Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/f2fs.h
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#ifndef _LINUX_F2FS_H
   9#define _LINUX_F2FS_H
  10
  11#include <linux/uio.h>
  12#include <linux/types.h>
  13#include <linux/page-flags.h>
  14#include <linux/buffer_head.h>
  15#include <linux/slab.h>
  16#include <linux/crc32.h>
  17#include <linux/magic.h>
  18#include <linux/kobject.h>
  19#include <linux/sched.h>
  20#include <linux/cred.h>
  21#include <linux/vmalloc.h>
  22#include <linux/bio.h>
  23#include <linux/blkdev.h>
  24#include <linux/quotaops.h>
  25#include <crypto/hash.h>
  26
  27#include <linux/fscrypt.h>
  28#include <linux/fsverity.h>
  29
  30#ifdef CONFIG_F2FS_CHECK_FS
  31#define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
  32#else
  33#define f2fs_bug_on(sbi, condition)					\
  34	do {								\
  35		if (unlikely(condition)) {				\
  36			WARN_ON(1);					\
  37			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
  38		}							\
  39	} while (0)
  40#endif
  41
  42enum {
  43	FAULT_KMALLOC,
  44	FAULT_KVMALLOC,
  45	FAULT_PAGE_ALLOC,
  46	FAULT_PAGE_GET,
  47	FAULT_ALLOC_BIO,
  48	FAULT_ALLOC_NID,
  49	FAULT_ORPHAN,
  50	FAULT_BLOCK,
  51	FAULT_DIR_DEPTH,
  52	FAULT_EVICT_INODE,
  53	FAULT_TRUNCATE,
  54	FAULT_READ_IO,
  55	FAULT_CHECKPOINT,
  56	FAULT_DISCARD,
  57	FAULT_WRITE_IO,
  58	FAULT_MAX,
  59};
  60
  61#ifdef CONFIG_F2FS_FAULT_INJECTION
  62#define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
  63
  64struct f2fs_fault_info {
  65	atomic_t inject_ops;
  66	unsigned int inject_rate;
  67	unsigned int inject_type;
  68};
  69
  70extern const char *f2fs_fault_name[FAULT_MAX];
  71#define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
  72#endif
  73
  74/*
  75 * For mount options
  76 */
  77#define F2FS_MOUNT_BG_GC		0x00000001
  78#define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
  79#define F2FS_MOUNT_DISCARD		0x00000004
  80#define F2FS_MOUNT_NOHEAP		0x00000008
  81#define F2FS_MOUNT_XATTR_USER		0x00000010
  82#define F2FS_MOUNT_POSIX_ACL		0x00000020
  83#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
  84#define F2FS_MOUNT_INLINE_XATTR		0x00000080
  85#define F2FS_MOUNT_INLINE_DATA		0x00000100
  86#define F2FS_MOUNT_INLINE_DENTRY	0x00000200
  87#define F2FS_MOUNT_FLUSH_MERGE		0x00000400
  88#define F2FS_MOUNT_NOBARRIER		0x00000800
  89#define F2FS_MOUNT_FASTBOOT		0x00001000
  90#define F2FS_MOUNT_EXTENT_CACHE		0x00002000
  91#define F2FS_MOUNT_FORCE_FG_GC		0x00004000
  92#define F2FS_MOUNT_DATA_FLUSH		0x00008000
  93#define F2FS_MOUNT_FAULT_INJECTION	0x00010000
  94#define F2FS_MOUNT_ADAPTIVE		0x00020000
  95#define F2FS_MOUNT_LFS			0x00040000
  96#define F2FS_MOUNT_USRQUOTA		0x00080000
  97#define F2FS_MOUNT_GRPQUOTA		0x00100000
  98#define F2FS_MOUNT_PRJQUOTA		0x00200000
  99#define F2FS_MOUNT_QUOTA		0x00400000
 100#define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
 101#define F2FS_MOUNT_RESERVE_ROOT		0x01000000
 102#define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
 103
 104#define F2FS_OPTION(sbi)	((sbi)->mount_opt)
 105#define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
 106#define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
 107#define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
 108
 109#define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
 110		typecheck(unsigned long long, b) &&			\
 111		((long long)((a) - (b)) > 0))
 112
 113typedef u32 block_t;	/*
 114			 * should not change u32, since it is the on-disk block
 115			 * address format, __le32.
 116			 */
 117typedef u32 nid_t;
 118
 119struct f2fs_mount_info {
 120	unsigned int opt;
 121	int write_io_size_bits;		/* Write IO size bits */
 122	block_t root_reserved_blocks;	/* root reserved blocks */
 123	kuid_t s_resuid;		/* reserved blocks for uid */
 124	kgid_t s_resgid;		/* reserved blocks for gid */
 125	int active_logs;		/* # of active logs */
 126	int inline_xattr_size;		/* inline xattr size */
 127#ifdef CONFIG_F2FS_FAULT_INJECTION
 128	struct f2fs_fault_info fault_info;	/* For fault injection */
 129#endif
 130#ifdef CONFIG_QUOTA
 131	/* Names of quota files with journalled quota */
 132	char *s_qf_names[MAXQUOTAS];
 133	int s_jquota_fmt;			/* Format of quota to use */
 134#endif
 135	/* For which write hints are passed down to block layer */
 136	int whint_mode;
 137	int alloc_mode;			/* segment allocation policy */
 138	int fsync_mode;			/* fsync policy */
 139	bool test_dummy_encryption;	/* test dummy encryption */
 140	block_t unusable_cap;		/* Amount of space allowed to be
 141					 * unusable when disabling checkpoint
 142					 */
 143};
 144
 145#define F2FS_FEATURE_ENCRYPT		0x0001
 146#define F2FS_FEATURE_BLKZONED		0x0002
 147#define F2FS_FEATURE_ATOMIC_WRITE	0x0004
 148#define F2FS_FEATURE_EXTRA_ATTR		0x0008
 149#define F2FS_FEATURE_PRJQUOTA		0x0010
 150#define F2FS_FEATURE_INODE_CHKSUM	0x0020
 151#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
 152#define F2FS_FEATURE_QUOTA_INO		0x0080
 153#define F2FS_FEATURE_INODE_CRTIME	0x0100
 154#define F2FS_FEATURE_LOST_FOUND		0x0200
 155#define F2FS_FEATURE_VERITY		0x0400
 156#define F2FS_FEATURE_SB_CHKSUM		0x0800
 157#define F2FS_FEATURE_CASEFOLD		0x1000
 158
 159#define __F2FS_HAS_FEATURE(raw_super, mask)				\
 160	((raw_super->feature & cpu_to_le32(mask)) != 0)
 161#define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
 162#define F2FS_SET_FEATURE(sbi, mask)					\
 163	(sbi->raw_super->feature |= cpu_to_le32(mask))
 164#define F2FS_CLEAR_FEATURE(sbi, mask)					\
 165	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
 166
 167/*
 168 * Default values for user and/or group using reserved blocks
 169 */
 170#define	F2FS_DEF_RESUID		0
 171#define	F2FS_DEF_RESGID		0
 172
 173/*
 174 * For checkpoint manager
 175 */
 176enum {
 177	NAT_BITMAP,
 178	SIT_BITMAP
 179};
 180
 181#define	CP_UMOUNT	0x00000001
 182#define	CP_FASTBOOT	0x00000002
 183#define	CP_SYNC		0x00000004
 184#define	CP_RECOVERY	0x00000008
 185#define	CP_DISCARD	0x00000010
 186#define CP_TRIMMED	0x00000020
 187#define CP_PAUSE	0x00000040
 188
 189#define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
 190#define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
 191#define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
 192#define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
 193#define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
 194#define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
 195#define DEF_CP_INTERVAL			60	/* 60 secs */
 196#define DEF_IDLE_INTERVAL		5	/* 5 secs */
 197#define DEF_DISABLE_INTERVAL		5	/* 5 secs */
 198#define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
 199#define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
 200
 201struct cp_control {
 202	int reason;
 203	__u64 trim_start;
 204	__u64 trim_end;
 205	__u64 trim_minlen;
 206};
 207
 208/*
 209 * indicate meta/data type
 210 */
 211enum {
 212	META_CP,
 213	META_NAT,
 214	META_SIT,
 215	META_SSA,
 216	META_MAX,
 217	META_POR,
 218	DATA_GENERIC,		/* check range only */
 219	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
 220	DATA_GENERIC_ENHANCE_READ,	/*
 221					 * strong check on range and segment
 222					 * bitmap but no warning due to race
 223					 * condition of read on truncated area
 224					 * by extent_cache
 225					 */
 226	META_GENERIC,
 227};
 228
 229/* for the list of ino */
 230enum {
 231	ORPHAN_INO,		/* for orphan ino list */
 232	APPEND_INO,		/* for append ino list */
 233	UPDATE_INO,		/* for update ino list */
 234	TRANS_DIR_INO,		/* for trasactions dir ino list */
 235	FLUSH_INO,		/* for multiple device flushing */
 236	MAX_INO_ENTRY,		/* max. list */
 237};
 238
 239struct ino_entry {
 240	struct list_head list;		/* list head */
 241	nid_t ino;			/* inode number */
 242	unsigned int dirty_device;	/* dirty device bitmap */
 243};
 244
 245/* for the list of inodes to be GCed */
 246struct inode_entry {
 247	struct list_head list;	/* list head */
 248	struct inode *inode;	/* vfs inode pointer */
 249};
 250
 251struct fsync_node_entry {
 252	struct list_head list;	/* list head */
 253	struct page *page;	/* warm node page pointer */
 254	unsigned int seq_id;	/* sequence id */
 255};
 256
 257/* for the bitmap indicate blocks to be discarded */
 258struct discard_entry {
 259	struct list_head list;	/* list head */
 260	block_t start_blkaddr;	/* start blockaddr of current segment */
 261	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
 262};
 263
 264/* default discard granularity of inner discard thread, unit: block count */
 265#define DEFAULT_DISCARD_GRANULARITY		16
 266
 267/* max discard pend list number */
 268#define MAX_PLIST_NUM		512
 269#define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
 270					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
 271
 272enum {
 273	D_PREP,			/* initial */
 274	D_PARTIAL,		/* partially submitted */
 275	D_SUBMIT,		/* all submitted */
 276	D_DONE,			/* finished */
 277};
 278
 279struct discard_info {
 280	block_t lstart;			/* logical start address */
 281	block_t len;			/* length */
 282	block_t start;			/* actual start address in dev */
 283};
 284
 285struct discard_cmd {
 286	struct rb_node rb_node;		/* rb node located in rb-tree */
 287	union {
 288		struct {
 289			block_t lstart;	/* logical start address */
 290			block_t len;	/* length */
 291			block_t start;	/* actual start address in dev */
 292		};
 293		struct discard_info di;	/* discard info */
 294
 295	};
 296	struct list_head list;		/* command list */
 297	struct completion wait;		/* compleation */
 298	struct block_device *bdev;	/* bdev */
 299	unsigned short ref;		/* reference count */
 300	unsigned char state;		/* state */
 301	unsigned char queued;		/* queued discard */
 302	int error;			/* bio error */
 303	spinlock_t lock;		/* for state/bio_ref updating */
 304	unsigned short bio_ref;		/* bio reference count */
 305};
 306
 307enum {
 308	DPOLICY_BG,
 309	DPOLICY_FORCE,
 310	DPOLICY_FSTRIM,
 311	DPOLICY_UMOUNT,
 312	MAX_DPOLICY,
 313};
 314
 315struct discard_policy {
 316	int type;			/* type of discard */
 317	unsigned int min_interval;	/* used for candidates exist */
 318	unsigned int mid_interval;	/* used for device busy */
 319	unsigned int max_interval;	/* used for candidates not exist */
 320	unsigned int max_requests;	/* # of discards issued per round */
 321	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
 322	bool io_aware;			/* issue discard in idle time */
 323	bool sync;			/* submit discard with REQ_SYNC flag */
 324	bool ordered;			/* issue discard by lba order */
 325	unsigned int granularity;	/* discard granularity */
 326	int timeout;			/* discard timeout for put_super */
 327};
 328
 329struct discard_cmd_control {
 330	struct task_struct *f2fs_issue_discard;	/* discard thread */
 331	struct list_head entry_list;		/* 4KB discard entry list */
 332	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
 333	struct list_head wait_list;		/* store on-flushing entries */
 334	struct list_head fstrim_list;		/* in-flight discard from fstrim */
 335	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
 336	unsigned int discard_wake;		/* to wake up discard thread */
 337	struct mutex cmd_lock;
 338	unsigned int nr_discards;		/* # of discards in the list */
 339	unsigned int max_discards;		/* max. discards to be issued */
 340	unsigned int discard_granularity;	/* discard granularity */
 341	unsigned int undiscard_blks;		/* # of undiscard blocks */
 342	unsigned int next_pos;			/* next discard position */
 343	atomic_t issued_discard;		/* # of issued discard */
 344	atomic_t queued_discard;		/* # of queued discard */
 345	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
 346	struct rb_root_cached root;		/* root of discard rb-tree */
 347	bool rbtree_check;			/* config for consistence check */
 348};
 349
 350/* for the list of fsync inodes, used only during recovery */
 351struct fsync_inode_entry {
 352	struct list_head list;	/* list head */
 353	struct inode *inode;	/* vfs inode pointer */
 354	block_t blkaddr;	/* block address locating the last fsync */
 355	block_t last_dentry;	/* block address locating the last dentry */
 356};
 357
 358#define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
 359#define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
 360
 361#define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
 362#define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
 363#define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
 364#define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
 365
 366#define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
 367#define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
 368
 369static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
 370{
 371	int before = nats_in_cursum(journal);
 372
 373	journal->n_nats = cpu_to_le16(before + i);
 374	return before;
 375}
 376
 377static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
 378{
 379	int before = sits_in_cursum(journal);
 380
 381	journal->n_sits = cpu_to_le16(before + i);
 382	return before;
 383}
 384
 385static inline bool __has_cursum_space(struct f2fs_journal *journal,
 386							int size, int type)
 387{
 388	if (type == NAT_JOURNAL)
 389		return size <= MAX_NAT_JENTRIES(journal);
 390	return size <= MAX_SIT_JENTRIES(journal);
 391}
 392
 393/*
 394 * ioctl commands
 395 */
 396#define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
 397#define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
 398#define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
 399
 400#define F2FS_IOCTL_MAGIC		0xf5
 401#define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
 402#define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
 403#define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
 404#define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
 405#define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
 406#define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
 407#define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
 408#define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
 409						struct f2fs_defragment)
 410#define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
 411						struct f2fs_move_range)
 412#define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
 413						struct f2fs_flush_device)
 414#define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
 415						struct f2fs_gc_range)
 416#define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
 417#define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
 418#define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
 419#define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
 420#define F2FS_IOC_RESIZE_FS		_IOW(F2FS_IOCTL_MAGIC, 16, __u64)
 421
 422#define F2FS_IOC_GET_VOLUME_NAME	FS_IOC_GETFSLABEL
 423#define F2FS_IOC_SET_VOLUME_NAME	FS_IOC_SETFSLABEL
 424
 425#define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
 426#define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
 427#define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
 428
 429/*
 430 * should be same as XFS_IOC_GOINGDOWN.
