nsec;
318	to->di_mtime.t_sec = inode->i_mtime.tv_sec;
319	to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
320	to->di_ctime.t_sec = inode->i_ctime.tv_sec;
321	to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
322	to->di_nlink = inode->i_nlink;
323	to->di_gen = inode->i_generation;
324	to->di_mode = inode->i_mode;
325
326	to->di_size = from->di_size;
327	to->di_nblocks = from->di_nblocks;
328	to->di_extsize = from->di_extsize;
329	to->di_nextents = xfs_ifork_nextents(&ip->i_df);
330	to->di_anextents = xfs_ifork_nextents(ip->i_afp);
331	to->di_forkoff = from->di_forkoff;
332	to->di_aformat = xfs_ifork_format(ip->i_afp);
333	to->di_dmevmask = from->di_dmevmask;
334	to->di_dmstate = from->di_dmstate;
335	to->di_flags = from->di_flags;
336
337	/* log a dummy value to ensure log structure is fully initialised */
338	to->di_next_unlinked = NULLAGINO;
339
340	if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
341		to->di_version = 3;
342		to->di_changecount = inode_peek_iversion(inode);
343		to->di_crtime.t_sec = from->di_crtime.tv_sec;
344		to->di_crtime.t_nsec = from->di_crtime.tv_nsec;
345		to->di_flags2 = from->di_flags2;
346		to->di_cowextsize = from->di_cowextsize;
347		to->di_ino = ip->i_ino;
348		to->di_lsn = lsn;
349		memset(to->di_pad2, 0, sizeof(to->di_pad2));
350		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
351		to->di_flushiter = 0;
352	} else {
353		to->di_version = 2;
354		to->di_flushiter = from->di_flushiter;
355	}
356}
357
358/*
359 * Format the inode core. Current timestamp data is only in the VFS inode
360 * fields, so we need to grab them from there. Hence rather than just copying
361 * the XFS inode core structure, format the fields directly into the iovec.
362 */
363static void
364xfs_inode_item_format_core(
365	struct xfs_inode	*ip,
366	struct xfs_log_vec	*lv,
367	struct xfs_log_iovec	**vecp)
368{
369	struct xfs_log_dinode	*dic;
370
371	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
372	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
373	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
374}
375
376/*
377 * This is called to fill in the vector of log iovecs for the given inode
378 * log item.  It fills the first item with an inode log format structure,
379 * the second with the on-disk inode structure, and a possible third and/or
380 * fourth with the inode data/extents/b-tree root and inode attributes
381 * data/extents/b-tree root.
382 *
383 * Note: Always use the 64 bit inode log format structure so we don't
384 * leave an uninitialised hole in the format item on 64 bit systems. Log
385 * recovery on 32 bit systems handles this just fine, so there's no reason
386 * for not using an initialising the properly padded structure all the time.
387 */
388STATIC void
389xfs_inode_item_format(
390	struct xfs_log_item	*lip,
391	struct xfs_log_vec	*lv)
392{
393	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
394	struct xfs_inode	*ip = iip->ili_inode;
395	struct xfs_log_iovec	*vecp = NULL;
396	struct xfs_inode_log_format *ilf;
397
398	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
399	ilf->ilf_type = XFS_LI_INODE;
400	ilf->ilf_ino = ip->i_ino;
401	ilf->ilf_blkno = ip->i_imap.im_blkno;
402	ilf->ilf_len = ip->i_imap.im_len;
403	ilf->ilf_boffset = ip->i_imap.im_boffset;
404	ilf->ilf_fields = XFS_ILOG_CORE;
405	ilf->ilf_size = 2; /* format + core */
406
407	/*
408	 * make sure we don't leak uninitialised data into the log in the case
409	 * when we don't log every field in the inode.
410	 */
411	ilf->ilf_dsize = 0;
412	ilf->ilf_asize = 0;
413	ilf->ilf_pad = 0;
414	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
415
416	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
417
418	xfs_inode_item_format_core(ip, lv, &vecp);
419	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
420	if (XFS_IFORK_Q(ip)) {
421		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
422	} else {
423		iip->ili_fields &=
424			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
425	}
426
427	/* update the format with the exact fields we actually logged */
428	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
429}
430
431/*
432 * This is called to pin the inode associated with the inode log
433 * item in memory so it cannot be written out.
434 */
435STATIC void
436xfs_inode_item_pin(
437	struct xfs_log_item	*lip)
438{
439	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
440
441	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
442	ASSERT(lip->li_buf);
443
444	trace_xfs_inode_pin(ip, _RET_IP_);
445	atomic_inc(&ip->i_pincount);
446}
447
448
449/*
450 * This is called to unpin the inode associated with the inode log
451 * item which was previously pinned with a call to xfs_inode_item_pin().
452 *
453 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
454 *
455 * Note that unpin can race with inode cluster buffer freeing marking the buffer
456 * stale. In that case, flush completions are run from the buffer unpin call,
457 * which may happen before the inode is unpinned. If we lose the race, there
458 * will be no buffer attached to the log item, but the inode will be marked
459 * XFS_ISTALE.
460 */
461STATIC void
462xfs_inode_item_unpin(
463	struct xfs_log_item	*lip,
464	int			remove)
465{
466	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
467
468	trace_xfs_inode_unpin(ip, _RET_IP_);
469	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
470	ASSERT(atomic_read(&ip->i_pincount) > 0);
471	if (atomic_dec_and_test(&ip->i_pincount))
472		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
473}
474
475STATIC uint
476xfs_inode_item_push(
477	struct xfs_log_item	*lip,
478	struct list_head	*buffer_list)
479		__releases(&lip->li_ailp->ail_lock)
480		__acquires(&lip->li_ailp->ail_lock)
481{
482	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
483	struct xfs_inode	*ip = iip->ili_inode;
484	struct xfs_buf		*bp = lip->li_buf;
485	uint			rval = XFS_ITEM_SUCCESS;
486	int			error;
487
488	ASSERT(iip->ili_item.li_buf);
489
490	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp) ||
491	    (ip->i_flags & XFS_ISTALE))
492		return XFS_ITEM_PINNED;
493
494	/* If the inode is already flush locked, we're already flushing. */
495	if (xfs_isiflocked(ip))
496		return XFS_ITEM_FLUSHING;
497
498	if (!xfs_buf_trylock(bp))
499		return XFS_ITEM_LOCKED;
 
