Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "iodev.h"
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched.h>
 
 
  36#include <linux/cpumask.h>
  37#include <linux/smp.h>
  38#include <linux/anon_inodes.h>
  39#include <linux/profile.h>
  40#include <linux/kvm_para.h>
  41#include <linux/pagemap.h>
  42#include <linux/mman.h>
  43#include <linux/swap.h>
  44#include <linux/bitops.h>
  45#include <linux/spinlock.h>
  46#include <linux/compat.h>
  47#include <linux/srcu.h>
  48#include <linux/hugetlb.h>
  49#include <linux/slab.h>
  50#include <linux/sort.h>
  51#include <linux/bsearch.h>
 
 
 
  52
  53#include <asm/processor.h>
  54#include <asm/io.h>
  55#include <asm/uaccess.h>
  56#include <asm/pgtable.h>
  57
  58#include "coalesced_mmio.h"
  59#include "async_pf.h"
 
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/kvm.h>
  63
 
 
 
  64MODULE_AUTHOR("Qumranet");
  65MODULE_LICENSE("GPL");
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67/*
  68 * Ordering of locks:
  69 *
  70 * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  71 */
  72
  73DEFINE_RAW_SPINLOCK(kvm_lock);
 
  74LIST_HEAD(vm_list);
  75
  76static cpumask_var_t cpus_hardware_enabled;
  77static int kvm_usage_count = 0;
  78static atomic_t hardware_enable_failed;
  79
  80struct kmem_cache *kvm_vcpu_cache;
  81EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  82
  83static __read_mostly struct preempt_ops kvm_preempt_ops;
 
  84
  85struct dentry *kvm_debugfs_dir;
 
 
 
 
  86
  87static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  88			   unsigned long arg);
  89#ifdef CONFIG_COMPAT
  90static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  91				  unsigned long arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92#endif
  93static int hardware_enable_all(void);
  94static void hardware_disable_all(void);
  95
  96static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  97
  98bool kvm_rebooting;
 
 
  99EXPORT_SYMBOL_GPL(kvm_rebooting);
 100
 101static bool largepages_enabled = true;
 
 
 
 
 102
 103static struct page *hwpoison_page;
 104static pfn_t hwpoison_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 105
 106struct page *fault_page;
 107pfn_t fault_pfn;
 108
 109inline int kvm_is_mmio_pfn(pfn_t pfn)
 110{
 111	if (pfn_valid(pfn)) {
 112		int reserved;
 113		struct page *tail = pfn_to_page(pfn);
 114		struct page *head = compound_trans_head(tail);
 115		reserved = PageReserved(head);
 116		if (head != tail) {
 117			/*
 118			 * "head" is not a dangling pointer
 119			 * (compound_trans_head takes care of that)
 120			 * but the hugepage may have been splitted
 121			 * from under us (and we may not hold a
 122			 * reference count on the head page so it can
 123			 * be reused before we run PageReferenced), so
 124			 * we've to check PageTail before returning
 125			 * what we just read.
 126			 */
 127			smp_rmb();
 128			if (PageTail(tail))
 129				return reserved;
 130		}
 131		return PageReserved(tail);
 132	}
 133
 134	return true;
 135}
 136
 
 
 
 
 
 
 
 
 
 
 137/*
 138 * Switches to specified vcpu, until a matching vcpu_put()
 139 */
 140void vcpu_load(struct kvm_vcpu *vcpu)
 141{
 142	int cpu;
 143
 144	mutex_lock(&vcpu->mutex);
 145	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
 146		/* The thread running this VCPU changed. */
 147		struct pid *oldpid = vcpu->pid;
 148		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
 149		rcu_assign_pointer(vcpu->pid, newpid);
 150		synchronize_rcu();
 151		put_pid(oldpid);
 152	}
 153	cpu = get_cpu();
 154	preempt_notifier_register(&vcpu->preempt_notifier);
 155	kvm_arch_vcpu_load(vcpu, cpu);
 156	put_cpu();
 157}
 
 158
 159void vcpu_put(struct kvm_vcpu *vcpu)
 160{
 161	preempt_disable();
 162	kvm_arch_vcpu_put(vcpu);
 163	preempt_notifier_unregister(&vcpu->preempt_notifier);
 
 164	preempt_enable();
 165	mutex_unlock(&vcpu->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166}
 167
 168static void ack_flush(void *_completed)
 169{
 170}
 171
 172static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173{
 174	int i, cpu, me;
 175	cpumask_var_t cpus;
 176	bool called = true;
 177	struct kvm_vcpu *vcpu;
 178
 179	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 180
 181	me = get_cpu();
 
 182	kvm_for_each_vcpu(i, vcpu, kvm) {
 
 
 
 
 183		kvm_make_request(req, vcpu);
 184		cpu = vcpu->cpu;
 185
 186		/* Set ->requests bit before we read ->mode */
 187		smp_mb();
 188
 189		if (cpus != NULL && cpu != -1 && cpu != me &&
 190		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
 191			cpumask_set_cpu(cpu, cpus);
 192	}
 193	if (unlikely(cpus == NULL))
 194		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
 195	else if (!cpumask_empty(cpus))
 196		smp_call_function_many(cpus, ack_flush, NULL, 1);
 197	else
 198		called = false;
 199	put_cpu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200	free_cpumask_var(cpus);
 201	return called;
 202}
 203
 
 
 
 
 
 
 204void kvm_flush_remote_tlbs(struct kvm *kvm)
 205{
 206	long dirty_count = kvm->tlbs_dirty;
 
 
 
 
 207
 208	smp_mb();
 209	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 
 
 
 
 
 
 
 
 
 
 
 210		++kvm->stat.remote_tlb_flush;
 211	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 212}
 
 
 213
 214void kvm_reload_remote_mmus(struct kvm *kvm)
 215{
 216	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 217}
 218
 219int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 
 
 220{
 221	struct page *page;
 222	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223
 
 
 224	mutex_init(&vcpu->mutex);
 225	vcpu->cpu = -1;
 226	vcpu->kvm = kvm;
 227	vcpu->vcpu_id = id;
 228	vcpu->pid = NULL;
 229	init_waitqueue_head(&vcpu->wq);
 230	kvm_async_pf_vcpu_init(vcpu);
 231
 232	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 233	if (!page) {
 234		r = -ENOMEM;
 235		goto fail;
 236	}
 237	vcpu->run = page_address(page);
 238
 239	r = kvm_arch_vcpu_init(vcpu);
 240	if (r < 0)
 241		goto fail_free_run;
 242	return 0;
 243
 244fail_free_run:
 245	free_page((unsigned long)vcpu->run);
 246fail:
 247	return r;
 248}
 249EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 250
 251void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 252{
 253	put_pid(vcpu->pid);
 254	kvm_arch_vcpu_uninit(vcpu);
 
 
 
 
 
 
 
 255	free_page((unsigned long)vcpu->run);
 
 256}
 257EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 258
 259#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 260static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 261{
 262	return container_of(mn, struct kvm, mmu_notifier);
 263}
 264
 265static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
 266					     struct mm_struct *mm,
 267					     unsigned long address)
 268{
 269	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 270	int need_tlb_flush, idx;
 271
 272	/*
 273	 * When ->invalidate_page runs, the linux pte has been zapped
 274	 * already but the page is still allocated until
 275	 * ->invalidate_page returns. So if we increase the sequence
 276	 * here the kvm page fault will notice if the spte can't be
 277	 * established because the page is going to be freed. If
 278	 * instead the kvm page fault establishes the spte before
 279	 * ->invalidate_page runs, kvm_unmap_hva will release it
 280	 * before returning.
 281	 *
 282	 * The sequence increase only need to be seen at spin_unlock
 283	 * time, and not at spin_lock time.
 284	 *
 285	 * Increasing the sequence after the spin_unlock would be
 286	 * unsafe because the kvm page fault could then establish the
 287	 * pte after kvm_unmap_hva returned, without noticing the page
 288	 * is going to be freed.
 289	 */
 290	idx = srcu_read_lock(&kvm->srcu);
 291	spin_lock(&kvm->mmu_lock);
 292
 293	kvm->mmu_notifier_seq++;
 294	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
 295	/* we've to flush the tlb before the pages can be freed */
 296	if (need_tlb_flush)
 297		kvm_flush_remote_tlbs(kvm);
 298
 299	spin_unlock(&kvm->mmu_lock);
 300	srcu_read_unlock(&kvm->srcu, idx);
 301}
 302
 303static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 304					struct mm_struct *mm,
 305					unsigned long address,
 306					pte_t pte)
 307{
 308	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 309	int idx;
 310
 311	idx = srcu_read_lock(&kvm->srcu);
 312	spin_lock(&kvm->mmu_lock);
 313	kvm->mmu_notifier_seq++;
 314	kvm_set_spte_hva(kvm, address, pte);
 
 
 
 315	spin_unlock(&kvm->mmu_lock);
 316	srcu_read_unlock(&kvm->srcu, idx);
 317}
 318
 319static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 320						    struct mm_struct *mm,
 321						    unsigned long start,
 322						    unsigned long end)
 323{
 324	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 325	int need_tlb_flush = 0, idx;
 326
 327	idx = srcu_read_lock(&kvm->srcu);
 328	spin_lock(&kvm->mmu_lock);
 329	/*
 330	 * The count increase must become visible at unlock time as no
 331	 * spte can be established without taking the mmu_lock and
 332	 * count is also read inside the mmu_lock critical section.
 333	 */
 334	kvm->mmu_notifier_count++;
 335	for (; start < end; start += PAGE_SIZE)
 336		need_tlb_flush |= kvm_unmap_hva(kvm, start);
 337	need_tlb_flush |= kvm->tlbs_dirty;
 338	/* we've to flush the tlb before the pages can be freed */
 339	if (need_tlb_flush)
 340		kvm_flush_remote_tlbs(kvm);
 341
 342	spin_unlock(&kvm->mmu_lock);
 343	srcu_read_unlock(&kvm->srcu, idx);
 
 
 344}
 345
 346static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 347						  struct mm_struct *mm,
 348						  unsigned long start,
 349						  unsigned long end)
 350{
 351	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 352
 353	spin_lock(&kvm->mmu_lock);
 354	/*
 355	 * This sequence increase will notify the kvm page fault that
 356	 * the page that is going to be mapped in the spte could have
 357	 * been freed.
 358	 */
 359	kvm->mmu_notifier_seq++;
 360	smp_wmb();
 361	/*
 362	 * The above sequence increase must be visible before the
 363	 * below count decrease, which is ensured by the smp_wmb above
 364	 * in conjunction with the smp_rmb in mmu_notifier_retry().
 365	 */
 366	kvm->mmu_notifier_count--;
 367	spin_unlock(&kvm->mmu_lock);
 368
 369	BUG_ON(kvm->mmu_notifier_count < 0);
 370}
 371
 372static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 373					      struct mm_struct *mm,
 374					      unsigned long address)
 
 375{
 376	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 377	int young, idx;
 378
 379	idx = srcu_read_lock(&kvm->srcu);
 380	spin_lock(&kvm->mmu_lock);
 381
 382	young = kvm_age_hva(kvm, address);
 383	if (young)
 384		kvm_flush_remote_tlbs(kvm);
 385
 386	spin_unlock(&kvm->mmu_lock);
 387	srcu_read_unlock(&kvm->srcu, idx);
 388
 389	return young;
 390}
 391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 393				       struct mm_struct *mm,
 394				       unsigned long address)
 395{
 396	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 397	int young, idx;
 398
 399	idx = srcu_read_lock(&kvm->srcu);
 400	spin_lock(&kvm->mmu_lock);
 401	young = kvm_test_age_hva(kvm, address);
 402	spin_unlock(&kvm->mmu_lock);
 403	srcu_read_unlock(&kvm->srcu, idx);
 404
 405	return young;
 406}
 407
 408static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 409				     struct mm_struct *mm)
 410{
 411	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 412	int idx;
 413
 414	idx = srcu_read_lock(&kvm->srcu);
 415	kvm_arch_flush_shadow(kvm);
 416	srcu_read_unlock(&kvm->srcu, idx);
 417}
 418
 419static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 420	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
 421	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
 422	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
 423	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
 
 424	.test_young		= kvm_mmu_notifier_test_young,
 425	.change_pte		= kvm_mmu_notifier_change_pte,
 426	.release		= kvm_mmu_notifier_release,
 427};
 428
 429static int kvm_init_mmu_notifier(struct kvm *kvm)
 430{
 431	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 432	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 433}
 434
 435#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 436
 437static int kvm_init_mmu_notifier(struct kvm *kvm)
 438{
 439	return 0;
 440}
 441
 442#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 443
 444static void kvm_init_memslots_id(struct kvm *kvm)
 445{
 446	int i;
 447	struct kvm_memslots *slots = kvm->memslots;
 
 
 
 
 448
 449	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 450		slots->id_to_index[i] = slots->memslots[i].id = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451}
 452
 453static struct kvm *kvm_create_vm(unsigned long type)
 454{
 455	int r, i;
 456	struct kvm *kvm = kvm_arch_alloc_vm();
 
 
 457
 458	if (!kvm)
 459		return ERR_PTR(-ENOMEM);
 460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461	r = kvm_arch_init_vm(kvm, type);
 462	if (r)
 463		goto out_err_nodisable;
 464
 465	r = hardware_enable_all();
 466	if (r)
 467		goto out_err_nodisable;
 468
 469#ifdef CONFIG_HAVE_KVM_IRQCHIP
 470	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
 471	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 472#endif
 473
 474	r = -ENOMEM;
 475	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 476	if (!kvm->memslots)
 477		goto out_err_nosrcu;
 478	kvm_init_memslots_id(kvm);
 479	if (init_srcu_struct(&kvm->srcu))
 480		goto out_err_nosrcu;
 481	for (i = 0; i < KVM_NR_BUSES; i++) {
 482		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
 483					GFP_KERNEL);
 484		if (!kvm->buses[i])
 485			goto out_err;
 486	}
 487
 488	spin_lock_init(&kvm->mmu_lock);
 489	kvm->mm = current->mm;
 490	atomic_inc(&kvm->mm->mm_count);
 491	kvm_eventfd_init(kvm);
 492	mutex_init(&kvm->lock);
 493	mutex_init(&kvm->irq_lock);
 494	mutex_init(&kvm->slots_lock);
 495	atomic_set(&kvm->users_count, 1);
 496
 497	r = kvm_init_mmu_notifier(kvm);
 498	if (r)
 
 
 
 
 499		goto out_err;
 500
 501	raw_spin_lock(&kvm_lock);
 502	list_add(&kvm->vm_list, &vm_list);
 503	raw_spin_unlock(&kvm_lock);
 
 
 504
 505	return kvm;
 506
 507out_err:
 508	cleanup_srcu_struct(&kvm->srcu);
 509out_err_nosrcu:
 
 
 
 510	hardware_disable_all();
 511out_err_nodisable:
 
 
 
 512	for (i = 0; i < KVM_NR_BUSES; i++)
 513		kfree(kvm->buses[i]);
 514	kfree(kvm->memslots);
 
 
 
 
 
 515	kvm_arch_free_vm(kvm);
 
 516	return ERR_PTR(r);
 517}
 518
 519static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 520{
 521	if (!memslot->dirty_bitmap)
 522		return;
 523
 524	if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
 525		vfree(memslot->dirty_bitmap);
 526	else
 527		kfree(memslot->dirty_bitmap);
 528
 529	memslot->dirty_bitmap = NULL;
 530}
 531
 532/*
 533 * Free any memory in @free but not in @dont.
 534 */
 535static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
 536				  struct kvm_memory_slot *dont)
 537{
 538	if (!dont || free->rmap != dont->rmap)
 539		vfree(free->rmap);
 540
 541	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 542		kvm_destroy_dirty_bitmap(free);
 543
 544	kvm_arch_free_memslot(free, dont);
 545
 546	free->npages = 0;
 547	free->rmap = NULL;
 548}
 549
 550void kvm_free_physmem(struct kvm *kvm)
 551{
 552	struct kvm_memslots *slots = kvm->memslots;
 553	struct kvm_memory_slot *memslot;
 554
 555	kvm_for_each_memslot(memslot, slots)
 556		kvm_free_physmem_slot(memslot, NULL);
 557
 558	kfree(kvm->memslots);
 
 
 
 
 
 559}
 560
 561static void kvm_destroy_vm(struct kvm *kvm)
 562{
 563	int i;
 564	struct mm_struct *mm = kvm->mm;
 565
 
 
 566	kvm_arch_sync_events(kvm);
 567	raw_spin_lock(&kvm_lock);
 568	list_del(&kvm->vm_list);
 569	raw_spin_unlock(&kvm_lock);
 
 
 570	kvm_free_irq_routing(kvm);
 571	for (i = 0; i < KVM_NR_BUSES; i++)
 572		kvm_io_bus_destroy(kvm->buses[i]);
 
 
 
 
 
 573	kvm_coalesced_mmio_free(kvm);
 574#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 575	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 576#else
 577	kvm_arch_flush_shadow(kvm);
 578#endif
 579	kvm_arch_destroy_vm(kvm);
 580	kvm_free_physmem(kvm);
 
 
 
 581	cleanup_srcu_struct(&kvm->srcu);
 582	kvm_arch_free_vm(kvm);
 
 583	hardware_disable_all();
 584	mmdrop(mm);
 585}
 586
 587void kvm_get_kvm(struct kvm *kvm)
 588{
 589	atomic_inc(&kvm->users_count);
 590}
 591EXPORT_SYMBOL_GPL(kvm_get_kvm);
 592
 593void kvm_put_kvm(struct kvm *kvm)
 594{
 595	if (atomic_dec_and_test(&kvm->users_count))
 596		kvm_destroy_vm(kvm);
 597}
 598EXPORT_SYMBOL_GPL(kvm_put_kvm);
 599
 
 
 
 
 
 
 
 
 
 
 
 
 600
 601static int kvm_vm_release(struct inode *inode, struct file *filp)
 602{
 603	struct kvm *kvm = filp->private_data;
 604
 605	kvm_irqfd_release(kvm);
 606
 607	kvm_put_kvm(kvm);
 608	return 0;
 609}
 610
 611/*
 612 * Allocation size is twice as large as the actual dirty bitmap size.
 613 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 614 */
 615static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 616{
 617#ifndef CONFIG_S390
 618	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 619
 620	if (dirty_bytes > PAGE_SIZE)
 621		memslot->dirty_bitmap = vzalloc(dirty_bytes);
 622	else
 623		memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
 624
 625	if (!memslot->dirty_bitmap)
 626		return -ENOMEM;
 627
 628#endif /* !CONFIG_S390 */
 629	return 0;
 630}
 631
 632static int cmp_memslot(const void *slot1, const void *slot2)
 
 
 
 
 
 633{
 634	struct kvm_memory_slot *s1, *s2;
 
 635
 636	s1 = (struct kvm_memory_slot *)slot1;
 637	s2 = (struct kvm_memory_slot *)slot2;
 638
 639	if (s1->npages < s2->npages)
 640		return 1;
 641	if (s1->npages > s2->npages)
 642		return -1;
 643
 644	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645}
 646
 647/*
 648 * Sort the memslots base on its size, so the larger slots
 649 * will get better fit.
 
 
 
 650 */
 651static void sort_memslots(struct kvm_memslots *slots)
 
 652{
 
 653	int i;
 654
 655	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
 656	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
 
 657
 658	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 659		slots->id_to_index[slots->memslots[i].id] = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660}
 661
 662void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
 
 
 
 
 
 
 
 
 
 663{
 664	if (new) {
 665		int id = new->id;
 666		struct kvm_memory_slot *old = id_to_memslot(slots, id);
 667		unsigned long npages = old->npages;
 668
 669		*old = *new;
 670		if (new->npages != npages)
 671			sort_memslots(slots);
 672	}
 
 673
 674	slots->generation++;
 
 
 
 
 675}
 676
 677/*
 678 * Allocate some memory and give it an address in the guest physical address
 679 * space.
 
 680 *
 681 * Discontiguous memory is allowed, mostly for framebuffers.
 
 682 *
 683 * Must be called holding mmap_sem for write.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 684 */
 685int __kvm_set_memory_region(struct kvm *kvm,
 686			    struct kvm_userspace_memory_region *mem,
 687			    int user_alloc)
 688{
 689	int r;
 690	gfn_t base_gfn;
 691	unsigned long npages;
 692	unsigned long i;
 693	struct kvm_memory_slot *memslot;
 694	struct kvm_memory_slot old, new;
 695	struct kvm_memslots *slots, *old_memslots;
 696
 697	r = -EINVAL;
 698	/* General sanity checks */
 699	if (mem->memory_size & (PAGE_SIZE - 1))
 700		goto out;
 701	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 702		goto out;
 703	/* We can read the guest memory with __xxx_user() later on. */
 704	if (user_alloc &&
 705	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 706	     !access_ok(VERIFY_WRITE,
 707			(void __user *)(unsigned long)mem->userspace_addr,
 708			mem->memory_size)))
 709		goto out;
 710	if (mem->slot >= KVM_MEM_SLOTS_NUM)
 711		goto out;
 712	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 713		goto out;
 714
 715	memslot = id_to_memslot(kvm->memslots, mem->slot);
 716	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 717	npages = mem->memory_size >> PAGE_SHIFT;
 
 
 
 
 
 718
 719	r = -EINVAL;
 720	if (npages > KVM_MEM_MAX_NR_PAGES)
 721		goto out;
 722
 723	if (!npages)
 724		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
 
 725
 726	new = old = *memslot;
 
 727
 728	new.id = mem->slot;
 729	new.base_gfn = base_gfn;
 730	new.npages = npages;
 731	new.flags = mem->flags;
 732
 733	/* Disallow changing a memory slot's size. */
 734	r = -EINVAL;
 735	if (npages && old.npages && npages != old.npages)
 736		goto out_free;
 
 737
 738	/* Check for overlaps */
 739	r = -EEXIST;
 740	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
 741		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
 742
 743		if (s == memslot || !s->npages)
 744			continue;
 745		if (!((base_gfn + npages <= s->base_gfn) ||
 746		      (base_gfn >= s->base_gfn + s->npages)))
 747			goto out_free;
 748	}
 749
 750	/* Free page dirty bitmap if unneeded */
 751	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 752		new.dirty_bitmap = NULL;
 
 
 
 
 753
 754	r = -ENOMEM;
 
 
 
 
 
 
 
 755
 756	/* Allocate if a slot is being created */
 757	if (npages && !old.npages) {
 758		new.user_alloc = user_alloc;
 759		new.userspace_addr = mem->userspace_addr;
 760#ifndef CONFIG_S390
 761		new.rmap = vzalloc(npages * sizeof(*new.rmap));
 762		if (!new.rmap)
 763			goto out_free;
 764#endif /* not defined CONFIG_S390 */
 765		if (kvm_arch_create_memslot(&new, npages))
 766			goto out_free;
 767	}
 768
 769	/* Allocate page dirty bitmap if needed */
 770	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 771		if (kvm_create_dirty_bitmap(&new) < 0)
 772			goto out_free;
 773		/* destroy any largepage mappings for dirty tracking */
 774	}
 775
 776	if (!npages) {
 777		struct kvm_memory_slot *slot;
 778
 779		r = -ENOMEM;
 780		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
 781				GFP_KERNEL);
 782		if (!slots)
 783			goto out_free;
 784		slot = id_to_memslot(slots, mem->slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785		slot->flags |= KVM_MEMSLOT_INVALID;
 786
 787		update_memslots(slots, NULL);
 
 
 
 
 
 
 788
 789		old_memslots = kvm->memslots;
 790		rcu_assign_pointer(kvm->memslots, slots);
 791		synchronize_srcu_expedited(&kvm->srcu);
 792		/* From this point no new shadow pages pointing to a deleted
 793		 * memslot will be created.
 794		 *
 795		 * validation of sp->gfn happens in:
 796		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
 797		 * 	- kvm_is_visible_gfn (mmu_check_roots)
 798		 */
 799		kvm_arch_flush_shadow(kvm);
 800		kfree(old_memslots);
 801	}
 802
 803	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
 804	if (r)
 805		goto out_free;
 806
 807	/* map/unmap the pages in iommu page table */
 808	if (npages) {
 809		r = kvm_iommu_map_pages(kvm, &new);
 810		if (r)
 811			goto out_free;
 812	} else
 813		kvm_iommu_unmap_pages(kvm, &old);
 814
 815	r = -ENOMEM;
 816	slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
 817			GFP_KERNEL);
 818	if (!slots)
 819		goto out_free;
 820
 821	/* actual memory is freed via old in kvm_free_physmem_slot below */
 822	if (!npages) {
 823		new.rmap = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824		new.dirty_bitmap = NULL;
 825		memset(&new.arch, 0, sizeof(new.arch));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826	}
 827
 828	update_memslots(slots, &new);
 829	old_memslots = kvm->memslots;
 830	rcu_assign_pointer(kvm->memslots, slots);
 831	synchronize_srcu_expedited(&kvm->srcu);
 
 
 
 
 
 
 832
 833	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
 
 
 
 
 
 
 834
 835	/*
 836	 * If the new memory slot is created, we need to clear all
 837	 * mmio sptes.
 838	 */
 839	if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
 840		kvm_arch_flush_shadow(kvm);
 841
 842	kvm_free_physmem_slot(&old, &new);
 843	kfree(old_memslots);
 
 844
 
 
 845	return 0;
 846
 847out_free:
 848	kvm_free_physmem_slot(&new, &old);
 849out:
 850	return r;
 851
 852}
 853EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
 854
 855int kvm_set_memory_region(struct kvm *kvm,
 856			  struct kvm_userspace_memory_region *mem,
 857			  int user_alloc)
 858{
 859	int r;
 860
 861	mutex_lock(&kvm->slots_lock);
 862	r = __kvm_set_memory_region(kvm, mem, user_alloc);
 863	mutex_unlock(&kvm->slots_lock);
 864	return r;
 865}
 866EXPORT_SYMBOL_GPL(kvm_set_memory_region);
 867
 868int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
 869				   struct
 870				   kvm_userspace_memory_region *mem,
 871				   int user_alloc)
 872{
 873	if (mem->slot >= KVM_MEMORY_SLOTS)
 874		return -EINVAL;
 875	return kvm_set_memory_region(kvm, mem, user_alloc);
 
 876}
 877
 878int kvm_get_dirty_log(struct kvm *kvm,
 879			struct kvm_dirty_log *log, int *is_dirty)
 
 
 
 
 
 
 
 
 880{
 881	struct kvm_memory_slot *memslot;
 882	int r, i;
 883	unsigned long n;
 884	unsigned long any = 0;
 885
 886	r = -EINVAL;
 887	if (log->slot >= KVM_MEMORY_SLOTS)
 888		goto out;
 889
 890	memslot = id_to_memslot(kvm->memslots, log->slot);
 891	r = -ENOENT;
 892	if (!memslot->dirty_bitmap)
 893		goto out;
 894
 895	n = kvm_dirty_bitmap_bytes(memslot);
 
 
 
 
 
 
 
 896
 897	for (i = 0; !any && i < n/sizeof(long); ++i)
 898		any = memslot->dirty_bitmap[i];
 899
 900	r = -EFAULT;
 901	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
 902		goto out;
 903
 904	if (any)
 905		*is_dirty = 1;
 906
 907	r = 0;
 908out:
 909	return r;
 910}
 
 911
 912bool kvm_largepages_enabled(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913{
 914	return largepages_enabled;
 915}
 
 
 
 
 
 
 
 
 
