Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * fs/f2fs/f2fs.h
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#ifndef _LINUX_F2FS_H
  12#define _LINUX_F2FS_H
  13
  14#include <linux/types.h>
  15#include <linux/page-flags.h>
  16#include <linux/buffer_head.h>
  17#include <linux/slab.h>
  18#include <linux/crc32.h>
  19#include <linux/magic.h>
  20#include <linux/kobject.h>
  21#include <linux/sched.h>
  22#include <linux/cred.h>
  23#include <linux/vmalloc.h>
  24#include <linux/bio.h>
  25#include <linux/blkdev.h>
  26#include <linux/quotaops.h>
  27#include <crypto/hash.h>
  28
  29#define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
  30#include <linux/fscrypt.h>
  31
  32#ifdef CONFIG_F2FS_CHECK_FS
  33#define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
  34#else
  35#define f2fs_bug_on(sbi, condition)					\
  36	do {								\
  37		if (unlikely(condition)) {				\
  38			WARN_ON(1);					\
  39			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
  40		}							\
  41	} while (0)
  42#endif
  43
  44#ifdef CONFIG_F2FS_FAULT_INJECTION
  45enum {
  46	FAULT_KMALLOC,
  47	FAULT_KVMALLOC,
  48	FAULT_PAGE_ALLOC,
  49	FAULT_PAGE_GET,
  50	FAULT_ALLOC_BIO,
  51	FAULT_ALLOC_NID,
  52	FAULT_ORPHAN,
  53	FAULT_BLOCK,
  54	FAULT_DIR_DEPTH,
  55	FAULT_EVICT_INODE,
  56	FAULT_TRUNCATE,
  57	FAULT_IO,
  58	FAULT_CHECKPOINT,
  59	FAULT_MAX,
  60};
  61
  62struct f2fs_fault_info {
  63	atomic_t inject_ops;
  64	unsigned int inject_rate;
  65	unsigned int inject_type;
  66};
  67
  68extern char *fault_name[FAULT_MAX];
  69#define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
  70#endif
  71
  72/*
  73 * For mount options
  74 */
  75#define F2FS_MOUNT_BG_GC		0x00000001
  76#define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
  77#define F2FS_MOUNT_DISCARD		0x00000004
  78#define F2FS_MOUNT_NOHEAP		0x00000008
  79#define F2FS_MOUNT_XATTR_USER		0x00000010
  80#define F2FS_MOUNT_POSIX_ACL		0x00000020
  81#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
  82#define F2FS_MOUNT_INLINE_XATTR		0x00000080
  83#define F2FS_MOUNT_INLINE_DATA		0x00000100
  84#define F2FS_MOUNT_INLINE_DENTRY	0x00000200
  85#define F2FS_MOUNT_FLUSH_MERGE		0x00000400
  86#define F2FS_MOUNT_NOBARRIER		0x00000800
  87#define F2FS_MOUNT_FASTBOOT		0x00001000
  88#define F2FS_MOUNT_EXTENT_CACHE		0x00002000
  89#define F2FS_MOUNT_FORCE_FG_GC		0x00004000
  90#define F2FS_MOUNT_DATA_FLUSH		0x00008000
  91#define F2FS_MOUNT_FAULT_INJECTION	0x00010000
  92#define F2FS_MOUNT_ADAPTIVE		0x00020000
  93#define F2FS_MOUNT_LFS			0x00040000
  94#define F2FS_MOUNT_USRQUOTA		0x00080000
  95#define F2FS_MOUNT_GRPQUOTA		0x00100000
  96#define F2FS_MOUNT_PRJQUOTA		0x00200000
  97#define F2FS_MOUNT_QUOTA		0x00400000
  98#define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
  99#define F2FS_MOUNT_RESERVE_ROOT		0x01000000
 100
 101#define F2FS_OPTION(sbi)	((sbi)->mount_opt)
 102#define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
 103#define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
 104#define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
 105
 106#define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
 107		typecheck(unsigned long long, b) &&			\
 108		((long long)((a) - (b)) > 0))
 109
 110typedef u32 block_t;	/*
 111			 * should not change u32, since it is the on-disk block
 112			 * address format, __le32.
 113			 */
 114typedef u32 nid_t;
 115
 116struct f2fs_mount_info {
 117	unsigned int opt;
 118	int write_io_size_bits;		/* Write IO size bits */
 119	block_t root_reserved_blocks;	/* root reserved blocks */
 120	kuid_t s_resuid;		/* reserved blocks for uid */
 121	kgid_t s_resgid;		/* reserved blocks for gid */
 122	int active_logs;		/* # of active logs */
 123	int inline_xattr_size;		/* inline xattr size */
 124#ifdef CONFIG_F2FS_FAULT_INJECTION
 125	struct f2fs_fault_info fault_info;	/* For fault injection */
 126#endif
 127#ifdef CONFIG_QUOTA
 128	/* Names of quota files with journalled quota */
 129	char *s_qf_names[MAXQUOTAS];
 130	int s_jquota_fmt;			/* Format of quota to use */
 131#endif
 132	/* For which write hints are passed down to block layer */
 133	int whint_mode;
 134	int alloc_mode;			/* segment allocation policy */
 135	int fsync_mode;			/* fsync policy */
 136	bool test_dummy_encryption;	/* test dummy encryption */
 137};
 138
 139#define F2FS_FEATURE_ENCRYPT		0x0001
 140#define F2FS_FEATURE_BLKZONED		0x0002
 141#define F2FS_FEATURE_ATOMIC_WRITE	0x0004
 142#define F2FS_FEATURE_EXTRA_ATTR		0x0008
 143#define F2FS_FEATURE_PRJQUOTA		0x0010
 144#define F2FS_FEATURE_INODE_CHKSUM	0x0020
 145#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
 146#define F2FS_FEATURE_QUOTA_INO		0x0080
 147#define F2FS_FEATURE_INODE_CRTIME	0x0100
 148#define F2FS_FEATURE_LOST_FOUND		0x0200
 149#define F2FS_FEATURE_VERITY		0x0400	/* reserved */
 150
 151#define F2FS_HAS_FEATURE(sb, mask)					\
 152	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
 153#define F2FS_SET_FEATURE(sb, mask)					\
 154	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
 155#define F2FS_CLEAR_FEATURE(sb, mask)					\
 156	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
 157
 158/*
 159 * Default values for user and/or group using reserved blocks
 160 */
 161#define	F2FS_DEF_RESUID		0
 162#define	F2FS_DEF_RESGID		0
 163
 164/*
 165 * For checkpoint manager
 166 */
 167enum {
 168	NAT_BITMAP,
 169	SIT_BITMAP
 170};
 171
 172#define	CP_UMOUNT	0x00000001
 173#define	CP_FASTBOOT	0x00000002
 174#define	CP_SYNC		0x00000004
 175#define	CP_RECOVERY	0x00000008
 176#define	CP_DISCARD	0x00000010
 177#define CP_TRIMMED	0x00000020
 178
 179#define DEF_BATCHED_TRIM_SECTIONS	2048
 180#define BATCHED_TRIM_SEGMENTS(sbi)	\
 181		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
 182#define BATCHED_TRIM_BLOCKS(sbi)	\
 183		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
 184#define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
 185#define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
 186#define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
 187#define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
 188#define DEF_CP_INTERVAL			60	/* 60 secs */
 189#define DEF_IDLE_INTERVAL		5	/* 5 secs */
 190
 191struct cp_control {
 192	int reason;
 193	__u64 trim_start;
 194	__u64 trim_end;
 195	__u64 trim_minlen;
 196};
 197
 198/*
 199 * For CP/NAT/SIT/SSA readahead
 200 */
 201enum {
 202	META_CP,
 203	META_NAT,
 204	META_SIT,
 205	META_SSA,
 206	META_POR,
 207};
 208
 209/* for the list of ino */
 210enum {
 211	ORPHAN_INO,		/* for orphan ino list */
 212	APPEND_INO,		/* for append ino list */
 213	UPDATE_INO,		/* for update ino list */
 214	TRANS_DIR_INO,		/* for trasactions dir ino list */
 215	FLUSH_INO,		/* for multiple device flushing */
 216	MAX_INO_ENTRY,		/* max. list */
 217};
 218
 219struct ino_entry {
 220	struct list_head list;		/* list head */
 221	nid_t ino;			/* inode number */
 222	unsigned int dirty_device;	/* dirty device bitmap */
 223};
 224
 225/* for the list of inodes to be GCed */
 226struct inode_entry {
 227	struct list_head list;	/* list head */
 228	struct inode *inode;	/* vfs inode pointer */
 229};
 230
 231/* for the bitmap indicate blocks to be discarded */
 232struct discard_entry {
 233	struct list_head list;	/* list head */
 234	block_t start_blkaddr;	/* start blockaddr of current segment */
 235	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
 236};
 237
 238/* default discard granularity of inner discard thread, unit: block count */
 239#define DEFAULT_DISCARD_GRANULARITY		16
 240
 241/* max discard pend list number */
 242#define MAX_PLIST_NUM		512
 243#define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
 244					(MAX_PLIST_NUM - 1) : (blk_num - 1))
 245
 246enum {
 247	D_PREP,
 248	D_SUBMIT,
 249	D_DONE,
 250};
 251
 252struct discard_info {
 253	block_t lstart;			/* logical start address */
 254	block_t len;			/* length */
 255	block_t start;			/* actual start address in dev */
 256};
 257
 258struct discard_cmd {
 259	struct rb_node rb_node;		/* rb node located in rb-tree */
 260	union {
 261		struct {
 262			block_t lstart;	/* logical start address */
 263			block_t len;	/* length */
 264			block_t start;	/* actual start address in dev */
 265		};
 266		struct discard_info di;	/* discard info */
 267
 268	};
 269	struct list_head list;		/* command list */
 270	struct completion wait;		/* compleation */
 271	struct block_device *bdev;	/* bdev */
 272	unsigned short ref;		/* reference count */
 273	unsigned char state;		/* state */
 274	int error;			/* bio error */
 275};
 276
 277enum {
 278	DPOLICY_BG,
 279	DPOLICY_FORCE,
 280	DPOLICY_FSTRIM,
 281	DPOLICY_UMOUNT,
 282	MAX_DPOLICY,
 283};
 284
 285struct discard_policy {
 286	int type;			/* type of discard */
 287	unsigned int min_interval;	/* used for candidates exist */
 288	unsigned int max_interval;	/* used for candidates not exist */
 289	unsigned int max_requests;	/* # of discards issued per round */
 290	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
 291	bool io_aware;			/* issue discard in idle time */
 292	bool sync;			/* submit discard with REQ_SYNC flag */
 293	unsigned int granularity;	/* discard granularity */
 294};
 295
 296struct discard_cmd_control {
 297	struct task_struct *f2fs_issue_discard;	/* discard thread */
 298	struct list_head entry_list;		/* 4KB discard entry list */
 299	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
 300	struct list_head wait_list;		/* store on-flushing entries */
 301	struct list_head fstrim_list;		/* in-flight discard from fstrim */
 302	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
 303	unsigned int discard_wake;		/* to wake up discard thread */
 304	struct mutex cmd_lock;
 305	unsigned int nr_discards;		/* # of discards in the list */
 306	unsigned int max_discards;		/* max. discards to be issued */
 307	unsigned int discard_granularity;	/* discard granularity */
 308	unsigned int undiscard_blks;		/* # of undiscard blocks */
 309	atomic_t issued_discard;		/* # of issued discard */
 310	atomic_t issing_discard;		/* # of issing discard */
 311	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
 312	struct rb_root root;			/* root of discard rb-tree */
 313};
 314
 315/* for the list of fsync inodes, used only during recovery */
 316struct fsync_inode_entry {
 317	struct list_head list;	/* list head */
 318	struct inode *inode;	/* vfs inode pointer */
 319	block_t blkaddr;	/* block address locating the last fsync */
 320	block_t last_dentry;	/* block address locating the last dentry */
 321};
 322
 323#define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
 324#define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
 325
 326#define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
 327#define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
 328#define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
 329#define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
 330
 331#define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
 332#define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
 333
 334static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
 335{
 336	int before = nats_in_cursum(journal);
 337
 338	journal->n_nats = cpu_to_le16(before + i);
 339	return before;
 340}
 341
 342static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
 343{
 344	int before = sits_in_cursum(journal);
 345
 346	journal->n_sits = cpu_to_le16(before + i);
 347	return before;
 348}
 349
 350static inline bool __has_cursum_space(struct f2fs_journal *journal,
 351							int size, int type)
 352{
 353	if (type == NAT_JOURNAL)
 354		return size <= MAX_NAT_JENTRIES(journal);
 355	return size <= MAX_SIT_JENTRIES(journal);
 356}
 357
 358/*
 359 * ioctl commands
 360 */
 361#define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
 362#define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
 363#define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
 364
 365#define F2FS_IOCTL_MAGIC		0xf5
 366#define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
 367#define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
 368#define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
 369#define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
 370#define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
 371#define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
 372#define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
 373#define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
 374						struct f2fs_defragment)
 375#define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
 376						struct f2fs_move_range)
 377#define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
 378						struct f2fs_flush_device)
 379#define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
 380						struct f2fs_gc_range)
 381#define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
 382#define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
 383#define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
 384#define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
 385
 386#define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
 387#define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
 388#define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
 389
 390/*
 391 * should be same as XFS_IOC_GOINGDOWN.
