Loading...
Note: File does not exist in v3.5.6.
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#ifndef _LINUX_F2FS_H
9#define _LINUX_F2FS_H
10
11#include <linux/uio.h>
12#include <linux/types.h>
13#include <linux/page-flags.h>
14#include <linux/slab.h>
15#include <linux/crc32.h>
16#include <linux/magic.h>
17#include <linux/kobject.h>
18#include <linux/sched.h>
19#include <linux/cred.h>
20#include <linux/sched/mm.h>
21#include <linux/vmalloc.h>
22#include <linux/bio.h>
23#include <linux/blkdev.h>
24#include <linux/quotaops.h>
25#include <linux/part_stat.h>
26#include <linux/rw_hint.h>
27#include <crypto/hash.h>
28
29#include <linux/fscrypt.h>
30#include <linux/fsverity.h>
31
32struct pagevec;
33
34#ifdef CONFIG_F2FS_CHECK_FS
35#define f2fs_bug_on(sbi, condition) BUG_ON(condition)
36#else
37#define f2fs_bug_on(sbi, condition) \
38 do { \
39 if (WARN_ON(condition)) \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } while (0)
42#endif
43
44enum {
45 FAULT_KMALLOC,
46 FAULT_KVMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_PAGE_GET,
49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
50 FAULT_ALLOC_NID,
51 FAULT_ORPHAN,
52 FAULT_BLOCK,
53 FAULT_DIR_DEPTH,
54 FAULT_EVICT_INODE,
55 FAULT_TRUNCATE,
56 FAULT_READ_IO,
57 FAULT_CHECKPOINT,
58 FAULT_DISCARD,
59 FAULT_WRITE_IO,
60 FAULT_SLAB_ALLOC,
61 FAULT_DQUOT_INIT,
62 FAULT_LOCK_OP,
63 FAULT_BLKADDR_VALIDITY,
64 FAULT_BLKADDR_CONSISTENCE,
65 FAULT_NO_SEGMENT,
66 FAULT_MAX,
67};
68
69#ifdef CONFIG_F2FS_FAULT_INJECTION
70#define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0))
71
72struct f2fs_fault_info {
73 atomic_t inject_ops;
74 int inject_rate;
75 unsigned int inject_type;
76};
77
78extern const char *f2fs_fault_name[FAULT_MAX];
79#define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
80
81/* maximum retry count for injected failure */
82#define DEFAULT_FAILURE_RETRY_COUNT 8
83#else
84#define DEFAULT_FAILURE_RETRY_COUNT 1
85#endif
86
87/*
88 * For mount options
89 */
90#define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001
91#define F2FS_MOUNT_DISCARD 0x00000002
92#define F2FS_MOUNT_NOHEAP 0x00000004
93#define F2FS_MOUNT_XATTR_USER 0x00000008
94#define F2FS_MOUNT_POSIX_ACL 0x00000010
95#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020
96#define F2FS_MOUNT_INLINE_XATTR 0x00000040
97#define F2FS_MOUNT_INLINE_DATA 0x00000080
98#define F2FS_MOUNT_INLINE_DENTRY 0x00000100
99#define F2FS_MOUNT_FLUSH_MERGE 0x00000200
100#define F2FS_MOUNT_NOBARRIER 0x00000400
101#define F2FS_MOUNT_FASTBOOT 0x00000800
102#define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000
103#define F2FS_MOUNT_DATA_FLUSH 0x00002000
104#define F2FS_MOUNT_FAULT_INJECTION 0x00004000
105#define F2FS_MOUNT_USRQUOTA 0x00008000
106#define F2FS_MOUNT_GRPQUOTA 0x00010000
107#define F2FS_MOUNT_PRJQUOTA 0x00020000
108#define F2FS_MOUNT_QUOTA 0x00040000
109#define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000
110#define F2FS_MOUNT_RESERVE_ROOT 0x00100000
111#define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000
112#define F2FS_MOUNT_NORECOVERY 0x00400000
113#define F2FS_MOUNT_ATGC 0x00800000
114#define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000
115#define F2FS_MOUNT_GC_MERGE 0x02000000
116#define F2FS_MOUNT_COMPRESS_CACHE 0x04000000
117#define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000
118
119#define F2FS_OPTION(sbi) ((sbi)->mount_opt)
120#define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
121#define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
122#define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
123
124#define ver_after(a, b) (typecheck(unsigned long long, a) && \
125 typecheck(unsigned long long, b) && \
126 ((long long)((a) - (b)) > 0))
127
128typedef u32 block_t; /*
129 * should not change u32, since it is the on-disk block
130 * address format, __le32.
131 */
132typedef u32 nid_t;
133
134#define COMPRESS_EXT_NUM 16
135
136enum blkzone_allocation_policy {
137 BLKZONE_ALLOC_PRIOR_SEQ, /* Prioritize writing to sequential zones */
138 BLKZONE_ALLOC_ONLY_SEQ, /* Only allow writing to sequential zones */
139 BLKZONE_ALLOC_PRIOR_CONV, /* Prioritize writing to conventional zones */
140};
141
142/*
143 * An implementation of an rwsem that is explicitly unfair to readers. This
144 * prevents priority inversion when a low-priority reader acquires the read lock
145 * while sleeping on the write lock but the write lock is needed by
146 * higher-priority clients.
147 */
148
149struct f2fs_rwsem {
150 struct rw_semaphore internal_rwsem;
151#ifdef CONFIG_F2FS_UNFAIR_RWSEM
152 wait_queue_head_t read_waiters;
153#endif
154};
155
156struct f2fs_mount_info {
157 unsigned int opt;
158 block_t root_reserved_blocks; /* root reserved blocks */
159 kuid_t s_resuid; /* reserved blocks for uid */
160 kgid_t s_resgid; /* reserved blocks for gid */
161 int active_logs; /* # of active logs */
162 int inline_xattr_size; /* inline xattr size */
163#ifdef CONFIG_F2FS_FAULT_INJECTION
164 struct f2fs_fault_info fault_info; /* For fault injection */
165#endif
166#ifdef CONFIG_QUOTA
167 /* Names of quota files with journalled quota */
168 char *s_qf_names[MAXQUOTAS];
169 int s_jquota_fmt; /* Format of quota to use */
170#endif
171 /* For which write hints are passed down to block layer */
172 int alloc_mode; /* segment allocation policy */
173 int fsync_mode; /* fsync policy */
174 int fs_mode; /* fs mode: LFS or ADAPTIVE */
175 int bggc_mode; /* bggc mode: off, on or sync */
176 int memory_mode; /* memory mode */
177 int errors; /* errors parameter */
178 int discard_unit; /*
179 * discard command's offset/size should
180 * be aligned to this unit: block,
181 * segment or section
182 */
183 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
184 block_t unusable_cap_perc; /* percentage for cap */
185 block_t unusable_cap; /* Amount of space allowed to be
186 * unusable when disabling checkpoint
187 */
188
189 /* For compression */
190 unsigned char compress_algorithm; /* algorithm type */
191 unsigned char compress_log_size; /* cluster log size */
192 unsigned char compress_level; /* compress level */
193 bool compress_chksum; /* compressed data chksum */
194 unsigned char compress_ext_cnt; /* extension count */
195 unsigned char nocompress_ext_cnt; /* nocompress extension count */
196 int compress_mode; /* compression mode */
197 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
198 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
199};
200
201#define F2FS_FEATURE_ENCRYPT 0x00000001
202#define F2FS_FEATURE_BLKZONED 0x00000002
203#define F2FS_FEATURE_ATOMIC_WRITE 0x00000004
204#define F2FS_FEATURE_EXTRA_ATTR 0x00000008
205#define F2FS_FEATURE_PRJQUOTA 0x00000010
206#define F2FS_FEATURE_INODE_CHKSUM 0x00000020
207#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040
208#define F2FS_FEATURE_QUOTA_INO 0x00000080
209#define F2FS_FEATURE_INODE_CRTIME 0x00000100
210#define F2FS_FEATURE_LOST_FOUND 0x00000200
211#define F2FS_FEATURE_VERITY 0x00000400
212#define F2FS_FEATURE_SB_CHKSUM 0x00000800
213#define F2FS_FEATURE_CASEFOLD 0x00001000
214#define F2FS_FEATURE_COMPRESSION 0x00002000
215#define F2FS_FEATURE_RO 0x00004000
216#define F2FS_FEATURE_DEVICE_ALIAS 0x00008000
217
218#define __F2FS_HAS_FEATURE(raw_super, mask) \
219 ((raw_super->feature & cpu_to_le32(mask)) != 0)
220#define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
221
222/*
223 * Default values for user and/or group using reserved blocks
224 */
225#define F2FS_DEF_RESUID 0
226#define F2FS_DEF_RESGID 0
227
228/*
229 * For checkpoint manager
230 */
231enum {
232 NAT_BITMAP,
233 SIT_BITMAP
234};
235
236#define CP_UMOUNT 0x00000001
237#define CP_FASTBOOT 0x00000002
238#define CP_SYNC 0x00000004
239#define CP_RECOVERY 0x00000008
240#define CP_DISCARD 0x00000010
241#define CP_TRIMMED 0x00000020
242#define CP_PAUSE 0x00000040
243#define CP_RESIZE 0x00000080
244
245#define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
246#define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
247#define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
248#define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
249#define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
250#define DEF_CP_INTERVAL 60 /* 60 secs */
251#define DEF_IDLE_INTERVAL 5 /* 5 secs */
252#define DEF_DISABLE_INTERVAL 5 /* 5 secs */
253#define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
254#define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
255
256struct cp_control {
257 int reason;
258 __u64 trim_start;
259 __u64 trim_end;
260 __u64 trim_minlen;
261};
262
263/*
264 * indicate meta/data type
265 */
266enum {
267 META_CP,
268 META_NAT,
269 META_SIT,
270 META_SSA,
271 META_MAX,
272 META_POR,
273 DATA_GENERIC, /* check range only */
274 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
275 DATA_GENERIC_ENHANCE_READ, /*
276 * strong check on range and segment
277 * bitmap but no warning due to race
278 * condition of read on truncated area
279 * by extent_cache
280 */
281 DATA_GENERIC_ENHANCE_UPDATE, /*
282 * strong check on range and segment
283 * bitmap for update case
284 */
285 META_GENERIC,
286};
287
288/* for the list of ino */
289enum {
290 ORPHAN_INO, /* for orphan ino list */
291 APPEND_INO, /* for append ino list */
292 UPDATE_INO, /* for update ino list */
293 TRANS_DIR_INO, /* for transactions dir ino list */
294 XATTR_DIR_INO, /* for xattr updated dir ino list */
295 FLUSH_INO, /* for multiple device flushing */
296 MAX_INO_ENTRY, /* max. list */
297};
298
299struct ino_entry {
300 struct list_head list; /* list head */
301 nid_t ino; /* inode number */
302 unsigned int dirty_device; /* dirty device bitmap */
303};
304
305/* for the list of inodes to be GCed */
306struct inode_entry {
307 struct list_head list; /* list head */
308 struct inode *inode; /* vfs inode pointer */
309};
310
311struct fsync_node_entry {
312 struct list_head list; /* list head */
313 struct page *page; /* warm node page pointer */
314 unsigned int seq_id; /* sequence id */
315};
316
317struct ckpt_req {
318 struct completion wait; /* completion for checkpoint done */
319 struct llist_node llnode; /* llist_node to be linked in wait queue */
320 int ret; /* return code of checkpoint */
321 ktime_t queue_time; /* request queued time */
322};
323
324struct ckpt_req_control {
325 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
326 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
327 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
328 atomic_t issued_ckpt; /* # of actually issued ckpts */
329 atomic_t total_ckpt; /* # of total ckpts */
330 atomic_t queued_ckpt; /* # of queued ckpts */
331 struct llist_head issue_list; /* list for command issue */
332 spinlock_t stat_lock; /* lock for below checkpoint time stats */
333 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
334 unsigned int peak_time; /* peak wait time in msec until now */
335};
336
337/* for the bitmap indicate blocks to be discarded */
338struct discard_entry {
339 struct list_head list; /* list head */
340 block_t start_blkaddr; /* start blockaddr of current segment */
341 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
342};
343
344/* minimum discard granularity, unit: block count */
345#define MIN_DISCARD_GRANULARITY 1
346/* default discard granularity of inner discard thread, unit: block count */
347#define DEFAULT_DISCARD_GRANULARITY 16
348/* default maximum discard granularity of ordered discard, unit: block count */
349#define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
350
351/* max discard pend list number */
352#define MAX_PLIST_NUM 512
353#define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
354 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
355
356enum {
357 D_PREP, /* initial */
358 D_PARTIAL, /* partially submitted */
359 D_SUBMIT, /* all submitted */
360 D_DONE, /* finished */
361};
362
363struct discard_info {
364 block_t lstart; /* logical start address */
365 block_t len; /* length */
366 block_t start; /* actual start address in dev */
367};
368
369struct discard_cmd {
370 struct rb_node rb_node; /* rb node located in rb-tree */
371 struct discard_info di; /* discard info */
372 struct list_head list; /* command list */
373 struct completion wait; /* compleation */
374 struct block_device *bdev; /* bdev */
375 unsigned short ref; /* reference count */
376 unsigned char state; /* state */
377 unsigned char queued; /* queued discard */
378 int error; /* bio error */
379 spinlock_t lock; /* for state/bio_ref updating */
380 unsigned short bio_ref; /* bio reference count */
381};
382
383enum {
384 DPOLICY_BG,
385 DPOLICY_FORCE,
386 DPOLICY_FSTRIM,
387 DPOLICY_UMOUNT,
388 MAX_DPOLICY,
389};
390
391enum {
392 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */
393 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */
394 DPOLICY_IO_AWARE_MAX,
395};
396
397struct discard_policy {
398 int type; /* type of discard */
399 unsigned int min_interval; /* used for candidates exist */
400 unsigned int mid_interval; /* used for device busy */
401 unsigned int max_interval; /* used for candidates not exist */
402 unsigned int max_requests; /* # of discards issued per round */
403 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
404 bool io_aware; /* issue discard in idle time */
405 bool sync; /* submit discard with REQ_SYNC flag */
406 bool ordered; /* issue discard by lba order */
407 bool timeout; /* discard timeout for put_super */
408 unsigned int granularity; /* discard granularity */
409};
410
411struct discard_cmd_control {
412 struct task_struct *f2fs_issue_discard; /* discard thread */
413 struct list_head entry_list; /* 4KB discard entry list */
414 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
415 struct list_head wait_list; /* store on-flushing entries */
416 struct list_head fstrim_list; /* in-flight discard from fstrim */
417 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
418 struct mutex cmd_lock;
419 unsigned int nr_discards; /* # of discards in the list */
420 unsigned int max_discards; /* max. discards to be issued */
421 unsigned int max_discard_request; /* max. discard request per round */
422 unsigned int min_discard_issue_time; /* min. interval between discard issue */
423 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
424 unsigned int max_discard_issue_time; /* max. interval between discard issue */
425 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
426 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
427 unsigned int discard_granularity; /* discard granularity */
428 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
429 unsigned int discard_io_aware; /* io_aware policy */
430 unsigned int undiscard_blks; /* # of undiscard blocks */
431 unsigned int next_pos; /* next discard position */
432 atomic_t issued_discard; /* # of issued discard */
433 atomic_t queued_discard; /* # of queued discard */
434 atomic_t discard_cmd_cnt; /* # of cached cmd count */
435 struct rb_root_cached root; /* root of discard rb-tree */
436 bool rbtree_check; /* config for consistence check */
437 bool discard_wake; /* to wake up discard thread */
438};
439
440/* for the list of fsync inodes, used only during recovery */
441struct fsync_inode_entry {
442 struct list_head list; /* list head */
443 struct inode *inode; /* vfs inode pointer */
444 block_t blkaddr; /* block address locating the last fsync */
445 block_t last_dentry; /* block address locating the last dentry */
446};
447
448#define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
449#define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
450
451#define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
452#define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
453#define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
454#define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
455
456#define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
457#define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
458
459static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
460{
461 int before = nats_in_cursum(journal);
462
463 journal->n_nats = cpu_to_le16(before + i);
464 return before;
465}
466
467static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
468{
469 int before = sits_in_cursum(journal);
470
471 journal->n_sits = cpu_to_le16(before + i);
472 return before;
473}
474
475static inline bool __has_cursum_space(struct f2fs_journal *journal,
476 int size, int type)
477{
478 if (type == NAT_JOURNAL)
479 return size <= MAX_NAT_JENTRIES(journal);
480 return size <= MAX_SIT_JENTRIES(journal);
481}
482
483/* for inline stuff */
484#define DEF_INLINE_RESERVED_SIZE 1
485static inline int get_extra_isize(struct inode *inode);
486static inline int get_inline_xattr_addrs(struct inode *inode);
487#define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
488 (CUR_ADDRS_PER_INODE(inode) - \
489 get_inline_xattr_addrs(inode) - \
490 DEF_INLINE_RESERVED_SIZE))
491
492/* for inline dir */
493#define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
494 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
495 BITS_PER_BYTE + 1))
496#define INLINE_DENTRY_BITMAP_SIZE(inode) \
497 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
498#define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
499 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
500 NR_INLINE_DENTRY(inode) + \
501 INLINE_DENTRY_BITMAP_SIZE(inode)))
502
503/*
504 * For INODE and NODE manager
505 */
506/* for directory operations */
507
508struct f2fs_filename {
509 /*
510 * The filename the user specified. This is NULL for some
511 * filesystem-internal operations, e.g. converting an inline directory
512 * to a non-inline one, or roll-forward recovering an encrypted dentry.
513 */
514 const struct qstr *usr_fname;
515
516 /*
517 * The on-disk filename. For encrypted directories, this is encrypted.
518 * This may be NULL for lookups in an encrypted dir without the key.