 
 916
 917void kvm_disable_largepages(void)
 918{
 919	largepages_enabled = false;
 920}
 921EXPORT_SYMBOL_GPL(kvm_disable_largepages);
 922
 923int is_error_page(struct page *page)
 924{
 925	return page == bad_page || page == hwpoison_page || page == fault_page;
 926}
 927EXPORT_SYMBOL_GPL(is_error_page);
 928
 929int is_error_pfn(pfn_t pfn)
 930{
 931	return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
 932}
 933EXPORT_SYMBOL_GPL(is_error_pfn);
 934
 935int is_hwpoison_pfn(pfn_t pfn)
 936{
 937	return pfn == hwpoison_pfn;
 938}
 939EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940
 941int is_fault_pfn(pfn_t pfn)
 942{
 943	return pfn == fault_pfn;
 944}
 945EXPORT_SYMBOL_GPL(is_fault_pfn);
 946
 947int is_noslot_pfn(pfn_t pfn)
 948{
 949	return pfn == bad_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950}
 951EXPORT_SYMBOL_GPL(is_noslot_pfn);
 952
 953int is_invalid_pfn(pfn_t pfn)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 954{
 955	return pfn == hwpoison_pfn || pfn == fault_pfn;
 
 
 
 
 
 
 
 956}
 957EXPORT_SYMBOL_GPL(is_invalid_pfn);
 958
 959static inline unsigned long bad_hva(void)
 
 
 
 
 
 
 
 960{
 961	return PAGE_OFFSET;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962}
 963
 964int kvm_is_error_hva(unsigned long addr)
 
 965{
 966	return addr == bad_hva();
 
 
 
 
 
 
 
 967}
 968EXPORT_SYMBOL_GPL(kvm_is_error_hva);
 969
 970struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
 971{
 972	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
 973}
 974EXPORT_SYMBOL_GPL(gfn_to_memslot);
 975
 976int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
 977{
 978	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
 
 
 979
 980	if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
 981	      memslot->flags & KVM_MEMSLOT_INVALID)
 982		return 0;
 983
 984	return 1;
 985}
 986EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
 987
 988unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
 
 
 
 
 
 
 
 
 989{
 990	struct vm_area_struct *vma;
 991	unsigned long addr, size;
 992
 993	size = PAGE_SIZE;
 994
 995	addr = gfn_to_hva(kvm, gfn);
 996	if (kvm_is_error_hva(addr))
 997		return PAGE_SIZE;
 998
 999	down_read(&current->mm->mmap_sem);
1000	vma = find_vma(current->mm, addr);
1001	if (!vma)
1002		goto out;
1003
1004	size = vma_kernel_pagesize(vma);
1005
1006out:
1007	up_read(&current->mm->mmap_sem);
1008
1009	return size;
1010}
1011
1012static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1013				     gfn_t *nr_pages)
 
 
 
 
 
1014{
1015	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1016		return bad_hva();
 
 
 
1017
1018	if (nr_pages)
1019		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1020
1021	return gfn_to_hva_memslot(slot, gfn);
 
 
 
 
 
 
1022}
1023
 
 
 
 
 
 
 
1024unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1025{
1026	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1027}
1028EXPORT_SYMBOL_GPL(gfn_to_hva);
1029
1030static pfn_t get_fault_pfn(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031{
1032	get_page(fault_page);
1033	return fault_pfn;
 
 
 
 
1034}
1035
1036int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1037	unsigned long start, int write, struct page **page)
1038{
1039	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1040
1041	if (write)
1042		flags |= FOLL_WRITE;
 
 
 
 
1043
1044	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1045}
1046
1047static inline int check_user_page_hwpoison(unsigned long addr)
1048{
1049	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1050
1051	rc = __get_user_pages(current, current->mm, addr, 1,
1052			      flags, NULL, NULL, NULL);
1053	return rc == -EHWPOISON;
1054}
1055
1056static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1057			bool *async, bool write_fault, bool *writable)
 
 
 
 
 
1058{
1059	struct page *page[1];
1060	int npages = 0;
1061	pfn_t pfn;
1062
1063	/* we can do it either atomically or asynchronously, not both */
1064	BUG_ON(atomic && async);
 
 
 
 
 
1065
1066	BUG_ON(!write_fault && !writable);
 
1067
1068	if (writable)
1069		*writable = true;
 
 
1070
1071	if (atomic || async)
1072		npages = __get_user_pages_fast(addr, 1, 1, page);
1073
1074	if (unlikely(npages != 1) && !atomic) {
1075		might_sleep();
 
 
 
 
 
 
 
 
1076
1077		if (writable)
1078			*writable = write_fault;
1079
1080		if (async) {
1081			down_read(&current->mm->mmap_sem);
1082			npages = get_user_page_nowait(current, current->mm,
1083						     addr, write_fault, page);
1084			up_read(&current->mm->mmap_sem);
1085		} else
1086			npages = get_user_pages_fast(addr, 1, write_fault,
1087						     page);
1088
1089		/* map read fault as writable if possible */
1090		if (unlikely(!write_fault) && npages == 1) {
1091			struct page *wpage[1];
1092
1093			npages = __get_user_pages_fast(addr, 1, 1, wpage);
1094			if (npages == 1) {
1095				*writable = true;
1096				put_page(page[0]);
1097				page[0] = wpage[0];
1098			}
1099			npages = 1;
 
 
 
 
 
 
1100		}
1101	}
 
 
 
1102
1103	if (unlikely(npages != 1)) {
1104		struct vm_area_struct *vma;
 
 
1105
1106		if (atomic)
1107			return get_fault_pfn();
1108
1109		down_read(&current->mm->mmap_sem);
1110		if (npages == -EHWPOISON ||
1111			(!async && check_user_page_hwpoison(addr))) {
1112			up_read(&current->mm->mmap_sem);
1113			get_page(hwpoison_page);
1114			return page_to_pfn(hwpoison_page);
1115		}
1116
1117		vma = find_vma_intersection(current->mm, addr, addr+1);
 
 
 
 
 
 
1118
1119		if (vma == NULL)
1120			pfn = get_fault_pfn();
1121		else if ((vma->vm_flags & VM_PFNMAP)) {
1122			pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1123				vma->vm_pgoff;
1124			BUG_ON(!kvm_is_mmio_pfn(pfn));
1125		} else {
1126			if (async && (vma->vm_flags & VM_WRITE))
1127				*async = true;
1128			pfn = get_fault_pfn();
1129		}
1130		up_read(&current->mm->mmap_sem);
1131	} else
1132		pfn = page_to_pfn(page[0]);
1133
1134	return pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135}
1136
1137pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138{
1139	return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140}
1141EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1142
1143static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1144			  bool write_fault, bool *writable)
 
1145{
1146	unsigned long addr;
1147
1148	if (async)
1149		*async = false;
 
 
 
1150
1151	addr = gfn_to_hva(kvm, gfn);
1152	if (kvm_is_error_hva(addr)) {
1153		get_page(bad_page);
1154		return page_to_pfn(bad_page);
 
 
 
 
 
 
 
1155	}
1156
1157	return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
 
1158}
 
1159
1160pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
 
1161{
1162	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
 
1163}
1164EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1165
1166pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1167		       bool write_fault, bool *writable)
1168{
1169	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1170}
1171EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1172
1173pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1174{
1175	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1176}
1177EXPORT_SYMBOL_GPL(gfn_to_pfn);
1178
1179pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1180		      bool *writable)
1181{
1182	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1183}
1184EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
 
 
 
 
 
 
1185
1186pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1187			 struct kvm_memory_slot *slot, gfn_t gfn)
1188{
1189	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1190	return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1191}
 
1192
1193int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1194								  int nr_pages)
1195{
1196	unsigned long addr;
1197	gfn_t entry;
1198
1199	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1200	if (kvm_is_error_hva(addr))
1201		return -1;
1202
1203	if (entry < nr_pages)
1204		return 0;
1205
1206	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1207}
1208EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1209
 
 
 
 
 
 
 
 
 
 
 
 
 
1210struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1211{
1212	pfn_t pfn;
1213
1214	pfn = gfn_to_pfn(kvm, gfn);
1215	if (!kvm_is_mmio_pfn(pfn))
1216		return pfn_to_page(pfn);
1217
1218	WARN_ON(kvm_is_mmio_pfn(pfn));
 
 
 
 
 
 
 
 
 
 
1219
1220	get_page(bad_page);
1221	return bad_page;
 
 
1222}
1223
1224EXPORT_SYMBOL_GPL(gfn_to_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225
1226void kvm_release_page_clean(struct page *page)
1227{
 
 
1228	kvm_release_pfn_clean(page_to_pfn(page));
1229}
1230EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1231
1232void kvm_release_pfn_clean(pfn_t pfn)
1233{
1234	if (!kvm_is_mmio_pfn(pfn))
1235		put_page(pfn_to_page(pfn));
1236}
1237EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1238
1239void kvm_release_page_dirty(struct page *page)
1240{
 
 
1241	kvm_release_pfn_dirty(page_to_pfn(page));
1242}
1243EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1244
1245void kvm_release_pfn_dirty(pfn_t pfn)
1246{
1247	kvm_set_pfn_dirty(pfn);
1248	kvm_release_pfn_clean(pfn);
1249}
1250EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1251
1252void kvm_set_page_dirty(struct page *page)
1253{
1254	kvm_set_pfn_dirty(page_to_pfn(page));
1255}
1256EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1257
1258void kvm_set_pfn_dirty(pfn_t pfn)
1259{
1260	if (!kvm_is_mmio_pfn(pfn)) {
1261		struct page *page = pfn_to_page(pfn);
1262		if (!PageReserved(page))
1263			SetPageDirty(page);
1264	}
1265}
1266EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1267
1268void kvm_set_pfn_accessed(pfn_t pfn)
1269{
1270	if (!kvm_is_mmio_pfn(pfn))
1271		mark_page_accessed(pfn_to_page(pfn));
1272}
1273EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1274
1275void kvm_get_pfn(pfn_t pfn)
1276{
1277	if (!kvm_is_mmio_pfn(pfn))
1278		get_page(pfn_to_page(pfn));
1279}
1280EXPORT_SYMBOL_GPL(kvm_get_pfn);
1281
1282static int next_segment(unsigned long len, int offset)
1283{
1284	if (len > PAGE_SIZE - offset)
1285		return PAGE_SIZE - offset;
1286	else
1287		return len;
1288}
1289
1290int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1291			int len)
1292{
1293	int r;
1294	unsigned long addr;
1295
1296	addr = gfn_to_hva(kvm, gfn);
1297	if (kvm_is_error_hva(addr))
1298		return -EFAULT;
1299	r = __copy_from_user(data, (void __user *)addr + offset, len);
1300	if (r)
1301		return -EFAULT;
1302	return 0;
1303}
 
 
 
 
 
 
 
 
1304EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1305
 
 
 
 
 
 
 
 
 
1306int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1307{
1308	gfn_t gfn = gpa >> PAGE_SHIFT;
1309	int seg;
1310	int offset = offset_in_page(gpa);
1311	int ret;
1312
1313	while ((seg = next_segment(len, offset)) != 0) {
1314		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1315		if (ret < 0)
1316			return ret;
1317		offset = 0;
1318		len -= seg;
1319		data += seg;
1320		++gfn;
1321	}
1322	return 0;
1323}
1324EXPORT_SYMBOL_GPL(kvm_read_guest);
1325
1326int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1327			  unsigned long len)
1328{
1329	int r;
1330	unsigned long addr;
1331	gfn_t gfn = gpa >> PAGE_SHIFT;
 
1332	int offset = offset_in_page(gpa);
 
1333
1334	addr = gfn_to_hva(kvm, gfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335	if (kvm_is_error_hva(addr))
1336		return -EFAULT;
1337	pagefault_disable();
1338	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1339	pagefault_enable();
1340	if (r)
1341		return -EFAULT;
1342	return 0;
1343}
1344EXPORT_SYMBOL(kvm_read_guest_atomic);
1345
1346int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1347			 int offset, int len)
 
 
 
 
 
 
 
 
 
 
 
1348{
1349	int r;
1350	unsigned long addr;
1351
1352	addr = gfn_to_hva(kvm, gfn);
1353	if (kvm_is_error_hva(addr))
1354		return -EFAULT;
1355	r = __copy_to_user((void __user *)addr + offset, data, len);
1356	if (r)
1357		return -EFAULT;
1358	mark_page_dirty(kvm, gfn);
1359	return 0;
1360}
 
 
 
 
 
 
 
 
1361EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1362
 
 
 
 
 
 
 
 
 
1363int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1364		    unsigned long len)
1365{
1366	gfn_t gfn = gpa >> PAGE_SHIFT;
1367	int seg;
1368	int offset = offset_in_page(gpa);
1369	int ret;
1370
1371	while ((seg = next_segment(len, offset)) != 0) {
1372		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1373		if (ret < 0)
1374			return ret;
1375		offset = 0;
1376		len -= seg;
1377		data += seg;
1378		++gfn;
1379	}
1380	return 0;
1381}
 
1382
1383int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1384			      gpa_t gpa)
1385{
1386	struct kvm_memslots *slots = kvm_memslots(kvm);
1387	int offset = offset_in_page(gpa);
1388	gfn_t gfn = gpa >> PAGE_SHIFT;
 
 
 
1389
1390	ghc->gpa = gpa;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391	ghc->generation = slots->generation;
1392	ghc->memslot = gfn_to_memslot(kvm, gfn);
1393	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1394	if (!kvm_is_error_hva(ghc->hva))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395		ghc->hva += offset;
1396	else
1397		return -EFAULT;
1398
 
 
1399	return 0;
1400}
 
 
 
 
 
 
 
1401EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1402
1403int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1404			   void *data, unsigned long len)
 
1405{
1406	struct kvm_memslots *slots = kvm_memslots(kvm);
1407	int r;
 
1408
1409	if (slots->generation != ghc->generation)
1410		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
 
 
 
 
1411
1412	if (kvm_is_error_hva(ghc->hva))
1413		return -EFAULT;
1414
1415	r = __copy_to_user((void __user *)ghc->hva, data, len);
 
 
 
1416	if (r)
1417		return -EFAULT;
1418	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1419
1420	return 0;
1421}
1422EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1423
1424int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1425			   void *data, unsigned long len)
1426{
 
 
 
 
 
 
 
 
1427	struct kvm_memslots *slots = kvm_memslots(kvm);
1428	int r;
 
 
 
1429
1430	if (slots->generation != ghc->generation)
1431		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
 
 
1432
1433	if (kvm_is_error_hva(ghc->hva))
1434		return -EFAULT;
1435
1436	r = __copy_from_user(data, (void __user *)ghc->hva, len);
 
 
 
1437	if (r)
1438		return -EFAULT;
1439
1440	return 0;
1441}
 
 
 
 
 
 
 
1442EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1443
1444int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1445{
1446	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1447				    offset, len);
 
1448}
1449EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1450
1451int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1452{
1453	gfn_t gfn = gpa >> PAGE_SHIFT;
1454	int seg;
1455	int offset = offset_in_page(gpa);
1456	int ret;
1457
1458        while ((seg = next_segment(len, offset)) != 0) {
1459		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1460		if (ret < 0)
1461			return ret;
1462		offset = 0;
1463		len -= seg;
1464		++gfn;
1465	}
1466	return 0;
1467}
1468EXPORT_SYMBOL_GPL(kvm_clear_guest);
1469
1470void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1471			     gfn_t gfn)
1472{
1473	if (memslot && memslot->dirty_bitmap) {
1474		unsigned long rel_gfn = gfn - memslot->base_gfn;
1475
1476		/* TODO: introduce set_bit_le() and use it */
1477		test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
1478	}
1479}
1480
1481void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1482{
1483	struct kvm_memory_slot *memslot;
1484
1485	memslot = gfn_to_memslot(kvm, gfn);
1486	mark_page_dirty_in_slot(kvm, memslot, gfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1487}
1488
1489/*
1490 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1491 */
1492void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1493{
1494	DEFINE_WAIT(wait);
 
 
 
 
 
 
 
 
1495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496	for (;;) {
1497		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1498
1499		if (kvm_arch_vcpu_runnable(vcpu)) {
1500			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1501			break;
1502		}
1503		if (kvm_cpu_has_pending_timer(vcpu))
1504			break;
1505		if (signal_pending(current))
1506			break;
1507
 
1508		schedule();
1509	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510
1511	finish_wait(&vcpu->wq, &wait);
1512}
 
1513
1514#ifndef CONFIG_S390
1515/*
1516 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1517 */
1518void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1519{
1520	int me;
1521	int cpu = vcpu->cpu;
1522	wait_queue_head_t *wqp;
1523
1524	wqp = kvm_arch_vcpu_wq(vcpu);
1525	if (waitqueue_active(wqp)) {
1526		wake_up_interruptible(wqp);
1527		++vcpu->stat.halt_wakeup;
1528	}
1529
1530	me = get_cpu();
1531	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1532		if (kvm_arch_vcpu_should_kick(vcpu))
1533			smp_send_reschedule(cpu);
1534	put_cpu();
1535}
 
1536#endif /* !CONFIG_S390 */
1537
1538void kvm_resched(struct kvm_vcpu *vcpu)
1539{
1540	if (!need_resched())
1541		return;
1542	cond_resched();
1543}
1544EXPORT_SYMBOL_GPL(kvm_resched);
1545
1546bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1547{
1548	struct pid *pid;
1549	struct task_struct *task = NULL;
 
1550
1551	rcu_read_lock();
1552	pid = rcu_dereference(target->pid);
1553	if (pid)
1554		task = get_pid_task(target->pid, PIDTYPE_PID);
1555	rcu_read_unlock();
1556	if (!task)
1557		return false;
1558	if (task->flags & PF_VCPU) {
1559		put_task_struct(task);
1560		return false;
1561	}
1562	if (yield_to(task, 1)) {
1563		put_task_struct(task);
1564		return true;
1565	}
1566	put_task_struct(task);
1567	return false;
 
1568}
1569EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1570
1571void kvm_vcpu_on_spin(struct kvm_vcpu *me)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572{
1573	struct kvm *kvm = me->kvm;
1574	struct kvm_vcpu *vcpu;
1575	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1576	int yielded = 0;
 
1577	int pass;
1578	int i;
1579
 
1580	/*
1581	 * We boost the priority of a VCPU that is runnable but not
1582	 * currently running, because it got preempted by something
1583	 * else and called schedule in __vcpu_run.  Hopefully that
1584	 * VCPU is holding the lock that we need and will release it.
1585	 * We approximate round-robin by starting at the last boosted VCPU.
1586	 */
1587	for (pass = 0; pass < 2 && !yielded; pass++) {
1588		kvm_for_each_vcpu(i, vcpu, kvm) {
1589			if (!pass && i < last_boosted_vcpu) {
1590				i = last_boosted_vcpu;
1591				continue;
1592			} else if (pass && i > last_boosted_vcpu)
1593				break;
 
 
1594			if (vcpu == me)
1595				continue;
1596			if (waitqueue_active(&vcpu->wq))
 
 
 
 
1597				continue;
1598			if (kvm_vcpu_yield_to(vcpu)) {
 
 
 
 
1599				kvm->last_boosted_vcpu = i;
1600				yielded = 1;
1601				break;
 
 
 
 
1602			}
1603		}
1604	}
 
 
 
 
1605}
1606EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1607
1608static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1609{
1610	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1611	struct page *page;
1612
1613	if (vmf->pgoff == 0)
1614		page = virt_to_page(vcpu->run);
1615#ifdef CONFIG_X86
1616	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1617		page = virt_to_page(vcpu->arch.pio_data);
1618#endif
1619#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1620	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1621		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1622#endif
1623	else
1624		return kvm_arch_vcpu_fault(vcpu, vmf);
1625	get_page(page);
1626	vmf->page = page;
1627	return 0;
1628}
1629
1630static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1631	.fault = kvm_vcpu_fault,
1632};
1633
1634static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1635{
1636	vma->vm_ops = &kvm_vcpu_vm_ops;
1637	return 0;
1638}
1639
1640static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1641{
1642	struct kvm_vcpu *vcpu = filp->private_data;
1643
1644	kvm_put_kvm(vcpu->kvm);
1645	return 0;
1646}
1647
1648static struct file_operations kvm_vcpu_fops = {
1649	.release        = kvm_vcpu_release,
1650	.unlocked_ioctl = kvm_vcpu_ioctl,
1651#ifdef CONFIG_COMPAT
1652	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1653#endif
1654	.mmap           = kvm_vcpu_mmap,
1655	.llseek		= noop_llseek,
 
1656};
1657
1658/*
1659 * Allocates an inode for the vcpu.
1660 */
1661static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1662{
1663	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664}
1665
1666/*
1667 * Creates some virtual cpus.  Good luck creating more than one.
1668 */
1669static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1670{
1671	int r;
1672	struct kvm_vcpu *vcpu, *v;
 
1673
1674	vcpu = kvm_arch_vcpu_create(kvm, id);
1675	if (IS_ERR(vcpu))
1676		return PTR_ERR(vcpu);
1677
1678	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
 
 
 
 
 
 
 
1679
1680	r = kvm_arch_vcpu_setup(vcpu);
1681	if (r)
1682		goto vcpu_destroy;
1683
1684	mutex_lock(&kvm->lock);
1685	if (!kvm_vcpu_compatible(vcpu)) {
1686		r = -EINVAL;
1687		goto unlock_vcpu_destroy;
1688	}
1689	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1690		r = -EINVAL;
1691		goto unlock_vcpu_destroy;
 
 
 
1692	}
 
1693
1694	kvm_for_each_vcpu(r, v, kvm)
1695		if (v->vcpu_id == id) {
1696			r = -EEXIST;
1697			goto unlock_vcpu_destroy;
1698		}
 
 
 
 
 
 
1699
1700	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
 
1701
1702	/* Now it's all set up, let userspace reach it */
1703	kvm_get_kvm(kvm);
1704	r = create_vcpu_fd(vcpu);
1705	if (r < 0) {
1706		kvm_put_kvm(kvm);
1707		goto unlock_vcpu_destroy;
1708	}
1709
1710	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
 
 
 
 
 
1711	smp_wmb();
1712	atomic_inc(&kvm->online_vcpus);
1713
1714	mutex_unlock(&kvm->lock);
 
 
1715	return r;
1716
1717unlock_vcpu_destroy:
1718	mutex_unlock(&kvm->lock);
1719vcpu_destroy:
1720	kvm_arch_vcpu_destroy(vcpu);
 
 
 
 
 
 
 
 
1721	return r;
1722}
1723
1724static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1725{
1726	if (sigset) {
1727		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1728		vcpu->sigset_active = 1;
1729		vcpu->sigset = *sigset;
1730	} else
1731		vcpu->sigset_active = 0;
1732	return 0;
1733}
1734
1735static long kvm_vcpu_ioctl(struct file *filp,
1736			   unsigned int ioctl, unsigned long arg)
1737{
1738	struct kvm_vcpu *vcpu = filp->private_data;
1739	void __user *argp = (void __user *)arg;
1740	int r;
1741	struct kvm_fpu *fpu = NULL;
1742	struct kvm_sregs *kvm_sregs = NULL;
1743
1744	if (vcpu->kvm->mm != current->mm)
1745		return -EIO;
1746
1747#if defined(CONFIG_S390) || defined(CONFIG_PPC)
 
 
1748	/*
1749	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1750	 * so vcpu_load() would break it.
1751	 */
1752	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1753		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1754#endif
1755
1756
1757	vcpu_load(vcpu);
 
1758	switch (ioctl) {
1759	case KVM_RUN:
 
1760		r = -EINVAL;
1761		if (arg)
1762			goto out;
1763		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1765		break;
 
1766	case KVM_GET_REGS: {
1767		struct kvm_regs *kvm_regs;
1768
1769		r = -ENOMEM;
1770		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1771		if (!kvm_regs)
1772			goto out;
1773		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1774		if (r)
1775			goto out_free1;
1776		r = -EFAULT;
1777		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1778			goto out_free1;
1779		r = 0;
1780out_free1:
1781		kfree(kvm_regs);
1782		break;
1783	}
1784	case KVM_SET_REGS: {
1785		struct kvm_regs *kvm_regs;
1786
1787		r = -ENOMEM;
1788		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1789		if (IS_ERR(kvm_regs)) {
1790			r = PTR_ERR(kvm_regs);
1791			goto out;
1792		}
1793		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1794		if (r)
1795			goto out_free2;
1796		r = 0;
1797out_free2:
1798		kfree(kvm_regs);
1799		break;
1800	}
1801	case KVM_GET_SREGS: {
1802		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
 
1803		r = -ENOMEM;
1804		if (!kvm_sregs)
1805			goto out;
1806		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1807		if (r)
1808			goto out;
1809		r = -EFAULT;
1810		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1811			goto out;
1812		r = 0;
1813		break;
1814	}
1815	case KVM_SET_SREGS: {
1816		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1817		if (IS_ERR(kvm_sregs)) {
1818			r = PTR_ERR(kvm_sregs);
 
1819			goto out;
1820		}
1821		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1822		if (r)
1823			goto out;
1824		r = 0;
1825		break;
1826	}
1827	case KVM_GET_MP_STATE: {
1828		struct kvm_mp_state mp_state;
1829
1830		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1831		if (r)
1832			goto out;
1833		r = -EFAULT;
1834		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1835			goto out;
1836		r = 0;
1837		break;
1838	}
1839	case KVM_SET_MP_STATE: {
1840		struct kvm_mp_state mp_state;
1841
1842		r = -EFAULT;
1843		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1844			goto out;
1845		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1846		if (r)
1847			goto out;
1848		r = 0;
1849		break;
1850	}
1851	case KVM_TRANSLATE: {
1852		struct kvm_translation tr;
1853
1854		r = -EFAULT;
1855		if (copy_from_user(&tr, argp, sizeof tr))
1856			goto out;
1857		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1858		if (r)
1859			goto out;
1860		r = -EFAULT;
1861		if (copy_to_user(argp, &tr, sizeof tr))
1862			goto out;
1863		r = 0;
1864		break;
1865	}
1866	case KVM_SET_GUEST_DEBUG: {
1867		struct kvm_guest_debug dbg;
1868
1869		r = -EFAULT;
1870		if (copy_from_user(&dbg, argp, sizeof dbg))
1871			goto out;
1872		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1873		if (r)
1874			goto out;
1875		r = 0;
1876		break;
1877	}
1878	case KVM_SET_SIGNAL_MASK: {
1879		struct kvm_signal_mask __user *sigmask_arg = argp;
1880		struct kvm_signal_mask kvm_sigmask;
1881		sigset_t sigset, *p;
1882
1883		p = NULL;
1884		if (argp) {
1885			r = -EFAULT;
1886			if (copy_from_user(&kvm_sigmask, argp,
1887					   sizeof kvm_sigmask))
1888				goto out;
1889			r = -EINVAL;
1890			if (kvm_sigmask.len != sizeof sigset)
1891				goto out;
1892			r = -EFAULT;
1893			if (copy_from_user(&sigset, sigmask_arg->sigset,
1894					   sizeof sigset))
1895				goto out;
1896			p = &sigset;
1897		}
1898		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1899		break;
1900	}
1901	case KVM_GET_FPU: {
1902		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1903		r = -ENOMEM;
1904		if (!fpu)
1905			goto out;
1906		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1907		if (r)
1908			goto out;
1909		r = -EFAULT;
1910		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1911			goto out;
1912		r = 0;
1913		break;
1914	}
1915	case KVM_SET_FPU: {
1916		fpu = memdup_user(argp, sizeof(*fpu));
1917		if (IS_ERR(fpu)) {
1918			r = PTR_ERR(fpu);
 