 392 * Flags for going down operation used by FS_IOC_GOINGDOWN
 393 */
 394#define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
 395#define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
 396#define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
 397#define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
 398#define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
 399
 400#if defined(__KERNEL__) && defined(CONFIG_COMPAT)
 401/*
 402 * ioctl commands in 32 bit emulation
 403 */
 404#define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
 405#define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
 406#define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
 407#endif
 408
 409#define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
 410#define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
 411
 412struct f2fs_gc_range {
 413	u32 sync;
 414	u64 start;
 415	u64 len;
 416};
 417
 418struct f2fs_defragment {
 419	u64 start;
 420	u64 len;
 421};
 422
 423struct f2fs_move_range {
 424	u32 dst_fd;		/* destination fd */
 425	u64 pos_in;		/* start position in src_fd */
 426	u64 pos_out;		/* start position in dst_fd */
 427	u64 len;		/* size to move */
 428};
 429
 430struct f2fs_flush_device {
 431	u32 dev_num;		/* device number to flush */
 432	u32 segments;		/* # of segments to flush */
 433};
 434
 435/* for inline stuff */
 436#define DEF_INLINE_RESERVED_SIZE	1
 437#define DEF_MIN_INLINE_SIZE		1
 438static inline int get_extra_isize(struct inode *inode);
 439static inline int get_inline_xattr_addrs(struct inode *inode);
 440#define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
 441				(CUR_ADDRS_PER_INODE(inode) -		\
 442				get_inline_xattr_addrs(inode) -	\
 443				DEF_INLINE_RESERVED_SIZE))
 444
 445/* for inline dir */
 446#define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
 447				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
 448				BITS_PER_BYTE + 1))
 449#define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
 450					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
 451#define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
 452				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
 453				NR_INLINE_DENTRY(inode) + \
 454				INLINE_DENTRY_BITMAP_SIZE(inode)))
 455
 456/*
 457 * For INODE and NODE manager
 458 */
 459/* for directory operations */
 460struct f2fs_dentry_ptr {
 461	struct inode *inode;
 462	void *bitmap;
 463	struct f2fs_dir_entry *dentry;
 464	__u8 (*filename)[F2FS_SLOT_LEN];
 465	int max;
 466	int nr_bitmap;
 467};
 468
 469static inline void make_dentry_ptr_block(struct inode *inode,
 470		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
 471{
 472	d->inode = inode;
 473	d->max = NR_DENTRY_IN_BLOCK;
 474	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
 475	d->bitmap = t->dentry_bitmap;
 476	d->dentry = t->dentry;
 477	d->filename = t->filename;
 478}
 479
 480static inline void make_dentry_ptr_inline(struct inode *inode,
 481					struct f2fs_dentry_ptr *d, void *t)
 482{
 483	int entry_cnt = NR_INLINE_DENTRY(inode);
 484	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
 485	int reserved_size = INLINE_RESERVED_SIZE(inode);
 486
 487	d->inode = inode;
 488	d->max = entry_cnt;
 489	d->nr_bitmap = bitmap_size;
 490	d->bitmap = t;
 491	d->dentry = t + bitmap_size + reserved_size;
 492	d->filename = t + bitmap_size + reserved_size +
 493					SIZE_OF_DIR_ENTRY * entry_cnt;
 494}
 495
 496/*
 497 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
 498 * as its node offset to distinguish from index node blocks.
 499 * But some bits are used to mark the node block.
 500 */
 501#define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
 502				>> OFFSET_BIT_SHIFT)
 503enum {
 504	ALLOC_NODE,			/* allocate a new node page if needed */
 505	LOOKUP_NODE,			/* look up a node without readahead */
 506	LOOKUP_NODE_RA,			/*
 507					 * look up a node with readahead called
 508					 * by get_data_block.
 509					 */
 510};
 511
 512#define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
 513
 514#define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
 515
 516/* vector size for gang look-up from extent cache that consists of radix tree */
 517#define EXT_TREE_VEC_SIZE	64
 518
 519/* for in-memory extent cache entry */
 520#define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
 521
 522/* number of extent info in extent cache we try to shrink */
 523#define EXTENT_CACHE_SHRINK_NUMBER	128
 524
 525struct rb_entry {
 526	struct rb_node rb_node;		/* rb node located in rb-tree */
 527	unsigned int ofs;		/* start offset of the entry */
 528	unsigned int len;		/* length of the entry */
 529};
 530
 531struct extent_info {
 532	unsigned int fofs;		/* start offset in a file */
 533	unsigned int len;		/* length of the extent */
 534	u32 blk;			/* start block address of the extent */
 535};
 536
 537struct extent_node {
 538	struct rb_node rb_node;
 539	union {
 540		struct {
 541			unsigned int fofs;
 542			unsigned int len;
 543			u32 blk;
 544		};
 545		struct extent_info ei;	/* extent info */
 546
 547	};
 548	struct list_head list;		/* node in global extent list of sbi */
 549	struct extent_tree *et;		/* extent tree pointer */
 550};
 551
 552struct extent_tree {
 553	nid_t ino;			/* inode number */
 554	struct rb_root root;		/* root of extent info rb-tree */
 555	struct extent_node *cached_en;	/* recently accessed extent node */
 556	struct extent_info largest;	/* largested extent info */
 557	struct list_head list;		/* to be used by sbi->zombie_list */
 558	rwlock_t lock;			/* protect extent info rb-tree */
 559	atomic_t node_cnt;		/* # of extent node in rb-tree*/
 560};
 561
 562/*
 563 * This structure is taken from ext4_map_blocks.
 564 *
 565 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
 566 */
 567#define F2FS_MAP_NEW		(1 << BH_New)
 568#define F2FS_MAP_MAPPED		(1 << BH_Mapped)
 569#define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
 570#define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
 571				F2FS_MAP_UNWRITTEN)
 572
 573struct f2fs_map_blocks {
 574	block_t m_pblk;
 575	block_t m_lblk;
 576	unsigned int m_len;
 577	unsigned int m_flags;
 578	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
 579	pgoff_t *m_next_extent;		/* point to next possible extent */
 580	int m_seg_type;
 581};
 582
 583/* for flag in get_data_block */
 584enum {
 585	F2FS_GET_BLOCK_DEFAULT,
 586	F2FS_GET_BLOCK_FIEMAP,
 587	F2FS_GET_BLOCK_BMAP,
 588	F2FS_GET_BLOCK_PRE_DIO,
 589	F2FS_GET_BLOCK_PRE_AIO,
 590	F2FS_GET_BLOCK_PRECACHE,
 591};
 592
 593/*
 594 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
 595 */
 596#define FADVISE_COLD_BIT	0x01
 597#define FADVISE_LOST_PINO_BIT	0x02
 598#define FADVISE_ENCRYPT_BIT	0x04
 599#define FADVISE_ENC_NAME_BIT	0x08
 600#define FADVISE_KEEP_SIZE_BIT	0x10
 601#define FADVISE_HOT_BIT		0x20
 602#define FADVISE_VERITY_BIT	0x40	/* reserved */
 603
 604#define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
 605#define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
 606#define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
 607#define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
 608#define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
 609#define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
 610#define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
 611#define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
 612#define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
 613#define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
 614#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
 615#define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
 616#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
 617#define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
 618#define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
 619#define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
 620
 621#define DEF_DIR_LEVEL		0
 622
 623struct f2fs_inode_info {
 624	struct inode vfs_inode;		/* serve a vfs inode */
 625	unsigned long i_flags;		/* keep an inode flags for ioctl */
 626	unsigned char i_advise;		/* use to give file attribute hints */
 627	unsigned char i_dir_level;	/* use for dentry level for large dir */
 628	union {
 629		unsigned int i_current_depth;	/* only for directory depth */
 630		unsigned short i_gc_failures;	/* only for regular file */
 631	};
 632	unsigned int i_pino;		/* parent inode number */
 633	umode_t i_acl_mode;		/* keep file acl mode temporarily */
 634
 635	/* Use below internally in f2fs*/
 636	unsigned long flags;		/* use to pass per-file flags */
 637	struct rw_semaphore i_sem;	/* protect fi info */
 638	atomic_t dirty_pages;		/* # of dirty pages */
 639	f2fs_hash_t chash;		/* hash value of given file name */
 640	unsigned int clevel;		/* maximum level of given file name */
 641	struct task_struct *task;	/* lookup and create consistency */
 642	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
 643	nid_t i_xattr_nid;		/* node id that contains xattrs */
 644	loff_t	last_disk_size;		/* lastly written file size */
 645
 646#ifdef CONFIG_QUOTA
 647	struct dquot *i_dquot[MAXQUOTAS];
 648
 649	/* quota space reservation, managed internally by quota code */
 650	qsize_t i_reserved_quota;
 651#endif
 652	struct list_head dirty_list;	/* dirty list for dirs and files */
 653	struct list_head gdirty_list;	/* linked in global dirty list */
 654	struct list_head inmem_ilist;	/* list for inmem inodes */
 655	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
 656	struct task_struct *inmem_task;	/* store inmemory task */
 657	struct mutex inmem_lock;	/* lock for inmemory pages */
 658	struct extent_tree *extent_tree;	/* cached extent_tree entry */
 659	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
 660	struct rw_semaphore i_mmap_sem;
 661	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
 662
 663	int i_extra_isize;		/* size of extra space located in i_addr */
 664	kprojid_t i_projid;		/* id for project quota */
 665	int i_inline_xattr_size;	/* inline xattr size */
 666	struct timespec i_crtime;	/* inode creation time */
 667	struct timespec i_disk_time[4];	/* inode disk times */
 668};
 669
 670static inline void get_extent_info(struct extent_info *ext,
 671					struct f2fs_extent *i_ext)
 672{
 673	ext->fofs = le32_to_cpu(i_ext->fofs);
 674	ext->blk = le32_to_cpu(i_ext->blk);
 675	ext->len = le32_to_cpu(i_ext->len);
 676}
 677
 678static inline void set_raw_extent(struct extent_info *ext,
 679					struct f2fs_extent *i_ext)
 680{
 681	i_ext->fofs = cpu_to_le32(ext->fofs);
 682	i_ext->blk = cpu_to_le32(ext->blk);
 683	i_ext->len = cpu_to_le32(ext->len);
 684}
 685
 686static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
 687						u32 blk, unsigned int len)
 688{
 689	ei->fofs = fofs;
 690	ei->blk = blk;
 691	ei->len = len;
 692}
 693
 694static inline bool __is_discard_mergeable(struct discard_info *back,
 695						struct discard_info *front)
 696{
 697	return back->lstart + back->len == front->lstart;
 698}
 699
 700static inline bool __is_discard_back_mergeable(struct discard_info *cur,
 701						struct discard_info *back)
 702{
 703	return __is_discard_mergeable(back, cur);
 704}
 705
 706static inline bool __is_discard_front_mergeable(struct discard_info *cur,
 707						struct discard_info *front)
 708{
 709	return __is_discard_mergeable(cur, front);
 710}
 711
 712static inline bool __is_extent_mergeable(struct extent_info *back,
 713						struct extent_info *front)
 714{
 715	return (back->fofs + back->len == front->fofs &&
 716			back->blk + back->len == front->blk);
 717}
 718
 719static inline bool __is_back_mergeable(struct extent_info *cur,
 720						struct extent_info *back)
 721{
 722	return __is_extent_mergeable(back, cur);
 723}
 724
 725static inline bool __is_front_mergeable(struct extent_info *cur,
 726						struct extent_info *front)
 727{
 728	return __is_extent_mergeable(cur, front);
 729}
 730
 731extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
 732static inline void __try_update_largest_extent(struct inode *inode,
 733			struct extent_tree *et, struct extent_node *en)
 734{
 735	if (en->ei.len > et->largest.len) {
 736		et->largest = en->ei;
 737		f2fs_mark_inode_dirty_sync(inode, true);
 738	}
 739}
 740
 741/*
 742 * For free nid management
 743 */
 744enum nid_state {
 745	FREE_NID,		/* newly added to free nid list */
 746	PREALLOC_NID,		/* it is preallocated */
 747	MAX_NID_STATE,
 748};
 749
 750struct f2fs_nm_info {
 751	block_t nat_blkaddr;		/* base disk address of NAT */
 752	nid_t max_nid;			/* maximum possible node ids */
 753	nid_t available_nids;		/* # of available node ids */
 754	nid_t next_scan_nid;		/* the next nid to be scanned */
 755	unsigned int ram_thresh;	/* control the memory footprint */
 756	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
 757	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
 758
 759	/* NAT cache management */
 760	struct radix_tree_root nat_root;/* root of the nat entry cache */
 761	struct radix_tree_root nat_set_root;/* root of the nat set cache */
 762	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
 763	struct list_head nat_entries;	/* cached nat entry list (clean) */
 764	unsigned int nat_cnt;		/* the # of cached nat entries */
 765	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
 766	unsigned int nat_blocks;	/* # of nat blocks */
 767
 768	/* free node ids management */
 769	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
 770	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
 771	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
 772	spinlock_t nid_list_lock;	/* protect nid lists ops */
 773	struct mutex build_lock;	/* lock for build free nids */
 774	unsigned char **free_nid_bitmap;
 775	unsigned char *nat_block_bitmap;
 776	unsigned short *free_nid_count;	/* free nid count of NAT block */
 777
 778	/* for checkpoint */
 779	char *nat_bitmap;		/* NAT bitmap pointer */
 780
 781	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
 782	unsigned char *nat_bits;	/* NAT bits blocks */
 783	unsigned char *full_nat_bits;	/* full NAT pages */
 784	unsigned char *empty_nat_bits;	/* empty NAT pages */
 785#ifdef CONFIG_F2FS_CHECK_FS
 786	char *nat_bitmap_mir;		/* NAT bitmap mirror */
 787#endif
 788	int bitmap_size;		/* bitmap size */
 789};
 790
 791/*
 792 * this structure is used as one of function parameters.
