Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "iodev.h"
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched.h>
 
 
  36#include <linux/cpumask.h>
  37#include <linux/smp.h>
  38#include <linux/anon_inodes.h>
  39#include <linux/profile.h>
  40#include <linux/kvm_para.h>
  41#include <linux/pagemap.h>
  42#include <linux/mman.h>
  43#include <linux/swap.h>
  44#include <linux/bitops.h>
  45#include <linux/spinlock.h>
  46#include <linux/compat.h>
  47#include <linux/srcu.h>
  48#include <linux/hugetlb.h>
  49#include <linux/slab.h>
  50#include <linux/sort.h>
  51#include <linux/bsearch.h>
 
 
 
 
  52
  53#include <asm/processor.h>
  54#include <asm/io.h>
  55#include <asm/uaccess.h>
  56#include <asm/pgtable.h>
  57
  58#include "coalesced_mmio.h"
  59#include "async_pf.h"
 
 
 
 
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/kvm.h>
  63
 
 
 
 
 
 
  64MODULE_AUTHOR("Qumranet");
 
  65MODULE_LICENSE("GPL");
  66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  67/*
  68 * Ordering of locks:
  69 *
  70 * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  71 */
  72
  73DEFINE_RAW_SPINLOCK(kvm_lock);
  74LIST_HEAD(vm_list);
  75
  76static cpumask_var_t cpus_hardware_enabled;
  77static int kvm_usage_count = 0;
  78static atomic_t hardware_enable_failed;
  79
  80struct kmem_cache *kvm_vcpu_cache;
  81EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  82
  83static __read_mostly struct preempt_ops kvm_preempt_ops;
 
  84
  85struct dentry *kvm_debugfs_dir;
 
 
  86
  87static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  88			   unsigned long arg);
  89#ifdef CONFIG_COMPAT
  90static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  91				  unsigned long arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92#endif
  93static int hardware_enable_all(void);
  94static void hardware_disable_all(void);
  95
  96static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  97
  98bool kvm_rebooting;
  99EXPORT_SYMBOL_GPL(kvm_rebooting);
 100
 101static bool largepages_enabled = true;
 102
 103static struct page *hwpoison_page;
 104static pfn_t hwpoison_pfn;
 105
 106struct page *fault_page;
 107pfn_t fault_pfn;
 108
 109inline int kvm_is_mmio_pfn(pfn_t pfn)
 110{
 111	if (pfn_valid(pfn)) {
 112		int reserved;
 113		struct page *tail = pfn_to_page(pfn);
 114		struct page *head = compound_trans_head(tail);
 115		reserved = PageReserved(head);
 116		if (head != tail) {
 117			/*
 118			 * "head" is not a dangling pointer
 119			 * (compound_trans_head takes care of that)
 120			 * but the hugepage may have been splitted
 121			 * from under us (and we may not hold a
 122			 * reference count on the head page so it can
 123			 * be reused before we run PageReferenced), so
 124			 * we've to check PageTail before returning
 125			 * what we just read.
 126			 */
 127			smp_rmb();
 128			if (PageTail(tail))
 129				return reserved;
 130		}
 131		return PageReserved(tail);
 132	}
 133
 134	return true;
 
 135}
 136
 137/*
 138 * Switches to specified vcpu, until a matching vcpu_put()
 139 */
 140void vcpu_load(struct kvm_vcpu *vcpu)
 141{
 142	int cpu;
 143
 144	mutex_lock(&vcpu->mutex);
 145	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
 146		/* The thread running this VCPU changed. */
 147		struct pid *oldpid = vcpu->pid;
 148		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
 149		rcu_assign_pointer(vcpu->pid, newpid);
 150		synchronize_rcu();
 151		put_pid(oldpid);
 152	}
 153	cpu = get_cpu();
 154	preempt_notifier_register(&vcpu->preempt_notifier);
 155	kvm_arch_vcpu_load(vcpu, cpu);
 156	put_cpu();
 157}
 
 158
 159void vcpu_put(struct kvm_vcpu *vcpu)
 160{
 161	preempt_disable();
 162	kvm_arch_vcpu_put(vcpu);
 163	preempt_notifier_unregister(&vcpu->preempt_notifier);
 
 164	preempt_enable();
 165	mutex_unlock(&vcpu->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166}
 167
 168static void ack_flush(void *_completed)
 169{
 
 
 
 
 
 170}
 171
 172static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173{
 174	int i, cpu, me;
 175	cpumask_var_t cpus;
 176	bool called = true;
 177	struct kvm_vcpu *vcpu;
 
 
 
 
 
 178
 179	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180
 181	me = get_cpu();
 182	kvm_for_each_vcpu(i, vcpu, kvm) {
 183		kvm_make_request(req, vcpu);
 184		cpu = vcpu->cpu;
 185
 186		/* Set ->requests bit before we read ->mode */
 187		smp_mb();
 188
 189		if (cpus != NULL && cpu != -1 && cpu != me &&
 190		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
 191			cpumask_set_cpu(cpu, cpus);
 192	}
 193	if (unlikely(cpus == NULL))
 194		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
 195	else if (!cpumask_empty(cpus))
 196		smp_call_function_many(cpus, ack_flush, NULL, 1);
 197	else
 198		called = false;
 199	put_cpu();
 200	free_cpumask_var(cpus);
 201	return called;
 202}
 
 203
 204void kvm_flush_remote_tlbs(struct kvm *kvm)
 205{
 206	long dirty_count = kvm->tlbs_dirty;
 207
 208	smp_mb();
 209	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 210		++kvm->stat.remote_tlb_flush;
 211	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 
 
 
 
 
 
 
 
 
 
 212}
 
 213
 214void kvm_reload_remote_mmus(struct kvm *kvm)
 215{
 216	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 
 
 
 
 
 
 
 
 217}
 218
 219int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 
 220{
 221	struct page *page;
 222	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224	mutex_init(&vcpu->mutex);
 225	vcpu->cpu = -1;
 226	vcpu->kvm = kvm;
 227	vcpu->vcpu_id = id;
 228	vcpu->pid = NULL;
 229	init_waitqueue_head(&vcpu->wq);
 
 
 
 230	kvm_async_pf_vcpu_init(vcpu);
 231
 232	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 233	if (!page) {
 234		r = -ENOMEM;
 235		goto fail;
 236	}
 237	vcpu->run = page_address(page);
 238
 239	r = kvm_arch_vcpu_init(vcpu);
 240	if (r < 0)
 241		goto fail_free_run;
 242	return 0;
 243
 244fail_free_run:
 245	free_page((unsigned long)vcpu->run);
 246fail:
 247	return r;
 248}
 249EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 250
 251void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 252{
 
 
 
 
 
 
 
 
 253	put_pid(vcpu->pid);
 254	kvm_arch_vcpu_uninit(vcpu);
 255	free_page((unsigned long)vcpu->run);
 
 256}
 257EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 258
 259#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 261{
 262	return container_of(mn, struct kvm, mmu_notifier);
 263}
 264
 265static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
 266					     struct mm_struct *mm,
 267					     unsigned long address)
 268{
 269	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 270	int need_tlb_flush, idx;
 271
 
 
 
 272	/*
 273	 * When ->invalidate_page runs, the linux pte has been zapped
 274	 * already but the page is still allocated until
 275	 * ->invalidate_page returns. So if we increase the sequence
 276	 * here the kvm page fault will notice if the spte can't be
 277	 * established because the page is going to be freed. If
 278	 * instead the kvm page fault establishes the spte before
 279	 * ->invalidate_page runs, kvm_unmap_hva will release it
 280	 * before returning.
 281	 *
 282	 * The sequence increase only need to be seen at spin_unlock
 283	 * time, and not at spin_lock time.
 284	 *
 285	 * Increasing the sequence after the spin_unlock would be
 286	 * unsafe because the kvm page fault could then establish the
 287	 * pte after kvm_unmap_hva returned, without noticing the page
 288	 * is going to be freed.
 289	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 290	idx = srcu_read_lock(&kvm->srcu);
 291	spin_lock(&kvm->mmu_lock);
 292
 293	kvm->mmu_notifier_seq++;
 294	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
 295	/* we've to flush the tlb before the pages can be freed */
 296	if (need_tlb_flush)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297		kvm_flush_remote_tlbs(kvm);
 298
 299	spin_unlock(&kvm->mmu_lock);
 
 
 
 300	srcu_read_unlock(&kvm->srcu, idx);
 
 
 301}
 302
 303static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 304					struct mm_struct *mm,
 305					unsigned long address,
 306					pte_t pte)
 
 307{
 308	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 309	int idx;
 
 
 
 
 
 
 
