Loading...
1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_log.h"
22#include "xfs_trans.h"
23#include "xfs_sb.h"
24#include "xfs_ag.h"
25#include "xfs_mount.h"
26#include "xfs_trans_priv.h"
27#include "xfs_bmap_btree.h"
28#include "xfs_dinode.h"
29#include "xfs_inode.h"
30#include "xfs_inode_item.h"
31#include "xfs_error.h"
32#include "xfs_trace.h"
33
34
35kmem_zone_t *xfs_ili_zone; /* inode log item zone */
36
37static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
38{
39 return container_of(lip, struct xfs_inode_log_item, ili_item);
40}
41
42
43/*
44 * This returns the number of iovecs needed to log the given inode item.
45 *
46 * We need one iovec for the inode log format structure, one for the
47 * inode core, and possibly one for the inode data/extents/b-tree root
48 * and one for the inode attribute data/extents/b-tree root.
49 */
50STATIC uint
51xfs_inode_item_size(
52 struct xfs_log_item *lip)
53{
54 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
55 struct xfs_inode *ip = iip->ili_inode;
56 uint nvecs = 2;
57
58 switch (ip->i_d.di_format) {
59 case XFS_DINODE_FMT_EXTENTS:
60 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
61 ip->i_d.di_nextents > 0 &&
62 ip->i_df.if_bytes > 0)
63 nvecs++;
64 break;
65
66 case XFS_DINODE_FMT_BTREE:
67 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
68 ip->i_df.if_broot_bytes > 0)
69 nvecs++;
70 break;
71
72 case XFS_DINODE_FMT_LOCAL:
73 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
74 ip->i_df.if_bytes > 0)
75 nvecs++;
76 break;
77
78 case XFS_DINODE_FMT_DEV:
79 case XFS_DINODE_FMT_UUID:
80 break;
81
82 default:
83 ASSERT(0);
84 break;
85 }
86
87 if (!XFS_IFORK_Q(ip))
88 return nvecs;
89
90
91 /*
92 * Log any necessary attribute data.
93 */
94 switch (ip->i_d.di_aformat) {
95 case XFS_DINODE_FMT_EXTENTS:
96 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
97 ip->i_d.di_anextents > 0 &&
98 ip->i_afp->if_bytes > 0)
99 nvecs++;
100 break;
101
102 case XFS_DINODE_FMT_BTREE:
103 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
104 ip->i_afp->if_broot_bytes > 0)
105 nvecs++;
106 break;
107
108 case XFS_DINODE_FMT_LOCAL:
109 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
110 ip->i_afp->if_bytes > 0)
111 nvecs++;
112 break;
113
114 default:
115 ASSERT(0);
116 break;
117 }
118
119 return nvecs;
120}
121
122/*
123 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
124 *
125 * For either the data or attr fork in extent format, we need to endian convert
126 * the in-core extent as we place them into the on-disk inode. In this case, we
127 * need to do this conversion before we write the extents into the log. Because
128 * we don't have the disk inode to write into here, we allocate a buffer and
129 * format the extents into it via xfs_iextents_copy(). We free the buffer in
130 * the unlock routine after the copy for the log has been made.
131 *
132 * In the case of the data fork, the in-core and on-disk fork sizes can be
133 * different due to delayed allocation extents. We only log on-disk extents
134 * here, so always use the physical fork size to determine the size of the
135 * buffer we need to allocate.
136 */
137STATIC void
138xfs_inode_item_format_extents(
139 struct xfs_inode *ip,
140 struct xfs_log_iovec *vecp,
141 int whichfork,
142 int type)
143{
144 xfs_bmbt_rec_t *ext_buffer;
145
146 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
147 if (whichfork == XFS_DATA_FORK)
148 ip->i_itemp->ili_extents_buf = ext_buffer;
149 else
150 ip->i_itemp->ili_aextents_buf = ext_buffer;
151
152 vecp->i_addr = ext_buffer;
153 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
154 vecp->i_type = type;
155}
156
157/*
158 * This is called to fill in the vector of log iovecs for the
159 * given inode log item. It fills the first item with an inode
160 * log format structure, the second with the on-disk inode structure,
161 * and a possible third and/or fourth with the inode data/extents/b-tree
162 * root and inode attributes data/extents/b-tree root.
163 */
164STATIC void
165xfs_inode_item_format(
166 struct xfs_log_item *lip,
167 struct xfs_log_iovec *vecp)
168{
169 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
170 struct xfs_inode *ip = iip->ili_inode;
171 uint nvecs;
172 size_t data_bytes;
173 xfs_mount_t *mp;
174
175 vecp->i_addr = &iip->ili_format;
176 vecp->i_len = sizeof(xfs_inode_log_format_t);
177 vecp->i_type = XLOG_REG_TYPE_IFORMAT;
178 vecp++;
179 nvecs = 1;
180
181 vecp->i_addr = &ip->i_d;
182 vecp->i_len = sizeof(struct xfs_icdinode);
183 vecp->i_type = XLOG_REG_TYPE_ICORE;
184 vecp++;
185 nvecs++;
186
187 /*
188 * If this is really an old format inode, then we need to
189 * log it as such. This means that we have to copy the link
190 * count from the new field to the old. We don't have to worry
191 * about the new fields, because nothing trusts them as long as
192 * the old inode version number is there. If the superblock already
193 * has a new version number, then we don't bother converting back.
194 */
195 mp = ip->i_mount;
196 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
197 if (ip->i_d.di_version == 1) {
198 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
199 /*
200 * Convert it back.
201 */
202 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
203 ip->i_d.di_onlink = ip->i_d.di_nlink;
204 } else {
205 /*
206 * The superblock version has already been bumped,
207 * so just make the conversion to the new inode
208 * format permanent.
209 */
210 ip->i_d.di_version = 2;
211 ip->i_d.di_onlink = 0;
212 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
213 }
214 }
215
216 switch (ip->i_d.di_format) {
217 case XFS_DINODE_FMT_EXTENTS:
218 iip->ili_fields &=
219 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
220 XFS_ILOG_DEV | XFS_ILOG_UUID);
221
222 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
223 ip->i_d.di_nextents > 0 &&
224 ip->i_df.if_bytes > 0) {
225 ASSERT(ip->i_df.if_u1.if_extents != NULL);
226 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
227 ASSERT(iip->ili_extents_buf == NULL);
228
229#ifdef XFS_NATIVE_HOST
230 if (ip->i_d.di_nextents == ip->i_df.if_bytes /
231 (uint)sizeof(xfs_bmbt_rec_t)) {
232 /*
233 * There are no delayed allocation
234 * extents, so just point to the
235 * real extents array.
236 */
237 vecp->i_addr = ip->i_df.if_u1.if_extents;
238 vecp->i_len = ip->i_df.if_bytes;
239 vecp->i_type = XLOG_REG_TYPE_IEXT;
240 } else
241#endif
242 {
243 xfs_inode_item_format_extents(ip, vecp,
244 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
245 }
246 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
247 iip->ili_format.ilf_dsize = vecp->i_len;
248 vecp++;
249 nvecs++;
250 } else {
251 iip->ili_fields &= ~XFS_ILOG_DEXT;
252 }
253 break;
254
255 case XFS_DINODE_FMT_BTREE:
256 iip->ili_fields &=
257 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
258 XFS_ILOG_DEV | XFS_ILOG_UUID);
259
260 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
261 ip->i_df.if_broot_bytes > 0) {
262 ASSERT(ip->i_df.if_broot != NULL);
263 vecp->i_addr = ip->i_df.if_broot;
264 vecp->i_len = ip->i_df.if_broot_bytes;
265 vecp->i_type = XLOG_REG_TYPE_IBROOT;
266 vecp++;
267 nvecs++;
268 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
269 } else {
270 ASSERT(!(iip->ili_fields &
271 XFS_ILOG_DBROOT));
272#ifdef XFS_TRANS_DEBUG
273 if (iip->ili_root_size > 0) {
274 ASSERT(iip->ili_root_size ==
275 ip->i_df.if_broot_bytes);
276 ASSERT(memcmp(iip->ili_orig_root,
277 ip->i_df.if_broot,
278 iip->ili_root_size) == 0);
279 } else {
280 ASSERT(ip->i_df.if_broot_bytes == 0);
281 }
282#endif
283 iip->ili_fields &= ~XFS_ILOG_DBROOT;
284 }
285 break;
286
287 case XFS_DINODE_FMT_LOCAL:
288 iip->ili_fields &=
289 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
290 XFS_ILOG_DEV | XFS_ILOG_UUID);
291 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
292 ip->i_df.if_bytes > 0) {
293 ASSERT(ip->i_df.if_u1.if_data != NULL);
294 ASSERT(ip->i_d.di_size > 0);
295
296 vecp->i_addr = ip->i_df.if_u1.if_data;
297 /*
298 * Round i_bytes up to a word boundary.