 431 * Flags for going down operation used by FS_IOC_GOINGDOWN
 432 */
 433#define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
 434#define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
 435#define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
 436#define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
 437#define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
 438#define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
 439
 440#if defined(__KERNEL__) && defined(CONFIG_COMPAT)
 441/*
 442 * ioctl commands in 32 bit emulation
 443 */
 444#define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
 445#define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
 446#define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
 447#endif
 448
 449#define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
 450#define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
 451
 452struct f2fs_gc_range {
 453	u32 sync;
 454	u64 start;
 455	u64 len;
 456};
 457
 458struct f2fs_defragment {
 459	u64 start;
 460	u64 len;
 461};
 462
 463struct f2fs_move_range {
 464	u32 dst_fd;		/* destination fd */
 465	u64 pos_in;		/* start position in src_fd */
 466	u64 pos_out;		/* start position in dst_fd */
 467	u64 len;		/* size to move */
 468};
 469
 470struct f2fs_flush_device {
 471	u32 dev_num;		/* device number to flush */
 472	u32 segments;		/* # of segments to flush */
 473};
 474
 475/* for inline stuff */
 476#define DEF_INLINE_RESERVED_SIZE	1
 477static inline int get_extra_isize(struct inode *inode);
 478static inline int get_inline_xattr_addrs(struct inode *inode);
 479#define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
 480				(CUR_ADDRS_PER_INODE(inode) -		\
 481				get_inline_xattr_addrs(inode) -	\
 482				DEF_INLINE_RESERVED_SIZE))
 483
 484/* for inline dir */
 485#define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
 486				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
 487				BITS_PER_BYTE + 1))
 488#define INLINE_DENTRY_BITMAP_SIZE(inode) \
 489	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
 490#define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
 491				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
 492				NR_INLINE_DENTRY(inode) + \
 493				INLINE_DENTRY_BITMAP_SIZE(inode)))
 494
 495/*
 496 * For INODE and NODE manager
 497 */
 498/* for directory operations */
 499struct f2fs_dentry_ptr {
 500	struct inode *inode;
 501	void *bitmap;
 502	struct f2fs_dir_entry *dentry;
 503	__u8 (*filename)[F2FS_SLOT_LEN];
 504	int max;
 505	int nr_bitmap;
 506};
 507
 508static inline void make_dentry_ptr_block(struct inode *inode,
 509		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
 510{
 511	d->inode = inode;
 512	d->max = NR_DENTRY_IN_BLOCK;
 513	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
 514	d->bitmap = t->dentry_bitmap;
 515	d->dentry = t->dentry;
 516	d->filename = t->filename;
 517}
 518
 519static inline void make_dentry_ptr_inline(struct inode *inode,
 520					struct f2fs_dentry_ptr *d, void *t)
 521{
 522	int entry_cnt = NR_INLINE_DENTRY(inode);
 523	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
 524	int reserved_size = INLINE_RESERVED_SIZE(inode);
 525
 526	d->inode = inode;
 527	d->max = entry_cnt;
 528	d->nr_bitmap = bitmap_size;
 529	d->bitmap = t;
 530	d->dentry = t + bitmap_size + reserved_size;
 531	d->filename = t + bitmap_size + reserved_size +
 532					SIZE_OF_DIR_ENTRY * entry_cnt;
 533}
 534
 535/*
 536 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
 537 * as its node offset to distinguish from index node blocks.
 538 * But some bits are used to mark the node block.
 539 */
 540#define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
 541				>> OFFSET_BIT_SHIFT)
 542enum {
 543	ALLOC_NODE,			/* allocate a new node page if needed */
 544	LOOKUP_NODE,			/* look up a node without readahead */
 545	LOOKUP_NODE_RA,			/*
 546					 * look up a node with readahead called
 547					 * by get_data_block.
 548					 */
 549};
 550
 551#define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
 552
 553/* maximum retry quota flush count */
 554#define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
 555
 556#define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
 557
 558#define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
 559
 560/* for in-memory extent cache entry */
 561#define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
 562
 563/* number of extent info in extent cache we try to shrink */
 564#define EXTENT_CACHE_SHRINK_NUMBER	128
 565
 566struct rb_entry {
 567	struct rb_node rb_node;		/* rb node located in rb-tree */
 568	unsigned int ofs;		/* start offset of the entry */
 569	unsigned int len;		/* length of the entry */
 570};
 571
 572struct extent_info {
 573	unsigned int fofs;		/* start offset in a file */
 574	unsigned int len;		/* length of the extent */
 575	u32 blk;			/* start block address of the extent */
 576};
 577
 578struct extent_node {
 579	struct rb_node rb_node;		/* rb node located in rb-tree */
 580	struct extent_info ei;		/* extent info */
 581	struct list_head list;		/* node in global extent list of sbi */
 582	struct extent_tree *et;		/* extent tree pointer */
 583};
 584
 585struct extent_tree {
 586	nid_t ino;			/* inode number */
 587	struct rb_root_cached root;	/* root of extent info rb-tree */
 588	struct extent_node *cached_en;	/* recently accessed extent node */
 589	struct extent_info largest;	/* largested extent info */
 590	struct list_head list;		/* to be used by sbi->zombie_list */
 591	rwlock_t lock;			/* protect extent info rb-tree */
 592	atomic_t node_cnt;		/* # of extent node in rb-tree*/
 593	bool largest_updated;		/* largest extent updated */
 594};
 595
 596/*
 597 * This structure is taken from ext4_map_blocks.
 598 *
 599 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
 600 */
 601#define F2FS_MAP_NEW		(1 << BH_New)
 602#define F2FS_MAP_MAPPED		(1 << BH_Mapped)
 603#define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
 604#define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
 605				F2FS_MAP_UNWRITTEN)
 606
 607struct f2fs_map_blocks {
 608	block_t m_pblk;
 609	block_t m_lblk;
 610	unsigned int m_len;
 611	unsigned int m_flags;
 612	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
 613	pgoff_t *m_next_extent;		/* point to next possible extent */
 614	int m_seg_type;
 615	bool m_may_create;		/* indicate it is from write path */
 616};
 617
 618/* for flag in get_data_block */
 619enum {
 620	F2FS_GET_BLOCK_DEFAULT,
 621	F2FS_GET_BLOCK_FIEMAP,
 622	F2FS_GET_BLOCK_BMAP,
 623	F2FS_GET_BLOCK_DIO,
 624	F2FS_GET_BLOCK_PRE_DIO,
 625	F2FS_GET_BLOCK_PRE_AIO,
 626	F2FS_GET_BLOCK_PRECACHE,
 627};
 628
 629/*
 630 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
 631 */
 632#define FADVISE_COLD_BIT	0x01
 633#define FADVISE_LOST_PINO_BIT	0x02
 634#define FADVISE_ENCRYPT_BIT	0x04
 635#define FADVISE_ENC_NAME_BIT	0x08
 636#define FADVISE_KEEP_SIZE_BIT	0x10
 637#define FADVISE_HOT_BIT		0x20
 638#define FADVISE_VERITY_BIT	0x40
 639
 640#define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
 641
 642#define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
 643#define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
 644#define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
 645#define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
 646#define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
 647#define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
 648#define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
 649#define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
 650#define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
 651#define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
 652#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
 653#define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
 654#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
 655#define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
 656#define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
 657#define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
 658#define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
 659#define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
 660
 661#define DEF_DIR_LEVEL		0
 662
 663enum {
 664	GC_FAILURE_PIN,
 665	GC_FAILURE_ATOMIC,
 666	MAX_GC_FAILURE
 667};
 668
 669struct f2fs_inode_info {
 670	struct inode vfs_inode;		/* serve a vfs inode */
 671	unsigned long i_flags;		/* keep an inode flags for ioctl */
 672	unsigned char i_advise;		/* use to give file attribute hints */
 673	unsigned char i_dir_level;	/* use for dentry level for large dir */
 674	unsigned int i_current_depth;	/* only for directory depth */
 675	/* for gc failure statistic */
 676	unsigned int i_gc_failures[MAX_GC_FAILURE];
 677	unsigned int i_pino;		/* parent inode number */
 678	umode_t i_acl_mode;		/* keep file acl mode temporarily */
 679
 680	/* Use below internally in f2fs*/
 681	unsigned long flags;		/* use to pass per-file flags */
 682	struct rw_semaphore i_sem;	/* protect fi info */
 683	atomic_t dirty_pages;		/* # of dirty pages */
 684	f2fs_hash_t chash;		/* hash value of given file name */
 685	unsigned int clevel;		/* maximum level of given file name */
 686	struct task_struct *task;	/* lookup and create consistency */
 687	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
 688	nid_t i_xattr_nid;		/* node id that contains xattrs */
 689	loff_t	last_disk_size;		/* lastly written file size */
 690
 691#ifdef CONFIG_QUOTA
 692	struct dquot *i_dquot[MAXQUOTAS];
 693
 694	/* quota space reservation, managed internally by quota code */
 695	qsize_t i_reserved_quota;
 696#endif
 697	struct list_head dirty_list;	/* dirty list for dirs and files */
 698	struct list_head gdirty_list;	/* linked in global dirty list */
 699	struct list_head inmem_ilist;	/* list for inmem inodes */
 700	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
 701	struct task_struct *inmem_task;	/* store inmemory task */
 702	struct mutex inmem_lock;	/* lock for inmemory pages */
 703	struct extent_tree *extent_tree;	/* cached extent_tree entry */
 704
 705	/* avoid racing between foreground op and gc */
 706	struct rw_semaphore i_gc_rwsem[2];
 707	struct rw_semaphore i_mmap_sem;
 708	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
 709
 710	int i_extra_isize;		/* size of extra space located in i_addr */
 711	kprojid_t i_projid;		/* id for project quota */
 712	int i_inline_xattr_size;	/* inline xattr size */
 713	struct timespec64 i_crtime;	/* inode creation time */
 714	struct timespec64 i_disk_time[4];/* inode disk times */
 715};
 716
 717static inline void get_extent_info(struct extent_info *ext,
 718					struct f2fs_extent *i_ext)
 719{
 720	ext->fofs = le32_to_cpu(i_ext->fofs);
 721	ext->blk = le32_to_cpu(i_ext->blk);
 722	ext->len = le32_to_cpu(i_ext->len);
 723}
 724
 725static inline void set_raw_extent(struct extent_info *ext,
 726					struct f2fs_extent *i_ext)
 727{
 728	i_ext->fofs = cpu_to_le32(ext->fofs);
 729	i_ext->blk = cpu_to_le32(ext->blk);
 730	i_ext->len = cpu_to_le32(ext->len);
 731}
 732
 733static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
 734						u32 blk, unsigned int len)
 735{
 736	ei->fofs = fofs;
 737	ei->blk = blk;
 738	ei->len = len;
 739}
 740
 741static inline bool __is_discard_mergeable(struct discard_info *back,
 742			struct discard_info *front, unsigned int max_len)
 743{
 744	return (back->lstart + back->len == front->lstart) &&
 745		(back->len + front->len <= max_len);
 746}
 747
 748static inline bool __is_discard_back_mergeable(struct discard_info *cur,
 749			struct discard_info *back, unsigned int max_len)
 750{
 751	return __is_discard_mergeable(back, cur, max_len);
 752}
 753
 754static inline bool __is_discard_front_mergeable(struct discard_info *cur,
 755			struct discard_info *front, unsigned int max_len)
 756{
 757	return __is_discard_mergeable(cur, front, max_len);
 758}
 759
 760static inline bool __is_extent_mergeable(struct extent_info *back,
 761						struct extent_info *front)
 762{
 763	return (back->fofs + back->len == front->fofs &&
 764			back->blk + back->len == front->blk);
 765}
 766
 767static inline bool __is_back_mergeable(struct extent_info *cur,
 768						struct extent_info *back)
 769{
 770	return __is_extent_mergeable(back, cur);
 771}
 772
 773static inline bool __is_front_mergeable(struct extent_info *cur,
 774						struct extent_info *front)
 775{
 776	return __is_extent_mergeable(cur, front);
 777}
 778
 779extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
 780static inline void __try_update_largest_extent(struct extent_tree *et,
 781						struct extent_node *en)
 782{
 783	if (en->ei.len > et->largest.len) {
 784		et->largest = en->ei;
 785		et->largest_updated = true;
 786	}
 787}
 788
 789/*
 790 * For free nid management
 791 */
 792enum nid_state {
 793	FREE_NID,		/* newly added to free nid list */
 794	PREALLOC_NID,		/* it is preallocated */
 795	MAX_NID_STATE,
 796};
 797
 798struct f2fs_nm_info {
 799	block_t nat_blkaddr;		/* base disk address of NAT */
 800	nid_t max_nid;			/* maximum possible node ids */
 801	nid_t available_nids;		/* # of available node ids */
 802	nid_t next_scan_nid;		/* the next nid to be scanned */
 803	unsigned int ram_thresh;	/* control the memory footprint */
 804	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
 805	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
 806
 807	/* NAT cache management */
 808	struct radix_tree_root nat_root;/* root of the nat entry cache */
 809	struct radix_tree_root nat_set_root;/* root of the nat set cache */
 810	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
 811	struct list_head nat_entries;	/* cached nat entry list (clean) */
 812	spinlock_t nat_list_lock;	/* protect clean nat entry list */
 813	unsigned int nat_cnt;		/* the # of cached nat entries */
 814	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
 815	unsigned int nat_blocks;	/* # of nat blocks */
 816
 817	/* free node ids management */
 818	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
 819	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
 820	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
 821	spinlock_t nid_list_lock;	/* protect nid lists ops */
 822	struct mutex build_lock;	/* lock for build free nids */
 823	unsigned char **free_nid_bitmap;
 824	unsigned char *nat_block_bitmap;
 825	unsigned short *free_nid_count;	/* free nid count of NAT block */
 826
 827	/* for checkpoint */
 828	char *nat_bitmap;		/* NAT bitmap pointer */
 829
 830	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
 831	unsigned char *nat_bits;	/* NAT bits blocks */
 832	unsigned char *full_nat_bits;	/* full NAT pages */
 833	unsigned char *empty_nat_bits;	/* empty NAT pages */
 834#ifdef CONFIG_F2FS_CHECK_FS
 835	char *nat_bitmap_mir;		/* NAT bitmap mirror */
 836#endif
 837	int bitmap_size;		/* bitmap size */
 838};
 839
 840/*
 841 * this structure is used as one of function parameters.