 310
 311	idx = srcu_read_lock(&kvm->srcu);
 312	spin_lock(&kvm->mmu_lock);
 313	kvm->mmu_notifier_seq++;
 314	kvm_set_spte_hva(kvm, address, pte);
 315	spin_unlock(&kvm->mmu_lock);
 316	srcu_read_unlock(&kvm->srcu, idx);
 317}
 318
 319static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 320						    struct mm_struct *mm,
 321						    unsigned long start,
 322						    unsigned long end)
 323{
 324	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 325	int need_tlb_flush = 0, idx;
 326
 327	idx = srcu_read_lock(&kvm->srcu);
 328	spin_lock(&kvm->mmu_lock);
 
 329	/*
 330	 * The count increase must become visible at unlock time as no
 331	 * spte can be established without taking the mmu_lock and
 332	 * count is also read inside the mmu_lock critical section.
 333	 */
 334	kvm->mmu_notifier_count++;
 335	for (; start < end; start += PAGE_SIZE)
 336		need_tlb_flush |= kvm_unmap_hva(kvm, start);
 337	need_tlb_flush |= kvm->tlbs_dirty;
 338	/* we've to flush the tlb before the pages can be freed */
 339	if (need_tlb_flush)
 340		kvm_flush_remote_tlbs(kvm);
 341
 342	spin_unlock(&kvm->mmu_lock);
 343	srcu_read_unlock(&kvm->srcu, idx);
 
 
 344}
 345
 346static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 347						  struct mm_struct *mm,
 348						  unsigned long start,
 349						  unsigned long end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350{
 351	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352
 353	spin_lock(&kvm->mmu_lock);
 354	/*
 355	 * This sequence increase will notify the kvm page fault that
 356	 * the page that is going to be mapped in the spte could have
 357	 * been freed.
 358	 */
 359	kvm->mmu_notifier_seq++;
 360	smp_wmb();
 361	/*
 362	 * The above sequence increase must be visible before the
 363	 * below count decrease, which is ensured by the smp_wmb above
 364	 * in conjunction with the smp_rmb in mmu_notifier_retry().
 365	 */
 366	kvm->mmu_notifier_count--;
 367	spin_unlock(&kvm->mmu_lock);
 368
 369	BUG_ON(kvm->mmu_notifier_count < 0);
 
 
 
 
 370}
 371
 372static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 373					      struct mm_struct *mm,
 374					      unsigned long address)
 375{
 376	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 377	int young, idx;
 
 
 
 
 
 
 
 
 378
 379	idx = srcu_read_lock(&kvm->srcu);
 380	spin_lock(&kvm->mmu_lock);
 381
 382	young = kvm_age_hva(kvm, address);
 383	if (young)
 384		kvm_flush_remote_tlbs(kvm);
 
 
 
 385
 386	spin_unlock(&kvm->mmu_lock);
 387	srcu_read_unlock(&kvm->srcu, idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388
 389	return young;
 
 
 
 
 
 
 
 
 
 
 
 
 
 390}
 391
 392static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 393				       struct mm_struct *mm,
 394				       unsigned long address)
 395{
 396	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 397	int young, idx;
 398
 399	idx = srcu_read_lock(&kvm->srcu);
 400	spin_lock(&kvm->mmu_lock);
 401	young = kvm_test_age_hva(kvm, address);
 402	spin_unlock(&kvm->mmu_lock);
 403	srcu_read_unlock(&kvm->srcu, idx);
 404
 405	return young;
 406}
 407
 408static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 409				     struct mm_struct *mm)
 410{
 411	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 412	int idx;
 413
 414	idx = srcu_read_lock(&kvm->srcu);
 415	kvm_arch_flush_shadow(kvm);
 416	srcu_read_unlock(&kvm->srcu, idx);
 417}
 418
 419static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 420	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
 421	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
 422	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
 423	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
 
 424	.test_young		= kvm_mmu_notifier_test_young,
 425	.change_pte		= kvm_mmu_notifier_change_pte,
 426	.release		= kvm_mmu_notifier_release,
 427};
 428
 429static int kvm_init_mmu_notifier(struct kvm *kvm)
 430{
 431	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 432	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 433}
 434
 435#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 436
 437static int kvm_init_mmu_notifier(struct kvm *kvm)
 438{
 439	return 0;
 440}
 441
 442#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443
 444static void kvm_init_memslots_id(struct kvm *kvm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445{
 446	int i;
 447	struct kvm_memslots *slots = kvm->memslots;
 
 
 
 
 
 
 448
 449	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 450		slots->id_to_index[i] = slots->memslots[i].id = i;
 
 
 
 451}
 452
 453static struct kvm *kvm_create_vm(unsigned long type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454{
 455	int r, i;
 456	struct kvm *kvm = kvm_arch_alloc_vm();
 
 
 457
 458	if (!kvm)
 459		return ERR_PTR(-ENOMEM);
 460
 461	r = kvm_arch_init_vm(kvm, type);
 462	if (r)
 463		goto out_err_nodisable;
 
 
 
 
 
 
 
 
 
 
 
 464
 465	r = hardware_enable_all();
 466	if (r)
 467		goto out_err_nodisable;
 468
 469#ifdef CONFIG_HAVE_KVM_IRQCHIP
 470	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
 471	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 472#endif
 
 
 
 
 
 
 
 
 
 473
 474	r = -ENOMEM;
 475	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 476	if (!kvm->memslots)
 477		goto out_err_nosrcu;
 478	kvm_init_memslots_id(kvm);
 479	if (init_srcu_struct(&kvm->srcu))
 480		goto out_err_nosrcu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481	for (i = 0; i < KVM_NR_BUSES; i++) {
 482		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
 483					GFP_KERNEL);
 484		if (!kvm->buses[i])
 485			goto out_err;
 486	}
 487
 488	spin_lock_init(&kvm->mmu_lock);
 489	kvm->mm = current->mm;
 490	atomic_inc(&kvm->mm->mm_count);
 491	kvm_eventfd_init(kvm);
 492	mutex_init(&kvm->lock);
 493	mutex_init(&kvm->irq_lock);
 494	mutex_init(&kvm->slots_lock);
 495	atomic_set(&kvm->users_count, 1);
 
 
 
 496
 497	r = kvm_init_mmu_notifier(kvm);
 498	if (r)
 
 
 
 
 
 
 
 
 
 
 
 
 499		goto out_err;
 500
 501	raw_spin_lock(&kvm_lock);
 502	list_add(&kvm->vm_list, &vm_list);
 503	raw_spin_unlock(&kvm_lock);
 
 
 
 504
 505	return kvm;
 506
 507out_err:
 508	cleanup_srcu_struct(&kvm->srcu);
 509out_err_nosrcu:
 510	hardware_disable_all();
 511out_err_nodisable:
 
 
 
 
 
 
 
 
 
 
 512	for (i = 0; i < KVM_NR_BUSES; i++)
 513		kfree(kvm->buses[i]);
 514	kfree(kvm->memslots);
 
 
 
 
 
 515	kvm_arch_free_vm(kvm);
 
 516	return ERR_PTR(r);
 517}
 518
 519static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 520{
 521	if (!memslot->dirty_bitmap)
 522		return;
 523
 524	if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
 525		vfree(memslot->dirty_bitmap);
 526	else
 527		kfree(memslot->dirty_bitmap);
 528
 529	memslot->dirty_bitmap = NULL;
 530}
 531
 532/*
 533 * Free any memory in @free but not in @dont.
 534 */
 535static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
 536				  struct kvm_memory_slot *dont)
 537{
 538	if (!dont || free->rmap != dont->rmap)
 539		vfree(free->rmap);
 540
 541	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 542		kvm_destroy_dirty_bitmap(free);
 543
 544	kvm_arch_free_memslot(free, dont);
 545
 546	free->npages = 0;
 547	free->rmap = NULL;
 548}
 549
 550void kvm_free_physmem(struct kvm *kvm)
 551{
 552	struct kvm_memslots *slots = kvm->memslots;
 553	struct kvm_memory_slot *memslot;
 554
 555	kvm_for_each_memslot(memslot, slots)
 556		kvm_free_physmem_slot(memslot, NULL);
 557
 558	kfree(kvm->memslots);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559}
 560
 561static void kvm_destroy_vm(struct kvm *kvm)
 562{
 563	int i;
 564	struct mm_struct *mm = kvm->mm;
 565
 
 
 
 566	kvm_arch_sync_events(kvm);
 567	raw_spin_lock(&kvm_lock);
 568	list_del(&kvm->vm_list);
 569	raw_spin_unlock(&kvm_lock);
 
 
 570	kvm_free_irq_routing(kvm);
 571	for (i = 0; i < KVM_NR_BUSES; i++)
 572		kvm_io_bus_destroy(kvm->buses[i]);
 
 
 
 
 
 573	kvm_coalesced_mmio_free(kvm);
 574#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 575	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576#else
 577	kvm_arch_flush_shadow(kvm);
 578#endif
 579	kvm_arch_destroy_vm(kvm);
 580	kvm_free_physmem(kvm);
 