519 */
520 struct fscrypt_str disk_name;
521
522 /* The dirhash of this filename */
523 f2fs_hash_t hash;
524
525#ifdef CONFIG_FS_ENCRYPTION
526 /*
527 * For lookups in encrypted directories: either the buffer backing
528 * disk_name, or a buffer that holds the decoded no-key name.
529 */
530 struct fscrypt_str crypto_buf;
531#endif
532#if IS_ENABLED(CONFIG_UNICODE)
533 /*
534 * For casefolded directories: the casefolded name, but it's left NULL
535 * if the original name is not valid Unicode, if the original name is
536 * "." or "..", if the directory is both casefolded and encrypted and
537 * its encryption key is unavailable, or if the filesystem is doing an
538 * internal operation where usr_fname is also NULL. In all these cases
539 * we fall back to treating the name as an opaque byte sequence.
540 */
541 struct qstr cf_name;
542#endif
543};
544
545struct f2fs_dentry_ptr {
546 struct inode *inode;
547 void *bitmap;
548 struct f2fs_dir_entry *dentry;
549 __u8 (*filename)[F2FS_SLOT_LEN];
550 int max;
551 int nr_bitmap;
552};
553
554static inline void make_dentry_ptr_block(struct inode *inode,
555 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
556{
557 d->inode = inode;
558 d->max = NR_DENTRY_IN_BLOCK;
559 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
560 d->bitmap = t->dentry_bitmap;
561 d->dentry = t->dentry;
562 d->filename = t->filename;
563}
564
565static inline void make_dentry_ptr_inline(struct inode *inode,
566 struct f2fs_dentry_ptr *d, void *t)
567{
568 int entry_cnt = NR_INLINE_DENTRY(inode);
569 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
570 int reserved_size = INLINE_RESERVED_SIZE(inode);
571
572 d->inode = inode;
573 d->max = entry_cnt;
574 d->nr_bitmap = bitmap_size;
575 d->bitmap = t;
576 d->dentry = t + bitmap_size + reserved_size;
577 d->filename = t + bitmap_size + reserved_size +
578 SIZE_OF_DIR_ENTRY * entry_cnt;
579}
580
581/*
582 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
583 * as its node offset to distinguish from index node blocks.
584 * But some bits are used to mark the node block.
585 */
586#define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
587 >> OFFSET_BIT_SHIFT)
588enum {
589 ALLOC_NODE, /* allocate a new node page if needed */
590 LOOKUP_NODE, /* look up a node without readahead */
591 LOOKUP_NODE_RA, /*
592 * look up a node with readahead called
593 * by get_data_block.
594 */
595};
596
597#define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
598
599/* congestion wait timeout value, default: 20ms */
600#define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
601
602/* maximum retry quota flush count */
603#define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
604
605/* maximum retry of EIO'ed page */
606#define MAX_RETRY_PAGE_EIO 100
607
608#define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
609
610#define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
611
612/* dirty segments threshold for triggering CP */
613#define DEFAULT_DIRTY_THRESHOLD 4
614
615#define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
616#define RECOVERY_MIN_RA_BLOCKS 1
617
618#define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
619
620/* for in-memory extent cache entry */
621#define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
622
623/* number of extent info in extent cache we try to shrink */
624#define READ_EXTENT_CACHE_SHRINK_NUMBER 128
625
626/* number of age extent info in extent cache we try to shrink */
627#define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
628#define LAST_AGE_WEIGHT 30
629#define SAME_AGE_REGION 1024
630
631/*
632 * Define data block with age less than 1GB as hot data
633 * define data block with age less than 10GB but more than 1GB as warm data
634 */
635#define DEF_HOT_DATA_AGE_THRESHOLD 262144
636#define DEF_WARM_DATA_AGE_THRESHOLD 2621440
637
638/* default max read extent count per inode */
639#define DEF_MAX_READ_EXTENT_COUNT 10240
640
641/* extent cache type */
642enum extent_type {
643 EX_READ,
644 EX_BLOCK_AGE,
645 NR_EXTENT_CACHES,
646};
647
648struct extent_info {
649 unsigned int fofs; /* start offset in a file */
650 unsigned int len; /* length of the extent */
651 union {
652 /* read extent_cache */
653 struct {
654 /* start block address of the extent */
655 block_t blk;
656#ifdef CONFIG_F2FS_FS_COMPRESSION
657 /* physical extent length of compressed blocks */
658 unsigned int c_len;
659#endif
660 };
661 /* block age extent_cache */
662 struct {
663 /* block age of the extent */
664 unsigned long long age;
665 /* last total blocks allocated */
666 unsigned long long last_blocks;
667 };
668 };
669};
670
671struct extent_node {
672 struct rb_node rb_node; /* rb node located in rb-tree */
673 struct extent_info ei; /* extent info */
674 struct list_head list; /* node in global extent list of sbi */
675 struct extent_tree *et; /* extent tree pointer */
676};
677
678struct extent_tree {
679 nid_t ino; /* inode number */
680 enum extent_type type; /* keep the extent tree type */
681 struct rb_root_cached root; /* root of extent info rb-tree */
682 struct extent_node *cached_en; /* recently accessed extent node */
683 struct list_head list; /* to be used by sbi->zombie_list */
684 rwlock_t lock; /* protect extent info rb-tree */
685 atomic_t node_cnt; /* # of extent node in rb-tree*/
686 bool largest_updated; /* largest extent updated */
687 struct extent_info largest; /* largest cached extent for EX_READ */
688};
689
690struct extent_tree_info {
691 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
692 struct mutex extent_tree_lock; /* locking extent radix tree */
693 struct list_head extent_list; /* lru list for shrinker */
694 spinlock_t extent_lock; /* locking extent lru list */
695 atomic_t total_ext_tree; /* extent tree count */
696 struct list_head zombie_list; /* extent zombie tree list */
697 atomic_t total_zombie_tree; /* extent zombie tree count */
698 atomic_t total_ext_node; /* extent info count */
699};
700
701/*
702 * State of block returned by f2fs_map_blocks.
703 */
704#define F2FS_MAP_NEW (1U << 0)
705#define F2FS_MAP_MAPPED (1U << 1)
706#define F2FS_MAP_DELALLOC (1U << 2)
707#define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
708 F2FS_MAP_DELALLOC)
709
710struct f2fs_map_blocks {
711 struct block_device *m_bdev; /* for multi-device dio */
712 block_t m_pblk;
713 block_t m_lblk;
714 unsigned int m_len;
715 unsigned int m_flags;
716 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
717 pgoff_t *m_next_extent; /* point to next possible extent */
718 int m_seg_type;
719 bool m_may_create; /* indicate it is from write path */
720 bool m_multidev_dio; /* indicate it allows multi-device dio */
721};
722
723/* for flag in get_data_block */
724enum {
725 F2FS_GET_BLOCK_DEFAULT,
726 F2FS_GET_BLOCK_FIEMAP,
727 F2FS_GET_BLOCK_BMAP,
728 F2FS_GET_BLOCK_DIO,
729 F2FS_GET_BLOCK_PRE_DIO,
730 F2FS_GET_BLOCK_PRE_AIO,
731 F2FS_GET_BLOCK_PRECACHE,
732};
733
734/*
735 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
736 */
737#define FADVISE_COLD_BIT 0x01
738#define FADVISE_LOST_PINO_BIT 0x02
739#define FADVISE_ENCRYPT_BIT 0x04
740#define FADVISE_ENC_NAME_BIT 0x08
741#define FADVISE_KEEP_SIZE_BIT 0x10
742#define FADVISE_HOT_BIT 0x20
743#define FADVISE_VERITY_BIT 0x40
744#define FADVISE_TRUNC_BIT 0x80
745
746#define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
747
748#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
749#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
750#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
751
752#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
753#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
754#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
755
756#define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
757#define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
758
759#define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
760#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
761
762#define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
763#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
764
765#define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
766#define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
767#define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
768
769#define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
770#define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
771
772#define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
773#define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
774#define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
775
776#define DEF_DIR_LEVEL 0
777
778/* used for f2fs_inode_info->flags */
779enum {
780 FI_NEW_INODE, /* indicate newly allocated inode */
781 FI_DIRTY_INODE, /* indicate inode is dirty or not */
782 FI_AUTO_RECOVER, /* indicate inode is recoverable */
783 FI_DIRTY_DIR, /* indicate directory has dirty pages */
784 FI_INC_LINK, /* need to increment i_nlink */
785 FI_ACL_MODE, /* indicate acl mode */
786 FI_NO_ALLOC, /* should not allocate any blocks */
787 FI_FREE_NID, /* free allocated nide */
788 FI_NO_EXTENT, /* not to use the extent cache */
789 FI_INLINE_XATTR, /* used for inline xattr */
790 FI_INLINE_DATA, /* used for inline data*/
791 FI_INLINE_DENTRY, /* used for inline dentry */
792 FI_APPEND_WRITE, /* inode has appended data */
793 FI_UPDATE_WRITE, /* inode has in-place-update data */
794 FI_NEED_IPU, /* used for ipu per file */
795 FI_ATOMIC_FILE, /* indicate atomic file */
796 FI_DATA_EXIST, /* indicate data exists */
797 FI_SKIP_WRITES, /* should skip data page writeback */
798 FI_OPU_WRITE, /* used for opu per file */
799 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
800 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
801 FI_HOT_DATA, /* indicate file is hot */
802 FI_EXTRA_ATTR, /* indicate file has extra attribute */
803 FI_PROJ_INHERIT, /* indicate file inherits projectid */
804 FI_PIN_FILE, /* indicate file should not be gced */
805 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
806 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
807 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
808 FI_MMAP_FILE, /* indicate file was mmapped */
809 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
810 FI_COMPRESS_RELEASED, /* compressed blocks were released */
811 FI_ALIGNED_WRITE, /* enable aligned write */
812 FI_COW_FILE, /* indicate COW file */
813 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
814 FI_ATOMIC_DIRTIED, /* indicate atomic file is dirtied */
815 FI_ATOMIC_REPLACE, /* indicate atomic replace */
816 FI_OPENED_FILE, /* indicate file has been opened */
817 FI_MAX, /* max flag, never be used */
818};
819
820struct f2fs_inode_info {
821 struct inode vfs_inode; /* serve a vfs inode */
822 unsigned long i_flags; /* keep an inode flags for ioctl */
823 unsigned char i_advise; /* use to give file attribute hints */
824 unsigned char i_dir_level; /* use for dentry level for large dir */
825 union {
826 unsigned int i_current_depth; /* only for directory depth */
827 unsigned short i_gc_failures; /* for gc failure statistic */
828 };
829 unsigned int i_pino; /* parent inode number */
830 umode_t i_acl_mode; /* keep file acl mode temporarily */
831
832 /* Use below internally in f2fs*/
833 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
834 struct f2fs_rwsem i_sem; /* protect fi info */
835 atomic_t dirty_pages; /* # of dirty pages */
836 f2fs_hash_t chash; /* hash value of given file name */
837 unsigned int clevel; /* maximum level of given file name */
838 struct task_struct *task; /* lookup and create consistency */
839 struct task_struct *cp_task; /* separate cp/wb IO stats*/
840 struct task_struct *wb_task; /* indicate inode is in context of writeback */
841 nid_t i_xattr_nid; /* node id that contains xattrs */
842 loff_t last_disk_size; /* lastly written file size */
843 spinlock_t i_size_lock; /* protect last_disk_size */
844
845#ifdef CONFIG_QUOTA
846 struct dquot __rcu *i_dquot[MAXQUOTAS];
847
848 /* quota space reservation, managed internally by quota code */
849 qsize_t i_reserved_quota;
850#endif
851 struct list_head dirty_list; /* dirty list for dirs and files */
852 struct list_head gdirty_list; /* linked in global dirty list */
853 struct task_struct *atomic_write_task; /* store atomic write task */
854 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
855 /* cached extent_tree entry */
856 union {
857 struct inode *cow_inode; /* copy-on-write inode for atomic write */
858 struct inode *atomic_inode;
859 /* point to atomic_inode, available only for cow_inode */
860 };
861
862 /* avoid racing between foreground op and gc */
863 struct f2fs_rwsem i_gc_rwsem[2];
864 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
865
866 int i_extra_isize; /* size of extra space located in i_addr */
867 kprojid_t i_projid; /* id for project quota */
868 int i_inline_xattr_size; /* inline xattr size */
869 struct timespec64 i_crtime; /* inode creation time */
870 struct timespec64 i_disk_time[3];/* inode disk times */
871
872 /* for file compress */
873 atomic_t i_compr_blocks; /* # of compressed blocks */
874 unsigned char i_compress_algorithm; /* algorithm type */
875 unsigned char i_log_cluster_size; /* log of cluster size */
876 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
877 unsigned char i_compress_flag; /* compress flag */
878 unsigned int i_cluster_size; /* cluster size */
879
880 unsigned int atomic_write_cnt;
881 loff_t original_i_size; /* original i_size before atomic write */
882};
883
884static inline void get_read_extent_info(struct extent_info *ext,
885 struct f2fs_extent *i_ext)
886{
887 ext->fofs = le32_to_cpu(i_ext->fofs);
888 ext->blk = le32_to_cpu(i_ext->blk);
889 ext->len = le32_to_cpu(i_ext->len);
890}
891
892static inline void set_raw_read_extent(struct extent_info *ext,
893 struct f2fs_extent *i_ext)
894{
895 i_ext->fofs = cpu_to_le32(ext->fofs);
896 i_ext->blk = cpu_to_le32(ext->blk);
897 i_ext->len = cpu_to_le32(ext->len);
898}
899
900static inline bool __is_discard_mergeable(struct discard_info *back,
901 struct discard_info *front, unsigned int max_len)
902{
903 return (back->lstart + back->len == front->lstart) &&
904 (back->len + front->len <= max_len);
905}
906
907static inline bool __is_discard_back_mergeable(struct discard_info *cur,
908 struct discard_info *back, unsigned int max_len)
909{
910 return __is_discard_mergeable(back, cur, max_len);
911}
912
913static inline bool __is_discard_front_mergeable(struct discard_info *cur,
914 struct discard_info *front, unsigned int max_len)
915{
916 return __is_discard_mergeable(cur, front, max_len);
917}
918
919/*
920 * For free nid management
921 */
922enum nid_state {
923 FREE_NID, /* newly added to free nid list */
924 PREALLOC_NID, /* it is preallocated */
925 MAX_NID_STATE,
926};
927
928enum nat_state {
929 TOTAL_NAT,
930 DIRTY_NAT,
931 RECLAIMABLE_NAT,
932 MAX_NAT_STATE,
933};
934
935struct f2fs_nm_info {
936 block_t nat_blkaddr; /* base disk address of NAT */
937 nid_t max_nid; /* maximum possible node ids */
938 nid_t available_nids; /* # of available node ids */
939 nid_t next_scan_nid; /* the next nid to be scanned */
940 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
941 unsigned int ram_thresh; /* control the memory footprint */
942 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
943 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
944
945 /* NAT cache management */
946 struct radix_tree_root nat_root;/* root of the nat entry cache */
947 struct radix_tree_root nat_set_root;/* root of the nat set cache */
948 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
949 struct list_head nat_entries; /* cached nat entry list (clean) */
950 spinlock_t nat_list_lock; /* protect clean nat entry list */
951 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
952 unsigned int nat_blocks; /* # of nat blocks */
953
954 /* free node ids management */
955 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
956 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
957 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
958 spinlock_t nid_list_lock; /* protect nid lists ops */
959 struct mutex build_lock; /* lock for build free nids */
960 unsigned char **free_nid_bitmap;
961 unsigned char *nat_block_bitmap;
962 unsigned short *free_nid_count; /* free nid count of NAT block */
963
964 /* for checkpoint */
965 char *nat_bitmap; /* NAT bitmap pointer */
966
967 unsigned int nat_bits_blocks; /* # of nat bits blocks */
968 unsigned char *nat_bits; /* NAT bits blocks */
969 unsigned char *full_nat_bits; /* full NAT pages */
970 unsigned char *empty_nat_bits; /* empty NAT pages */
971#ifdef CONFIG_F2FS_CHECK_FS
972 char *nat_bitmap_mir; /* NAT bitmap mirror */
973#endif
974 int bitmap_size; /* bitmap size */
975};
976
977/*
978 * this structure is used as one of function parameters.
979 * all the information are dedicated to a given direct node block determined
980 * by the data offset in a file.
981 */
982struct dnode_of_data {
983 struct inode *inode; /* vfs inode pointer */
984 struct page *inode_page; /* its inode page, NULL is possible */
985 struct page *node_page; /* cached direct node page */
986 nid_t nid; /* node id of the direct node block */
987 unsigned int ofs_in_node; /* data offset in the node page */
988 bool inode_page_locked; /* inode page is locked or not */
989 bool node_changed; /* is node block changed */
990 char cur_level; /* level of hole node page */
991 char max_level; /* level of current page located */
992 block_t data_blkaddr; /* block address of the node block */
993};
994
995static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
996 struct page *ipage, struct page *npage, nid_t nid)
997{
998 memset(dn, 0, sizeof(*dn));
999 dn->inode = inode;
1000 dn->inode_page = ipage;
1001 dn->node_page = npage;
1002 dn->nid = nid;
1003}
1004
1005/*
1006 * For SIT manager
1007 *
1008 * By default, there are 6 active log areas across the whole main area.
1009 * When considering hot and cold data separation to reduce cleaning overhead,
1010 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1011 * respectively.
1012 * In the current design, you should not change the numbers intentionally.
1013 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1014 * logs individually according to the underlying devices. (default: 6)
1015 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1016 * data and 8 for node logs.