1919			goto out;
1920		}
1921		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1922		if (r)
1923			goto out;
1924		r = 0;
1925		break;
1926	}
1927	default:
1928		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1929	}
1930out:
1931	vcpu_put(vcpu);
1932	kfree(fpu);
1933	kfree(kvm_sregs);
1934	return r;
1935}
1936
1937#ifdef CONFIG_COMPAT
1938static long kvm_vcpu_compat_ioctl(struct file *filp,
1939				  unsigned int ioctl, unsigned long arg)
1940{
1941	struct kvm_vcpu *vcpu = filp->private_data;
1942	void __user *argp = compat_ptr(arg);
1943	int r;
1944
1945	if (vcpu->kvm->mm != current->mm)
1946		return -EIO;
1947
1948	switch (ioctl) {
1949	case KVM_SET_SIGNAL_MASK: {
1950		struct kvm_signal_mask __user *sigmask_arg = argp;
1951		struct kvm_signal_mask kvm_sigmask;
1952		compat_sigset_t csigset;
1953		sigset_t sigset;
1954
1955		if (argp) {
1956			r = -EFAULT;
1957			if (copy_from_user(&kvm_sigmask, argp,
1958					   sizeof kvm_sigmask))
1959				goto out;
1960			r = -EINVAL;
1961			if (kvm_sigmask.len != sizeof csigset)
1962				goto out;
1963			r = -EFAULT;
1964			if (copy_from_user(&csigset, sigmask_arg->sigset,
1965					   sizeof csigset))
1966				goto out;
1967		}
1968		sigset_from_compat(&sigset, &csigset);
1969		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1970		break;
1971	}
1972	default:
1973		r = kvm_vcpu_ioctl(filp, ioctl, arg);
1974	}
1975
1976out:
1977	return r;
1978}
1979#endif
1980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981static long kvm_vm_ioctl(struct file *filp,
1982			   unsigned int ioctl, unsigned long arg)
1983{
1984	struct kvm *kvm = filp->private_data;
1985	void __user *argp = (void __user *)arg;
1986	int r;
1987
1988	if (kvm->mm != current->mm)
1989		return -EIO;
1990	switch (ioctl) {
1991	case KVM_CREATE_VCPU:
1992		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1993		if (r < 0)
 
 
 
 
 
1994			goto out;
 
1995		break;
 
1996	case KVM_SET_USER_MEMORY_REGION: {
1997		struct kvm_userspace_memory_region kvm_userspace_mem;
1998
1999		r = -EFAULT;
2000		if (copy_from_user(&kvm_userspace_mem, argp,
2001						sizeof kvm_userspace_mem))
2002			goto out;
2003
2004		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2005		if (r)
2006			goto out;
2007		break;
2008	}
2009	case KVM_GET_DIRTY_LOG: {
2010		struct kvm_dirty_log log;
2011
2012		r = -EFAULT;
2013		if (copy_from_user(&log, argp, sizeof log))
2014			goto out;
2015		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2016		if (r)
 
 
 
 
 
 
 
2017			goto out;
 
2018		break;
2019	}
2020#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
 
2021	case KVM_REGISTER_COALESCED_MMIO: {
2022		struct kvm_coalesced_mmio_zone zone;
 
2023		r = -EFAULT;
2024		if (copy_from_user(&zone, argp, sizeof zone))
2025			goto out;
2026		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2027		if (r)
2028			goto out;
2029		r = 0;
2030		break;
2031	}
2032	case KVM_UNREGISTER_COALESCED_MMIO: {
2033		struct kvm_coalesced_mmio_zone zone;
 
2034		r = -EFAULT;
2035		if (copy_from_user(&zone, argp, sizeof zone))
2036			goto out;
2037		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2038		if (r)
2039			goto out;
2040		r = 0;
2041		break;
2042	}
2043#endif
2044	case KVM_IRQFD: {
2045		struct kvm_irqfd data;
2046
2047		r = -EFAULT;
2048		if (copy_from_user(&data, argp, sizeof data))
2049			goto out;
2050		r = kvm_irqfd(kvm, &data);
2051		break;
2052	}
2053	case KVM_IOEVENTFD: {
2054		struct kvm_ioeventfd data;
2055
2056		r = -EFAULT;
2057		if (copy_from_user(&data, argp, sizeof data))
2058			goto out;
2059		r = kvm_ioeventfd(kvm, &data);
2060		break;
2061	}
2062#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2063	case KVM_SET_BOOT_CPU_ID:
2064		r = 0;
2065		mutex_lock(&kvm->lock);
2066		if (atomic_read(&kvm->online_vcpus) != 0)
2067			r = -EBUSY;
2068		else
2069			kvm->bsp_vcpu_id = arg;
2070		mutex_unlock(&kvm->lock);
2071		break;
2072#endif
2073#ifdef CONFIG_HAVE_KVM_MSI
2074	case KVM_SIGNAL_MSI: {
2075		struct kvm_msi msi;
2076
2077		r = -EFAULT;
2078		if (copy_from_user(&msi, argp, sizeof msi))
2079			goto out;
2080		r = kvm_send_userspace_msi(kvm, &msi);
2081		break;
2082	}
2083#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2084	default:
2085		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2086		if (r == -ENOTTY)
2087			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2088	}
2089out:
2090	return r;
2091}
2092
2093#ifdef CONFIG_COMPAT
2094struct compat_kvm_dirty_log {
2095	__u32 slot;
2096	__u32 padding1;
2097	union {
2098		compat_uptr_t dirty_bitmap; /* one bit per page */
2099		__u64 padding2;
2100	};
2101};
2102
2103static long kvm_vm_compat_ioctl(struct file *filp,
2104			   unsigned int ioctl, unsigned long arg)
2105{
2106	struct kvm *kvm = filp->private_data;
2107	int r;
2108
2109	if (kvm->mm != current->mm)
2110		return -EIO;
2111	switch (ioctl) {
2112	case KVM_GET_DIRTY_LOG: {
2113		struct compat_kvm_dirty_log compat_log;
2114		struct kvm_dirty_log log;
2115
2116		r = -EFAULT;
2117		if (copy_from_user(&compat_log, (void __user *)arg,
2118				   sizeof(compat_log)))
2119			goto out;
2120		log.slot	 = compat_log.slot;
2121		log.padding1	 = compat_log.padding1;
2122		log.padding2	 = compat_log.padding2;
2123		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2124
2125		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2126		if (r)
2127			goto out;
2128		break;
2129	}
2130	default:
2131		r = kvm_vm_ioctl(filp, ioctl, arg);
2132	}
2133
2134out:
2135	return r;
2136}
2137#endif
2138
2139static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2140{
2141	struct page *page[1];
2142	unsigned long addr;
2143	int npages;
2144	gfn_t gfn = vmf->pgoff;
2145	struct kvm *kvm = vma->vm_file->private_data;
2146
2147	addr = gfn_to_hva(kvm, gfn);
2148	if (kvm_is_error_hva(addr))
2149		return VM_FAULT_SIGBUS;
2150
2151	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2152				NULL);
2153	if (unlikely(npages != 1))
2154		return VM_FAULT_SIGBUS;
2155
2156	vmf->page = page[0];
2157	return 0;
2158}
2159
2160static const struct vm_operations_struct kvm_vm_vm_ops = {
2161	.fault = kvm_vm_fault,
2162};
2163
2164static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2165{
2166	vma->vm_ops = &kvm_vm_vm_ops;
2167	return 0;
2168}
2169
2170static struct file_operations kvm_vm_fops = {
2171	.release        = kvm_vm_release,
2172	.unlocked_ioctl = kvm_vm_ioctl,
2173#ifdef CONFIG_COMPAT
2174	.compat_ioctl   = kvm_vm_compat_ioctl,
2175#endif
2176	.mmap           = kvm_vm_mmap,
2177	.llseek		= noop_llseek,
 
2178};
2179
2180static int kvm_dev_ioctl_create_vm(unsigned long type)
2181{
2182	int r;
2183	struct kvm *kvm;
 
2184
2185	kvm = kvm_create_vm(type);
2186	if (IS_ERR(kvm))
2187		return PTR_ERR(kvm);
2188#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2189	r = kvm_coalesced_mmio_init(kvm);
2190	if (r < 0) {
2191		kvm_put_kvm(kvm);
2192		return r;
2193	}
2194#endif
2195	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2196	if (r < 0)
2197		kvm_put_kvm(kvm);
2198
2199	return r;
2200}
 
 
 
 
2201
2202static long kvm_dev_ioctl_check_extension_generic(long arg)
2203{
2204	switch (arg) {
2205	case KVM_CAP_USER_MEMORY:
2206	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2207	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2208#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2209	case KVM_CAP_SET_BOOT_CPU_ID:
2210#endif
2211	case KVM_CAP_INTERNAL_ERROR_DATA:
2212#ifdef CONFIG_HAVE_KVM_MSI
2213	case KVM_CAP_SIGNAL_MSI:
2214#endif
2215		return 1;
2216#ifdef CONFIG_HAVE_KVM_IRQCHIP
2217	case KVM_CAP_IRQ_ROUTING:
2218		return KVM_MAX_IRQ_ROUTES;
2219#endif
2220	default:
2221		break;
2222	}
2223	return kvm_dev_ioctl_check_extension(arg);
 
 
 
 
 
 
 
2224}
2225
2226static long kvm_dev_ioctl(struct file *filp,
2227			  unsigned int ioctl, unsigned long arg)
2228{
2229	long r = -EINVAL;
2230
2231	switch (ioctl) {
2232	case KVM_GET_API_VERSION:
2233		r = -EINVAL;
2234		if (arg)
2235			goto out;
2236		r = KVM_API_VERSION;
2237		break;
2238	case KVM_CREATE_VM:
2239		r = kvm_dev_ioctl_create_vm(arg);
2240		break;
2241	case KVM_CHECK_EXTENSION:
2242		r = kvm_dev_ioctl_check_extension_generic(arg);
2243		break;
2244	case KVM_GET_VCPU_MMAP_SIZE:
2245		r = -EINVAL;
2246		if (arg)
2247			goto out;
2248		r = PAGE_SIZE;     /* struct kvm_run */
2249#ifdef CONFIG_X86
2250		r += PAGE_SIZE;    /* pio data page */
2251#endif
2252#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2253		r += PAGE_SIZE;    /* coalesced mmio ring page */
2254#endif
2255		break;
2256	case KVM_TRACE_ENABLE:
2257	case KVM_TRACE_PAUSE:
2258	case KVM_TRACE_DISABLE:
2259		r = -EOPNOTSUPP;
2260		break;
2261	default:
2262		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2263	}
2264out:
2265	return r;
2266}
2267
2268static struct file_operations kvm_chardev_ops = {
2269	.unlocked_ioctl = kvm_dev_ioctl,
2270	.compat_ioctl   = kvm_dev_ioctl,
2271	.llseek		= noop_llseek,
 
2272};
2273
2274static struct miscdevice kvm_dev = {
2275	KVM_MINOR,
2276	"kvm",
2277	&kvm_chardev_ops,
2278};
2279
2280static void hardware_enable_nolock(void *junk)
2281{
2282	int cpu = raw_smp_processor_id();
2283	int r;
2284
2285	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2286		return;
2287
2288	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2289
2290	r = kvm_arch_hardware_enable(NULL);
2291
2292	if (r) {
2293		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2294		atomic_inc(&hardware_enable_failed);
2295		printk(KERN_INFO "kvm: enabling virtualization on "
2296				 "CPU%d failed\n", cpu);
2297	}
2298}
2299
2300static void hardware_enable(void *junk)
2301{
2302	raw_spin_lock(&kvm_lock);
2303	hardware_enable_nolock(junk);
2304	raw_spin_unlock(&kvm_lock);
 
 
2305}
2306
2307static void hardware_disable_nolock(void *junk)
2308{
2309	int cpu = raw_smp_processor_id();
2310
2311	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2312		return;
2313	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2314	kvm_arch_hardware_disable(NULL);
2315}
2316
2317static void hardware_disable(void *junk)
2318{
2319	raw_spin_lock(&kvm_lock);
2320	hardware_disable_nolock(junk);
2321	raw_spin_unlock(&kvm_lock);
 
 
2322}
2323
2324static void hardware_disable_all_nolock(void)
2325{
2326	BUG_ON(!kvm_usage_count);
2327
2328	kvm_usage_count--;
2329	if (!kvm_usage_count)
2330		on_each_cpu(hardware_disable_nolock, NULL, 1);
2331}
2332
2333static void hardware_disable_all(void)
2334{
2335	raw_spin_lock(&kvm_lock);
2336	hardware_disable_all_nolock();
2337	raw_spin_unlock(&kvm_lock);
2338}
2339
2340static int hardware_enable_all(void)
2341{
2342	int r = 0;
2343
2344	raw_spin_lock(&kvm_lock);
2345
2346	kvm_usage_count++;
2347	if (kvm_usage_count == 1) {
2348		atomic_set(&hardware_enable_failed, 0);
2349		on_each_cpu(hardware_enable_nolock, NULL, 1);
2350
2351		if (atomic_read(&hardware_enable_failed)) {
2352			hardware_disable_all_nolock();
2353			r = -EBUSY;
2354		}
2355	}
2356
2357	raw_spin_unlock(&kvm_lock);
2358
2359	return r;
2360}
2361
2362static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2363			   void *v)
2364{
2365	int cpu = (long)v;
2366
2367	if (!kvm_usage_count)
2368		return NOTIFY_OK;
2369
2370	val &= ~CPU_TASKS_FROZEN;
2371	switch (val) {
2372	case CPU_DYING:
2373		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2374		       cpu);
2375		hardware_disable(NULL);
2376		break;
2377	case CPU_STARTING:
2378		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2379		       cpu);
2380		hardware_enable(NULL);
2381		break;
2382	}
2383	return NOTIFY_OK;
2384}
2385
2386
2387asmlinkage void kvm_spurious_fault(void)
2388{
2389	/* Fault while not rebooting.  We want the trace. */
2390	BUG();
2391}
2392EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2393
2394static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2395		      void *v)
2396{
2397	/*
2398	 * Some (well, at least mine) BIOSes hang on reboot if
2399	 * in vmx root mode.
2400	 *
2401	 * And Intel TXT required VMX off for all cpu when system shutdown.
2402	 */
2403	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2404	kvm_rebooting = true;
2405	on_each_cpu(hardware_disable_nolock, NULL, 1);
2406	return NOTIFY_OK;
2407}
2408
2409static struct notifier_block kvm_reboot_notifier = {
2410	.notifier_call = kvm_reboot,
2411	.priority = 0,
2412};
2413
2414static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2415{
2416	int i;
2417
2418	for (i = 0; i < bus->dev_count; i++) {
2419		struct kvm_io_device *pos = bus->range[i].dev;
2420
2421		kvm_iodevice_destructor(pos);
2422	}
2423	kfree(bus);
2424}
2425
2426int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
 
2427{
2428	const struct kvm_io_range *r1 = p1;
2429	const struct kvm_io_range *r2 = p2;
2430
2431	if (r1->addr < r2->addr)
2432		return -1;
2433	if (r1->addr + r1->len > r2->addr + r2->len)
 
 
 
 
 
 
 
 
 
 
 
2434		return 1;
 
2435	return 0;
2436}
2437
2438int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2439			  gpa_t addr, int len)
2440{
2441	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2442		.addr = addr,
2443		.len = len,
2444		.dev = dev,
2445	};
2446
2447	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2448		kvm_io_bus_sort_cmp, NULL);
2449
2450	return 0;
2451}
2452
2453int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2454			     gpa_t addr, int len)
2455{
2456	struct kvm_io_range *range, key;
2457	int off;
2458
2459	key = (struct kvm_io_range) {
2460		.addr = addr,
2461		.len = len,
2462	};
2463
2464	range = bsearch(&key, bus->range, bus->dev_count,
2465			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2466	if (range == NULL)
2467		return -ENOENT;
2468
2469	off = range - bus->range;
2470
2471	while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2472		off--;
2473
2474	return off;
2475}
2476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2477/* kvm_io_bus_write - called under kvm->slots_lock */
2478int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2479		     int len, const void *val)
2480{
2481	int idx;
2482	struct kvm_io_bus *bus;
2483	struct kvm_io_range range;
 
2484
2485	range = (struct kvm_io_range) {
2486		.addr = addr,
2487		.len = len,
2488	};
2489
2490	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2491	idx = kvm_io_bus_get_first_dev(bus, addr, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2492	if (idx < 0)
2493		return -EOPNOTSUPP;
2494
2495	while (idx < bus->dev_count &&
2496		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2497		if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2498			return 0;
 
2499		idx++;
2500	}
2501
2502	return -EOPNOTSUPP;
2503}
2504
2505/* kvm_io_bus_read - called under kvm->slots_lock */
2506int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2507		    int len, void *val)
2508{
2509	int idx;
2510	struct kvm_io_bus *bus;
2511	struct kvm_io_range range;
 
2512
2513	range = (struct kvm_io_range) {
2514		.addr = addr,
2515		.len = len,
2516	};
2517
2518	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2519	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2520	if (idx < 0)
2521		return -EOPNOTSUPP;
2522
2523	while (idx < bus->dev_count &&
2524		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2525		if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2526			return 0;
2527		idx++;
2528	}
2529
2530	return -EOPNOTSUPP;
2531}
2532
2533/* Caller must hold slots_lock. */
2534int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2535			    int len, struct kvm_io_device *dev)
2536{
 
2537	struct kvm_io_bus *new_bus, *bus;
 
 
 
 
 
2538
2539	bus = kvm->buses[bus_idx];
2540	if (bus->dev_count > NR_IOBUS_DEVS - 1)
2541		return -ENOSPC;
2542
2543	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2544			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2545	if (!new_bus)
2546		return -ENOMEM;
2547	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2548	       sizeof(struct kvm_io_range)));
2549	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
2550	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2551	synchronize_srcu_expedited(&kvm->srcu);
2552	kfree(bus);
2553
2554	return 0;
2555}
2556
2557/* Caller must hold slots_lock. */
2558int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2559			      struct kvm_io_device *dev)
2560{
2561	int i, r;
2562	struct kvm_io_bus *new_bus, *bus;
2563
2564	bus = kvm->buses[bus_idx];
2565	r = -ENOENT;
 
 
2566	for (i = 0; i < bus->dev_count; i++)
2567		if (bus->range[i].dev == dev) {
2568			r = 0;
2569			break;
2570		}
2571
2572	if (r)
2573		return r;
2574
2575	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2576			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2577	if (!new_bus)
2578		return -ENOMEM;
2579
2580	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2581	new_bus->dev_count--;
2582	memcpy(new_bus->range + i, bus->range + i + 1,
2583	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
 
 
 
 
 
 
 
 
 
 
 
2584
2585	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2586	synchronize_srcu_expedited(&kvm->srcu);
2587	kfree(bus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2588	return r;
2589}
2590
2591static struct notifier_block kvm_cpu_notifier = {
2592	.notifier_call = kvm_cpu_hotplug,
 
 
 
 
 
 
 
 
 
 
 
 
2593};
2594
2595static int vm_stat_get(void *_offset, u64 *val)
2596{
2597	unsigned offset = (long)_offset;
2598	struct kvm *kvm;
 
2599
2600	*val = 0;
2601	raw_spin_lock(&kvm_lock);
2602	list_for_each_entry(kvm, &vm_list, vm_list)
2603		*val += *(u32 *)((void *)kvm + offset);
2604	raw_spin_unlock(&kvm_lock);
 
 
2605	return 0;
2606}
2607
2608DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2609
2610static int vcpu_stat_get(void *_offset, u64 *val)
2611{
2612	unsigned offset = (long)_offset;
2613	struct kvm *kvm;
2614	struct kvm_vcpu *vcpu;
2615	int i;
2616
2617	*val = 0;
2618	raw_spin_lock(&kvm_lock);
2619	list_for_each_entry(kvm, &vm_list, vm_list)
2620		kvm_for_each_vcpu(i, vcpu, kvm)
2621			*val += *(u32 *)((void *)vcpu + offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2622
2623	raw_spin_unlock(&kvm_lock);
2624	return 0;
2625}
2626
2627DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
 
2628
2629static const struct file_operations *stat_fops[] = {
2630	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2631	[KVM_STAT_VM]   = &vm_stat_fops,
2632};
2633
2634static int kvm_init_debug(void)
2635{
2636	int r = -EFAULT;
2637	struct kvm_stats_debugfs_item *p;
2638
2639	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2640	if (kvm_debugfs_dir == NULL)
2641		goto out;
2642
2643	for (p = debugfs_entries; p->name; ++p) {
2644		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2645						(void *)(long)p->offset,
2646						stat_fops[p->kind]);
2647		if (p->dentry == NULL)
2648			goto out_dir;
2649	}
 
 
 
2650
2651	return 0;
 
 
2652
2653out_dir:
2654	debugfs_remove_recursive(kvm_debugfs_dir);
2655out:
2656	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2657}
2658
2659static void kvm_exit_debug(void)
2660{
2661	struct kvm_stats_debugfs_item *p;
2662
2663	for (p = debugfs_entries; p->name; ++p)
2664		debugfs_remove(p->dentry);
2665	debugfs_remove(kvm_debugfs_dir);
 
 
 
 
 
2666}
2667
2668static int kvm_suspend(void)
2669{
2670	if (kvm_usage_count)
2671		hardware_disable_nolock(NULL);
2672	return 0;
2673}
2674
2675static void kvm_resume(void)
2676{
2677	if (kvm_usage_count) {
2678		WARN_ON(raw_spin_is_locked(&kvm_lock));
 
 
2679		hardware_enable_nolock(NULL);
2680	}
2681}
2682
2683static struct syscore_ops kvm_syscore_ops = {
2684	.suspend = kvm_suspend,
2685	.resume = kvm_resume,
2686};
2687
2688struct page *bad_page;
2689pfn_t bad_pfn;
2690
2691static inline
2692struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2693{
2694	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2695}
2696
2697static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2698{
2699	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2700
 
 
 
 
 
2701	kvm_arch_vcpu_load(vcpu, cpu);
2702}
2703
2704static void kvm_sched_out(struct preempt_notifier *pn,
2705			  struct task_struct *next)
2706{
2707	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2708
 
 
 
 
2709	kvm_arch_vcpu_put(vcpu);
 
2710}
2711
2712int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2713		  struct module *module)
 
 
 
 
 
 
 
 
2714{
2715	int r;
2716	int cpu;
2717
2718	r = kvm_arch_init(opaque);
2719	if (r)
2720		goto out_fail;
2721
2722	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 
 
2723
2724	if (bad_page == NULL) {
2725		r = -ENOMEM;
2726		goto out;
2727	}
2728
2729	bad_pfn = page_to_pfn(bad_page);
 
 
 
 
 
 
2730
2731	hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 
 
 
2732
2733	if (hwpoison_page == NULL) {
2734		r = -ENOMEM;
2735		goto out_free_0;
2736	}
2737
2738	hwpoison_pfn = page_to_pfn(hwpoison_page);
 
2739
2740	fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 
 
 
 
 
2741
2742	if (fault_page == NULL) {
2743		r = -ENOMEM;
2744		goto out_free_0;
2745	}
2746
2747	fault_pfn = page_to_pfn(fault_page);
 
 
 
 
 
 
 
 
 
2748
2749	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2750		r = -ENOMEM;
2751		goto out_free_0;
2752	}
2753
2754	r = kvm_arch_hardware_setup();
2755	if (r < 0)
2756		goto out_free_0a;
2757
 
 
2758	for_each_online_cpu(cpu) {
2759		smp_call_function_single(cpu,
2760				kvm_arch_check_processor_compat,
2761				&r, 1);
2762		if (r < 0)
2763			goto out_free_1;
2764	}
2765
2766	r = register_cpu_notifier(&kvm_cpu_notifier);
 
2767	if (r)
2768		goto out_free_2;
2769	register_reboot_notifier(&kvm_reboot_notifier);
2770
2771	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2772	if (!vcpu_align)
2773		vcpu_align = __alignof__(struct kvm_vcpu);
2774	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2775					   0, NULL);
 
 
 
 
2776	if (!kvm_vcpu_cache) {
2777		r = -ENOMEM;
2778		goto out_free_3;
2779	}
2780
2781	r = kvm_async_pf_init();
2782	if (r)
2783		goto out_free;
2784
2785	kvm_chardev_ops.owner = module;
2786	kvm_vm_fops.owner = module;
2787	kvm_vcpu_fops.owner = module;
2788
2789	r = misc_register(&kvm_dev);
2790	if (r) {
2791		printk(KERN_ERR "kvm: misc device register failed\n");
2792		goto out_unreg;
2793	}
2794
2795	register_syscore_ops(&kvm_syscore_ops);
2796
2797	kvm_preempt_ops.sched_in = kvm_sched_in;
2798	kvm_preempt_ops.sched_out = kvm_sched_out;
2799
2800	r = kvm_init_debug();
2801	if (r) {
2802		printk(KERN_ERR "kvm: create debugfs files failed\n");
2803		goto out_undebugfs;
2804	}
2805
2806	return 0;
2807
2808out_undebugfs:
2809	unregister_syscore_ops(&kvm_syscore_ops);
2810out_unreg:
2811	kvm_async_pf_deinit();
2812out_free:
2813	kmem_cache_destroy(kvm_vcpu_cache);
2814out_free_3:
2815	unregister_reboot_notifier(&kvm_reboot_notifier);
2816	unregister_cpu_notifier(&kvm_cpu_notifier);
2817out_free_2:
2818out_free_1:
2819	kvm_arch_hardware_unsetup();
2820out_free_0a:
2821	free_cpumask_var(cpus_hardware_enabled);
2822out_free_0:
2823	if (fault_page)
2824		__free_page(fault_page);
2825	if (hwpoison_page)
2826		__free_page(hwpoison_page);
2827	__free_page(bad_page);
2828out:
2829	kvm_arch_exit();
2830out_fail:
2831	return r;
2832}
2833EXPORT_SYMBOL_GPL(kvm_init);
2834
2835void kvm_exit(void)
2836{
2837	kvm_exit_debug();
2838	misc_deregister(&kvm_dev);
2839	kmem_cache_destroy(kvm_vcpu_cache);
2840	kvm_async_pf_deinit();
2841	unregister_syscore_ops(&kvm_syscore_ops);
2842	unregister_reboot_notifier(&kvm_reboot_notifier);
2843	unregister_cpu_notifier(&kvm_cpu_notifier);
2844	on_each_cpu(hardware_disable_nolock, NULL, 1);
2845	kvm_arch_hardware_unsetup();
2846	kvm_arch_exit();
 
2847	free_cpumask_var(cpus_hardware_enabled);
2848	__free_page(fault_page);
2849	__free_page(hwpoison_page);
2850	__free_page(bad_page);
2851}
2852EXPORT_SYMBOL_GPL(kvm_exit);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * Copyright (C) 2006 Qumranet, Inc.
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
 
 
 
 
  14 */
  15
  16#include <kvm/iodev.h>
  17
  18#include <linux/kvm_host.h>
  19#include <linux/kvm.h>
  20#include <linux/module.h>
  21#include <linux/errno.h>
  22#include <linux/percpu.h>
  23#include <linux/mm.h>
  24#include <linux/miscdevice.h>
  25#include <linux/vmalloc.h>
  26#include <linux/reboot.h>
  27#include <linux/debugfs.h>
  28#include <linux/highmem.h>
  29#include <linux/file.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/cpu.h>
  32#include <linux/sched/signal.h>
  33#include <linux/sched/mm.h>
  34#include <linux/sched/stat.h>
  35#include <linux/cpumask.h>
  36#include <linux/smp.h>
  37#include <linux/anon_inodes.h>
  38#include <linux/profile.h>
  39#include <linux/kvm_para.h>
  40#include <linux/pagemap.h>
  41#include <linux/mman.h>
  42#include <linux/swap.h>
  43#include <linux/bitops.h>
  44#include <linux/spinlock.h>
  45#include <linux/compat.h>
  46#include <linux/srcu.h>
  47#include <linux/hugetlb.h>
  48#include <linux/slab.h>
  49#include <linux/sort.h>
  50#include <linux/bsearch.h>
  51#include <linux/io.h>
  52#include <linux/lockdep.h>
  53#include <linux/kthread.h>
  54
  55#include <asm/processor.h>
  56#include <asm/ioctl.h>
  57#include <linux/uaccess.h>
 