 793 * all the information are dedicated to a given direct node block determined
 794 * by the data offset in a file.
 795 */
 796struct dnode_of_data {
 797	struct inode *inode;		/* vfs inode pointer */
 798	struct page *inode_page;	/* its inode page, NULL is possible */
 799	struct page *node_page;		/* cached direct node page */
 800	nid_t nid;			/* node id of the direct node block */
 801	unsigned int ofs_in_node;	/* data offset in the node page */
 802	bool inode_page_locked;		/* inode page is locked or not */
 803	bool node_changed;		/* is node block changed */
 804	char cur_level;			/* level of hole node page */
 805	char max_level;			/* level of current page located */
 806	block_t	data_blkaddr;		/* block address of the node block */
 807};
 808
 809static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
 810		struct page *ipage, struct page *npage, nid_t nid)
 811{
 812	memset(dn, 0, sizeof(*dn));
 813	dn->inode = inode;
 814	dn->inode_page = ipage;
 815	dn->node_page = npage;
 816	dn->nid = nid;
 817}
 818
 819/*
 820 * For SIT manager
 821 *
 822 * By default, there are 6 active log areas across the whole main area.
 823 * When considering hot and cold data separation to reduce cleaning overhead,
 824 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
 825 * respectively.
 826 * In the current design, you should not change the numbers intentionally.
 827 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
 828 * logs individually according to the underlying devices. (default: 6)
 829 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
 830 * data and 8 for node logs.
 831 */
 832#define	NR_CURSEG_DATA_TYPE	(3)
 833#define NR_CURSEG_NODE_TYPE	(3)
 834#define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
 835
 836enum {
 837	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
 838	CURSEG_WARM_DATA,	/* data blocks */
 839	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
 840	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
 841	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
 842	CURSEG_COLD_NODE,	/* indirect node blocks */
 843	NO_CHECK_TYPE,
 844};
 845
 846struct flush_cmd {
 847	struct completion wait;
 848	struct llist_node llnode;
 849	nid_t ino;
 850	int ret;
 851};
 852
 853struct flush_cmd_control {
 854	struct task_struct *f2fs_issue_flush;	/* flush thread */
 855	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
 856	atomic_t issued_flush;			/* # of issued flushes */
 857	atomic_t issing_flush;			/* # of issing flushes */
 858	struct llist_head issue_list;		/* list for command issue */
 859	struct llist_node *dispatch_list;	/* list for command dispatch */
 860};
 861
 862struct f2fs_sm_info {
 863	struct sit_info *sit_info;		/* whole segment information */
 864	struct free_segmap_info *free_info;	/* free segment information */
 865	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
 866	struct curseg_info *curseg_array;	/* active segment information */
 867
 868	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
 869
 870	block_t seg0_blkaddr;		/* block address of 0'th segment */
 871	block_t main_blkaddr;		/* start block address of main area */
 872	block_t ssa_blkaddr;		/* start block address of SSA area */
 873
 874	unsigned int segment_count;	/* total # of segments */
 875	unsigned int main_segments;	/* # of segments in main area */
 876	unsigned int reserved_segments;	/* # of reserved segments */
 877	unsigned int ovp_segments;	/* # of overprovision segments */
 878
 879	/* a threshold to reclaim prefree segments */
 880	unsigned int rec_prefree_segments;
 881
 882	/* for batched trimming */
 883	unsigned int trim_sections;		/* # of sections to trim */
 884
 885	struct list_head sit_entry_set;	/* sit entry set list */
 886
 887	unsigned int ipu_policy;	/* in-place-update policy */
 888	unsigned int min_ipu_util;	/* in-place-update threshold */
 889	unsigned int min_fsync_blocks;	/* threshold for fsync */
 890	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
 891	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
 892
 893	/* for flush command control */
 894	struct flush_cmd_control *fcc_info;
 895
 896	/* for discard command control */
 897	struct discard_cmd_control *dcc_info;
 898};
 899
 900/*
 901 * For superblock
 902 */
 903/*
 904 * COUNT_TYPE for monitoring
 905 *
 906 * f2fs monitors the number of several block types such as on-writeback,
 907 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
 908 */
 909#define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
 910enum count_type {
 911	F2FS_DIRTY_DENTS,
 912	F2FS_DIRTY_DATA,
 913	F2FS_DIRTY_QDATA,
 914	F2FS_DIRTY_NODES,
 915	F2FS_DIRTY_META,
 916	F2FS_INMEM_PAGES,
 917	F2FS_DIRTY_IMETA,
 918	F2FS_WB_CP_DATA,
 919	F2FS_WB_DATA,
 920	NR_COUNT_TYPE,
 921};
 922
 923/*
 924 * The below are the page types of bios used in submit_bio().
 925 * The available types are:
 926 * DATA			User data pages. It operates as async mode.
 927 * NODE			Node pages. It operates as async mode.
 928 * META			FS metadata pages such as SIT, NAT, CP.
 929 * NR_PAGE_TYPE		The number of page types.
 930 * META_FLUSH		Make sure the previous pages are written
 931 *			with waiting the bio's completion
 932 * ...			Only can be used with META.
 933 */
 934#define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
 935enum page_type {
 936	DATA,
 937	NODE,
 938	META,
 939	NR_PAGE_TYPE,
 940	META_FLUSH,
 941	INMEM,		/* the below types are used by tracepoints only. */
 942	INMEM_DROP,
 943	INMEM_INVALIDATE,
 944	INMEM_REVOKE,
 945	IPU,
 946	OPU,
 947};
 948
 949enum temp_type {
 950	HOT = 0,	/* must be zero for meta bio */
 951	WARM,
 952	COLD,
 953	NR_TEMP_TYPE,
 954};
 955
 956enum need_lock_type {
 957	LOCK_REQ = 0,
 958	LOCK_DONE,
 959	LOCK_RETRY,
 960};
 961
 962enum cp_reason_type {
 963	CP_NO_NEEDED,
 964	CP_NON_REGULAR,
 965	CP_HARDLINK,
 966	CP_SB_NEED_CP,
 967	CP_WRONG_PINO,
 968	CP_NO_SPC_ROLL,
 969	CP_NODE_NEED_CP,
 970	CP_FASTBOOT_MODE,
 971	CP_SPEC_LOG_NUM,
 972	CP_RECOVER_DIR,
 973};
 974
 975enum iostat_type {
 976	APP_DIRECT_IO,			/* app direct IOs */
 977	APP_BUFFERED_IO,		/* app buffered IOs */
 978	APP_WRITE_IO,			/* app write IOs */
 979	APP_MAPPED_IO,			/* app mapped IOs */
 980	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
 981	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
 982	FS_META_IO,			/* meta IOs from kworker/reclaimer */
 983	FS_GC_DATA_IO,			/* data IOs from forground gc */
 984	FS_GC_NODE_IO,			/* node IOs from forground gc */
 985	FS_CP_DATA_IO,			/* data IOs from checkpoint */
 986	FS_CP_NODE_IO,			/* node IOs from checkpoint */
 987	FS_CP_META_IO,			/* meta IOs from checkpoint */
 988	FS_DISCARD,			/* discard */
 989	NR_IO_TYPE,
 990};
 991
 992struct f2fs_io_info {
 993	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
 994	nid_t ino;		/* inode number */
 995	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
 996	enum temp_type temp;	/* contains HOT/WARM/COLD */
 997	int op;			/* contains REQ_OP_ */
 998	int op_flags;		/* req_flag_bits */
 999	block_t new_blkaddr;	/* new block address to be written */
1000	block_t old_blkaddr;	/* old block address before Cow */
1001	struct page *page;	/* page to be written */
1002	struct page *encrypted_page;	/* encrypted page */
1003	struct list_head list;		/* serialize IOs */
1004	bool submitted;		/* indicate IO submission */
1005	int need_lock;		/* indicate we need to lock cp_rwsem */
1006	bool in_list;		/* indicate fio is in io_list */
1007	bool is_meta;		/* indicate borrow meta inode mapping or not */
1008	enum iostat_type io_type;	/* io type */
1009	struct writeback_control *io_wbc; /* writeback control */
1010};
1011
1012#define is_read_io(rw) ((rw) == READ)
1013struct f2fs_bio_info {
1014	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1015	struct bio *bio;		/* bios to merge */
1016	sector_t last_block_in_bio;	/* last block number */
1017	struct f2fs_io_info fio;	/* store buffered io info. */
1018	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1019	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1020	struct list_head io_list;	/* track fios */
1021};
1022
1023#define FDEV(i)				(sbi->devs[i])
1024#define RDEV(i)				(raw_super->devs[i])
1025struct f2fs_dev_info {
1026	struct block_device *bdev;
1027	char path[MAX_PATH_LEN];
1028	unsigned int total_segments;
1029	block_t start_blk;
1030	block_t end_blk;
1031#ifdef CONFIG_BLK_DEV_ZONED
1032	unsigned int nr_blkz;			/* Total number of zones */
1033	u8 *blkz_type;				/* Array of zones type */
1034#endif
1035};
1036
1037enum inode_type {
1038	DIR_INODE,			/* for dirty dir inode */
1039	FILE_INODE,			/* for dirty regular/symlink inode */
1040	DIRTY_META,			/* for all dirtied inode metadata */
1041	ATOMIC_FILE,			/* for all atomic files */
1042	NR_INODE_TYPE,
1043};
1044
1045/* for inner inode cache management */
1046struct inode_management {
1047	struct radix_tree_root ino_root;	/* ino entry array */
1048	spinlock_t ino_lock;			/* for ino entry lock */
1049	struct list_head ino_list;		/* inode list head */
1050	unsigned long ino_num;			/* number of entries */
1051};
1052
1053/* For s_flag in struct f2fs_sb_info */
1054enum {
1055	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1056	SBI_IS_CLOSE,				/* specify unmounting */
1057	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1058	SBI_POR_DOING,				/* recovery is doing or not */
1059	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1060	SBI_NEED_CP,				/* need to checkpoint */
1061};
1062
1063enum {
1064	CP_TIME,
1065	REQ_TIME,
1066	MAX_TIME,
1067};
1068
1069enum {
1070	WHINT_MODE_OFF,		/* not pass down write hints */
1071	WHINT_MODE_USER,	/* try to pass down hints given by users */
1072	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1073};
1074
1075enum {
1076	ALLOC_MODE_DEFAULT,	/* stay default */
1077	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1078};
1079
1080enum fsync_mode {
1081	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1082	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1083};
1084
1085#ifdef CONFIG_F2FS_FS_ENCRYPTION
1086#define DUMMY_ENCRYPTION_ENABLED(sbi) \
1087			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1088#else
1089#define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1090#endif
1091
1092struct f2fs_sb_info {
1093	struct super_block *sb;			/* pointer to VFS super block */
1094	struct proc_dir_entry *s_proc;		/* proc entry */
1095	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1096	struct rw_semaphore sb_lock;		/* lock for raw super block */
1097	int valid_super_block;			/* valid super block no */
1098	unsigned long s_flag;				/* flags for sbi */
1099
1100#ifdef CONFIG_BLK_DEV_ZONED
1101	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1102	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1103#endif
1104
1105	/* for node-related operations */
1106	struct f2fs_nm_info *nm_info;		/* node manager */
1107	struct inode *node_inode;		/* cache node blocks */
1108
1109	/* for segment-related operations */
1110	struct f2fs_sm_info *sm_info;		/* segment manager */
1111
1112	/* for bio operations */
1113	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1114	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1115						/* bio ordering for NODE/DATA */
1116	mempool_t *write_io_dummy;		/* Dummy pages */
1117
1118	/* for checkpoint */
1119	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1120	int cur_cp_pack;			/* remain current cp pack */
1121	spinlock_t cp_lock;			/* for flag in ckpt */
1122	struct inode *meta_inode;		/* cache meta blocks */
1123	struct mutex cp_mutex;			/* checkpoint procedure lock */
1124	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1125	struct rw_semaphore node_write;		/* locking node writes */
1126	struct rw_semaphore node_change;	/* locking node change */
1127	wait_queue_head_t cp_wait;
1128	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1129	long interval_time[MAX_TIME];		/* to store thresholds */
1130
1131	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1132
1133	/* for orphan inode, use 0'th array */
1134	unsigned int max_orphans;		/* max orphan inodes */
1135
1136	/* for inode management */
1137	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1138	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1139
1140	/* for extent tree cache */
1141	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1142	struct mutex extent_tree_lock;	/* locking extent radix tree */
1143	struct list_head extent_list;		/* lru list for shrinker */
1144	spinlock_t extent_lock;			/* locking extent lru list */
1145	atomic_t total_ext_tree;		/* extent tree count */
1146	struct list_head zombie_list;		/* extent zombie tree list */
1147	atomic_t total_zombie_tree;		/* extent zombie tree count */
1148	atomic_t total_ext_node;		/* extent info count */
1149
1150	/* basic filesystem units */
1151	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1152	unsigned int log_blocksize;		/* log2 block size */
1153	unsigned int blocksize;			/* block size */
1154	unsigned int root_ino_num;		/* root inode number*/
1155	unsigned int node_ino_num;		/* node inode number*/