 842 * all the information are dedicated to a given direct node block determined
 843 * by the data offset in a file.
 844 */
 845struct dnode_of_data {
 846	struct inode *inode;		/* vfs inode pointer */
 847	struct page *inode_page;	/* its inode page, NULL is possible */
 848	struct page *node_page;		/* cached direct node page */
 849	nid_t nid;			/* node id of the direct node block */
 850	unsigned int ofs_in_node;	/* data offset in the node page */
 851	bool inode_page_locked;		/* inode page is locked or not */
 852	bool node_changed;		/* is node block changed */
 853	char cur_level;			/* level of hole node page */
 854	char max_level;			/* level of current page located */
 855	block_t	data_blkaddr;		/* block address of the node block */
 856};
 857
 858static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
 859		struct page *ipage, struct page *npage, nid_t nid)
 860{
 861	memset(dn, 0, sizeof(*dn));
 862	dn->inode = inode;
 863	dn->inode_page = ipage;
 864	dn->node_page = npage;
 865	dn->nid = nid;
 866}
 867
 868/*
 869 * For SIT manager
 870 *
 871 * By default, there are 6 active log areas across the whole main area.
 872 * When considering hot and cold data separation to reduce cleaning overhead,
 873 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
 874 * respectively.
 875 * In the current design, you should not change the numbers intentionally.
 876 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
 877 * logs individually according to the underlying devices. (default: 6)
 878 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
 879 * data and 8 for node logs.
 880 */
 881#define	NR_CURSEG_DATA_TYPE	(3)
 882#define NR_CURSEG_NODE_TYPE	(3)
 883#define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
 884
 885enum {
 886	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
 887	CURSEG_WARM_DATA,	/* data blocks */
 888	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
 889	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
 890	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
 891	CURSEG_COLD_NODE,	/* indirect node blocks */
 892	NO_CHECK_TYPE,
 893};
 894
 895struct flush_cmd {
 896	struct completion wait;
 897	struct llist_node llnode;
 898	nid_t ino;
 899	int ret;
 900};
 901
 902struct flush_cmd_control {
 903	struct task_struct *f2fs_issue_flush;	/* flush thread */
 904	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
 905	atomic_t issued_flush;			/* # of issued flushes */
 906	atomic_t queued_flush;			/* # of queued flushes */
 907	struct llist_head issue_list;		/* list for command issue */
 908	struct llist_node *dispatch_list;	/* list for command dispatch */
 909};
 910
 911struct f2fs_sm_info {
 912	struct sit_info *sit_info;		/* whole segment information */
 913	struct free_segmap_info *free_info;	/* free segment information */
 914	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
 915	struct curseg_info *curseg_array;	/* active segment information */
 916
 917	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
 918
 919	block_t seg0_blkaddr;		/* block address of 0'th segment */
 920	block_t main_blkaddr;		/* start block address of main area */
 921	block_t ssa_blkaddr;		/* start block address of SSA area */
 922
 923	unsigned int segment_count;	/* total # of segments */
 924	unsigned int main_segments;	/* # of segments in main area */
 925	unsigned int reserved_segments;	/* # of reserved segments */
 926	unsigned int ovp_segments;	/* # of overprovision segments */
 927
 928	/* a threshold to reclaim prefree segments */
 929	unsigned int rec_prefree_segments;
 930
 931	/* for batched trimming */
 932	unsigned int trim_sections;		/* # of sections to trim */
 933
 934	struct list_head sit_entry_set;	/* sit entry set list */
 935
 936	unsigned int ipu_policy;	/* in-place-update policy */
 937	unsigned int min_ipu_util;	/* in-place-update threshold */
 938	unsigned int min_fsync_blocks;	/* threshold for fsync */
 939	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
 940	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
 941	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
 942
 943	/* for flush command control */
 944	struct flush_cmd_control *fcc_info;
 945
 946	/* for discard command control */
 947	struct discard_cmd_control *dcc_info;
 948};
 949
 950/*
 951 * For superblock
 952 */
 953/*
 954 * COUNT_TYPE for monitoring
 955 *
 956 * f2fs monitors the number of several block types such as on-writeback,
 957 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
 958 */
 959#define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
 960enum count_type {
 961	F2FS_DIRTY_DENTS,
 962	F2FS_DIRTY_DATA,
 963	F2FS_DIRTY_QDATA,
 964	F2FS_DIRTY_NODES,
 965	F2FS_DIRTY_META,
 966	F2FS_INMEM_PAGES,
 967	F2FS_DIRTY_IMETA,
 968	F2FS_WB_CP_DATA,
 969	F2FS_WB_DATA,
 970	F2FS_RD_DATA,
 971	F2FS_RD_NODE,
 972	F2FS_RD_META,
 973	F2FS_DIO_WRITE,
 974	F2FS_DIO_READ,
 975	NR_COUNT_TYPE,
 976};
 977
 978/*
 979 * The below are the page types of bios used in submit_bio().
 980 * The available types are:
 981 * DATA			User data pages. It operates as async mode.
 982 * NODE			Node pages. It operates as async mode.
 983 * META			FS metadata pages such as SIT, NAT, CP.
 984 * NR_PAGE_TYPE		The number of page types.
 985 * META_FLUSH		Make sure the previous pages are written
 986 *			with waiting the bio's completion
 987 * ...			Only can be used with META.
 988 */
 989#define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
 990enum page_type {
 991	DATA,
 992	NODE,
 993	META,
 994	NR_PAGE_TYPE,
 995	META_FLUSH,
 996	INMEM,		/* the below types are used by tracepoints only. */
 997	INMEM_DROP,
 998	INMEM_INVALIDATE,
 999	INMEM_REVOKE,
1000	IPU,
1001	OPU,
1002};
1003
1004enum temp_type {
1005	HOT = 0,	/* must be zero for meta bio */
1006	WARM,
1007	COLD,
1008	NR_TEMP_TYPE,
1009};
1010
1011enum need_lock_type {
1012	LOCK_REQ = 0,
1013	LOCK_DONE,
1014	LOCK_RETRY,
1015};
1016
1017enum cp_reason_type {
1018	CP_NO_NEEDED,
1019	CP_NON_REGULAR,
1020	CP_HARDLINK,
1021	CP_SB_NEED_CP,
1022	CP_WRONG_PINO,
1023	CP_NO_SPC_ROLL,
1024	CP_NODE_NEED_CP,
1025	CP_FASTBOOT_MODE,
1026	CP_SPEC_LOG_NUM,
1027	CP_RECOVER_DIR,
1028};
1029
1030enum iostat_type {
1031	APP_DIRECT_IO,			/* app direct IOs */
1032	APP_BUFFERED_IO,		/* app buffered IOs */
1033	APP_WRITE_IO,			/* app write IOs */
1034	APP_MAPPED_IO,			/* app mapped IOs */
1035	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1036	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1037	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1038	FS_GC_DATA_IO,			/* data IOs from forground gc */
1039	FS_GC_NODE_IO,			/* node IOs from forground gc */
1040	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1041	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1042	FS_CP_META_IO,			/* meta IOs from checkpoint */
1043	FS_DISCARD,			/* discard */
1044	NR_IO_TYPE,
1045};
1046
1047struct f2fs_io_info {
1048	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1049	nid_t ino;		/* inode number */
1050	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1051	enum temp_type temp;	/* contains HOT/WARM/COLD */
1052	int op;			/* contains REQ_OP_ */
1053	int op_flags;		/* req_flag_bits */
1054	block_t new_blkaddr;	/* new block address to be written */
1055	block_t old_blkaddr;	/* old block address before Cow */
1056	struct page *page;	/* page to be written */
1057	struct page *encrypted_page;	/* encrypted page */
1058	struct list_head list;		/* serialize IOs */
1059	bool submitted;		/* indicate IO submission */
1060	int need_lock;		/* indicate we need to lock cp_rwsem */
1061	bool in_list;		/* indicate fio is in io_list */
1062	bool is_por;		/* indicate IO is from recovery or not */
1063	bool retry;		/* need to reallocate block address */
1064	enum iostat_type io_type;	/* io type */
1065	struct writeback_control *io_wbc; /* writeback control */
1066	struct bio **bio;		/* bio for ipu */
1067	sector_t *last_block;		/* last block number in bio */
1068	unsigned char version;		/* version of the node */
1069};
1070
1071#define is_read_io(rw) ((rw) == READ)
1072struct f2fs_bio_info {
1073	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1074	struct bio *bio;		/* bios to merge */
1075	sector_t last_block_in_bio;	/* last block number */
1076	struct f2fs_io_info fio;	/* store buffered io info. */
1077	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1078	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1079	struct list_head io_list;	/* track fios */
1080};
1081
1082#define FDEV(i)				(sbi->devs[i])
1083#define RDEV(i)				(raw_super->devs[i])
1084struct f2fs_dev_info {
1085	struct block_device *bdev;
1086	char path[MAX_PATH_LEN];
1087	unsigned int total_segments;
1088	block_t start_blk;
1089	block_t end_blk;
1090#ifdef CONFIG_BLK_DEV_ZONED
1091	unsigned int nr_blkz;		/* Total number of zones */
1092	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1093#endif
1094};
1095
1096enum inode_type {
1097	DIR_INODE,			/* for dirty dir inode */
1098	FILE_INODE,			/* for dirty regular/symlink inode */
1099	DIRTY_META,			/* for all dirtied inode metadata */
1100	ATOMIC_FILE,			/* for all atomic files */
1101	NR_INODE_TYPE,
1102};
1103
1104/* for inner inode cache management */
1105struct inode_management {
1106	struct radix_tree_root ino_root;	/* ino entry array */
1107	spinlock_t ino_lock;			/* for ino entry lock */
1108	struct list_head ino_list;		/* inode list head */
1109	unsigned long ino_num;			/* number of entries */
1110};
1111
1112/* For s_flag in struct f2fs_sb_info */
1113enum {
1114	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1115	SBI_IS_CLOSE,				/* specify unmounting */
1116	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1117	SBI_POR_DOING,				/* recovery is doing or not */
1118	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1119	SBI_NEED_CP,				/* need to checkpoint */
1120	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1121	SBI_IS_RECOVERED,			/* recovered orphan/data */
1122	SBI_CP_DISABLED,			/* CP was disabled last mount */
1123	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1124	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1125	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1126	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1127	SBI_IS_RESIZEFS,			/* resizefs is in process */
1128};
1129
1130enum {
1131	CP_TIME,
1132	REQ_TIME,
1133	DISCARD_TIME,
1134	GC_TIME,
1135	DISABLE_TIME,
1136	UMOUNT_DISCARD_TIMEOUT,
1137	MAX_TIME,
1138};
1139
1140enum {
1141	GC_NORMAL,
1142	GC_IDLE_CB,
1143	GC_IDLE_GREEDY,
1144	GC_URGENT,
1145};
1146
1147enum {
1148	WHINT_MODE_OFF,		/* not pass down write hints */
1149	WHINT_MODE_USER,	/* try to pass down hints given by users */
1150	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1151};
1152
1153enum {
1154	ALLOC_MODE_DEFAULT,	/* stay default */
1155	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1156};
1157
1158enum fsync_mode {
1159	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1160	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1161	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1162};
1163
1164#ifdef CONFIG_FS_ENCRYPTION
1165#define DUMMY_ENCRYPTION_ENABLED(sbi) \
1166			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1167#else
1168#define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1169#endif
1170
1171struct f2fs_sb_info {
1172	struct super_block *sb;			/* pointer to VFS super block */
1173	struct proc_dir_entry *s_proc;		/* proc entry */
1174	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1175	struct rw_semaphore sb_lock;		/* lock for raw super block */
1176	int valid_super_block;			/* valid super block no */
1177	unsigned long s_flag;				/* flags for sbi */
1178	struct mutex writepages;		/* mutex for writepages() */
1179#ifdef CONFIG_UNICODE
1180	struct unicode_map *s_encoding;
1181	__u16 s_encoding_flags;
1182#endif
1183
1184#ifdef CONFIG_BLK_DEV_ZONED
1185	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1186	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1187#endif
1188
1189	/* for node-related operations */
1190	struct f2fs_nm_info *nm_info;		/* node manager */
1191	struct inode *node_inode;		/* cache node blocks */
1192
1193	/* for segment-related operations */
1194	struct f2fs_sm_info *sm_info;		/* segment manager */
1195
1196	/* for bio operations */
1197	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1198	/* keep migration IO order for LFS mode */
1199	struct rw_semaphore io_order_lock;
1200	mempool_t *write_io_dummy;		/* Dummy pages */
1201
1202	/* for checkpoint */
1203	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1204	int cur_cp_pack;			/* remain current cp pack */
1205	spinlock_t cp_lock;			/* for flag in ckpt */
1206	struct inode *meta_inode;		/* cache meta blocks */
1207	struct mutex cp_mutex;			/* checkpoint procedure lock */
1208	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1209	struct rw_semaphore node_write;		/* locking node writes */
1210	struct rw_semaphore node_change;	/* locking node change */
1211	wait_queue_head_t cp_wait;
1212	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1213	long interval_time[MAX_TIME];		/* to store thresholds */
1214
1215	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1216
1217	spinlock_t fsync_node_lock;		/* for node entry lock */
1218	struct list_head fsync_node_list;	/* node list head */
1219	unsigned int fsync_seg_id;		/* sequence id */
1220	unsigned int fsync_node_num;		/* number of node entries */
1221
1222	/* for orphan inode, use 0'th array */
1223	unsigned int max_orphans;		/* max orphan inodes */
1224
1225	/* for inode management */
1226	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1227	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1228	struct mutex flush_lock;		/* for flush exclusion */
1229
1230	/* for extent tree cache */