 
 
 
 
 581	cleanup_srcu_struct(&kvm->srcu);
 
 
 
 582	kvm_arch_free_vm(kvm);
 583	hardware_disable_all();
 
 584	mmdrop(mm);
 585}
 586
 587void kvm_get_kvm(struct kvm *kvm)
 588{
 589	atomic_inc(&kvm->users_count);
 590}
 591EXPORT_SYMBOL_GPL(kvm_get_kvm);
 592
 
 
 
 
 
 
 
 
 
 
 593void kvm_put_kvm(struct kvm *kvm)
 594{
 595	if (atomic_dec_and_test(&kvm->users_count))
 596		kvm_destroy_vm(kvm);
 597}
 598EXPORT_SYMBOL_GPL(kvm_put_kvm);
 599
 
 
 
 
 
 
 
 
 
 
 
 
 600
 601static int kvm_vm_release(struct inode *inode, struct file *filp)
 602{
 603	struct kvm *kvm = filp->private_data;
 604
 605	kvm_irqfd_release(kvm);
 606
 607	kvm_put_kvm(kvm);
 608	return 0;
 609}
 610
 611/*
 612 * Allocation size is twice as large as the actual dirty bitmap size.
 613 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 614 */
 615static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 616{
 617#ifndef CONFIG_S390
 618	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 619
 620	if (dirty_bytes > PAGE_SIZE)
 621		memslot->dirty_bitmap = vzalloc(dirty_bytes);
 622	else
 623		memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
 624
 
 625	if (!memslot->dirty_bitmap)
 626		return -ENOMEM;
 627
 628#endif /* !CONFIG_S390 */
 629	return 0;
 630}
 631
 632static int cmp_memslot(const void *slot1, const void *slot2)
 633{
 634	struct kvm_memory_slot *s1, *s2;
 
 635
 636	s1 = (struct kvm_memory_slot *)slot1;
 637	s2 = (struct kvm_memory_slot *)slot2;
 638
 639	if (s1->npages < s2->npages)
 640		return 1;
 641	if (s1->npages > s2->npages)
 642		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643
 644	return 0;
 645}
 646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 647/*
 648 * Sort the memslots base on its size, so the larger slots
 649 * will get better fit.
 
 
 
 
 
 650 */
 651static void sort_memslots(struct kvm_memslots *slots)
 
 
 652{
 653	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654
 655	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
 656	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657
 658	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 659		slots->id_to_index[slots->memslots[i].id] = i;
 
 
 
 
 
 
 
 
 
 660}
 661
 662void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
 
 
 
 663{
 664	if (new) {
 665		int id = new->id;
 666		struct kvm_memory_slot *old = id_to_memslot(slots, id);
 667		unsigned long npages = old->npages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668
 669		*old = *new;
 670		if (new->npages != npages)
 671			sort_memslots(slots);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 672	}
 673
 674	slots->generation++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 675}
 676
 677/*
 678 * Allocate some memory and give it an address in the guest physical address
 679 * space.
 680 *
 681 * Discontiguous memory is allowed, mostly for framebuffers.
 682 *
 683 * Must be called holding mmap_sem for write.
 684 */
 685int __kvm_set_memory_region(struct kvm *kvm,
 686			    struct kvm_userspace_memory_region *mem,
 687			    int user_alloc)
 688{
 689	int r;
 690	gfn_t base_gfn;
 
 691	unsigned long npages;
 692	unsigned long i;
 693	struct kvm_memory_slot *memslot;
 694	struct kvm_memory_slot old, new;
 695	struct kvm_memslots *slots, *old_memslots;
 
 
 
 
 
 
 696
 697	r = -EINVAL;
 698	/* General sanity checks */
 699	if (mem->memory_size & (PAGE_SIZE - 1))
 700		goto out;
 
 701	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 702		goto out;
 703	/* We can read the guest memory with __xxx_user() later on. */
 704	if (user_alloc &&
 705	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 706	     !access_ok(VERIFY_WRITE,
 707			(void __user *)(unsigned long)mem->userspace_addr,
 708			mem->memory_size)))
 709		goto out;
 710	if (mem->slot >= KVM_MEM_SLOTS_NUM)
 711		goto out;
 
 
 
 712	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 713		goto out;
 714
 715	memslot = id_to_memslot(kvm->memslots, mem->slot);
 716	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 717	npages = mem->memory_size >> PAGE_SHIFT;
 718
 719	r = -EINVAL;
 720	if (npages > KVM_MEM_MAX_NR_PAGES)
 721		goto out;
 722
 723	if (!npages)
 724		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
 
 
 
 725
 726	new = old = *memslot;
 
 
 727
 728	new.id = mem->slot;
 729	new.base_gfn = base_gfn;
 730	new.npages = npages;
 731	new.flags = mem->flags;
 732
 733	/* Disallow changing a memory slot's size. */
 734	r = -EINVAL;
 735	if (npages && old.npages && npages != old.npages)
 736		goto out_free;
 737
 738	/* Check for overlaps */
 739	r = -EEXIST;
 740	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
 741		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
 742
 743		if (s == memslot || !s->npages)
 744			continue;
 745		if (!((base_gfn + npages <= s->base_gfn) ||
 746		      (base_gfn >= s->base_gfn + s->npages)))
 747			goto out_free;
 748	}
 749
 750	/* Free page dirty bitmap if unneeded */
 751	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 752		new.dirty_bitmap = NULL;
 753
 754	r = -ENOMEM;
 755
 756	/* Allocate if a slot is being created */
 757	if (npages && !old.npages) {
 758		new.user_alloc = user_alloc;
 759		new.userspace_addr = mem->userspace_addr;
 760#ifndef CONFIG_S390
 761		new.rmap = vzalloc(npages * sizeof(*new.rmap));
 762		if (!new.rmap)
 763			goto out_free;
 764#endif /* not defined CONFIG_S390 */
 765		if (kvm_arch_create_memslot(&new, npages))
 766			goto out_free;
 767	}
 768
 769	/* Allocate page dirty bitmap if needed */
 770	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 771		if (kvm_create_dirty_bitmap(&new) < 0)
 772			goto out_free;
 773		/* destroy any largepage mappings for dirty tracking */
 774	}
 775
 776	if (!npages) {
 777		struct kvm_memory_slot *slot;
 778
 779		r = -ENOMEM;
 780		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
 781				GFP_KERNEL);
 782		if (!slots)
 783			goto out_free;
 784		slot = id_to_memslot(slots, mem->slot);
 785		slot->flags |= KVM_MEMSLOT_INVALID;
 786
 787		update_memslots(slots, NULL);
 788
 789		old_memslots = kvm->memslots;
 790		rcu_assign_pointer(kvm->memslots, slots);
 791		synchronize_srcu_expedited(&kvm->srcu);
 792		/* From this point no new shadow pages pointing to a deleted
 793		 * memslot will be created.
 794		 *
 795		 * validation of sp->gfn happens in:
 796		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
 797		 * 	- kvm_is_visible_gfn (mmu_check_roots)
 798		 */
 799		kvm_arch_flush_shadow(kvm);
 800		kfree(old_memslots);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 801	}
 802
 803	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
 804	if (r)
 805		goto out_free;
 
 
 
 
 
 806
 807	/* map/unmap the pages in iommu page table */
 808	if (npages) {
 809		r = kvm_iommu_map_pages(kvm, &new);
 
 
 
 
 
 810		if (r)
 811			goto out_free;
 812	} else
 813		kvm_iommu_unmap_pages(kvm, &old);
 814
 815	r = -ENOMEM;
 816	slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
 817			GFP_KERNEL);
 818	if (!slots)
 819		goto out_free;
 820
 821	/* actual memory is freed via old in kvm_free_physmem_slot below */
 822	if (!npages) {
 823		new.rmap = NULL;
 824		new.dirty_bitmap = NULL;
 825		memset(&new.arch, 0, sizeof(new.arch));
 826	}
 827
 828	update_memslots(slots, &new);
 829	old_memslots = kvm->memslots;
 830	rcu_assign_pointer(kvm->memslots, slots);
 831	synchronize_srcu_expedited(&kvm->srcu);
 832
 833	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
 834
 835	/*
 836	 * If the new memory slot is created, we need to clear all
 837	 * mmio sptes.
 838	 */
 839	if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
 840		kvm_arch_flush_shadow(kvm);
 841
 842	kvm_free_physmem_slot(&old, &new);
 843	kfree(old_memslots);
 844
 845	return 0;
 846
 847out_free:
 848	kvm_free_physmem_slot(&new, &old);
 
 849out:
 