1017 */
1018#define NR_CURSEG_DATA_TYPE (3)
1019#define NR_CURSEG_NODE_TYPE (3)
1020#define NR_CURSEG_INMEM_TYPE (2)
1021#define NR_CURSEG_RO_TYPE (2)
1022#define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1023#define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1024
1025enum log_type {
1026 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1027 CURSEG_WARM_DATA, /* data blocks */
1028 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1029 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1030 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1031 CURSEG_COLD_NODE, /* indirect node blocks */
1032 NR_PERSISTENT_LOG, /* number of persistent log */
1033 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1034 /* pinned file that needs consecutive block address */
1035 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1036 NO_CHECK_TYPE, /* number of persistent & inmem log */
1037};
1038
1039struct flush_cmd {
1040 struct completion wait;
1041 struct llist_node llnode;
1042 nid_t ino;
1043 int ret;
1044};
1045
1046struct flush_cmd_control {
1047 struct task_struct *f2fs_issue_flush; /* flush thread */
1048 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1049 atomic_t issued_flush; /* # of issued flushes */
1050 atomic_t queued_flush; /* # of queued flushes */
1051 struct llist_head issue_list; /* list for command issue */
1052 struct llist_node *dispatch_list; /* list for command dispatch */
1053};
1054
1055struct f2fs_sm_info {
1056 struct sit_info *sit_info; /* whole segment information */
1057 struct free_segmap_info *free_info; /* free segment information */
1058 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1059 struct curseg_info *curseg_array; /* active segment information */
1060
1061 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1062
1063 block_t seg0_blkaddr; /* block address of 0'th segment */
1064 block_t main_blkaddr; /* start block address of main area */
1065 block_t ssa_blkaddr; /* start block address of SSA area */
1066
1067 unsigned int segment_count; /* total # of segments */
1068 unsigned int main_segments; /* # of segments in main area */
1069 unsigned int reserved_segments; /* # of reserved segments */
1070 unsigned int ovp_segments; /* # of overprovision segments */
1071
1072 /* a threshold to reclaim prefree segments */
1073 unsigned int rec_prefree_segments;
1074
1075 struct list_head sit_entry_set; /* sit entry set list */
1076
1077 unsigned int ipu_policy; /* in-place-update policy */
1078 unsigned int min_ipu_util; /* in-place-update threshold */
1079 unsigned int min_fsync_blocks; /* threshold for fsync */
1080 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1081 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1082 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1083
1084 /* for flush command control */
1085 struct flush_cmd_control *fcc_info;
1086
1087 /* for discard command control */
1088 struct discard_cmd_control *dcc_info;
1089};
1090
1091/*
1092 * For superblock
1093 */
1094/*
1095 * COUNT_TYPE for monitoring
1096 *
1097 * f2fs monitors the number of several block types such as on-writeback,
1098 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1099 */
1100#define WB_DATA_TYPE(p, f) \
1101 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1102enum count_type {
1103 F2FS_DIRTY_DENTS,
1104 F2FS_DIRTY_DATA,
1105 F2FS_DIRTY_QDATA,
1106 F2FS_DIRTY_NODES,
1107 F2FS_DIRTY_META,
1108 F2FS_DIRTY_IMETA,
1109 F2FS_WB_CP_DATA,
1110 F2FS_WB_DATA,
1111 F2FS_RD_DATA,
1112 F2FS_RD_NODE,
1113 F2FS_RD_META,
1114 F2FS_DIO_WRITE,
1115 F2FS_DIO_READ,
1116 NR_COUNT_TYPE,
1117};
1118
1119/*
1120 * The below are the page types of bios used in submit_bio().
1121 * The available types are:
1122 * DATA User data pages. It operates as async mode.
1123 * NODE Node pages. It operates as async mode.
1124 * META FS metadata pages such as SIT, NAT, CP.
1125 * NR_PAGE_TYPE The number of page types.
1126 * META_FLUSH Make sure the previous pages are written
1127 * with waiting the bio's completion
1128 * ... Only can be used with META.
1129 */
1130#define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1131#define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE)
1132enum page_type {
1133 DATA = 0,
1134 NODE = 1, /* should not change this */
1135 META,
1136 NR_PAGE_TYPE,
1137 META_FLUSH,
1138 IPU, /* the below types are used by tracepoints only. */
1139 OPU,
1140};
1141
1142enum temp_type {
1143 HOT = 0, /* must be zero for meta bio */
1144 WARM,
1145 COLD,
1146 NR_TEMP_TYPE,
1147};
1148
1149enum need_lock_type {
1150 LOCK_REQ = 0,
1151 LOCK_DONE,
1152 LOCK_RETRY,
1153};
1154
1155enum cp_reason_type {
1156 CP_NO_NEEDED,
1157 CP_NON_REGULAR,
1158 CP_COMPRESSED,
1159 CP_HARDLINK,
1160 CP_SB_NEED_CP,
1161 CP_WRONG_PINO,
1162 CP_NO_SPC_ROLL,
1163 CP_NODE_NEED_CP,
1164 CP_FASTBOOT_MODE,
1165 CP_SPEC_LOG_NUM,
1166 CP_RECOVER_DIR,
1167 CP_XATTR_DIR,
1168};
1169
1170enum iostat_type {
1171 /* WRITE IO */
1172 APP_DIRECT_IO, /* app direct write IOs */
1173 APP_BUFFERED_IO, /* app buffered write IOs */
1174 APP_WRITE_IO, /* app write IOs */
1175 APP_MAPPED_IO, /* app mapped IOs */
1176 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1177 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1178 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1179 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1180 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1181 FS_META_IO, /* meta IOs from kworker/reclaimer */
1182 FS_GC_DATA_IO, /* data IOs from forground gc */
1183 FS_GC_NODE_IO, /* node IOs from forground gc */
1184 FS_CP_DATA_IO, /* data IOs from checkpoint */
1185 FS_CP_NODE_IO, /* node IOs from checkpoint */
1186 FS_CP_META_IO, /* meta IOs from checkpoint */
1187
1188 /* READ IO */
1189 APP_DIRECT_READ_IO, /* app direct read IOs */
1190 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1191 APP_READ_IO, /* app read IOs */
1192 APP_MAPPED_READ_IO, /* app mapped read IOs */
1193 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1194 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1195 FS_DATA_READ_IO, /* data read IOs */
1196 FS_GDATA_READ_IO, /* data read IOs from background gc */
1197 FS_CDATA_READ_IO, /* compressed data read IOs */
1198 FS_NODE_READ_IO, /* node read IOs */
1199 FS_META_READ_IO, /* meta read IOs */
1200
1201 /* other */
1202 FS_DISCARD_IO, /* discard */
1203 FS_FLUSH_IO, /* flush */
1204 FS_ZONE_RESET_IO, /* zone reset */
1205 NR_IO_TYPE,
1206};
1207
1208struct f2fs_io_info {
1209 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1210 nid_t ino; /* inode number */
1211 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1212 enum temp_type temp; /* contains HOT/WARM/COLD */
1213 enum req_op op; /* contains REQ_OP_ */
1214 blk_opf_t op_flags; /* req_flag_bits */
1215 block_t new_blkaddr; /* new block address to be written */
1216 block_t old_blkaddr; /* old block address before Cow */
1217 struct page *page; /* page to be written */
1218 struct page *encrypted_page; /* encrypted page */
1219 struct page *compressed_page; /* compressed page */
1220 struct list_head list; /* serialize IOs */
1221 unsigned int compr_blocks; /* # of compressed block addresses */
1222 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1223 unsigned int version:8; /* version of the node */
1224 unsigned int submitted:1; /* indicate IO submission */
1225 unsigned int in_list:1; /* indicate fio is in io_list */
1226 unsigned int is_por:1; /* indicate IO is from recovery or not */
1227 unsigned int encrypted:1; /* indicate file is encrypted */
1228 unsigned int meta_gc:1; /* require meta inode GC */
1229 enum iostat_type io_type; /* io type */
1230 struct writeback_control *io_wbc; /* writeback control */
1231 struct bio **bio; /* bio for ipu */
1232 sector_t *last_block; /* last block number in bio */
1233};
1234
1235struct bio_entry {
1236 struct bio *bio;
1237 struct list_head list;
1238};
1239
1240#define is_read_io(rw) ((rw) == READ)
1241struct f2fs_bio_info {
1242 struct f2fs_sb_info *sbi; /* f2fs superblock */
1243 struct bio *bio; /* bios to merge */
1244 sector_t last_block_in_bio; /* last block number */
1245 struct f2fs_io_info fio; /* store buffered io info. */
1246#ifdef CONFIG_BLK_DEV_ZONED
1247 struct completion zone_wait; /* condition value for the previous open zone to close */
1248 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1249 void *bi_private; /* previous bi_private for pending bio */
1250#endif
1251 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1252 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1253 struct list_head io_list; /* track fios */
1254 struct list_head bio_list; /* bio entry list head */
1255 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1256};
1257
1258#define FDEV(i) (sbi->devs[i])
1259#define RDEV(i) (raw_super->devs[i])
1260struct f2fs_dev_info {
1261 struct file *bdev_file;
1262 struct block_device *bdev;
1263 char path[MAX_PATH_LEN];
1264 unsigned int total_segments;
1265 block_t start_blk;
1266 block_t end_blk;
1267#ifdef CONFIG_BLK_DEV_ZONED
1268 unsigned int nr_blkz; /* Total number of zones */
1269 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1270#endif
1271};
1272
1273enum inode_type {
1274 DIR_INODE, /* for dirty dir inode */
1275 FILE_INODE, /* for dirty regular/symlink inode */
1276 DIRTY_META, /* for all dirtied inode metadata */
1277 NR_INODE_TYPE,
1278};
1279
1280/* for inner inode cache management */
1281struct inode_management {
1282 struct radix_tree_root ino_root; /* ino entry array */
1283 spinlock_t ino_lock; /* for ino entry lock */
1284 struct list_head ino_list; /* inode list head */
1285 unsigned long ino_num; /* number of entries */
1286};
1287
1288/* for GC_AT */
1289struct atgc_management {
1290 bool atgc_enabled; /* ATGC is enabled or not */
1291 struct rb_root_cached root; /* root of victim rb-tree */
1292 struct list_head victim_list; /* linked with all victim entries */
1293 unsigned int victim_count; /* victim count in rb-tree */
1294 unsigned int candidate_ratio; /* candidate ratio */
1295 unsigned int max_candidate_count; /* max candidate count */
1296 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1297 unsigned long long age_threshold; /* age threshold */
1298};
1299
1300struct f2fs_gc_control {
1301 unsigned int victim_segno; /* target victim segment number */
1302 int init_gc_type; /* FG_GC or BG_GC */
1303 bool no_bg_gc; /* check the space and stop bg_gc */
1304 bool should_migrate_blocks; /* should migrate blocks */
1305 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1306 bool one_time; /* require one time GC in one migration unit */
1307 unsigned int nr_free_secs; /* # of free sections to do GC */
1308};
1309
1310/*
1311 * For s_flag in struct f2fs_sb_info
1312 * Modification on enum should be synchronized with s_flag array
1313 */
1314enum {
1315 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1316 SBI_IS_CLOSE, /* specify unmounting */
1317 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1318 SBI_POR_DOING, /* recovery is doing or not */
1319 SBI_NEED_SB_WRITE, /* need to recover superblock */
1320 SBI_NEED_CP, /* need to checkpoint */
1321 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1322 SBI_IS_RECOVERED, /* recovered orphan/data */
1323 SBI_CP_DISABLED, /* CP was disabled last mount */
1324 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1325 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1326 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1327 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1328 SBI_IS_RESIZEFS, /* resizefs is in process */
1329 SBI_IS_FREEZING, /* freezefs is in process */
1330 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1331 MAX_SBI_FLAG,
1332};
1333
1334enum {
1335 CP_TIME,
1336 REQ_TIME,
1337 DISCARD_TIME,
1338 GC_TIME,
1339 DISABLE_TIME,
1340 UMOUNT_DISCARD_TIMEOUT,
1341 MAX_TIME,
1342};
1343
1344/* Note that you need to keep synchronization with this gc_mode_names array */
1345enum {
1346 GC_NORMAL,
1347 GC_IDLE_CB,
1348 GC_IDLE_GREEDY,
1349 GC_IDLE_AT,
1350 GC_URGENT_HIGH,
1351 GC_URGENT_LOW,
1352 GC_URGENT_MID,
1353 MAX_GC_MODE,
1354};
1355
1356enum {
1357 BGGC_MODE_ON, /* background gc is on */
1358 BGGC_MODE_OFF, /* background gc is off */
1359 BGGC_MODE_SYNC, /*
1360 * background gc is on, migrating blocks
1361 * like foreground gc
1362 */
1363};
1364
1365enum {
1366 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1367 FS_MODE_LFS, /* use lfs allocation only */
1368 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1369 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1370};
1371
1372enum {
1373 ALLOC_MODE_DEFAULT, /* stay default */
1374 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1375};
1376
1377enum fsync_mode {
1378 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1379 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1380 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1381};
1382
1383enum {
1384 COMPR_MODE_FS, /*
1385 * automatically compress compression
1386 * enabled files
1387 */
1388 COMPR_MODE_USER, /*
1389 * automatical compression is disabled.
1390 * user can control the file compression
1391 * using ioctls
1392 */
1393};
1394
1395enum {
1396 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1397 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1398 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1399};
1400
1401enum {
1402 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1403 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1404};
1405
1406enum errors_option {
1407 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */
1408 MOUNT_ERRORS_CONTINUE, /* continue on errors */
1409 MOUNT_ERRORS_PANIC, /* panic on errors */
1410};
1411
1412enum {
1413 BACKGROUND,
1414 FOREGROUND,
1415 MAX_CALL_TYPE,
1416 TOTAL_CALL = FOREGROUND,
1417};
1418
1419static inline int f2fs_test_bit(unsigned int nr, char *addr);
1420static inline void f2fs_set_bit(unsigned int nr, char *addr);
1421static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1422
1423/*
1424 * Layout of f2fs page.private:
1425 *
1426 * Layout A: lowest bit should be 1
1427 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1428 * bit 0 PAGE_PRIVATE_NOT_POINTER
1429 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION
1430 * bit 2 PAGE_PRIVATE_INLINE_INODE
1431 * bit 3 PAGE_PRIVATE_REF_RESOURCE
1432 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE
1433 * bit 5- f2fs private data
1434 *
1435 * Layout B: lowest bit should be 0
1436 * page.private is a wrapped pointer.
1437 */
1438enum {
1439 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1440 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1441 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1442 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1443 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1444 PAGE_PRIVATE_MAX
1445};
1446
1447/* For compression */
1448enum compress_algorithm_type {
1449 COMPRESS_LZO,
1450 COMPRESS_LZ4,
1451 COMPRESS_ZSTD,
1452 COMPRESS_LZORLE,
1453 COMPRESS_MAX,
1454};
1455
1456enum compress_flag {
1457 COMPRESS_CHKSUM,
1458 COMPRESS_MAX_FLAG,
1459};
1460
1461#define COMPRESS_WATERMARK 20
1462#define COMPRESS_PERCENT 20
1463
1464#define COMPRESS_DATA_RESERVED_SIZE 4
1465struct compress_data {
1466 __le32 clen; /* compressed data size */
1467 __le32 chksum; /* compressed data chksum */
1468 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1469 u8 cdata[]; /* compressed data */
1470};
1471
1472#define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1473
1474#define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1475
1476#define F2FS_ZSTD_DEFAULT_CLEVEL 1
1477
1478#define COMPRESS_LEVEL_OFFSET 8
1479
1480/* compress context */
1481struct compress_ctx {
1482 struct inode *inode; /* inode the context belong to */
1483 pgoff_t cluster_idx; /* cluster index number */
1484 unsigned int cluster_size; /* page count in cluster */
1485 unsigned int log_cluster_size; /* log of cluster size */
1486 struct page **rpages; /* pages store raw data in cluster */
1487 unsigned int nr_rpages; /* total page number in rpages */
1488 struct page **cpages; /* pages store compressed data in cluster */
1489 unsigned int nr_cpages; /* total page number in cpages */
1490 unsigned int valid_nr_cpages; /* valid page number in cpages */
1491 void *rbuf; /* virtual mapped address on rpages */
1492 struct compress_data *cbuf; /* virtual mapped address on cpages */
1493 size_t rlen; /* valid data length in rbuf */
1494 size_t clen; /* valid data length in cbuf */
1495 void *private; /* payload buffer for specified compression algorithm */
1496 void *private2; /* extra payload buffer */
1497};
1498
1499/* compress context for write IO path */
1500struct compress_io_ctx {
1501 u32 magic; /* magic number to indicate page is compressed */
1502 struct inode *inode; /* inode the context belong to */
1503 struct page **rpages; /* pages store raw data in cluster */
1504 unsigned int nr_rpages; /* total page number in rpages */
1505 atomic_t pending_pages; /* in-flight compressed page count */
1506};
1507
1508/* Context for decompressing one cluster on the read IO path */
1509struct decompress_io_ctx {
1510 u32 magic; /* magic number to indicate page is compressed */
1511 struct inode *inode; /* inode the context belong to */
1512 pgoff_t cluster_idx; /* cluster index number */
1513 unsigned int cluster_size; /* page count in cluster */
1514 unsigned int log_cluster_size; /* log of cluster size */
1515 struct page **rpages; /* pages store raw data in cluster */
1516 unsigned int nr_rpages; /* total page number in rpages */
1517 struct page **cpages; /* pages store compressed data in cluster */
1518 unsigned int nr_cpages; /* total page number in cpages */
1519 struct page **tpages; /* temp pages to pad holes in cluster */
1520 void *rbuf; /* virtual mapped address on rpages */
1521 struct compress_data *cbuf; /* virtual mapped address on cpages */
1522 size_t rlen; /* valid data length in rbuf */
1523 size_t clen; /* valid data length in cbuf */
1524
1525 /*
1526 * The number of compressed pages remaining to be read in this cluster.
1527 * This is initially nr_cpages. It is decremented by 1 each time a page
1528 * has been read (or failed to be read). When it reaches 0, the cluster
1529 * is decompressed (or an error is reported).