299 * The underlying memory is guaranteed to
300 * to be there by xfs_idata_realloc().
301 */
302 data_bytes = roundup(ip->i_df.if_bytes, 4);
303 ASSERT((ip->i_df.if_real_bytes == 0) ||
304 (ip->i_df.if_real_bytes == data_bytes));
305 vecp->i_len = (int)data_bytes;
306 vecp->i_type = XLOG_REG_TYPE_ILOCAL;
307 vecp++;
308 nvecs++;
309 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
310 } else {
311 iip->ili_fields &= ~XFS_ILOG_DDATA;
312 }
313 break;
314
315 case XFS_DINODE_FMT_DEV:
316 iip->ili_fields &=
317 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
318 XFS_ILOG_DEXT | XFS_ILOG_UUID);
319 if (iip->ili_fields & XFS_ILOG_DEV) {
320 iip->ili_format.ilf_u.ilfu_rdev =
321 ip->i_df.if_u2.if_rdev;
322 }
323 break;
324
325 case XFS_DINODE_FMT_UUID:
326 iip->ili_fields &=
327 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
328 XFS_ILOG_DEXT | XFS_ILOG_DEV);
329 if (iip->ili_fields & XFS_ILOG_UUID) {
330 iip->ili_format.ilf_u.ilfu_uuid =
331 ip->i_df.if_u2.if_uuid;
332 }
333 break;
334
335 default:
336 ASSERT(0);
337 break;
338 }
339
340 /*
341 * If there are no attributes associated with the file, then we're done.
342 */
343 if (!XFS_IFORK_Q(ip)) {
344 iip->ili_fields &=
345 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
346 goto out;
347 }
348
349 switch (ip->i_d.di_aformat) {
350 case XFS_DINODE_FMT_EXTENTS:
351 iip->ili_fields &=
352 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
353
354 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
355 ip->i_d.di_anextents > 0 &&
356 ip->i_afp->if_bytes > 0) {
357 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
358 ip->i_d.di_anextents);
359 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
360#ifdef XFS_NATIVE_HOST
361 /*
362 * There are not delayed allocation extents
363 * for attributes, so just point at the array.
364 */
365 vecp->i_addr = ip->i_afp->if_u1.if_extents;
366 vecp->i_len = ip->i_afp->if_bytes;
367 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
368#else
369 ASSERT(iip->ili_aextents_buf == NULL);
370 xfs_inode_item_format_extents(ip, vecp,
371 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
372#endif
373 iip->ili_format.ilf_asize = vecp->i_len;
374 vecp++;
375 nvecs++;
376 } else {
377 iip->ili_fields &= ~XFS_ILOG_AEXT;
378 }
379 break;
380
381 case XFS_DINODE_FMT_BTREE:
382 iip->ili_fields &=
383 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
384
385 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
386 ip->i_afp->if_broot_bytes > 0) {
387 ASSERT(ip->i_afp->if_broot != NULL);
388
389 vecp->i_addr = ip->i_afp->if_broot;
390 vecp->i_len = ip->i_afp->if_broot_bytes;
391 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
392 vecp++;
393 nvecs++;
394 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
395 } else {
396 iip->ili_fields &= ~XFS_ILOG_ABROOT;
397 }
398 break;
399
400 case XFS_DINODE_FMT_LOCAL:
401 iip->ili_fields &=
402 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
403
404 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
405 ip->i_afp->if_bytes > 0) {
406 ASSERT(ip->i_afp->if_u1.if_data != NULL);
407
408 vecp->i_addr = ip->i_afp->if_u1.if_data;
409 /*
410 * Round i_bytes up to a word boundary.
411 * The underlying memory is guaranteed to
412 * to be there by xfs_idata_realloc().
413 */
414 data_bytes = roundup(ip->i_afp->if_bytes, 4);
415 ASSERT((ip->i_afp->if_real_bytes == 0) ||
416 (ip->i_afp->if_real_bytes == data_bytes));
417 vecp->i_len = (int)data_bytes;
418 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
419 vecp++;
420 nvecs++;
421 iip->ili_format.ilf_asize = (unsigned)data_bytes;
422 } else {
423 iip->ili_fields &= ~XFS_ILOG_ADATA;
424 }
425 break;
426
427 default:
428 ASSERT(0);
429 break;
430 }
431
432out:
433 /*
434 * Now update the log format that goes out to disk from the in-core
435 * values. We always write the inode core to make the arithmetic
436 * games in recovery easier, which isn't a big deal as just about any
437 * transaction would dirty it anyway.
438 */
439 iip->ili_format.ilf_fields = XFS_ILOG_CORE |
440 (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
441 iip->ili_format.ilf_size = nvecs;
442}
443
444
445/*
446 * This is called to pin the inode associated with the inode log
447 * item in memory so it cannot be written out.
448 */
449STATIC void
450xfs_inode_item_pin(
451 struct xfs_log_item *lip)
452{
453 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
454
455 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
456
457 trace_xfs_inode_pin(ip, _RET_IP_);
458 atomic_inc(&ip->i_pincount);
459}
460
461
462/*
463 * This is called to unpin the inode associated with the inode log
464 * item which was previously pinned with a call to xfs_inode_item_pin().
465 *
466 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
467 */
468STATIC void
469xfs_inode_item_unpin(
470 struct xfs_log_item *lip,
471 int remove)
472{
473 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
474
475 trace_xfs_inode_unpin(ip, _RET_IP_);
476 ASSERT(atomic_read(&ip->i_pincount) > 0);
477 if (atomic_dec_and_test(&ip->i_pincount))
478 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
479}
480
481STATIC uint
482xfs_inode_item_push(
483 struct xfs_log_item *lip,
484 struct list_head *buffer_list)
485{
486 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
487 struct xfs_inode *ip = iip->ili_inode;
488 struct xfs_buf *bp = NULL;
489 uint rval = XFS_ITEM_SUCCESS;
490 int error;
491
492 if (xfs_ipincount(ip) > 0)
493 return XFS_ITEM_PINNED;
494
495 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
496 return XFS_ITEM_LOCKED;
497
498 /*
499 * Re-check the pincount now that we stabilized the value by
500 * taking the ilock.
501 */
502 if (xfs_ipincount(ip) > 0) {
503 rval = XFS_ITEM_PINNED;
504 goto out_unlock;
505 }
506
507 /*
508 * Stale inode items should force out the iclog.
509 */
510 if (ip->i_flags & XFS_ISTALE) {
511 rval = XFS_ITEM_PINNED;
512 goto out_unlock;
513 }
514
515 /*
516 * Someone else is already flushing the inode. Nothing we can do
517 * here but wait for the flush to finish and remove the item from
518 * the AIL.
519 */
520 if (!xfs_iflock_nowait(ip)) {
521 rval = XFS_ITEM_FLUSHING;
522 goto out_unlock;
523 }
524
525 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
526 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
527
528 spin_unlock(&lip->li_ailp->xa_lock);
529
530 error = xfs_iflush(ip, &bp);
531 if (!error) {
532 if (!xfs_buf_delwri_queue(bp, buffer_list))
533 rval = XFS_ITEM_FLUSHING;
534 xfs_buf_relse(bp);
535 }
536
537 spin_lock(&lip->li_ailp->xa_lock);
538out_unlock:
539 xfs_iunlock(ip, XFS_ILOCK_SHARED);
540 return rval;
541}
542
543/*
544 * Unlock the inode associated with the inode log item.
545 * Clear the fields of the inode and inode log item that
546 * are specific to the current transaction. If the
547 * hold flags is set, do not unlock the inode.