 850	return r;
 851
 852}
 853EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
 854
 855int kvm_set_memory_region(struct kvm *kvm,
 856			  struct kvm_userspace_memory_region *mem,
 857			  int user_alloc)
 858{
 859	int r;
 860
 861	mutex_lock(&kvm->slots_lock);
 862	r = __kvm_set_memory_region(kvm, mem, user_alloc);
 863	mutex_unlock(&kvm->slots_lock);
 864	return r;
 865}
 866EXPORT_SYMBOL_GPL(kvm_set_memory_region);
 867
 868int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
 869				   struct
 870				   kvm_userspace_memory_region *mem,
 871				   int user_alloc)
 872{
 873	if (mem->slot >= KVM_MEMORY_SLOTS)
 874		return -EINVAL;
 875	return kvm_set_memory_region(kvm, mem, user_alloc);
 
 876}
 877
 878int kvm_get_dirty_log(struct kvm *kvm,
 879			struct kvm_dirty_log *log, int *is_dirty)
 
 
 
 
 
 
 
 
 880{
 881	struct kvm_memory_slot *memslot;
 882	int r, i;
 883	unsigned long n;
 884	unsigned long any = 0;
 885
 886	r = -EINVAL;
 887	if (log->slot >= KVM_MEMORY_SLOTS)
 888		goto out;
 
 
 
 
 
 
 
 
 889
 890	memslot = id_to_memslot(kvm->memslots, log->slot);
 891	r = -ENOENT;
 892	if (!memslot->dirty_bitmap)
 893		goto out;
 894
 895	n = kvm_dirty_bitmap_bytes(memslot);
 
 
 896
 897	for (i = 0; !any && i < n/sizeof(long); ++i)
 898		any = memslot->dirty_bitmap[i];
 899
 900	r = -EFAULT;
 901	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
 902		goto out;
 903
 904	if (any)
 905		*is_dirty = 1;
 906
 907	r = 0;
 908out:
 909	return r;
 910}
 
 911
 912bool kvm_largepages_enabled(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913{
 914	return largepages_enabled;
 915}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916
 917void kvm_disable_largepages(void)
 918{
 919	largepages_enabled = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920}
 921EXPORT_SYMBOL_GPL(kvm_disable_largepages);
 922
 923int is_error_page(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924{
 925	return page == bad_page || page == hwpoison_page || page == fault_page;
 
 
 
 
 
 
 
 926}
 927EXPORT_SYMBOL_GPL(is_error_page);
 928
 929int is_error_pfn(pfn_t pfn)
 
 
 
 
 
 
 
 930{
 931	return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932}
 933EXPORT_SYMBOL_GPL(is_error_pfn);
 934
 935int is_hwpoison_pfn(pfn_t pfn)
 
 936{
 937	return pfn == hwpoison_pfn;
 
 
 
 
 
 
 
 938}
 939EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
 940
 941int is_fault_pfn(pfn_t pfn)
 
 942{
 943	return pfn == fault_pfn;
 
 
 
 944}
 945EXPORT_SYMBOL_GPL(is_fault_pfn);
 946
 947int is_noslot_pfn(pfn_t pfn)
 
 
 
 
 
 948{
 949	return pfn == bad_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950}
 951EXPORT_SYMBOL_GPL(is_noslot_pfn);
 952
 953int is_invalid_pfn(pfn_t pfn)
 
 954{
 955	return pfn == hwpoison_pfn || pfn == fault_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956}
 957EXPORT_SYMBOL_GPL(is_invalid_pfn);
 958
 959static inline unsigned long bad_hva(void)
 
 960{
 961	return PAGE_OFFSET;
 
 
 
 
 
 
 
 
 
 
 
 
 
 962}
 963
 964int kvm_is_error_hva(unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965{
 966	return addr == bad_hva();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967}
 968EXPORT_SYMBOL_GPL(kvm_is_error_hva);
 969
 970struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
 971{
 972	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
 973}
 974EXPORT_SYMBOL_GPL(gfn_to_memslot);
 975
 976int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
 977{
 978	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
 
 
 979
 980	if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
 981	      memslot->flags & KVM_MEMSLOT_INVALID)
 982		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983
 984	return 1;
 985}
 986EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
 987
 988unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
 
 
 
 
 
 
 
 
 989{
 990	struct vm_area_struct *vma;
 991	unsigned long addr, size;
 992
 993	size = PAGE_SIZE;
 994
 995	addr = gfn_to_hva(kvm, gfn);
 996	if (kvm_is_error_hva(addr))
 997		return PAGE_SIZE;
 998
 999	down_read(&current->mm->mmap_sem);
1000	vma = find_vma(current->mm, addr);
1001	if (!vma)
1002		goto out;
1003
1004	size = vma_kernel_pagesize(vma);
1005
1006out:
1007	up_read(&current->mm->mmap_sem);
1008
1009	return size;
1010}
1011
1012static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1013				     gfn_t *nr_pages)
 
 
 
 
 
1014{
1015	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1016		return bad_hva();
 
 
 
1017
1018	if (nr_pages)
1019		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1020
1021	return gfn_to_hva_memslot(slot, gfn);
 
 
 
 
 
 
 
 
 
 
 
 
1022}
 
1023
1024unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1025{
1026	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1027}
1028EXPORT_SYMBOL_GPL(gfn_to_hva);
1029
1030static pfn_t get_fault_pfn(void)
1031{
1032	get_page(fault_page);
1033	return fault_pfn;
1034}
 
1035
1036int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1037	unsigned long start, int write, struct page **page)
 
 
 
 
 
 
 
 
1038{
1039	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1040
1041	if (write)
1042		flags |= FOLL_WRITE;
1043
1044	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1045}
1046
1047static inline int check_user_page_hwpoison(unsigned long addr)
1048{
1049	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1050
1051	rc = __get_user_pages(current, current->mm, addr, 1,
1052			      flags, NULL, NULL, NULL);
1053	return rc == -EHWPOISON;
1054}
1055
1056static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1057			bool *async, bool write_fault, bool *writable)
1058{
1059	struct page *page[1];
1060	int npages = 0;
1061	pfn_t pfn;
1062
1063	/* we can do it either atomically or asynchronously, not both */
1064	BUG_ON(atomic && async);
1065
1066	BUG_ON(!write_fault && !writable);
 
 
 
 
 
 
 
1067
1068	if (writable)
1069		*writable = true;
 
 
 
1070
1071	if (atomic || async)
1072		npages = __get_user_pages_fast(addr, 1, 1, page);
 
 
 
1073
1074	if (unlikely(npages != 1) && !atomic) {
1075		might_sleep();
 
 
1076
1077		if (writable)
1078			*writable = write_fault;
 
 
1079
1080		if (async) {
1081			down_read(&current->mm->mmap_sem);
1082			npages = get_user_page_nowait(current, current->mm,
1083						     addr, write_fault, page);
1084			up_read(&current->mm->mmap_sem);
1085		} else
1086			npages = get_user_pages_fast(addr, 1, write_fault,
1087						     page);
1088
1089		/* map read fault as writable if possible */
1090		if (unlikely(!write_fault) && npages == 1) {
1091			struct page *wpage[1];
1092
1093			npages = __get_user_pages_fast(addr, 1, 1, wpage);
1094			if (npages == 1) {
1095				*writable = true;
1096				put_page(page[0]);
1097				page[0] = wpage[0];
1098			}
1099			npages = 1;
1100		}
1101	}
1102
1103	if (unlikely(npages != 1)) {
1104		struct vm_area_struct *vma;
 
 
1105
1106		if (atomic)
1107			return get_fault_pfn();
1108
1109		down_read(&current->mm->mmap_sem);
1110		if (npages == -EHWPOISON ||
1111			(!async && check_user_page_hwpoison(addr))) {
1112			up_read(&current->mm->mmap_sem);
1113			get_page(hwpoison_page);
1114			return page_to_pfn(hwpoison_page);
1115		}
1116
1117		vma = find_vma_intersection(current->mm, addr, addr+1);
 
 
 
1118
1119		if (vma == NULL)
1120			pfn = get_fault_pfn();
1121		else if ((vma->vm_flags & VM_PFNMAP)) {
1122			pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1123				vma->vm_pgoff;
1124			BUG_ON(!kvm_is_mmio_pfn(pfn));
1125		} else {
1126			if (async && (vma->vm_flags & VM_WRITE))
1127				*async = true;
1128			pfn = get_fault_pfn();
1129		}
1130		up_read(&current->mm->mmap_sem);
1131	} else
1132		pfn = page_to_pfn(page[0]);
1133
1134	return pfn;
1135}
1136
1137pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
 
 
 
 
1138{
1139	return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140}
1141EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1142
1143static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1144			  bool write_fault, bool *writable)
 
 
 
1145{
1146	unsigned long addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
1147
1148	if (async)
1149		*async = false;
 
 
 