1156	unsigned int meta_ino_num;		/* meta inode number*/
1157	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1158	unsigned int blocks_per_seg;		/* blocks per segment */
1159	unsigned int segs_per_sec;		/* segments per section */
1160	unsigned int secs_per_zone;		/* sections per zone */
1161	unsigned int total_sections;		/* total section count */
1162	unsigned int total_node_count;		/* total node block count */
1163	unsigned int total_valid_node_count;	/* valid node block count */
1164	loff_t max_file_blocks;			/* max block index of file */
1165	int dir_level;				/* directory level */
1166	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1167	int readdir_ra;				/* readahead inode in readdir */
1168
1169	block_t user_block_count;		/* # of user blocks */
1170	block_t total_valid_block_count;	/* # of valid blocks */
1171	block_t discard_blks;			/* discard command candidats */
1172	block_t last_valid_block_count;		/* for recovery */
1173	block_t reserved_blocks;		/* configurable reserved blocks */
1174	block_t current_reserved_blocks;	/* current reserved blocks */
1175
1176	unsigned int nquota_files;		/* # of quota sysfile */
1177
1178	u32 s_next_generation;			/* for NFS support */
1179
1180	/* # of pages, see count_type */
1181	atomic_t nr_pages[NR_COUNT_TYPE];
1182	/* # of allocated blocks */
1183	struct percpu_counter alloc_valid_block_count;
1184
1185	/* writeback control */
1186	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
1187
1188	/* valid inode count */
1189	struct percpu_counter total_valid_inode_count;
1190
1191	struct f2fs_mount_info mount_opt;	/* mount options */
1192
1193	/* for cleaning operations */
1194	struct mutex gc_mutex;			/* mutex for GC */
1195	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1196	unsigned int cur_victim_sec;		/* current victim section num */
1197
1198	/* threshold for converting bg victims for fg */
1199	u64 fggc_threshold;
1200
1201	/* threshold for gc trials on pinned files */
1202	u64 gc_pin_file_threshold;
1203
1204	/* maximum # of trials to find a victim segment for SSR and GC */
1205	unsigned int max_victim_search;
1206
1207	/*
1208	 * for stat information.
1209	 * one is for the LFS mode, and the other is for the SSR mode.
1210	 */
1211#ifdef CONFIG_F2FS_STAT_FS
1212	struct f2fs_stat_info *stat_info;	/* FS status information */
1213	unsigned int segment_count[2];		/* # of allocated segments */
1214	unsigned int block_count[2];		/* # of allocated blocks */
1215	atomic_t inplace_count;		/* # of inplace update */
1216	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1217	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1218	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1219	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1220	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1221	atomic_t inline_inode;			/* # of inline_data inodes */
1222	atomic_t inline_dir;			/* # of inline_dentry inodes */
1223	atomic_t aw_cnt;			/* # of atomic writes */
1224	atomic_t vw_cnt;			/* # of volatile writes */
1225	atomic_t max_aw_cnt;			/* max # of atomic writes */
1226	atomic_t max_vw_cnt;			/* max # of volatile writes */
1227	int bg_gc;				/* background gc calls */
1228	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1229#endif
1230	spinlock_t stat_lock;			/* lock for stat operations */
1231
1232	/* For app/fs IO statistics */
1233	spinlock_t iostat_lock;
1234	unsigned long long write_iostat[NR_IO_TYPE];
1235	bool iostat_enable;
1236
1237	/* For sysfs suppport */
1238	struct kobject s_kobj;
1239	struct completion s_kobj_unregister;
1240
1241	/* For shrinker support */
1242	struct list_head s_list;
1243	int s_ndevs;				/* number of devices */
1244	struct f2fs_dev_info *devs;		/* for device list */
1245	unsigned int dirty_device;		/* for checkpoint data flush */
1246	spinlock_t dev_lock;			/* protect dirty_device */
1247	struct mutex umount_mutex;
1248	unsigned int shrinker_run_no;
1249
1250	/* For write statistics */
1251	u64 sectors_written_start;
1252	u64 kbytes_written;
1253
1254	/* Reference to checksum algorithm driver via cryptoapi */
1255	struct crypto_shash *s_chksum_driver;
1256
1257	/* Precomputed FS UUID checksum for seeding other checksums */
1258	__u32 s_chksum_seed;
1259};
1260
1261#ifdef CONFIG_F2FS_FAULT_INJECTION
1262#define f2fs_show_injection_info(type)				\
1263	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1264		KERN_INFO, fault_name[type],			\
1265		__func__, __builtin_return_address(0))
1266static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1267{
1268	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1269
1270	if (!ffi->inject_rate)
1271		return false;
1272
1273	if (!IS_FAULT_SET(ffi, type))
1274		return false;
1275
1276	atomic_inc(&ffi->inject_ops);
1277	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1278		atomic_set(&ffi->inject_ops, 0);
1279		return true;
1280	}
1281	return false;
1282}
1283#endif
1284
1285/* For write statistics. Suppose sector size is 512 bytes,
1286 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1287 */
1288#define BD_PART_WRITTEN(s)						 \
1289(((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1290		(s)->sectors_written_start) >> 1)
1291
1292static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1293{
1294	sbi->last_time[type] = jiffies;
1295}
1296
1297static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1298{
1299	unsigned long interval = sbi->interval_time[type] * HZ;
1300
1301	return time_after(jiffies, sbi->last_time[type] + interval);
1302}
1303
1304static inline bool is_idle(struct f2fs_sb_info *sbi)
1305{
1306	struct block_device *bdev = sbi->sb->s_bdev;
1307	struct request_queue *q = bdev_get_queue(bdev);
1308	struct request_list *rl = &q->root_rl;
1309
1310	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1311		return 0;
1312
1313	return f2fs_time_over(sbi, REQ_TIME);
1314}
1315
1316/*
1317 * Inline functions
1318 */
1319static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1320			      const void *address, unsigned int length)
1321{
1322	struct {
1323		struct shash_desc shash;
1324		char ctx[4];
1325	} desc;
1326	int err;
1327
1328	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1329
1330	desc.shash.tfm = sbi->s_chksum_driver;
1331	desc.shash.flags = 0;
1332	*(u32 *)desc.ctx = crc;
1333
1334	err = crypto_shash_update(&desc.shash, address, length);
1335	BUG_ON(err);
1336
1337	return *(u32 *)desc.ctx;
1338}
1339
1340static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1341			   unsigned int length)
1342{
1343	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1344}
1345
1346static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1347				  void *buf, size_t buf_size)
1348{
1349	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1350}
1351
1352static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1353			      const void *address, unsigned int length)
1354{
1355	return __f2fs_crc32(sbi, crc, address, length);
1356}
1357
1358static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1359{
1360	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1361}
1362
1363static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1364{
1365	return sb->s_fs_info;
1366}
1367
1368static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1369{
1370	return F2FS_SB(inode->i_sb);
1371}
1372
1373static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1374{
1375	return F2FS_I_SB(mapping->host);
1376}
1377
1378static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1379{
1380	return F2FS_M_SB(page->mapping);
1381}
1382
1383static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1384{
1385	return (struct f2fs_super_block *)(sbi->raw_super);
1386}
1387
1388static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1389{
1390	return (struct f2fs_checkpoint *)(sbi->ckpt);
1391}
1392
1393static inline struct f2fs_node *F2FS_NODE(struct page *page)
1394{
1395	return (struct f2fs_node *)page_address(page);
1396}
1397
1398static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1399{
1400	return &((struct f2fs_node *)page_address(page))->i;
1401}
1402
1403static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1404{
1405	return (struct f2fs_nm_info *)(sbi->nm_info);
1406}
1407
1408static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1409{
1410	return (struct f2fs_sm_info *)(sbi->sm_info);
1411}
1412
1413static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1414{
1415	return (struct sit_info *)(SM_I(sbi)->sit_info);
1416}
1417
1418static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1419{
1420	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1421}
1422
1423static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1424{
1425	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1426}
1427
1428static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1429{
1430	return sbi->meta_inode->i_mapping;
1431}
1432
1433static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1434{
1435	return sbi->node_inode->i_mapping;
1436}
1437
1438static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1439{
1440	return test_bit(type, &sbi->s_flag);
1441}
1442
1443static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1444{
1445	set_bit(type, &sbi->s_flag);
1446}
1447
1448static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1449{
1450	clear_bit(type, &sbi->s_flag);
1451}
1452
1453static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1454{
1455	return le64_to_cpu(cp->checkpoint_ver);
1456}
1457
1458static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1459{
1460	if (type < F2FS_MAX_QUOTAS)
1461		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1462	return 0;
1463}
1464
1465static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1466{
1467	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1468	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1469}
1470
1471static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1472{
1473	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1474
1475	return ckpt_flags & f;
1476}
1477
1478static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1479{
1480	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1481}
1482
1483static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1484{
1485	unsigned int ckpt_flags;
1486
1487	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1488	ckpt_flags |= f;
1489	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1490}
1491
1492static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1493{
1494	unsigned long flags;
1495
1496	spin_lock_irqsave(&sbi->cp_lock, flags);
1497	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1498	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1499}
1500
1501static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1502{
1503	unsigned int ckpt_flags;
1504
1505	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1506	ckpt_flags &= (~f);
1507	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1508}
1509
1510static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1511{
1512	unsigned long flags;
1513
1514	spin_lock_irqsave(&sbi->cp_lock, flags);
1515	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1516	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1517}
1518
1519static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1520{
1521	unsigned long flags;
1522
1523	set_sbi_flag(sbi, SBI_NEED_FSCK);
1524
1525	if (lock)
1526		spin_lock_irqsave(&sbi->cp_lock, flags);
1527	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1528	kfree(NM_I(sbi)->nat_bits);
1529	NM_I(sbi)->nat_bits = NULL;
1530	if (lock)
1531		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1532}
1533
1534static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1535					struct cp_control *cpc)
1536{
1537	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1538
1539	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1540}
1541
1542static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1543{
1544	down_read(&sbi->cp_rwsem);
1545}
1546
1547static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1548{
1549	return down_read_trylock(&sbi->cp_rwsem);
1550}
1551
1552static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1553{
1554	up_read(&sbi->cp_rwsem);
1555}
1556
1557static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1558{
1559	down_write(&sbi->cp_rwsem);
1560}
1561
1562static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1563{
1564	up_write(&sbi->cp_rwsem);
1565}
1566
1567static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1568{
1569	int reason = CP_SYNC;
1570
1571	if (test_opt(sbi, FASTBOOT))
1572		reason = CP_FASTBOOT;
1573	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1574		reason = CP_UMOUNT;
1575	return reason;
1576}
1577
1578static inline bool __remain_node_summaries(int reason)
1579{
1580	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1581}
1582
1583static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1584{
1585	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1586			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1587}
1588
1589/*
1590 * Check whether the given nid is within node id range.