 
 
 
 
 
500
501	spin_unlock(&lip->li_ailp->ail_lock);
 
 
 
 
 
 
502
503	/*
504	 * We need to hold a reference for flushing the cluster buffer as it may
505	 * fail the buffer without IO submission. In which case, we better get a
506	 * reference for that completion because otherwise we don't get a
507	 * reference for IO until we queue the buffer for delwri submission.
508	 */
509	xfs_buf_hold(bp);
510	error = xfs_iflush_cluster(bp);
 
 
 
 
 
 
 
 
 
511	if (!error) {
512		if (!xfs_buf_delwri_queue(bp, buffer_list))
513			rval = XFS_ITEM_FLUSHING;
514		xfs_buf_relse(bp);
515	} else {
516		/*
517		 * Release the buffer if we were unable to flush anything. On
518		 * any other error, the buffer has already been released.
519		 */
520		if (error == -EAGAIN)
521			xfs_buf_relse(bp);
522		rval = XFS_ITEM_LOCKED;
523	}
524
525	spin_lock(&lip->li_ailp->ail_lock);
 
 
526	return rval;
527}
528
529/*
530 * Unlock the inode associated with the inode log item.
 
 
 
531 */
532STATIC void
533xfs_inode_item_release(
534	struct xfs_log_item	*lip)
535{
536	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
537	struct xfs_inode	*ip = iip->ili_inode;
538	unsigned short		lock_flags;
539
540	ASSERT(ip->i_itemp != NULL);
541	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
542
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543	lock_flags = iip->ili_lock_flags;
544	iip->ili_lock_flags = 0;
545	if (lock_flags)
546		xfs_iunlock(ip, lock_flags);
547}
548
549/*
550 * This is called to find out where the oldest active copy of the inode log
551 * item in the on disk log resides now that the last log write of it completed
552 * at the given lsn.  Since we always re-log all dirty data in an inode, the
553 * latest copy in the on disk log is the only one that matters.  Therefore,
554 * simply return the given lsn.
555 *
556 * If the inode has been marked stale because the cluster is being freed, we
557 * don't want to (re-)insert this inode into the AIL. There is a race condition
558 * where the cluster buffer may be unpinned before the inode is inserted into
559 * the AIL during transaction committed processing. If the buffer is unpinned
560 * before the inode item has been committed and inserted, then it is possible
561 * for the buffer to be written and IO completes before the inode is inserted
562 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
563 * AIL which will never get removed. It will, however, get reclaimed which
564 * triggers an assert in xfs_inode_free() complaining about freein an inode
565 * still in the AIL.
566 *
567 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
568 * transaction committed code knows that it does not need to do any further
569 * processing on the item.
570 */
571STATIC xfs_lsn_t
572xfs_inode_item_committed(
573	struct xfs_log_item	*lip,
574	xfs_lsn_t		lsn)
575{
576	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
577	struct xfs_inode	*ip = iip->ili_inode;
578
579	if (xfs_iflags_test(ip, XFS_ISTALE)) {
580		xfs_inode_item_unpin(lip, 0);
581		return -1;
582	}
583	return lsn;
584}
585
 