 
1150
1151	addr = gfn_to_hva(kvm, gfn);
1152	if (kvm_is_error_hva(addr)) {
1153		get_page(bad_page);
1154		return page_to_pfn(bad_page);
 
 
 
 
 
 
 
 
 
 
1155	}
1156
1157	return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
 
 
1158}
1159
1160pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1161{
1162	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
 
 
 
 
 
 
1163}
1164EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1165
1166pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1167		       bool write_fault, bool *writable)
1168{
1169	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170}
1171EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1172
1173pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1174{
1175	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176}
1177EXPORT_SYMBOL_GPL(gfn_to_pfn);
1178
1179pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1180		      bool *writable)
1181{
1182	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1183}
1184EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1185
1186pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1187			 struct kvm_memory_slot *slot, gfn_t gfn)
 
1188{
1189	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1190	return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1191}
 
1192
1193int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1194								  int nr_pages)
1195{
1196	unsigned long addr;
1197	gfn_t entry;
1198
1199	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1200	if (kvm_is_error_hva(addr))
1201		return -1;
1202
1203	if (entry < nr_pages)
1204		return 0;
1205
1206	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1207}
1208EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1209
1210struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
 
 
 
 
 
 
 
1211{
1212	pfn_t pfn;
 
 
 
 
 
 
1213
1214	pfn = gfn_to_pfn(kvm, gfn);
1215	if (!kvm_is_mmio_pfn(pfn))
1216		return pfn_to_page(pfn);
 
1217
1218	WARN_ON(kvm_is_mmio_pfn(pfn));
 
 
 
 
 
 
 
 
 
1219
1220	get_page(bad_page);
1221	return bad_page;
1222}
 
 
1223
1224EXPORT_SYMBOL_GPL(gfn_to_page);
 
 
1225
1226void kvm_release_page_clean(struct page *page)
1227{
1228	kvm_release_pfn_clean(page_to_pfn(page));
1229}
1230EXPORT_SYMBOL_GPL(kvm_release_page_clean);
 
 
 
1231
1232void kvm_release_pfn_clean(pfn_t pfn)
1233{
1234	if (!kvm_is_mmio_pfn(pfn))
1235		put_page(pfn_to_page(pfn));
1236}
1237EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1238
1239void kvm_release_page_dirty(struct page *page)
1240{
1241	kvm_release_pfn_dirty(page_to_pfn(page));
1242}
1243EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1244
1245void kvm_release_pfn_dirty(pfn_t pfn)
1246{
1247	kvm_set_pfn_dirty(pfn);
1248	kvm_release_pfn_clean(pfn);
1249}
1250EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1251
1252void kvm_set_page_dirty(struct page *page)
1253{
1254	kvm_set_pfn_dirty(page_to_pfn(page));
1255}
1256EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1257
1258void kvm_set_pfn_dirty(pfn_t pfn)
1259{
1260	if (!kvm_is_mmio_pfn(pfn)) {
1261		struct page *page = pfn_to_page(pfn);
1262		if (!PageReserved(page))
1263			SetPageDirty(page);
1264	}
1265}
1266EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1267
1268void kvm_set_pfn_accessed(pfn_t pfn)
1269{
1270	if (!kvm_is_mmio_pfn(pfn))
1271		mark_page_accessed(pfn_to_page(pfn));
1272}
1273EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1274
1275void kvm_get_pfn(pfn_t pfn)
1276{
1277	if (!kvm_is_mmio_pfn(pfn))
1278		get_page(pfn_to_page(pfn));
1279}
1280EXPORT_SYMBOL_GPL(kvm_get_pfn);
1281
1282static int next_segment(unsigned long len, int offset)
1283{
1284	if (len > PAGE_SIZE - offset)
1285		return PAGE_SIZE - offset;
1286	else
1287		return len;
1288}
1289
1290int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1291			int len)
 
1292{
1293	int r;
1294	unsigned long addr;
1295
1296	addr = gfn_to_hva(kvm, gfn);
 
 
 
1297	if (kvm_is_error_hva(addr))
1298		return -EFAULT;
1299	r = __copy_from_user(data, (void __user *)addr + offset, len);
1300	if (r)
1301		return -EFAULT;
1302	return 0;
1303}
 
 
 
 
 
 
 
 
1304EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1305
 
 
 
 
 
 
 
 
 
1306int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1307{
1308	gfn_t gfn = gpa >> PAGE_SHIFT;
1309	int seg;
1310	int offset = offset_in_page(gpa);
1311	int ret;
1312
1313	while ((seg = next_segment(len, offset)) != 0) {
1314		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1315		if (ret < 0)
1316			return ret;
1317		offset = 0;
1318		len -= seg;
1319		data += seg;
1320		++gfn;
1321	}
1322	return 0;
1323}
1324EXPORT_SYMBOL_GPL(kvm_read_guest);
1325
1326int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1327			  unsigned long len)
1328{
1329	int r;
1330	unsigned long addr;
1331	gfn_t gfn = gpa >> PAGE_SHIFT;
 
1332	int offset = offset_in_page(gpa);
 
1333
1334	addr = gfn_to_hva(kvm, gfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1335	if (kvm_is_error_hva(addr))
1336		return -EFAULT;
1337	pagefault_disable();
1338	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1339	pagefault_enable();
1340	if (r)
1341		return -EFAULT;
1342	return 0;
1343}
1344EXPORT_SYMBOL(kvm_read_guest_atomic);
1345
1346int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1347			 int offset, int len)
 
 
 
 
 
 
 
 
 
 
 
 
 
1348{
1349	int r;
1350	unsigned long addr;
1351
1352	addr = gfn_to_hva(kvm, gfn);
 
 
 
1353	if (kvm_is_error_hva(addr))
1354		return -EFAULT;
1355	r = __copy_to_user((void __user *)addr + offset, data, len);
1356	if (r)
1357		return -EFAULT;
1358	mark_page_dirty(kvm, gfn);
1359	return 0;
1360}
 
 
 
 
 
 
 
 
1361EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1362
 
 
 
 
 
 
 
 
 
1363int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1364		    unsigned long len)
1365{
1366	gfn_t gfn = gpa >> PAGE_SHIFT;
1367	int seg;
1368	int offset = offset_in_page(gpa);
1369	int ret;
1370
1371	while ((seg = next_segment(len, offset)) != 0) {
1372		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1373		if (ret < 0)
1374			return ret;
1375		offset = 0;
1376		len -= seg;
1377		data += seg;
1378		++gfn;
1379	}
1380	return 0;
1381}
 
1382
1383int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1384			      gpa_t gpa)
1385{
1386	struct kvm_memslots *slots = kvm_memslots(kvm);
1387	int offset = offset_in_page(gpa);
1388	gfn_t gfn = gpa >> PAGE_SHIFT;
 
 
 
1389
1390	ghc->gpa = gpa;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391	ghc->generation = slots->generation;
1392	ghc->memslot = gfn_to_memslot(kvm, gfn);
1393	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1394	if (!kvm_is_error_hva(ghc->hva))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395		ghc->hva += offset;
1396	else
1397		return -EFAULT;
1398
 
 
1399	return 0;
1400}
 
 
 
 
 
 
 
1401EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1402
1403int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1404			   void *data, unsigned long len)
 
1405{
1406	struct kvm_memslots *slots = kvm_memslots(kvm);
1407	int r;
 
1408
1409	if (slots->generation != ghc->generation)
1410		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
 
 
 
 
 
1411
1412	if (kvm_is_error_hva(ghc->hva))
1413		return -EFAULT;
1414
1415	r = __copy_to_user((void __user *)ghc->hva, data, len);
 
 
 
1416	if (r)
1417		return -EFAULT;
1418	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1419
1420	return 0;
1421}
1422EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1423
1424int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1425			   void *data, unsigned long len)
1426{
 
 
 
 
 
 
 
 
1427	struct kvm_memslots *slots = kvm_memslots(kvm);
1428	int r;
 
 
 
 
1429
1430	if (slots->generation != ghc->generation)
1431		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
 
 
1432
1433	if (kvm_is_error_hva(ghc->hva))
1434		return -EFAULT;
1435
1436	r = __copy_from_user(data, (void __user *)ghc->hva, len);
 
 
 
1437	if (r)
1438		return -EFAULT;
1439
1440	return 0;
1441}
1442EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1443
1444int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
 
1445{
1446	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1447				    offset, len);
1448}
1449EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1450
1451int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1452{
 
1453	gfn_t gfn = gpa >> PAGE_SHIFT;
1454	int seg;
1455	int offset = offset_in_page(gpa);
1456	int ret;
1457
1458        while ((seg = next_segment(len, offset)) != 0) {
1459		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1460		if (ret < 0)
1461			return ret;
1462		offset = 0;
1463		len -= seg;
1464		++gfn;
1465	}
1466	return 0;
1467}
1468EXPORT_SYMBOL_GPL(kvm_clear_guest);
1469
1470void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1471			     gfn_t gfn)
 