  58
  59#include "coalesced_mmio.h"
  60#include "async_pf.h"
  61#include "vfio.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/kvm.h>
  65
  66/* Worst case buffer size needed for holding an integer. */
  67#define ITOA_MAX_LEN 12
  68
  69MODULE_AUTHOR("Qumranet");
  70MODULE_LICENSE("GPL");
  71
  72/* Architectures should define their poll value according to the halt latency */
  73unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  74module_param(halt_poll_ns, uint, 0644);
  75EXPORT_SYMBOL_GPL(halt_poll_ns);
  76
  77/* Default doubles per-vcpu halt_poll_ns. */
  78unsigned int halt_poll_ns_grow = 2;
  79module_param(halt_poll_ns_grow, uint, 0644);
  80EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  81
  82/* The start value to grow halt_poll_ns from */
  83unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
  84module_param(halt_poll_ns_grow_start, uint, 0644);
  85EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
  86
  87/* Default resets per-vcpu halt_poll_ns . */
  88unsigned int halt_poll_ns_shrink;
  89module_param(halt_poll_ns_shrink, uint, 0644);
  90EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  91
  92/*
  93 * Ordering of locks:
  94 *
  95 *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  96 */
  97
  98DEFINE_MUTEX(kvm_lock);
  99static DEFINE_RAW_SPINLOCK(kvm_count_lock);
 100LIST_HEAD(vm_list);
 101
 102static cpumask_var_t cpus_hardware_enabled;
 103static int kvm_usage_count;
 104static atomic_t hardware_enable_failed;
 105
 106static struct kmem_cache *kvm_vcpu_cache;
 
 107
 108static __read_mostly struct preempt_ops kvm_preempt_ops;
 109static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
 110
 111struct dentry *kvm_debugfs_dir;
 112EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 113
 114static int kvm_debugfs_num_entries;
 115static const struct file_operations stat_fops_per_vm;
 116
 117static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 118			   unsigned long arg);
 119#ifdef CONFIG_KVM_COMPAT
 120static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 121				  unsigned long arg);
 122#define KVM_COMPAT(c)	.compat_ioctl	= (c)
 123#else
 124/*
 125 * For architectures that don't implement a compat infrastructure,
 126 * adopt a double line of defense:
 127 * - Prevent a compat task from opening /dev/kvm
 128 * - If the open has been done by a 64bit task, and the KVM fd
 129 *   passed to a compat task, let the ioctls fail.
 130 */
 131static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
 132				unsigned long arg) { return -EINVAL; }
 133
 134static int kvm_no_compat_open(struct inode *inode, struct file *file)
 135{
 136	return is_compat_task() ? -ENODEV : 0;
 137}
 138#define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
 139			.open		= kvm_no_compat_open
 140#endif
 141static int hardware_enable_all(void);
 142static void hardware_disable_all(void);
 143
 144static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 145
 146static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 147
 148__visible bool kvm_rebooting;
 149EXPORT_SYMBOL_GPL(kvm_rebooting);
 150
 151#define KVM_EVENT_CREATE_VM 0
 152#define KVM_EVENT_DESTROY_VM 1
 153static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 154static unsigned long long kvm_createvm_count;
 155static unsigned long long kvm_active_vms;
 156
 157__weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
 158						   unsigned long start, unsigned long end)
 159{
 160}
 161
 162bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
 163{
 164	/*
 165	 * The metadata used by is_zone_device_page() to determine whether or
 166	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
 167	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
 168	 * page_count() is zero to help detect bad usage of this helper.
 169	 */
 170	if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
 171		return false;
 172
 173	return is_zone_device_page(pfn_to_page(pfn));
 174}
 175
 176bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 177{
 178	/*
 179	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
 180	 * perspective they are "normal" pages, albeit with slightly different
 181	 * usage rules.
 182	 */
 183	if (pfn_valid(pfn))
 184		return PageReserved(pfn_to_page(pfn)) &&
 185		       !is_zero_pfn(pfn) &&
 186		       !kvm_is_zone_device_pfn(pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 187
 188	return true;
 189}
 190
 191bool kvm_is_transparent_hugepage(kvm_pfn_t pfn)
 192{
 193	struct page *page = pfn_to_page(pfn);
 194
 195	if (!PageTransCompoundMap(page))
 196		return false;
 197
 198	return is_transparent_hugepage(compound_head(page));
 199}
 200
 201/*
 202 * Switches to specified vcpu, until a matching vcpu_put()
 203 */
 204void vcpu_load(struct kvm_vcpu *vcpu)
 205{
 206	int cpu = get_cpu();
 207
 208	__this_cpu_write(kvm_running_vcpu, vcpu);
 
 
 
 
 
 
 
 
 
 209	preempt_notifier_register(&vcpu->preempt_notifier);
 210	kvm_arch_vcpu_load(vcpu, cpu);
 211	put_cpu();
 212}
 213EXPORT_SYMBOL_GPL(vcpu_load);
 214
 215void vcpu_put(struct kvm_vcpu *vcpu)
 216{
 217	preempt_disable();
 218	kvm_arch_vcpu_put(vcpu);
 219	preempt_notifier_unregister(&vcpu->preempt_notifier);
 220	__this_cpu_write(kvm_running_vcpu, NULL);
 221	preempt_enable();
 222}
 223EXPORT_SYMBOL_GPL(vcpu_put);
 224
 225/* TODO: merge with kvm_arch_vcpu_should_kick */
 226static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 227{
 228	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 229
 230	/*
 231	 * We need to wait for the VCPU to reenable interrupts and get out of
 232	 * READING_SHADOW_PAGE_TABLES mode.
 233	 */
 234	if (req & KVM_REQUEST_WAIT)
 235		return mode != OUTSIDE_GUEST_MODE;
 236
 237	/*
 238	 * Need to kick a running VCPU, but otherwise there is nothing to do.
 239	 */
 240	return mode == IN_GUEST_MODE;
 241}
 242
 243static void ack_flush(void *_completed)
 244{
 245}
 246
 247static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
 248{
 249	if (unlikely(!cpus))
 250		cpus = cpu_online_mask;
 251
 252	if (cpumask_empty(cpus))
 253		return false;
 254
 255	smp_call_function_many(cpus, ack_flush, NULL, wait);
 256	return true;
 257}
 258
 259bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
 260				 struct kvm_vcpu *except,
 261				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
 262{
 263	int i, cpu, me;
 
 
 264	struct kvm_vcpu *vcpu;
 265	bool called;
 
 266
 267	me = get_cpu();
 268
 269	kvm_for_each_vcpu(i, vcpu, kvm) {
 270		if ((vcpu_bitmap && !test_bit(i, vcpu_bitmap)) ||
 271		    vcpu == except)
 272			continue;
 273
 274		kvm_make_request(req, vcpu);
 275		cpu = vcpu->cpu;
 276
 277		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 278			continue;
 279
 280		if (tmp != NULL && cpu != -1 && cpu != me &&
 281		    kvm_request_needs_ipi(vcpu, req))
 282			__cpumask_set_cpu(cpu, tmp);
 283	}
 284
 285	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
 
 
 
 
 286	put_cpu();
 287
 288	return called;
 289}
 290
 291bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
 292				      struct kvm_vcpu *except)
 293{
 294	cpumask_var_t cpus;
 295	bool called;
 296
 297	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 298
 299	called = kvm_make_vcpus_request_mask(kvm, req, except, NULL, cpus);
 300
 301	free_cpumask_var(cpus);
 302	return called;
 303}
 304
 305bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 306{
 307	return kvm_make_all_cpus_request_except(kvm, req, NULL);
 308}
 309
 310#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 311void kvm_flush_remote_tlbs(struct kvm *kvm)
 312{
 313	/*
 314	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 315	 * kvm_make_all_cpus_request.
 316	 */
 317	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 318
 319	/*
 320	 * We want to publish modifications to the page tables before reading
 321	 * mode. Pairs with a memory barrier in arch-specific code.
 322	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 323	 * and smp_mb in walk_shadow_page_lockless_begin/end.
 324	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 325	 *
 326	 * There is already an smp_mb__after_atomic() before
 327	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 328	 * barrier here.
 329	 */
 330	if (!kvm_arch_flush_remote_tlb(kvm)
 331	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 332		++kvm->stat.remote_tlb_flush;
 333	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 334}
 335EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 336#endif
 337
 338void kvm_reload_remote_mmus(struct kvm *kvm)
 339{
 340	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 341}
 342
 343#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
 344static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
 345					       gfp_t gfp_flags)
 346{
 347	gfp_flags |= mc->gfp_zero;
 348
 349	if (mc->kmem_cache)
 350		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
 351	else
 352		return (void *)__get_free_page(gfp_flags);
 353}
 354
 355int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
 356{
 357	void *obj;
 358
 359	if (mc->nobjs >= min)
 360		return 0;
 361	while (mc->nobjs < ARRAY_SIZE(mc->objects)) {
 362		obj = mmu_memory_cache_alloc_obj(mc, GFP_KERNEL_ACCOUNT);
 363		if (!obj)
 364			return mc->nobjs >= min ? 0 : -ENOMEM;
 365		mc->objects[mc->nobjs++] = obj;
 366	}
 367	return 0;
 368}
 369
 370int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
 371{
 372	return mc->nobjs;
 373}
 374
 375void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 376{
 377	while (mc->nobjs) {
 378		if (mc->kmem_cache)
 379			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
 380		else
 381			free_page((unsigned long)mc->objects[--mc->nobjs]);
 382	}
 383}
 384
 385void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 386{
 387	void *p;
 388
 389	if (WARN_ON(!mc->nobjs))
 390		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
 391	else
 392		p = mc->objects[--mc->nobjs];
 393	BUG_ON(!p);
 394	return p;
 395}
 396#endif
 397
 398static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 399{
 400	mutex_init(&vcpu->mutex);
 401	vcpu->cpu = -1;
 402	vcpu->kvm = kvm;
 403	vcpu->vcpu_id = id;
 404	vcpu->pid = NULL;
 405	rcuwait_init(&vcpu->wait);
 406	kvm_async_pf_vcpu_init(vcpu);
 407
 408	vcpu->pre_pcpu = -1;
 409	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 
 
 
 
 410
 411	kvm_vcpu_set_in_spin_loop(vcpu, false);
 412	kvm_vcpu_set_dy_eligible(vcpu, false);
 413	vcpu->preempted = false;
 414	vcpu->ready = false;
 415	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
 
 
 
 
 416}
 
 417
 418void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
 419{
 420	kvm_arch_vcpu_destroy(vcpu);
 421
 422	/*
 423	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
 424	 * the vcpu->pid pointer, and at destruction time all file descriptors
 425	 * are already gone.
 426	 */
 427	put_pid(rcu_dereference_protected(vcpu->pid, 1));
 428
 429	free_page((unsigned long)vcpu->run);
 430	kmem_cache_free(kvm_vcpu_cache, vcpu);
 431}
 432EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
 433
 434#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 435static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 436{
 437	return container_of(mn, struct kvm, mmu_notifier);
 438}
 439
 440static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
 441					      struct mm_struct *mm,
 442					      unsigned long start, unsigned long end)
 443{
 444	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 445	int idx;
 446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447	idx = srcu_read_lock(&kvm->srcu);
 448	kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
 
 
 
 
 
 
 
 
 449	srcu_read_unlock(&kvm->srcu, idx);
 450}
 451
 452static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 453					struct mm_struct *mm,
 454					unsigned long address,
 455					pte_t pte)
 456{
 457	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 458	int idx;
 459
 460	idx = srcu_read_lock(&kvm->srcu);
 461	spin_lock(&kvm->mmu_lock);
 462	kvm->mmu_notifier_seq++;
 463
 464	if (kvm_set_spte_hva(kvm, address, pte))
 465		kvm_flush_remote_tlbs(kvm);
 466
 467	spin_unlock(&kvm->mmu_lock);
 468	srcu_read_unlock(&kvm->srcu, idx);
 469}
 470
 471static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 472					const struct mmu_notifier_range *range)
 
 
 473{
 474	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 475	int need_tlb_flush = 0, idx;
 476
 477	idx = srcu_read_lock(&kvm->srcu);
 478	spin_lock(&kvm->mmu_lock);
 479	/*
 480	 * The count increase must become visible at unlock time as no
 481	 * spte can be established without taking the mmu_lock and
 482	 * count is also read inside the mmu_lock critical section.
 483	 */
 484	kvm->mmu_notifier_count++;
 485	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end,
 486					     range->flags);
 487	need_tlb_flush |= kvm->tlbs_dirty;
 488	/* we've to flush the tlb before the pages can be freed */
 489	if (need_tlb_flush)
 490		kvm_flush_remote_tlbs(kvm);
 491
 492	spin_unlock(&kvm->mmu_lock);
 493	srcu_read_unlock(&kvm->srcu, idx);
 494
 495	return 0;
 496}
 497
 498static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 499					const struct mmu_notifier_range *range)
 
 
 500{
 501	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 502
 503	spin_lock(&kvm->mmu_lock);
 504	/*
 505	 * This sequence increase will notify the kvm page fault that
 506	 * the page that is going to be mapped in the spte could have
 507	 * been freed.
 508	 */
 509	kvm->mmu_notifier_seq++;
 510	smp_wmb();
 511	/*
 512	 * The above sequence increase must be visible before the
 513	 * below count decrease, which is ensured by the smp_wmb above
 514	 * in conjunction with the smp_rmb in mmu_notifier_retry().
 515	 */
 516	kvm->mmu_notifier_count--;
 517	spin_unlock(&kvm->mmu_lock);
 518
 519	BUG_ON(kvm->mmu_notifier_count < 0);
 520}
 521
 522static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 523					      struct mm_struct *mm,
 524					      unsigned long start,
 525					      unsigned long end)
 526{
 527	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 528	int young, idx;
 529
 530	idx = srcu_read_lock(&kvm->srcu);
 531	spin_lock(&kvm->mmu_lock);
 532
 533	young = kvm_age_hva(kvm, start, end);
 534	if (young)
 535		kvm_flush_remote_tlbs(kvm);
 536
 537	spin_unlock(&kvm->mmu_lock);
 538	srcu_read_unlock(&kvm->srcu, idx);
 539
 540	return young;
 541}
 542
 543static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 544					struct mm_struct *mm,
 545					unsigned long start,
 546					unsigned long end)
 547{
 548	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 549	int young, idx;
 550
 551	idx = srcu_read_lock(&kvm->srcu);
 552	spin_lock(&kvm->mmu_lock);
 553	/*
 554	 * Even though we do not flush TLB, this will still adversely
 555	 * affect performance on pre-Haswell Intel EPT, where there is
 556	 * no EPT Access Bit to clear so that we have to tear down EPT
 557	 * tables instead. If we find this unacceptable, we can always
 558	 * add a parameter to kvm_age_hva so that it effectively doesn't
 559	 * do anything on clear_young.
 560	 *
 561	 * Also note that currently we never issue secondary TLB flushes
 562	 * from clear_young, leaving this job up to the regular system
 563	 * cadence. If we find this inaccurate, we might come up with a
 564	 * more sophisticated heuristic later.
 565	 */
 566	young = kvm_age_hva(kvm, start, end);
 567	spin_unlock(&kvm->mmu_lock);
 568	srcu_read_unlock(&kvm->srcu, idx);
 569
 570	return young;
 571}
 572
 573static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 574				       struct mm_struct *mm,
 575				       unsigned long address)
 576{
 577	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 578	int young, idx;
 579
 580	idx = srcu_read_lock(&kvm->srcu);
 581	spin_lock(&kvm->mmu_lock);
 582	young = kvm_test_age_hva(kvm, address);
 583	spin_unlock(&kvm->mmu_lock);
 584	srcu_read_unlock(&kvm->srcu, idx);
 585
 586	return young;
 587}
 588
 589static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 590				     struct mm_struct *mm)
 591{
 592	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 593	int idx;
 594
 595	idx = srcu_read_lock(&kvm->srcu);
 596	kvm_arch_flush_shadow_all(kvm);
 597	srcu_read_unlock(&kvm->srcu, idx);
 598}
 599
 600static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 601	.invalidate_range	= kvm_mmu_notifier_invalidate_range,
 602	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
 603	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
 604	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
 605	.clear_young		= kvm_mmu_notifier_clear_young,
 606	.test_young		= kvm_mmu_notifier_test_young,
 607	.change_pte		= kvm_mmu_notifier_change_pte,
 608	.release		= kvm_mmu_notifier_release,
 609};
 610
 611static int kvm_init_mmu_notifier(struct kvm *kvm)
 612{
 613	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 614	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 615}
 616
 617#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 618
 619static int kvm_init_mmu_notifier(struct kvm *kvm)
 620{
 621	return 0;
 622}
 623
 624#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 625
 626static struct kvm_memslots *kvm_alloc_memslots(void)
 627{
 628	int i;
 629	struct kvm_memslots *slots;
 630
 631	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
 632	if (!slots)
 633		return NULL;
 634
 635	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 636		slots->id_to_index[i] = -1;
 637
 638	return slots;
 639}
 640
 641static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 642{
 643	if (!memslot->dirty_bitmap)
 644		return;
 645
 646	kvfree(memslot->dirty_bitmap);
 647	memslot->dirty_bitmap = NULL;
 648}
 649
 650static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
 651{
 652	kvm_destroy_dirty_bitmap(slot);
 653
 654	kvm_arch_free_memslot(kvm, slot);
 655
 656	slot->flags = 0;
 657	slot->npages = 0;
 658}
 659
 660static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 661{
 662	struct kvm_memory_slot *memslot;
 663
 664	if (!slots)
 665		return;
 666
 667	kvm_for_each_memslot(memslot, slots)
 668		kvm_free_memslot(kvm, memslot);
 669
 670	kvfree(slots);
 671}
 672
 673static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 674{
 675	int i;
 676
 677	if (!kvm->debugfs_dentry)
 678		return;
 679
 680	debugfs_remove_recursive(kvm->debugfs_dentry);
 681
 682	if (kvm->debugfs_stat_data) {
 683		for (i = 0; i < kvm_debugfs_num_entries; i++)
 684			kfree(kvm->debugfs_stat_data[i]);
 685		kfree(kvm->debugfs_stat_data);
 686	}
 687}
 688
 689static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
 690{
 691	char dir_name[ITOA_MAX_LEN * 2];
 692	struct kvm_stat_data *stat_data;
 693	struct kvm_stats_debugfs_item *p;
 694
 695	if (!debugfs_initialized())
 696		return 0;
 697
 698	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
 699	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
 700
 701	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
 702					 sizeof(*kvm->debugfs_stat_data),
 703					 GFP_KERNEL_ACCOUNT);
 704	if (!kvm->debugfs_stat_data)
 705		return -ENOMEM;
 706
 707	for (p = debugfs_entries; p->name; p++) {
 708		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
 709		if (!stat_data)
 710			return -ENOMEM;
 711
 712		stat_data->kvm = kvm;
 713		stat_data->dbgfs_item = p;
 714		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
 715		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
 716				    kvm->debugfs_dentry, stat_data,
 717				    &stat_fops_per_vm);
 718	}
 719	return 0;
 720}
 721
 722/*
 723 * Called after the VM is otherwise initialized, but just before adding it to
 724 * the vm_list.
 725 */
 726int __weak kvm_arch_post_init_vm(struct kvm *kvm)
 727{
 728	return 0;
 729}
 730
 731/*
 732 * Called just after removing the VM from the vm_list, but before doing any
 733 * other destruction.
 734 */
 735void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
 736{
 737}
 738
 739static struct kvm *kvm_create_vm(unsigned long type)
 740{
 
 741	struct kvm *kvm = kvm_arch_alloc_vm();
 742	int r = -ENOMEM;
 743	int i;
 744
 745	if (!kvm)
 746		return ERR_PTR(-ENOMEM);
 747
 748	spin_lock_init(&kvm->mmu_lock);
 749	mmgrab(current->mm);
 750	kvm->mm = current->mm;
 751	kvm_eventfd_init(kvm);
 752	mutex_init(&kvm->lock);
 753	mutex_init(&kvm->irq_lock);
 754	mutex_init(&kvm->slots_lock);
 755	INIT_LIST_HEAD(&kvm->devices);
 756
 757	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 758
 759	if (init_srcu_struct(&kvm->srcu))
 760		goto out_err_no_srcu;
 761	if (init_srcu_struct(&kvm->irq_srcu))
 762		goto out_err_no_irq_srcu;
 763
 764	refcount_set(&kvm->users_count, 1);
 765	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 766		struct kvm_memslots *slots = kvm_alloc_memslots();
 767
 768		if (!slots)
 769			goto out_err_no_arch_destroy_vm;
 770		/* Generations must be different for each address space. */
 771		slots->generation = i;
 772		rcu_assign_pointer(kvm->memslots[i], slots);
 773	}
 774
 775	for (i = 0; i < KVM_NR_BUSES; i++) {
 776		rcu_assign_pointer(kvm->buses[i],
 777			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
 778		if (!kvm->buses[i])
 779			goto out_err_no_arch_destroy_vm;
 780	}
 781
 782	kvm->max_halt_poll_ns = halt_poll_ns;
 783
 784	r = kvm_arch_init_vm(kvm, type);
 785	if (r)
 786		goto out_err_no_arch_destroy_vm;
 787
 788	r = hardware_enable_all();
 789	if (r)
 790		goto out_err_no_disable;
 791
 792#ifdef CONFIG_HAVE_KVM_IRQFD
 
 793	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 794#endif
 795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796	r = kvm_init_mmu_notifier(kvm);
 797	if (r)
 798		goto out_err_no_mmu_notifier;
 799
 800	r = kvm_arch_post_init_vm(kvm);
 801	if (r)
 802		goto out_err;
 803
 804	mutex_lock(&kvm_lock);
 805	list_add(&kvm->vm_list, &vm_list);
 806	mutex_unlock(&kvm_lock);
 807
 808	preempt_notifier_inc();
 809
 810	return kvm;
 811
 812out_err:
 813#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 814	if (kvm->mmu_notifier.ops)
 815		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
 816#endif
 817out_err_no_mmu_notifier:
 818	hardware_disable_all();
 819out_err_no_disable:
 820	kvm_arch_destroy_vm(kvm);
 821out_err_no_arch_destroy_vm:
 822	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
 823	for (i = 0; i < KVM_NR_BUSES; i++)
 824		kfree(kvm_get_bus(kvm, i));
 825	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 826		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 827	cleanup_srcu_struct(&kvm->irq_srcu);
 828out_err_no_irq_srcu:
 829	cleanup_srcu_struct(&kvm->srcu);
 830out_err_no_srcu:
 831	kvm_arch_free_vm(kvm);
 832	mmdrop(current->mm);
 833	return ERR_PTR(r);
 834}
 835
 836static void kvm_destroy_devices(struct kvm *kvm)
 837{
 838	struct kvm_device *dev, *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839
 840	/*
 841	 * We do not need to take the kvm->lock here, because nobody else
 842	 * has a reference to the struct kvm at this point and therefore
 843	 * cannot access the devices list anyhow.
 844	 */
 845	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 846		list_del(&dev->vm_node);
 847		dev->ops->destroy(dev);
 848	}
 849}
 850
 851static void kvm_destroy_vm(struct kvm *kvm)
 852{
 853	int i;
 854	struct mm_struct *mm = kvm->mm;
 855
 856	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
 857	kvm_destroy_vm_debugfs(kvm);
 858	kvm_arch_sync_events(kvm);
 859	mutex_lock(&kvm_lock);
 860	list_del(&kvm->vm_list);
 861	mutex_unlock(&kvm_lock);
 862	kvm_arch_pre_destroy_vm(kvm);
 863
 864	kvm_free_irq_routing(kvm);
 865	for (i = 0; i < KVM_NR_BUSES; i++) {
 866		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
 867
 868		if (bus)
 869			kvm_io_bus_destroy(bus);
 870		kvm->buses[i] = NULL;
 871	}
 872	kvm_coalesced_mmio_free(kvm);
 873#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 874	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 875#else
 876	kvm_arch_flush_shadow_all(kvm);
 877#endif
 878	kvm_arch_destroy_vm(kvm);
 879	kvm_destroy_devices(kvm);
 880	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 881		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 882	cleanup_srcu_struct(&kvm->irq_srcu);
 883	cleanup_srcu_struct(&kvm->srcu);
 884	kvm_arch_free_vm(kvm);
 885	preempt_notifier_dec();
 886	hardware_disable_all();
 887	mmdrop(mm);
 888}
 889
 890void kvm_get_kvm(struct kvm *kvm)
 891{
 892	refcount_inc(&kvm->users_count);
 893}
 894EXPORT_SYMBOL_GPL(kvm_get_kvm);
 895
 896void kvm_put_kvm(struct kvm *kvm)
 897{
 898	if (refcount_dec_and_test(&kvm->users_count))
 899		kvm_destroy_vm(kvm);
 900}
 901EXPORT_SYMBOL_GPL(kvm_put_kvm);
 902
 903/*
 904 * Used to put a reference that was taken on behalf of an object associated
 905 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
 906 * of the new file descriptor fails and the reference cannot be transferred to
 907 * its final owner.  In such cases, the caller is still actively using @kvm and
 908 * will fail miserably if the refcount unexpectedly hits zero.
 909 */
 910void kvm_put_kvm_no_destroy(struct kvm *kvm)
 911{
 912	WARN_ON(refcount_dec_and_test(&kvm->users_count));
 913}
 914EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
 915
 916static int kvm_vm_release(struct inode *inode, struct file *filp)
 917{
 918	struct kvm *kvm = filp->private_data;
 919
 920	kvm_irqfd_release(kvm);
 921
 922	kvm_put_kvm(kvm);
 923	return 0;
 924}
 925
 926/*
 927 * Allocation size is twice as large as the actual dirty bitmap size.
 928 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
 929 */
 930static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
 931{
 
 932	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 933
 934	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
 
 
 
 
 935	if (!memslot->dirty_bitmap)
 936		return -ENOMEM;
 937
 
 938	return 0;
 939}
 940
 941/*
 942 * Delete a memslot by decrementing the number of used slots and shifting all
 943 * other entries in the array forward one spot.
 944 */
 945static inline void kvm_memslot_delete(struct kvm_memslots *slots,
 946				      struct kvm_memory_slot *memslot)
 947{
 948	struct kvm_memory_slot *mslots = slots->memslots;
 949	int i;
 950
 951	if (WARN_ON(slots->id_to_index[memslot->id] == -1))
 952		return;
 953
 954	slots->used_slots--;
 
 
 
 955
 956	if (atomic_read(&slots->lru_slot) >= slots->used_slots)
 957		atomic_set(&slots->lru_slot, 0);
 958
 959	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) {
 960		mslots[i] = mslots[i + 1];
 961		slots->id_to_index[mslots[i].id] = i;
 962	}
 963	mslots[i] = *memslot;
 964	slots->id_to_index[memslot->id] = -1;
 965}
 966
 967/*
 968 * "Insert" a new memslot by incrementing the number of used slots.  Returns
 969 * the new slot's initial index into the memslots array.
 970 */
 971static inline int kvm_memslot_insert_back(struct kvm_memslots *slots)
 972{
 973	return slots->used_slots++;
 974}
 975
 976/*
 977 * Move a changed memslot backwards in the array by shifting existing slots
 978 * with a higher GFN toward the front of the array.  Note, the changed memslot
 979 * itself is not preserved in the array, i.e. not swapped at this time, only
 980 * its new index into the array is tracked.  Returns the changed memslot's
 981 * current index into the memslots array.
 982 */
 983static inline int kvm_memslot_move_backward(struct kvm_memslots *slots,
 984					    struct kvm_memory_slot *memslot)
 985{
 986	struct kvm_memory_slot *mslots = slots->memslots;
 987	int i;
 988
 989	if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) ||
 990	    WARN_ON_ONCE(!slots->used_slots))
 991		return -1;
 992
 993	/*
 994	 * Move the target memslot backward in the array by shifting existing
 995	 * memslots with a higher GFN (than the target memslot) towards the
 996	 * front of the array.
 997	 */
 998	for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) {
 999		if (memslot->base_gfn > mslots[i + 1].base_gfn)
1000			break;
1001
1002		WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn);
1003
1004		/* Shift the next memslot forward one and update its index. */
1005		mslots[i] = mslots[i + 1];
1006		slots->id_to_index[mslots[i].id] = i;
1007	}
1008	return i;
1009}
1010
1011/*
1012 * Move a changed memslot forwards in the array by shifting existing slots with
1013 * a lower GFN toward the back of the array.  Note, the changed memslot itself
1014 * is not preserved in the array, i.e. not swapped at this time, only its new
1015 * index into the array is tracked.  Returns the changed memslot's final index
1016 * into the memslots array.
1017 */
1018static inline int kvm_memslot_move_forward(struct kvm_memslots *slots,
1019					   struct kvm_memory_slot *memslot,
1020					   int start)
1021{
1022	struct kvm_memory_slot *mslots = slots->memslots;
1023	int i;
 