 
 
 
586STATIC void
587xfs_inode_item_committing(
588	struct xfs_log_item	*lip,
589	xfs_lsn_t		commit_lsn)
590{
591	INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
592	return xfs_inode_item_release(lip);
593}
594
 
 
 
595static const struct xfs_item_ops xfs_inode_item_ops = {
596	.iop_size	= xfs_inode_item_size,
597	.iop_format	= xfs_inode_item_format,
598	.iop_pin	= xfs_inode_item_pin,
599	.iop_unpin	= xfs_inode_item_unpin,
600	.iop_release	= xfs_inode_item_release,
601	.iop_committed	= xfs_inode_item_committed,
602	.iop_push	= xfs_inode_item_push,
603	.iop_committing	= xfs_inode_item_committing,
604};
605
606
607/*
608 * Initialize the inode log item for a newly allocated (in-core) inode.
609 */
610void
611xfs_inode_item_init(
612	struct xfs_inode	*ip,
613	struct xfs_mount	*mp)
614{
615	struct xfs_inode_log_item *iip;
616
617	ASSERT(ip->i_itemp == NULL);
618	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_zone,
619					      GFP_KERNEL | __GFP_NOFAIL);
620
621	iip->ili_inode = ip;
622	spin_lock_init(&iip->ili_lock);
623	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
624						&xfs_inode_item_ops);
 
 
 
 
 
625}
626
627/*
628 * Free the inode log item and any memory hanging off of it.
629 */
630void
631xfs_inode_item_destroy(
632	struct xfs_inode	*ip)
633{
634	struct xfs_inode_log_item *iip = ip->i_itemp;
635
636	ASSERT(iip->ili_item.li_buf == NULL);
637
638	ip->i_itemp = NULL;
639	kmem_free(iip->ili_item.li_lv_shadow);
640	kmem_cache_free(xfs_ili_zone, iip);
641}
642
643
644/*
645 * We only want to pull the item from the AIL if it is actually there
646 * and its location in the log has not changed since we started the
647 * flush.  Thus, we only bother if the inode's lsn has not changed.
 
 
 
 
 
 
 
648 */
649static void
650xfs_iflush_ail_updates(
651	struct xfs_ail		*ailp,
652	struct list_head	*list)
653{
654	struct xfs_log_item	*lip;
655	xfs_lsn_t		tail_lsn = 0;
 
 
 
 
656
657	/* this is an opencoded batch version of xfs_trans_ail_delete */
658	spin_lock(&ailp->ail_lock);
659	list_for_each_entry(lip, list, li_bio_list) {
660		xfs_lsn_t	lsn;
661
662		clear_bit(XFS_LI_FAILED, &lip->li_flags);
663		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
 
 
 
664			continue;
 
665
666		lsn = xfs_ail_delete_one(ailp, lip);
667		if (!tail_lsn && lsn)
668			tail_lsn = lsn;
669	}
670	xfs_ail_update_finish(ailp, tail_lsn);
671}
672
673/*
674 * Walk the list of inodes that have completed their IOs. If they are clean
675 * remove them from the list and dissociate them from the buffer. Buffers that
676 * are still dirty remain linked to the buffer and on the list. Caller must
677 * handle them appropriately.
678 */
679static void
680xfs_iflush_finish(
681	struct xfs_buf		*bp,
682	struct list_head	*list)
683{
684	struct xfs_log_item	*lip, *n;
685
686	list_for_each_entry_safe(lip, n, list, li_bio_list) {
687		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
688		bool	drop_buffer = false;
689
690		spin_lock(&iip->ili_lock);
691
692		/*
693		 * Remove the reference to the cluster buffer if the inode is
694		 * clean in memory and drop the buffer reference once we've
695		 * dropped the locks we hold.
696		 */
697		ASSERT(iip->ili_item.li_buf == bp);
698		if (!iip->ili_fields) {
699			iip->ili_item.li_buf = NULL;
700			list_del_init(&lip->li_bio_list);
701			drop_buffer = true;
702		}
703		iip->ili_last_fields = 0;
704		iip->ili_flush_lsn = 0;
705		spin_unlock(&iip->ili_lock);
706		xfs_ifunlock(iip->ili_inode);
707		if (drop_buffer)
708			xfs_buf_rele(bp);
709	}
710}
711
712/*
713 * Inode buffer IO completion routine.  It is responsible for removing inodes
714 * attached to the buffer from the AIL if they have not been re-logged, as well
715 * as completing the flush and unlocking the inode.
716 */
717void
718xfs_iflush_done(
719	struct xfs_buf		*bp)
720{
721	struct xfs_log_item	*lip, *n;
722	LIST_HEAD(flushed_inodes);
723	LIST_HEAD(ail_updates);
724
725	/*
726	 * Pull the attached inodes from the buffer one at a time and take the
727	 * appropriate action on them.
 