1530 *
1531 * If an error occurs before all the pages have been submitted for I/O,
1532 * then this will never reach 0. In this case the I/O submitter is
1533 * responsible for calling f2fs_decompress_end_io() instead.
1534 */
1535 atomic_t remaining_pages;
1536
1537 /*
1538 * Number of references to this decompress_io_ctx.
1539 *
1540 * One reference is held for I/O completion. This reference is dropped
1541 * after the pagecache pages are updated and unlocked -- either after
1542 * decompression (and verity if enabled), or after an error.
1543 *
1544 * In addition, each compressed page holds a reference while it is in a
1545 * bio. These references are necessary prevent compressed pages from
1546 * being freed while they are still in a bio.
1547 */
1548 refcount_t refcnt;
1549
1550 bool failed; /* IO error occurred before decompression? */
1551 bool need_verity; /* need fs-verity verification after decompression? */
1552 void *private; /* payload buffer for specified decompression algorithm */
1553 void *private2; /* extra payload buffer */
1554 struct work_struct verity_work; /* work to verify the decompressed pages */
1555 struct work_struct free_work; /* work for late free this structure itself */
1556};
1557
1558#define NULL_CLUSTER ((unsigned int)(~0))
1559#define MIN_COMPRESS_LOG_SIZE 2
1560#define MAX_COMPRESS_LOG_SIZE 8
1561#define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1562
1563struct f2fs_sb_info {
1564 struct super_block *sb; /* pointer to VFS super block */
1565 struct proc_dir_entry *s_proc; /* proc entry */
1566 struct f2fs_super_block *raw_super; /* raw super block pointer */
1567 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1568 int valid_super_block; /* valid super block no */
1569 unsigned long s_flag; /* flags for sbi */
1570 struct mutex writepages; /* mutex for writepages() */
1571
1572#ifdef CONFIG_BLK_DEV_ZONED
1573 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1574 unsigned int max_open_zones; /* max open zone resources of the zoned device */
1575 /* For adjust the priority writing position of data in zone UFS */
1576 unsigned int blkzone_alloc_policy;
1577#endif
1578
1579 /* for node-related operations */
1580 struct f2fs_nm_info *nm_info; /* node manager */
1581 struct inode *node_inode; /* cache node blocks */
1582
1583 /* for segment-related operations */
1584 struct f2fs_sm_info *sm_info; /* segment manager */
1585
1586 /* for bio operations */
1587 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1588 /* keep migration IO order for LFS mode */
1589 struct f2fs_rwsem io_order_lock;
1590 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1591 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1592
1593 /* for checkpoint */
1594 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1595 int cur_cp_pack; /* remain current cp pack */
1596 spinlock_t cp_lock; /* for flag in ckpt */
1597 struct inode *meta_inode; /* cache meta blocks */
1598 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1599 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1600 struct f2fs_rwsem node_write; /* locking node writes */
1601 struct f2fs_rwsem node_change; /* locking node change */
1602 wait_queue_head_t cp_wait;
1603 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1604 long interval_time[MAX_TIME]; /* to store thresholds */
1605 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1606
1607 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1608
1609 spinlock_t fsync_node_lock; /* for node entry lock */
1610 struct list_head fsync_node_list; /* node list head */
1611 unsigned int fsync_seg_id; /* sequence id */
1612 unsigned int fsync_node_num; /* number of node entries */
1613
1614 /* for orphan inode, use 0'th array */
1615 unsigned int max_orphans; /* max orphan inodes */
1616
1617 /* for inode management */
1618 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1619 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1620 struct mutex flush_lock; /* for flush exclusion */
1621
1622 /* for extent tree cache */
1623 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1624 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1625 unsigned int max_read_extent_count; /* max read extent count per inode */
1626
1627 /* The threshold used for hot and warm data seperation*/
1628 unsigned int hot_data_age_threshold;
1629 unsigned int warm_data_age_threshold;
1630 unsigned int last_age_weight;
1631
1632 /* basic filesystem units */
1633 unsigned int log_sectors_per_block; /* log2 sectors per block */
1634 unsigned int log_blocksize; /* log2 block size */
1635 unsigned int blocksize; /* block size */
1636 unsigned int root_ino_num; /* root inode number*/
1637 unsigned int node_ino_num; /* node inode number*/
1638 unsigned int meta_ino_num; /* meta inode number*/
1639 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1640 unsigned int blocks_per_seg; /* blocks per segment */
1641 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1642 unsigned int segs_per_sec; /* segments per section */
1643 unsigned int secs_per_zone; /* sections per zone */
1644 unsigned int total_sections; /* total section count */
1645 unsigned int total_node_count; /* total node block count */
1646 unsigned int total_valid_node_count; /* valid node block count */
1647 int dir_level; /* directory level */
1648 bool readdir_ra; /* readahead inode in readdir */
1649 u64 max_io_bytes; /* max io bytes to merge IOs */
1650
1651 block_t user_block_count; /* # of user blocks */
1652 block_t total_valid_block_count; /* # of valid blocks */
1653 block_t discard_blks; /* discard command candidats */
1654 block_t last_valid_block_count; /* for recovery */
1655 block_t reserved_blocks; /* configurable reserved blocks */
1656 block_t current_reserved_blocks; /* current reserved blocks */
1657
1658 /* Additional tracking for no checkpoint mode */
1659 block_t unusable_block_count; /* # of blocks saved by last cp */
1660
1661 unsigned int nquota_files; /* # of quota sysfile */
1662 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1663
1664 /* # of pages, see count_type */
1665 atomic_t nr_pages[NR_COUNT_TYPE];
1666 /* # of allocated blocks */
1667 struct percpu_counter alloc_valid_block_count;
1668 /* # of node block writes as roll forward recovery */
1669 struct percpu_counter rf_node_block_count;
1670
1671 /* writeback control */
1672 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1673
1674 /* valid inode count */
1675 struct percpu_counter total_valid_inode_count;
1676
1677 struct f2fs_mount_info mount_opt; /* mount options */
1678
1679 /* for cleaning operations */
1680 struct f2fs_rwsem gc_lock; /*
1681 * semaphore for GC, avoid
1682 * race between GC and GC or CP
1683 */
1684 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1685 struct atgc_management am; /* atgc management */
1686 unsigned int cur_victim_sec; /* current victim section num */
1687 unsigned int gc_mode; /* current GC state */
1688 unsigned int next_victim_seg[2]; /* next segment in victim section */
1689 spinlock_t gc_remaining_trials_lock;
1690 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1691 unsigned int gc_remaining_trials;
1692
1693 /* for skip statistic */
1694 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1695
1696 /* threshold for gc trials on pinned files */
1697 unsigned short gc_pin_file_threshold;
1698 struct f2fs_rwsem pin_sem;
1699
1700 /* maximum # of trials to find a victim segment for SSR and GC */
1701 unsigned int max_victim_search;
1702 /* migration granularity of garbage collection, unit: segment */
1703 unsigned int migration_granularity;
1704 /* migration window granularity of garbage collection, unit: segment */
1705 unsigned int migration_window_granularity;
1706
1707 /*
1708 * for stat information.
1709 * one is for the LFS mode, and the other is for the SSR mode.
1710 */
1711#ifdef CONFIG_F2FS_STAT_FS
1712 struct f2fs_stat_info *stat_info; /* FS status information */
1713 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1714 unsigned int segment_count[2]; /* # of allocated segments */
1715 unsigned int block_count[2]; /* # of allocated blocks */
1716 atomic_t inplace_count; /* # of inplace update */
1717 /* # of lookup extent cache */
1718 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1719 /* # of hit rbtree extent node */
1720 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1721 /* # of hit cached extent node */
1722 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1723 /* # of hit largest extent node in read extent cache */
1724 atomic64_t read_hit_largest;
1725 atomic_t inline_xattr; /* # of inline_xattr inodes */
1726 atomic_t inline_inode; /* # of inline_data inodes */
1727 atomic_t inline_dir; /* # of inline_dentry inodes */
1728 atomic_t compr_inode; /* # of compressed inodes */
1729 atomic64_t compr_blocks; /* # of compressed blocks */
1730 atomic_t swapfile_inode; /* # of swapfile inodes */
1731 atomic_t atomic_files; /* # of opened atomic file */
1732 atomic_t max_aw_cnt; /* max # of atomic writes */
1733 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1734 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1735 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1736 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */
1737#endif
1738 spinlock_t stat_lock; /* lock for stat operations */
1739
1740 /* to attach REQ_META|REQ_FUA flags */
1741 unsigned int data_io_flag;
1742 unsigned int node_io_flag;
1743
1744 /* For sysfs support */
1745 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1746 struct completion s_kobj_unregister;
1747
1748 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1749 struct completion s_stat_kobj_unregister;
1750
1751 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1752 struct completion s_feature_list_kobj_unregister;
1753
1754 /* For shrinker support */
1755 struct list_head s_list;
1756 struct mutex umount_mutex;
1757 unsigned int shrinker_run_no;
1758
1759 /* For multi devices */
1760 int s_ndevs; /* number of devices */
1761 struct f2fs_dev_info *devs; /* for device list */
1762 unsigned int dirty_device; /* for checkpoint data flush */
1763 spinlock_t dev_lock; /* protect dirty_device */
1764 bool aligned_blksize; /* all devices has the same logical blksize */
1765 unsigned int first_zoned_segno; /* first zoned segno */
1766
1767 /* For write statistics */
1768 u64 sectors_written_start;
1769 u64 kbytes_written;
1770
1771 /* Reference to checksum algorithm driver via cryptoapi */
1772 struct crypto_shash *s_chksum_driver;
1773
1774 /* Precomputed FS UUID checksum for seeding other checksums */
1775 __u32 s_chksum_seed;
1776
1777 struct workqueue_struct *post_read_wq; /* post read workqueue */
1778
1779 /*
1780 * If we are in irq context, let's update error information into
1781 * on-disk superblock in the work.
1782 */
1783 struct work_struct s_error_work;
1784 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1785 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */
1786 spinlock_t error_lock; /* protect errors/stop_reason array */
1787 bool error_dirty; /* errors of sb is dirty */
1788
1789 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1790 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1791
1792 /* For reclaimed segs statistics per each GC mode */
1793 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1794 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1795
1796 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1797
1798 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1799 int max_fragment_hole; /* max hole size for block fragmentation mode */
1800
1801 /* For atomic write statistics */
1802 atomic64_t current_atomic_write;
1803 s64 peak_atomic_write;
1804 u64 committed_atomic_block;
1805 u64 revoked_atomic_block;
1806
1807#ifdef CONFIG_F2FS_FS_COMPRESSION
1808 struct kmem_cache *page_array_slab; /* page array entry */
1809 unsigned int page_array_slab_size; /* default page array slab size */
1810
1811 /* For runtime compression statistics */
1812 u64 compr_written_block;
1813 u64 compr_saved_block;
1814 u32 compr_new_inode;
1815
1816 /* For compressed block cache */
1817 struct inode *compress_inode; /* cache compressed blocks */
1818 unsigned int compress_percent; /* cache page percentage */
1819 unsigned int compress_watermark; /* cache page watermark */
1820 atomic_t compress_page_hit; /* cache hit count */
1821#endif
1822
1823#ifdef CONFIG_F2FS_IOSTAT
1824 /* For app/fs IO statistics */
1825 spinlock_t iostat_lock;
1826 unsigned long long iostat_count[NR_IO_TYPE];
1827 unsigned long long iostat_bytes[NR_IO_TYPE];
1828 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1829 bool iostat_enable;
1830 unsigned long iostat_next_period;
1831 unsigned int iostat_period_ms;
1832
1833 /* For io latency related statistics info in one iostat period */
1834 spinlock_t iostat_lat_lock;
1835 struct iostat_lat_info *iostat_io_lat;
1836#endif
1837};
1838
1839/* Definitions to access f2fs_sb_info */
1840#define SEGS_TO_BLKS(sbi, segs) \
1841 ((segs) << (sbi)->log_blocks_per_seg)
1842#define BLKS_TO_SEGS(sbi, blks) \
1843 ((blks) >> (sbi)->log_blocks_per_seg)
1844
1845#define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg)
1846#define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1847#define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec)
1848
1849__printf(3, 4)
1850void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1851
1852#define f2fs_err(sbi, fmt, ...) \
1853 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1854#define f2fs_warn(sbi, fmt, ...) \
1855 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1856#define f2fs_notice(sbi, fmt, ...) \
1857 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1858#define f2fs_info(sbi, fmt, ...) \
1859 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1860#define f2fs_debug(sbi, fmt, ...) \
1861 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1862
1863#define f2fs_err_ratelimited(sbi, fmt, ...) \
1864 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1865#define f2fs_warn_ratelimited(sbi, fmt, ...) \
1866 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1867#define f2fs_info_ratelimited(sbi, fmt, ...) \
1868 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1869
1870#ifdef CONFIG_F2FS_FAULT_INJECTION
1871#define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1872 __builtin_return_address(0))
1873static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1874 const char *func, const char *parent_func)
1875{
1876 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1877
1878 if (!ffi->inject_rate)
1879 return false;
1880
1881 if (!IS_FAULT_SET(ffi, type))
1882 return false;
1883
1884 atomic_inc(&ffi->inject_ops);
1885 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1886 atomic_set(&ffi->inject_ops, 0);
1887 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1888 f2fs_fault_name[type], func, parent_func);
1889 return true;
1890 }
1891 return false;
1892}
1893#else
1894static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1895{
1896 return false;
1897}
1898#endif
1899
1900/*
1901 * Test if the mounted volume is a multi-device volume.
1902 * - For a single regular disk volume, sbi->s_ndevs is 0.