548 */
549STATIC void
550xfs_inode_item_unlock(
551 struct xfs_log_item *lip)
552{
553 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
554 struct xfs_inode *ip = iip->ili_inode;
555 unsigned short lock_flags;
556
557 ASSERT(ip->i_itemp != NULL);
558 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
559
560 /*
561 * If the inode needed a separate buffer with which to log
562 * its extents, then free it now.
563 */
564 if (iip->ili_extents_buf != NULL) {
565 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
566 ASSERT(ip->i_d.di_nextents > 0);
567 ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
568 ASSERT(ip->i_df.if_bytes > 0);
569 kmem_free(iip->ili_extents_buf);
570 iip->ili_extents_buf = NULL;
571 }
572 if (iip->ili_aextents_buf != NULL) {
573 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
574 ASSERT(ip->i_d.di_anextents > 0);
575 ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
576 ASSERT(ip->i_afp->if_bytes > 0);
577 kmem_free(iip->ili_aextents_buf);
578 iip->ili_aextents_buf = NULL;
579 }
580
581 lock_flags = iip->ili_lock_flags;
582 iip->ili_lock_flags = 0;
583 if (lock_flags)
584 xfs_iunlock(ip, lock_flags);
585}
586
587/*
588 * This is called to find out where the oldest active copy of the inode log
589 * item in the on disk log resides now that the last log write of it completed
590 * at the given lsn. Since we always re-log all dirty data in an inode, the
591 * latest copy in the on disk log is the only one that matters. Therefore,
592 * simply return the given lsn.
593 *
594 * If the inode has been marked stale because the cluster is being freed, we
595 * don't want to (re-)insert this inode into the AIL. There is a race condition
596 * where the cluster buffer may be unpinned before the inode is inserted into
597 * the AIL during transaction committed processing. If the buffer is unpinned
598 * before the inode item has been committed and inserted, then it is possible
599 * for the buffer to be written and IO completes before the inode is inserted
600 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
601 * AIL which will never get removed. It will, however, get reclaimed which
602 * triggers an assert in xfs_inode_free() complaining about freein an inode
603 * still in the AIL.
604 *
605 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
606 * transaction committed code knows that it does not need to do any further
607 * processing on the item.
608 */
609STATIC xfs_lsn_t
610xfs_inode_item_committed(
611 struct xfs_log_item *lip,
612 xfs_lsn_t lsn)
613{
614 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
615 struct xfs_inode *ip = iip->ili_inode;
616
617 if (xfs_iflags_test(ip, XFS_ISTALE)) {
618 xfs_inode_item_unpin(lip, 0);
619 return -1;
620 }
621 return lsn;
622}
623
624/*
625 * XXX rcc - this one really has to do something. Probably needs
626 * to stamp in a new field in the incore inode.
627 */
628STATIC void
629xfs_inode_item_committing(
630 struct xfs_log_item *lip,
631 xfs_lsn_t lsn)
632{
633 INODE_ITEM(lip)->ili_last_lsn = lsn;
634}
635
636/*
637 * This is the ops vector shared by all buf log items.
638 */
639static const struct xfs_item_ops xfs_inode_item_ops = {
640 .iop_size = xfs_inode_item_size,
641 .iop_format = xfs_inode_item_format,
642 .iop_pin = xfs_inode_item_pin,
643 .iop_unpin = xfs_inode_item_unpin,
644 .iop_unlock = xfs_inode_item_unlock,
645 .iop_committed = xfs_inode_item_committed,
646 .iop_push = xfs_inode_item_push,
647 .iop_committing = xfs_inode_item_committing
648};
649
650
651/*
652 * Initialize the inode log item for a newly allocated (in-core) inode.
653 */
654void
655xfs_inode_item_init(
656 struct xfs_inode *ip,
657 struct xfs_mount *mp)
658{
659 struct xfs_inode_log_item *iip;
660
661 ASSERT(ip->i_itemp == NULL);
662 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
663
664 iip->ili_inode = ip;
665 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
666 &xfs_inode_item_ops);
667 iip->ili_format.ilf_type = XFS_LI_INODE;
668 iip->ili_format.ilf_ino = ip->i_ino;
669 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
670 iip->ili_format.ilf_len = ip->i_imap.im_len;
671 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
672}
673
674/*
675 * Free the inode log item and any memory hanging off of it.
676 */
677void
678xfs_inode_item_destroy(
679 xfs_inode_t *ip)
680{
681#ifdef XFS_TRANS_DEBUG
682 if (ip->i_itemp->ili_root_size != 0) {
683 kmem_free(ip->i_itemp->ili_orig_root);
684 }
685#endif
686 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
687}
688
689
690/*
691 * This is the inode flushing I/O completion routine. It is called
692 * from interrupt level when the buffer containing the inode is
693 * flushed to disk. It is responsible for removing the inode item
694 * from the AIL if it has not been re-logged, and unlocking the inode's
695 * flush lock.
696 *
697 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
698 * list for other inodes that will run this function. We remove them from the
699 * buffer list so we can process all the inode IO completions in one AIL lock
700 * traversal.
701 */
702void
703xfs_iflush_done(
704 struct xfs_buf *bp,
705 struct xfs_log_item *lip)
706{
707 struct xfs_inode_log_item *iip;
708 struct xfs_log_item *blip;
709 struct xfs_log_item *next;
710 struct xfs_log_item *prev;
711 struct xfs_ail *ailp = lip->li_ailp;
712 int need_ail = 0;
713
714 /*
715 * Scan the buffer IO completions for other inodes being completed and
716 * attach them to the current inode log item.
717 */
718 blip = bp->b_fspriv;
719 prev = NULL;
720 while (blip != NULL) {
721 if (lip->li_cb != xfs_iflush_done) {
722 prev = blip;
723 blip = blip->li_bio_list;
724 continue;
725 }
726
727 /* remove from list */
728 next = blip->li_bio_list;
729 if (!prev) {
730 bp->b_fspriv = next;
731 } else {
732 prev->li_bio_list = next;
733 }
734
735 /* add to current list */
736 blip->li_bio_list = lip->li_bio_list;
737 lip->li_bio_list = blip;
738
739 /*
740 * while we have the item, do the unlocked check for needing
741 * the AIL lock.
742 */
743 iip = INODE_ITEM(blip);
744 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
745 need_ail++;
746
747 blip = next;
748 }
749
750 /* make sure we capture the state of the initial inode. */
751 iip = INODE_ITEM(lip);
752 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
753 need_ail++;
754
755 /*
756 * We only want to pull the item from the AIL if it is
757 * actually there and its location in the log has not
758 * changed since we started the flush. Thus, we only bother
759 * if the ili_logged flag is set and the inode's lsn has not
760 * changed. First we check the lsn outside
761 * the lock since it's cheaper, and then we recheck while
762 * holding the lock before removing the inode from the AIL.
763 */
764 if (need_ail) {
765 struct xfs_log_item *log_items[need_ail];
766 int i = 0;
767 spin_lock(&ailp->xa_lock);
768 for (blip = lip; blip; blip = blip->li_bio_list) {
769 iip = INODE_ITEM(blip);
770 if (iip->ili_logged &&
771 blip->li_lsn == iip->ili_flush_lsn) {
772 log_items[i++] = blip;
773 }
774 ASSERT(i <= need_ail);
775 }
776 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
777 xfs_trans_ail_delete_bulk(ailp, log_items, i,
778 SHUTDOWN_CORRUPT_INCORE);
779 }
780
781
782 /*
783 * clean up and unlock the flush lock now we are done. We can clear the
784 * ili_last_fields bits now that we know that the data corresponding to
785 * them is safely on disk.
786 */
787 for (blip = lip; blip; blip = next) {
788 next = blip->li_bio_list;
789 blip->li_bio_list = NULL;
790
791 iip = INODE_ITEM(blip);
792 iip->ili_logged = 0;
793 iip->ili_last_fields = 0;
794 xfs_ifunlock(iip->ili_inode);
795 }
796}
797
798/*
799 * This is the inode flushing abort routine. It is called from xfs_iflush when
800 * the filesystem is shutting down to clean up the inode state. It is
801 * responsible for removing the inode item from the AIL if it has not been
802 * re-logged, and unlocking the inode's flush lock.