 
1024
1025	for (i = start; i > 0; i--) {
1026		if (memslot->base_gfn < mslots[i - 1].base_gfn)
1027			break;
1028
1029		WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn);
1030
1031		/* Shift the next memslot back one and update its index. */
1032		mslots[i] = mslots[i - 1];
1033		slots->id_to_index[mslots[i].id] = i;
1034	}
1035	return i;
1036}
1037
1038/*
1039 * Re-sort memslots based on their GFN to account for an added, deleted, or
1040 * moved memslot.  Sorting memslots by GFN allows using a binary search during
1041 * memslot lookup.
1042 *
1043 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!  I.e. the entry
1044 * at memslots[0] has the highest GFN.
1045 *
1046 * The sorting algorithm takes advantage of having initially sorted memslots
1047 * and knowing the position of the changed memslot.  Sorting is also optimized
1048 * by not swapping the updated memslot and instead only shifting other memslots
1049 * and tracking the new index for the update memslot.  Only once its final
1050 * index is known is the updated memslot copied into its position in the array.
1051 *
1052 *  - When deleting a memslot, the deleted memslot simply needs to be moved to
1053 *    the end of the array.
1054 *
1055 *  - When creating a memslot, the algorithm "inserts" the new memslot at the
1056 *    end of the array and then it forward to its correct location.
1057 *
1058 *  - When moving a memslot, the algorithm first moves the updated memslot
1059 *    backward to handle the scenario where the memslot's GFN was changed to a
1060 *    lower value.  update_memslots() then falls through and runs the same flow
1061 *    as creating a memslot to move the memslot forward to handle the scenario
1062 *    where its GFN was changed to a higher value.
1063 *
1064 * Note, slots are sorted from highest->lowest instead of lowest->highest for
1065 * historical reasons.  Originally, invalid memslots where denoted by having
1066 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots
1067 * to the end of the array.  The current algorithm uses dedicated logic to
1068 * delete a memslot and thus does not rely on invalid memslots having GFN=0.
1069 *
1070 * The other historical motiviation for highest->lowest was to improve the
1071 * performance of memslot lookup.  KVM originally used a linear search starting
1072 * at memslots[0].  On x86, the largest memslot usually has one of the highest,
1073 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a
1074 * single memslot above the 4gb boundary.  As the largest memslot is also the
1075 * most likely to be referenced, sorting it to the front of the array was
1076 * advantageous.  The current binary search starts from the middle of the array
1077 * and uses an LRU pointer to improve performance for all memslots and GFNs.
1078 */
1079static void update_memslots(struct kvm_memslots *slots,
1080			    struct kvm_memory_slot *memslot,
1081			    enum kvm_mr_change change)
1082{
1083	int i;
 
 
 
 
 
 
1084
1085	if (change == KVM_MR_DELETE) {
1086		kvm_memslot_delete(slots, memslot);
1087	} else {
1088		if (change == KVM_MR_CREATE)
1089			i = kvm_memslot_insert_back(slots);
1090		else
1091			i = kvm_memslot_move_backward(slots, memslot);
1092		i = kvm_memslot_move_forward(slots, memslot, i);
 
 
 
 
 
 
 
 
 
1093
1094		/*
1095		 * Copy the memslot to its new position in memslots and update
1096		 * its index accordingly.
1097		 */
1098		slots->memslots[i] = *memslot;
1099		slots->id_to_index[memslot->id] = i;
1100	}
1101}
1102
1103static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1104{
1105	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1106
1107#ifdef __KVM_HAVE_READONLY_MEM
1108	valid_flags |= KVM_MEM_READONLY;
1109#endif
1110
1111	if (mem->flags & ~valid_flags)
1112		return -EINVAL;
1113
1114	return 0;
1115}
 
 
1116
1117static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
1118		int as_id, struct kvm_memslots *slots)
1119{
1120	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
1121	u64 gen = old_memslots->generation;
1122
1123	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1124	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
 
 
1125
1126	rcu_assign_pointer(kvm->memslots[as_id], slots);
1127	synchronize_srcu_expedited(&kvm->srcu);
 
 
 
 
1128
1129	/*
1130	 * Increment the new memslot generation a second time, dropping the
1131	 * update in-progress flag and incrementing the generation based on
1132	 * the number of address spaces.  This provides a unique and easily
1133	 * identifiable generation number while the memslots are in flux.
1134	 */
1135	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1136
1137	/*
1138	 * Generations must be unique even across address spaces.  We do not need
1139	 * a global counter for that, instead the generation space is evenly split
1140	 * across address spaces.  For example, with two address spaces, address
1141	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1142	 * use generations 1, 3, 5, ...
1143	 */
1144	gen += KVM_ADDRESS_SPACE_NUM;
1145
1146	kvm_arch_memslots_updated(kvm, gen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147
1148	slots->generation = gen;
 
1149
1150	return old_memslots;
1151}
1152
1153/*
1154 * Note, at a minimum, the current number of used slots must be allocated, even
1155 * when deleting a memslot, as we need a complete duplicate of the memslots for
1156 * use when invalidating a memslot prior to deleting/moving the memslot.
1157 */
1158static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old,
1159					     enum kvm_mr_change change)
1160{
1161	struct kvm_memslots *slots;
1162	size_t old_size, new_size;
1163
1164	old_size = sizeof(struct kvm_memslots) +
1165		   (sizeof(struct kvm_memory_slot) * old->used_slots);
1166
1167	if (change == KVM_MR_CREATE)
1168		new_size = old_size + sizeof(struct kvm_memory_slot);
1169	else
1170		new_size = old_size;
1171
1172	slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT);
1173	if (likely(slots))
1174		memcpy(slots, old, old_size);
1175
1176	return slots;
1177}
1178
1179static int kvm_set_memslot(struct kvm *kvm,
1180			   const struct kvm_userspace_memory_region *mem,
1181			   struct kvm_memory_slot *old,
1182			   struct kvm_memory_slot *new, int as_id,
1183			   enum kvm_mr_change change)
1184{
1185	struct kvm_memory_slot *slot;
1186	struct kvm_memslots *slots;
1187	int r;
1188
1189	slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change);
1190	if (!slots)
1191		return -ENOMEM;
1192
1193	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1194		/*
1195		 * Note, the INVALID flag needs to be in the appropriate entry
1196		 * in the freshly allocated memslots, not in @old or @new.
1197		 */
1198		slot = id_to_memslot(slots, old->id);
1199		slot->flags |= KVM_MEMSLOT_INVALID;
1200
1201		/*
1202		 * We can re-use the old memslots, the only difference from the
1203		 * newly installed memslots is the invalid flag, which will get
1204		 * dropped by update_memslots anyway.  We'll also revert to the
1205		 * old memslots if preparing the new memory region fails.
1206		 */
1207		slots = install_new_memslots(kvm, as_id, slots);
1208
1209		/* From this point no new shadow pages pointing to a deleted,
1210		 * or moved, memslot will be created.
 
 
 
1211		 *
1212		 * validation of sp->gfn happens in:
1213		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1214		 *	- kvm_is_visible_gfn (mmu_check_root)
1215		 */
1216		kvm_arch_flush_shadow_memslot(kvm, slot);
 
1217	}
1218
1219	r = kvm_arch_prepare_memory_region(kvm, new, mem, change);
1220	if (r)
1221		goto out_slots;
1222
1223	update_memslots(slots, new, change);
1224	slots = install_new_memslots(kvm, as_id, slots);
 
 
 
 
 
1225
1226	kvm_arch_commit_memory_region(kvm, mem, old, new, change);
 
 
 
 
1227
1228	kvfree(slots);
1229	return 0;
1230
1231out_slots:
1232	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1233		slots = install_new_memslots(kvm, as_id, slots);
1234	kvfree(slots);
1235	return r;
1236}
1237
1238static int kvm_delete_memslot(struct kvm *kvm,
1239			      const struct kvm_userspace_memory_region *mem,
1240			      struct kvm_memory_slot *old, int as_id)
1241{
1242	struct kvm_memory_slot new;
1243	int r;
1244
1245	if (!old->npages)
1246		return -EINVAL;
1247
1248	memset(&new, 0, sizeof(new));
1249	new.id = old->id;
1250
1251	r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE);
1252	if (r)
1253		return r;
1254
1255	kvm_free_memslot(kvm, old);
1256	return 0;
1257}
1258
1259/*
1260 * Allocate some memory and give it an address in the guest physical address
1261 * space.
1262 *
1263 * Discontiguous memory is allowed, mostly for framebuffers.
1264 *
1265 * Must be called holding kvm->slots_lock for write.
1266 */
1267int __kvm_set_memory_region(struct kvm *kvm,
1268			    const struct kvm_userspace_memory_region *mem)
1269{
1270	struct kvm_memory_slot old, new;
1271	struct kvm_memory_slot *tmp;
1272	enum kvm_mr_change change;
1273	int as_id, id;
1274	int r;
1275
1276	r = check_memory_region_flags(mem);
1277	if (r)
1278		return r;
1279
1280	as_id = mem->slot >> 16;
1281	id = (u16)mem->slot;
1282
1283	/* General sanity checks */
1284	if (mem->memory_size & (PAGE_SIZE - 1))
1285		return -EINVAL;
1286	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1287		return -EINVAL;
1288	/* We can read the guest memory with __xxx_user() later on. */
1289	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1290	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1291			mem->memory_size))
1292		return -EINVAL;
1293	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1294		return -EINVAL;
1295	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1296		return -EINVAL;
1297
1298	/*
1299	 * Make a full copy of the old memslot, the pointer will become stale
1300	 * when the memslots are re-sorted by update_memslots(), and the old
1301	 * memslot needs to be referenced after calling update_memslots(), e.g.
1302	 * to free its resources and for arch specific behavior.
1303	 */
1304	tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1305	if (tmp) {
1306		old = *tmp;
1307		tmp = NULL;
1308	} else {
1309		memset(&old, 0, sizeof(old));
1310		old.id = id;
1311	}
1312
1313	if (!mem->memory_size)
1314		return kvm_delete_memslot(kvm, mem, &old, as_id);
1315
1316	new.id = id;
1317	new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1318	new.npages = mem->memory_size >> PAGE_SHIFT;
1319	new.flags = mem->flags;
1320	new.userspace_addr = mem->userspace_addr;
1321
1322	if (new.npages > KVM_MEM_MAX_NR_PAGES)
1323		return -EINVAL;
1324
1325	if (!old.npages) {
1326		change = KVM_MR_CREATE;
1327		new.dirty_bitmap = NULL;
1328		memset(&new.arch, 0, sizeof(new.arch));
1329	} else { /* Modify an existing slot. */
1330		if ((new.userspace_addr != old.userspace_addr) ||
1331		    (new.npages != old.npages) ||
1332		    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1333			return -EINVAL;
1334
1335		if (new.base_gfn != old.base_gfn)
1336			change = KVM_MR_MOVE;
1337		else if (new.flags != old.flags)
1338			change = KVM_MR_FLAGS_ONLY;
1339		else /* Nothing to change. */
1340			return 0;
1341
1342		/* Copy dirty_bitmap and arch from the current memslot. */
1343		new.dirty_bitmap = old.dirty_bitmap;
1344		memcpy(&new.arch, &old.arch, sizeof(new.arch));
1345	}
1346
1347	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1348		/* Check for overlaps */
1349		kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) {
1350			if (tmp->id == id)
1351				continue;
1352			if (!((new.base_gfn + new.npages <= tmp->base_gfn) ||
1353			      (new.base_gfn >= tmp->base_gfn + tmp->npages)))
1354				return -EEXIST;
1355		}
1356	}
1357
1358	/* Allocate/free page dirty bitmap as needed */
1359	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1360		new.dirty_bitmap = NULL;
1361	else if (!new.dirty_bitmap) {
1362		r = kvm_alloc_dirty_bitmap(&new);
1363		if (r)
1364			return r;
1365
1366		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1367			bitmap_set(new.dirty_bitmap, 0, new.npages);
1368	}
 
 
 
1369
1370	r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change);
1371	if (r)
1372		goto out_bitmap;
1373
1374	if (old.dirty_bitmap && !new.dirty_bitmap)
1375		kvm_destroy_dirty_bitmap(&old);
1376	return 0;
1377
1378out_bitmap:
1379	if (new.dirty_bitmap && !old.dirty_bitmap)
1380		kvm_destroy_dirty_bitmap(&new);
1381	return r;
 
1382}
1383EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1384
1385int kvm_set_memory_region(struct kvm *kvm,
1386			  const struct kvm_userspace_memory_region *mem)
 
1387{
1388	int r;
1389
1390	mutex_lock(&kvm->slots_lock);
1391	r = __kvm_set_memory_region(kvm, mem);
1392	mutex_unlock(&kvm->slots_lock);
1393	return r;
1394}
1395EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1396
1397static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1398					  struct kvm_userspace_memory_region *mem)
 
 
1399{
1400	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1401		return -EINVAL;
1402
1403	return kvm_set_memory_region(kvm, mem);
1404}
1405
1406#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1407/**
1408 * kvm_get_dirty_log - get a snapshot of dirty pages
1409 * @kvm:	pointer to kvm instance
1410 * @log:	slot id and address to which we copy the log
1411 * @is_dirty:	set to '1' if any dirty pages were found
1412 * @memslot:	set to the associated memslot, always valid on success
1413 */
1414int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1415		      int *is_dirty, struct kvm_memory_slot **memslot)
1416{
1417	struct kvm_memslots *slots;
1418	int i, as_id, id;
1419	unsigned long n;
1420	unsigned long any = 0;
1421
1422	*memslot = NULL;
1423	*is_dirty = 0;
 
1424
1425	as_id = log->slot >> 16;
1426	id = (u16)log->slot;
1427	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1428		return -EINVAL;
1429
1430	slots = __kvm_memslots(kvm, as_id);
1431	*memslot = id_to_memslot(slots, id);
1432	if (!(*memslot) || !(*memslot)->dirty_bitmap)
1433		return -ENOENT;
1434
1435	kvm_arch_sync_dirty_log(kvm, *memslot);
1436
1437	n = kvm_dirty_bitmap_bytes(*memslot);
1438
1439	for (i = 0; !any && i < n/sizeof(long); ++i)
1440		any = (*memslot)->dirty_bitmap[i];
1441
1442	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
1443		return -EFAULT;
 
1444
1445	if (any)
1446		*is_dirty = 1;
1447	return 0;
 
 
 
1448}
1449EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1450
1451#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1452/**
1453 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1454 *	and reenable dirty page tracking for the corresponding pages.
1455 * @kvm:	pointer to kvm instance
1456 * @log:	slot id and address to which we copy the log
1457 *
1458 * We need to keep it in mind that VCPU threads can write to the bitmap
1459 * concurrently. So, to avoid losing track of dirty pages we keep the
1460 * following order:
1461 *
1462 *    1. Take a snapshot of the bit and clear it if needed.
1463 *    2. Write protect the corresponding page.
1464 *    3. Copy the snapshot to the userspace.
1465 *    4. Upon return caller flushes TLB's if needed.
1466 *
1467 * Between 2 and 4, the guest may write to the page using the remaining TLB
1468 * entry.  This is not a problem because the page is reported dirty using
1469 * the snapshot taken before and step 4 ensures that writes done after
1470 * exiting to userspace will be logged for the next call.
1471 *
1472 */
1473static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
1474{
1475	struct kvm_memslots *slots;
1476	struct kvm_memory_slot *memslot;
1477	int i, as_id, id;
1478	unsigned long n;
1479	unsigned long *dirty_bitmap;
1480	unsigned long *dirty_bitmap_buffer;
1481	bool flush;
1482
1483	as_id = log->slot >> 16;
1484	id = (u16)log->slot;
1485	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1486		return -EINVAL;
1487
1488	slots = __kvm_memslots(kvm, as_id);
1489	memslot = id_to_memslot(slots, id);
1490	if (!memslot || !memslot->dirty_bitmap)
1491		return -ENOENT;
 
1492
1493	dirty_bitmap = memslot->dirty_bitmap;
 
 
 
 
1494
1495	kvm_arch_sync_dirty_log(kvm, memslot);
 
 
 
 
1496
1497	n = kvm_dirty_bitmap_bytes(memslot);
1498	flush = false;
1499	if (kvm->manual_dirty_log_protect) {
1500		/*
1501		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1502		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1503		 * is some code duplication between this function and
1504		 * kvm_get_dirty_log, but hopefully all architecture
1505		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1506		 * can be eliminated.
1507		 */
1508		dirty_bitmap_buffer = dirty_bitmap;
1509	} else {
1510		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1511		memset(dirty_bitmap_buffer, 0, n);
1512
1513		spin_lock(&kvm->mmu_lock);
1514		for (i = 0; i < n / sizeof(long); i++) {
1515			unsigned long mask;
1516			gfn_t offset;
1517
1518			if (!dirty_bitmap[i])
1519				continue;
 
 
 
1520
1521			flush = true;
1522			mask = xchg(&dirty_bitmap[i], 0);
1523			dirty_bitmap_buffer[i] = mask;
1524
1525			offset = i * BITS_PER_LONG;
1526			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1527								offset, mask);
1528		}
1529		spin_unlock(&kvm->mmu_lock);
1530	}
1531
1532	if (flush)
1533		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1534
1535	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1536		return -EFAULT;
1537	return 0;
1538}
 
1539
1540
1541/**
1542 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1543 * @kvm: kvm instance
1544 * @log: slot id and address to which we copy the log
1545 *
1546 * Steps 1-4 below provide general overview of dirty page logging. See
1547 * kvm_get_dirty_log_protect() function description for additional details.
1548 *
1549 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1550 * always flush the TLB (step 4) even if previous step failed  and the dirty
1551 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1552 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1553 * writes will be marked dirty for next log read.
1554 *
1555 *   1. Take a snapshot of the bit and clear it if needed.
1556 *   2. Write protect the corresponding page.
1557 *   3. Copy the snapshot to the userspace.
1558 *   4. Flush TLB's if needed.
1559 */
1560static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1561				      struct kvm_dirty_log *log)
1562{
1563	int r;
1564
1565	mutex_lock(&kvm->slots_lock);
1566
1567	r = kvm_get_dirty_log_protect(kvm, log);
1568
1569	mutex_unlock(&kvm->slots_lock);
1570	return r;
1571}
 
1572
1573/**
1574 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1575 *	and reenable dirty page tracking for the corresponding pages.
1576 * @kvm:	pointer to kvm instance
1577 * @log:	slot id and address from which to fetch the bitmap of dirty pages
1578 */
1579static int kvm_clear_dirty_log_protect(struct kvm *kvm,
1580				       struct kvm_clear_dirty_log *log)
1581{
1582	struct kvm_memslots *slots;
1583	struct kvm_memory_slot *memslot;
1584	int as_id, id;
1585	gfn_t offset;
1586	unsigned long i, n;
1587	unsigned long *dirty_bitmap;
1588	unsigned long *dirty_bitmap_buffer;
1589	bool flush;
1590
1591	as_id = log->slot >> 16;
1592	id = (u16)log->slot;
1593	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1594		return -EINVAL;
1595
1596	if (log->first_page & 63)
1597		return -EINVAL;
1598
1599	slots = __kvm_memslots(kvm, as_id);
1600	memslot = id_to_memslot(slots, id);
1601	if (!memslot || !memslot->dirty_bitmap)
1602		return -ENOENT;
1603
1604	dirty_bitmap = memslot->dirty_bitmap;
1605
1606	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1607
1608	if (log->first_page > memslot->npages ||
1609	    log->num_pages > memslot->npages - log->first_page ||
1610	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1611	    return -EINVAL;
1612
1613	kvm_arch_sync_dirty_log(kvm, memslot);
1614
1615	flush = false;
1616	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1617	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1618		return -EFAULT;
1619
1620	spin_lock(&kvm->mmu_lock);
1621	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1622		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1623	     i++, offset += BITS_PER_LONG) {
1624		unsigned long mask = *dirty_bitmap_buffer++;
1625		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1626		if (!mask)
1627			continue;
1628
1629		mask &= atomic_long_fetch_andnot(mask, p);
1630
1631		/*
1632		 * mask contains the bits that really have been cleared.  This
1633		 * never includes any bits beyond the length of the memslot (if
1634		 * the length is not aligned to 64 pages), therefore it is not
1635		 * a problem if userspace sets them in log->dirty_bitmap.
1636		*/
1637		if (mask) {
1638			flush = true;
1639			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1640								offset, mask);
1641		}
1642	}
1643	spin_unlock(&kvm->mmu_lock);
1644
1645	if (flush)
1646		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
1647
1648	return 0;
1649}
1650
1651static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
1652					struct kvm_clear_dirty_log *log)
1653{
1654	int r;
1655
1656	mutex_lock(&kvm->slots_lock);
1657
1658	r = kvm_clear_dirty_log_protect(kvm, log);
1659
1660	mutex_unlock(&kvm->slots_lock);
1661	return r;
1662}
1663#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1664
1665struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1666{
1667	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1668}
1669EXPORT_SYMBOL_GPL(gfn_to_memslot);
1670
1671struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1672{
1673	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1674}
1675EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_memslot);
1676
1677bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1678{
1679	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1680
1681	return kvm_is_visible_memslot(memslot);
1682}
1683EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1684
1685bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1686{
1687	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1688
1689	return kvm_is_visible_memslot(memslot);
1690}
1691EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
1692
1693unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
1694{
1695	struct vm_area_struct *vma;
1696	unsigned long addr, size;
1697
1698	size = PAGE_SIZE;
1699
1700	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
1701	if (kvm_is_error_hva(addr))
1702		return PAGE_SIZE;
1703
1704	mmap_read_lock(current->mm);
1705	vma = find_vma(current->mm, addr);
1706	if (!vma)
1707		goto out;
1708
1709	size = vma_kernel_pagesize(vma);
1710
1711out:
1712	mmap_read_unlock(current->mm);
1713
1714	return size;
1715}
1716
1717static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1718{
1719	return slot->flags & KVM_MEM_READONLY;
1720}
1721
1722static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1723				       gfn_t *nr_pages, bool write)
1724{
1725	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1726		return KVM_HVA_ERR_BAD;
1727
1728	if (memslot_is_readonly(slot) && write)
1729		return KVM_HVA_ERR_RO_BAD;
1730
1731	if (nr_pages)
1732		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1733
1734	return __gfn_to_hva_memslot(slot, gfn);
1735}
1736
1737static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1738				     gfn_t *nr_pages)
1739{
1740	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1741}
1742
1743unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1744					gfn_t gfn)
1745{
1746	return gfn_to_hva_many(slot, gfn, NULL);
1747}
1748EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1749
1750unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1751{
1752	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1753}
1754EXPORT_SYMBOL_GPL(gfn_to_hva);
1755
1756unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1757{
1758	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1759}
1760EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1761
1762/*
1763 * Return the hva of a @gfn and the R/W attribute if possible.
1764 *
1765 * @slot: the kvm_memory_slot which contains @gfn
1766 * @gfn: the gfn to be translated
1767 * @writable: used to return the read/write attribute of the @slot if the hva
1768 * is valid and @writable is not NULL
1769 */
1770unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1771				      gfn_t gfn, bool *writable)
1772{
1773	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1774
1775	if (!kvm_is_error_hva(hva) && writable)
1776		*writable = !memslot_is_readonly(slot);
1777
1778	return hva;
1779}
1780
1781unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
 
1782{
1783	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1784
1785	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1786}
1787
1788unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1789{
1790	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1791
1792	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1793}
1794
1795static inline int check_user_page_hwpoison(unsigned long addr)
1796{
1797	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1798
1799	rc = get_user_pages(addr, 1, flags, NULL, NULL);
 
1800	return rc == -EHWPOISON;
1801}
1802
1803/*
1804 * The fast path to get the writable pfn which will be stored in @pfn,
1805 * true indicates success, otherwise false is returned.  It's also the
1806 * only part that runs if we can in atomic context.
1807 */
1808static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1809			    bool *writable, kvm_pfn_t *pfn)
1810{
1811	struct page *page[1];
 
 
1812
1813	/*
1814	 * Fast pin a writable pfn only if it is a write fault request
1815	 * or the caller allows to map a writable pfn for a read fault
1816	 * request.
1817	 */
1818	if (!(write_fault || writable))
1819		return false;
1820
1821	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
1822		*pfn = page_to_pfn(page[0]);
1823
1824		if (writable)
1825			*writable = true;
1826		return true;
1827	}
1828
1829	return false;
1830}
1831
1832/*
1833 * The slow path to get the pfn of the specified host virtual address,
1834 * 1 indicates success, -errno is returned if error is detected.
1835 */
1836static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1837			   bool *writable, kvm_pfn_t *pfn)
1838{
1839	unsigned int flags = FOLL_HWPOISON;
1840	struct page *page;
1841	int npages = 0;
1842
1843	might_sleep();
 
1844
1845	if (writable)
1846		*writable = write_fault;
 
 
 
 
 
 
1847
1848	if (write_fault)
1849		flags |= FOLL_WRITE;
1850	if (async)
1851		flags |= FOLL_NOWAIT;
1852
1853	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1854	if (npages != 1)
1855		return npages;
1856
1857	/* map read fault as writable if possible */
1858	if (unlikely(!write_fault) && writable) {
1859		struct page *wpage;
1860
1861		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
1862			*writable = true;
1863			put_page(page);
1864			page = wpage;
1865		}
1866	}
1867	*pfn = page_to_pfn(page);
1868	return npages;
1869}
1870
1871static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1872{
1873	if (unlikely(!(vma->vm_flags & VM_READ)))
1874		return false;
1875
1876	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1877		return false;
1878
1879	return true;
1880}
 
 
 
 
 