1472{
1473	if (memslot && memslot->dirty_bitmap) {
 
 
 
 
 
 
 
 
 
1474		unsigned long rel_gfn = gfn - memslot->base_gfn;
 
1475
1476		/* TODO: introduce set_bit_le() and use it */
1477		test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
 
 
1478	}
1479}
 
1480
1481void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1482{
1483	struct kvm_memory_slot *memslot;
1484
1485	memslot = gfn_to_memslot(kvm, gfn);
1486	mark_page_dirty_in_slot(kvm, memslot, gfn);
1487}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1488
1489/*
1490 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
 
 
1491 */
1492void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1493{
1494	DEFINE_WAIT(wait);
 
 
 
 
 
 
 
 
1495
1496	for (;;) {
1497		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1498
1499		if (kvm_arch_vcpu_runnable(vcpu)) {
1500			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1501			break;
1502		}
1503		if (kvm_cpu_has_pending_timer(vcpu))
1504			break;
1505		if (signal_pending(current))
1506			break;
1507
 
1508		schedule();
1509	}
1510
1511	finish_wait(&vcpu->wq, &wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512}
1513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1514#ifndef CONFIG_S390
1515/*
1516 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1517 */
1518void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1519{
1520	int me;
1521	int cpu = vcpu->cpu;
1522	wait_queue_head_t *wqp;
1523
1524	wqp = kvm_arch_vcpu_wq(vcpu);
1525	if (waitqueue_active(wqp)) {
1526		wake_up_interruptible(wqp);
1527		++vcpu->stat.halt_wakeup;
1528	}
1529
1530	me = get_cpu();
1531	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1532		if (kvm_arch_vcpu_should_kick(vcpu))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1533			smp_send_reschedule(cpu);
 
 
1534	put_cpu();
1535}
 
1536#endif /* !CONFIG_S390 */
1537
1538void kvm_resched(struct kvm_vcpu *vcpu)
1539{
1540	if (!need_resched())
1541		return;
1542	cond_resched();
1543}
1544EXPORT_SYMBOL_GPL(kvm_resched);
1545
1546bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1547{
1548	struct pid *pid;
1549	struct task_struct *task = NULL;
 
1550
1551	rcu_read_lock();
1552	pid = rcu_dereference(target->pid);
1553	if (pid)
 
1554		task = get_pid_task(target->pid, PIDTYPE_PID);
1555	rcu_read_unlock();
 
 
1556	if (!task)
1557		return false;
1558	if (task->flags & PF_VCPU) {
1559		put_task_struct(task);
1560		return false;
1561	}
1562	if (yield_to(task, 1)) {
1563		put_task_struct(task);
1564		return true;
1565	}
1566	put_task_struct(task);
1567	return false;
 
1568}
1569EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1570
1571void kvm_vcpu_on_spin(struct kvm_vcpu *me)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572{
 
1573	struct kvm *kvm = me->kvm;
1574	struct kvm_vcpu *vcpu;
1575	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1576	int yielded = 0;
1577	int pass;
1578	int i;
 
 
 
 
 
 
1579
1580	/*
1581	 * We boost the priority of a VCPU that is runnable but not
1582	 * currently running, because it got preempted by something
1583	 * else and called schedule in __vcpu_run.  Hopefully that
1584	 * VCPU is holding the lock that we need and will release it.
1585	 * We approximate round-robin by starting at the last boosted VCPU.
1586	 */
1587	for (pass = 0; pass < 2 && !yielded; pass++) {
1588		kvm_for_each_vcpu(i, vcpu, kvm) {
1589			if (!pass && i < last_boosted_vcpu) {
1590				i = last_boosted_vcpu;
1591				continue;
1592			} else if (pass && i > last_boosted_vcpu)
1593				break;
1594			if (vcpu == me)
1595				continue;
1596			if (waitqueue_active(&vcpu->wq))
1597				continue;
1598			if (kvm_vcpu_yield_to(vcpu)) {
1599				kvm->last_boosted_vcpu = i;
1600				yielded = 1;
1601				break;
1602			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1603		}
1604	}
 
 
 
 
1605}
1606EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1607
1608static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
 
1609{
1610	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1611	struct page *page;
1612
1613	if (vmf->pgoff == 0)
1614		page = virt_to_page(vcpu->run);
1615#ifdef CONFIG_X86
1616	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1617		page = virt_to_page(vcpu->arch.pio_data);
1618#endif
1619#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1620	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1621		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1622#endif
 
 
 
 
1623	else
1624		return kvm_arch_vcpu_fault(vcpu, vmf);
1625	get_page(page);
1626	vmf->page = page;
1627	return 0;
1628}
1629
1630static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1631	.fault = kvm_vcpu_fault,
1632};
1633
1634static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1635{
 
 
 
 
 
 
 
 
1636	vma->vm_ops = &kvm_vcpu_vm_ops;
1637	return 0;
1638}
1639
1640static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1641{
1642	struct kvm_vcpu *vcpu = filp->private_data;
1643
1644	kvm_put_kvm(vcpu->kvm);
1645	return 0;
1646}
1647
1648static struct file_operations kvm_vcpu_fops = {
1649	.release        = kvm_vcpu_release,
1650	.unlocked_ioctl = kvm_vcpu_ioctl,
1651#ifdef CONFIG_COMPAT
1652	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1653#endif
1654	.mmap           = kvm_vcpu_mmap,
1655	.llseek		= noop_llseek,
 
1656};
1657
1658/*
1659 * Allocates an inode for the vcpu.
1660 */
1661static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1662{
1663	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
 
 
 
1664}
1665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666/*
1667 * Creates some virtual cpus.  Good luck creating more than one.
1668 */
1669static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1670{
1671	int r;
1672	struct kvm_vcpu *vcpu, *v;
 
1673
1674	vcpu = kvm_arch_vcpu_create(kvm, id);
1675	if (IS_ERR(vcpu))
1676		return PTR_ERR(vcpu);
 
 
 
 
 
 
 
 
1677
1678	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
1679
1680	r = kvm_arch_vcpu_setup(vcpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1681	if (r)
1682		goto vcpu_destroy;
1683
1684	mutex_lock(&kvm->lock);
1685	if (!kvm_vcpu_compatible(vcpu)) {
1686		r = -EINVAL;
1687		goto unlock_vcpu_destroy;
 
1688	}
1689	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1690		r = -EINVAL;
 
 
 
 
 
 
 
 
 
1691		goto unlock_vcpu_destroy;
1692	}
1693
1694	kvm_for_each_vcpu(r, v, kvm)
1695		if (v->vcpu_id == id) {
1696			r = -EEXIST;
1697			goto unlock_vcpu_destroy;
1698		}
1699
1700	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1701
1702	/* Now it's all set up, let userspace reach it */
1703	kvm_get_kvm(kvm);
1704	r = create_vcpu_fd(vcpu);
1705	if (r < 0) {
1706		kvm_put_kvm(kvm);
1707		goto unlock_vcpu_destroy;
 
 
 
1708	}
1709
1710	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
 
 
 
1711	smp_wmb();
1712	atomic_inc(&kvm->online_vcpus);
1713
1714	mutex_unlock(&kvm->lock);
 
 
1715	return r;
1716
 
 
 
1717unlock_vcpu_destroy:
1718	mutex_unlock(&kvm->lock);
1719vcpu_destroy:
 
1720	kvm_arch_vcpu_destroy(vcpu);
 
 
 
 
 
 
 
 
1721	return r;
1722}
1723
1724static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1725{
1726	if (sigset) {
1727		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1728		vcpu->sigset_active = 1;
1729		vcpu->sigset = *sigset;
1730	} else
1731		vcpu->sigset_active = 0;
1732	return 0;
1733}
1734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1735static long kvm_vcpu_ioctl(struct file *filp,
1736			   unsigned int ioctl, unsigned long arg)
1737{
1738	struct kvm_vcpu *vcpu = filp->private_data;
1739	void __user *argp = (void __user *)arg;
1740	int r;
1741	struct kvm_fpu *fpu = NULL;
1742	struct kvm_sregs *kvm_sregs = NULL;
1743
1744	if (vcpu->kvm->mm != current->mm)
1745		return -EIO;
1746
1747#if defined(CONFIG_S390) || defined(CONFIG_PPC)
 
 
1748	/*
1749	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1750	 * so vcpu_load() would break it.
1751	 */
1752	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1753		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1754#endif
1755
1756
1757	vcpu_load(vcpu);
 
1758	switch (ioctl) {
1759	case KVM_RUN:
 
1760		r = -EINVAL;
1761		if (arg)
1762			goto out;
1763		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1765		break;
 