 
 
 
 
728	 */
729	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
730		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731
732		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
733			xfs_iflush_abort(iip->ili_inode);
734			continue;
735		}
736		if (!iip->ili_last_fields)
737			continue;
 
 
738
739		/* Do an unlocked check for needing the AIL lock. */
740		if (iip->ili_flush_lsn == lip->li_lsn ||
741		    test_bit(XFS_LI_FAILED, &lip->li_flags))
742			list_move_tail(&lip->li_bio_list, &ail_updates);
743		else
744			list_move_tail(&lip->li_bio_list, &flushed_inodes);
745	}
746
747	if (!list_empty(&ail_updates)) {
748		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
749		list_splice_tail(&ail_updates, &flushed_inodes);
750	}
751
752	xfs_iflush_finish(bp, &flushed_inodes);
753	if (!list_empty(&flushed_inodes))
754		list_splice_tail(&flushed_inodes, &bp->b_li_list);
755}
756
757/*
758 * This is the inode flushing abort routine.  It is called from xfs_iflush when
759 * the filesystem is shutting down to clean up the inode state.  It is
760 * responsible for removing the inode item from the AIL if it has not been
761 * re-logged, and unlocking the inode's flush lock.
762 */
763void
764xfs_iflush_abort(
765	struct xfs_inode	*ip)
 
766{
767	struct xfs_inode_log_item *iip = ip->i_itemp;
768	struct xfs_buf		*bp = NULL;
769
770	if (iip) {
 
 
 
 
 
 
 
 
 
 
 
 
 
771		/*
772		 * Clear the failed bit before removing the item from the AIL so
773		 * xfs_trans_ail_delete() doesn't try to clear and release the
774		 * buffer attached to the log item before we are done with it.
775		 */
776		clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
777		xfs_trans_ail_delete(&iip->ili_item, 0);
778
779		/*
780		 * Clear the inode logging fields so no more flushes are
781		 * attempted.
782		 */
783		spin_lock(&iip->ili_lock);
784		iip->ili_last_fields = 0;
785		iip->ili_fields = 0;
786		iip->ili_fsync_fields = 0;
787		iip->ili_flush_lsn = 0;
788		bp = iip->ili_item.li_buf;
789		iip->ili_item.li_buf = NULL;
790		list_del_init(&iip->ili_item.li_bio_list);
791		spin_unlock(&iip->ili_lock);
792	}
 
 
 
793	xfs_ifunlock(ip);
794	if (bp)
795		xfs_buf_rele(bp);
 
 
 
 
 
 
796}
797
798/*
799 * convert an xfs_inode_log_format struct from the old 32 bit version
800 * (which can have different field alignments) to the native 64 bit version
801 */
802int
803xfs_inode_item_format_convert(
804	struct xfs_log_iovec		*buf,
805	struct xfs_inode_log_format	*in_f)
806{
807	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
 
808
809	if (buf->i_len != sizeof(*in_f32)) {
810		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
811		return -EFSCORRUPTED;
812	}
813
814	in_f->ilf_type = in_f32->ilf_type;
815	in_f->ilf_size = in_f32->ilf_size;
816	in_f->ilf_fields = in_f32->ilf_fields;
817	in_f->ilf_asize = in_f32->ilf_asize;
818	in_f->ilf_dsize = in_f32->ilf_dsize;
819	in_f->ilf_ino = in_f32->ilf_ino;
820	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
821	in_f->ilf_blkno = in_f32->ilf_blkno;
822	in_f->ilf_len = in_f32->ilf_len;
823	in_f->ilf_boffset = in_f32->ilf_boffset;
824	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
825}