1881
1882static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1883			       unsigned long addr, bool *async,
1884			       bool write_fault, bool *writable,
1885			       kvm_pfn_t *p_pfn)
1886{
1887	unsigned long pfn;
1888	int r;
1889
1890	r = follow_pfn(vma, addr, &pfn);
1891	if (r) {
1892		/*
1893		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1894		 * not call the fault handler, so do it here.
1895		 */
1896		bool unlocked = false;
1897		r = fixup_user_fault(current->mm, addr,
1898				     (write_fault ? FAULT_FLAG_WRITE : 0),
1899				     &unlocked);
1900		if (unlocked)
1901			return -EAGAIN;
1902		if (r)
1903			return r;
1904
1905		r = follow_pfn(vma, addr, &pfn);
1906		if (r)
1907			return r;
1908
1909	}
1910
1911	if (writable)
1912		*writable = true;
1913
1914	/*
1915	 * Get a reference here because callers of *hva_to_pfn* and
1916	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1917	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1918	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1919	 * simply do nothing for reserved pfns.
1920	 *
1921	 * Whoever called remap_pfn_range is also going to call e.g.
1922	 * unmap_mapping_range before the underlying pages are freed,
1923	 * causing a call to our MMU notifier.
1924	 */ 
1925	kvm_get_pfn(pfn);
1926
1927	*p_pfn = pfn;
1928	return 0;
1929}
1930
1931/*
1932 * Pin guest page in memory and return its pfn.
1933 * @addr: host virtual address which maps memory to the guest
1934 * @atomic: whether this function can sleep
1935 * @async: whether this function need to wait IO complete if the
1936 *         host page is not in the memory
1937 * @write_fault: whether we should get a writable host page
1938 * @writable: whether it allows to map a writable host page for !@write_fault
1939 *
1940 * The function will map a writable host page for these two cases:
1941 * 1): @write_fault = true
1942 * 2): @write_fault = false && @writable, @writable will tell the caller
1943 *     whether the mapping is writable.
1944 */
1945static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1946			bool write_fault, bool *writable)
1947{
1948	struct vm_area_struct *vma;
1949	kvm_pfn_t pfn = 0;
1950	int npages, r;
1951
1952	/* we can do it either atomically or asynchronously, not both */
1953	BUG_ON(atomic && async);
1954
1955	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1956		return pfn;
1957
1958	if (atomic)
1959		return KVM_PFN_ERR_FAULT;
1960
1961	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1962	if (npages == 1)
1963		return pfn;
1964
1965	mmap_read_lock(current->mm);
1966	if (npages == -EHWPOISON ||
1967	      (!async && check_user_page_hwpoison(addr))) {
1968		pfn = KVM_PFN_ERR_HWPOISON;
1969		goto exit;
1970	}
1971
1972retry:
1973	vma = find_vma_intersection(current->mm, addr, addr + 1);
1974
1975	if (vma == NULL)
1976		pfn = KVM_PFN_ERR_FAULT;
1977	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1978		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1979		if (r == -EAGAIN)
1980			goto retry;
1981		if (r < 0)
1982			pfn = KVM_PFN_ERR_FAULT;
1983	} else {
1984		if (async && vma_is_valid(vma, write_fault))
1985			*async = true;
1986		pfn = KVM_PFN_ERR_FAULT;
1987	}
1988exit:
1989	mmap_read_unlock(current->mm);
1990	return pfn;
1991}
 
1992
1993kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1994			       bool atomic, bool *async, bool write_fault,
1995			       bool *writable)
1996{
1997	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1998
1999	if (addr == KVM_HVA_ERR_RO_BAD) {
2000		if (writable)
2001			*writable = false;
2002		return KVM_PFN_ERR_RO_FAULT;
2003	}
2004
 
2005	if (kvm_is_error_hva(addr)) {
2006		if (writable)
2007			*writable = false;
2008		return KVM_PFN_NOSLOT;
2009	}
2010
2011	/* Do not map writable pfn in the readonly memslot. */
2012	if (writable && memslot_is_readonly(slot)) {
2013		*writable = false;
2014		writable = NULL;
2015	}
2016
2017	return hva_to_pfn(addr, atomic, async, write_fault,
2018			  writable);
2019}
2020EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2021
2022kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2023		      bool *writable)
2024{
2025	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
2026				    write_fault, writable);
2027}
2028EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2029
2030kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
 
2031{
2032	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
2033}
2034EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2035
2036kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
2037{
2038	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
2039}
2040EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2041
2042kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
 
2043{
2044	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2045}
2046EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2047
2048kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2049{
2050	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2051}
2052EXPORT_SYMBOL_GPL(gfn_to_pfn);
2053
2054kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
 
2055{
2056	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
 
2057}
2058EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2059
2060int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2061			    struct page **pages, int nr_pages)
2062{
2063	unsigned long addr;
2064	gfn_t entry = 0;
2065
2066	addr = gfn_to_hva_many(slot, gfn, &entry);
2067	if (kvm_is_error_hva(addr))
2068		return -1;
2069
2070	if (entry < nr_pages)
2071		return 0;
2072
2073	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2074}
2075EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2076
2077static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
2078{
2079	if (is_error_noslot_pfn(pfn))
2080		return KVM_ERR_PTR_BAD_PAGE;
2081
2082	if (kvm_is_reserved_pfn(pfn)) {
2083		WARN_ON(1);
2084		return KVM_ERR_PTR_BAD_PAGE;
2085	}
2086
2087	return pfn_to_page(pfn);
2088}
2089
2090struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2091{
2092	kvm_pfn_t pfn;
2093
2094	pfn = gfn_to_pfn(kvm, gfn);
 
 
2095
2096	return kvm_pfn_to_page(pfn);
2097}
2098EXPORT_SYMBOL_GPL(gfn_to_page);
2099
2100void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
2101{
2102	if (pfn == 0)
2103		return;
2104
2105	if (cache)
2106		cache->pfn = cache->gfn = 0;
2107
2108	if (dirty)
2109		kvm_release_pfn_dirty(pfn);
2110	else
2111		kvm_release_pfn_clean(pfn);
2112}
2113
2114static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
2115				 struct gfn_to_pfn_cache *cache, u64 gen)
2116{
2117	kvm_release_pfn(cache->pfn, cache->dirty, cache);
2118
2119	cache->pfn = gfn_to_pfn_memslot(slot, gfn);
2120	cache->gfn = gfn;
2121	cache->dirty = false;
2122	cache->generation = gen;
2123}
2124
2125static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
2126			 struct kvm_host_map *map,
2127			 struct gfn_to_pfn_cache *cache,
2128			 bool atomic)
2129{
2130	kvm_pfn_t pfn;
2131	void *hva = NULL;
2132	struct page *page = KVM_UNMAPPED_PAGE;
2133	struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
2134	u64 gen = slots->generation;
2135
2136	if (!map)
2137		return -EINVAL;
2138
2139	if (cache) {
2140		if (!cache->pfn || cache->gfn != gfn ||
2141			cache->generation != gen) {
2142			if (atomic)
2143				return -EAGAIN;
2144			kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
2145		}
2146		pfn = cache->pfn;
2147	} else {
2148		if (atomic)
2149			return -EAGAIN;
2150		pfn = gfn_to_pfn_memslot(slot, gfn);
2151	}
2152	if (is_error_noslot_pfn(pfn))
2153		return -EINVAL;
2154
2155	if (pfn_valid(pfn)) {
2156		page = pfn_to_page(pfn);
2157		if (atomic)
2158			hva = kmap_atomic(page);
2159		else
2160			hva = kmap(page);
2161#ifdef CONFIG_HAS_IOMEM
2162	} else if (!atomic) {
2163		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2164	} else {
2165		return -EINVAL;
2166#endif
2167	}
2168
2169	if (!hva)
2170		return -EFAULT;
2171
2172	map->page = page;
2173	map->hva = hva;
2174	map->pfn = pfn;
2175	map->gfn = gfn;
2176
2177	return 0;
2178}
2179
2180int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
2181		struct gfn_to_pfn_cache *cache, bool atomic)
2182{
2183	return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
2184			cache, atomic);
2185}
2186EXPORT_SYMBOL_GPL(kvm_map_gfn);
2187
2188int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2189{
2190	return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
2191		NULL, false);
2192}
2193EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2194
2195static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
2196			struct kvm_host_map *map,
2197			struct gfn_to_pfn_cache *cache,
2198			bool dirty, bool atomic)
2199{
2200	if (!map)
2201		return;
2202
2203	if (!map->hva)
2204		return;
2205
2206	if (map->page != KVM_UNMAPPED_PAGE) {
2207		if (atomic)
2208			kunmap_atomic(map->hva);
2209		else
2210			kunmap(map->page);
2211	}
2212#ifdef CONFIG_HAS_IOMEM
2213	else if (!atomic)
2214		memunmap(map->hva);
2215	else
2216		WARN_ONCE(1, "Unexpected unmapping in atomic context");
2217#endif
2218
2219	if (dirty)
2220		mark_page_dirty_in_slot(memslot, map->gfn);
2221
2222	if (cache)
2223		cache->dirty |= dirty;
2224	else
2225		kvm_release_pfn(map->pfn, dirty, NULL);
2226
2227	map->hva = NULL;
2228	map->page = NULL;
2229}
2230
2231int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
2232		  struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
2233{
2234	__kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
2235			cache, dirty, atomic);
2236	return 0;
2237}
2238EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
2239
2240void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2241{
2242	__kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
2243			dirty, false);
2244}
2245EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2246
2247struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
2248{
2249	kvm_pfn_t pfn;
2250
2251	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
2252
2253	return kvm_pfn_to_page(pfn);
2254}
2255EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
2256
2257void kvm_release_page_clean(struct page *page)
2258{
2259	WARN_ON(is_error_page(page));
2260
2261	kvm_release_pfn_clean(page_to_pfn(page));
2262}
2263EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2264
2265void kvm_release_pfn_clean(kvm_pfn_t pfn)
2266{
2267	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
2268		put_page(pfn_to_page(pfn));
2269}
2270EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2271
2272void kvm_release_page_dirty(struct page *page)
2273{
2274	WARN_ON(is_error_page(page));
2275
2276	kvm_release_pfn_dirty(page_to_pfn(page));
2277}
2278EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2279
2280void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2281{
2282	kvm_set_pfn_dirty(pfn);
2283	kvm_release_pfn_clean(pfn);
2284}
2285EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2286
2287void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2288{
2289	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2290		SetPageDirty(pfn_to_page(pfn));
 
 
 
 
 
 
 
 
 
2291}
2292EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2293
2294void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2295{
2296	if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2297		mark_page_accessed(pfn_to_page(pfn));
2298}
2299EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2300
2301void kvm_get_pfn(kvm_pfn_t pfn)
2302{
2303	if (!kvm_is_reserved_pfn(pfn))
2304		get_page(pfn_to_page(pfn));
2305}
2306EXPORT_SYMBOL_GPL(kvm_get_pfn);
2307
2308static int next_segment(unsigned long len, int offset)
2309{
2310	if (len > PAGE_SIZE - offset)
2311		return PAGE_SIZE - offset;
2312	else
2313		return len;
2314}
2315
2316static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2317				 void *data, int offset, int len)
2318{
2319	int r;
2320	unsigned long addr;
2321
2322	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2323	if (kvm_is_error_hva(addr))
2324		return -EFAULT;
2325	r = __copy_from_user(data, (void __user *)addr + offset, len);
2326	if (r)
2327		return -EFAULT;
2328	return 0;
2329}
2330
2331int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2332			int len)
2333{
2334	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2335
2336	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2337}
2338EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2339
2340int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2341			     int offset, int len)
2342{
2343	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2344
2345	return __kvm_read_guest_page(slot, gfn, data, offset, len);
2346}
2347EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2348
2349int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2350{
2351	gfn_t gfn = gpa >> PAGE_SHIFT;
2352	int seg;
2353	int offset = offset_in_page(gpa);
2354	int ret;
2355
2356	while ((seg = next_segment(len, offset)) != 0) {
2357		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2358		if (ret < 0)
2359			return ret;
2360		offset = 0;
2361		len -= seg;
2362		data += seg;
2363		++gfn;
2364	}
2365	return 0;
2366}
2367EXPORT_SYMBOL_GPL(kvm_read_guest);
2368
2369int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
 
2370{
 
 
2371	gfn_t gfn = gpa >> PAGE_SHIFT;
2372	int seg;
2373	int offset = offset_in_page(gpa);
2374	int ret;
2375
2376	while ((seg = next_segment(len, offset)) != 0) {
2377		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2378		if (ret < 0)
2379			return ret;
2380		offset = 0;
2381		len -= seg;
2382		data += seg;
2383		++gfn;
2384	}
2385	return 0;
2386}
2387EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2388
2389static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2390			           void *data, int offset, unsigned long len)
2391{
2392	int r;
2393	unsigned long addr;
2394
2395	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2396	if (kvm_is_error_hva(addr))
2397		return -EFAULT;
2398	pagefault_disable();
2399	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2400	pagefault_enable();
2401	if (r)
2402		return -EFAULT;
2403	return 0;
2404}
 
2405
2406int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2407			       void *data, unsigned long len)
2408{
2409	gfn_t gfn = gpa >> PAGE_SHIFT;
2410	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2411	int offset = offset_in_page(gpa);
2412
2413	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2414}
2415EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2416
2417static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2418			          const void *data, int offset, int len)
2419{
2420	int r;
2421	unsigned long addr;
2422
2423	addr = gfn_to_hva_memslot(memslot, gfn);
2424	if (kvm_is_error_hva(addr))
2425		return -EFAULT;
2426	r = __copy_to_user((void __user *)addr + offset, data, len);
2427	if (r)
2428		return -EFAULT;
2429	mark_page_dirty_in_slot(memslot, gfn);
2430	return 0;
2431}
2432
2433int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2434			 const void *data, int offset, int len)
2435{
2436	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2437
2438	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2439}
2440EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2441
2442int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2443			      const void *data, int offset, int len)
2444{
2445	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2446
2447	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2448}
2449EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2450
2451int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2452		    unsigned long len)
2453{
2454	gfn_t gfn = gpa >> PAGE_SHIFT;
2455	int seg;
2456	int offset = offset_in_page(gpa);
2457	int ret;
2458
2459	while ((seg = next_segment(len, offset)) != 0) {
2460		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2461		if (ret < 0)
2462			return ret;
2463		offset = 0;
2464		len -= seg;
2465		data += seg;
2466		++gfn;
2467	}
2468	return 0;
2469}
2470EXPORT_SYMBOL_GPL(kvm_write_guest);
2471
2472int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2473		         unsigned long len)
2474{
 
 
2475	gfn_t gfn = gpa >> PAGE_SHIFT;
2476	int seg;
2477	int offset = offset_in_page(gpa);
2478	int ret;
2479
2480	while ((seg = next_segment(len, offset)) != 0) {
2481		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2482		if (ret < 0)
2483			return ret;
2484		offset = 0;
2485		len -= seg;
2486		data += seg;
2487		++gfn;
2488	}
2489	return 0;
2490}
2491EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2492
2493static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2494				       struct gfn_to_hva_cache *ghc,
2495				       gpa_t gpa, unsigned long len)
2496{
2497	int offset = offset_in_page(gpa);
2498	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2499	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2500	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2501	gfn_t nr_pages_avail;
2502
2503	/* Update ghc->generation before performing any error checks. */
2504	ghc->generation = slots->generation;
2505
2506	if (start_gfn > end_gfn) {
2507		ghc->hva = KVM_HVA_ERR_BAD;
2508		return -EINVAL;
2509	}
2510
2511	/*
2512	 * If the requested region crosses two memslots, we still
2513	 * verify that the entire region is valid here.
2514	 */
2515	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
2516		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2517		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2518					   &nr_pages_avail);
2519		if (kvm_is_error_hva(ghc->hva))
2520			return -EFAULT;
2521	}
2522
2523	/* Use the slow path for cross page reads and writes. */
2524	if (nr_pages_needed == 1)
2525		ghc->hva += offset;
2526	else
2527		ghc->memslot = NULL;
2528
2529	ghc->gpa = gpa;
2530	ghc->len = len;
2531	return 0;
2532}
2533
2534int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2535			      gpa_t gpa, unsigned long len)
2536{
2537	struct kvm_memslots *slots = kvm_memslots(kvm);
2538	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2539}
2540EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2541
2542int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2543				  void *data, unsigned int offset,
2544				  unsigned long len)
2545{
2546	struct kvm_memslots *slots = kvm_memslots(kvm);
2547	int r;
2548	gpa_t gpa = ghc->gpa + offset;
2549
2550	BUG_ON(len + offset > ghc->len);
2551
2552	if (slots->generation != ghc->generation) {
2553		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2554			return -EFAULT;
2555	}
2556
2557	if (kvm_is_error_hva(ghc->hva))
2558		return -EFAULT;
2559
2560	if (unlikely(!ghc->memslot))
2561		return kvm_write_guest(kvm, gpa, data, len);
2562
2563	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2564	if (r)
2565		return -EFAULT;
2566	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2567
2568	return 0;
2569}
2570EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2571
2572int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2573			   void *data, unsigned long len)
2574{
2575	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2576}
2577EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2578
2579int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2580				 void *data, unsigned int offset,
2581				 unsigned long len)
2582{
2583	struct kvm_memslots *slots = kvm_memslots(kvm);
2584	int r;
2585	gpa_t gpa = ghc->gpa + offset;
2586
2587	BUG_ON(len + offset > ghc->len);
2588
2589	if (slots->generation != ghc->generation) {
2590		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
2591			return -EFAULT;
2592	}
2593
2594	if (kvm_is_error_hva(ghc->hva))
2595		return -EFAULT;
2596
2597	if (unlikely(!ghc->memslot))
2598		return kvm_read_guest(kvm, gpa, data, len);
2599
2600	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
2601	if (r)
2602		return -EFAULT;
2603
2604	return 0;
2605}
2606EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
2607
2608int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2609			  void *data, unsigned long len)
2610{
2611	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
2612}
2613EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2614
2615int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2616{
2617	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2618
2619	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2620}
2621EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2622
2623int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2624{
2625	gfn_t gfn = gpa >> PAGE_SHIFT;
2626	int seg;
2627	int offset = offset_in_page(gpa);
2628	int ret;
2629
2630	while ((seg = next_segment(len, offset)) != 0) {
2631		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2632		if (ret < 0)
2633			return ret;
2634		offset = 0;
2635		len -= seg;
2636		++gfn;
2637	}
2638	return 0;
2639}
2640EXPORT_SYMBOL_GPL(kvm_clear_guest);
2641
2642static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2643				    gfn_t gfn)
2644{
2645	if (memslot && memslot->dirty_bitmap) {
2646		unsigned long rel_gfn = gfn - memslot->base_gfn;
2647
2648		set_bit_le(rel_gfn, memslot->dirty_bitmap);
 
2649	}
2650}
2651
2652void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2653{
2654	struct kvm_memory_slot *memslot;
2655
2656	memslot = gfn_to_memslot(kvm, gfn);
2657	mark_page_dirty_in_slot(memslot, gfn);
2658}
2659EXPORT_SYMBOL_GPL(mark_page_dirty);
2660
2661void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2662{
2663	struct kvm_memory_slot *memslot;
2664
2665	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2666	mark_page_dirty_in_slot(memslot, gfn);
2667}
2668EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2669
2670void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2671{
2672	if (!vcpu->sigset_active)
2673		return;
2674
2675	/*
2676	 * This does a lockless modification of ->real_blocked, which is fine
2677	 * because, only current can change ->real_blocked and all readers of
2678	 * ->real_blocked don't care as long ->real_blocked is always a subset
2679	 * of ->blocked.
2680	 */
2681	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2682}
2683
2684void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2685{
2686	if (!vcpu->sigset_active)
2687		return;
2688
2689	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2690	sigemptyset(&current->real_blocked);
2691}
2692
2693static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2694{
2695	unsigned int old, val, grow, grow_start;
2696
2697	old = val = vcpu->halt_poll_ns;
2698	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2699	grow = READ_ONCE(halt_poll_ns_grow);
2700	if (!grow)
2701		goto out;
2702
2703	val *= grow;
2704	if (val < grow_start)
2705		val = grow_start;
2706
2707	if (val > halt_poll_ns)
2708		val = halt_poll_ns;
2709
2710	vcpu->halt_poll_ns = val;
2711out:
2712	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2713}
2714
2715static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2716{
2717	unsigned int old, val, shrink;
2718
2719	old = val = vcpu->halt_poll_ns;
2720	shrink = READ_ONCE(halt_poll_ns_shrink);
2721	if (shrink == 0)
2722		val = 0;
2723	else
2724		val /= shrink;
2725
2726	vcpu->halt_poll_ns = val;
2727	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2728}
2729
2730static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2731{
2732	int ret = -EINTR;
2733	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2734
2735	if (kvm_arch_vcpu_runnable(vcpu)) {
2736		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2737		goto out;
2738	}
2739	if (kvm_cpu_has_pending_timer(vcpu))
2740		goto out;
2741	if (signal_pending(current))
2742		goto out;
2743
2744	ret = 0;
2745out:
2746	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2747	return ret;
2748}
2749
2750static inline void
2751update_halt_poll_stats(struct kvm_vcpu *vcpu, u64 poll_ns, bool waited)
2752{
2753	if (waited)
2754		vcpu->stat.halt_poll_fail_ns += poll_ns;
2755	else
2756		vcpu->stat.halt_poll_success_ns += poll_ns;
2757}
2758
2759/*
2760 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2761 */
2762void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2763{
2764	ktime_t start, cur, poll_end;
2765	bool waited = false;
2766	u64 block_ns;
2767
2768	kvm_arch_vcpu_blocking(vcpu);
2769
2770	start = cur = poll_end = ktime_get();
2771	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2772		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2773
2774		++vcpu->stat.halt_attempted_poll;
2775		do {
2776			/*
2777			 * This sets KVM_REQ_UNHALT if an interrupt
2778			 * arrives.
2779			 */
2780			if (kvm_vcpu_check_block(vcpu) < 0) {
2781				++vcpu->stat.halt_successful_poll;
2782				if (!vcpu_valid_wakeup(vcpu))
2783					++vcpu->stat.halt_poll_invalid;
2784				goto out;
2785			}
2786			poll_end = cur = ktime_get();
2787		} while (single_task_running() && ktime_before(cur, stop));
2788	}
2789
2790	prepare_to_rcuwait(&vcpu->wait);
2791	for (;;) {
2792		set_current_state(TASK_INTERRUPTIBLE);
2793
2794		if (kvm_vcpu_check_block(vcpu) < 0)
 
 
 
 
 
 
2795			break;
2796
2797		waited = true;
2798		schedule();
2799	}
2800	finish_rcuwait(&vcpu->wait);
2801	cur = ktime_get();
2802out:
2803	kvm_arch_vcpu_unblocking(vcpu);
2804	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2805
2806	update_halt_poll_stats(
2807		vcpu, ktime_to_ns(ktime_sub(poll_end, start)), waited);
2808
2809	if (!kvm_arch_no_poll(vcpu)) {
2810		if (!vcpu_valid_wakeup(vcpu)) {
2811			shrink_halt_poll_ns(vcpu);
2812		} else if (vcpu->kvm->max_halt_poll_ns) {
2813			if (block_ns <= vcpu->halt_poll_ns)
2814				;
2815			/* we had a long block, shrink polling */
2816			else if (vcpu->halt_poll_ns &&
2817					block_ns > vcpu->kvm->max_halt_poll_ns)
2818				shrink_halt_poll_ns(vcpu);
2819			/* we had a short halt and our poll time is too small */
2820			else if (vcpu->halt_poll_ns < vcpu->kvm->max_halt_poll_ns &&
2821					block_ns < vcpu->kvm->max_halt_poll_ns)
2822				grow_halt_poll_ns(vcpu);
2823		} else {
2824			vcpu->halt_poll_ns = 0;
2825		}
2826	}
2827
2828	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2829	kvm_arch_vcpu_block_finish(vcpu);
2830}
2831EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2832
2833bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2834{
2835	struct rcuwait *waitp;
2836
2837	waitp = kvm_arch_vcpu_get_wait(vcpu);
2838	if (rcuwait_wake_up(waitp)) {
2839		WRITE_ONCE(vcpu->ready, true);
2840		++vcpu->stat.halt_wakeup;
2841		return true;
2842	}
2843
2844	return false;
2845}
2846EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2847
2848#ifndef CONFIG_S390
2849/*
2850 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2851 */
2852void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2853{
2854	int me;
2855	int cpu = vcpu->cpu;
 
2856
2857	if (kvm_vcpu_wake_up(vcpu))
2858		return;
 
 
 
2859
2860	me = get_cpu();
2861	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2862		if (kvm_arch_vcpu_should_kick(vcpu))
2863			smp_send_reschedule(cpu);
2864	put_cpu();
2865}
2866EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2867#endif /* !CONFIG_S390 */
2868
2869int kvm_vcpu_yield_to(struct kvm_vcpu *target)
 
 
 
 
 
 
 
 
2870{
2871	struct pid *pid;
2872	struct task_struct *task = NULL;
2873	int ret = 0;
2874
2875	rcu_read_lock();
2876	pid = rcu_dereference(target->pid);
2877	if (pid)
2878		task = get_pid_task(pid, PIDTYPE_PID);
2879	rcu_read_unlock();
2880	if (!task)
2881		return ret;
2882	ret = yield_to(task, 1);
 
 
 
 
 
 
 
2883	put_task_struct(task);
2884
2885	return ret;
2886}
2887EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2888
2889/*
2890 * Helper that checks whether a VCPU is eligible for directed yield.
2891 * Most eligible candidate to yield is decided by following heuristics:
2892 *
2893 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2894 *  (preempted lock holder), indicated by @in_spin_loop.
2895 *  Set at the beginning and cleared at the end of interception/PLE handler.
2896 *
2897 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2898 *  chance last time (mostly it has become eligible now since we have probably
2899 *  yielded to lockholder in last iteration. This is done by toggling
2900 *  @dy_eligible each time a VCPU checked for eligibility.)
2901 *
2902 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2903 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2904 *  burning. Giving priority for a potential lock-holder increases lock
2905 *  progress.
2906 *
2907 *  Since algorithm is based on heuristics, accessing another VCPU data without
2908 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2909 *  and continue with next VCPU and so on.
2910 */
2911static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2912{
2913#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2914	bool eligible;
2915
2916	eligible = !vcpu->spin_loop.in_spin_loop ||
2917		    vcpu->spin_loop.dy_eligible;
2918
2919	if (vcpu->spin_loop.in_spin_loop)
2920		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2921
2922	return eligible;
2923#else
2924	return true;
2925#endif
2926}
2927
2928/*
2929 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2930 * a vcpu_load/vcpu_put pair.  However, for most architectures
2931 * kvm_arch_vcpu_runnable does not require vcpu_load.
2932 */
2933bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2934{
2935	return kvm_arch_vcpu_runnable(vcpu);
2936}
2937
2938static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2939{
2940	if (kvm_arch_dy_runnable(vcpu))
2941		return true;
2942
2943#ifdef CONFIG_KVM_ASYNC_PF
2944	if (!list_empty_careful(&vcpu->async_pf.done))
2945		return true;
2946#endif
2947
2948	return false;
2949}
2950
2951void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2952{
2953	struct kvm *kvm = me->kvm;
2954	struct kvm_vcpu *vcpu;
2955	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2956	int yielded = 0;
2957	int try = 3;
2958	int pass;
2959	int i;
2960
2961	kvm_vcpu_set_in_spin_loop(me, true);
2962	/*
2963	 * We boost the priority of a VCPU that is runnable but not
2964	 * currently running, because it got preempted by something
2965	 * else and called schedule in __vcpu_run.  Hopefully that
2966	 * VCPU is holding the lock that we need and will release it.
2967	 * We approximate round-robin by starting at the last boosted VCPU.
2968	 */
2969	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2970		kvm_for_each_vcpu(i, vcpu, kvm) {
2971			if (!pass && i <= last_boosted_vcpu) {
2972				i = last_boosted_vcpu;
2973				continue;
2974			} else if (pass && i > last_boosted_vcpu)
2975				break;
2976			if (!READ_ONCE(vcpu->ready))
2977				continue;
2978			if (vcpu == me)
2979				continue;
2980			if (rcuwait_active(&vcpu->wait) &&
2981			    !vcpu_dy_runnable(vcpu))
2982				continue;
2983			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2984				!kvm_arch_vcpu_in_kernel(vcpu))
2985				continue;
2986			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2987				continue;
2988
2989			yielded = kvm_vcpu_yield_to(vcpu);
2990			if (yielded > 0) {
2991				kvm->last_boosted_vcpu = i;
 