803 */
804void
805xfs_iflush_abort(
806 xfs_inode_t *ip,
807 bool stale)
808{
809 xfs_inode_log_item_t *iip = ip->i_itemp;
810
811 if (iip) {
812 struct xfs_ail *ailp = iip->ili_item.li_ailp;
813 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
814 spin_lock(&ailp->xa_lock);
815 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
816 /* xfs_trans_ail_delete() drops the AIL lock. */
817 xfs_trans_ail_delete(ailp, &iip->ili_item,
818 stale ?
819 SHUTDOWN_LOG_IO_ERROR :
820 SHUTDOWN_CORRUPT_INCORE);
821 } else
822 spin_unlock(&ailp->xa_lock);
823 }
824 iip->ili_logged = 0;
825 /*
826 * Clear the ili_last_fields bits now that we know that the
827 * data corresponding to them is safely on disk.
828 */
829 iip->ili_last_fields = 0;
830 /*
831 * Clear the inode logging fields so no more flushes are
832 * attempted.
833 */
834 iip->ili_fields = 0;
835 }
836 /*
837 * Release the inode's flush lock since we're done with it.
838 */
839 xfs_ifunlock(ip);
840}
841
842void
843xfs_istale_done(
844 struct xfs_buf *bp,
845 struct xfs_log_item *lip)
846{
847 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
848}
849
850/*
851 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
852 * (which can have different field alignments) to the native version
853 */
854int
855xfs_inode_item_format_convert(
856 xfs_log_iovec_t *buf,
857 xfs_inode_log_format_t *in_f)
858{
859 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
860 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
861
862 in_f->ilf_type = in_f32->ilf_type;
863 in_f->ilf_size = in_f32->ilf_size;
864 in_f->ilf_fields = in_f32->ilf_fields;
865 in_f->ilf_asize = in_f32->ilf_asize;
866 in_f->ilf_dsize = in_f32->ilf_dsize;
867 in_f->ilf_ino = in_f32->ilf_ino;
868 /* copy biggest field of ilf_u */
869 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
870 in_f32->ilf_u.ilfu_uuid.__u_bits,
871 sizeof(uuid_t));
872 in_f->ilf_blkno = in_f32->ilf_blkno;
873 in_f->ilf_len = in_f32->ilf_len;
874 in_f->ilf_boffset = in_f32->ilf_boffset;
875 return 0;
876 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
877 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
878
879 in_f->ilf_type = in_f64->ilf_type;
880 in_f->ilf_size = in_f64->ilf_size;
881 in_f->ilf_fields = in_f64->ilf_fields;
882 in_f->ilf_asize = in_f64->ilf_asize;
883 in_f->ilf_dsize = in_f64->ilf_dsize;
884 in_f->ilf_ino = in_f64->ilf_ino;
885 /* copy biggest field of ilf_u */
886 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
887 in_f64->ilf_u.ilfu_uuid.__u_bits,
888 sizeof(uuid_t));
889 in_f->ilf_blkno = in_f64->ilf_blkno;
890 in_f->ilf_len = in_f64->ilf_len;
891 in_f->ilf_boffset = in_f64->ilf_boffset;
892 return 0;
893 }
894 return EFSCORRUPTED;
895}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_inode_item.h"
16#include "xfs_trace.h"
17#include "xfs_trans_priv.h"
18#include "xfs_buf_item.h"
19#include "xfs_log.h"
20#include "xfs_log_priv.h"
21#include "xfs_error.h"
22#include "xfs_rtbitmap.h"
23
24#include <linux/iversion.h>
25
26struct kmem_cache *xfs_ili_cache; /* inode log item */
27
28static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
29{
30 return container_of(lip, struct xfs_inode_log_item, ili_item);
31}
32
33static uint64_t
34xfs_inode_item_sort(
35 struct xfs_log_item *lip)
36{
37 return INODE_ITEM(lip)->ili_inode->i_ino;
38}
39
40/*
41 * Prior to finally logging the inode, we have to ensure that all the
42 * per-modification inode state changes are applied. This includes VFS inode
43 * state updates, format conversions, verifier state synchronisation and
44 * ensuring the inode buffer remains in memory whilst the inode is dirty.
45 *
46 * We have to be careful when we grab the inode cluster buffer due to lock
47 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
48 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
49 * not locked until ->precommit, so it happens after everything else has been
50 * modified.
51 *
52 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
53 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
54 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
55 * it can be called on a inode (e.g. via bumplink/droplink) before we take the
56 * AGF lock modifying directory blocks.
57 *
58 * Rather than force a complete rework of all the transactions to call
59 * xfs_trans_log_inode() once and once only at the end of every transaction, we
60 * move the pinning of the inode cluster buffer to a ->precommit operation. This
61 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
62 * ensures that the inode cluster buffer locking is always done last in a
63 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
64 * cluster buffer.
65 *
66 * If we return the inode number as the precommit sort key then we'll also
67 * guarantee that the order all inode cluster buffer locking is the same all the
68 * inodes and unlink items in the transaction.
69 */
70static int
71xfs_inode_item_precommit(
72 struct xfs_trans *tp,
73 struct xfs_log_item *lip)
74{
75 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
76 struct xfs_inode *ip = iip->ili_inode;
77 struct inode *inode = VFS_I(ip);
78 unsigned int flags = iip->ili_dirty_flags;
79
80 /*
81 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
82 * don't matter - we either will need an extra transaction in 24 hours
83 * to log the timestamps, or will clear already cleared fields in the
84 * worst case.
85 */
86 if (inode->i_state & I_DIRTY_TIME) {
87 spin_lock(&inode->i_lock);
88 inode->i_state &= ~I_DIRTY_TIME;
89 spin_unlock(&inode->i_lock);
90 }
91
92 /*
93 * If we're updating the inode core or the timestamps and it's possible
94 * to upgrade this inode to bigtime format, do so now.
95 */
96 if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
97 xfs_has_bigtime(ip->i_mount) &&
98 !xfs_inode_has_bigtime(ip)) {
99 ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
100 flags |= XFS_ILOG_CORE;
101 }
102
103 /*
104 * Inode verifiers do not check that the extent size hint is an integer
105 * multiple of the rt extent size on a directory with both rtinherit
106 * and extszinherit flags set. If we're logging a directory that is
107 * misconfigured in this way, clear the hint.
108 */
109 if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
110 (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
111 xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) {
112 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
113 XFS_DIFLAG_EXTSZINHERIT);
114 ip->i_extsize = 0;
115 flags |= XFS_ILOG_CORE;
116 }
117
118 /*
119 * Record the specific change for fdatasync optimisation. This allows
120 * fdatasync to skip log forces for inodes that are only timestamp
121 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
122 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
123 * (ili_fields) correctly tracks that the version has changed.
124 */
125 spin_lock(&iip->ili_lock);
126 iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
127 if (flags & XFS_ILOG_IVERSION)
128 flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
129
130 if (!iip->ili_item.li_buf) {
131 struct xfs_buf *bp;
132 int error;
133
134 /*
135 * We hold the ILOCK here, so this inode is not going to be
136 * flushed while we are here. Further, because there is no
137 * buffer attached to the item, we know that there is no IO in
138 * progress, so nothing will clear the ili_fields while we read
139 * in the buffer. Hence we can safely drop the spin lock and
140 * read the buffer knowing that the state will not change from
141 * here.
142 */
143 spin_unlock(&iip->ili_lock);
144 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
145 if (error)
146 return error;
147
148 /*
149 * We need an explicit buffer reference for the log item but
150 * don't want the buffer to remain attached to the transaction.
151 * Hold the buffer but release the transaction reference once
152 * we've attached the inode log item to the buffer log item
153 * list.
154 */
155 xfs_buf_hold(bp);
156 spin_lock(&iip->ili_lock);
157 iip->ili_item.li_buf = bp;
158 bp->b_flags |= _XBF_INODES;
159 list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
160 xfs_trans_brelse(tp, bp);
161 }
162
163 /*
164 * Always OR in the bits from the ili_last_fields field. This is to
165 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
166 * in the eventual clearing of the ili_fields bits. See the big comment
167 * in xfs_iflush() for an explanation of this coordination mechanism.