1591 */
1592static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1593{
1594	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1595		return -EINVAL;
1596	if (unlikely(nid >= NM_I(sbi)->max_nid))
1597		return -EINVAL;
1598	return 0;
1599}
1600
1601/*
1602 * Check whether the inode has blocks or not
1603 */
1604static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1605{
1606	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1607
1608	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1609}
1610
1611static inline bool f2fs_has_xattr_block(unsigned int ofs)
1612{
1613	return ofs == XATTR_NODE_OFFSET;
1614}
1615
1616static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1617					struct inode *inode)
1618{
1619	if (!inode)
1620		return true;
1621	if (!test_opt(sbi, RESERVE_ROOT))
1622		return false;
1623	if (IS_NOQUOTA(inode))
1624		return true;
1625	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1626		return true;
1627	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1628					in_group_p(F2FS_OPTION(sbi).s_resgid))
1629		return true;
1630	if (capable(CAP_SYS_RESOURCE))
1631		return true;
1632	return false;
1633}
1634
1635static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1636static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1637				 struct inode *inode, blkcnt_t *count)
1638{
1639	blkcnt_t diff = 0, release = 0;
1640	block_t avail_user_block_count;
1641	int ret;
1642
1643	ret = dquot_reserve_block(inode, *count);
1644	if (ret)
1645		return ret;
1646
1647#ifdef CONFIG_F2FS_FAULT_INJECTION
1648	if (time_to_inject(sbi, FAULT_BLOCK)) {
1649		f2fs_show_injection_info(FAULT_BLOCK);
1650		release = *count;
1651		goto enospc;
1652	}
1653#endif
1654	/*
1655	 * let's increase this in prior to actual block count change in order
1656	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1657	 */
1658	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1659
1660	spin_lock(&sbi->stat_lock);
1661	sbi->total_valid_block_count += (block_t)(*count);
1662	avail_user_block_count = sbi->user_block_count -
1663					sbi->current_reserved_blocks;
1664
1665	if (!__allow_reserved_blocks(sbi, inode))
1666		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1667
1668	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1669		diff = sbi->total_valid_block_count - avail_user_block_count;
1670		if (diff > *count)
1671			diff = *count;
1672		*count -= diff;
1673		release = diff;
1674		sbi->total_valid_block_count -= diff;
1675		if (!*count) {
1676			spin_unlock(&sbi->stat_lock);
1677			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1678			goto enospc;
1679		}
1680	}
1681	spin_unlock(&sbi->stat_lock);
1682
1683	if (unlikely(release))
1684		dquot_release_reservation_block(inode, release);
1685	f2fs_i_blocks_write(inode, *count, true, true);
1686	return 0;
1687
1688enospc:
1689	dquot_release_reservation_block(inode, release);
1690	return -ENOSPC;
1691}
1692
1693static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1694						struct inode *inode,
1695						block_t count)
1696{
1697	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1698
1699	spin_lock(&sbi->stat_lock);
1700	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1701	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1702	sbi->total_valid_block_count -= (block_t)count;
1703	if (sbi->reserved_blocks &&
1704		sbi->current_reserved_blocks < sbi->reserved_blocks)
1705		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1706					sbi->current_reserved_blocks + count);
1707	spin_unlock(&sbi->stat_lock);
1708	f2fs_i_blocks_write(inode, count, false, true);
1709}
1710
1711static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1712{
1713	atomic_inc(&sbi->nr_pages[count_type]);
1714
1715	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1716		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1717		return;
1718
1719	set_sbi_flag(sbi, SBI_IS_DIRTY);
1720}
1721
1722static inline void inode_inc_dirty_pages(struct inode *inode)
1723{
1724	atomic_inc(&F2FS_I(inode)->dirty_pages);
1725	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1726				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1727	if (IS_NOQUOTA(inode))
1728		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1729}
1730
1731static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1732{
1733	atomic_dec(&sbi->nr_pages[count_type]);
1734}
1735
1736static inline void inode_dec_dirty_pages(struct inode *inode)
1737{
1738	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1739			!S_ISLNK(inode->i_mode))
1740		return;
1741
1742	atomic_dec(&F2FS_I(inode)->dirty_pages);
1743	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1744				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1745	if (IS_NOQUOTA(inode))
1746		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1747}
1748
1749static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1750{
1751	return atomic_read(&sbi->nr_pages[count_type]);
1752}
1753
1754static inline int get_dirty_pages(struct inode *inode)
1755{
1756	return atomic_read(&F2FS_I(inode)->dirty_pages);
1757}
1758
1759static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1760{
1761	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1762	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1763						sbi->log_blocks_per_seg;
1764
1765	return segs / sbi->segs_per_sec;
1766}
1767
1768static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1769{
1770	return sbi->total_valid_block_count;
1771}
1772
1773static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1774{
1775	return sbi->discard_blks;
1776}
1777
1778static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1779{
1780	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1781
1782	/* return NAT or SIT bitmap */
1783	if (flag == NAT_BITMAP)
1784		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1785	else if (flag == SIT_BITMAP)
1786		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1787
1788	return 0;
1789}
1790
1791static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1792{
1793	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1794}
1795
1796static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1797{
1798	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1799	int offset;
1800
1801	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1802		offset = (flag == SIT_BITMAP) ?
1803			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1804		return &ckpt->sit_nat_version_bitmap + offset;
1805	}
1806
1807	if (__cp_payload(sbi) > 0) {
1808		if (flag == NAT_BITMAP)
1809			return &ckpt->sit_nat_version_bitmap;
1810		else
1811			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1812	} else {
1813		offset = (flag == NAT_BITMAP) ?
1814			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1815		return &ckpt->sit_nat_version_bitmap + offset;
1816	}
1817}
1818
1819static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1820{
1821	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1822
1823	if (sbi->cur_cp_pack == 2)
1824		start_addr += sbi->blocks_per_seg;
1825	return start_addr;
1826}
1827
1828static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1829{
1830	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1831
1832	if (sbi->cur_cp_pack == 1)
1833		start_addr += sbi->blocks_per_seg;
1834	return start_addr;
1835}
1836
1837static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1838{
1839	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1840}
1841
1842static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1843{
1844	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1845}
1846
1847static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1848					struct inode *inode, bool is_inode)
1849{
1850	block_t	valid_block_count;
1851	unsigned int valid_node_count;
1852	bool quota = inode && !is_inode;
1853
1854	if (quota) {
1855		int ret = dquot_reserve_block(inode, 1);
1856		if (ret)
1857			return ret;
1858	}
1859
1860#ifdef CONFIG_F2FS_FAULT_INJECTION
1861	if (time_to_inject(sbi, FAULT_BLOCK)) {
1862		f2fs_show_injection_info(FAULT_BLOCK);
1863		goto enospc;
1864	}
1865#endif
1866
1867	spin_lock(&sbi->stat_lock);
1868
1869	valid_block_count = sbi->total_valid_block_count +
1870					sbi->current_reserved_blocks + 1;
1871
1872	if (!__allow_reserved_blocks(sbi, inode))
1873		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1874
1875	if (unlikely(valid_block_count > sbi->user_block_count)) {
1876		spin_unlock(&sbi->stat_lock);
1877		goto enospc;
1878	}
1879
1880	valid_node_count = sbi->total_valid_node_count + 1;
1881	if (unlikely(valid_node_count > sbi->total_node_count)) {
1882		spin_unlock(&sbi->stat_lock);
1883		goto enospc;
1884	}
1885
1886	sbi->total_valid_node_count++;
1887	sbi->total_valid_block_count++;
1888	spin_unlock(&sbi->stat_lock);
1889
1890	if (inode) {
1891		if (is_inode)
1892			f2fs_mark_inode_dirty_sync(inode, true);
1893		else
1894			f2fs_i_blocks_write(inode, 1, true, true);
1895	}
1896
1897	percpu_counter_inc(&sbi->alloc_valid_block_count);
1898	return 0;
1899
1900enospc:
1901	if (quota)
1902		dquot_release_reservation_block(inode, 1);
1903	return -ENOSPC;
1904}
1905
1906static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1907					struct inode *inode, bool is_inode)
1908{
1909	spin_lock(&sbi->stat_lock);
1910
1911	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1912	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1913	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1914
1915	sbi->total_valid_node_count--;
1916	sbi->total_valid_block_count--;
1917	if (sbi->reserved_blocks &&
1918		sbi->current_reserved_blocks < sbi->reserved_blocks)
1919		sbi->current_reserved_blocks++;
1920
1921	spin_unlock(&sbi->stat_lock);
1922
1923	if (!is_inode)
1924		f2fs_i_blocks_write(inode, 1, false, true);
1925}
1926
1927static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1928{
1929	return sbi->total_valid_node_count;
1930}
1931
1932static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1933{
1934	percpu_counter_inc(&sbi->total_valid_inode_count);
1935}
1936
1937static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1938{
1939	percpu_counter_dec(&sbi->total_valid_inode_count);
1940}
1941
1942static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1943{
1944	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1945}
1946
1947static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1948						pgoff_t index, bool for_write)
1949{
1950#ifdef CONFIG_F2FS_FAULT_INJECTION
1951	struct page *page = find_lock_page(mapping, index);
1952
1953	if (page)
1954		return page;
1955
1956	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1957		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1958		return NULL;
1959	}
1960#endif
1961	if (!for_write)
1962		return grab_cache_page(mapping, index);
1963	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1964}
1965
1966static inline struct page *f2fs_pagecache_get_page(
1967				struct address_space *mapping, pgoff_t index,
1968				int fgp_flags, gfp_t gfp_mask)
1969{
1970#ifdef CONFIG_F2FS_FAULT_INJECTION
1971	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1972		f2fs_show_injection_info(FAULT_PAGE_GET);
1973		return NULL;
1974	}
1975#endif
1976	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1977}
1978
1979static inline void f2fs_copy_page(struct page *src, struct page *dst)
1980{
1981	char *src_kaddr = kmap(src);
1982	char *dst_kaddr = kmap(dst);
1983
1984	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1985	kunmap(dst);
1986	kunmap(src);
1987}
1988
1989static inline void f2fs_put_page(struct page *page, int unlock)
1990{
1991	if (!page)
1992		return;
1993
1994	if (unlock) {
1995		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1996		unlock_page(page);
1997	}
1998	put_page(page);
1999}
2000
2001static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2002{
2003	if (dn->node_page)
2004		f2fs_put_page(dn->node_page, 1);
2005	if (dn->inode_page && dn->node_page != dn->inode_page)
2006		f2fs_put_page(dn->inode_page, 0);
2007	dn->node_page = NULL;
2008	dn->inode_page = NULL;
2009}
2010
2011static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2012					size_t size)
2013{
2014	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2015}
2016
2017static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2018						gfp_t flags)
2019{
2020	void *entry;
2021
2022	entry = kmem_cache_alloc(cachep, flags);
2023	if (!entry)
2024		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2025	return entry;
2026}
2027
2028static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2029						int npages, bool no_fail)
2030{
2031	struct bio *bio;
2032
2033	if (no_fail) {
2034		/* No failure on bio allocation */
2035		bio = bio_alloc(GFP_NOIO, npages);
2036		if (!bio)
2037			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2038		return bio;
2039	}
2040#ifdef CONFIG_F2FS_FAULT_INJECTION
2041	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2042		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2043		return NULL;
2044	}
2045#endif
2046	return bio_alloc(GFP_KERNEL, npages);
2047}
2048
2049static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2050				unsigned long index, void *item)
2051{
2052	while (radix_tree_insert(root, index, item))
2053		cond_resched();
2054}
2055
2056#define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2057