1903 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1904 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1905 */
1906static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1907{
1908 return sbi->s_ndevs > 1;
1909}
1910
1911static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1912{
1913 unsigned long now = jiffies;
1914
1915 sbi->last_time[type] = now;
1916
1917 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1918 if (type == REQ_TIME) {
1919 sbi->last_time[DISCARD_TIME] = now;
1920 sbi->last_time[GC_TIME] = now;
1921 }
1922}
1923
1924static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1925{
1926 unsigned long interval = sbi->interval_time[type] * HZ;
1927
1928 return time_after(jiffies, sbi->last_time[type] + interval);
1929}
1930
1931static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1932 int type)
1933{
1934 unsigned long interval = sbi->interval_time[type] * HZ;
1935 unsigned int wait_ms = 0;
1936 long delta;
1937
1938 delta = (sbi->last_time[type] + interval) - jiffies;
1939 if (delta > 0)
1940 wait_ms = jiffies_to_msecs(delta);
1941
1942 return wait_ms;
1943}
1944
1945/*
1946 * Inline functions
1947 */
1948static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1949 const void *address, unsigned int length)
1950{
1951 struct {
1952 struct shash_desc shash;
1953 char ctx[4];
1954 } desc;
1955 int err;
1956
1957 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1958
1959 desc.shash.tfm = sbi->s_chksum_driver;
1960 *(u32 *)desc.ctx = crc;
1961
1962 err = crypto_shash_update(&desc.shash, address, length);
1963 BUG_ON(err);
1964
1965 return *(u32 *)desc.ctx;
1966}
1967
1968static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1969 unsigned int length)
1970{
1971 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1972}
1973
1974static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1975 void *buf, size_t buf_size)
1976{
1977 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1978}
1979
1980static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1981 const void *address, unsigned int length)
1982{
1983 return __f2fs_crc32(sbi, crc, address, length);
1984}
1985
1986static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1987{
1988 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1989}
1990
1991static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1992{
1993 return sb->s_fs_info;
1994}
1995
1996static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1997{
1998 return F2FS_SB(inode->i_sb);
1999}
2000
2001static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2002{
2003 return F2FS_I_SB(mapping->host);
2004}
2005
2006static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2007{
2008 return F2FS_M_SB(page_file_mapping(page));
2009}
2010
2011static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2012{
2013 return (struct f2fs_super_block *)(sbi->raw_super);
2014}
2015
2016static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio,
2017 pgoff_t index)
2018{
2019 pgoff_t idx_in_folio = index % (1 << folio_order(folio));
2020
2021 return (struct f2fs_super_block *)
2022 (page_address(folio_page(folio, idx_in_folio)) +
2023 F2FS_SUPER_OFFSET);
2024}
2025
2026static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2027{
2028 return (struct f2fs_checkpoint *)(sbi->ckpt);
2029}
2030
2031static inline struct f2fs_node *F2FS_NODE(struct page *page)
2032{
2033 return (struct f2fs_node *)page_address(page);
2034}
2035
2036static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2037{
2038 return &((struct f2fs_node *)page_address(page))->i;
2039}
2040
2041static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2042{
2043 return (struct f2fs_nm_info *)(sbi->nm_info);
2044}
2045
2046static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2047{
2048 return (struct f2fs_sm_info *)(sbi->sm_info);
2049}
2050
2051static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2052{
2053 return (struct sit_info *)(SM_I(sbi)->sit_info);
2054}
2055
2056static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2057{
2058 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2059}
2060
2061static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2062{
2063 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2064}
2065
2066static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2067{
2068 return sbi->meta_inode->i_mapping;
2069}
2070
2071static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2072{
2073 return sbi->node_inode->i_mapping;
2074}
2075
2076static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2077{
2078 return test_bit(type, &sbi->s_flag);
2079}
2080
2081static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2082{
2083 set_bit(type, &sbi->s_flag);
2084}
2085
2086static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2087{
2088 clear_bit(type, &sbi->s_flag);
2089}
2090
2091static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2092{
2093 return le64_to_cpu(cp->checkpoint_ver);
2094}
2095
2096static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2097{
2098 if (type < F2FS_MAX_QUOTAS)
2099 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2100 return 0;
2101}
2102
2103static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2104{
2105 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2106 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2107}
2108
2109static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2110{
2111 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2112
2113 return ckpt_flags & f;
2114}
2115
2116static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2117{
2118 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2119}
2120
2121static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2122{
2123 unsigned int ckpt_flags;
2124
2125 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2126 ckpt_flags |= f;
2127 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2128}
2129
2130static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2131{
2132 unsigned long flags;
2133
2134 spin_lock_irqsave(&sbi->cp_lock, flags);
2135 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2136 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2137}
2138
2139static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2140{
2141 unsigned int ckpt_flags;
2142
2143 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2144 ckpt_flags &= (~f);
2145 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2146}
2147
2148static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2149{
2150 unsigned long flags;
2151
2152 spin_lock_irqsave(&sbi->cp_lock, flags);
2153 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2154 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2155}
2156
2157#define init_f2fs_rwsem(sem) \
2158do { \
2159 static struct lock_class_key __key; \
2160 \
2161 __init_f2fs_rwsem((sem), #sem, &__key); \
2162} while (0)
2163
2164static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2165 const char *sem_name, struct lock_class_key *key)
2166{
2167 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2168#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2169 init_waitqueue_head(&sem->read_waiters);
2170#endif
2171}
2172
2173static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2174{
2175 return rwsem_is_locked(&sem->internal_rwsem);
2176}
2177
2178static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2179{
2180 return rwsem_is_contended(&sem->internal_rwsem);
2181}
2182
2183static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2184{
2185#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2186 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2187#else
2188 down_read(&sem->internal_rwsem);
2189#endif
2190}
2191
2192static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2193{
2194 return down_read_trylock(&sem->internal_rwsem);
2195}
2196
2197static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2198{
2199 up_read(&sem->internal_rwsem);
2200}
2201
2202static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2203{
2204 down_write(&sem->internal_rwsem);
2205}
2206
2207#ifdef CONFIG_DEBUG_LOCK_ALLOC
2208static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2209{
2210 down_read_nested(&sem->internal_rwsem, subclass);
2211}
2212
2213static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2214{
2215 down_write_nested(&sem->internal_rwsem, subclass);
2216}
2217#else
2218#define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2219#define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2220#endif
2221
2222static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2223{
2224 return down_write_trylock(&sem->internal_rwsem);
2225}
2226
2227static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2228{
2229 up_write(&sem->internal_rwsem);
2230#ifdef CONFIG_F2FS_UNFAIR_RWSEM
2231 wake_up_all(&sem->read_waiters);
2232#endif
2233}
2234
2235static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2236{
2237 f2fs_down_read(&sbi->cp_rwsem);
2238}
2239
2240static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2241{
2242 if (time_to_inject(sbi, FAULT_LOCK_OP))
2243 return 0;
2244 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2245}
2246
2247static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2248{
2249 f2fs_up_read(&sbi->cp_rwsem);
2250}
2251
2252static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2253{
2254 f2fs_down_write(&sbi->cp_rwsem);
2255}
2256
2257static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2258{
2259 f2fs_up_write(&sbi->cp_rwsem);
2260}
2261
2262static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2263{
2264 int reason = CP_SYNC;
2265
2266 if (test_opt(sbi, FASTBOOT))
2267 reason = CP_FASTBOOT;
2268 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2269 reason = CP_UMOUNT;
2270 return reason;
2271}
2272
2273static inline bool __remain_node_summaries(int reason)
2274{
2275 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2276}
2277
2278static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2279{
2280 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2281 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2282}
2283
2284/*
2285 * Check whether the inode has blocks or not
2286 */
2287static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2288{
2289 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2290
2291 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2292}
2293
2294static inline bool f2fs_has_xattr_block(unsigned int ofs)
2295{
2296 return ofs == XATTR_NODE_OFFSET;
2297}
2298
2299static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2300 struct inode *inode, bool cap)
2301{
2302 if (!inode)
2303 return true;
2304 if (!test_opt(sbi, RESERVE_ROOT))
2305 return false;
2306 if (IS_NOQUOTA(inode))
2307 return true;
2308 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2309 return true;
2310 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2311 in_group_p(F2FS_OPTION(sbi).s_resgid))
2312 return true;
2313 if (cap && capable(CAP_SYS_RESOURCE))
2314 return true;
2315 return false;
2316}
2317
2318static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2319 struct inode *inode, bool cap)
2320{
2321 block_t avail_user_block_count;
2322
2323 avail_user_block_count = sbi->user_block_count -
2324 sbi->current_reserved_blocks;
2325
2326 if (!__allow_reserved_blocks(sbi, inode, cap))
2327 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2328
2329 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2330 if (avail_user_block_count > sbi->unusable_block_count)
2331 avail_user_block_count -= sbi->unusable_block_count;
2332 else
2333 avail_user_block_count = 0;
2334 }
2335
2336 return avail_user_block_count;
2337}
2338
2339static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2340static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2341 struct inode *inode, blkcnt_t *count, bool partial)
2342{
2343 long long diff = 0, release = 0;
2344 block_t avail_user_block_count;
2345 int ret;
2346
2347 ret = dquot_reserve_block(inode, *count);
2348 if (ret)
2349 return ret;
2350
2351 if (time_to_inject(sbi, FAULT_BLOCK)) {
2352 release = *count;
2353 goto release_quota;
2354 }
2355
2356 /*
2357 * let's increase this in prior to actual block count change in order
2358 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2359 */
2360 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2361
2362 spin_lock(&sbi->stat_lock);
2363
2364 avail_user_block_count = get_available_block_count(sbi, inode, true);
2365 diff = (long long)sbi->total_valid_block_count + *count -
2366 avail_user_block_count;
2367 if (unlikely(diff > 0)) {
2368 if (!partial) {
2369 spin_unlock(&sbi->stat_lock);
2370 release = *count;
2371 goto enospc;
2372 }
2373 if (diff > *count)
2374 diff = *count;
2375 *count -= diff;
2376 release = diff;
2377 if (!*count) {
2378 spin_unlock(&sbi->stat_lock);
2379 goto enospc;
2380 }
2381 }
2382 sbi->total_valid_block_count += (block_t)(*count);
2383
2384 spin_unlock(&sbi->stat_lock);
2385
2386 if (unlikely(release)) {
2387 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2388 dquot_release_reservation_block(inode, release);
2389 }
2390 f2fs_i_blocks_write(inode, *count, true, true);
2391 return 0;
2392
2393enospc:
2394 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2395release_quota:
2396 dquot_release_reservation_block(inode, release);
2397 return -ENOSPC;
2398}
2399
2400#define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2401static inline bool page_private_##name(struct page *page) \
2402{ \
2403 return PagePrivate(page) && \
2404 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2405 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2406}
2407
2408#define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2409static inline void set_page_private_##name(struct page *page) \
2410{ \
2411 if (!PagePrivate(page)) \
2412 attach_page_private(page, (void *)0); \
2413 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2414 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2415}
2416
2417#define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2418static inline void clear_page_private_##name(struct page *page) \
2419{ \
2420 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2421 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2422 detach_page_private(page); \
2423}
2424
2425PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2426PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2427PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2428PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2429
2430PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2431PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2432PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2433PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2434
2435PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2436PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2437PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2438PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2439
2440static inline unsigned long get_page_private_data(struct page *page)
2441{
2442 unsigned long data = page_private(page);
2443
2444 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2445 return 0;
2446 return data >> PAGE_PRIVATE_MAX;
2447}
2448
2449static inline void set_page_private_data(struct page *page, unsigned long data)
2450{
2451 if (!PagePrivate(page))
2452 attach_page_private(page, (void *)0);
2453 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2454 page_private(page) |= data << PAGE_PRIVATE_MAX;
2455}
2456
2457static inline void clear_page_private_data(struct page *page)
2458{
2459 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2460 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2461 detach_page_private(page);
2462}
2463
2464static inline void clear_page_private_all(struct page *page)
2465{
2466 clear_page_private_data(page);
2467 clear_page_private_reference(page);
2468 clear_page_private_gcing(page);
2469 clear_page_private_inline(page);
2470 clear_page_private_atomic(page);
2471
2472 f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2473}
2474
2475static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2476 struct inode *inode,
2477 block_t count)
2478{
2479 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2480
2481 spin_lock(&sbi->stat_lock);
2482 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2483 sbi->total_valid_block_count -= (block_t)count;
2484 if (sbi->reserved_blocks &&
2485 sbi->current_reserved_blocks < sbi->reserved_blocks)
2486 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2487 sbi->current_reserved_blocks + count);
2488 spin_unlock(&sbi->stat_lock);
2489 if (unlikely(inode->i_blocks < sectors)) {
2490 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2491 inode->i_ino,
2492 (unsigned long long)inode->i_blocks,
2493 (unsigned long long)sectors);
2494 set_sbi_flag(sbi, SBI_NEED_FSCK);
2495 return;
2496 }
2497 f2fs_i_blocks_write(inode, count, false, true);
2498}
2499
2500static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2501{
2502 atomic_inc(&sbi->nr_pages[count_type]);
2503
2504 if (count_type == F2FS_DIRTY_DENTS ||
2505 count_type == F2FS_DIRTY_NODES ||
2506 count_type == F2FS_DIRTY_META ||
2507 count_type == F2FS_DIRTY_QDATA ||
2508 count_type == F2FS_DIRTY_IMETA)
2509 set_sbi_flag(sbi, SBI_IS_DIRTY);
2510}
2511
2512static inline void inode_inc_dirty_pages(struct inode *inode)
2513{
2514 atomic_inc(&F2FS_I(inode)->dirty_pages);
2515 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2516 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2517 if (IS_NOQUOTA(inode))
2518 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2519}
2520
2521static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2522{
2523 atomic_dec(&sbi->nr_pages[count_type]);
2524}
2525
2526static inline void inode_dec_dirty_pages(struct inode *inode)
2527{
2528 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2529 !S_ISLNK(inode->i_mode))
2530 return;
2531
2532 atomic_dec(&F2FS_I(inode)->dirty_pages);
2533 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2534 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2535 if (IS_NOQUOTA(inode))
2536 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2537}
2538
2539static inline void inc_atomic_write_cnt(struct inode *inode)
2540{
2541 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2542 struct f2fs_inode_info *fi = F2FS_I(inode);
2543 u64 current_write;
2544
2545 fi->atomic_write_cnt++;
2546 atomic64_inc(&sbi->current_atomic_write);
2547 current_write = atomic64_read(&sbi->current_atomic_write);
2548 if (current_write > sbi->peak_atomic_write)
2549 sbi->peak_atomic_write = current_write;
2550}
2551
2552static inline void release_atomic_write_cnt(struct inode *inode)
2553{
2554 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2555 struct f2fs_inode_info *fi = F2FS_I(inode);
2556
2557 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2558 fi->atomic_write_cnt = 0;
2559}
2560
2561static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2562{
2563 return atomic_read(&sbi->nr_pages[count_type]);
2564}
2565
2566static inline int get_dirty_pages(struct inode *inode)
2567{
2568 return atomic_read(&F2FS_I(inode)->dirty_pages);
2569}
2570
2571static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2572{
2573 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2574 BLKS_PER_SEC(sbi));
2575}
2576
2577static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2578{
2579 return sbi->total_valid_block_count;
2580}
2581
2582static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2583{
2584 return sbi->discard_blks;
2585}
2586
2587static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2588{
2589 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2590
2591 /* return NAT or SIT bitmap */
2592 if (flag == NAT_BITMAP)
2593 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2594 else if (flag == SIT_BITMAP)
2595 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2596
2597 return 0;
2598}
2599
2600static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2601{
2602 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2603}
2604
2605static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2606{
2607 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2608 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2609 int offset;
2610
2611 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2612 offset = (flag == SIT_BITMAP) ?
2613 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2614 /*
2615 * if large_nat_bitmap feature is enabled, leave checksum
2616 * protection for all nat/sit bitmaps.
2617 */
2618 return tmp_ptr + offset + sizeof(__le32);
2619 }
2620
2621 if (__cp_payload(sbi) > 0) {
2622 if (flag == NAT_BITMAP)
2623 return tmp_ptr;
2624 else
2625 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2626 } else {
2627 offset = (flag == NAT_BITMAP) ?
2628 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2629 return tmp_ptr + offset;
2630 }
2631}
2632
2633static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2634{
2635 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2636
2637 if (sbi->cur_cp_pack == 2)
2638 start_addr += BLKS_PER_SEG(sbi);
2639 return start_addr;
2640}
2641
2642static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2643{
2644 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2645
2646 if (sbi->cur_cp_pack == 1)
2647 start_addr += BLKS_PER_SEG(sbi);
2648 return start_addr;
2649}
2650
2651static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2652{
2653 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2654}
2655
2656static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2657{
2658 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2659}
2660
2661extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2662static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2663 struct inode *inode, bool is_inode)
2664{
2665 block_t valid_block_count;
2666 unsigned int valid_node_count;
2667 unsigned int avail_user_block_count;
2668 int err;
2669
2670 if (is_inode) {
2671 if (inode) {
2672 err = dquot_alloc_inode(inode);
2673 if (err)
2674 return err;
2675 }
2676 } else {
2677 err = dquot_reserve_block(inode, 1);
2678 if (err)
2679 return err;
2680 }
2681
2682 if (time_to_inject(sbi, FAULT_BLOCK))
2683 goto enospc;
2684
2685 spin_lock(&sbi->stat_lock);
2686
2687 valid_block_count = sbi->total_valid_block_count + 1;
2688 avail_user_block_count = get_available_block_count(sbi, inode, false);
2689
2690 if (unlikely(valid_block_count > avail_user_block_count)) {
2691 spin_unlock(&sbi->stat_lock);
2692 goto enospc;
2693 }
2694
2695 valid_node_count = sbi->total_valid_node_count + 1;
2696 if (unlikely(valid_node_count > sbi->total_node_count)) {
2697 spin_unlock(&sbi->stat_lock);
2698 goto enospc;
2699 }
2700
2701 sbi->total_valid_node_count++;
2702 sbi->total_valid_block_count++;
2703 spin_unlock(&sbi->stat_lock);
2704
2705 if (inode) {
2706 if (is_inode)
2707 f2fs_mark_inode_dirty_sync(inode, true);
2708 else
2709 f2fs_i_blocks_write(inode, 1, true, true);
2710 }
2711
2712 percpu_counter_inc(&sbi->alloc_valid_block_count);
2713 return 0;
2714
2715enospc:
2716 if (is_inode) {
2717 if (inode)
2718 dquot_free_inode(inode);
2719 } else {
2720 dquot_release_reservation_block(inode, 1);
2721 }
2722 return -ENOSPC;
2723}
2724
2725static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2726 struct inode *inode, bool is_inode)
2727{
2728 spin_lock(&sbi->stat_lock);
2729
2730 if (unlikely(!sbi->total_valid_block_count ||
2731 !sbi->total_valid_node_count)) {
2732 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2733 sbi->total_valid_block_count,
2734 sbi->total_valid_node_count);
2735 set_sbi_flag(sbi, SBI_NEED_FSCK);
2736 } else {
2737 sbi->total_valid_block_count--;
2738 sbi->total_valid_node_count--;
2739 }
2740
2741 if (sbi->reserved_blocks &&
2742 sbi->current_reserved_blocks < sbi->reserved_blocks)
2743 sbi->current_reserved_blocks++;
2744
2745 spin_unlock(&sbi->stat_lock);
2746
2747 if (is_inode) {
2748 dquot_free_inode(inode);
2749 } else {
2750 if (unlikely(inode->i_blocks == 0)) {
2751 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2752 inode->i_ino,