1766	case KVM_GET_REGS: {
1767		struct kvm_regs *kvm_regs;
1768
1769		r = -ENOMEM;
1770		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1771		if (!kvm_regs)
1772			goto out;
1773		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1774		if (r)
1775			goto out_free1;
1776		r = -EFAULT;
1777		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1778			goto out_free1;
1779		r = 0;
1780out_free1:
1781		kfree(kvm_regs);
1782		break;
1783	}
1784	case KVM_SET_REGS: {
1785		struct kvm_regs *kvm_regs;
1786
1787		r = -ENOMEM;
1788		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1789		if (IS_ERR(kvm_regs)) {
1790			r = PTR_ERR(kvm_regs);
1791			goto out;
1792		}
1793		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1794		if (r)
1795			goto out_free2;
1796		r = 0;
1797out_free2:
1798		kfree(kvm_regs);
1799		break;
1800	}
1801	case KVM_GET_SREGS: {
1802		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1803		r = -ENOMEM;
1804		if (!kvm_sregs)
1805			goto out;
1806		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1807		if (r)
1808			goto out;
1809		r = -EFAULT;
1810		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1811			goto out;
1812		r = 0;
1813		break;
1814	}
1815	case KVM_SET_SREGS: {
1816		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1817		if (IS_ERR(kvm_sregs)) {
1818			r = PTR_ERR(kvm_sregs);
 
1819			goto out;
1820		}
1821		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1822		if (r)
1823			goto out;
1824		r = 0;
1825		break;
1826	}
1827	case KVM_GET_MP_STATE: {
1828		struct kvm_mp_state mp_state;
1829
1830		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1831		if (r)
1832			goto out;
1833		r = -EFAULT;
1834		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1835			goto out;
1836		r = 0;
1837		break;
1838	}
1839	case KVM_SET_MP_STATE: {
1840		struct kvm_mp_state mp_state;
1841
1842		r = -EFAULT;
1843		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1844			goto out;
1845		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1846		if (r)
1847			goto out;
1848		r = 0;
1849		break;
1850	}
1851	case KVM_TRANSLATE: {
1852		struct kvm_translation tr;
1853
1854		r = -EFAULT;
1855		if (copy_from_user(&tr, argp, sizeof tr))
1856			goto out;
1857		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1858		if (r)
1859			goto out;
1860		r = -EFAULT;
1861		if (copy_to_user(argp, &tr, sizeof tr))
1862			goto out;
1863		r = 0;
1864		break;
1865	}
1866	case KVM_SET_GUEST_DEBUG: {
1867		struct kvm_guest_debug dbg;
1868
1869		r = -EFAULT;
1870		if (copy_from_user(&dbg, argp, sizeof dbg))
1871			goto out;
1872		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1873		if (r)
1874			goto out;
1875		r = 0;
1876		break;
1877	}
1878	case KVM_SET_SIGNAL_MASK: {
1879		struct kvm_signal_mask __user *sigmask_arg = argp;
1880		struct kvm_signal_mask kvm_sigmask;
1881		sigset_t sigset, *p;
1882
1883		p = NULL;
1884		if (argp) {
1885			r = -EFAULT;
1886			if (copy_from_user(&kvm_sigmask, argp,
1887					   sizeof kvm_sigmask))
1888				goto out;
1889			r = -EINVAL;
1890			if (kvm_sigmask.len != sizeof sigset)
1891				goto out;
1892			r = -EFAULT;
1893			if (copy_from_user(&sigset, sigmask_arg->sigset,
1894					   sizeof sigset))
1895				goto out;
1896			p = &sigset;
1897		}
1898		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1899		break;
1900	}
1901	case KVM_GET_FPU: {
1902		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1903		r = -ENOMEM;
1904		if (!fpu)
1905			goto out;
1906		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1907		if (r)
1908			goto out;
1909		r = -EFAULT;
1910		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1911			goto out;
1912		r = 0;
1913		break;
1914	}
1915	case KVM_SET_FPU: {
1916		fpu = memdup_user(argp, sizeof(*fpu));
1917		if (IS_ERR(fpu)) {
1918			r = PTR_ERR(fpu);
 
1919			goto out;
1920		}
1921		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1922		if (r)
1923			goto out;
1924		r = 0;
1925		break;
1926	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1927	default:
1928		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1929	}
1930out:
1931	vcpu_put(vcpu);
1932	kfree(fpu);
1933	kfree(kvm_sregs);
1934	return r;
1935}
1936
1937#ifdef CONFIG_COMPAT
1938static long kvm_vcpu_compat_ioctl(struct file *filp,
1939				  unsigned int ioctl, unsigned long arg)
1940{
1941	struct kvm_vcpu *vcpu = filp->private_data;
1942	void __user *argp = compat_ptr(arg);
1943	int r;
1944
1945	if (vcpu->kvm->mm != current->mm)
1946		return -EIO;
1947
1948	switch (ioctl) {
1949	case KVM_SET_SIGNAL_MASK: {
1950		struct kvm_signal_mask __user *sigmask_arg = argp;
1951		struct kvm_signal_mask kvm_sigmask;
1952		compat_sigset_t csigset;
1953		sigset_t sigset;
1954
1955		if (argp) {
1956			r = -EFAULT;
1957			if (copy_from_user(&kvm_sigmask, argp,
1958					   sizeof kvm_sigmask))
1959				goto out;
1960			r = -EINVAL;
1961			if (kvm_sigmask.len != sizeof csigset)
1962				goto out;
1963			r = -EFAULT;
1964			if (copy_from_user(&csigset, sigmask_arg->sigset,
1965					   sizeof csigset))
1966				goto out;
1967		}
1968		sigset_from_compat(&sigset, &csigset);
1969		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1970		break;
1971	}
1972	default:
1973		r = kvm_vcpu_ioctl(filp, ioctl, arg);
1974	}
1975
1976out:
1977	return r;
1978}
1979#endif
1980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1981static long kvm_vm_ioctl(struct file *filp,
1982			   unsigned int ioctl, unsigned long arg)
1983{
1984	struct kvm *kvm = filp->private_data;
1985	void __user *argp = (void __user *)arg;
1986	int r;
1987
1988	if (kvm->mm != current->mm)
1989		return -EIO;
1990	switch (ioctl) {
1991	case KVM_CREATE_VCPU:
1992		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1993		if (r < 0)
 
 
 
 
 
1994			goto out;
 
1995		break;
 
 
1996	case KVM_SET_USER_MEMORY_REGION: {
1997		struct kvm_userspace_memory_region kvm_userspace_mem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1998
1999		r = -EFAULT;
2000		if (copy_from_user(&kvm_userspace_mem, argp,
2001						sizeof kvm_userspace_mem))
2002			goto out;
2003
2004		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2005		if (r)
 
2006			goto out;
 
 
2007		break;
2008	}
2009	case KVM_GET_DIRTY_LOG: {
2010		struct kvm_dirty_log log;
2011
2012		r = -EFAULT;
2013		if (copy_from_user(&log, argp, sizeof log))
2014			goto out;
2015		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2016		if (r)
 
 
 
 
 
 
 
2017			goto out;
 
2018		break;
2019	}
2020#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
 
2021	case KVM_REGISTER_COALESCED_MMIO: {
2022		struct kvm_coalesced_mmio_zone zone;
 
2023		r = -EFAULT;
2024		if (copy_from_user(&zone, argp, sizeof zone))
2025			goto out;
2026		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2027		if (r)
2028			goto out;
2029		r = 0;
2030		break;
2031	}
2032	case KVM_UNREGISTER_COALESCED_MMIO: {
2033		struct kvm_coalesced_mmio_zone zone;
 
2034		r = -EFAULT;
2035		if (copy_from_user(&zone, argp, sizeof zone))
2036			goto out;
2037		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2038		if (r)
2039			goto out;
2040		r = 0;
2041		break;
2042	}
2043#endif
2044	case KVM_IRQFD: {
2045		struct kvm_irqfd data;
2046
2047		r = -EFAULT;
2048		if (copy_from_user(&data, argp, sizeof data))
2049			goto out;
2050		r = kvm_irqfd(kvm, &data);
2051		break;
2052	}
2053	case KVM_IOEVENTFD: {
2054		struct kvm_ioeventfd data;
2055
2056		r = -EFAULT;
2057		if (copy_from_user(&data, argp, sizeof data))
2058			goto out;
2059		r = kvm_ioeventfd(kvm, &data);
2060		break;
2061	}
2062#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2063	case KVM_SET_BOOT_CPU_ID:
2064		r = 0;
2065		mutex_lock(&kvm->lock);
2066		if (atomic_read(&kvm->online_vcpus) != 0)
2067			r = -EBUSY;
2068		else
2069			kvm->bsp_vcpu_id = arg;
2070		mutex_unlock(&kvm->lock);
2071		break;
2072#endif
2073#ifdef CONFIG_HAVE_KVM_MSI
2074	case KVM_SIGNAL_MSI: {
2075		struct kvm_msi msi;
2076
2077		r = -EFAULT;
2078		if (copy_from_user(&msi, argp, sizeof msi))
2079			goto out;
2080		r = kvm_send_userspace_msi(kvm, &msi);
2081		break;
2082	}
2083#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2084	default:
2085		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2086		if (r == -ENOTTY)
2087			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2088	}
2089out:
2090	return r;
2091}
2092
2093#ifdef CONFIG_COMPAT
2094struct compat_kvm_dirty_log {
2095	__u32 slot;
2096	__u32 padding1;
2097	union {
2098		compat_uptr_t dirty_bitmap; /* one bit per page */
2099		__u64 padding2;
2100	};
2101};
2102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2103static long kvm_vm_compat_ioctl(struct file *filp,
2104			   unsigned int ioctl, unsigned long arg)
2105{
2106	struct kvm *kvm = filp->private_data;
2107	int r;
2108
2109	if (kvm->mm != current->mm)
2110		return -EIO;
 