2058static inline bool IS_INODE(struct page *page)
2059{
2060	struct f2fs_node *p = F2FS_NODE(page);
2061
2062	return RAW_IS_INODE(p);
2063}
2064
2065static inline int offset_in_addr(struct f2fs_inode *i)
2066{
2067	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2068			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2069}
2070
2071static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2072{
2073	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2074}
2075
2076static inline int f2fs_has_extra_attr(struct inode *inode);
2077static inline block_t datablock_addr(struct inode *inode,
2078			struct page *node_page, unsigned int offset)
2079{
2080	struct f2fs_node *raw_node;
2081	__le32 *addr_array;
2082	int base = 0;
2083	bool is_inode = IS_INODE(node_page);
2084
2085	raw_node = F2FS_NODE(node_page);
2086
2087	/* from GC path only */
2088	if (is_inode) {
2089		if (!inode)
2090			base = offset_in_addr(&raw_node->i);
2091		else if (f2fs_has_extra_attr(inode))
2092			base = get_extra_isize(inode);
2093	}
2094
2095	addr_array = blkaddr_in_node(raw_node);
2096	return le32_to_cpu(addr_array[base + offset]);
2097}
2098
2099static inline int f2fs_test_bit(unsigned int nr, char *addr)
2100{
2101	int mask;
2102
2103	addr += (nr >> 3);
2104	mask = 1 << (7 - (nr & 0x07));
2105	return mask & *addr;
2106}
2107
2108static inline void f2fs_set_bit(unsigned int nr, char *addr)
2109{
2110	int mask;
2111
2112	addr += (nr >> 3);
2113	mask = 1 << (7 - (nr & 0x07));
2114	*addr |= mask;
2115}
2116
2117static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2118{
2119	int mask;
2120
2121	addr += (nr >> 3);
2122	mask = 1 << (7 - (nr & 0x07));
2123	*addr &= ~mask;
2124}
2125
2126static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2127{
2128	int mask;
2129	int ret;
2130
2131	addr += (nr >> 3);
2132	mask = 1 << (7 - (nr & 0x07));
2133	ret = mask & *addr;
2134	*addr |= mask;
2135	return ret;
2136}
2137
2138static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2139{
2140	int mask;
2141	int ret;
2142
2143	addr += (nr >> 3);
2144	mask = 1 << (7 - (nr & 0x07));
2145	ret = mask & *addr;
2146	*addr &= ~mask;
2147	return ret;
2148}
2149
2150static inline void f2fs_change_bit(unsigned int nr, char *addr)
2151{
2152	int mask;
2153
2154	addr += (nr >> 3);
2155	mask = 1 << (7 - (nr & 0x07));
2156	*addr ^= mask;
2157}
2158
2159#define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2160#define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
2161#define F2FS_FL_INHERITED	(FS_PROJINHERIT_FL)
2162
2163static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2164{
2165	if (S_ISDIR(mode))
2166		return flags;
2167	else if (S_ISREG(mode))
2168		return flags & F2FS_REG_FLMASK;
2169	else
2170		return flags & F2FS_OTHER_FLMASK;
2171}
2172
2173/* used for f2fs_inode_info->flags */
2174enum {
2175	FI_NEW_INODE,		/* indicate newly allocated inode */
2176	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2177	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2178	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2179	FI_INC_LINK,		/* need to increment i_nlink */
2180	FI_ACL_MODE,		/* indicate acl mode */
2181	FI_NO_ALLOC,		/* should not allocate any blocks */
2182	FI_FREE_NID,		/* free allocated nide */
2183	FI_NO_EXTENT,		/* not to use the extent cache */
2184	FI_INLINE_XATTR,	/* used for inline xattr */
2185	FI_INLINE_DATA,		/* used for inline data*/
2186	FI_INLINE_DENTRY,	/* used for inline dentry */
2187	FI_APPEND_WRITE,	/* inode has appended data */
2188	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2189	FI_NEED_IPU,		/* used for ipu per file */
2190	FI_ATOMIC_FILE,		/* indicate atomic file */
2191	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2192	FI_VOLATILE_FILE,	/* indicate volatile file */
2193	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2194	FI_DROP_CACHE,		/* drop dirty page cache */
2195	FI_DATA_EXIST,		/* indicate data exists */
2196	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2197	FI_DO_DEFRAG,		/* indicate defragment is running */
2198	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2199	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2200	FI_HOT_DATA,		/* indicate file is hot */
2201	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2202	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2203	FI_PIN_FILE,		/* indicate file should not be gced */
2204};
2205
2206static inline void __mark_inode_dirty_flag(struct inode *inode,
2207						int flag, bool set)
2208{
2209	switch (flag) {
2210	case FI_INLINE_XATTR:
2211	case FI_INLINE_DATA:
2212	case FI_INLINE_DENTRY:
2213	case FI_NEW_INODE:
2214		if (set)
2215			return;
2216	case FI_DATA_EXIST:
2217	case FI_INLINE_DOTS:
2218	case FI_PIN_FILE:
2219		f2fs_mark_inode_dirty_sync(inode, true);
2220	}
2221}
2222
2223static inline void set_inode_flag(struct inode *inode, int flag)
2224{
2225	if (!test_bit(flag, &F2FS_I(inode)->flags))
2226		set_bit(flag, &F2FS_I(inode)->flags);
2227	__mark_inode_dirty_flag(inode, flag, true);
2228}
2229
2230static inline int is_inode_flag_set(struct inode *inode, int flag)
2231{
2232	return test_bit(flag, &F2FS_I(inode)->flags);
2233}
2234
2235static inline void clear_inode_flag(struct inode *inode, int flag)
2236{
2237	if (test_bit(flag, &F2FS_I(inode)->flags))
2238		clear_bit(flag, &F2FS_I(inode)->flags);
2239	__mark_inode_dirty_flag(inode, flag, false);
2240}
2241
2242static inline void set_acl_inode(struct inode *inode, umode_t mode)
2243{
2244	F2FS_I(inode)->i_acl_mode = mode;
2245	set_inode_flag(inode, FI_ACL_MODE);
2246	f2fs_mark_inode_dirty_sync(inode, false);
2247}
2248
2249static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2250{
2251	if (inc)
2252		inc_nlink(inode);
2253	else
2254		drop_nlink(inode);
2255	f2fs_mark_inode_dirty_sync(inode, true);
2256}
2257
2258static inline void f2fs_i_blocks_write(struct inode *inode,
2259					block_t diff, bool add, bool claim)
2260{
2261	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2262	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2263
2264	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2265	if (add) {
2266		if (claim)
2267			dquot_claim_block(inode, diff);
2268		else
2269			dquot_alloc_block_nofail(inode, diff);
2270	} else {
2271		dquot_free_block(inode, diff);
2272	}
2273
2274	f2fs_mark_inode_dirty_sync(inode, true);
2275	if (clean || recover)
2276		set_inode_flag(inode, FI_AUTO_RECOVER);
2277}
2278
2279static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2280{
2281	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2282	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2283
2284	if (i_size_read(inode) == i_size)
2285		return;
2286
2287	i_size_write(inode, i_size);
2288	f2fs_mark_inode_dirty_sync(inode, true);
2289	if (clean || recover)
2290		set_inode_flag(inode, FI_AUTO_RECOVER);
2291}
2292
2293static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2294{
2295	F2FS_I(inode)->i_current_depth = depth;
2296	f2fs_mark_inode_dirty_sync(inode, true);
2297}
2298
2299static inline void f2fs_i_gc_failures_write(struct inode *inode,
2300					unsigned int count)
2301{
2302	F2FS_I(inode)->i_gc_failures = count;
2303	f2fs_mark_inode_dirty_sync(inode, true);
2304}
2305
2306static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2307{
2308	F2FS_I(inode)->i_xattr_nid = xnid;
2309	f2fs_mark_inode_dirty_sync(inode, true);
2310}
2311
2312static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2313{
2314	F2FS_I(inode)->i_pino = pino;
2315	f2fs_mark_inode_dirty_sync(inode, true);
2316}
2317
2318static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2319{
2320	struct f2fs_inode_info *fi = F2FS_I(inode);
2321
2322	if (ri->i_inline & F2FS_INLINE_XATTR)
2323		set_bit(FI_INLINE_XATTR, &fi->flags);
2324	if (ri->i_inline & F2FS_INLINE_DATA)
2325		set_bit(FI_INLINE_DATA, &fi->flags);
2326	if (ri->i_inline & F2FS_INLINE_DENTRY)
2327		set_bit(FI_INLINE_DENTRY, &fi->flags);
2328	if (ri->i_inline & F2FS_DATA_EXIST)
2329		set_bit(FI_DATA_EXIST, &fi->flags);
2330	if (ri->i_inline & F2FS_INLINE_DOTS)
2331		set_bit(FI_INLINE_DOTS, &fi->flags);
2332	if (ri->i_inline & F2FS_EXTRA_ATTR)
2333		set_bit(FI_EXTRA_ATTR, &fi->flags);
2334	if (ri->i_inline & F2FS_PIN_FILE)
2335		set_bit(FI_PIN_FILE, &fi->flags);
2336}
2337
2338static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2339{
2340	ri->i_inline = 0;
2341
2342	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2343		ri->i_inline |= F2FS_INLINE_XATTR;
2344	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2345		ri->i_inline |= F2FS_INLINE_DATA;
2346	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2347		ri->i_inline |= F2FS_INLINE_DENTRY;
2348	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2349		ri->i_inline |= F2FS_DATA_EXIST;
2350	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2351		ri->i_inline |= F2FS_INLINE_DOTS;
2352	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2353		ri->i_inline |= F2FS_EXTRA_ATTR;
2354	if (is_inode_flag_set(inode, FI_PIN_FILE))
2355		ri->i_inline |= F2FS_PIN_FILE;
2356}
2357
2358static inline int f2fs_has_extra_attr(struct inode *inode)
2359{
2360	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2361}
2362
2363static inline int f2fs_has_inline_xattr(struct inode *inode)
2364{
2365	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2366}
2367
2368static inline unsigned int addrs_per_inode(struct inode *inode)
2369{
2370	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2371}
2372
2373static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2374{
2375	struct f2fs_inode *ri = F2FS_INODE(page);
2376
2377	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2378					get_inline_xattr_addrs(inode)]);
2379}
2380
2381static inline int inline_xattr_size(struct inode *inode)
2382{
2383	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2384}
2385
2386static inline int f2fs_has_inline_data(struct inode *inode)
2387{
2388	return is_inode_flag_set(inode, FI_INLINE_DATA);
2389}
2390
2391static inline int f2fs_exist_data(struct inode *inode)
2392{
2393	return is_inode_flag_set(inode, FI_DATA_EXIST);
2394}
2395
2396static inline int f2fs_has_inline_dots(struct inode *inode)
2397{
2398	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2399}
2400
2401static inline bool f2fs_is_pinned_file(struct inode *inode)
2402{
2403	return is_inode_flag_set(inode, FI_PIN_FILE);
2404}
2405
2406static inline bool f2fs_is_atomic_file(struct inode *inode)
2407{
2408	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2409}
2410
2411static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2412{
2413	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2414}
2415
2416static inline bool f2fs_is_volatile_file(struct inode *inode)
2417{
2418	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2419}
2420
2421static inline bool f2fs_is_first_block_written(struct inode *inode)
2422{
2423	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2424}
2425
2426static inline bool f2fs_is_drop_cache(struct inode *inode)
2427{
2428	return is_inode_flag_set(inode, FI_DROP_CACHE);
2429}
2430
2431static inline void *inline_data_addr(struct inode *inode, struct page *page)
2432{
2433	struct f2fs_inode *ri = F2FS_INODE(page);
2434	int extra_size = get_extra_isize(inode);
2435
2436	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2437}
2438
2439static inline int f2fs_has_inline_dentry(struct inode *inode)
2440{
2441	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2442}
2443
2444static inline int is_file(struct inode *inode, int type)
2445{
2446	return F2FS_I(inode)->i_advise & type;
2447}
2448
2449static inline void set_file(struct inode *inode, int type)
2450{
2451	F2FS_I(inode)->i_advise |= type;
2452	f2fs_mark_inode_dirty_sync(inode, true);
2453}
2454
2455static inline void clear_file(struct inode *inode, int type)
2456{
2457	F2FS_I(inode)->i_advise &= ~type;
2458	f2fs_mark_inode_dirty_sync(inode, true);
2459}
2460
2461static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2462{
2463	bool ret;
2464
2465	if (dsync) {
2466		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2467
2468		spin_lock(&sbi->inode_lock[DIRTY_META]);
2469		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2470		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2471		return ret;
2472	}
2473	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2474			file_keep_isize(inode) ||
2475			i_size_read(inode) & ~PAGE_MASK)
2476		return false;
2477
2478	if (!timespec_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2479		return false;
2480	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2481		return false;
2482	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2483		return false;
2484	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 3,
2485						&F2FS_I(inode)->i_crtime))
2486		return false;
2487
2488	down_read(&F2FS_I(inode)->i_sem);
2489	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2490	up_read(&F2FS_I(inode)->i_sem);
2491
2492	return ret;
2493}
2494
2495static inline bool f2fs_readonly(struct super_block *sb)
2496{
2497	return sb_rdonly(sb);
2498}
2499
2500static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2501{
2502	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2503}
2504
2505static inline bool is_dot_dotdot(const struct qstr *str)
2506{
2507	if (str->len == 1 && str->name[0] == '.')