1231	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1232	struct mutex extent_tree_lock;	/* locking extent radix tree */
1233	struct list_head extent_list;		/* lru list for shrinker */
1234	spinlock_t extent_lock;			/* locking extent lru list */
1235	atomic_t total_ext_tree;		/* extent tree count */
1236	struct list_head zombie_list;		/* extent zombie tree list */
1237	atomic_t total_zombie_tree;		/* extent zombie tree count */
1238	atomic_t total_ext_node;		/* extent info count */
1239
1240	/* basic filesystem units */
1241	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1242	unsigned int log_blocksize;		/* log2 block size */
1243	unsigned int blocksize;			/* block size */
1244	unsigned int root_ino_num;		/* root inode number*/
1245	unsigned int node_ino_num;		/* node inode number*/
1246	unsigned int meta_ino_num;		/* meta inode number*/
1247	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1248	unsigned int blocks_per_seg;		/* blocks per segment */
1249	unsigned int segs_per_sec;		/* segments per section */
1250	unsigned int secs_per_zone;		/* sections per zone */
1251	unsigned int total_sections;		/* total section count */
1252	struct mutex resize_mutex;		/* for resize exclusion */
1253	unsigned int total_node_count;		/* total node block count */
1254	unsigned int total_valid_node_count;	/* valid node block count */
1255	loff_t max_file_blocks;			/* max block index of file */
1256	int dir_level;				/* directory level */
1257	int readdir_ra;				/* readahead inode in readdir */
1258
1259	block_t user_block_count;		/* # of user blocks */
1260	block_t total_valid_block_count;	/* # of valid blocks */
1261	block_t discard_blks;			/* discard command candidats */
1262	block_t last_valid_block_count;		/* for recovery */
1263	block_t reserved_blocks;		/* configurable reserved blocks */
1264	block_t current_reserved_blocks;	/* current reserved blocks */
1265
1266	/* Additional tracking for no checkpoint mode */
1267	block_t unusable_block_count;		/* # of blocks saved by last cp */
1268
1269	unsigned int nquota_files;		/* # of quota sysfile */
1270	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1271
1272	/* # of pages, see count_type */
1273	atomic_t nr_pages[NR_COUNT_TYPE];
1274	/* # of allocated blocks */
1275	struct percpu_counter alloc_valid_block_count;
1276
1277	/* writeback control */
1278	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1279
1280	/* valid inode count */
1281	struct percpu_counter total_valid_inode_count;
1282
1283	struct f2fs_mount_info mount_opt;	/* mount options */
1284
1285	/* for cleaning operations */
1286	struct mutex gc_mutex;			/* mutex for GC */
1287	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1288	unsigned int cur_victim_sec;		/* current victim section num */
1289	unsigned int gc_mode;			/* current GC state */
1290	unsigned int next_victim_seg[2];	/* next segment in victim section */
1291	/* for skip statistic */
1292	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1293	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1294
1295	/* threshold for gc trials on pinned files */
1296	u64 gc_pin_file_threshold;
1297
1298	/* maximum # of trials to find a victim segment for SSR and GC */
1299	unsigned int max_victim_search;
1300	/* migration granularity of garbage collection, unit: segment */
1301	unsigned int migration_granularity;
1302
1303	/*
1304	 * for stat information.
1305	 * one is for the LFS mode, and the other is for the SSR mode.
1306	 */
1307#ifdef CONFIG_F2FS_STAT_FS
1308	struct f2fs_stat_info *stat_info;	/* FS status information */
1309	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1310	unsigned int segment_count[2];		/* # of allocated segments */
1311	unsigned int block_count[2];		/* # of allocated blocks */
1312	atomic_t inplace_count;		/* # of inplace update */
1313	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1314	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1315	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1316	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1317	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1318	atomic_t inline_inode;			/* # of inline_data inodes */
1319	atomic_t inline_dir;			/* # of inline_dentry inodes */
1320	atomic_t aw_cnt;			/* # of atomic writes */
1321	atomic_t vw_cnt;			/* # of volatile writes */
1322	atomic_t max_aw_cnt;			/* max # of atomic writes */
1323	atomic_t max_vw_cnt;			/* max # of volatile writes */
1324	int bg_gc;				/* background gc calls */
1325	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1326	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1327	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1328#endif
1329	spinlock_t stat_lock;			/* lock for stat operations */
1330
1331	/* For app/fs IO statistics */
1332	spinlock_t iostat_lock;
1333	unsigned long long write_iostat[NR_IO_TYPE];
1334	bool iostat_enable;
1335
1336	/* For sysfs suppport */
1337	struct kobject s_kobj;
1338	struct completion s_kobj_unregister;
1339
1340	/* For shrinker support */
1341	struct list_head s_list;
1342	int s_ndevs;				/* number of devices */
1343	struct f2fs_dev_info *devs;		/* for device list */
1344	unsigned int dirty_device;		/* for checkpoint data flush */
1345	spinlock_t dev_lock;			/* protect dirty_device */
1346	struct mutex umount_mutex;
1347	unsigned int shrinker_run_no;
1348
1349	/* For write statistics */
1350	u64 sectors_written_start;
1351	u64 kbytes_written;
1352
1353	/* Reference to checksum algorithm driver via cryptoapi */
1354	struct crypto_shash *s_chksum_driver;
1355
1356	/* Precomputed FS UUID checksum for seeding other checksums */
1357	__u32 s_chksum_seed;
1358};
1359
1360struct f2fs_private_dio {
1361	struct inode *inode;
1362	void *orig_private;
1363	bio_end_io_t *orig_end_io;
1364	bool write;
1365};
1366
1367#ifdef CONFIG_F2FS_FAULT_INJECTION
1368#define f2fs_show_injection_info(type)					\
1369	printk_ratelimited("%sF2FS-fs : inject %s in %s of %pS\n",	\
1370		KERN_INFO, f2fs_fault_name[type],			\
1371		__func__, __builtin_return_address(0))
1372static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1373{
1374	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1375
1376	if (!ffi->inject_rate)
1377		return false;
1378
1379	if (!IS_FAULT_SET(ffi, type))
1380		return false;
1381
1382	atomic_inc(&ffi->inject_ops);
1383	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1384		atomic_set(&ffi->inject_ops, 0);
1385		return true;
1386	}
1387	return false;
1388}
1389#else
1390#define f2fs_show_injection_info(type) do { } while (0)
1391static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1392{
1393	return false;
1394}
1395#endif
1396
1397/*
1398 * Test if the mounted volume is a multi-device volume.
1399 *   - For a single regular disk volume, sbi->s_ndevs is 0.
1400 *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1401 *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1402 */
1403static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1404{
1405	return sbi->s_ndevs > 1;
1406}
1407
1408/* For write statistics. Suppose sector size is 512 bytes,
1409 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1410 */
1411#define BD_PART_WRITTEN(s)						 \
1412(((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1413		(s)->sectors_written_start) >> 1)
1414
1415static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1416{
1417	unsigned long now = jiffies;
1418
1419	sbi->last_time[type] = now;
1420
1421	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1422	if (type == REQ_TIME) {
1423		sbi->last_time[DISCARD_TIME] = now;
1424		sbi->last_time[GC_TIME] = now;
1425	}
1426}
1427
1428static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1429{
1430	unsigned long interval = sbi->interval_time[type] * HZ;
1431
1432	return time_after(jiffies, sbi->last_time[type] + interval);
1433}
1434
1435static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1436						int type)
1437{
1438	unsigned long interval = sbi->interval_time[type] * HZ;
1439	unsigned int wait_ms = 0;
1440	long delta;
1441
1442	delta = (sbi->last_time[type] + interval) - jiffies;
1443	if (delta > 0)
1444		wait_ms = jiffies_to_msecs(delta);
1445
1446	return wait_ms;
1447}
1448
1449/*
1450 * Inline functions
1451 */
1452static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1453			      const void *address, unsigned int length)
1454{
1455	struct {
1456		struct shash_desc shash;
1457		char ctx[4];
1458	} desc;
1459	int err;
1460
1461	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1462
1463	desc.shash.tfm = sbi->s_chksum_driver;
1464	*(u32 *)desc.ctx = crc;
1465
1466	err = crypto_shash_update(&desc.shash, address, length);
1467	BUG_ON(err);
1468
1469	return *(u32 *)desc.ctx;
1470}
1471
1472static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1473			   unsigned int length)
1474{
1475	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1476}
1477
1478static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1479				  void *buf, size_t buf_size)
1480{
1481	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1482}
1483
1484static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1485			      const void *address, unsigned int length)
1486{
1487	return __f2fs_crc32(sbi, crc, address, length);
1488}
1489
1490static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1491{
1492	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1493}
1494
1495static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1496{
1497	return sb->s_fs_info;
1498}
1499
1500static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1501{
1502	return F2FS_SB(inode->i_sb);
1503}
1504
1505static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1506{
1507	return F2FS_I_SB(mapping->host);
1508}
1509
1510static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1511{
1512	return F2FS_M_SB(page_file_mapping(page));
1513}
1514
1515static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1516{
1517	return (struct f2fs_super_block *)(sbi->raw_super);
1518}
1519
1520static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1521{
1522	return (struct f2fs_checkpoint *)(sbi->ckpt);
1523}
1524
1525static inline struct f2fs_node *F2FS_NODE(struct page *page)
1526{
1527	return (struct f2fs_node *)page_address(page);
1528}
1529
1530static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1531{
1532	return &((struct f2fs_node *)page_address(page))->i;
1533}
1534
1535static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1536{
1537	return (struct f2fs_nm_info *)(sbi->nm_info);
1538}
1539
1540static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1541{
1542	return (struct f2fs_sm_info *)(sbi->sm_info);
1543}
1544
1545static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1546{
1547	return (struct sit_info *)(SM_I(sbi)->sit_info);
1548}
1549
1550static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1551{
1552	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1553}
1554
1555static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1556{
1557	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1558}
1559
1560static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1561{
1562	return sbi->meta_inode->i_mapping;
1563}
1564
1565static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1566{
1567	return sbi->node_inode->i_mapping;
1568}
1569
1570static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1571{
1572	return test_bit(type, &sbi->s_flag);
1573}
1574
1575static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1576{
1577	set_bit(type, &sbi->s_flag);
1578}
1579
1580static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1581{
1582	clear_bit(type, &sbi->s_flag);
1583}
1584
1585static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1586{
1587	return le64_to_cpu(cp->checkpoint_ver);
1588}
1589
1590static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1591{
1592	if (type < F2FS_MAX_QUOTAS)
1593		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1594	return 0;
1595}
1596
1597static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1598{
1599	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1600	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1601}
1602
1603static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1604{
1605	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1606
1607	return ckpt_flags & f;
1608}
1609
1610static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1611{
1612	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1613}
1614
1615static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1616{
1617	unsigned int ckpt_flags;
1618
1619	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1620	ckpt_flags |= f;
1621	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1622}
1623
1624static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1625{
1626	unsigned long flags;
1627
1628	spin_lock_irqsave(&sbi->cp_lock, flags);
1629	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1630	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1631}
1632
1633static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1634{
1635	unsigned int ckpt_flags;
1636
1637	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1638	ckpt_flags &= (~f);
1639	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1640}
1641
1642static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1643{
1644	unsigned long flags;
1645
1646	spin_lock_irqsave(&sbi->cp_lock, flags);
1647	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1648	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1649}
1650
1651static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1652{
1653	unsigned long flags;
1654	unsigned char *nat_bits;
1655
1656	/*
1657	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1658	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1659	 * so let's rely on regular fsck or unclean shutdown.