168 */
169 iip->ili_fields |= (flags | iip->ili_last_fields);
170 spin_unlock(&iip->ili_lock);
171
172 /*
173 * We are done with the log item transaction dirty state, so clear it so
174 * that it doesn't pollute future transactions.
175 */
176 iip->ili_dirty_flags = 0;
177 return 0;
178}
179
180/*
181 * The logged size of an inode fork is always the current size of the inode
182 * fork. This means that when an inode fork is relogged, the size of the logged
183 * region is determined by the current state, not the combination of the
184 * previously logged state + the current state. This is different relogging
185 * behaviour to most other log items which will retain the size of the
186 * previously logged changes when smaller regions are relogged.
187 *
188 * Hence operations that remove data from the inode fork (e.g. shortform
189 * dir/attr remove, extent form extent removal, etc), the size of the relogged
190 * inode gets -smaller- rather than stays the same size as the previously logged
191 * size and this can result in the committing transaction reducing the amount of
192 * space being consumed by the CIL.
193 */
194STATIC void
195xfs_inode_item_data_fork_size(
196 struct xfs_inode_log_item *iip,
197 int *nvecs,
198 int *nbytes)
199{
200 struct xfs_inode *ip = iip->ili_inode;
201
202 switch (ip->i_df.if_format) {
203 case XFS_DINODE_FMT_EXTENTS:
204 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
205 ip->i_df.if_nextents > 0 &&
206 ip->i_df.if_bytes > 0) {
207 /* worst case, doesn't subtract delalloc extents */
208 *nbytes += xfs_inode_data_fork_size(ip);
209 *nvecs += 1;
210 }
211 break;
212 case XFS_DINODE_FMT_BTREE:
213 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
214 ip->i_df.if_broot_bytes > 0) {
215 *nbytes += ip->i_df.if_broot_bytes;
216 *nvecs += 1;
217 }
218 break;
219 case XFS_DINODE_FMT_LOCAL:
220 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
221 ip->i_df.if_bytes > 0) {
222 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
223 *nvecs += 1;
224 }
225 break;
226
227 case XFS_DINODE_FMT_DEV:
228 break;
229 default:
230 ASSERT(0);
231 break;
232 }
233}
234
235STATIC void
236xfs_inode_item_attr_fork_size(
237 struct xfs_inode_log_item *iip,
238 int *nvecs,
239 int *nbytes)
240{
241 struct xfs_inode *ip = iip->ili_inode;
242
243 switch (ip->i_af.if_format) {
244 case XFS_DINODE_FMT_EXTENTS:
245 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
246 ip->i_af.if_nextents > 0 &&
247 ip->i_af.if_bytes > 0) {
248 /* worst case, doesn't subtract unused space */
249 *nbytes += xfs_inode_attr_fork_size(ip);
250 *nvecs += 1;
251 }
252 break;
253 case XFS_DINODE_FMT_BTREE:
254 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
255 ip->i_af.if_broot_bytes > 0) {
256 *nbytes += ip->i_af.if_broot_bytes;
257 *nvecs += 1;
258 }
259 break;
260 case XFS_DINODE_FMT_LOCAL:
261 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
262 ip->i_af.if_bytes > 0) {
263 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
264 *nvecs += 1;
265 }
266 break;
267 default:
268 ASSERT(0);
269 break;
270 }
271}
272
273/*
274 * This returns the number of iovecs needed to log the given inode item.
275 *
276 * We need one iovec for the inode log format structure, one for the
277 * inode core, and possibly one for the inode data/extents/b-tree root
278 * and one for the inode attribute data/extents/b-tree root.
279 */
280STATIC void
281xfs_inode_item_size(
282 struct xfs_log_item *lip,
283 int *nvecs,
284 int *nbytes)
285{
286 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
287 struct xfs_inode *ip = iip->ili_inode;
288
289 *nvecs += 2;
290 *nbytes += sizeof(struct xfs_inode_log_format) +
291 xfs_log_dinode_size(ip->i_mount);
292
293 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
294 if (xfs_inode_has_attr_fork(ip))
295 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
296}
297
298STATIC void
299xfs_inode_item_format_data_fork(
300 struct xfs_inode_log_item *iip,
301 struct xfs_inode_log_format *ilf,
302 struct xfs_log_vec *lv,
303 struct xfs_log_iovec **vecp)
304{
305 struct xfs_inode *ip = iip->ili_inode;
306 size_t data_bytes;
307
308 switch (ip->i_df.if_format) {
309 case XFS_DINODE_FMT_EXTENTS:
310 iip->ili_fields &=
311 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
312
313 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
314 ip->i_df.if_nextents > 0 &&
315 ip->i_df.if_bytes > 0) {
316 struct xfs_bmbt_rec *p;
317
318 ASSERT(xfs_iext_count(&ip->i_df) > 0);
319
320 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
321 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
322 xlog_finish_iovec(lv, *vecp, data_bytes);
323
324 ASSERT(data_bytes <= ip->i_df.if_bytes);
325
326 ilf->ilf_dsize = data_bytes;
327 ilf->ilf_size++;
328 } else {
329 iip->ili_fields &= ~XFS_ILOG_DEXT;
330 }
331 break;
332 case XFS_DINODE_FMT_BTREE:
333 iip->ili_fields &=
334 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
335
336 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
337 ip->i_df.if_broot_bytes > 0) {
338 ASSERT(ip->i_df.if_broot != NULL);
339 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
340 ip->i_df.if_broot,
341 ip->i_df.if_broot_bytes);
342 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
343 ilf->ilf_size++;
344 } else {
345 ASSERT(!(iip->ili_fields &
346 XFS_ILOG_DBROOT));
347 iip->ili_fields &= ~XFS_ILOG_DBROOT;
348 }
349 break;
350 case XFS_DINODE_FMT_LOCAL:
351 iip->ili_fields &=
352 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
353 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
354 ip->i_df.if_bytes > 0) {
355 ASSERT(ip->i_df.if_data != NULL);
356 ASSERT(ip->i_disk_size > 0);
357 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
358 ip->i_df.if_data, ip->i_df.if_bytes);
359 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
360 ilf->ilf_size++;
361 } else {
362 iip->ili_fields &= ~XFS_ILOG_DDATA;
363 }
364 break;
365 case XFS_DINODE_FMT_DEV:
366 iip->ili_fields &=
367 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
368 if (iip->ili_fields & XFS_ILOG_DEV)
369 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
370 break;
371 default:
372 ASSERT(0);
373 break;
374 }
375}
376
377STATIC void
378xfs_inode_item_format_attr_fork(
379 struct xfs_inode_log_item *iip,
380 struct xfs_inode_log_format *ilf,
381 struct xfs_log_vec *lv,
382 struct xfs_log_iovec **vecp)
383{
384 struct xfs_inode *ip = iip->ili_inode;
385 size_t data_bytes;
386
387 switch (ip->i_af.if_format) {
388 case XFS_DINODE_FMT_EXTENTS:
389 iip->ili_fields &=
390 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
391
392 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
393 ip->i_af.if_nextents > 0 &&
394 ip->i_af.if_bytes > 0) {
395 struct xfs_bmbt_rec *p;
396
397 ASSERT(xfs_iext_count(&ip->i_af) ==
398 ip->i_af.if_nextents);
399
400 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
401 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
402 xlog_finish_iovec(lv, *vecp, data_bytes);
403
404 ilf->ilf_asize = data_bytes;
405 ilf->ilf_size++;
406 } else {
407 iip->ili_fields &= ~XFS_ILOG_AEXT;
408 }
409 break;
410 case XFS_DINODE_FMT_BTREE:
411 iip->ili_fields &=
412 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
413
414 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
415 ip->i_af.if_broot_bytes > 0) {
416 ASSERT(ip->i_af.if_broot != NULL);
417
418 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
419 ip->i_af.if_broot,
420 ip->i_af.if_broot_bytes);
421 ilf->ilf_asize = ip->i_af.if_broot_bytes;
422 ilf->ilf_size++;
423 } else {
424 iip->ili_fields &= ~XFS_ILOG_ABROOT;
425 }
426 break;
427 case XFS_DINODE_FMT_LOCAL:
428 iip->ili_fields &=
429 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
430
431 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
432 ip->i_af.if_bytes > 0) {
433 ASSERT(ip->i_af.if_data != NULL);
434 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
435 ip->i_af.if_data, ip->i_af.if_bytes);
436 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
437 ilf->ilf_size++;
438 } else {
439 iip->ili_fields &= ~XFS_ILOG_ADATA;
440 }
441 break;
442 default:
443 ASSERT(0);
444 break;
445 }
446}
447
448/*
449 * Convert an incore timestamp to a log timestamp. Note that the log format
450 * specifies host endian format!