2753 (unsigned long long)inode->i_blocks);
2754 set_sbi_flag(sbi, SBI_NEED_FSCK);
2755 return;
2756 }
2757 f2fs_i_blocks_write(inode, 1, false, true);
2758 }
2759}
2760
2761static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2762{
2763 return sbi->total_valid_node_count;
2764}
2765
2766static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2767{
2768 percpu_counter_inc(&sbi->total_valid_inode_count);
2769}
2770
2771static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2772{
2773 percpu_counter_dec(&sbi->total_valid_inode_count);
2774}
2775
2776static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2777{
2778 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2779}
2780
2781static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2782 pgoff_t index, bool for_write)
2783{
2784 struct page *page;
2785 unsigned int flags;
2786
2787 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2788 if (!for_write)
2789 page = find_get_page_flags(mapping, index,
2790 FGP_LOCK | FGP_ACCESSED);
2791 else
2792 page = find_lock_page(mapping, index);
2793 if (page)
2794 return page;
2795
2796 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2797 return NULL;
2798 }
2799
2800 if (!for_write)
2801 return grab_cache_page(mapping, index);
2802
2803 flags = memalloc_nofs_save();
2804 page = grab_cache_page_write_begin(mapping, index);
2805 memalloc_nofs_restore(flags);
2806
2807 return page;
2808}
2809
2810static inline struct page *f2fs_pagecache_get_page(
2811 struct address_space *mapping, pgoff_t index,
2812 fgf_t fgp_flags, gfp_t gfp_mask)
2813{
2814 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2815 return NULL;
2816
2817 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2818}
2819
2820static inline void f2fs_put_page(struct page *page, int unlock)
2821{
2822 if (!page)
2823 return;
2824
2825 if (unlock) {
2826 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2827 unlock_page(page);
2828 }
2829 put_page(page);
2830}
2831
2832static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2833{
2834 if (dn->node_page)
2835 f2fs_put_page(dn->node_page, 1);
2836 if (dn->inode_page && dn->node_page != dn->inode_page)
2837 f2fs_put_page(dn->inode_page, 0);
2838 dn->node_page = NULL;
2839 dn->inode_page = NULL;
2840}
2841
2842static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2843 size_t size)
2844{
2845 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2846}
2847
2848static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2849 gfp_t flags)
2850{
2851 void *entry;
2852
2853 entry = kmem_cache_alloc(cachep, flags);
2854 if (!entry)
2855 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2856 return entry;
2857}
2858
2859static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2860 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2861{
2862 if (nofail)
2863 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2864
2865 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2866 return NULL;
2867
2868 return kmem_cache_alloc(cachep, flags);
2869}
2870
2871static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2872{
2873 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2874 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2875 get_pages(sbi, F2FS_WB_CP_DATA) ||
2876 get_pages(sbi, F2FS_DIO_READ) ||
2877 get_pages(sbi, F2FS_DIO_WRITE))
2878 return true;
2879
2880 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2881 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2882 return true;
2883
2884 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2885 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2886 return true;
2887 return false;
2888}
2889
2890static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi)
2891{
2892 return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ);
2893}
2894
2895static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2896{
2897 bool zoned_gc = (type == GC_TIME &&
2898 F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED));
2899
2900 if (sbi->gc_mode == GC_URGENT_HIGH)
2901 return true;
2902
2903 if (zoned_gc) {
2904 if (is_inflight_read_io(sbi))
2905 return false;
2906 } else {
2907 if (is_inflight_io(sbi, type))
2908 return false;
2909 }
2910
2911 if (sbi->gc_mode == GC_URGENT_MID)
2912 return true;
2913
2914 if (sbi->gc_mode == GC_URGENT_LOW &&
2915 (type == DISCARD_TIME || type == GC_TIME))
2916 return true;
2917
2918 if (zoned_gc)
2919 return true;
2920
2921 return f2fs_time_over(sbi, type);
2922}
2923
2924static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2925 unsigned long index, void *item)
2926{
2927 while (radix_tree_insert(root, index, item))
2928 cond_resched();
2929}
2930
2931#define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2932
2933static inline bool IS_INODE(struct page *page)
2934{
2935 struct f2fs_node *p = F2FS_NODE(page);
2936
2937 return RAW_IS_INODE(p);
2938}
2939
2940static inline int offset_in_addr(struct f2fs_inode *i)
2941{
2942 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2943 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2944}
2945
2946static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2947{
2948 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2949}
2950
2951static inline int f2fs_has_extra_attr(struct inode *inode);
2952static inline unsigned int get_dnode_base(struct inode *inode,
2953 struct page *node_page)
2954{
2955 if (!IS_INODE(node_page))
2956 return 0;
2957
2958 return inode ? get_extra_isize(inode) :
2959 offset_in_addr(&F2FS_NODE(node_page)->i);
2960}
2961
2962static inline __le32 *get_dnode_addr(struct inode *inode,
2963 struct page *node_page)
2964{
2965 return blkaddr_in_node(F2FS_NODE(node_page)) +
2966 get_dnode_base(inode, node_page);
2967}
2968
2969static inline block_t data_blkaddr(struct inode *inode,
2970 struct page *node_page, unsigned int offset)
2971{
2972 return le32_to_cpu(*(get_dnode_addr(inode, node_page) + offset));
2973}
2974
2975static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2976{
2977 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2978}
2979
2980static inline int f2fs_test_bit(unsigned int nr, char *addr)
2981{
2982 int mask;
2983
2984 addr += (nr >> 3);
2985 mask = BIT(7 - (nr & 0x07));
2986 return mask & *addr;
2987}
2988
2989static inline void f2fs_set_bit(unsigned int nr, char *addr)
2990{
2991 int mask;
2992
2993 addr += (nr >> 3);
2994 mask = BIT(7 - (nr & 0x07));
2995 *addr |= mask;
2996}
2997
2998static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2999{
3000 int mask;
3001
3002 addr += (nr >> 3);
3003 mask = BIT(7 - (nr & 0x07));
3004 *addr &= ~mask;
3005}
3006
3007static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
3008{
3009 int mask;
3010 int ret;
3011
3012 addr += (nr >> 3);
3013 mask = BIT(7 - (nr & 0x07));
3014 ret = mask & *addr;
3015 *addr |= mask;
3016 return ret;
3017}
3018
3019static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
3020{
3021 int mask;
3022 int ret;
3023
3024 addr += (nr >> 3);
3025 mask = BIT(7 - (nr & 0x07));
3026 ret = mask & *addr;
3027 *addr &= ~mask;
3028 return ret;
3029}
3030
3031static inline void f2fs_change_bit(unsigned int nr, char *addr)
3032{
3033 int mask;
3034
3035 addr += (nr >> 3);
3036 mask = BIT(7 - (nr & 0x07));
3037 *addr ^= mask;
3038}
3039
3040/*
3041 * On-disk inode flags (f2fs_inode::i_flags)
3042 */
3043#define F2FS_COMPR_FL 0x00000004 /* Compress file */
3044#define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
3045#define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
3046#define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
3047#define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
3048#define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
3049#define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
3050#define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
3051#define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
3052#define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
3053#define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
3054#define F2FS_DEVICE_ALIAS_FL 0x80000000 /* File for aliasing a device */
3055
3056#define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3057
3058/* Flags that should be inherited by new inodes from their parent. */
3059#define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3060 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3061 F2FS_CASEFOLD_FL)
3062
3063/* Flags that are appropriate for regular files (all but dir-specific ones). */
3064#define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3065 F2FS_CASEFOLD_FL))
3066
3067/* Flags that are appropriate for non-directories/regular files. */
3068#define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3069
3070#define IS_DEVICE_ALIASING(inode) (F2FS_I(inode)->i_flags & F2FS_DEVICE_ALIAS_FL)
3071
3072static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3073{
3074 if (S_ISDIR(mode))
3075 return flags;
3076 else if (S_ISREG(mode))
3077 return flags & F2FS_REG_FLMASK;
3078 else
3079 return flags & F2FS_OTHER_FLMASK;
3080}
3081
3082static inline void __mark_inode_dirty_flag(struct inode *inode,
3083 int flag, bool set)
3084{
3085 switch (flag) {
3086 case FI_INLINE_XATTR:
3087 case FI_INLINE_DATA:
3088 case FI_INLINE_DENTRY:
3089 case FI_NEW_INODE:
3090 if (set)
3091 return;
3092 fallthrough;
3093 case FI_DATA_EXIST:
3094 case FI_PIN_FILE:
3095 case FI_COMPRESS_RELEASED:
3096 f2fs_mark_inode_dirty_sync(inode, true);
3097 }
3098}
3099
3100static inline void set_inode_flag(struct inode *inode, int flag)
3101{
3102 set_bit(flag, F2FS_I(inode)->flags);
3103 __mark_inode_dirty_flag(inode, flag, true);
3104}
3105
3106static inline int is_inode_flag_set(struct inode *inode, int flag)
3107{
3108 return test_bit(flag, F2FS_I(inode)->flags);
3109}
3110
3111static inline void clear_inode_flag(struct inode *inode, int flag)
3112{
3113 clear_bit(flag, F2FS_I(inode)->flags);
3114 __mark_inode_dirty_flag(inode, flag, false);
3115}
3116
3117static inline bool f2fs_verity_in_progress(struct inode *inode)
3118{
3119 return IS_ENABLED(CONFIG_FS_VERITY) &&
3120 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3121}
3122
3123static inline void set_acl_inode(struct inode *inode, umode_t mode)
3124{
3125 F2FS_I(inode)->i_acl_mode = mode;
3126 set_inode_flag(inode, FI_ACL_MODE);
3127 f2fs_mark_inode_dirty_sync(inode, false);
3128}
3129
3130static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3131{
3132 if (inc)
3133 inc_nlink(inode);
3134 else
3135 drop_nlink(inode);
3136 f2fs_mark_inode_dirty_sync(inode, true);
3137}
3138
3139static inline void f2fs_i_blocks_write(struct inode *inode,
3140 block_t diff, bool add, bool claim)
3141{
3142 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3143 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3144
3145 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3146 if (add) {
3147 if (claim)
3148 dquot_claim_block(inode, diff);
3149 else
3150 dquot_alloc_block_nofail(inode, diff);
3151 } else {
3152 dquot_free_block(inode, diff);
3153 }
3154
3155 f2fs_mark_inode_dirty_sync(inode, true);
3156 if (clean || recover)
3157 set_inode_flag(inode, FI_AUTO_RECOVER);
3158}
3159
3160static inline bool f2fs_is_atomic_file(struct inode *inode);
3161
3162static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3163{
3164 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3165 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3166
3167 if (i_size_read(inode) == i_size)
3168 return;
3169
3170 i_size_write(inode, i_size);
3171
3172 if (f2fs_is_atomic_file(inode))
3173 return;
3174
3175 f2fs_mark_inode_dirty_sync(inode, true);
3176 if (clean || recover)
3177 set_inode_flag(inode, FI_AUTO_RECOVER);
3178}
3179
3180static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3181{
3182 F2FS_I(inode)->i_current_depth = depth;
3183 f2fs_mark_inode_dirty_sync(inode, true);
3184}
3185
3186static inline void f2fs_i_gc_failures_write(struct inode *inode,
3187 unsigned int count)
3188{
3189 F2FS_I(inode)->i_gc_failures = count;
3190 f2fs_mark_inode_dirty_sync(inode, true);
3191}
3192
3193static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3194{
3195 F2FS_I(inode)->i_xattr_nid = xnid;
3196 f2fs_mark_inode_dirty_sync(inode, true);
3197}
3198
3199static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3200{
3201 F2FS_I(inode)->i_pino = pino;
3202 f2fs_mark_inode_dirty_sync(inode, true);
3203}
3204
3205static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3206{
3207 struct f2fs_inode_info *fi = F2FS_I(inode);
3208
3209 if (ri->i_inline & F2FS_INLINE_XATTR)
3210 set_bit(FI_INLINE_XATTR, fi->flags);
3211 if (ri->i_inline & F2FS_INLINE_DATA)
3212 set_bit(FI_INLINE_DATA, fi->flags);
3213 if (ri->i_inline & F2FS_INLINE_DENTRY)
3214 set_bit(FI_INLINE_DENTRY, fi->flags);
3215 if (ri->i_inline & F2FS_DATA_EXIST)
3216 set_bit(FI_DATA_EXIST, fi->flags);
3217 if (ri->i_inline & F2FS_EXTRA_ATTR)
3218 set_bit(FI_EXTRA_ATTR, fi->flags);
3219 if (ri->i_inline & F2FS_PIN_FILE)
3220 set_bit(FI_PIN_FILE, fi->flags);
3221 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3222 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3223}
3224
3225static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3226{
3227 ri->i_inline = 0;
3228
3229 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3230 ri->i_inline |= F2FS_INLINE_XATTR;
3231 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3232 ri->i_inline |= F2FS_INLINE_DATA;
3233 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3234 ri->i_inline |= F2FS_INLINE_DENTRY;
3235 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3236 ri->i_inline |= F2FS_DATA_EXIST;
3237 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3238 ri->i_inline |= F2FS_EXTRA_ATTR;
3239 if (is_inode_flag_set(inode, FI_PIN_FILE))
3240 ri->i_inline |= F2FS_PIN_FILE;
3241 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3242 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3243}
3244
3245static inline int f2fs_has_extra_attr(struct inode *inode)
3246{
3247 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3248}
3249
3250static inline int f2fs_has_inline_xattr(struct inode *inode)
3251{
3252 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3253}
3254
3255static inline int f2fs_compressed_file(struct inode *inode)
3256{
3257 return S_ISREG(inode->i_mode) &&
3258 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3259}
3260
3261static inline bool f2fs_need_compress_data(struct inode *inode)
3262{
3263 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3264
3265 if (!f2fs_compressed_file(inode))
3266 return false;
3267
3268 if (compress_mode == COMPR_MODE_FS)
3269 return true;
3270 else if (compress_mode == COMPR_MODE_USER &&
3271 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3272 return true;
3273
3274 return false;
3275}
3276
3277static inline unsigned int addrs_per_page(struct inode *inode,
3278 bool is_inode)
3279{
3280 unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3281 get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3282
3283 if (f2fs_compressed_file(inode))
3284 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3285 return addrs;
3286}
3287
3288static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3289{
3290 struct f2fs_inode *ri = F2FS_INODE(page);
3291
3292 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3293 get_inline_xattr_addrs(inode)]);
3294}
3295
3296static inline int inline_xattr_size(struct inode *inode)
3297{
3298 if (f2fs_has_inline_xattr(inode))
3299 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3300 return 0;
3301}
3302
3303/*
3304 * Notice: check inline_data flag without inode page lock is unsafe.
3305 * It could change at any time by f2fs_convert_inline_page().
3306 */
3307static inline int f2fs_has_inline_data(struct inode *inode)
3308{
3309 return is_inode_flag_set(inode, FI_INLINE_DATA);
3310}
3311
3312static inline int f2fs_exist_data(struct inode *inode)
3313{
3314 return is_inode_flag_set(inode, FI_DATA_EXIST);
3315}
3316
3317static inline int f2fs_is_mmap_file(struct inode *inode)
3318{
3319 return is_inode_flag_set(inode, FI_MMAP_FILE);
3320}
3321
3322static inline bool f2fs_is_pinned_file(struct inode *inode)
3323{
3324 return is_inode_flag_set(inode, FI_PIN_FILE);
3325}
3326
3327static inline bool f2fs_is_atomic_file(struct inode *inode)
3328{
3329 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3330}
3331
3332static inline bool f2fs_is_cow_file(struct inode *inode)
3333{
3334 return is_inode_flag_set(inode, FI_COW_FILE);
3335}
3336
3337static inline void *inline_data_addr(struct inode *inode, struct page *page)
3338{
3339 __le32 *addr = get_dnode_addr(inode, page);
3340
3341 return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3342}
3343
3344static inline int f2fs_has_inline_dentry(struct inode *inode)
3345{
3346 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3347}
3348
3349static inline int is_file(struct inode *inode, int type)
3350{
3351 return F2FS_I(inode)->i_advise & type;
3352}
3353
3354static inline void set_file(struct inode *inode, int type)
3355{
3356 if (is_file(inode, type))
3357 return;
3358 F2FS_I(inode)->i_advise |= type;
3359 f2fs_mark_inode_dirty_sync(inode, true);
3360}
3361
3362static inline void clear_file(struct inode *inode, int type)
3363{
3364 if (!is_file(inode, type))
3365 return;
3366 F2FS_I(inode)->i_advise &= ~type;
3367 f2fs_mark_inode_dirty_sync(inode, true);
3368}
3369
3370static inline bool f2fs_is_time_consistent(struct inode *inode)
3371{
3372 struct timespec64 ts = inode_get_atime(inode);
3373
3374 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3375 return false;
3376 ts = inode_get_ctime(inode);
3377 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3378 return false;
3379 ts = inode_get_mtime(inode);
3380 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3381 return false;
3382 return true;
3383}
3384
3385static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3386{
3387 bool ret;
3388
3389 if (dsync) {
3390 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3391
3392 spin_lock(&sbi->inode_lock[DIRTY_META]);
3393 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3394 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3395 return ret;
3396 }
3397 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3398 file_keep_isize(inode) ||
3399 i_size_read(inode) & ~PAGE_MASK)
3400 return false;
3401
3402 if (!f2fs_is_time_consistent(inode))
3403 return false;
3404
3405 spin_lock(&F2FS_I(inode)->i_size_lock);
3406 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3407 spin_unlock(&F2FS_I(inode)->i_size_lock);
3408
3409 return ret;
3410}
3411
3412static inline bool f2fs_readonly(struct super_block *sb)
3413{
3414 return sb_rdonly(sb);
3415}
3416
3417static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3418{
3419 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3420}
3421
3422static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3423 size_t size, gfp_t flags)
3424{
3425 if (time_to_inject(sbi, FAULT_KMALLOC))
3426 return NULL;
3427
3428 return kmalloc(size, flags);
3429}
3430
3431static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3432{
3433 if (time_to_inject(sbi, FAULT_KMALLOC))
3434 return NULL;
3435
3436 return __getname();
3437}
3438
3439static inline void f2fs_putname(char *buf)
3440{
3441 __putname(buf);
3442}
3443
3444static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3445 size_t size, gfp_t flags)
3446{
3447 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3448}
3449
3450static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3451 size_t size, gfp_t flags)
3452{
3453 if (time_to_inject(sbi, FAULT_KVMALLOC))
3454 return NULL;
3455
3456 return kvmalloc(size, flags);
3457}
3458
3459static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3460 size_t size, gfp_t flags)
3461{
3462 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3463}
3464
3465static inline int get_extra_isize(struct inode *inode)
3466{
3467 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3468}
3469
3470static inline int get_inline_xattr_addrs(struct inode *inode)
3471{
3472 return F2FS_I(inode)->i_inline_xattr_size;
3473}
3474
3475#define f2fs_get_inode_mode(i) \
3476 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3477 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3478
3479#define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32))
3480
3481#define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3482 (offsetof(struct f2fs_inode, i_extra_end) - \
3483 offsetof(struct f2fs_inode, i_extra_isize)) \
3484
3485#define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3486#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3487 ((offsetof(typeof(*(f2fs_inode)), field) + \
3488 sizeof((f2fs_inode)->field)) \
3489 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3490
3491#define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1)
3492
3493#define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3494
3495bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3496 block_t blkaddr, int type);
3497static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3498 block_t blkaddr, int type)
3499{
3500 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3501 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3502 blkaddr, type);
3503}
3504
3505static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3506{
3507 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3508 blkaddr == COMPRESS_ADDR)
3509 return false;
3510 return true;
3511}
3512
3513/*
3514 * file.c
3515 */
3516int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3517int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3518int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3519int f2fs_truncate(struct inode *inode);
3520int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3521 struct kstat *stat, u32 request_mask, unsigned int flags);
3522int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3523 struct iattr *attr);
3524int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3525void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3526int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3527 bool readonly, bool need_lock);
3528int f2fs_precache_extents(struct inode *inode);
3529int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3530int f2fs_fileattr_set(struct mnt_idmap *idmap,
3531 struct dentry *dentry, struct fileattr *fa);
3532long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3533long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3534int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3535int f2fs_pin_file_control(struct inode *inode, bool inc);
3536
3537/*
3538 * inode.c
3539 */
3540void f2fs_set_inode_flags(struct inode *inode);
3541bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3542void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3543struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3544struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3545int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3546void f2fs_update_inode(struct inode *inode, struct page *node_page);
3547void f2fs_update_inode_page(struct inode *inode);
3548int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3549void f2fs_evict_inode(struct inode *inode);
3550void f2fs_handle_failed_inode(struct inode *inode);
3551
3552/*
3553 * namei.c
3554 */
3555int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3556 bool hot, bool set);
3557struct dentry *f2fs_get_parent(struct dentry *child);
3558int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3559 struct inode **new_inode);
3560
3561/*
3562 * dir.c
3563 */
3564#if IS_ENABLED(CONFIG_UNICODE)
3565int f2fs_init_casefolded_name(const struct inode *dir,
3566 struct f2fs_filename *fname);
3567void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3568#else
3569static inline int f2fs_init_casefolded_name(const struct inode *dir,
3570 struct f2fs_filename *fname)
3571{
3572 return 0;
3573}
3574
3575static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3576{
3577}
3578#endif /* CONFIG_UNICODE */
3579
3580int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3581 int lookup, struct f2fs_filename *fname);