2508		return true;
2509
2510	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2511		return true;
2512
2513	return false;
2514}
2515
2516static inline bool f2fs_may_extent_tree(struct inode *inode)
2517{
2518	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2519			is_inode_flag_set(inode, FI_NO_EXTENT))
2520		return false;
2521
2522	return S_ISREG(inode->i_mode);
2523}
2524
2525static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2526					size_t size, gfp_t flags)
2527{
2528#ifdef CONFIG_F2FS_FAULT_INJECTION
2529	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2530		f2fs_show_injection_info(FAULT_KMALLOC);
2531		return NULL;
2532	}
2533#endif
2534	return kmalloc(size, flags);
2535}
2536
2537static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2538					size_t size, gfp_t flags)
2539{
2540	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2541}
2542
2543static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2544					size_t size, gfp_t flags)
2545{
2546#ifdef CONFIG_F2FS_FAULT_INJECTION
2547	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2548		f2fs_show_injection_info(FAULT_KVMALLOC);
2549		return NULL;
2550	}
2551#endif
2552	return kvmalloc(size, flags);
2553}
2554
2555static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2556					size_t size, gfp_t flags)
2557{
2558	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2559}
2560
2561static inline int get_extra_isize(struct inode *inode)
2562{
2563	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2564}
2565
2566static inline int get_inline_xattr_addrs(struct inode *inode)
2567{
2568	return F2FS_I(inode)->i_inline_xattr_size;
2569}
2570
2571#define get_inode_mode(i) \
2572	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2573	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2574
2575#define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2576	(offsetof(struct f2fs_inode, i_extra_end) -	\
2577	offsetof(struct f2fs_inode, i_extra_isize))	\
2578
2579#define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2580#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2581		((offsetof(typeof(*f2fs_inode), field) +	\
2582		sizeof((f2fs_inode)->field))			\
2583		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2584
2585static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2586{
2587	int i;
2588
2589	spin_lock(&sbi->iostat_lock);
2590	for (i = 0; i < NR_IO_TYPE; i++)
2591		sbi->write_iostat[i] = 0;
2592	spin_unlock(&sbi->iostat_lock);
2593}
2594
2595static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2596			enum iostat_type type, unsigned long long io_bytes)
2597{
2598	if (!sbi->iostat_enable)
2599		return;
2600	spin_lock(&sbi->iostat_lock);
2601	sbi->write_iostat[type] += io_bytes;
2602
2603	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2604		sbi->write_iostat[APP_BUFFERED_IO] =
2605			sbi->write_iostat[APP_WRITE_IO] -
2606			sbi->write_iostat[APP_DIRECT_IO];
2607	spin_unlock(&sbi->iostat_lock);
2608}
2609
2610/*
2611 * file.c
2612 */
2613int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2614void truncate_data_blocks(struct dnode_of_data *dn);
2615int truncate_blocks(struct inode *inode, u64 from, bool lock);
2616int f2fs_truncate(struct inode *inode);
2617int f2fs_getattr(const struct path *path, struct kstat *stat,
2618			u32 request_mask, unsigned int flags);
2619int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2620int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2621void truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2622int f2fs_precache_extents(struct inode *inode);
2623long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2624long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2625int f2fs_pin_file_control(struct inode *inode, bool inc);
2626
2627/*
2628 * inode.c
2629 */
2630void f2fs_set_inode_flags(struct inode *inode);
2631bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2632void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2633struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2634struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2635int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2636void update_inode(struct inode *inode, struct page *node_page);
2637void update_inode_page(struct inode *inode);
2638int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2639void f2fs_evict_inode(struct inode *inode);
2640void handle_failed_inode(struct inode *inode);
2641
2642/*
2643 * namei.c
2644 */
2645int update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2646							bool hot, bool set);
2647struct dentry *f2fs_get_parent(struct dentry *child);
2648
2649/*
2650 * dir.c
2651 */
2652void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2653unsigned char get_de_type(struct f2fs_dir_entry *de);
2654struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2655			f2fs_hash_t namehash, int *max_slots,
2656			struct f2fs_dentry_ptr *d);
2657int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2658			unsigned int start_pos, struct fscrypt_str *fstr);
2659void do_make_empty_dir(struct inode *inode, struct inode *parent,
2660			struct f2fs_dentry_ptr *d);
2661struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2662			const struct qstr *new_name,
2663			const struct qstr *orig_name, struct page *dpage);
2664void update_parent_metadata(struct inode *dir, struct inode *inode,
2665			unsigned int current_depth);
2666int room_for_filename(const void *bitmap, int slots, int max_slots);
2667void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2668struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2669			struct fscrypt_name *fname, struct page **res_page);
2670struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2671			const struct qstr *child, struct page **res_page);
2672struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2673ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2674			struct page **page);
2675void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2676			struct page *page, struct inode *inode);
2677void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2678			const struct qstr *name, f2fs_hash_t name_hash,
2679			unsigned int bit_pos);
2680int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2681			const struct qstr *orig_name,
2682			struct inode *inode, nid_t ino, umode_t mode);
2683int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2684			struct inode *inode, nid_t ino, umode_t mode);
2685int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2686			struct inode *inode, nid_t ino, umode_t mode);
2687void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2688			struct inode *dir, struct inode *inode);
2689int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2690bool f2fs_empty_dir(struct inode *dir);
2691
2692static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2693{
2694	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2695				inode, inode->i_ino, inode->i_mode);
2696}
2697
2698/*
2699 * super.c
2700 */
2701int f2fs_inode_dirtied(struct inode *inode, bool sync);
2702void f2fs_inode_synced(struct inode *inode);
2703int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2704void f2fs_quota_off_umount(struct super_block *sb);
2705int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2706int f2fs_sync_fs(struct super_block *sb, int sync);
2707extern __printf(3, 4)
2708void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2709int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2710
2711/*
2712 * hash.c
2713 */
2714f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2715				struct fscrypt_name *fname);
2716
2717/*
2718 * node.c
2719 */
2720struct dnode_of_data;
2721struct node_info;
2722
2723bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2724int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2725bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2726bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2727void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2728pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2729int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2730int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2731int truncate_xattr_node(struct inode *inode);
2732int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2733int remove_inode_page(struct inode *inode);
2734struct page *new_inode_page(struct inode *inode);
2735struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2736void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2737struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2738struct page *get_node_page_ra(struct page *parent, int start);
2739void move_node_page(struct page *node_page, int gc_type);
2740int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2741			struct writeback_control *wbc, bool atomic);
2742int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2743			bool do_balance, enum iostat_type io_type);
2744void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2745bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2746void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2747void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2748int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2749void recover_inline_xattr(struct inode *inode, struct page *page);
2750int recover_xattr_data(struct inode *inode, struct page *page);
2751int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2752void restore_node_summary(struct f2fs_sb_info *sbi,
2753			unsigned int segno, struct f2fs_summary_block *sum);
2754void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2755int build_node_manager(struct f2fs_sb_info *sbi);
2756void destroy_node_manager(struct f2fs_sb_info *sbi);
2757int __init create_node_manager_caches(void);
2758void destroy_node_manager_caches(void);
2759
2760/*
2761 * segment.c
2762 */
2763bool need_SSR(struct f2fs_sb_info *sbi);
2764void register_inmem_page(struct inode *inode, struct page *page);
2765void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2766void drop_inmem_pages(struct inode *inode);
2767void drop_inmem_page(struct inode *inode, struct page *page);
2768int commit_inmem_pages(struct inode *inode);
2769void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2770void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2771int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2772int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2773int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2774void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2775void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2776bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2777void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2778						unsigned int granularity);
2779void drop_discard_cmd(struct f2fs_sb_info *sbi);
2780void stop_discard_thread(struct f2fs_sb_info *sbi);
2781bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2782void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2783void release_discard_addrs(struct f2fs_sb_info *sbi);
2784int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2785void allocate_new_segments(struct f2fs_sb_info *sbi);
2786int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2787bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2788struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2789void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2790void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2791						enum iostat_type io_type);
2792void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2793void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2794int rewrite_data_page(struct f2fs_io_info *fio);
2795void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2796			block_t old_blkaddr, block_t new_blkaddr,
2797			bool recover_curseg, bool recover_newaddr);
2798void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2799			block_t old_addr, block_t new_addr,
2800			unsigned char version, bool recover_curseg,
2801			bool recover_newaddr);
2802void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2803			block_t old_blkaddr, block_t *new_blkaddr,
2804			struct f2fs_summary *sum, int type,
2805			struct f2fs_io_info *fio, bool add_list);
2806void f2fs_wait_on_page_writeback(struct page *page,
2807			enum page_type type, bool ordered);
2808void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2809void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2810void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2811int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2812			unsigned int val, int alloc);
2813void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2814int build_segment_manager(struct f2fs_sb_info *sbi);
2815void destroy_segment_manager(struct f2fs_sb_info *sbi);
2816int __init create_segment_manager_caches(void);
2817void destroy_segment_manager_caches(void);
2818int rw_hint_to_seg_type(enum rw_hint hint);
2819enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum page_type type,
2820				enum temp_type temp);
2821
2822/*
2823 * checkpoint.c
2824 */
2825void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2826struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2827struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2828struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2829bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2830int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2831			int type, bool sync);
2832void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2833long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2834			long nr_to_write, enum iostat_type io_type);
2835void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2836void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2837void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2838bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2839void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2840					unsigned int devidx, int type);
2841bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2842					unsigned int devidx, int type);
2843int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2844int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2845void release_orphan_inode(struct f2fs_sb_info *sbi);
2846void add_orphan_inode(struct inode *inode);
2847void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2848int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2849int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2850void update_dirty_page(struct inode *inode, struct page *page);
2851void remove_dirty_inode(struct inode *inode);
2852int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2853int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2854void init_ino_entry_info(struct f2fs_sb_info *sbi);
2855int __init create_checkpoint_caches(void);
2856void destroy_checkpoint_caches(void);
2857
2858/*
2859 * data.c
2860 */
2861void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2862void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2863				struct inode *inode, nid_t ino, pgoff_t idx,
2864				enum page_type type);
2865void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2866int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2867int f2fs_submit_page_write(struct f2fs_io_info *fio);
2868struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2869			block_t blk_addr, struct bio *bio);
2870int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2871void set_data_blkaddr(struct dnode_of_data *dn);
2872void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2873int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2874int reserve_new_block(struct dnode_of_data *dn);
2875int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2876int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2877int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2878struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2879			int op_flags, bool for_write);
2880struct page *find_data_page(struct inode *inode, pgoff_t index);
2881struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2882			bool for_write);
2883struct page *get_new_data_page(struct inode *inode,
2884			struct page *ipage, pgoff_t index, bool new_i_size);
2885int do_write_data_page(struct f2fs_io_info *fio);
2886int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2887			int create, int flag);