451 */
452static inline xfs_log_timestamp_t
453xfs_inode_to_log_dinode_ts(
454 struct xfs_inode *ip,
455 const struct timespec64 tv)
456{
457 struct xfs_log_legacy_timestamp *lits;
458 xfs_log_timestamp_t its;
459
460 if (xfs_inode_has_bigtime(ip))
461 return xfs_inode_encode_bigtime(tv);
462
463 lits = (struct xfs_log_legacy_timestamp *)&its;
464 lits->t_sec = tv.tv_sec;
465 lits->t_nsec = tv.tv_nsec;
466
467 return its;
468}
469
470/*
471 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
472 * but not in the in-memory one. But we are guaranteed to have an inode buffer
473 * in memory when logging an inode, so we can just copy it from the on-disk
474 * inode to the in-log inode here so that recovery of file system with these
475 * fields set to non-zero values doesn't lose them. For all other cases we zero
476 * the fields.
477 */
478static void
479xfs_copy_dm_fields_to_log_dinode(
480 struct xfs_inode *ip,
481 struct xfs_log_dinode *to)
482{
483 struct xfs_dinode *dip;
484
485 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
486 ip->i_imap.im_boffset);
487
488 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
489 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
490 to->di_dmstate = be16_to_cpu(dip->di_dmstate);
491 } else {
492 to->di_dmevmask = 0;
493 to->di_dmstate = 0;
494 }
495}
496
497static inline void
498xfs_inode_to_log_dinode_iext_counters(
499 struct xfs_inode *ip,
500 struct xfs_log_dinode *to)
501{
502 if (xfs_inode_has_large_extent_counts(ip)) {
503 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
504 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
505 to->di_nrext64_pad = 0;
506 } else {
507 to->di_nextents = xfs_ifork_nextents(&ip->i_df);
508 to->di_anextents = xfs_ifork_nextents(&ip->i_af);
509 }
510}
511
512static void
513xfs_inode_to_log_dinode(
514 struct xfs_inode *ip,
515 struct xfs_log_dinode *to,
516 xfs_lsn_t lsn)
517{
518 struct inode *inode = VFS_I(ip);
519
520 to->di_magic = XFS_DINODE_MAGIC;
521 to->di_format = xfs_ifork_format(&ip->i_df);
522 to->di_uid = i_uid_read(inode);
523 to->di_gid = i_gid_read(inode);
524 to->di_projid_lo = ip->i_projid & 0xffff;
525 to->di_projid_hi = ip->i_projid >> 16;
526
527 memset(to->di_pad3, 0, sizeof(to->di_pad3));
528 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode));
529 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode));
530 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
531 to->di_nlink = inode->i_nlink;
532 to->di_gen = inode->i_generation;
533 to->di_mode = inode->i_mode;
534
535 to->di_size = ip->i_disk_size;
536 to->di_nblocks = ip->i_nblocks;
537 to->di_extsize = ip->i_extsize;
538 to->di_forkoff = ip->i_forkoff;
539 to->di_aformat = xfs_ifork_format(&ip->i_af);
540 to->di_flags = ip->i_diflags;
541
542 xfs_copy_dm_fields_to_log_dinode(ip, to);
543
544 /* log a dummy value to ensure log structure is fully initialised */
545 to->di_next_unlinked = NULLAGINO;
546
547 if (xfs_has_v3inodes(ip->i_mount)) {
548 to->di_version = 3;
549 to->di_changecount = inode_peek_iversion(inode);
550 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
551 to->di_flags2 = ip->i_diflags2;
552 to->di_cowextsize = ip->i_cowextsize;
553 to->di_ino = ip->i_ino;
554 to->di_lsn = lsn;
555 memset(to->di_pad2, 0, sizeof(to->di_pad2));
556 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
557 to->di_v3_pad = 0;
558
559 /* dummy value for initialisation */
560 to->di_crc = 0;
561 } else {
562 to->di_version = 2;
563 to->di_flushiter = ip->i_flushiter;
564 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
565 }
566
567 xfs_inode_to_log_dinode_iext_counters(ip, to);
568}
569
570/*
571 * Format the inode core. Current timestamp data is only in the VFS inode
572 * fields, so we need to grab them from there. Hence rather than just copying
573 * the XFS inode core structure, format the fields directly into the iovec.
574 */
575static void
576xfs_inode_item_format_core(
577 struct xfs_inode *ip,
578 struct xfs_log_vec *lv,
579 struct xfs_log_iovec **vecp)
580{
581 struct xfs_log_dinode *dic;
582
583 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
584 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
585 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
586}
587
588/*
589 * This is called to fill in the vector of log iovecs for the given inode
590 * log item. It fills the first item with an inode log format structure,
591 * the second with the on-disk inode structure, and a possible third and/or
592 * fourth with the inode data/extents/b-tree root and inode attributes
593 * data/extents/b-tree root.
594 *
595 * Note: Always use the 64 bit inode log format structure so we don't
596 * leave an uninitialised hole in the format item on 64 bit systems. Log
597 * recovery on 32 bit systems handles this just fine, so there's no reason
598 * for not using an initialising the properly padded structure all the time.
599 */
600STATIC void
601xfs_inode_item_format(
602 struct xfs_log_item *lip,
603 struct xfs_log_vec *lv)
604{
605 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
606 struct xfs_inode *ip = iip->ili_inode;
607 struct xfs_log_iovec *vecp = NULL;
608 struct xfs_inode_log_format *ilf;
609
610 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
611 ilf->ilf_type = XFS_LI_INODE;
612 ilf->ilf_ino = ip->i_ino;
613 ilf->ilf_blkno = ip->i_imap.im_blkno;
614 ilf->ilf_len = ip->i_imap.im_len;
615 ilf->ilf_boffset = ip->i_imap.im_boffset;
616 ilf->ilf_fields = XFS_ILOG_CORE;
617 ilf->ilf_size = 2; /* format + core */
618
619 /*
620 * make sure we don't leak uninitialised data into the log in the case
621 * when we don't log every field in the inode.
622 */
623 ilf->ilf_dsize = 0;
624 ilf->ilf_asize = 0;
625 ilf->ilf_pad = 0;
626 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
627
628 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
629
630 xfs_inode_item_format_core(ip, lv, &vecp);
631 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
632 if (xfs_inode_has_attr_fork(ip)) {
633 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
634 } else {
635 iip->ili_fields &=
636 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
637 }
638
639 /* update the format with the exact fields we actually logged */
640 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
641}
642
643/*
644 * This is called to pin the inode associated with the inode log
645 * item in memory so it cannot be written out.
646 */
647STATIC void
648xfs_inode_item_pin(
649 struct xfs_log_item *lip)
650{
651 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
652
653 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
654 ASSERT(lip->li_buf);
655
656 trace_xfs_inode_pin(ip, _RET_IP_);
657 atomic_inc(&ip->i_pincount);
658}
659
660
661/*
662 * This is called to unpin the inode associated with the inode log
663 * item which was previously pinned with a call to xfs_inode_item_pin().
664 *
665 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
666 *
667 * Note that unpin can race with inode cluster buffer freeing marking the buffer
668 * stale. In that case, flush completions are run from the buffer unpin call,
669 * which may happen before the inode is unpinned. If we lose the race, there
670 * will be no buffer attached to the log item, but the inode will be marked
671 * XFS_ISTALE.