1660	 */
1661
1662	if (lock)
1663		spin_lock_irqsave(&sbi->cp_lock, flags);
1664	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1665	nat_bits = NM_I(sbi)->nat_bits;
1666	NM_I(sbi)->nat_bits = NULL;
1667	if (lock)
1668		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1669
1670	kvfree(nat_bits);
1671}
1672
1673static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1674					struct cp_control *cpc)
1675{
1676	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1677
1678	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1679}
1680
1681static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1682{
1683	down_read(&sbi->cp_rwsem);
1684}
1685
1686static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1687{
1688	return down_read_trylock(&sbi->cp_rwsem);
1689}
1690
1691static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1692{
1693	up_read(&sbi->cp_rwsem);
1694}
1695
1696static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1697{
1698	down_write(&sbi->cp_rwsem);
1699}
1700
1701static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1702{
1703	up_write(&sbi->cp_rwsem);
1704}
1705
1706static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1707{
1708	int reason = CP_SYNC;
1709
1710	if (test_opt(sbi, FASTBOOT))
1711		reason = CP_FASTBOOT;
1712	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1713		reason = CP_UMOUNT;
1714	return reason;
1715}
1716
1717static inline bool __remain_node_summaries(int reason)
1718{
1719	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1720}
1721
1722static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1723{
1724	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1725			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1726}
1727
1728/*
1729 * Check whether the inode has blocks or not
1730 */
1731static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1732{
1733	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1734
1735	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1736}
1737
1738static inline bool f2fs_has_xattr_block(unsigned int ofs)
1739{
1740	return ofs == XATTR_NODE_OFFSET;
1741}
1742
1743static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1744					struct inode *inode, bool cap)
1745{
1746	if (!inode)
1747		return true;
1748	if (!test_opt(sbi, RESERVE_ROOT))
1749		return false;
1750	if (IS_NOQUOTA(inode))
1751		return true;
1752	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1753		return true;
1754	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1755					in_group_p(F2FS_OPTION(sbi).s_resgid))
1756		return true;
1757	if (cap && capable(CAP_SYS_RESOURCE))
1758		return true;
1759	return false;
1760}
1761
1762static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1763static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1764				 struct inode *inode, blkcnt_t *count)
1765{
1766	blkcnt_t diff = 0, release = 0;
1767	block_t avail_user_block_count;
1768	int ret;
1769
1770	ret = dquot_reserve_block(inode, *count);
1771	if (ret)
1772		return ret;
1773
1774	if (time_to_inject(sbi, FAULT_BLOCK)) {
1775		f2fs_show_injection_info(FAULT_BLOCK);
1776		release = *count;
1777		goto release_quota;
1778	}
1779
1780	/*
1781	 * let's increase this in prior to actual block count change in order
1782	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1783	 */
1784	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1785
1786	spin_lock(&sbi->stat_lock);
1787	sbi->total_valid_block_count += (block_t)(*count);
1788	avail_user_block_count = sbi->user_block_count -
1789					sbi->current_reserved_blocks;
1790
1791	if (!__allow_reserved_blocks(sbi, inode, true))
1792		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1793	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1794		if (avail_user_block_count > sbi->unusable_block_count)
1795			avail_user_block_count -= sbi->unusable_block_count;
1796		else
1797			avail_user_block_count = 0;
1798	}
1799	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1800		diff = sbi->total_valid_block_count - avail_user_block_count;
1801		if (diff > *count)
1802			diff = *count;
1803		*count -= diff;
1804		release = diff;
1805		sbi->total_valid_block_count -= diff;
1806		if (!*count) {
1807			spin_unlock(&sbi->stat_lock);
1808			goto enospc;
1809		}
1810	}
1811	spin_unlock(&sbi->stat_lock);
1812
1813	if (unlikely(release)) {
1814		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1815		dquot_release_reservation_block(inode, release);
1816	}
1817	f2fs_i_blocks_write(inode, *count, true, true);
1818	return 0;
1819
1820enospc:
1821	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1822release_quota:
1823	dquot_release_reservation_block(inode, release);
1824	return -ENOSPC;
1825}
1826
1827__printf(2, 3)
1828void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
1829
1830#define f2fs_err(sbi, fmt, ...)						\
1831	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
1832#define f2fs_warn(sbi, fmt, ...)					\
1833	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
1834#define f2fs_notice(sbi, fmt, ...)					\
1835	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
1836#define f2fs_info(sbi, fmt, ...)					\
1837	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
1838#define f2fs_debug(sbi, fmt, ...)					\
1839	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
1840
1841static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1842						struct inode *inode,
1843						block_t count)
1844{
1845	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1846
1847	spin_lock(&sbi->stat_lock);
1848	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1849	sbi->total_valid_block_count -= (block_t)count;
1850	if (sbi->reserved_blocks &&
1851		sbi->current_reserved_blocks < sbi->reserved_blocks)
1852		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1853					sbi->current_reserved_blocks + count);
1854	spin_unlock(&sbi->stat_lock);
1855	if (unlikely(inode->i_blocks < sectors)) {
1856		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1857			  inode->i_ino,
1858			  (unsigned long long)inode->i_blocks,
1859			  (unsigned long long)sectors);
1860		set_sbi_flag(sbi, SBI_NEED_FSCK);
1861		return;
1862	}
1863	f2fs_i_blocks_write(inode, count, false, true);
1864}
1865
1866static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1867{
1868	atomic_inc(&sbi->nr_pages[count_type]);
1869
1870	if (count_type == F2FS_DIRTY_DENTS ||
1871			count_type == F2FS_DIRTY_NODES ||
1872			count_type == F2FS_DIRTY_META ||
1873			count_type == F2FS_DIRTY_QDATA ||
1874			count_type == F2FS_DIRTY_IMETA)
1875		set_sbi_flag(sbi, SBI_IS_DIRTY);
1876}
1877
1878static inline void inode_inc_dirty_pages(struct inode *inode)
1879{
1880	atomic_inc(&F2FS_I(inode)->dirty_pages);
1881	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1882				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1883	if (IS_NOQUOTA(inode))
1884		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1885}
1886
1887static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1888{
1889	atomic_dec(&sbi->nr_pages[count_type]);
1890}
1891
1892static inline void inode_dec_dirty_pages(struct inode *inode)
1893{
1894	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1895			!S_ISLNK(inode->i_mode))
1896		return;
1897
1898	atomic_dec(&F2FS_I(inode)->dirty_pages);
1899	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1900				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1901	if (IS_NOQUOTA(inode))
1902		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1903}
1904
1905static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1906{
1907	return atomic_read(&sbi->nr_pages[count_type]);
1908}
1909
1910static inline int get_dirty_pages(struct inode *inode)
1911{
1912	return atomic_read(&F2FS_I(inode)->dirty_pages);
1913}
1914
1915static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1916{
1917	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1918	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1919						sbi->log_blocks_per_seg;
1920
1921	return segs / sbi->segs_per_sec;
1922}
1923
1924static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1925{
1926	return sbi->total_valid_block_count;
1927}
1928
1929static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1930{
1931	return sbi->discard_blks;
1932}
1933
1934static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1935{
1936	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1937
1938	/* return NAT or SIT bitmap */
1939	if (flag == NAT_BITMAP)
1940		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1941	else if (flag == SIT_BITMAP)
1942		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1943
1944	return 0;
1945}
1946
1947static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1948{
1949	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1950}
1951
1952static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1953{
1954	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1955	int offset;
1956
1957	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1958		offset = (flag == SIT_BITMAP) ?
1959			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1960		/*
1961		 * if large_nat_bitmap feature is enabled, leave checksum
1962		 * protection for all nat/sit bitmaps.
1963		 */
1964		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
1965	}
1966
1967	if (__cp_payload(sbi) > 0) {
1968		if (flag == NAT_BITMAP)
1969			return &ckpt->sit_nat_version_bitmap;
1970		else
1971			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1972	} else {
1973		offset = (flag == NAT_BITMAP) ?
1974			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1975		return &ckpt->sit_nat_version_bitmap + offset;
1976	}
1977}
1978
1979static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1980{
1981	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1982
1983	if (sbi->cur_cp_pack == 2)
1984		start_addr += sbi->blocks_per_seg;
1985	return start_addr;
1986}
1987
1988static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1989{
1990	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1991
1992	if (sbi->cur_cp_pack == 1)
1993		start_addr += sbi->blocks_per_seg;
1994	return start_addr;
1995}
1996
1997static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1998{
1999	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2000}
2001
2002static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2003{
2004	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2005}
2006
2007static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2008					struct inode *inode, bool is_inode)
2009{
2010	block_t	valid_block_count;
2011	unsigned int valid_node_count, user_block_count;
2012	int err;
2013
2014	if (is_inode) {
2015		if (inode) {
2016			err = dquot_alloc_inode(inode);
2017			if (err)
2018				return err;
2019		}
2020	} else {
2021		err = dquot_reserve_block(inode, 1);
2022		if (err)
2023			return err;
2024	}
2025
2026	if (time_to_inject(sbi, FAULT_BLOCK)) {
2027		f2fs_show_injection_info(FAULT_BLOCK);
2028		goto enospc;
2029	}
2030
2031	spin_lock(&sbi->stat_lock);
2032
2033	valid_block_count = sbi->total_valid_block_count +
2034					sbi->current_reserved_blocks + 1;
2035
2036	if (!__allow_reserved_blocks(sbi, inode, false))
2037		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2038	user_block_count = sbi->user_block_count;
2039	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2040		user_block_count -= sbi->unusable_block_count;
2041
2042	if (unlikely(valid_block_count > user_block_count)) {
2043		spin_unlock(&sbi->stat_lock);
2044		goto enospc;
2045	}
2046
2047	valid_node_count = sbi->total_valid_node_count + 1;
2048	if (unlikely(valid_node_count > sbi->total_node_count)) {
2049		spin_unlock(&sbi->stat_lock);
2050		goto enospc;
2051	}
2052
2053	sbi->total_valid_node_count++;
2054	sbi->total_valid_block_count++;
2055	spin_unlock(&sbi->stat_lock);
2056
2057	if (inode) {
2058		if (is_inode)
2059			f2fs_mark_inode_dirty_sync(inode, true);
2060		else
2061			f2fs_i_blocks_write(inode, 1, true, true);
2062	}
2063
2064	percpu_counter_inc(&sbi->alloc_valid_block_count);
2065	return 0;
2066
2067enospc:
2068	if (is_inode) {
2069		if (inode)
2070			dquot_free_inode(inode);
2071	} else {
2072		dquot_release_reservation_block(inode, 1);
2073	}
2074	return -ENOSPC;
2075}
2076
2077static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2078					struct inode *inode, bool is_inode)
2079{
2080	spin_lock(&sbi->stat_lock);
2081
2082	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2083	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2084
2085	sbi->total_valid_node_count--;
2086	sbi->total_valid_block_count--;
2087	if (sbi->reserved_blocks &&
2088		sbi->current_reserved_blocks < sbi->reserved_blocks)
2089		sbi->current_reserved_blocks++;
2090
2091	spin_unlock(&sbi->stat_lock);
2092
2093	if (is_inode) {
2094		dquot_free_inode(inode);
2095	} else {
2096		if (unlikely(inode->i_blocks == 0)) {
2097			f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
2098				  inode->i_ino,
2099				  (unsigned long long)inode->i_blocks);
2100			set_sbi_flag(sbi, SBI_NEED_FSCK);
2101			return;
2102		}
2103		f2fs_i_blocks_write(inode, 1, false, true);
2104	}
2105}
2106
2107static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2108{
2109	return sbi->total_valid_node_count;
2110}
2111
2112static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2113{
2114	percpu_counter_inc(&sbi->total_valid_inode_count);
2115}
2116
2117static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2118{
2119	percpu_counter_dec(&sbi->total_valid_inode_count);
2120}
2121
2122static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2123{
2124	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2125}
2126
2127static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2128						pgoff_t index, bool for_write)
2129{
2130	struct page *page;
2131
2132	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2133		if (!for_write)
2134			page = find_get_page_flags(mapping, index,
2135							FGP_LOCK | FGP_ACCESSED);
2136		else
2137			page = find_lock_page(mapping, index);
2138		if (page)
2139			return page;
2140
2141		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2142			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2143			return NULL;
2144		}
2145	}
2146
2147	if (!for_write)
2148		return grab_cache_page(mapping, index);
2149	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2150}
2151
2152static inline struct page *f2fs_pagecache_get_page(
2153				struct address_space *mapping, pgoff_t index,
2154				int fgp_flags, gfp_t gfp_mask)
2155{
2156	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2157		f2fs_show_injection_info(FAULT_PAGE_GET);
2158		return NULL;
2159	}
2160
2161	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2162}
2163
2164static inline void f2fs_copy_page(struct page *src, struct page *dst)
2165{
2166	char *src_kaddr = kmap(src);
2167	char *dst_kaddr = kmap(dst);
2168
2169	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2170	kunmap(dst);
2171	kunmap(src);
2172}
2173
2174static inline void f2fs_put_page(struct page *page, int unlock)
2175{
2176	if (!page)
2177		return;
2178
2179	if (unlock) {
2180		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2181		unlock_page(page);
2182	}
2183	put_page(page);
2184}
2185
2186static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2187{
2188	if (dn->node_page)
2189		f2fs_put_page(dn->node_page, 1);
2190	if (dn->inode_page && dn->node_page != dn->inode_page)
2191		f2fs_put_page(dn->inode_page, 0);
2192	dn->node_page = NULL;
2193	dn->inode_page = NULL;
2194}
2195
2196static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2197					size_t size)
2198{
2199	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2200}
2201
2202static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2203						gfp_t flags)
2204{
2205	void *entry;
2206
2207	entry = kmem_cache_alloc(cachep, flags);
2208	if (!entry)
2209		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2210	return entry;
2211}
2212
2213static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2214						int npages, bool no_fail)
2215{
2216	struct bio *bio;
2217
2218	if (no_fail) {
2219		/* No failure on bio allocation */
2220		bio = bio_alloc(GFP_NOIO, npages);
2221		if (!bio)