3582int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3583 struct f2fs_filename *fname);
3584void f2fs_free_filename(struct f2fs_filename *fname);
3585struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3586 const struct f2fs_filename *fname, int *max_slots,
3587 bool use_hash);
3588int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3589 unsigned int start_pos, struct fscrypt_str *fstr);
3590void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3591 struct f2fs_dentry_ptr *d);
3592struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3593 const struct f2fs_filename *fname, struct page *dpage);
3594void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3595 unsigned int current_depth);
3596int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3597void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3598struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3599 const struct f2fs_filename *fname,
3600 struct page **res_page);
3601struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3602 const struct qstr *child, struct page **res_page);
3603struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3604ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3605 struct page **page);
3606void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3607 struct page *page, struct inode *inode);
3608bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3609 const struct f2fs_filename *fname);
3610void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3611 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3612 unsigned int bit_pos);
3613int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3614 struct inode *inode, nid_t ino, umode_t mode);
3615int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3616 struct inode *inode, nid_t ino, umode_t mode);
3617int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3618 struct inode *inode, nid_t ino, umode_t mode);
3619void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3620 struct inode *dir, struct inode *inode);
3621int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3622 struct f2fs_filename *fname);
3623bool f2fs_empty_dir(struct inode *dir);
3624
3625static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3626{
3627 if (fscrypt_is_nokey_name(dentry))
3628 return -ENOKEY;
3629 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3630 inode, inode->i_ino, inode->i_mode);
3631}
3632
3633/*
3634 * super.c
3635 */
3636int f2fs_inode_dirtied(struct inode *inode, bool sync);
3637void f2fs_inode_synced(struct inode *inode);
3638int f2fs_dquot_initialize(struct inode *inode);
3639int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3640int f2fs_quota_sync(struct super_block *sb, int type);
3641loff_t max_file_blocks(struct inode *inode);
3642void f2fs_quota_off_umount(struct super_block *sb);
3643void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3644void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason);
3645void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3646void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3647int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3648int f2fs_sync_fs(struct super_block *sb, int sync);
3649int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3650
3651/*
3652 * hash.c
3653 */
3654void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3655
3656/*
3657 * node.c
3658 */
3659struct node_info;
3660
3661int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3662bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3663bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3664void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3665void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3666void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3667int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3668bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3669bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3670int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3671 struct node_info *ni, bool checkpoint_context);
3672pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3673int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3674int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3675int f2fs_truncate_xattr_node(struct inode *inode);
3676int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3677 unsigned int seq_id);
3678bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3679int f2fs_remove_inode_page(struct inode *inode);
3680struct page *f2fs_new_inode_page(struct inode *inode);
3681struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3682void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3683struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3684struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3685int f2fs_move_node_page(struct page *node_page, int gc_type);
3686void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3687int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3688 struct writeback_control *wbc, bool atomic,
3689 unsigned int *seq_id);
3690int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3691 struct writeback_control *wbc,
3692 bool do_balance, enum iostat_type io_type);
3693int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3694bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3695void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3696void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3697int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3698int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3699int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3700int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3701int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3702 unsigned int segno, struct f2fs_summary_block *sum);
3703void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3704int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3705int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3706void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3707int __init f2fs_create_node_manager_caches(void);
3708void f2fs_destroy_node_manager_caches(void);
3709
3710/*
3711 * segment.c
3712 */
3713bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3714int f2fs_commit_atomic_write(struct inode *inode);
3715void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3716void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3717void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3718int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3719int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3720int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3721void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3722void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3723bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3724int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3725void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3726void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3727bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3728void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3729 struct cp_control *cpc);
3730void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3731block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3732int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3733void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3734int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3735bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3736int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3737int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3738void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3739void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3740int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3741 unsigned int start, unsigned int end);
3742int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3743int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3744int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3745int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3746bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3747 struct cp_control *cpc);
3748struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3749void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3750 block_t blk_addr);
3751void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3752 enum iostat_type io_type);
3753void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3754void f2fs_outplace_write_data(struct dnode_of_data *dn,
3755 struct f2fs_io_info *fio);
3756int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3757void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3758 block_t old_blkaddr, block_t new_blkaddr,
3759 bool recover_curseg, bool recover_newaddr,
3760 bool from_gc);
3761void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3762 block_t old_addr, block_t new_addr,
3763 unsigned char version, bool recover_curseg,
3764 bool recover_newaddr);
3765enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3766 enum log_type seg_type);
3767int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3768 block_t old_blkaddr, block_t *new_blkaddr,
3769 struct f2fs_summary *sum, int type,
3770 struct f2fs_io_info *fio);
3771void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3772 block_t blkaddr, unsigned int blkcnt);
3773void f2fs_wait_on_page_writeback(struct page *page,
3774 enum page_type type, bool ordered, bool locked);
3775void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3776void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3777 block_t len);
3778void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3779void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3780int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3781 unsigned int val, int alloc);
3782void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3783int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi);
3784int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3785void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3786int __init f2fs_create_segment_manager_caches(void);
3787void f2fs_destroy_segment_manager_caches(void);
3788int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3789enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3790 enum page_type type, enum temp_type temp);
3791unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi);
3792unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3793 unsigned int segno);
3794unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
3795 unsigned int segno);
3796
3797#define DEF_FRAGMENT_SIZE 4
3798#define MIN_FRAGMENT_SIZE 1
3799#define MAX_FRAGMENT_SIZE 512
3800
3801static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3802{
3803 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3804 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3805}
3806
3807/*
3808 * checkpoint.c
3809 */
3810void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3811 unsigned char reason);
3812void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3813struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3814struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3815struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3816struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3817bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3818 block_t blkaddr, int type);
3819bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3820 block_t blkaddr, int type);
3821int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3822 int type, bool sync);
3823void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3824 unsigned int ra_blocks);
3825long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3826 long nr_to_write, enum iostat_type io_type);
3827void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3828void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3829void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3830bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3831void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3832 unsigned int devidx, int type);
3833bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3834 unsigned int devidx, int type);
3835int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3836void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3837void f2fs_add_orphan_inode(struct inode *inode);
3838void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3839int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3840int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3841void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3842void f2fs_remove_dirty_inode(struct inode *inode);
3843int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3844 bool from_cp);
3845void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3846u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3847int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3848void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3849int __init f2fs_create_checkpoint_caches(void);
3850void f2fs_destroy_checkpoint_caches(void);
3851int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3852int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3853void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3854void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3855
3856/*
3857 * data.c
3858 */
3859int __init f2fs_init_bioset(void);
3860void f2fs_destroy_bioset(void);
3861bool f2fs_is_cp_guaranteed(struct page *page);
3862int f2fs_init_bio_entry_cache(void);
3863void f2fs_destroy_bio_entry_cache(void);
3864void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3865 enum page_type type);
3866int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3867void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3868void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3869 struct inode *inode, struct page *page,
3870 nid_t ino, enum page_type type);
3871void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3872 struct bio **bio, struct page *page);
3873void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3874int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3875int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3876void f2fs_submit_page_write(struct f2fs_io_info *fio);
3877struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3878 block_t blk_addr, sector_t *sector);
3879int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3880void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3881void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3882int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3883int f2fs_reserve_new_block(struct dnode_of_data *dn);
3884int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3885int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3886struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3887 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3888struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3889 pgoff_t *next_pgofs);
3890struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3891 bool for_write);
3892struct page *f2fs_get_new_data_page(struct inode *inode,
3893 struct page *ipage, pgoff_t index, bool new_i_size);
3894int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3895int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3896int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3897 u64 start, u64 len);
3898int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3899bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3900bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3901int f2fs_write_single_data_page(struct folio *folio, int *submitted,
3902 struct bio **bio, sector_t *last_block,
3903 struct writeback_control *wbc,
3904 enum iostat_type io_type,
3905 int compr_blocks, bool allow_balance);
3906void f2fs_write_failed(struct inode *inode, loff_t to);
3907void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3908bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3909bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3910void f2fs_clear_page_cache_dirty_tag(struct folio *folio);
3911int f2fs_init_post_read_processing(void);
3912void f2fs_destroy_post_read_processing(void);
3913int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3914void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3915extern const struct iomap_ops f2fs_iomap_ops;
3916
3917/*
3918 * gc.c
3919 */
3920int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3921void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3922block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3923int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3924void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3925int f2fs_gc_range(struct f2fs_sb_info *sbi,
3926 unsigned int start_seg, unsigned int end_seg,
3927 bool dry_run, unsigned int dry_run_sections);
3928int f2fs_resize_fs(struct file *filp, __u64 block_count);
3929int __init f2fs_create_garbage_collection_cache(void);
3930void f2fs_destroy_garbage_collection_cache(void);
3931/* victim selection function for cleaning and SSR */
3932int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3933 int gc_type, int type, char alloc_mode,
3934 unsigned long long age, bool one_time);
3935
3936/*
3937 * recovery.c
3938 */
3939int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3940bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3941int __init f2fs_create_recovery_cache(void);
3942void f2fs_destroy_recovery_cache(void);
3943
3944/*
3945 * debug.c
3946 */
3947#ifdef CONFIG_F2FS_STAT_FS
3948enum {
3949 DEVSTAT_INUSE,
3950 DEVSTAT_DIRTY,
3951 DEVSTAT_FULL,
3952 DEVSTAT_FREE,
3953 DEVSTAT_PREFREE,
3954 DEVSTAT_MAX,
3955};
3956
3957struct f2fs_dev_stats {
3958 unsigned int devstats[2][DEVSTAT_MAX]; /* 0: segs, 1: secs */
3959};
3960
3961struct f2fs_stat_info {
3962 struct list_head stat_list;
3963 struct f2fs_sb_info *sbi;
3964 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3965 int main_area_segs, main_area_sections, main_area_zones;
3966 unsigned long long hit_cached[NR_EXTENT_CACHES];
3967 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3968 unsigned long long total_ext[NR_EXTENT_CACHES];
3969 unsigned long long hit_total[NR_EXTENT_CACHES];
3970 int ext_tree[NR_EXTENT_CACHES];
3971 int zombie_tree[NR_EXTENT_CACHES];
3972 int ext_node[NR_EXTENT_CACHES];
3973 /* to count memory footprint */
3974 unsigned long long ext_mem[NR_EXTENT_CACHES];
3975 /* for read extent cache */
3976 unsigned long long hit_largest;
3977 /* for block age extent cache */
3978 unsigned long long allocated_data_blocks;
3979 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3980 int ndirty_data, ndirty_qdata;
3981 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3982 int nats, dirty_nats, sits, dirty_sits;
3983 int free_nids, avail_nids, alloc_nids;
3984 int total_count, utilization;
3985 int nr_wb_cp_data, nr_wb_data;
3986 int nr_rd_data, nr_rd_node, nr_rd_meta;
3987 int nr_dio_read, nr_dio_write;
3988 unsigned int io_skip_bggc, other_skip_bggc;
3989 int nr_flushing, nr_flushed, flush_list_empty;
3990 int nr_discarding, nr_discarded;
3991 int nr_discard_cmd;
3992 unsigned int undiscard_blks;
3993 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3994 unsigned int cur_ckpt_time, peak_ckpt_time;
3995 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3996 int compr_inode, swapfile_inode;
3997 unsigned long long compr_blocks;
3998 int aw_cnt, max_aw_cnt;
3999 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
4000 unsigned int bimodal, avg_vblocks;
4001 int util_free, util_valid, util_invalid;
4002 int rsvd_segs, overp_segs;
4003 int dirty_count, node_pages, meta_pages, compress_pages;
4004 int compress_page_hit;
4005 int prefree_count, free_segs, free_secs;
4006 int cp_call_count[MAX_CALL_TYPE], cp_count;
4007 int gc_call_count[MAX_CALL_TYPE];
4008 int gc_segs[2][2];
4009 int gc_secs[2][2];
4010 int tot_blks, data_blks, node_blks;
4011 int bg_data_blks, bg_node_blks;
4012 int curseg[NR_CURSEG_TYPE];
4013 int cursec[NR_CURSEG_TYPE];
4014 int curzone[NR_CURSEG_TYPE];
4015 unsigned int dirty_seg[NR_CURSEG_TYPE];
4016 unsigned int full_seg[NR_CURSEG_TYPE];
4017 unsigned int valid_blks[NR_CURSEG_TYPE];
4018
4019 unsigned int meta_count[META_MAX];
4020 unsigned int segment_count[2];
4021 unsigned int block_count[2];
4022 unsigned int inplace_count;
4023 unsigned long long base_mem, cache_mem, page_mem;
4024 struct f2fs_dev_stats *dev_stats;
4025};
4026
4027static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
4028{
4029 return (struct f2fs_stat_info *)sbi->stat_info;
4030}
4031
4032#define stat_inc_cp_call_count(sbi, foreground) \
4033 atomic_inc(&sbi->cp_call_count[(foreground)])
4034#define stat_inc_cp_count(sbi) (F2FS_STAT(sbi)->cp_count++)
4035#define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
4036#define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
4037#define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
4038#define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
4039#define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
4040#define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
4041#define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
4042#define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
4043#define stat_inc_inline_xattr(inode) \
4044 do { \
4045 if (f2fs_has_inline_xattr(inode)) \
4046 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
4047 } while (0)
4048#define stat_dec_inline_xattr(inode) \
4049 do { \
4050 if (f2fs_has_inline_xattr(inode)) \
4051 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
4052 } while (0)
4053#define stat_inc_inline_inode(inode) \
4054 do { \
4055 if (f2fs_has_inline_data(inode)) \
4056 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
4057 } while (0)
4058#define stat_dec_inline_inode(inode) \
4059 do { \
4060 if (f2fs_has_inline_data(inode)) \
4061 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
4062 } while (0)
4063#define stat_inc_inline_dir(inode) \
4064 do { \
4065 if (f2fs_has_inline_dentry(inode)) \
4066 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
4067 } while (0)
4068#define stat_dec_inline_dir(inode) \
4069 do { \
4070 if (f2fs_has_inline_dentry(inode)) \
4071 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
4072 } while (0)
4073#define stat_inc_compr_inode(inode) \
4074 do { \
4075 if (f2fs_compressed_file(inode)) \
4076 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
4077 } while (0)
4078#define stat_dec_compr_inode(inode) \
4079 do { \
4080 if (f2fs_compressed_file(inode)) \
4081 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
4082 } while (0)
4083#define stat_add_compr_blocks(inode, blocks) \
4084 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4085#define stat_sub_compr_blocks(inode, blocks) \
4086 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4087#define stat_inc_swapfile_inode(inode) \
4088 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4089#define stat_dec_swapfile_inode(inode) \
4090 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4091#define stat_inc_atomic_inode(inode) \
4092 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4093#define stat_dec_atomic_inode(inode) \
4094 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4095#define stat_inc_meta_count(sbi, blkaddr) \
4096 do { \
4097 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
4098 atomic_inc(&(sbi)->meta_count[META_CP]); \
4099 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
4100 atomic_inc(&(sbi)->meta_count[META_SIT]); \
4101 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
4102 atomic_inc(&(sbi)->meta_count[META_NAT]); \
4103 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4104 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4105 } while (0)
4106#define stat_inc_seg_type(sbi, curseg) \
4107 ((sbi)->segment_count[(curseg)->alloc_type]++)
4108#define stat_inc_block_count(sbi, curseg) \
4109 ((sbi)->block_count[(curseg)->alloc_type]++)
4110#define stat_inc_inplace_blocks(sbi) \
4111 (atomic_inc(&(sbi)->inplace_count))
4112#define stat_update_max_atomic_write(inode) \
4113 do { \