672 */
673STATIC void
674xfs_inode_item_unpin(
675 struct xfs_log_item *lip,
676 int remove)
677{
678 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
679
680 trace_xfs_inode_unpin(ip, _RET_IP_);
681 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
682 ASSERT(atomic_read(&ip->i_pincount) > 0);
683 if (atomic_dec_and_test(&ip->i_pincount))
684 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
685}
686
687STATIC uint
688xfs_inode_item_push(
689 struct xfs_log_item *lip,
690 struct list_head *buffer_list)
691 __releases(&lip->li_ailp->ail_lock)
692 __acquires(&lip->li_ailp->ail_lock)
693{
694 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
695 struct xfs_inode *ip = iip->ili_inode;
696 struct xfs_buf *bp = lip->li_buf;
697 uint rval = XFS_ITEM_SUCCESS;
698 int error;
699
700 if (!bp || (ip->i_flags & XFS_ISTALE)) {
701 /*
702 * Inode item/buffer is being aborted due to cluster
703 * buffer deletion. Trigger a log force to have that operation
704 * completed and items removed from the AIL before the next push
705 * attempt.
706 */
707 return XFS_ITEM_PINNED;
708 }
709
710 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
711 return XFS_ITEM_PINNED;
712
713 if (xfs_iflags_test(ip, XFS_IFLUSHING))
714 return XFS_ITEM_FLUSHING;
715
716 if (!xfs_buf_trylock(bp))
717 return XFS_ITEM_LOCKED;
718
719 spin_unlock(&lip->li_ailp->ail_lock);
720
721 /*
722 * We need to hold a reference for flushing the cluster buffer as it may
723 * fail the buffer without IO submission. In which case, we better get a
724 * reference for that completion because otherwise we don't get a
725 * reference for IO until we queue the buffer for delwri submission.
726 */
727 xfs_buf_hold(bp);
728 error = xfs_iflush_cluster(bp);
729 if (!error) {
730 if (!xfs_buf_delwri_queue(bp, buffer_list))
731 rval = XFS_ITEM_FLUSHING;
732 xfs_buf_relse(bp);
733 } else {
734 /*
735 * Release the buffer if we were unable to flush anything. On
736 * any other error, the buffer has already been released.
737 */
738 if (error == -EAGAIN)
739 xfs_buf_relse(bp);
740 rval = XFS_ITEM_LOCKED;
741 }
742
743 spin_lock(&lip->li_ailp->ail_lock);
744 return rval;
745}
746
747/*
748 * Unlock the inode associated with the inode log item.
749 */
750STATIC void
751xfs_inode_item_release(
752 struct xfs_log_item *lip)
753{
754 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
755 struct xfs_inode *ip = iip->ili_inode;
756 unsigned short lock_flags;
757
758 ASSERT(ip->i_itemp != NULL);
759 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
760
761 lock_flags = iip->ili_lock_flags;
762 iip->ili_lock_flags = 0;
763 if (lock_flags)
764 xfs_iunlock(ip, lock_flags);
765}
766
767/*
768 * This is called to find out where the oldest active copy of the inode log
769 * item in the on disk log resides now that the last log write of it completed
770 * at the given lsn. Since we always re-log all dirty data in an inode, the
771 * latest copy in the on disk log is the only one that matters. Therefore,
772 * simply return the given lsn.
773 *
774 * If the inode has been marked stale because the cluster is being freed, we
775 * don't want to (re-)insert this inode into the AIL. There is a race condition
776 * where the cluster buffer may be unpinned before the inode is inserted into
777 * the AIL during transaction committed processing. If the buffer is unpinned
778 * before the inode item has been committed and inserted, then it is possible
779 * for the buffer to be written and IO completes before the inode is inserted
780 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
781 * AIL which will never get removed. It will, however, get reclaimed which
782 * triggers an assert in xfs_inode_free() complaining about freein an inode
783 * still in the AIL.
784 *
785 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
786 * transaction committed code knows that it does not need to do any further
787 * processing on the item.
788 */
789STATIC xfs_lsn_t
790xfs_inode_item_committed(
791 struct xfs_log_item *lip,
792 xfs_lsn_t lsn)
793{
794 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
795 struct xfs_inode *ip = iip->ili_inode;
796
797 if (xfs_iflags_test(ip, XFS_ISTALE)) {
798 xfs_inode_item_unpin(lip, 0);
799 return -1;
800 }
801 return lsn;
802}
803
804STATIC void
805xfs_inode_item_committing(
806 struct xfs_log_item *lip,
807 xfs_csn_t seq)
808{
809 INODE_ITEM(lip)->ili_commit_seq = seq;
810 return xfs_inode_item_release(lip);
811}
812
813static const struct xfs_item_ops xfs_inode_item_ops = {
814 .iop_sort = xfs_inode_item_sort,
815 .iop_precommit = xfs_inode_item_precommit,
816 .iop_size = xfs_inode_item_size,
817 .iop_format = xfs_inode_item_format,
818 .iop_pin = xfs_inode_item_pin,
819 .iop_unpin = xfs_inode_item_unpin,
820 .iop_release = xfs_inode_item_release,
821 .iop_committed = xfs_inode_item_committed,
822 .iop_push = xfs_inode_item_push,
823 .iop_committing = xfs_inode_item_committing,
824};
825
826
827/*
828 * Initialize the inode log item for a newly allocated (in-core) inode.
829 */
830void
831xfs_inode_item_init(
832 struct xfs_inode *ip,
833 struct xfs_mount *mp)
834{
835 struct xfs_inode_log_item *iip;
836
837 ASSERT(ip->i_itemp == NULL);
838 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
839 GFP_KERNEL | __GFP_NOFAIL);
840
841 iip->ili_inode = ip;
842 spin_lock_init(&iip->ili_lock);
843 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
844 &xfs_inode_item_ops);
845}
846
847/*
848 * Free the inode log item and any memory hanging off of it.
849 */
850void
851xfs_inode_item_destroy(
852 struct xfs_inode *ip)
853{
854 struct xfs_inode_log_item *iip = ip->i_itemp;
855
856 ASSERT(iip->ili_item.li_buf == NULL);
857
858 ip->i_itemp = NULL;
859 kvfree(iip->ili_item.li_lv_shadow);
860 kmem_cache_free(xfs_ili_cache, iip);
861}
862
863
864/*
865 * We only want to pull the item from the AIL if it is actually there
866 * and its location in the log has not changed since we started the
867 * flush. Thus, we only bother if the inode's lsn has not changed.
868 */
869static void
870xfs_iflush_ail_updates(
871 struct xfs_ail *ailp,
872 struct list_head *list)
873{
874 struct xfs_log_item *lip;
875 xfs_lsn_t tail_lsn = 0;
876
877 /* this is an opencoded batch version of xfs_trans_ail_delete */
878 spin_lock(&ailp->ail_lock);
879 list_for_each_entry(lip, list, li_bio_list) {
880 xfs_lsn_t lsn;
881
882 clear_bit(XFS_LI_FAILED, &lip->li_flags);
883 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
884 continue;
885
886 /*
887 * dgc: Not sure how this happens, but it happens very
888 * occassionaly via generic/388. xfs_iflush_abort() also
889 * silently handles this same "under writeback but not in AIL at
890 * shutdown" condition via xfs_trans_ail_delete().
891 */
892 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
893 ASSERT(xlog_is_shutdown(lip->li_log));
894 continue;
895 }
896
897 lsn = xfs_ail_delete_one(ailp, lip);
898 if (!tail_lsn && lsn)
899 tail_lsn = lsn;
900 }
901 xfs_ail_update_finish(ailp, tail_lsn);
902}
903
904/*
905 * Walk the list of inodes that have completed their IOs. If they are clean
906 * remove them from the list and dissociate them from the buffer. Buffers that
907 * are still dirty remain linked to the buffer and on the list. Caller must
908 * handle them appropriately.
909 */
910static void
911xfs_iflush_finish(
912 struct xfs_buf *bp,
913 struct list_head *list)
914{
915 struct xfs_log_item *lip, *n;
916
917 list_for_each_entry_safe(lip, n, list, li_bio_list) {
918 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
919 bool drop_buffer = false;
920
921 spin_lock(&iip->ili_lock);
922
923 /*
924 * Remove the reference to the cluster buffer if the inode is
925 * clean in memory and drop the buffer reference once we've
926 * dropped the locks we hold.