2222			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2223		return bio;
2224	}
2225	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2226		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2227		return NULL;
2228	}
2229
2230	return bio_alloc(GFP_KERNEL, npages);
2231}
2232
2233static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2234{
2235	if (sbi->gc_mode == GC_URGENT)
2236		return true;
2237
2238	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2239		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2240		get_pages(sbi, F2FS_WB_CP_DATA) ||
2241		get_pages(sbi, F2FS_DIO_READ) ||
2242		get_pages(sbi, F2FS_DIO_WRITE))
2243		return false;
2244
2245	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2246			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2247		return false;
2248
2249	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2250			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2251		return false;
2252
2253	return f2fs_time_over(sbi, type);
2254}
2255
2256static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2257				unsigned long index, void *item)
2258{
2259	while (radix_tree_insert(root, index, item))
2260		cond_resched();
2261}
2262
2263#define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2264
2265static inline bool IS_INODE(struct page *page)
2266{
2267	struct f2fs_node *p = F2FS_NODE(page);
2268
2269	return RAW_IS_INODE(p);
2270}
2271
2272static inline int offset_in_addr(struct f2fs_inode *i)
2273{
2274	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2275			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2276}
2277
2278static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2279{
2280	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2281}
2282
2283static inline int f2fs_has_extra_attr(struct inode *inode);
2284static inline block_t datablock_addr(struct inode *inode,
2285			struct page *node_page, unsigned int offset)
2286{
2287	struct f2fs_node *raw_node;
2288	__le32 *addr_array;
2289	int base = 0;
2290	bool is_inode = IS_INODE(node_page);
2291
2292	raw_node = F2FS_NODE(node_page);
2293
2294	/* from GC path only */
2295	if (is_inode) {
2296		if (!inode)
2297			base = offset_in_addr(&raw_node->i);
2298		else if (f2fs_has_extra_attr(inode))
2299			base = get_extra_isize(inode);
2300	}
2301
2302	addr_array = blkaddr_in_node(raw_node);
2303	return le32_to_cpu(addr_array[base + offset]);
2304}
2305
2306static inline int f2fs_test_bit(unsigned int nr, char *addr)
2307{
2308	int mask;
2309
2310	addr += (nr >> 3);
2311	mask = 1 << (7 - (nr & 0x07));
2312	return mask & *addr;
2313}
2314
2315static inline void f2fs_set_bit(unsigned int nr, char *addr)
2316{
2317	int mask;
2318
2319	addr += (nr >> 3);
2320	mask = 1 << (7 - (nr & 0x07));
2321	*addr |= mask;
2322}
2323
2324static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2325{
2326	int mask;
2327
2328	addr += (nr >> 3);
2329	mask = 1 << (7 - (nr & 0x07));
2330	*addr &= ~mask;
2331}
2332
2333static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2334{
2335	int mask;
2336	int ret;
2337
2338	addr += (nr >> 3);
2339	mask = 1 << (7 - (nr & 0x07));
2340	ret = mask & *addr;
2341	*addr |= mask;
2342	return ret;
2343}
2344
2345static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2346{
2347	int mask;
2348	int ret;
2349
2350	addr += (nr >> 3);
2351	mask = 1 << (7 - (nr & 0x07));
2352	ret = mask & *addr;
2353	*addr &= ~mask;
2354	return ret;
2355}
2356
2357static inline void f2fs_change_bit(unsigned int nr, char *addr)
2358{
2359	int mask;
2360
2361	addr += (nr >> 3);
2362	mask = 1 << (7 - (nr & 0x07));
2363	*addr ^= mask;
2364}
2365
2366/*
2367 * On-disk inode flags (f2fs_inode::i_flags)
2368 */
2369#define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2370#define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2371#define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2372#define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2373#define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2374#define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2375#define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2376#define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2377#define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2378
2379/* Flags that should be inherited by new inodes from their parent. */
2380#define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2381			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2382			   F2FS_CASEFOLD_FL)
2383
2384/* Flags that are appropriate for regular files (all but dir-specific ones). */
2385#define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2386				F2FS_CASEFOLD_FL))
2387
2388/* Flags that are appropriate for non-directories/regular files. */
2389#define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2390
2391static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2392{
2393	if (S_ISDIR(mode))
2394		return flags;
2395	else if (S_ISREG(mode))
2396		return flags & F2FS_REG_FLMASK;
2397	else
2398		return flags & F2FS_OTHER_FLMASK;
2399}
2400
2401/* used for f2fs_inode_info->flags */
2402enum {
2403	FI_NEW_INODE,		/* indicate newly allocated inode */
2404	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2405	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2406	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2407	FI_INC_LINK,		/* need to increment i_nlink */
2408	FI_ACL_MODE,		/* indicate acl mode */
2409	FI_NO_ALLOC,		/* should not allocate any blocks */
2410	FI_FREE_NID,		/* free allocated nide */
2411	FI_NO_EXTENT,		/* not to use the extent cache */
2412	FI_INLINE_XATTR,	/* used for inline xattr */
2413	FI_INLINE_DATA,		/* used for inline data*/
2414	FI_INLINE_DENTRY,	/* used for inline dentry */
2415	FI_APPEND_WRITE,	/* inode has appended data */
2416	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2417	FI_NEED_IPU,		/* used for ipu per file */
2418	FI_ATOMIC_FILE,		/* indicate atomic file */
2419	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2420	FI_VOLATILE_FILE,	/* indicate volatile file */
2421	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2422	FI_DROP_CACHE,		/* drop dirty page cache */
2423	FI_DATA_EXIST,		/* indicate data exists */
2424	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2425	FI_DO_DEFRAG,		/* indicate defragment is running */
2426	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2427	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2428	FI_HOT_DATA,		/* indicate file is hot */
2429	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2430	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2431	FI_PIN_FILE,		/* indicate file should not be gced */
2432	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2433	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
2434};
2435
2436static inline void __mark_inode_dirty_flag(struct inode *inode,
2437						int flag, bool set)
2438{
2439	switch (flag) {
2440	case FI_INLINE_XATTR:
2441	case FI_INLINE_DATA:
2442	case FI_INLINE_DENTRY:
2443	case FI_NEW_INODE:
2444		if (set)
2445			return;
2446		/* fall through */
2447	case FI_DATA_EXIST:
2448	case FI_INLINE_DOTS:
2449	case FI_PIN_FILE:
2450		f2fs_mark_inode_dirty_sync(inode, true);
2451	}
2452}
2453
2454static inline void set_inode_flag(struct inode *inode, int flag)
2455{
2456	if (!test_bit(flag, &F2FS_I(inode)->flags))
2457		set_bit(flag, &F2FS_I(inode)->flags);
2458	__mark_inode_dirty_flag(inode, flag, true);
2459}
2460
2461static inline int is_inode_flag_set(struct inode *inode, int flag)
2462{
2463	return test_bit(flag, &F2FS_I(inode)->flags);
2464}
2465
2466static inline void clear_inode_flag(struct inode *inode, int flag)
2467{
2468	if (test_bit(flag, &F2FS_I(inode)->flags))
2469		clear_bit(flag, &F2FS_I(inode)->flags);
2470	__mark_inode_dirty_flag(inode, flag, false);
2471}
2472
2473static inline bool f2fs_verity_in_progress(struct inode *inode)
2474{
2475	return IS_ENABLED(CONFIG_FS_VERITY) &&
2476	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2477}
2478
2479static inline void set_acl_inode(struct inode *inode, umode_t mode)
2480{
2481	F2FS_I(inode)->i_acl_mode = mode;
2482	set_inode_flag(inode, FI_ACL_MODE);
2483	f2fs_mark_inode_dirty_sync(inode, false);
2484}
2485
2486static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2487{
2488	if (inc)
2489		inc_nlink(inode);
2490	else
2491		drop_nlink(inode);
2492	f2fs_mark_inode_dirty_sync(inode, true);
2493}
2494
2495static inline void f2fs_i_blocks_write(struct inode *inode,
2496					block_t diff, bool add, bool claim)
2497{
2498	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2499	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2500
2501	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2502	if (add) {
2503		if (claim)
2504			dquot_claim_block(inode, diff);
2505		else
2506			dquot_alloc_block_nofail(inode, diff);
2507	} else {
2508		dquot_free_block(inode, diff);
2509	}
2510
2511	f2fs_mark_inode_dirty_sync(inode, true);
2512	if (clean || recover)
2513		set_inode_flag(inode, FI_AUTO_RECOVER);
2514}
2515
2516static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2517{
2518	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2519	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2520
2521	if (i_size_read(inode) == i_size)
2522		return;
2523
2524	i_size_write(inode, i_size);
2525	f2fs_mark_inode_dirty_sync(inode, true);
2526	if (clean || recover)
2527		set_inode_flag(inode, FI_AUTO_RECOVER);
2528}
2529
2530static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2531{
2532	F2FS_I(inode)->i_current_depth = depth;
2533	f2fs_mark_inode_dirty_sync(inode, true);
2534}
2535
2536static inline void f2fs_i_gc_failures_write(struct inode *inode,
2537					unsigned int count)
2538{
2539	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2540	f2fs_mark_inode_dirty_sync(inode, true);
2541}
2542
2543static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2544{
2545	F2FS_I(inode)->i_xattr_nid = xnid;
2546	f2fs_mark_inode_dirty_sync(inode, true);
2547}
2548
2549static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2550{
2551	F2FS_I(inode)->i_pino = pino;
2552	f2fs_mark_inode_dirty_sync(inode, true);
2553}
2554
2555static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2556{
2557	struct f2fs_inode_info *fi = F2FS_I(inode);
2558
2559	if (ri->i_inline & F2FS_INLINE_XATTR)
2560		set_bit(FI_INLINE_XATTR, &fi->flags);
2561	if (ri->i_inline & F2FS_INLINE_DATA)
2562		set_bit(FI_INLINE_DATA, &fi->flags);
2563	if (ri->i_inline & F2FS_INLINE_DENTRY)
2564		set_bit(FI_INLINE_DENTRY, &fi->flags);
2565	if (ri->i_inline & F2FS_DATA_EXIST)
2566		set_bit(FI_DATA_EXIST, &fi->flags);
2567	if (ri->i_inline & F2FS_INLINE_DOTS)
2568		set_bit(FI_INLINE_DOTS, &fi->flags);
2569	if (ri->i_inline & F2FS_EXTRA_ATTR)
2570		set_bit(FI_EXTRA_ATTR, &fi->flags);
2571	if (ri->i_inline & F2FS_PIN_FILE)
2572		set_bit(FI_PIN_FILE, &fi->flags);
2573}
2574
2575static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2576{
2577	ri->i_inline = 0;
2578
2579	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2580		ri->i_inline |= F2FS_INLINE_XATTR;
2581	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2582		ri->i_inline |= F2FS_INLINE_DATA;
2583	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2584		ri->i_inline |= F2FS_INLINE_DENTRY;
2585	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2586		ri->i_inline |= F2FS_DATA_EXIST;
2587	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2588		ri->i_inline |= F2FS_INLINE_DOTS;
2589	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2590		ri->i_inline |= F2FS_EXTRA_ATTR;
2591	if (is_inode_flag_set(inode, FI_PIN_FILE))
2592		ri->i_inline |= F2FS_PIN_FILE;
2593}
2594
2595static inline int f2fs_has_extra_attr(struct inode *inode)
2596{
2597	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2598}
2599
2600static inline int f2fs_has_inline_xattr(struct inode *inode)
2601{
2602	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2603}
2604
2605static inline unsigned int addrs_per_inode(struct inode *inode)
2606{
2607	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2608				get_inline_xattr_addrs(inode);
2609	return ALIGN_DOWN(addrs, 1);
2610}
2611
2612static inline unsigned int addrs_per_block(struct inode *inode)
2613{
2614	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1);
2615}
2616
2617static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2618{
2619	struct f2fs_inode *ri = F2FS_INODE(page);
2620
2621	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2622					get_inline_xattr_addrs(inode)]);
2623}
2624
2625static inline int inline_xattr_size(struct inode *inode)
2626{
2627	if (f2fs_has_inline_xattr(inode))
2628		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2629	return 0;
2630}
2631
2632static inline int f2fs_has_inline_data(struct inode *inode)
2633{
2634	return is_inode_flag_set(inode, FI_INLINE_DATA);
2635}
2636
2637static inline int f2fs_exist_data(struct inode *inode)
2638{
2639	return is_inode_flag_set(inode, FI_DATA_EXIST);
2640}
2641
2642static inline int f2fs_has_inline_dots(struct inode *inode)
2643{
2644	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2645}
2646
2647static inline bool f2fs_is_pinned_file(struct inode *inode)
2648{
2649	return is_inode_flag_set(inode, FI_PIN_FILE);
2650}
2651
2652static inline bool f2fs_is_atomic_file(struct inode *inode)
2653{
2654	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2655}
2656
2657static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2658{
2659	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2660}
2661
2662static inline bool f2fs_is_volatile_file(struct inode *inode)
2663{
2664	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2665}
2666
2667static inline bool f2fs_is_first_block_written(struct inode *inode)
2668{
2669	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2670}
2671
2672static inline bool f2fs_is_drop_cache(struct inode *inode)
2673{
2674	return is_inode_flag_set(inode, FI_DROP_CACHE);
2675}
2676
2677static inline void *inline_data_addr(struct inode *inode, struct page *page)
2678{
2679	struct f2fs_inode *ri = F2FS_INODE(page);
2680	int extra_size = get_extra_isize(inode);
2681
2682	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2683}
2684
2685static inline int f2fs_has_inline_dentry(struct inode *inode)
2686{
2687	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2688}
2689
2690static inline int is_file(struct inode *inode, int type)
2691{
2692	return F2FS_I(inode)->i_advise & type;
2693}
2694
2695static inline void set_file(struct inode *inode, int type)
2696{
2697	F2FS_I(inode)->i_advise |= type;
2698	f2fs_mark_inode_dirty_sync(inode, true);
2699}
2700
2701static inline void clear_file(struct inode *inode, int type)
2702{
2703	F2FS_I(inode)->i_advise &= ~type;
2704	f2fs_mark_inode_dirty_sync(inode, true);
2705}
2706
2707static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2708{
2709	bool ret;
2710
2711	if (dsync) {
2712		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2713
2714		spin_lock(&sbi->inode_lock[DIRTY_META]);
2715		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2716		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2717		return ret;
2718	}
2719	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2720			file_keep_isize(inode) ||
2721			i_size_read(inode) & ~PAGE_MASK)
2722		return false;
2723
2724	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2725		return false;
2726	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2727		return false;
2728	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2729		return false;
2730	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2731						&F2FS_I(inode)->i_crtime))
2732		return false;
2733
2734	down_read(&F2FS_I(inode)->i_sem);
2735	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2736	up_read(&F2FS_I(inode)->i_sem);
2737
2738	return ret;
2739}
2740
2741static inline bool f2fs_readonly(struct super_block *sb)
2742{
2743	return sb_rdonly(sb);
2744}
2745
2746static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2747{
2748	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2749}
2750
2751static inline bool is_dot_dotdot(const struct qstr *str)
2752{
2753	if (str->len == 1 && str->name[0] == '.')