4114 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4115 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4116 if (cur > max) \
4117 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4118 } while (0)
4119#define stat_inc_gc_call_count(sbi, foreground) \
4120 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4121#define stat_inc_gc_sec_count(sbi, type, gc_type) \
4122 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4123#define stat_inc_gc_seg_count(sbi, type, gc_type) \
4124 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4125
4126#define stat_inc_tot_blk_count(si, blks) \
4127 ((si)->tot_blks += (blks))
4128
4129#define stat_inc_data_blk_count(sbi, blks, gc_type) \
4130 do { \
4131 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4132 stat_inc_tot_blk_count(si, blks); \
4133 si->data_blks += (blks); \
4134 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4135 } while (0)
4136
4137#define stat_inc_node_blk_count(sbi, blks, gc_type) \
4138 do { \
4139 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4140 stat_inc_tot_blk_count(si, blks); \
4141 si->node_blks += (blks); \
4142 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4143 } while (0)
4144
4145int f2fs_build_stats(struct f2fs_sb_info *sbi);
4146void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4147void __init f2fs_create_root_stats(void);
4148void f2fs_destroy_root_stats(void);
4149void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4150#else
4151#define stat_inc_cp_call_count(sbi, foreground) do { } while (0)
4152#define stat_inc_cp_count(sbi) do { } while (0)
4153#define stat_io_skip_bggc_count(sbi) do { } while (0)
4154#define stat_other_skip_bggc_count(sbi) do { } while (0)
4155#define stat_inc_dirty_inode(sbi, type) do { } while (0)
4156#define stat_dec_dirty_inode(sbi, type) do { } while (0)
4157#define stat_inc_total_hit(sbi, type) do { } while (0)
4158#define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4159#define stat_inc_largest_node_hit(sbi) do { } while (0)
4160#define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4161#define stat_inc_inline_xattr(inode) do { } while (0)
4162#define stat_dec_inline_xattr(inode) do { } while (0)
4163#define stat_inc_inline_inode(inode) do { } while (0)
4164#define stat_dec_inline_inode(inode) do { } while (0)
4165#define stat_inc_inline_dir(inode) do { } while (0)
4166#define stat_dec_inline_dir(inode) do { } while (0)
4167#define stat_inc_compr_inode(inode) do { } while (0)
4168#define stat_dec_compr_inode(inode) do { } while (0)
4169#define stat_add_compr_blocks(inode, blocks) do { } while (0)
4170#define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4171#define stat_inc_swapfile_inode(inode) do { } while (0)
4172#define stat_dec_swapfile_inode(inode) do { } while (0)
4173#define stat_inc_atomic_inode(inode) do { } while (0)
4174#define stat_dec_atomic_inode(inode) do { } while (0)
4175#define stat_update_max_atomic_write(inode) do { } while (0)
4176#define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4177#define stat_inc_seg_type(sbi, curseg) do { } while (0)
4178#define stat_inc_block_count(sbi, curseg) do { } while (0)
4179#define stat_inc_inplace_blocks(sbi) do { } while (0)
4180#define stat_inc_gc_call_count(sbi, foreground) do { } while (0)
4181#define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0)
4182#define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0)
4183#define stat_inc_tot_blk_count(si, blks) do { } while (0)
4184#define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4185#define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4186
4187static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4188static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4189static inline void __init f2fs_create_root_stats(void) { }
4190static inline void f2fs_destroy_root_stats(void) { }
4191static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4192#endif
4193
4194extern const struct file_operations f2fs_dir_operations;
4195extern const struct file_operations f2fs_file_operations;
4196extern const struct inode_operations f2fs_file_inode_operations;
4197extern const struct address_space_operations f2fs_dblock_aops;
4198extern const struct address_space_operations f2fs_node_aops;
4199extern const struct address_space_operations f2fs_meta_aops;
4200extern const struct inode_operations f2fs_dir_inode_operations;
4201extern const struct inode_operations f2fs_symlink_inode_operations;
4202extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4203extern const struct inode_operations f2fs_special_inode_operations;
4204extern struct kmem_cache *f2fs_inode_entry_slab;
4205
4206/*
4207 * inline.c
4208 */
4209bool f2fs_may_inline_data(struct inode *inode);
4210bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4211bool f2fs_may_inline_dentry(struct inode *inode);
4212void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage);
4213void f2fs_truncate_inline_inode(struct inode *inode,
4214 struct page *ipage, u64 from);
4215int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4216int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4217int f2fs_convert_inline_inode(struct inode *inode);
4218int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4219int f2fs_write_inline_data(struct inode *inode, struct folio *folio);
4220int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4221struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4222 const struct f2fs_filename *fname,
4223 struct page **res_page,
4224 bool use_hash);
4225int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4226 struct page *ipage);
4227int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4228 struct inode *inode, nid_t ino, umode_t mode);
4229void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4230 struct page *page, struct inode *dir,
4231 struct inode *inode);
4232bool f2fs_empty_inline_dir(struct inode *dir);
4233int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4234 struct fscrypt_str *fstr);
4235int f2fs_inline_data_fiemap(struct inode *inode,
4236 struct fiemap_extent_info *fieinfo,
4237 __u64 start, __u64 len);
4238
4239/*
4240 * shrinker.c
4241 */
4242unsigned long f2fs_shrink_count(struct shrinker *shrink,
4243 struct shrink_control *sc);
4244unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4245 struct shrink_control *sc);
4246void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4247void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4248
4249/*
4250 * extent_cache.c
4251 */
4252bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4253void f2fs_init_extent_tree(struct inode *inode);
4254void f2fs_drop_extent_tree(struct inode *inode);
4255void f2fs_destroy_extent_node(struct inode *inode);
4256void f2fs_destroy_extent_tree(struct inode *inode);
4257void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4258int __init f2fs_create_extent_cache(void);
4259void f2fs_destroy_extent_cache(void);
4260
4261/* read extent cache ops */
4262void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4263bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4264 struct extent_info *ei);
4265bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4266 block_t *blkaddr);
4267void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4268void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4269 pgoff_t fofs, block_t blkaddr, unsigned int len);
4270unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4271 int nr_shrink);
4272
4273/* block age extent cache ops */
4274void f2fs_init_age_extent_tree(struct inode *inode);
4275bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4276 struct extent_info *ei);
4277void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4278void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4279 pgoff_t fofs, unsigned int len);
4280unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4281 int nr_shrink);
4282
4283/*
4284 * sysfs.c
4285 */
4286#define MIN_RA_MUL 2
4287#define MAX_RA_MUL 256
4288
4289int __init f2fs_init_sysfs(void);
4290void f2fs_exit_sysfs(void);
4291int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4292void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4293
4294/* verity.c */
4295extern const struct fsverity_operations f2fs_verityops;
4296
4297/*
4298 * crypto support
4299 */
4300static inline bool f2fs_encrypted_file(struct inode *inode)
4301{
4302 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4303}
4304
4305static inline void f2fs_set_encrypted_inode(struct inode *inode)
4306{
4307#ifdef CONFIG_FS_ENCRYPTION
4308 file_set_encrypt(inode);
4309 f2fs_set_inode_flags(inode);
4310#endif
4311}
4312
4313/*
4314 * Returns true if the reads of the inode's data need to undergo some
4315 * postprocessing step, like decryption or authenticity verification.
4316 */
4317static inline bool f2fs_post_read_required(struct inode *inode)
4318{
4319 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4320 f2fs_compressed_file(inode);
4321}
4322
4323static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4324{
4325 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4326}
4327
4328static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4329{
4330 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4331}
4332
4333/*
4334 * compress.c
4335 */
4336#ifdef CONFIG_F2FS_FS_COMPRESSION
4337enum cluster_check_type {
4338 CLUSTER_IS_COMPR, /* check only if compressed cluster */
4339 CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4340 CLUSTER_RAW_BLKS /* return # of raw blocks in a cluster */
4341};
4342bool f2fs_is_compressed_page(struct page *page);
4343struct page *f2fs_compress_control_page(struct page *page);
4344int f2fs_prepare_compress_overwrite(struct inode *inode,
4345 struct page **pagep, pgoff_t index, void **fsdata);
4346bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4347 pgoff_t index, unsigned copied);
4348int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4349void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4350bool f2fs_is_compress_backend_ready(struct inode *inode);
4351bool f2fs_is_compress_level_valid(int alg, int lvl);
4352int __init f2fs_init_compress_mempool(void);
4353void f2fs_destroy_compress_mempool(void);
4354void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4355void f2fs_end_read_compressed_page(struct page *page, bool failed,
4356 block_t blkaddr, bool in_task);
4357bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4358bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4359bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4360 int index, int nr_pages, bool uptodate);
4361bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4362void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio);
4363int f2fs_write_multi_pages(struct compress_ctx *cc,
4364 int *submitted,
4365 struct writeback_control *wbc,
4366 enum iostat_type io_type);
4367int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4368bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4369void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4370 pgoff_t fofs, block_t blkaddr,
4371 unsigned int llen, unsigned int c_len);
4372int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4373 unsigned nr_pages, sector_t *last_block_in_bio,
4374 struct readahead_control *rac, bool for_write);
4375struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4376void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4377 bool in_task);
4378void f2fs_put_page_dic(struct page *page, bool in_task);
4379unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4380 unsigned int ofs_in_node);
4381int f2fs_init_compress_ctx(struct compress_ctx *cc);
4382void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4383void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4384int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4385void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4386int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4387void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4388int __init f2fs_init_compress_cache(void);
4389void f2fs_destroy_compress_cache(void);
4390struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4391void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4392void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4393 nid_t ino, block_t blkaddr);
4394bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4395 block_t blkaddr);
4396void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4397#define inc_compr_inode_stat(inode) \
4398 do { \
4399 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4400 sbi->compr_new_inode++; \
4401 } while (0)
4402#define add_compr_block_stat(inode, blocks) \
4403 do { \
4404 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4405 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4406 sbi->compr_written_block += blocks; \
4407 sbi->compr_saved_block += diff; \
4408 } while (0)
4409#else
4410static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4411static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4412{
4413 if (!f2fs_compressed_file(inode))
4414 return true;
4415 /* not support compression */
4416 return false;
4417}
4418static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
4419static inline struct page *f2fs_compress_control_page(struct page *page)
4420{
4421 WARN_ON_ONCE(1);
4422 return ERR_PTR(-EINVAL);
4423}
4424static inline int __init f2fs_init_compress_mempool(void) { return 0; }
4425static inline void f2fs_destroy_compress_mempool(void) { }
4426static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4427 bool in_task) { }
4428static inline void f2fs_end_read_compressed_page(struct page *page,
4429 bool failed, block_t blkaddr, bool in_task)
4430{
4431 WARN_ON_ONCE(1);
4432}
4433static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4434{
4435 WARN_ON_ONCE(1);
4436}
4437static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4438 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
4439static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4440static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4441static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4442static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4443static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4444static inline int __init f2fs_init_compress_cache(void) { return 0; }
4445static inline void f2fs_destroy_compress_cache(void) { }
4446static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4447 block_t blkaddr) { }
4448static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4449 struct page *page, nid_t ino, block_t blkaddr) { }
4450static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4451 struct page *page, block_t blkaddr) { return false; }
4452static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4453 nid_t ino) { }
4454#define inc_compr_inode_stat(inode) do { } while (0)
4455static inline int f2fs_is_compressed_cluster(
4456 struct inode *inode,
4457 pgoff_t index) { return 0; }
4458static inline bool f2fs_is_sparse_cluster(
4459 struct inode *inode,
4460 pgoff_t index) { return true; }
4461static inline void f2fs_update_read_extent_tree_range_compressed(
4462 struct inode *inode,
4463 pgoff_t fofs, block_t blkaddr,
4464 unsigned int llen, unsigned int c_len) { }
4465#endif
4466
4467static inline int set_compress_context(struct inode *inode)
4468{
4469#ifdef CONFIG_F2FS_FS_COMPRESSION
4470 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4471 struct f2fs_inode_info *fi = F2FS_I(inode);
4472
4473 fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4474 fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4475 fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4476 BIT(COMPRESS_CHKSUM) : 0;
4477 fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4478 if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4479 fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4480 F2FS_OPTION(sbi).compress_level)
4481 fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4482 fi->i_flags |= F2FS_COMPR_FL;
4483 set_inode_flag(inode, FI_COMPRESSED_FILE);
4484 stat_inc_compr_inode(inode);
4485 inc_compr_inode_stat(inode);
4486 f2fs_mark_inode_dirty_sync(inode, true);
4487 return 0;
4488#else
4489 return -EOPNOTSUPP;
4490#endif
4491}
4492
4493static inline bool f2fs_disable_compressed_file(struct inode *inode)
4494{
4495 struct f2fs_inode_info *fi = F2FS_I(inode);
4496
4497 f2fs_down_write(&fi->i_sem);
4498
4499 if (!f2fs_compressed_file(inode)) {
4500 f2fs_up_write(&fi->i_sem);
4501 return true;
4502 }
4503 if (f2fs_is_mmap_file(inode) ||
4504 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4505 f2fs_up_write(&fi->i_sem);
4506 return false;
4507 }
4508
4509 fi->i_flags &= ~F2FS_COMPR_FL;
4510 stat_dec_compr_inode(inode);
4511 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4512 f2fs_mark_inode_dirty_sync(inode, true);
4513
4514 f2fs_up_write(&fi->i_sem);
4515 return true;
4516}
4517
4518#define F2FS_FEATURE_FUNCS(name, flagname) \
4519static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4520{ \
4521 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4522}
4523
4524F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4525F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4526F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4527F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4528F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4529F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4530F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4531F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4532F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4533F2FS_FEATURE_FUNCS(verity, VERITY);
4534F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4535F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4536F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4537F2FS_FEATURE_FUNCS(readonly, RO);
4538F2FS_FEATURE_FUNCS(device_alias, DEVICE_ALIAS);
4539
4540#ifdef CONFIG_BLK_DEV_ZONED
4541static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4542 block_t blkaddr)
4543{
4544 unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4545
4546 return test_bit(zno, FDEV(devi).blkz_seq);
4547}
4548#endif
4549
4550static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4551 struct block_device *bdev)
4552{
4553 int i;
4554
4555 if (!f2fs_is_multi_device(sbi))
4556 return 0;
4557
4558 for (i = 0; i < sbi->s_ndevs; i++)
4559 if (FDEV(i).bdev == bdev)
4560 return i;
4561
4562 WARN_ON(1);
4563 return -1;
4564}
4565
4566static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4567{
4568 return f2fs_sb_has_blkzoned(sbi);
4569}
4570
4571static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4572{
4573 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4574}
4575
4576static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4577{
4578 int i;
4579
4580 if (!f2fs_is_multi_device(sbi))
4581 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4582
4583 for (i = 0; i < sbi->s_ndevs; i++)
4584 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4585 return true;
4586 return false;
4587}
4588
4589static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4590{
4591 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4592 f2fs_hw_should_discard(sbi);
4593}
4594
4595static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4596{
4597 int i;
4598
4599 if (!f2fs_is_multi_device(sbi))
4600 return bdev_read_only(sbi->sb->s_bdev);
4601
4602 for (i = 0; i < sbi->s_ndevs; i++)
4603 if (bdev_read_only(FDEV(i).bdev))
4604 return true;
4605 return false;
4606}
4607
4608static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4609{
4610 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4611}
4612
4613static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4614{
4615 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4616}
4617
4618static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4619 block_t blkaddr)
4620{
4621 if (f2fs_sb_has_blkzoned(sbi)) {
4622 int devi = f2fs_target_device_index(sbi, blkaddr);
4623
4624 return !bdev_is_zoned(FDEV(devi).bdev);
4625 }
4626 return true;
4627}
4628
4629static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4630{
4631 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4632}
4633
4634static inline bool f2fs_may_compress(struct inode *inode)
4635{
4636 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4637 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4638 f2fs_is_mmap_file(inode))
4639 return false;
4640 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4641}
4642
4643static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4644 u64 blocks, bool add)
4645{
4646 struct f2fs_inode_info *fi = F2FS_I(inode);
4647 int diff = fi->i_cluster_size - blocks;
4648
4649 /* don't update i_compr_blocks if saved blocks were released */
4650 if (!add && !atomic_read(&fi->i_compr_blocks))
4651 return;
4652
4653 if (add) {
4654 atomic_add(diff, &fi->i_compr_blocks);
4655 stat_add_compr_blocks(inode, diff);
4656 } else {
4657 atomic_sub(diff, &fi->i_compr_blocks);
4658 stat_sub_compr_blocks(inode, diff);
4659 }
4660 f2fs_mark_inode_dirty_sync(inode, true);
4661}
4662
4663static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4664 int flag)
4665{
4666 if (!f2fs_is_multi_device(sbi))
4667 return false;
4668 if (flag != F2FS_GET_BLOCK_DIO)
4669 return false;
4670 return sbi->aligned_blksize;
4671}
4672
4673static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4674{
4675 return fsverity_active(inode) &&
4676 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4677}
4678
4679#ifdef CONFIG_F2FS_FAULT_INJECTION
4680extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4681 unsigned long type);
4682#else
4683static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4684 unsigned long rate, unsigned long type)
4685{
4686 return 0;
4687}
4688#endif
4689
4690static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4691{
4692#ifdef CONFIG_QUOTA
4693 if (f2fs_sb_has_quota_ino(sbi))
4694 return true;
4695 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4696 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4697 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4698 return true;
4699#endif
4700 return false;
4701}
4702
4703static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4704{
4705 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4706}
4707
4708static inline void f2fs_io_schedule_timeout(long timeout)
4709{
4710 set_current_state(TASK_UNINTERRUPTIBLE);
4711 io_schedule_timeout(timeout);
4712}
4713
4714static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi,
4715 struct folio *folio, enum page_type type)
4716{
4717 pgoff_t ofs = folio->index;
4718
4719 if (unlikely(f2fs_cp_error(sbi)))
4720 return;
4721
4722 if (ofs == sbi->page_eio_ofs[type]) {
4723 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4724 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4725 } else {
4726 sbi->page_eio_ofs[type] = ofs;
4727 sbi->page_eio_cnt[type] = 0;
4728 }
4729}
4730
4731static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4732{
4733 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4734}
4735
4736static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4737 block_t blkaddr, unsigned int cnt)
4738{
4739 bool need_submit = false;
4740 int i = 0;
4741
4742 do {
4743 struct page *page;
4744
4745 page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4746 if (page) {
4747 if (folio_test_writeback(page_folio(page)))
4748 need_submit = true;
4749 f2fs_put_page(page, 0);
4750 }
4751 } while (++i < cnt && !need_submit);
4752
4753 if (need_submit)
4754 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4755 NULL, 0, DATA);
4756
4757 truncate_inode_pages_range(META_MAPPING(sbi),
4758 F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4759 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4760}
4761
4762static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4763 block_t blkaddr)
4764{
4765 f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4766 f2fs_invalidate_compress_page(sbi, blkaddr);
4767}
4768
4769#define EFSBADCRC EBADMSG /* Bad CRC detected */
4770#define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4771
4772#endif /* _LINUX_F2FS_H */