927 */
928 ASSERT(iip->ili_item.li_buf == bp);
929 if (!iip->ili_fields) {
930 iip->ili_item.li_buf = NULL;
931 list_del_init(&lip->li_bio_list);
932 drop_buffer = true;
933 }
934 iip->ili_last_fields = 0;
935 iip->ili_flush_lsn = 0;
936 spin_unlock(&iip->ili_lock);
937 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
938 if (drop_buffer)
939 xfs_buf_rele(bp);
940 }
941}
942
943/*
944 * Inode buffer IO completion routine. It is responsible for removing inodes
945 * attached to the buffer from the AIL if they have not been re-logged and
946 * completing the inode flush.
947 */
948void
949xfs_buf_inode_iodone(
950 struct xfs_buf *bp)
951{
952 struct xfs_log_item *lip, *n;
953 LIST_HEAD(flushed_inodes);
954 LIST_HEAD(ail_updates);
955
956 /*
957 * Pull the attached inodes from the buffer one at a time and take the
958 * appropriate action on them.
959 */
960 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
961 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
962
963 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
964 xfs_iflush_abort(iip->ili_inode);
965 continue;
966 }
967 if (!iip->ili_last_fields)
968 continue;
969
970 /* Do an unlocked check for needing the AIL lock. */
971 if (iip->ili_flush_lsn == lip->li_lsn ||
972 test_bit(XFS_LI_FAILED, &lip->li_flags))
973 list_move_tail(&lip->li_bio_list, &ail_updates);
974 else
975 list_move_tail(&lip->li_bio_list, &flushed_inodes);
976 }
977
978 if (!list_empty(&ail_updates)) {
979 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
980 list_splice_tail(&ail_updates, &flushed_inodes);
981 }
982
983 xfs_iflush_finish(bp, &flushed_inodes);
984 if (!list_empty(&flushed_inodes))
985 list_splice_tail(&flushed_inodes, &bp->b_li_list);
986}
987
988void
989xfs_buf_inode_io_fail(
990 struct xfs_buf *bp)
991{
992 struct xfs_log_item *lip;
993
994 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
995 set_bit(XFS_LI_FAILED, &lip->li_flags);
996}
997
998/*
999 * Clear the inode logging fields so no more flushes are attempted. If we are
1000 * on a buffer list, it is now safe to remove it because the buffer is
1001 * guaranteed to be locked. The caller will drop the reference to the buffer
1002 * the log item held.
1003 */
1004static void
1005xfs_iflush_abort_clean(
1006 struct xfs_inode_log_item *iip)
1007{
1008 iip->ili_last_fields = 0;
1009 iip->ili_fields = 0;
1010 iip->ili_fsync_fields = 0;
1011 iip->ili_flush_lsn = 0;
1012 iip->ili_item.li_buf = NULL;
1013 list_del_init(&iip->ili_item.li_bio_list);
1014}
1015
1016/*
1017 * Abort flushing the inode from a context holding the cluster buffer locked.
1018 *
1019 * This is the normal runtime method of aborting writeback of an inode that is
1020 * attached to a cluster buffer. It occurs when the inode and the backing
1021 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1022 * flushing or buffer IO completion encounters a log shutdown situation.
1023 *
1024 * If we need to abort inode writeback and we don't already hold the buffer
1025 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1026 * necessary in a shutdown situation.
1027 */
1028void
1029xfs_iflush_abort(
1030 struct xfs_inode *ip)
1031{
1032 struct xfs_inode_log_item *iip = ip->i_itemp;
1033 struct xfs_buf *bp;
1034
1035 if (!iip) {
1036 /* clean inode, nothing to do */
1037 xfs_iflags_clear(ip, XFS_IFLUSHING);
1038 return;
1039 }
1040
1041 /*
1042 * Remove the inode item from the AIL before we clear its internal
1043 * state. Whilst the inode is in the AIL, it should have a valid buffer
1044 * pointer for push operations to access - it is only safe to remove the
1045 * inode from the buffer once it has been removed from the AIL.
1046 *
1047 * We also clear the failed bit before removing the item from the AIL
1048 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1049 * references the inode item owns and needs to hold until we've fully
1050 * aborted the inode log item and detached it from the buffer.
1051 */
1052 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1053 xfs_trans_ail_delete(&iip->ili_item, 0);
1054
1055 /*
1056 * Grab the inode buffer so can we release the reference the inode log
1057 * item holds on it.
1058 */
1059 spin_lock(&iip->ili_lock);
1060 bp = iip->ili_item.li_buf;
1061 xfs_iflush_abort_clean(iip);
1062 spin_unlock(&iip->ili_lock);
1063
1064 xfs_iflags_clear(ip, XFS_IFLUSHING);
1065 if (bp)
1066 xfs_buf_rele(bp);
1067}
1068
1069/*
1070 * Abort an inode flush in the case of a shutdown filesystem. This can be called
1071 * from anywhere with just an inode reference and does not require holding the
1072 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1073 * it will grab and lock it safely, then abort the inode flush.
1074 */
1075void
1076xfs_iflush_shutdown_abort(
1077 struct xfs_inode *ip)
1078{
1079 struct xfs_inode_log_item *iip = ip->i_itemp;
1080 struct xfs_buf *bp;
1081
1082 if (!iip) {
1083 /* clean inode, nothing to do */
1084 xfs_iflags_clear(ip, XFS_IFLUSHING);
1085 return;
1086 }
1087
1088 spin_lock(&iip->ili_lock);
1089 bp = iip->ili_item.li_buf;
1090 if (!bp) {
1091 spin_unlock(&iip->ili_lock);
1092 xfs_iflush_abort(ip);
1093 return;
1094 }
1095
1096 /*
1097 * We have to take a reference to the buffer so that it doesn't get
1098 * freed when we drop the ili_lock and then wait to lock the buffer.
1099 * We'll clean up the extra reference after we pick up the ili_lock
1100 * again.
1101 */
1102 xfs_buf_hold(bp);
1103 spin_unlock(&iip->ili_lock);
1104 xfs_buf_lock(bp);
1105
1106 spin_lock(&iip->ili_lock);
1107 if (!iip->ili_item.li_buf) {
1108 /*
1109 * Raced with another removal, hold the only reference
1110 * to bp now. Inode should not be in the AIL now, so just clean
1111 * up and return;
1112 */
1113 ASSERT(list_empty(&iip->ili_item.li_bio_list));
1114 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1115 xfs_iflush_abort_clean(iip);
1116 spin_unlock(&iip->ili_lock);
1117 xfs_iflags_clear(ip, XFS_IFLUSHING);
1118 xfs_buf_relse(bp);
1119 return;
1120 }
1121
1122 /*
1123 * Got two references to bp. The first will get dropped by
1124 * xfs_iflush_abort() when the item is removed from the buffer list, but
1125 * we can't drop our reference until _abort() returns because we have to
1126 * unlock the buffer as well. Hence we abort and then unlock and release
1127 * our reference to the buffer.
1128 */
1129 ASSERT(iip->ili_item.li_buf == bp);
1130 spin_unlock(&iip->ili_lock);
1131 xfs_iflush_abort(ip);
1132 xfs_buf_relse(bp);
1133}
1134
1135
1136/*
1137 * convert an xfs_inode_log_format struct from the old 32 bit version
1138 * (which can have different field alignments) to the native 64 bit version
1139 */
1140int
1141xfs_inode_item_format_convert(
1142 struct xfs_log_iovec *buf,
1143 struct xfs_inode_log_format *in_f)
1144{
1145 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
1146
1147 if (buf->i_len != sizeof(*in_f32)) {
1148 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1149 return -EFSCORRUPTED;
1150 }
1151
1152 in_f->ilf_type = in_f32->ilf_type;
1153 in_f->ilf_size = in_f32->ilf_size;
1154 in_f->ilf_fields = in_f32->ilf_fields;
1155 in_f->ilf_asize = in_f32->ilf_asize;
1156 in_f->ilf_dsize = in_f32->ilf_dsize;
1157 in_f->ilf_ino = in_f32->ilf_ino;
1158 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1159 in_f->ilf_blkno = in_f32->ilf_blkno;
1160 in_f->ilf_len = in_f32->ilf_len;
1161 in_f->ilf_boffset = in_f32->ilf_boffset;
1162 return 0;
1163}