2888int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2889			u64 start, u64 len);
2890bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
2891bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
2892void f2fs_set_page_dirty_nobuffers(struct page *page);
2893int __f2fs_write_data_pages(struct address_space *mapping,
2894						struct writeback_control *wbc,
2895						enum iostat_type io_type);
2896void f2fs_invalidate_page(struct page *page, unsigned int offset,
2897			unsigned int length);
2898int f2fs_release_page(struct page *page, gfp_t wait);
2899#ifdef CONFIG_MIGRATION
2900int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2901			struct page *page, enum migrate_mode mode);
2902#endif
2903bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
2904
2905/*
2906 * gc.c
2907 */
2908int start_gc_thread(struct f2fs_sb_info *sbi);
2909void stop_gc_thread(struct f2fs_sb_info *sbi);
2910block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2911int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2912			unsigned int segno);
2913void build_gc_manager(struct f2fs_sb_info *sbi);
2914
2915/*
2916 * recovery.c
2917 */
2918int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2919bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2920
2921/*
2922 * debug.c
2923 */
2924#ifdef CONFIG_F2FS_STAT_FS
2925struct f2fs_stat_info {
2926	struct list_head stat_list;
2927	struct f2fs_sb_info *sbi;
2928	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2929	int main_area_segs, main_area_sections, main_area_zones;
2930	unsigned long long hit_largest, hit_cached, hit_rbtree;
2931	unsigned long long hit_total, total_ext;
2932	int ext_tree, zombie_tree, ext_node;
2933	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2934	int ndirty_data, ndirty_qdata;
2935	int inmem_pages;
2936	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2937	int nats, dirty_nats, sits, dirty_sits;
2938	int free_nids, avail_nids, alloc_nids;
2939	int total_count, utilization;
2940	int bg_gc, nr_wb_cp_data, nr_wb_data;
2941	int nr_flushing, nr_flushed, flush_list_empty;
2942	int nr_discarding, nr_discarded;
2943	int nr_discard_cmd;
2944	unsigned int undiscard_blks;
2945	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2946	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2947	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2948	unsigned int bimodal, avg_vblocks;
2949	int util_free, util_valid, util_invalid;
2950	int rsvd_segs, overp_segs;
2951	int dirty_count, node_pages, meta_pages;
2952	int prefree_count, call_count, cp_count, bg_cp_count;
2953	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2954	int bg_node_segs, bg_data_segs;
2955	int tot_blks, data_blks, node_blks;
2956	int bg_data_blks, bg_node_blks;
2957	int curseg[NR_CURSEG_TYPE];
2958	int cursec[NR_CURSEG_TYPE];
2959	int curzone[NR_CURSEG_TYPE];
2960
2961	unsigned int segment_count[2];
2962	unsigned int block_count[2];
2963	unsigned int inplace_count;
2964	unsigned long long base_mem, cache_mem, page_mem;
2965};
2966
2967static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2968{
2969	return (struct f2fs_stat_info *)sbi->stat_info;
2970}
2971
2972#define stat_inc_cp_count(si)		((si)->cp_count++)
2973#define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2974#define stat_inc_call_count(si)		((si)->call_count++)
2975#define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2976#define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2977#define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2978#define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2979#define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2980#define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2981#define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2982#define stat_inc_inline_xattr(inode)					\
2983	do {								\
2984		if (f2fs_has_inline_xattr(inode))			\
2985			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2986	} while (0)
2987#define stat_dec_inline_xattr(inode)					\
2988	do {								\
2989		if (f2fs_has_inline_xattr(inode))			\
2990			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2991	} while (0)
2992#define stat_inc_inline_inode(inode)					\
2993	do {								\
2994		if (f2fs_has_inline_data(inode))			\
2995			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2996	} while (0)
2997#define stat_dec_inline_inode(inode)					\
2998	do {								\
2999		if (f2fs_has_inline_data(inode))			\
3000			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3001	} while (0)
3002#define stat_inc_inline_dir(inode)					\
3003	do {								\
3004		if (f2fs_has_inline_dentry(inode))			\
3005			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3006	} while (0)
3007#define stat_dec_inline_dir(inode)					\
3008	do {								\
3009		if (f2fs_has_inline_dentry(inode))			\
3010			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3011	} while (0)
3012#define stat_inc_seg_type(sbi, curseg)					\
3013		((sbi)->segment_count[(curseg)->alloc_type]++)
3014#define stat_inc_block_count(sbi, curseg)				\
3015		((sbi)->block_count[(curseg)->alloc_type]++)
3016#define stat_inc_inplace_blocks(sbi)					\
3017		(atomic_inc(&(sbi)->inplace_count))
3018#define stat_inc_atomic_write(inode)					\
3019		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3020#define stat_dec_atomic_write(inode)					\
3021		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3022#define stat_update_max_atomic_write(inode)				\
3023	do {								\
3024		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3025		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3026		if (cur > max)						\
3027			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3028	} while (0)
3029#define stat_inc_volatile_write(inode)					\
3030		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3031#define stat_dec_volatile_write(inode)					\
3032		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3033#define stat_update_max_volatile_write(inode)				\
3034	do {								\
3035		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3036		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3037		if (cur > max)						\
3038			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3039	} while (0)
3040#define stat_inc_seg_count(sbi, type, gc_type)				\
3041	do {								\
3042		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3043		si->tot_segs++;						\
3044		if ((type) == SUM_TYPE_DATA) {				\
3045			si->data_segs++;				\
3046			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3047		} else {						\
3048			si->node_segs++;				\
3049			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3050		}							\
3051	} while (0)
3052
3053#define stat_inc_tot_blk_count(si, blks)				\
3054	((si)->tot_blks += (blks))
3055
3056#define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3057	do {								\
3058		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3059		stat_inc_tot_blk_count(si, blks);			\
3060		si->data_blks += (blks);				\
3061		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3062	} while (0)
3063
3064#define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3065	do {								\
3066		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3067		stat_inc_tot_blk_count(si, blks);			\
3068		si->node_blks += (blks);				\
3069		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3070	} while (0)
3071
3072int f2fs_build_stats(struct f2fs_sb_info *sbi);
3073void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3074int __init f2fs_create_root_stats(void);
3075void f2fs_destroy_root_stats(void);
3076#else
3077#define stat_inc_cp_count(si)				do { } while (0)
3078#define stat_inc_bg_cp_count(si)			do { } while (0)
3079#define stat_inc_call_count(si)				do { } while (0)
3080#define stat_inc_bggc_count(si)				do { } while (0)
3081#define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3082#define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3083#define stat_inc_total_hit(sb)				do { } while (0)
3084#define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3085#define stat_inc_largest_node_hit(sbi)			do { } while (0)
3086#define stat_inc_cached_node_hit(sbi)			do { } while (0)
3087#define stat_inc_inline_xattr(inode)			do { } while (0)
3088#define stat_dec_inline_xattr(inode)			do { } while (0)
3089#define stat_inc_inline_inode(inode)			do { } while (0)
3090#define stat_dec_inline_inode(inode)			do { } while (0)
3091#define stat_inc_inline_dir(inode)			do { } while (0)
3092#define stat_dec_inline_dir(inode)			do { } while (0)
3093#define stat_inc_atomic_write(inode)			do { } while (0)
3094#define stat_dec_atomic_write(inode)			do { } while (0)
3095#define stat_update_max_atomic_write(inode)		do { } while (0)
3096#define stat_inc_volatile_write(inode)			do { } while (0)
3097#define stat_dec_volatile_write(inode)			do { } while (0)
3098#define stat_update_max_volatile_write(inode)		do { } while (0)
3099#define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3100#define stat_inc_block_count(sbi, curseg)		do { } while (0)
3101#define stat_inc_inplace_blocks(sbi)			do { } while (0)
3102#define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3103#define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3104#define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3105#define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3106
3107static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3108static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3109static inline int __init f2fs_create_root_stats(void) { return 0; }
3110static inline void f2fs_destroy_root_stats(void) { }
3111#endif
3112
3113extern const struct file_operations f2fs_dir_operations;
3114extern const struct file_operations f2fs_file_operations;
3115extern const struct inode_operations f2fs_file_inode_operations;
3116extern const struct address_space_operations f2fs_dblock_aops;
3117extern const struct address_space_operations f2fs_node_aops;
3118extern const struct address_space_operations f2fs_meta_aops;
3119extern const struct inode_operations f2fs_dir_inode_operations;
3120extern const struct inode_operations f2fs_symlink_inode_operations;
3121extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3122extern const struct inode_operations f2fs_special_inode_operations;
3123extern struct kmem_cache *inode_entry_slab;
3124
3125/*
3126 * inline.c
3127 */
3128bool f2fs_may_inline_data(struct inode *inode);
3129bool f2fs_may_inline_dentry(struct inode *inode);
3130void read_inline_data(struct page *page, struct page *ipage);
3131void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
3132int f2fs_read_inline_data(struct inode *inode, struct page *page);
3133int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3134int f2fs_convert_inline_inode(struct inode *inode);
3135int f2fs_write_inline_data(struct inode *inode, struct page *page);
3136bool recover_inline_data(struct inode *inode, struct page *npage);
3137struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
3138			struct fscrypt_name *fname, struct page **res_page);
3139int make_empty_inline_dir(struct inode *inode, struct inode *parent,
3140			struct page *ipage);
3141int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3142			const struct qstr *orig_name,
3143			struct inode *inode, nid_t ino, umode_t mode);
3144void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3145			struct inode *dir, struct inode *inode);
3146bool f2fs_empty_inline_dir(struct inode *dir);
3147int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3148			struct fscrypt_str *fstr);
3149int f2fs_inline_data_fiemap(struct inode *inode,
3150			struct fiemap_extent_info *fieinfo,
3151			__u64 start, __u64 len);
3152
3153/*
3154 * shrinker.c
3155 */
3156unsigned long f2fs_shrink_count(struct shrinker *shrink,
3157			struct shrink_control *sc);
3158unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3159			struct shrink_control *sc);
3160void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3161void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3162
3163/*
3164 * extent_cache.c
3165 */
3166struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3167				struct rb_entry *cached_re, unsigned int ofs);
3168struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3169				struct rb_root *root, struct rb_node **parent,
3170				unsigned int ofs);
3171struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3172		struct rb_entry *cached_re, unsigned int ofs,
3173		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3174		struct rb_node ***insert_p, struct rb_node **insert_parent,
3175		bool force);
3176bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3177						struct rb_root *root);
3178unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3179bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3180void f2fs_drop_extent_tree(struct inode *inode);
3181unsigned int f2fs_destroy_extent_node(struct inode *inode);
3182void f2fs_destroy_extent_tree(struct inode *inode);
3183bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3184			struct extent_info *ei);
3185void f2fs_update_extent_cache(struct dnode_of_data *dn);
3186void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3187			pgoff_t fofs, block_t blkaddr, unsigned int len);
3188void init_extent_cache_info(struct f2fs_sb_info *sbi);
3189int __init create_extent_cache(void);
3190void destroy_extent_cache(void);
3191
3192/*
3193 * sysfs.c
3194 */
3195int __init f2fs_init_sysfs(void);
3196void f2fs_exit_sysfs(void);
3197int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3198void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3199
3200/*
3201 * crypto support
3202 */
3203static inline bool f2fs_encrypted_inode(struct inode *inode)
3204{
3205	return file_is_encrypt(inode);
3206}
3207
3208static inline bool f2fs_encrypted_file(struct inode *inode)
3209{
3210	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3211}
3212
3213static inline void f2fs_set_encrypted_inode(struct inode *inode)
3214{
3215#ifdef CONFIG_F2FS_FS_ENCRYPTION
3216	file_set_encrypt(inode);
3217	inode->i_flags |= S_ENCRYPTED;
3218#endif
3219}
3220
3221static inline bool f2fs_bio_encrypted(struct bio *bio)
3222{
3223	return bio->bi_private != NULL;
3224}
3225
3226#define F2FS_FEATURE_FUNCS(name, flagname) \
3227static inline int f2fs_sb_has_##name(struct super_block *sb) \
3228{ \
3229	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3230}
3231
3232F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3233F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3234F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3235F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3236F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3237F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3238F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3239F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3240F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3241
3242#ifdef CONFIG_BLK_DEV_ZONED
3243static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3244			struct block_device *bdev, block_t blkaddr)
3245{
3246	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3247	int i;
3248
3249	for (i = 0; i < sbi->s_ndevs; i++)
3250		if (FDEV(i).bdev == bdev)
3251			return FDEV(i).blkz_type[zno];
3252	return -EINVAL;
3253}
3254#endif
3255
3256static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3257{
3258	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3259
3260	return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb);
3261}
3262
3263static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3264{
3265	clear_opt(sbi, ADAPTIVE);
3266	clear_opt(sbi, LFS);
3267
3268	switch (mt) {
3269	case F2FS_MOUNT_ADAPTIVE:
3270		set_opt(sbi, ADAPTIVE);
3271		break;
3272	case F2FS_MOUNT_LFS:
3273		set_opt(sbi, LFS);
3274		break;
3275	}
3276}
3277
3278static inline bool f2fs_may_encrypt(struct inode *inode)
3279{
3280#ifdef CONFIG_F2FS_FS_ENCRYPTION
3281	umode_t mode = inode->i_mode;
3282
3283	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3284#else
3285	return 0;
3286#endif
3287}
3288
3289static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
3290{
3291	return (f2fs_encrypted_file(inode) ||
3292			(rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
3293			F2FS_I_SB(inode)->s_ndevs);
3294}
3295
3296#endif