2992				break;
2993			} else if (yielded < 0) {
2994				try--;
2995				if (!try)
2996					break;
2997			}
2998		}
2999	}
3000	kvm_vcpu_set_in_spin_loop(me, false);
3001
3002	/* Ensure vcpu is not eligible during next spinloop */
3003	kvm_vcpu_set_dy_eligible(me, false);
3004}
3005EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3006
3007static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3008{
3009	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3010	struct page *page;
3011
3012	if (vmf->pgoff == 0)
3013		page = virt_to_page(vcpu->run);
3014#ifdef CONFIG_X86
3015	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3016		page = virt_to_page(vcpu->arch.pio_data);
3017#endif
3018#ifdef CONFIG_KVM_MMIO
3019	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3020		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3021#endif
3022	else
3023		return kvm_arch_vcpu_fault(vcpu, vmf);
3024	get_page(page);
3025	vmf->page = page;
3026	return 0;
3027}
3028
3029static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3030	.fault = kvm_vcpu_fault,
3031};
3032
3033static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3034{
3035	vma->vm_ops = &kvm_vcpu_vm_ops;
3036	return 0;
3037}
3038
3039static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3040{
3041	struct kvm_vcpu *vcpu = filp->private_data;
3042
3043	kvm_put_kvm(vcpu->kvm);
3044	return 0;
3045}
3046
3047static struct file_operations kvm_vcpu_fops = {
3048	.release        = kvm_vcpu_release,
3049	.unlocked_ioctl = kvm_vcpu_ioctl,
 
 
 
3050	.mmap           = kvm_vcpu_mmap,
3051	.llseek		= noop_llseek,
3052	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3053};
3054
3055/*
3056 * Allocates an inode for the vcpu.
3057 */
3058static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3059{
3060	char name[8 + 1 + ITOA_MAX_LEN + 1];
3061
3062	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3063	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3064}
3065
3066static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3067{
3068#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3069	struct dentry *debugfs_dentry;
3070	char dir_name[ITOA_MAX_LEN * 2];
3071
3072	if (!debugfs_initialized())
3073		return;
3074
3075	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3076	debugfs_dentry = debugfs_create_dir(dir_name,
3077					    vcpu->kvm->debugfs_dentry);
3078
3079	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3080#endif
3081}
3082
3083/*
3084 * Creates some virtual cpus.  Good luck creating more than one.
3085 */
3086static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3087{
3088	int r;
3089	struct kvm_vcpu *vcpu;
3090	struct page *page;
3091
3092	if (id >= KVM_MAX_VCPU_ID)
3093		return -EINVAL;
 
3094
3095	mutex_lock(&kvm->lock);
3096	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
3097		mutex_unlock(&kvm->lock);
3098		return -EINVAL;
3099	}
3100
3101	kvm->created_vcpus++;
3102	mutex_unlock(&kvm->lock);
3103
3104	r = kvm_arch_vcpu_precreate(kvm, id);
3105	if (r)
3106		goto vcpu_decrement;
3107
3108	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3109	if (!vcpu) {
3110		r = -ENOMEM;
3111		goto vcpu_decrement;
3112	}
3113
3114	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3115	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3116	if (!page) {
3117		r = -ENOMEM;
3118		goto vcpu_free;
3119	}
3120	vcpu->run = page_address(page);
3121
3122	kvm_vcpu_init(vcpu, kvm, id);
3123
3124	r = kvm_arch_vcpu_create(vcpu);
3125	if (r)
3126		goto vcpu_free_run_page;
3127
3128	mutex_lock(&kvm->lock);
3129	if (kvm_get_vcpu_by_id(kvm, id)) {
3130		r = -EEXIST;
3131		goto unlock_vcpu_destroy;
3132	}
3133
3134	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3135	BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
3136
3137	/* Now it's all set up, let userspace reach it */
3138	kvm_get_kvm(kvm);
3139	r = create_vcpu_fd(vcpu);
3140	if (r < 0) {
3141		kvm_put_kvm_no_destroy(kvm);
3142		goto unlock_vcpu_destroy;
3143	}
3144
3145	kvm->vcpus[vcpu->vcpu_idx] = vcpu;
3146
3147	/*
3148	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
3149	 * before kvm->online_vcpu's incremented value.
3150	 */
3151	smp_wmb();
3152	atomic_inc(&kvm->online_vcpus);
3153
3154	mutex_unlock(&kvm->lock);
3155	kvm_arch_vcpu_postcreate(vcpu);
3156	kvm_create_vcpu_debugfs(vcpu);
3157	return r;
3158
3159unlock_vcpu_destroy:
3160	mutex_unlock(&kvm->lock);
 
3161	kvm_arch_vcpu_destroy(vcpu);
3162vcpu_free_run_page:
3163	free_page((unsigned long)vcpu->run);
3164vcpu_free:
3165	kmem_cache_free(kvm_vcpu_cache, vcpu);
3166vcpu_decrement:
3167	mutex_lock(&kvm->lock);
3168	kvm->created_vcpus--;
3169	mutex_unlock(&kvm->lock);
3170	return r;
3171}
3172
3173static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
3174{
3175	if (sigset) {
3176		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3177		vcpu->sigset_active = 1;
3178		vcpu->sigset = *sigset;
3179	} else
3180		vcpu->sigset_active = 0;
3181	return 0;
3182}
3183
3184static long kvm_vcpu_ioctl(struct file *filp,
3185			   unsigned int ioctl, unsigned long arg)
3186{
3187	struct kvm_vcpu *vcpu = filp->private_data;
3188	void __user *argp = (void __user *)arg;
3189	int r;
3190	struct kvm_fpu *fpu = NULL;
3191	struct kvm_sregs *kvm_sregs = NULL;
3192
3193	if (vcpu->kvm->mm != current->mm)
3194		return -EIO;
3195
3196	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
3197		return -EINVAL;
3198
3199	/*
3200	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
3201	 * execution; mutex_lock() would break them.
3202	 */
3203	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
3204	if (r != -ENOIOCTLCMD)
3205		return r;
 
3206
3207	if (mutex_lock_killable(&vcpu->mutex))
3208		return -EINTR;
3209	switch (ioctl) {
3210	case KVM_RUN: {
3211		struct pid *oldpid;
3212		r = -EINVAL;
3213		if (arg)
3214			goto out;
3215		oldpid = rcu_access_pointer(vcpu->pid);
3216		if (unlikely(oldpid != task_pid(current))) {
3217			/* The thread running this VCPU changed. */
3218			struct pid *newpid;
3219
3220			r = kvm_arch_vcpu_run_pid_change(vcpu);
3221			if (r)
3222				break;
3223
3224			newpid = get_task_pid(current, PIDTYPE_PID);
3225			rcu_assign_pointer(vcpu->pid, newpid);
3226			if (oldpid)
3227				synchronize_rcu();
3228			put_pid(oldpid);
3229		}
3230		r = kvm_arch_vcpu_ioctl_run(vcpu);
3231		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
3232		break;
3233	}
3234	case KVM_GET_REGS: {
3235		struct kvm_regs *kvm_regs;
3236
3237		r = -ENOMEM;
3238		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
3239		if (!kvm_regs)
3240			goto out;
3241		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
3242		if (r)
3243			goto out_free1;
3244		r = -EFAULT;
3245		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
3246			goto out_free1;
3247		r = 0;
3248out_free1:
3249		kfree(kvm_regs);
3250		break;
3251	}
3252	case KVM_SET_REGS: {
3253		struct kvm_regs *kvm_regs;
3254
 
3255		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
3256		if (IS_ERR(kvm_regs)) {
3257			r = PTR_ERR(kvm_regs);
3258			goto out;
3259		}
3260		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
 
 
 
 
3261		kfree(kvm_regs);
3262		break;
3263	}
3264	case KVM_GET_SREGS: {
3265		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
3266				    GFP_KERNEL_ACCOUNT);
3267		r = -ENOMEM;
3268		if (!kvm_sregs)
3269			goto out;
3270		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
3271		if (r)
3272			goto out;
3273		r = -EFAULT;
3274		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
3275			goto out;
3276		r = 0;
3277		break;
3278	}
3279	case KVM_SET_SREGS: {
3280		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
3281		if (IS_ERR(kvm_sregs)) {
3282			r = PTR_ERR(kvm_sregs);
3283			kvm_sregs = NULL;
3284			goto out;
3285		}
3286		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
 
 
 
3287		break;
3288	}
3289	case KVM_GET_MP_STATE: {
3290		struct kvm_mp_state mp_state;
3291
3292		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
3293		if (r)
3294			goto out;
3295		r = -EFAULT;
3296		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
3297			goto out;
3298		r = 0;
3299		break;
3300	}
3301	case KVM_SET_MP_STATE: {
3302		struct kvm_mp_state mp_state;
3303
3304		r = -EFAULT;
3305		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3306			goto out;
3307		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
 
 
 
3308		break;
3309	}
3310	case KVM_TRANSLATE: {
3311		struct kvm_translation tr;
3312
3313		r = -EFAULT;
3314		if (copy_from_user(&tr, argp, sizeof(tr)))
3315			goto out;
3316		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3317		if (r)
3318			goto out;
3319		r = -EFAULT;
3320		if (copy_to_user(argp, &tr, sizeof(tr)))
3321			goto out;
3322		r = 0;
3323		break;
3324	}
3325	case KVM_SET_GUEST_DEBUG: {
3326		struct kvm_guest_debug dbg;
3327
3328		r = -EFAULT;
3329		if (copy_from_user(&dbg, argp, sizeof(dbg)))
3330			goto out;
3331		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
 
 
 
3332		break;
3333	}
3334	case KVM_SET_SIGNAL_MASK: {
3335		struct kvm_signal_mask __user *sigmask_arg = argp;
3336		struct kvm_signal_mask kvm_sigmask;
3337		sigset_t sigset, *p;
3338
3339		p = NULL;
3340		if (argp) {
3341			r = -EFAULT;
3342			if (copy_from_user(&kvm_sigmask, argp,
3343					   sizeof(kvm_sigmask)))
3344				goto out;
3345			r = -EINVAL;
3346			if (kvm_sigmask.len != sizeof(sigset))
3347				goto out;
3348			r = -EFAULT;
3349			if (copy_from_user(&sigset, sigmask_arg->sigset,
3350					   sizeof(sigset)))
3351				goto out;
3352			p = &sigset;
3353		}
3354		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3355		break;
3356	}
3357	case KVM_GET_FPU: {
3358		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3359		r = -ENOMEM;
3360		if (!fpu)
3361			goto out;
3362		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3363		if (r)
3364			goto out;
3365		r = -EFAULT;
3366		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3367			goto out;
3368		r = 0;
3369		break;
3370	}
3371	case KVM_SET_FPU: {
3372		fpu = memdup_user(argp, sizeof(*fpu));
3373		if (IS_ERR(fpu)) {
3374			r = PTR_ERR(fpu);
3375			fpu = NULL;
3376			goto out;
3377		}
3378		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
 
 
 
3379		break;
3380	}
3381	default:
3382		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3383	}
3384out:
3385	mutex_unlock(&vcpu->mutex);
3386	kfree(fpu);
3387	kfree(kvm_sregs);
3388	return r;
3389}
3390
3391#ifdef CONFIG_KVM_COMPAT
3392static long kvm_vcpu_compat_ioctl(struct file *filp,
3393				  unsigned int ioctl, unsigned long arg)
3394{
3395	struct kvm_vcpu *vcpu = filp->private_data;
3396	void __user *argp = compat_ptr(arg);
3397	int r;
3398
3399	if (vcpu->kvm->mm != current->mm)
3400		return -EIO;
3401
3402	switch (ioctl) {
3403	case KVM_SET_SIGNAL_MASK: {
3404		struct kvm_signal_mask __user *sigmask_arg = argp;
3405		struct kvm_signal_mask kvm_sigmask;
 
3406		sigset_t sigset;
3407
3408		if (argp) {
3409			r = -EFAULT;
3410			if (copy_from_user(&kvm_sigmask, argp,
3411					   sizeof(kvm_sigmask)))
3412				goto out;
3413			r = -EINVAL;
3414			if (kvm_sigmask.len != sizeof(compat_sigset_t))
3415				goto out;
3416			r = -EFAULT;
3417			if (get_compat_sigset(&sigset,
3418					      (compat_sigset_t __user *)sigmask_arg->sigset))
3419				goto out;
3420			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3421		} else
3422			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3423		break;
3424	}
3425	default:
3426		r = kvm_vcpu_ioctl(filp, ioctl, arg);
3427	}
3428
3429out:
3430	return r;
3431}
3432#endif
3433
3434static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3435{
3436	struct kvm_device *dev = filp->private_data;
3437
3438	if (dev->ops->mmap)
3439		return dev->ops->mmap(dev, vma);
3440
3441	return -ENODEV;
3442}
3443
3444static int kvm_device_ioctl_attr(struct kvm_device *dev,
3445				 int (*accessor)(struct kvm_device *dev,
3446						 struct kvm_device_attr *attr),
3447				 unsigned long arg)
3448{
3449	struct kvm_device_attr attr;
3450
3451	if (!accessor)
3452		return -EPERM;
3453
3454	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3455		return -EFAULT;
3456
3457	return accessor(dev, &attr);
3458}
3459
3460static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3461			     unsigned long arg)
3462{
3463	struct kvm_device *dev = filp->private_data;
3464
3465	if (dev->kvm->mm != current->mm)
3466		return -EIO;
3467
3468	switch (ioctl) {
3469	case KVM_SET_DEVICE_ATTR:
3470		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3471	case KVM_GET_DEVICE_ATTR:
3472		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3473	case KVM_HAS_DEVICE_ATTR:
3474		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3475	default:
3476		if (dev->ops->ioctl)
3477			return dev->ops->ioctl(dev, ioctl, arg);
3478
3479		return -ENOTTY;
3480	}
3481}
3482
3483static int kvm_device_release(struct inode *inode, struct file *filp)
3484{
3485	struct kvm_device *dev = filp->private_data;
3486	struct kvm *kvm = dev->kvm;
3487
3488	if (dev->ops->release) {
3489		mutex_lock(&kvm->lock);
3490		list_del(&dev->vm_node);
3491		dev->ops->release(dev);
3492		mutex_unlock(&kvm->lock);
3493	}
3494
3495	kvm_put_kvm(kvm);
3496	return 0;
3497}
3498
3499static const struct file_operations kvm_device_fops = {
3500	.unlocked_ioctl = kvm_device_ioctl,
3501	.release = kvm_device_release,
3502	KVM_COMPAT(kvm_device_ioctl),
3503	.mmap = kvm_device_mmap,
3504};
3505
3506struct kvm_device *kvm_device_from_filp(struct file *filp)
3507{
3508	if (filp->f_op != &kvm_device_fops)
3509		return NULL;
3510
3511	return filp->private_data;
3512}
3513
3514static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3515#ifdef CONFIG_KVM_MPIC
3516	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3517	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3518#endif
3519};
3520
3521int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3522{
3523	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3524		return -ENOSPC;
3525
3526	if (kvm_device_ops_table[type] != NULL)
3527		return -EEXIST;
3528
3529	kvm_device_ops_table[type] = ops;
3530	return 0;
3531}
3532
3533void kvm_unregister_device_ops(u32 type)
3534{
3535	if (kvm_device_ops_table[type] != NULL)
3536		kvm_device_ops_table[type] = NULL;
3537}
3538
3539static int kvm_ioctl_create_device(struct kvm *kvm,
3540				   struct kvm_create_device *cd)
3541{
3542	const struct kvm_device_ops *ops = NULL;
3543	struct kvm_device *dev;
3544	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3545	int type;
3546	int ret;
3547
3548	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3549		return -ENODEV;
3550
3551	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3552	ops = kvm_device_ops_table[type];
3553	if (ops == NULL)
3554		return -ENODEV;
3555
3556	if (test)
3557		return 0;
3558
3559	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3560	if (!dev)
3561		return -ENOMEM;
3562
3563	dev->ops = ops;
3564	dev->kvm = kvm;
3565
3566	mutex_lock(&kvm->lock);
3567	ret = ops->create(dev, type);
3568	if (ret < 0) {
3569		mutex_unlock(&kvm->lock);
3570		kfree(dev);
3571		return ret;
3572	}
3573	list_add(&dev->vm_node, &kvm->devices);
3574	mutex_unlock(&kvm->lock);
3575
3576	if (ops->init)
3577		ops->init(dev);
3578
3579	kvm_get_kvm(kvm);
3580	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3581	if (ret < 0) {
3582		kvm_put_kvm_no_destroy(kvm);
3583		mutex_lock(&kvm->lock);
3584		list_del(&dev->vm_node);
3585		mutex_unlock(&kvm->lock);
3586		ops->destroy(dev);
3587		return ret;
3588	}
3589
3590	cd->fd = ret;
3591	return 0;
3592}
3593
3594static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3595{
3596	switch (arg) {
3597	case KVM_CAP_USER_MEMORY:
3598	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3599	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3600	case KVM_CAP_INTERNAL_ERROR_DATA:
3601#ifdef CONFIG_HAVE_KVM_MSI
3602	case KVM_CAP_SIGNAL_MSI:
3603#endif
3604#ifdef CONFIG_HAVE_KVM_IRQFD
3605	case KVM_CAP_IRQFD:
3606	case KVM_CAP_IRQFD_RESAMPLE:
3607#endif
3608	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3609	case KVM_CAP_CHECK_EXTENSION_VM:
3610	case KVM_CAP_ENABLE_CAP_VM:
3611	case KVM_CAP_HALT_POLL:
3612		return 1;
3613#ifdef CONFIG_KVM_MMIO
3614	case KVM_CAP_COALESCED_MMIO:
3615		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3616	case KVM_CAP_COALESCED_PIO:
3617		return 1;
3618#endif
3619#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3620	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3621		return KVM_DIRTY_LOG_MANUAL_CAPS;
3622#endif
3623#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3624	case KVM_CAP_IRQ_ROUTING:
3625		return KVM_MAX_IRQ_ROUTES;
3626#endif
3627#if KVM_ADDRESS_SPACE_NUM > 1
3628	case KVM_CAP_MULTI_ADDRESS_SPACE:
3629		return KVM_ADDRESS_SPACE_NUM;
3630#endif
3631	case KVM_CAP_NR_MEMSLOTS:
3632		return KVM_USER_MEM_SLOTS;
3633	default:
3634		break;
3635	}
3636	return kvm_vm_ioctl_check_extension(kvm, arg);
3637}
3638
3639int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3640						  struct kvm_enable_cap *cap)
3641{
3642	return -EINVAL;
3643}
3644
3645static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3646					   struct kvm_enable_cap *cap)
3647{
3648	switch (cap->cap) {
3649#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3650	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
3651		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
3652
3653		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
3654			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
3655
3656		if (cap->flags || (cap->args[0] & ~allowed_options))
3657			return -EINVAL;
3658		kvm->manual_dirty_log_protect = cap->args[0];
3659		return 0;
3660	}
3661#endif
3662	case KVM_CAP_HALT_POLL: {
3663		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
3664			return -EINVAL;
3665
3666		kvm->max_halt_poll_ns = cap->args[0];
3667		return 0;
3668	}
3669	default:
3670		return kvm_vm_ioctl_enable_cap(kvm, cap);
3671	}
3672}
3673
3674static long kvm_vm_ioctl(struct file *filp,
3675			   unsigned int ioctl, unsigned long arg)
3676{
3677	struct kvm *kvm = filp->private_data;
3678	void __user *argp = (void __user *)arg;
3679	int r;
3680
3681	if (kvm->mm != current->mm)
3682		return -EIO;
3683	switch (ioctl) {
3684	case KVM_CREATE_VCPU:
3685		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3686		break;
3687	case KVM_ENABLE_CAP: {
3688		struct kvm_enable_cap cap;
3689
3690		r = -EFAULT;
3691		if (copy_from_user(&cap, argp, sizeof(cap)))
3692			goto out;
3693		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3694		break;
3695	}
3696	case KVM_SET_USER_MEMORY_REGION: {
3697		struct kvm_userspace_memory_region kvm_userspace_mem;
3698
3699		r = -EFAULT;
3700		if (copy_from_user(&kvm_userspace_mem, argp,
3701						sizeof(kvm_userspace_mem)))
3702			goto out;
3703
3704		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
 
 
3705		break;
3706	}
3707	case KVM_GET_DIRTY_LOG: {
3708		struct kvm_dirty_log log;
3709
3710		r = -EFAULT;
3711		if (copy_from_user(&log, argp, sizeof(log)))
3712			goto out;
3713		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3714		break;
3715	}
3716#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3717	case KVM_CLEAR_DIRTY_LOG: {
3718		struct kvm_clear_dirty_log log;
3719
3720		r = -EFAULT;
3721		if (copy_from_user(&log, argp, sizeof(log)))
3722			goto out;
3723		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3724		break;
3725	}
3726#endif
3727#ifdef CONFIG_KVM_MMIO
3728	case KVM_REGISTER_COALESCED_MMIO: {
3729		struct kvm_coalesced_mmio_zone zone;
3730
3731		r = -EFAULT;
3732		if (copy_from_user(&zone, argp, sizeof(zone)))
3733			goto out;
3734		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
 
 
 
3735		break;
3736	}
3737	case KVM_UNREGISTER_COALESCED_MMIO: {
3738		struct kvm_coalesced_mmio_zone zone;
3739
3740		r = -EFAULT;
3741		if (copy_from_user(&zone, argp, sizeof(zone)))
3742			goto out;
3743		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
 
 
 
3744		break;
3745	}
3746#endif
3747	case KVM_IRQFD: {
3748		struct kvm_irqfd data;
3749
3750		r = -EFAULT;
3751		if (copy_from_user(&data, argp, sizeof(data)))
3752			goto out;
3753		r = kvm_irqfd(kvm, &data);
3754		break;
3755	}
3756	case KVM_IOEVENTFD: {
3757		struct kvm_ioeventfd data;
3758
3759		r = -EFAULT;
3760		if (copy_from_user(&data, argp, sizeof(data)))
3761			goto out;
3762		r = kvm_ioeventfd(kvm, &data);
3763		break;
3764	}
 
 
 
 
 
 
 
 
 
 
 
3765#ifdef CONFIG_HAVE_KVM_MSI
3766	case KVM_SIGNAL_MSI: {
3767		struct kvm_msi msi;
3768
3769		r = -EFAULT;
3770		if (copy_from_user(&msi, argp, sizeof(msi)))
3771			goto out;
3772		r = kvm_send_userspace_msi(kvm, &msi);
3773		break;
3774	}
3775#endif
3776#ifdef __KVM_HAVE_IRQ_LINE
3777	case KVM_IRQ_LINE_STATUS:
3778	case KVM_IRQ_LINE: {
3779		struct kvm_irq_level irq_event;
3780
3781		r = -EFAULT;
3782		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3783			goto out;
3784
3785		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3786					ioctl == KVM_IRQ_LINE_STATUS);
3787		if (r)
3788			goto out;
3789
3790		r = -EFAULT;
3791		if (ioctl == KVM_IRQ_LINE_STATUS) {
3792			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3793				goto out;
3794		}
3795
3796		r = 0;
3797		break;
3798	}
3799#endif
3800#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3801	case KVM_SET_GSI_ROUTING: {
3802		struct kvm_irq_routing routing;
3803		struct kvm_irq_routing __user *urouting;
3804		struct kvm_irq_routing_entry *entries = NULL;
3805
3806		r = -EFAULT;
3807		if (copy_from_user(&routing, argp, sizeof(routing)))
3808			goto out;
3809		r = -EINVAL;
3810		if (!kvm_arch_can_set_irq_routing(kvm))
3811			goto out;
3812		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3813			goto out;
3814		if (routing.flags)
3815			goto out;
3816		if (routing.nr) {
3817			urouting = argp;
3818			entries = vmemdup_user(urouting->entries,
3819					       array_size(sizeof(*entries),
3820							  routing.nr));
3821			if (IS_ERR(entries)) {
3822				r = PTR_ERR(entries);
3823				goto out;
3824			}
3825		}
3826		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3827					routing.flags);
3828		kvfree(entries);
3829		break;
3830	}
3831#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3832	case KVM_CREATE_DEVICE: {
3833		struct kvm_create_device cd;
3834
3835		r = -EFAULT;
3836		if (copy_from_user(&cd, argp, sizeof(cd)))
3837			goto out;
3838
3839		r = kvm_ioctl_create_device(kvm, &cd);
3840		if (r)
3841			goto out;
3842
3843		r = -EFAULT;
3844		if (copy_to_user(argp, &cd, sizeof(cd)))
3845			goto out;
3846
3847		r = 0;
3848		break;
3849	}
3850	case KVM_CHECK_EXTENSION:
3851		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3852		break;
3853	default:
3854		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
 
 
3855	}
3856out:
3857	return r;
3858}
3859
3860#ifdef CONFIG_KVM_COMPAT
3861struct compat_kvm_dirty_log {
3862	__u32 slot;
3863	__u32 padding1;
3864	union {
3865		compat_uptr_t dirty_bitmap; /* one bit per page */
3866		__u64 padding2;
3867	};
3868};
3869
3870static long kvm_vm_compat_ioctl(struct file *filp,
3871			   unsigned int ioctl, unsigned long arg)
3872{
3873	struct kvm *kvm = filp->private_data;
3874	int r;
3875
3876	if (kvm->mm != current->mm)
3877		return -EIO;
3878	switch (ioctl) {
3879	case KVM_GET_DIRTY_LOG: {
3880		struct compat_kvm_dirty_log compat_log;
3881		struct kvm_dirty_log log;
3882
 
3883		if (copy_from_user(&compat_log, (void __user *)arg,
3884				   sizeof(compat_log)))
3885			return -EFAULT;
3886		log.slot	 = compat_log.slot;
3887		log.padding1	 = compat_log.padding1;
3888		log.padding2	 = compat_log.padding2;
3889		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3890
3891		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
 
 
3892		break;
3893	}
3894	default:
3895		r = kvm_vm_ioctl(filp, ioctl, arg);
3896	}
 
 
3897	return r;
3898}
3899#endif
3900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3901static struct file_operations kvm_vm_fops = {
3902	.release        = kvm_vm_release,
3903	.unlocked_ioctl = kvm_vm_ioctl,
 
 
 
 
3904	.llseek		= noop_llseek,
3905	KVM_COMPAT(kvm_vm_compat_ioctl),
3906};
3907
3908static int kvm_dev_ioctl_create_vm(unsigned long type)
3909{
3910	int r;
3911	struct kvm *kvm;
3912	struct file *file;
3913
3914	kvm = kvm_create_vm(type);
3915	if (IS_ERR(kvm))
3916		return PTR_ERR(kvm);
3917#ifdef CONFIG_KVM_MMIO
3918	r = kvm_coalesced_mmio_init(kvm);
3919	if (r < 0)
3920		goto put_kvm;
 
 
3921#endif
3922	r = get_unused_fd_flags(O_CLOEXEC);
3923	if (r < 0)
3924		goto put_kvm;
3925
3926	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3927	if (IS_ERR(file)) {
3928		put_unused_fd(r);
3929		r = PTR_ERR(file);
3930		goto put_kvm;
3931	}
3932
3933	/*
3934	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3935	 * already set, with ->release() being kvm_vm_release().  In error
3936	 * cases it will be called by the final fput(file) and will take
3937	 * care of doing kvm_put_kvm(kvm).
3938	 */
3939	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3940		put_unused_fd(r);
3941		fput(file);
3942		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
3943	}
3944	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3945
3946	fd_install(r, file);
3947	return r;
3948
3949put_kvm:
3950	kvm_put_kvm(kvm);
3951	return r;
3952}
3953
3954static long kvm_dev_ioctl(struct file *filp,
3955			  unsigned int ioctl, unsigned long arg)
3956{
3957	long r = -EINVAL;
3958
3959	switch (ioctl) {
3960	case KVM_GET_API_VERSION:
 
3961		if (arg)
3962			goto out;
3963		r = KVM_API_VERSION;
3964		break;
3965	case KVM_CREATE_VM:
3966		r = kvm_dev_ioctl_create_vm(arg);
3967		break;
3968	case KVM_CHECK_EXTENSION:
3969		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3970		break;
3971	case KVM_GET_VCPU_MMAP_SIZE:
 