2754		return true;
2755
2756	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2757		return true;
2758
2759	return false;
2760}
2761
2762static inline bool f2fs_may_extent_tree(struct inode *inode)
2763{
2764	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2765
2766	if (!test_opt(sbi, EXTENT_CACHE) ||
2767			is_inode_flag_set(inode, FI_NO_EXTENT))
2768		return false;
2769
2770	/*
2771	 * for recovered files during mount do not create extents
2772	 * if shrinker is not registered.
2773	 */
2774	if (list_empty(&sbi->s_list))
2775		return false;
2776
2777	return S_ISREG(inode->i_mode);
2778}
2779
2780static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2781					size_t size, gfp_t flags)
2782{
2783	void *ret;
2784
2785	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2786		f2fs_show_injection_info(FAULT_KMALLOC);
2787		return NULL;
2788	}
2789
2790	ret = kmalloc(size, flags);
2791	if (ret)
2792		return ret;
2793
2794	return kvmalloc(size, flags);
2795}
2796
2797static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2798					size_t size, gfp_t flags)
2799{
2800	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2801}
2802
2803static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2804					size_t size, gfp_t flags)
2805{
2806	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2807		f2fs_show_injection_info(FAULT_KVMALLOC);
2808		return NULL;
2809	}
2810
2811	return kvmalloc(size, flags);
2812}
2813
2814static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2815					size_t size, gfp_t flags)
2816{
2817	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2818}
2819
2820static inline int get_extra_isize(struct inode *inode)
2821{
2822	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2823}
2824
2825static inline int get_inline_xattr_addrs(struct inode *inode)
2826{
2827	return F2FS_I(inode)->i_inline_xattr_size;
2828}
2829
2830#define f2fs_get_inode_mode(i) \
2831	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2832	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2833
2834#define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2835	(offsetof(struct f2fs_inode, i_extra_end) -	\
2836	offsetof(struct f2fs_inode, i_extra_isize))	\
2837
2838#define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2839#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2840		((offsetof(typeof(*(f2fs_inode)), field) +	\
2841		sizeof((f2fs_inode)->field))			\
2842		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2843
2844static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2845{
2846	int i;
2847
2848	spin_lock(&sbi->iostat_lock);
2849	for (i = 0; i < NR_IO_TYPE; i++)
2850		sbi->write_iostat[i] = 0;
2851	spin_unlock(&sbi->iostat_lock);
2852}
2853
2854static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2855			enum iostat_type type, unsigned long long io_bytes)
2856{
2857	if (!sbi->iostat_enable)
2858		return;
2859	spin_lock(&sbi->iostat_lock);
2860	sbi->write_iostat[type] += io_bytes;
2861
2862	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2863		sbi->write_iostat[APP_BUFFERED_IO] =
2864			sbi->write_iostat[APP_WRITE_IO] -
2865			sbi->write_iostat[APP_DIRECT_IO];
2866	spin_unlock(&sbi->iostat_lock);
2867}
2868
2869#define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2870
2871#define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
2872
2873bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2874					block_t blkaddr, int type);
2875static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2876					block_t blkaddr, int type)
2877{
2878	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2879		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
2880			 blkaddr, type);
2881		f2fs_bug_on(sbi, 1);
2882	}
2883}
2884
2885static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2886{
2887	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2888		return false;
2889	return true;
2890}
2891
2892static inline void f2fs_set_page_private(struct page *page,
2893						unsigned long data)
2894{
2895	if (PagePrivate(page))
2896		return;
2897
2898	get_page(page);
2899	SetPagePrivate(page);
2900	set_page_private(page, data);
2901}
2902
2903static inline void f2fs_clear_page_private(struct page *page)
2904{
2905	if (!PagePrivate(page))
2906		return;
2907
2908	set_page_private(page, 0);
2909	ClearPagePrivate(page);
2910	f2fs_put_page(page, 0);
2911}
2912
2913/*
2914 * file.c
2915 */
2916int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2917void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2918int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2919int f2fs_truncate(struct inode *inode);
2920int f2fs_getattr(const struct path *path, struct kstat *stat,
2921			u32 request_mask, unsigned int flags);
2922int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2923int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2924void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2925int f2fs_precache_extents(struct inode *inode);
2926long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2927long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2928int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2929int f2fs_pin_file_control(struct inode *inode, bool inc);
2930
2931/*
2932 * inode.c
2933 */
2934void f2fs_set_inode_flags(struct inode *inode);
2935bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2936void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2937struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2938struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2939int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2940void f2fs_update_inode(struct inode *inode, struct page *node_page);
2941void f2fs_update_inode_page(struct inode *inode);
2942int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2943void f2fs_evict_inode(struct inode *inode);
2944void f2fs_handle_failed_inode(struct inode *inode);
2945
2946/*
2947 * namei.c
2948 */
2949int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2950							bool hot, bool set);
2951struct dentry *f2fs_get_parent(struct dentry *child);
2952
2953extern int f2fs_ci_compare(const struct inode *parent,
2954			   const struct qstr *name,
2955			   const struct qstr *entry,
2956			   bool quick);
2957
2958/*
2959 * dir.c
2960 */
2961unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2962struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2963			f2fs_hash_t namehash, int *max_slots,
2964			struct f2fs_dentry_ptr *d);
2965int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2966			unsigned int start_pos, struct fscrypt_str *fstr);
2967void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2968			struct f2fs_dentry_ptr *d);
2969struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2970			const struct qstr *new_name,
2971			const struct qstr *orig_name, struct page *dpage);
2972void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2973			unsigned int current_depth);
2974int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2975void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2976struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2977			struct fscrypt_name *fname, struct page **res_page);
2978struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2979			const struct qstr *child, struct page **res_page);
2980struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2981ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2982			struct page **page);
2983void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2984			struct page *page, struct inode *inode);
2985void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2986			const struct qstr *name, f2fs_hash_t name_hash,
2987			unsigned int bit_pos);
2988int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2989			const struct qstr *orig_name,
2990			struct inode *inode, nid_t ino, umode_t mode);
2991int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2992			struct inode *inode, nid_t ino, umode_t mode);
2993int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2994			struct inode *inode, nid_t ino, umode_t mode);
2995void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2996			struct inode *dir, struct inode *inode);
2997int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2998bool f2fs_empty_dir(struct inode *dir);
2999
3000static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3001{
3002	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3003				inode, inode->i_ino, inode->i_mode);
3004}
3005
3006/*
3007 * super.c
3008 */
3009int f2fs_inode_dirtied(struct inode *inode, bool sync);
3010void f2fs_inode_synced(struct inode *inode);
3011int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3012int f2fs_quota_sync(struct super_block *sb, int type);
3013void f2fs_quota_off_umount(struct super_block *sb);
3014int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3015int f2fs_sync_fs(struct super_block *sb, int sync);
3016int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3017
3018/*
3019 * hash.c
3020 */
3021f2fs_hash_t f2fs_dentry_hash(const struct inode *dir,
3022		const struct qstr *name_info, struct fscrypt_name *fname);
3023
3024/*
3025 * node.c
3026 */
3027struct dnode_of_data;
3028struct node_info;
3029
3030int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3031bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3032bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3033void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3034void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3035void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3036int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3037bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3038bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3039int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3040						struct node_info *ni);
3041pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3042int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3043int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3044int f2fs_truncate_xattr_node(struct inode *inode);
3045int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3046					unsigned int seq_id);
3047int f2fs_remove_inode_page(struct inode *inode);
3048struct page *f2fs_new_inode_page(struct inode *inode);
3049struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3050void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3051struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3052struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3053int f2fs_move_node_page(struct page *node_page, int gc_type);
3054int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3055			struct writeback_control *wbc, bool atomic,
3056			unsigned int *seq_id);
3057int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3058			struct writeback_control *wbc,
3059			bool do_balance, enum iostat_type io_type);
3060int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3061bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3062void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3063void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3064int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3065void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3066int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3067int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3068int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3069			unsigned int segno, struct f2fs_summary_block *sum);
3070int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3071int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3072void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3073int __init f2fs_create_node_manager_caches(void);
3074void f2fs_destroy_node_manager_caches(void);
3075
3076/*
3077 * segment.c
3078 */
3079bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3080void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3081void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3082void f2fs_drop_inmem_pages(struct inode *inode);
3083void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3084int f2fs_commit_inmem_pages(struct inode *inode);
3085void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3086void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3087int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3088int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3089int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3090void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3091void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3092bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3093void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3094void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3095bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3096void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3097					struct cp_control *cpc);
3098void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3099block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3100int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3101void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3102int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3103void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3104					unsigned int start, unsigned int end);
3105void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3106int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3107bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3108					struct cp_control *cpc);
3109struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3110void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3111					block_t blk_addr);
3112void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3113						enum iostat_type io_type);
3114void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3115void f2fs_outplace_write_data(struct dnode_of_data *dn,
3116			struct f2fs_io_info *fio);
3117int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3118void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3119			block_t old_blkaddr, block_t new_blkaddr,
3120			bool recover_curseg, bool recover_newaddr);
3121void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3122			block_t old_addr, block_t new_addr,
3123			unsigned char version, bool recover_curseg,
3124			bool recover_newaddr);
3125void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3126			block_t old_blkaddr, block_t *new_blkaddr,
3127			struct f2fs_summary *sum, int type,
3128			struct f2fs_io_info *fio, bool add_list);
3129void f2fs_wait_on_page_writeback(struct page *page,
3130			enum page_type type, bool ordered, bool locked);
3131void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3132void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3133								block_t len);
3134void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3135void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3136int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3137			unsigned int val, int alloc);
3138void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3139int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3140void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3141int __init f2fs_create_segment_manager_caches(void);
3142void f2fs_destroy_segment_manager_caches(void);
3143int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3144enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3145			enum page_type type, enum temp_type temp);
3146
3147/*
3148 * checkpoint.c
3149 */
3150void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3151struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3152struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3153struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3154struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3155bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3156					block_t blkaddr, int type);
3157int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3158			int type, bool sync);
3159void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3160long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3161			long nr_to_write, enum iostat_type io_type);
3162void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3163void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3164void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3165bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3166void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3167					unsigned int devidx, int type);
3168bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3169					unsigned int devidx, int type);
3170int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3171int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3172void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3173void f2fs_add_orphan_inode(struct inode *inode);
3174void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3175int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3176int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3177void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3178void f2fs_remove_dirty_inode(struct inode *inode);
3179int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3180void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3181int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3182void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3183int __init f2fs_create_checkpoint_caches(void);
3184void f2fs_destroy_checkpoint_caches(void);
3185
3186/*
3187 * data.c
3188 */
3189int f2fs_init_post_read_processing(void);
3190void f2fs_destroy_post_read_processing(void);
3191void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3192void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3193				struct inode *inode, struct page *page,
3194				nid_t ino, enum page_type type);
3195void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3196int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3197int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3198void f2fs_submit_page_write(struct f2fs_io_info *fio);
3199struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3200			block_t blk_addr, struct bio *bio);
3201int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3202void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3203void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3204int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3205int f2fs_reserve_new_block(struct dnode_of_data *dn);
3206int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3207int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3208int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3209struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3210			int op_flags, bool for_write);
3211struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3212struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3213			bool for_write);
3214struct page *f2fs_get_new_data_page(struct inode *inode,
3215			struct page *ipage, pgoff_t index, bool new_i_size);
3216int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3217void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3218int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3219			int create, int flag);
3220int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3221			u64 start, u64 len);
3222bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3223bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3224void f2fs_invalidate_page(struct page *page, unsigned int offset,
3225			unsigned int length);
3226int f2fs_release_page(struct page *page, gfp_t wait);
3227#ifdef CONFIG_MIGRATION
3228int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3229			struct page *page, enum migrate_mode mode);
3230#endif
3231bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3232void f2fs_clear_page_cache_dirty_tag(struct page *page);
3233
3234/*
3235 * gc.c
3236 */
3237int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3238void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3239block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3240int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3241			unsigned int segno);
3242void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3243int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3244
3245/*
3246 * recovery.c
3247 */
3248int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3249bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3250
3251/*
3252 * debug.c
3253 */
3254#ifdef CONFIG_F2FS_STAT_FS
3255struct f2fs_stat_info {
3256	struct list_head stat_list;
3257	struct f2fs_sb_info *sbi;
3258	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3259	int main_area_segs, main_area_sections, main_area_zones;
3260	unsigned long long hit_largest, hit_cached, hit_rbtree;
3261	unsigned long long hit_total, total_ext;
3262	int ext_tree, zombie_tree, ext_node;
3263	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3264	int ndirty_data, ndirty_qdata;
3265	int inmem_pages;
3266	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3267	int nats, dirty_nats, sits, dirty_sits;
3268	int free_nids, avail_nids, alloc_nids;
3269	int total_count, utilization;
3270	int bg_gc, nr_wb_cp_data, nr_wb_data;
3271	int nr_rd_data, nr_rd_node, nr_rd_meta;
3272	int nr_dio_read, nr_dio_write;
3273	unsigned int io_skip_bggc, other_skip_bggc;
3274	int nr_flushing, nr_flushed, flush_list_empty;
3275	int nr_discarding, nr_discarded;
3276	int nr_discard_cmd;
3277	unsigned int undiscard_blks;
3278	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3279	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3280	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3281	unsigned int bimodal, avg_vblocks;
3282	int util_free, util_valid, util_invalid;
3283	int rsvd_segs, overp_segs;
3284	int dirty_count, node_pages, meta_pages;
3285	int prefree_count, call_count, cp_count, bg_cp_count;
3286	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3287	int bg_node_segs, bg_data_segs;
3288	int tot_blks, data_blks, node_blks;
3289	int bg_data_blks, bg_node_blks;
3290	unsigned long long skipped_atomic_files[2];
3291	int curseg[NR_CURSEG_TYPE];
3292	int cursec[NR_CURSEG_TYPE];
3293	int curzone[NR_CURSEG_TYPE];
3294
3295	unsigned int meta_count[META_MAX];
3296	unsigned int segment_count[2];
3297	unsigned int block_count[2];
3298	unsigned int inplace_count;
3299	unsigned long long base_mem, cache_mem, page_mem;
3300};
3301
3302static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3303{
3304	return (struct f2fs_stat_info *)sbi->stat_info;
3305}
3306
3307#define stat_inc_cp_count(si)		((si)->cp_count++)
3308#define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3309#define stat_inc_call_count(si)		((si)->call_count++)
3310#define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3311#define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3312#define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3313#define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3314#define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3315#define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3316#define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3317#define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3318#define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3319#define stat_inc_inline_xattr(inode)					\
3320	do {								\
3321		if (f2fs_has_inline_xattr(inode))			\
3322			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3323	} while (0)
3324#define stat_dec_inline_xattr(inode)					\
3325	do {								\
3326		if (f2fs_has_inline_xattr(inode))			\
3327			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3328	} while (0)
3329#define stat_inc_inline_inode(inode)					\
3330	do {								\
3331		if (f2fs_has_inline_data(inode))			\
3332			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3333	} while (0)
3334#define stat_dec_inline_inode(inode)					\
3335	do {								\
3336		if (f2fs_has_inline_data(inode))			\
3337			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3338	} while (0)
3339#define stat_inc_inline_dir(inode)					\
3340	do {								\
3341		if (f2fs_has_inline_dentry(inode))			\
3342			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3343	} while (0)
3344#define stat_dec_inline_dir(inode)					\
3345	do {								\
3346		if (f2fs_has_inline_dentry(inode))			\
3347			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3348	} while (0)
3349#define stat_inc_meta_count(sbi, blkaddr)				\
3350	do {								\
3351		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3352			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3353		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3354			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3355		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3356			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3357		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3358			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3359	} while (0)
3360#define stat_inc_seg_type(sbi, curseg)					\
3361		((sbi)->segment_count[(curseg)->alloc_type]++)
3362#define stat_inc_block_count(sbi, curseg)				\
3363		((sbi)->block_count[(curseg)->alloc_type]++)
3364#define stat_inc_inplace_blocks(sbi)					\
3365		(atomic_inc(&(sbi)->inplace_count))
3366#define stat_inc_atomic_write(inode)					\
3367		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3368#define stat_dec_atomic_write(inode)					\
3369		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3370#define stat_update_max_atomic_write(inode)				\
3371	do {								\
3372		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3373		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3374		if (cur > max)						\
3375			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3376	} while (0)
3377#define stat_inc_volatile_write(inode)					\
3378		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3379#define stat_dec_volatile_write(inode)					\
3380		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3381#define stat_update_max_volatile_write(inode)				\
3382	do {								\
3383		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3384		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3385		if (cur > max)						\
3386			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3387	} while (0)
3388#define stat_inc_seg_count(sbi, type, gc_type)				\
3389	do {								\
3390		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3391		si->tot_segs++;						\
3392		if ((type) == SUM_TYPE_DATA) {				\
3393			si->data_segs++;				\
3394			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3395		} else {						\
3396			si->node_segs++;				\
3397			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3398		}							\
3399	} while (0)
3400
3401#define stat_inc_tot_blk_count(si, blks)				\
3402	((si)->tot_blks += (blks))
3403
3404#define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3405	do {								\
3406		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3407		stat_inc_tot_blk_count(si, blks);			\
3408		si->data_blks += (blks);				\
3409		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3410	} while (0)
3411
3412#define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3413	do {								\
3414		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3415		stat_inc_tot_blk_count(si, blks);			\
3416		si->node_blks += (blks);				\
3417		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3418	} while (0)
3419
3420int f2fs_build_stats(struct f2fs_sb_info *sbi);
3421void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3422void __init f2fs_create_root_stats(void);
3423void f2fs_destroy_root_stats(void);
3424#else
3425#define stat_inc_cp_count(si)				do { } while (0)
3426#define stat_inc_bg_cp_count(si)			do { } while (0)
3427#define stat_inc_call_count(si)				do { } while (0)
3428#define stat_inc_bggc_count(si)				do { } while (0)
3429#define stat_io_skip_bggc_count(sbi)			do { } while (0)
3430#define stat_other_skip_bggc_count(sbi)			do { } while (0)
3431#define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3432#define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3433#define stat_inc_total_hit(sb)				do { } while (0)
3434#define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3435#define stat_inc_largest_node_hit(sbi)			do { } while (0)
3436#define stat_inc_cached_node_hit(sbi)			do { } while (0)
3437#define stat_inc_inline_xattr(inode)			do { } while (0)
3438#define stat_dec_inline_xattr(inode)			do { } while (0)
3439#define stat_inc_inline_inode(inode)			do { } while (0)
3440#define stat_dec_inline_inode(inode)			do { } while (0)
3441#define stat_inc_inline_dir(inode)			do { } while (0)
3442#define stat_dec_inline_dir(inode)			do { } while (0)
3443#define stat_inc_atomic_write(inode)			do { } while (0)
3444#define stat_dec_atomic_write(inode)			do { } while (0)
3445#define stat_update_max_atomic_write(inode)		do { } while (0)
3446#define stat_inc_volatile_write(inode)			do { } while (0)
3447#define stat_dec_volatile_write(inode)			do { } while (0)
3448#define stat_update_max_volatile_write(inode)		do { } while (0)
3449#define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3450#define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3451#define stat_inc_block_count(sbi, curseg)		do { } while (0)
3452#define stat_inc_inplace_blocks(sbi)			do { } while (0)
3453#define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3454#define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3455#define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3456#define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3457
3458static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3459static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3460static inline void __init f2fs_create_root_stats(void) { }
3461static inline void f2fs_destroy_root_stats(void) { }
3462#endif
3463
3464extern const struct file_operations f2fs_dir_operations;
3465#ifdef CONFIG_UNICODE
3466extern const struct dentry_operations f2fs_dentry_ops;
3467#endif
3468extern const struct file_operations f2fs_file_operations;
3469extern const struct inode_operations f2fs_file_inode_operations;
3470extern const struct address_space_operations f2fs_dblock_aops;
3471extern const struct address_space_operations f2fs_node_aops;
3472extern const struct address_space_operations f2fs_meta_aops;
3473extern const struct inode_operations f2fs_dir_inode_operations;
3474extern const struct inode_operations f2fs_symlink_inode_operations;
3475extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3476extern const struct inode_operations f2fs_special_inode_operations;
3477extern struct kmem_cache *f2fs_inode_entry_slab;
3478
3479/*
3480 * inline.c
3481 */
3482bool f2fs_may_inline_data(struct inode *inode);
3483bool f2fs_may_inline_dentry(struct inode *inode);
3484void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3485void f2fs_truncate_inline_inode(struct inode *inode,
3486						struct page *ipage, u64 from);
3487int f2fs_read_inline_data(struct inode *inode, struct page *page);
3488int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3489int f2fs_convert_inline_inode(struct inode *inode);
3490int f2fs_write_inline_data(struct inode *inode, struct page *page);
3491bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3492struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3493			struct fscrypt_name *fname, struct page **res_page);
3494int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3495			struct page *ipage);
3496int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3497			const struct qstr *orig_name,
3498			struct inode *inode, nid_t ino, umode_t mode);
3499void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3500				struct page *page, struct inode *dir,
3501				struct inode *inode);
3502bool f2fs_empty_inline_dir(struct inode *dir);
3503int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3504			struct fscrypt_str *fstr);
3505int f2fs_inline_data_fiemap(struct inode *inode,
3506			struct fiemap_extent_info *fieinfo,
3507			__u64 start, __u64 len);
3508
3509/*
3510 * shrinker.c
3511 */
3512unsigned long f2fs_shrink_count(struct shrinker *shrink,
3513			struct shrink_control *sc);
3514unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3515			struct shrink_control *sc);
3516void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3517void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3518
3519/*
3520 * extent_cache.c
3521 */
3522struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3523				struct rb_entry *cached_re, unsigned int ofs);
3524struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3525				struct rb_root_cached *root,
3526				struct rb_node **parent,
3527				unsigned int ofs, bool *leftmost);
3528struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3529		struct rb_entry *cached_re, unsigned int ofs,
3530		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3531		struct rb_node ***insert_p, struct rb_node **insert_parent,
3532		bool force, bool *leftmost);
3533bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3534						struct rb_root_cached *root);
3535unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3536bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3537void f2fs_drop_extent_tree(struct inode *inode);
3538unsigned int f2fs_destroy_extent_node(struct inode *inode);
3539void f2fs_destroy_extent_tree(struct inode *inode);
3540bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3541			struct extent_info *ei);
3542void f2fs_update_extent_cache(struct dnode_of_data *dn);
3543void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3544			pgoff_t fofs, block_t blkaddr, unsigned int len);
3545void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3546int __init f2fs_create_extent_cache(void);
3547void f2fs_destroy_extent_cache(void);
3548
3549/*
3550 * sysfs.c
3551 */
3552int __init f2fs_init_sysfs(void);
3553void f2fs_exit_sysfs(void);
3554int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3555void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3556
3557/* verity.c */
3558extern const struct fsverity_operations f2fs_verityops;
3559
3560/*
3561 * crypto support
3562 */
3563static inline bool f2fs_encrypted_file(struct inode *inode)
3564{
3565	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3566}
3567
3568static inline void f2fs_set_encrypted_inode(struct inode *inode)
3569{
3570#ifdef CONFIG_FS_ENCRYPTION
3571	file_set_encrypt(inode);
3572	f2fs_set_inode_flags(inode);
3573#endif
3574}
3575
3576/*
3577 * Returns true if the reads of the inode's data need to undergo some
3578 * postprocessing step, like decryption or authenticity verification.
3579 */
3580static inline bool f2fs_post_read_required(struct inode *inode)
3581{
3582	return f2fs_encrypted_file(inode) || fsverity_active(inode);
3583}
3584
3585#define F2FS_FEATURE_FUNCS(name, flagname) \
3586static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3587{ \
3588	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3589}
3590
3591F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3592F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3593F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3594F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3595F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3596F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3597F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3598F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3599F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3600F2FS_FEATURE_FUNCS(verity, VERITY);
3601F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3602F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3603
3604#ifdef CONFIG_BLK_DEV_ZONED
3605static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3606				    block_t blkaddr)
3607{
3608	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3609
3610	return test_bit(zno, FDEV(devi).blkz_seq);
3611}
3612#endif
3613
3614static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3615{
3616	return f2fs_sb_has_blkzoned(sbi);
3617}
3618
3619static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3620{
3621	return blk_queue_discard(bdev_get_queue(bdev)) ||
3622	       bdev_is_zoned(bdev);
3623}
3624
3625static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3626{
3627	int i;
3628
3629	if (!f2fs_is_multi_device(sbi))
3630		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3631
3632	for (i = 0; i < sbi->s_ndevs; i++)
3633		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3634			return true;
3635	return false;
3636}
3637
3638static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3639{
3640	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3641					f2fs_hw_should_discard(sbi);
3642}
3643
3644static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3645{
3646	int i;
3647
3648	if (!f2fs_is_multi_device(sbi))
3649		return bdev_read_only(sbi->sb->s_bdev);
3650
3651	for (i = 0; i < sbi->s_ndevs; i++)
3652		if (bdev_read_only(FDEV(i).bdev))
3653			return true;
3654	return false;
3655}
3656
3657
3658static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3659{
3660	clear_opt(sbi, ADAPTIVE);
3661	clear_opt(sbi, LFS);
3662
3663	switch (mt) {
3664	case F2FS_MOUNT_ADAPTIVE:
3665		set_opt(sbi, ADAPTIVE);
3666		break;
3667	case F2FS_MOUNT_LFS:
3668		set_opt(sbi, LFS);
3669		break;
3670	}
3671}
3672
3673static inline bool f2fs_may_encrypt(struct inode *inode)
3674{
3675#ifdef CONFIG_FS_ENCRYPTION
3676	umode_t mode = inode->i_mode;
3677
3678	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3679#else
3680	return false;
3681#endif
3682}
3683
3684static inline int block_unaligned_IO(struct inode *inode,
3685				struct kiocb *iocb, struct iov_iter *iter)
3686{
3687	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3688	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3689	loff_t offset = iocb->ki_pos;
3690	unsigned long align = offset | iov_iter_alignment(iter);
3691
3692	return align & blocksize_mask;
3693}
3694
3695static inline int allow_outplace_dio(struct inode *inode,
3696				struct kiocb *iocb, struct iov_iter *iter)
3697{
3698	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3699	int rw = iov_iter_rw(iter);
3700
3701	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3702				!block_unaligned_IO(inode, iocb, iter));
3703}
3704
3705static inline bool f2fs_force_buffered_io(struct inode *inode,
3706				struct kiocb *iocb, struct iov_iter *iter)
3707{
3708	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3709	int rw = iov_iter_rw(iter);
3710
3711	if (f2fs_post_read_required(inode))
3712		return true;
3713	if (f2fs_is_multi_device(sbi))
3714		return true;
3715	/*
3716	 * for blkzoned device, fallback direct IO to buffered IO, so
3717	 * all IOs can be serialized by log-structured write.
3718	 */
3719	if (f2fs_sb_has_blkzoned(sbi))
3720		return true;
3721	if (test_opt(sbi, LFS) && (rw == WRITE)) {
3722		if (block_unaligned_IO(inode, iocb, iter))
3723			return true;
3724		if (F2FS_IO_ALIGNED(sbi))
3725			return true;
3726	}
3727	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
3728					!IS_SWAPFILE(inode))
3729		return true;
3730
3731	return false;
3732}
3733
3734#ifdef CONFIG_F2FS_FAULT_INJECTION
3735extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3736							unsigned int type);
3737#else
3738#define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3739#endif
3740
3741static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3742{
3743#ifdef CONFIG_QUOTA
3744	if (f2fs_sb_has_quota_ino(sbi))
3745		return true;
3746	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3747		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3748		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3749		return true;
3750#endif
3751	return false;
3752}
3753
3754#define EFSBADCRC	EBADMSG		/* Bad CRC detected */
3755#define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
3756
3757#endif /* _LINUX_F2FS_H */