3972		if (arg)
3973			goto out;
3974		r = PAGE_SIZE;     /* struct kvm_run */
3975#ifdef CONFIG_X86
3976		r += PAGE_SIZE;    /* pio data page */
3977#endif
3978#ifdef CONFIG_KVM_MMIO
3979		r += PAGE_SIZE;    /* coalesced mmio ring page */
3980#endif
3981		break;
3982	case KVM_TRACE_ENABLE:
3983	case KVM_TRACE_PAUSE:
3984	case KVM_TRACE_DISABLE:
3985		r = -EOPNOTSUPP;
3986		break;
3987	default:
3988		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3989	}
3990out:
3991	return r;
3992}
3993
3994static struct file_operations kvm_chardev_ops = {
3995	.unlocked_ioctl = kvm_dev_ioctl,
 
3996	.llseek		= noop_llseek,
3997	KVM_COMPAT(kvm_dev_ioctl),
3998};
3999
4000static struct miscdevice kvm_dev = {
4001	KVM_MINOR,
4002	"kvm",
4003	&kvm_chardev_ops,
4004};
4005
4006static void hardware_enable_nolock(void *junk)
4007{
4008	int cpu = raw_smp_processor_id();
4009	int r;
4010
4011	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
4012		return;
4013
4014	cpumask_set_cpu(cpu, cpus_hardware_enabled);
4015
4016	r = kvm_arch_hardware_enable();
4017
4018	if (r) {
4019		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4020		atomic_inc(&hardware_enable_failed);
4021		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
 
4022	}
4023}
4024
4025static int kvm_starting_cpu(unsigned int cpu)
4026{
4027	raw_spin_lock(&kvm_count_lock);
4028	if (kvm_usage_count)
4029		hardware_enable_nolock(NULL);
4030	raw_spin_unlock(&kvm_count_lock);
4031	return 0;
4032}
4033
4034static void hardware_disable_nolock(void *junk)
4035{
4036	int cpu = raw_smp_processor_id();
4037
4038	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
4039		return;
4040	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
4041	kvm_arch_hardware_disable();
4042}
4043
4044static int kvm_dying_cpu(unsigned int cpu)
4045{
4046	raw_spin_lock(&kvm_count_lock);
4047	if (kvm_usage_count)
4048		hardware_disable_nolock(NULL);
4049	raw_spin_unlock(&kvm_count_lock);
4050	return 0;
4051}
4052
4053static void hardware_disable_all_nolock(void)
4054{
4055	BUG_ON(!kvm_usage_count);
4056
4057	kvm_usage_count--;
4058	if (!kvm_usage_count)
4059		on_each_cpu(hardware_disable_nolock, NULL, 1);
4060}
4061
4062static void hardware_disable_all(void)
4063{
4064	raw_spin_lock(&kvm_count_lock);
4065	hardware_disable_all_nolock();
4066	raw_spin_unlock(&kvm_count_lock);
4067}
4068
4069static int hardware_enable_all(void)
4070{
4071	int r = 0;
4072
4073	raw_spin_lock(&kvm_count_lock);
4074
4075	kvm_usage_count++;
4076	if (kvm_usage_count == 1) {
4077		atomic_set(&hardware_enable_failed, 0);
4078		on_each_cpu(hardware_enable_nolock, NULL, 1);
4079
4080		if (atomic_read(&hardware_enable_failed)) {
4081			hardware_disable_all_nolock();
4082			r = -EBUSY;
4083		}
4084	}
4085
4086	raw_spin_unlock(&kvm_count_lock);
4087
4088	return r;
4089}
4090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4091static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
4092		      void *v)
4093{
4094	/*
4095	 * Some (well, at least mine) BIOSes hang on reboot if
4096	 * in vmx root mode.
4097	 *
4098	 * And Intel TXT required VMX off for all cpu when system shutdown.
4099	 */
4100	pr_info("kvm: exiting hardware virtualization\n");
4101	kvm_rebooting = true;
4102	on_each_cpu(hardware_disable_nolock, NULL, 1);
4103	return NOTIFY_OK;
4104}
4105
4106static struct notifier_block kvm_reboot_notifier = {
4107	.notifier_call = kvm_reboot,
4108	.priority = 0,
4109};
4110
4111static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
4112{
4113	int i;
4114
4115	for (i = 0; i < bus->dev_count; i++) {
4116		struct kvm_io_device *pos = bus->range[i].dev;
4117
4118		kvm_iodevice_destructor(pos);
4119	}
4120	kfree(bus);
4121}
4122
4123static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
4124				 const struct kvm_io_range *r2)
4125{
4126	gpa_t addr1 = r1->addr;
4127	gpa_t addr2 = r2->addr;
4128
4129	if (addr1 < addr2)
4130		return -1;
4131
4132	/* If r2->len == 0, match the exact address.  If r2->len != 0,
4133	 * accept any overlapping write.  Any order is acceptable for
4134	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
4135	 * we process all of them.
4136	 */
4137	if (r2->len) {
4138		addr1 += r1->len;
4139		addr2 += r2->len;
4140	}
4141
4142	if (addr1 > addr2)
4143		return 1;
4144
4145	return 0;
4146}
4147
4148static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
 
4149{
4150	return kvm_io_bus_cmp(p1, p2);
 
 
 
 
 
 
 
 
 
4151}
4152
4153static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
4154			     gpa_t addr, int len)
4155{
4156	struct kvm_io_range *range, key;
4157	int off;
4158
4159	key = (struct kvm_io_range) {
4160		.addr = addr,
4161		.len = len,
4162	};
4163
4164	range = bsearch(&key, bus->range, bus->dev_count,
4165			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
4166	if (range == NULL)
4167		return -ENOENT;
4168
4169	off = range - bus->range;
4170
4171	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
4172		off--;
4173
4174	return off;
4175}
4176
4177static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4178			      struct kvm_io_range *range, const void *val)
4179{
4180	int idx;
4181
4182	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4183	if (idx < 0)
4184		return -EOPNOTSUPP;
4185
4186	while (idx < bus->dev_count &&
4187		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4188		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
4189					range->len, val))
4190			return idx;
4191		idx++;
4192	}
4193
4194	return -EOPNOTSUPP;
4195}
4196
4197/* kvm_io_bus_write - called under kvm->slots_lock */
4198int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4199		     int len, const void *val)
4200{
 
4201	struct kvm_io_bus *bus;
4202	struct kvm_io_range range;
4203	int r;
4204
4205	range = (struct kvm_io_range) {
4206		.addr = addr,
4207		.len = len,
4208	};
4209
4210	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4211	if (!bus)
4212		return -ENOMEM;
4213	r = __kvm_io_bus_write(vcpu, bus, &range, val);
4214	return r < 0 ? r : 0;
4215}
4216EXPORT_SYMBOL_GPL(kvm_io_bus_write);
4217
4218/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
4219int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
4220			    gpa_t addr, int len, const void *val, long cookie)
4221{
4222	struct kvm_io_bus *bus;
4223	struct kvm_io_range range;
4224
4225	range = (struct kvm_io_range) {
4226		.addr = addr,
4227		.len = len,
4228	};
4229
4230	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4231	if (!bus)
4232		return -ENOMEM;
4233
4234	/* First try the device referenced by cookie. */
4235	if ((cookie >= 0) && (cookie < bus->dev_count) &&
4236	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
4237		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
4238					val))
4239			return cookie;
4240
4241	/*
4242	 * cookie contained garbage; fall back to search and return the
4243	 * correct cookie value.
4244	 */
4245	return __kvm_io_bus_write(vcpu, bus, &range, val);
4246}
4247
4248static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
4249			     struct kvm_io_range *range, void *val)
4250{
4251	int idx;
4252
4253	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
4254	if (idx < 0)
4255		return -EOPNOTSUPP;
4256
4257	while (idx < bus->dev_count &&
4258		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
4259		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
4260				       range->len, val))
4261			return idx;
4262		idx++;
4263	}
4264
4265	return -EOPNOTSUPP;
4266}
4267
4268/* kvm_io_bus_read - called under kvm->slots_lock */
4269int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
4270		    int len, void *val)
4271{
 
4272	struct kvm_io_bus *bus;
4273	struct kvm_io_range range;
4274	int r;
4275
4276	range = (struct kvm_io_range) {
4277		.addr = addr,
4278		.len = len,
4279	};
4280
4281	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
4282	if (!bus)
4283		return -ENOMEM;
4284	r = __kvm_io_bus_read(vcpu, bus, &range, val);
4285	return r < 0 ? r : 0;
 
 
 
 
 
 
 
 
4286}
4287
4288/* Caller must hold slots_lock. */
4289int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
4290			    int len, struct kvm_io_device *dev)
4291{
4292	int i;
4293	struct kvm_io_bus *new_bus, *bus;
4294	struct kvm_io_range range;
4295
4296	bus = kvm_get_bus(kvm, bus_idx);
4297	if (!bus)
4298		return -ENOMEM;
4299
4300	/* exclude ioeventfd which is limited by maximum fd */
4301	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
4302		return -ENOSPC;
4303
4304	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
4305			  GFP_KERNEL_ACCOUNT);
4306	if (!new_bus)
4307		return -ENOMEM;
4308
4309	range = (struct kvm_io_range) {
4310		.addr = addr,
4311		.len = len,
4312		.dev = dev,
4313	};
4314
4315	for (i = 0; i < bus->dev_count; i++)
4316		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4317			break;
4318
4319	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4320	new_bus->dev_count++;
4321	new_bus->range[i] = range;
4322	memcpy(new_bus->range + i + 1, bus->range + i,
4323		(bus->dev_count - i) * sizeof(struct kvm_io_range));
4324	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4325	synchronize_srcu_expedited(&kvm->srcu);
4326	kfree(bus);
4327
4328	return 0;
4329}
4330
4331/* Caller must hold slots_lock. */
4332void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4333			       struct kvm_io_device *dev)
4334{
4335	int i, j;
4336	struct kvm_io_bus *new_bus, *bus;
4337
4338	bus = kvm_get_bus(kvm, bus_idx);
4339	if (!bus)
4340		return;
4341
4342	for (i = 0; i < bus->dev_count; i++)
4343		if (bus->range[i].dev == dev) {
 
4344			break;
4345		}
4346
4347	if (i == bus->dev_count)
4348		return;
 
 
 
 
 
4349
4350	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4351			  GFP_KERNEL_ACCOUNT);
4352	if (new_bus) {
4353		memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4354		new_bus->dev_count--;
4355		memcpy(new_bus->range + i, bus->range + i + 1,
4356		       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4357	} else {
4358		pr_err("kvm: failed to shrink bus, removing it completely\n");
4359		for (j = 0; j < bus->dev_count; j++) {
4360			if (j == i)
4361				continue;
4362			kvm_iodevice_destructor(bus->range[j].dev);
4363		}
4364	}
4365
4366	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4367	synchronize_srcu_expedited(&kvm->srcu);
4368	kfree(bus);
4369	return;
4370}
4371
4372struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4373					 gpa_t addr)
4374{
4375	struct kvm_io_bus *bus;
4376	int dev_idx, srcu_idx;
4377	struct kvm_io_device *iodev = NULL;
4378
4379	srcu_idx = srcu_read_lock(&kvm->srcu);
4380
4381	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4382	if (!bus)
4383		goto out_unlock;
4384
4385	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4386	if (dev_idx < 0)
4387		goto out_unlock;
4388
4389	iodev = bus->range[dev_idx].dev;
4390
4391out_unlock:
4392	srcu_read_unlock(&kvm->srcu, srcu_idx);
4393
4394	return iodev;
4395}
4396EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4397
4398static int kvm_debugfs_open(struct inode *inode, struct file *file,
4399			   int (*get)(void *, u64 *), int (*set)(void *, u64),
4400			   const char *fmt)
4401{
4402	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4403					  inode->i_private;
4404
4405	/* The debugfs files are a reference to the kvm struct which
4406	 * is still valid when kvm_destroy_vm is called.
4407	 * To avoid the race between open and the removal of the debugfs
4408	 * directory we test against the users count.
4409	 */
4410	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4411		return -ENOENT;
4412
4413	if (simple_attr_open(inode, file, get,
4414		    KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4415		    ? set : NULL,
4416		    fmt)) {
4417		kvm_put_kvm(stat_data->kvm);
4418		return -ENOMEM;
4419	}
4420
4421	return 0;
4422}
4423
4424static int kvm_debugfs_release(struct inode *inode, struct file *file)
4425{
4426	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4427					  inode->i_private;
4428
4429	simple_attr_release(inode, file);
4430	kvm_put_kvm(stat_data->kvm);
4431
4432	return 0;
4433}
4434
4435static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4436{
4437	*val = *(ulong *)((void *)kvm + offset);
4438
4439	return 0;
4440}
4441
4442static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4443{
4444	*(ulong *)((void *)kvm + offset) = 0;
4445
4446	return 0;
4447}
4448
4449static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4450{
4451	int i;
4452	struct kvm_vcpu *vcpu;
4453
4454	*val = 0;
4455
4456	kvm_for_each_vcpu(i, vcpu, kvm)
4457		*val += *(u64 *)((void *)vcpu + offset);
4458
4459	return 0;
4460}
4461
4462static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4463{
4464	int i;
4465	struct kvm_vcpu *vcpu;
4466
4467	kvm_for_each_vcpu(i, vcpu, kvm)
4468		*(u64 *)((void *)vcpu + offset) = 0;
4469
4470	return 0;
4471}
4472
4473static int kvm_stat_data_get(void *data, u64 *val)
4474{
4475	int r = -EFAULT;
4476	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4477
4478	switch (stat_data->dbgfs_item->kind) {
4479	case KVM_STAT_VM:
4480		r = kvm_get_stat_per_vm(stat_data->kvm,
4481					stat_data->dbgfs_item->offset, val);
4482		break;
4483	case KVM_STAT_VCPU:
4484		r = kvm_get_stat_per_vcpu(stat_data->kvm,
4485					  stat_data->dbgfs_item->offset, val);
4486		break;
4487	}
4488
4489	return r;
4490}
4491
4492static int kvm_stat_data_clear(void *data, u64 val)
4493{
4494	int r = -EFAULT;
4495	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4496
4497	if (val)
4498		return -EINVAL;
4499
4500	switch (stat_data->dbgfs_item->kind) {
4501	case KVM_STAT_VM:
4502		r = kvm_clear_stat_per_vm(stat_data->kvm,
4503					  stat_data->dbgfs_item->offset);
4504		break;
4505	case KVM_STAT_VCPU:
4506		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4507					    stat_data->dbgfs_item->offset);
4508		break;
4509	}
4510
4511	return r;
4512}
4513
4514static int kvm_stat_data_open(struct inode *inode, struct file *file)
4515{
4516	__simple_attr_check_format("%llu\n", 0ull);
4517	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4518				kvm_stat_data_clear, "%llu\n");
4519}
4520
4521static const struct file_operations stat_fops_per_vm = {
4522	.owner = THIS_MODULE,
4523	.open = kvm_stat_data_open,
4524	.release = kvm_debugfs_release,
4525	.read = simple_attr_read,
4526	.write = simple_attr_write,
4527	.llseek = no_llseek,
4528};
4529
4530static int vm_stat_get(void *_offset, u64 *val)
4531{
4532	unsigned offset = (long)_offset;
4533	struct kvm *kvm;
4534	u64 tmp_val;
4535
4536	*val = 0;
4537	mutex_lock(&kvm_lock);
4538	list_for_each_entry(kvm, &vm_list, vm_list) {
4539		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4540		*val += tmp_val;
4541	}
4542	mutex_unlock(&kvm_lock);
4543	return 0;
4544}
4545
4546static int vm_stat_clear(void *_offset, u64 val)
4547{
4548	unsigned offset = (long)_offset;
4549	struct kvm *kvm;
4550
4551	if (val)
4552		return -EINVAL;
4553
4554	mutex_lock(&kvm_lock);
4555	list_for_each_entry(kvm, &vm_list, vm_list) {
4556		kvm_clear_stat_per_vm(kvm, offset);
4557	}
4558	mutex_unlock(&kvm_lock);
4559
4560	return 0;
4561}
4562
4563DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4564
4565static int vcpu_stat_get(void *_offset, u64 *val)
4566{
4567	unsigned offset = (long)_offset;
4568	struct kvm *kvm;
4569	u64 tmp_val;
 
4570
4571	*val = 0;
4572	mutex_lock(&kvm_lock);
4573	list_for_each_entry(kvm, &vm_list, vm_list) {
4574		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4575		*val += tmp_val;
4576	}
4577	mutex_unlock(&kvm_lock);
4578	return 0;
4579}
4580
4581static int vcpu_stat_clear(void *_offset, u64 val)
4582{
4583	unsigned offset = (long)_offset;
4584	struct kvm *kvm;
4585
4586	if (val)
4587		return -EINVAL;
4588
4589	mutex_lock(&kvm_lock);
4590	list_for_each_entry(kvm, &vm_list, vm_list) {
4591		kvm_clear_stat_per_vcpu(kvm, offset);
4592	}
4593	mutex_unlock(&kvm_lock);
4594
 
4595	return 0;
4596}
4597
4598DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4599			"%llu\n");
4600
4601static const struct file_operations *stat_fops[] = {
4602	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4603	[KVM_STAT_VM]   = &vm_stat_fops,
4604};
4605
4606static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4607{
4608	struct kobj_uevent_env *env;
4609	unsigned long long created, active;
4610
4611	if (!kvm_dev.this_device || !kvm)
4612		return;
 
4613
4614	mutex_lock(&kvm_lock);
4615	if (type == KVM_EVENT_CREATE_VM) {
4616		kvm_createvm_count++;
4617		kvm_active_vms++;
4618	} else if (type == KVM_EVENT_DESTROY_VM) {
4619		kvm_active_vms--;
4620	}
4621	created = kvm_createvm_count;
4622	active = kvm_active_vms;
4623	mutex_unlock(&kvm_lock);
4624
4625	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4626	if (!env)
4627		return;
4628
4629	add_uevent_var(env, "CREATED=%llu", created);
4630	add_uevent_var(env, "COUNT=%llu", active);
4631
4632	if (type == KVM_EVENT_CREATE_VM) {
4633		add_uevent_var(env, "EVENT=create");
4634		kvm->userspace_pid = task_pid_nr(current);
4635	} else if (type == KVM_EVENT_DESTROY_VM) {
4636		add_uevent_var(env, "EVENT=destroy");
4637	}
4638	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4639
4640	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4641		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4642
4643		if (p) {
4644			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4645			if (!IS_ERR(tmp))
4646				add_uevent_var(env, "STATS_PATH=%s", tmp);
4647			kfree(p);
4648		}
4649	}
4650	/* no need for checks, since we are adding at most only 5 keys */
4651	env->envp[env->envp_idx++] = NULL;
4652	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4653	kfree(env);
4654}
4655
4656static void kvm_init_debug(void)
4657{
4658	struct kvm_stats_debugfs_item *p;
4659
4660	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4661
4662	kvm_debugfs_num_entries = 0;
4663	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4664		debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4665				    kvm_debugfs_dir, (void *)(long)p->offset,
4666				    stat_fops[p->kind]);
4667	}
4668}
4669
4670static int kvm_suspend(void)
4671{
4672	if (kvm_usage_count)
4673		hardware_disable_nolock(NULL);
4674	return 0;
4675}
4676
4677static void kvm_resume(void)
4678{
4679	if (kvm_usage_count) {
4680#ifdef CONFIG_LOCKDEP
4681		WARN_ON(lockdep_is_held(&kvm_count_lock));
4682#endif
4683		hardware_enable_nolock(NULL);
4684	}
4685}
4686
4687static struct syscore_ops kvm_syscore_ops = {
4688	.suspend = kvm_suspend,
4689	.resume = kvm_resume,
4690};
4691
 
 
 
4692static inline
4693struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4694{
4695	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4696}
4697
4698static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4699{
4700	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4701
4702	WRITE_ONCE(vcpu->preempted, false);
4703	WRITE_ONCE(vcpu->ready, false);
4704
4705	__this_cpu_write(kvm_running_vcpu, vcpu);
4706	kvm_arch_sched_in(vcpu, cpu);
4707	kvm_arch_vcpu_load(vcpu, cpu);
4708}
4709
4710static void kvm_sched_out(struct preempt_notifier *pn,
4711			  struct task_struct *next)
4712{
4713	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4714
4715	if (current->state == TASK_RUNNING) {
4716		WRITE_ONCE(vcpu->preempted, true);
4717		WRITE_ONCE(vcpu->ready, true);
4718	}
4719	kvm_arch_vcpu_put(vcpu);
4720	__this_cpu_write(kvm_running_vcpu, NULL);
4721}
4722
4723/**
4724 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4725 *
4726 * We can disable preemption locally around accessing the per-CPU variable,
4727 * and use the resolved vcpu pointer after enabling preemption again,
4728 * because even if the current thread is migrated to another CPU, reading
4729 * the per-CPU value later will give us the same value as we update the
4730 * per-CPU variable in the preempt notifier handlers.
4731 */
4732struct kvm_vcpu *kvm_get_running_vcpu(void)
4733{
4734	struct kvm_vcpu *vcpu;
 
 
 
 
 
4735
4736	preempt_disable();
4737	vcpu = __this_cpu_read(kvm_running_vcpu);
4738	preempt_enable();
4739
4740	return vcpu;
4741}
4742EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
 
4743
4744/**
4745 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4746 */
4747struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4748{
4749        return &kvm_running_vcpu;
4750}
4751
4752struct kvm_cpu_compat_check {
4753	void *opaque;
4754	int *ret;
4755};
4756
4757static void check_processor_compat(void *data)
4758{
4759	struct kvm_cpu_compat_check *c = data;
 
4760
4761	*c->ret = kvm_arch_check_processor_compat(c->opaque);
4762}
4763
4764int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4765		  struct module *module)
4766{
4767	struct kvm_cpu_compat_check c;
4768	int r;
4769	int cpu;
4770
4771	r = kvm_arch_init(opaque);
4772	if (r)
4773		goto out_fail;
 
4774
4775	/*
4776	 * kvm_arch_init makes sure there's at most one caller
4777	 * for architectures that support multiple implementations,
4778	 * like intel and amd on x86.
4779	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4780	 * conflicts in case kvm is already setup for another implementation.
4781	 */
4782	r = kvm_irqfd_init();
4783	if (r)
4784		goto out_irqfd;
4785
4786	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4787		r = -ENOMEM;
4788		goto out_free_0;
4789	}
4790
4791	r = kvm_arch_hardware_setup(opaque);
4792	if (r < 0)
4793		goto out_free_1;
4794
4795	c.ret = &r;
4796	c.opaque = opaque;
4797	for_each_online_cpu(cpu) {
4798		smp_call_function_single(cpu, check_processor_compat, &c, 1);
 
 
4799		if (r < 0)
4800			goto out_free_2;
4801	}
4802
4803	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4804				      kvm_starting_cpu, kvm_dying_cpu);
4805	if (r)
4806		goto out_free_2;
4807	register_reboot_notifier(&kvm_reboot_notifier);
4808
4809	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4810	if (!vcpu_align)
4811		vcpu_align = __alignof__(struct kvm_vcpu);
4812	kvm_vcpu_cache =
4813		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4814					   SLAB_ACCOUNT,
4815					   offsetof(struct kvm_vcpu, arch),
4816					   sizeof_field(struct kvm_vcpu, arch),
4817					   NULL);
4818	if (!kvm_vcpu_cache) {
4819		r = -ENOMEM;
4820		goto out_free_3;
4821	}
4822
4823	r = kvm_async_pf_init();
4824	if (r)
4825		goto out_free;
4826
4827	kvm_chardev_ops.owner = module;
4828	kvm_vm_fops.owner = module;
4829	kvm_vcpu_fops.owner = module;
4830
4831	r = misc_register(&kvm_dev);
4832	if (r) {
4833		pr_err("kvm: misc device register failed\n");
4834		goto out_unreg;
4835	}
4836
4837	register_syscore_ops(&kvm_syscore_ops);
4838
4839	kvm_preempt_ops.sched_in = kvm_sched_in;
4840	kvm_preempt_ops.sched_out = kvm_sched_out;
4841
4842	kvm_init_debug();
4843
4844	r = kvm_vfio_ops_init();
4845	WARN_ON(r);
 
4846
4847	return 0;
4848
 
 
4849out_unreg:
4850	kvm_async_pf_deinit();
4851out_free:
4852	kmem_cache_destroy(kvm_vcpu_cache);
4853out_free_3:
4854	unregister_reboot_notifier(&kvm_reboot_notifier);
4855	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4856out_free_2:
 
4857	kvm_arch_hardware_unsetup();
4858out_free_1:
4859	free_cpumask_var(cpus_hardware_enabled);
4860out_free_0:
4861	kvm_irqfd_exit();
4862out_irqfd:
 
 
 
 
4863	kvm_arch_exit();
4864out_fail:
4865	return r;
4866}
4867EXPORT_SYMBOL_GPL(kvm_init);
4868
4869void kvm_exit(void)
4870{
4871	debugfs_remove_recursive(kvm_debugfs_dir);
4872	misc_deregister(&kvm_dev);
4873	kmem_cache_destroy(kvm_vcpu_cache);
4874	kvm_async_pf_deinit();
4875	unregister_syscore_ops(&kvm_syscore_ops);
4876	unregister_reboot_notifier(&kvm_reboot_notifier);
4877	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4878	on_each_cpu(hardware_disable_nolock, NULL, 1);
4879	kvm_arch_hardware_unsetup();
4880	kvm_arch_exit();
4881	kvm_irqfd_exit();
4882	free_cpumask_var(cpus_hardware_enabled);
4883	kvm_vfio_ops_exit();
 
 
4884}
4885EXPORT_SYMBOL_GPL(kvm_exit);
4886
4887struct kvm_vm_worker_thread_context {
4888	struct kvm *kvm;
4889	struct task_struct *parent;
4890	struct completion init_done;
4891	kvm_vm_thread_fn_t thread_fn;
4892	uintptr_t data;
4893	int err;
4894};
4895
4896static int kvm_vm_worker_thread(void *context)
4897{
4898	/*
4899	 * The init_context is allocated on the stack of the parent thread, so
4900	 * we have to locally copy anything that is needed beyond initialization
4901	 */
4902	struct kvm_vm_worker_thread_context *init_context = context;
4903	struct kvm *kvm = init_context->kvm;
4904	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4905	uintptr_t data = init_context->data;
4906	int err;
4907
4908	err = kthread_park(current);
4909	/* kthread_park(current) is never supposed to return an error */
4910	WARN_ON(err != 0);
4911	if (err)
4912		goto init_complete;
4913
4914	err = cgroup_attach_task_all(init_context->parent, current);
4915	if (err) {
4916		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4917			__func__, err);
4918		goto init_complete;
4919	}
4920
4921	set_user_nice(current, task_nice(init_context->parent));
4922
4923init_complete:
4924	init_context->err = err;
4925	complete(&init_context->init_done);
4926	init_context = NULL;
4927
4928	if (err)
4929		return err;
4930
4931	/* Wait to be woken up by the spawner before proceeding. */
4932	kthread_parkme();
4933
4934	if (!kthread_should_stop())
4935		err = thread_fn(kvm, data);
4936
4937	return err;
4938}
4939
4940int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4941				uintptr_t data, const char *name,
4942				struct task_struct **thread_ptr)
4943{
4944	struct kvm_vm_worker_thread_context init_context = {};
4945	struct task_struct *thread;
4946
4947	*thread_ptr = NULL;
4948	init_context.kvm = kvm;
4949	init_context.parent = current;
4950	init_context.thread_fn = thread_fn;
4951	init_context.data = data;
4952	init_completion(&init_context.init_done);
4953
4954	thread = kthread_run(kvm_vm_worker_thread, &init_context,
4955			     "%s-%d", name, task_pid_nr(current));
4956	if (IS_ERR(thread))
4957		return PTR_ERR(thread);
4958
4959	/* kthread_run is never supposed to return NULL */
4960	WARN_ON(thread == NULL);
4961
4962	wait_for_completion(&init_context.init_done);
4963
4964	if (!init_context.err)
4965		*thread_ptr = thread;
4966
4967	return init_context.err;
4968}