 
 
 
 
2111	switch (ioctl) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2112	case KVM_GET_DIRTY_LOG: {
2113		struct compat_kvm_dirty_log compat_log;
2114		struct kvm_dirty_log log;
2115
2116		r = -EFAULT;
2117		if (copy_from_user(&compat_log, (void __user *)arg,
2118				   sizeof(compat_log)))
2119			goto out;
2120		log.slot	 = compat_log.slot;
2121		log.padding1	 = compat_log.padding1;
2122		log.padding2	 = compat_log.padding2;
2123		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2124
2125		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2126		if (r)
2127			goto out;
2128		break;
2129	}
2130	default:
2131		r = kvm_vm_ioctl(filp, ioctl, arg);
2132	}
2133
2134out:
2135	return r;
2136}
2137#endif
2138
2139static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2140{
2141	struct page *page[1];
2142	unsigned long addr;
2143	int npages;
2144	gfn_t gfn = vmf->pgoff;
2145	struct kvm *kvm = vma->vm_file->private_data;
2146
2147	addr = gfn_to_hva(kvm, gfn);
2148	if (kvm_is_error_hva(addr))
2149		return VM_FAULT_SIGBUS;
2150
2151	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2152				NULL);
2153	if (unlikely(npages != 1))
2154		return VM_FAULT_SIGBUS;
2155
2156	vmf->page = page[0];
2157	return 0;
2158}
2159
2160static const struct vm_operations_struct kvm_vm_vm_ops = {
2161	.fault = kvm_vm_fault,
2162};
2163
2164static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2165{
2166	vma->vm_ops = &kvm_vm_vm_ops;
2167	return 0;
2168}
2169
2170static struct file_operations kvm_vm_fops = {
2171	.release        = kvm_vm_release,
2172	.unlocked_ioctl = kvm_vm_ioctl,
2173#ifdef CONFIG_COMPAT
2174	.compat_ioctl   = kvm_vm_compat_ioctl,
2175#endif
2176	.mmap           = kvm_vm_mmap,
2177	.llseek		= noop_llseek,
 
2178};
2179
 
 
 
 
 
 
2180static int kvm_dev_ioctl_create_vm(unsigned long type)
2181{
2182	int r;
 
2183	struct kvm *kvm;
 
2184
2185	kvm = kvm_create_vm(type);
2186	if (IS_ERR(kvm))
2187		return PTR_ERR(kvm);
2188#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2189	r = kvm_coalesced_mmio_init(kvm);
2190	if (r < 0) {
2191		kvm_put_kvm(kvm);
2192		return r;
2193	}
2194#endif
2195	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2196	if (r < 0)
2197		kvm_put_kvm(kvm);
2198
2199	return r;
2200}
2201
2202static long kvm_dev_ioctl_check_extension_generic(long arg)
2203{
2204	switch (arg) {
2205	case KVM_CAP_USER_MEMORY:
2206	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2207	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2208#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2209	case KVM_CAP_SET_BOOT_CPU_ID:
2210#endif
2211	case KVM_CAP_INTERNAL_ERROR_DATA:
2212#ifdef CONFIG_HAVE_KVM_MSI
2213	case KVM_CAP_SIGNAL_MSI:
2214#endif
2215		return 1;
2216#ifdef CONFIG_HAVE_KVM_IRQCHIP
2217	case KVM_CAP_IRQ_ROUTING:
2218		return KVM_MAX_IRQ_ROUTES;
2219#endif
2220	default:
2221		break;
2222	}
2223	return kvm_dev_ioctl_check_extension(arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2224}
2225
2226static long kvm_dev_ioctl(struct file *filp,
2227			  unsigned int ioctl, unsigned long arg)
2228{
2229	long r = -EINVAL;
2230
2231	switch (ioctl) {
2232	case KVM_GET_API_VERSION:
2233		r = -EINVAL;
2234		if (arg)
2235			goto out;
2236		r = KVM_API_VERSION;
2237		break;
2238	case KVM_CREATE_VM:
2239		r = kvm_dev_ioctl_create_vm(arg);
2240		break;
2241	case KVM_CHECK_EXTENSION:
2242		r = kvm_dev_ioctl_check_extension_generic(arg);
2243		break;
2244	case KVM_GET_VCPU_MMAP_SIZE:
2245		r = -EINVAL;
2246		if (arg)
2247			goto out;
2248		r = PAGE_SIZE;     /* struct kvm_run */
2249#ifdef CONFIG_X86
2250		r += PAGE_SIZE;    /* pio data page */
2251#endif
2252#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2253		r += PAGE_SIZE;    /* coalesced mmio ring page */
2254#endif
2255		break;
2256	case KVM_TRACE_ENABLE:
2257	case KVM_TRACE_PAUSE:
2258	case KVM_TRACE_DISABLE:
2259		r = -EOPNOTSUPP;
2260		break;
2261	default:
2262		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2263	}
2264out:
2265	return r;
2266}
2267
2268static struct file_operations kvm_chardev_ops = {
2269	.unlocked_ioctl = kvm_dev_ioctl,
2270	.compat_ioctl   = kvm_dev_ioctl,
2271	.llseek		= noop_llseek,
 
2272};
2273
2274static struct miscdevice kvm_dev = {
2275	KVM_MINOR,
2276	"kvm",
2277	&kvm_chardev_ops,
2278};
2279
2280static void hardware_enable_nolock(void *junk)
 
 
 
 
 
 
 
 
 
 
 
2281{
2282	int cpu = raw_smp_processor_id();
2283	int r;
2284
2285	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2286		return;
 
 
2287
2288	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2289
2290	r = kvm_arch_hardware_enable(NULL);
 
 
 
2291
2292	if (r) {
2293		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2294		atomic_inc(&hardware_enable_failed);
2295		printk(KERN_INFO "kvm: enabling virtualization on "
2296				 "CPU%d failed\n", cpu);
2297	}
 
 
 
2298}
2299
2300static void hardware_enable(void *junk)
2301{
2302	raw_spin_lock(&kvm_lock);
2303	hardware_enable_nolock(junk);
2304	raw_spin_unlock(&kvm_lock);
 
 
 
2305}
2306
2307static void hardware_disable_nolock(void *junk)
2308{
2309	int cpu = raw_smp_processor_id();
2310
2311	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2312		return;
2313	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2314	kvm_arch_hardware_disable(NULL);
 
 
2315}
2316
2317static void hardware_disable(void *junk)
2318{
2319	raw_spin_lock(&kvm_lock);
2320	hardware_disable_nolock(junk);
2321	raw_spin_unlock(&kvm_lock);
2322}
2323
2324static void hardware_disable_all_nolock(void)
2325{
2326	BUG_ON(!kvm_usage_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2327
2328	kvm_usage_count--;
2329	if (!kvm_usage_count)
2330		on_each_cpu(hardware_disable_nolock, NULL, 1);
 
 
 
 
 
 
 
 
 
 
 
 
2331}
2332
2333static void hardware_disable_all(void)
2334{
2335	raw_spin_lock(&kvm_lock);
2336	hardware_disable_all_nolock();
2337	raw_spin_unlock(&kvm_lock);
 
2338}
2339
2340static int hardware_enable_all(void)
 
 
 
 
 
 
2341{
2342	int r = 0;
2343
2344	raw_spin_lock(&kvm_lock);
2345
2346	kvm_usage_count++;
2347	if (kvm_usage_count == 1) {
2348		atomic_set(&hardware_enable_failed, 0);
2349		on_each_cpu(hardware_enable_nolock, NULL, 1);
2350
2351		if (atomic_read(&hardware_enable_failed)) {
2352			hardware_disable_all_nolock();
2353			r = -EBUSY;
2354		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2355	}
2356
2357	raw_spin_unlock(&kvm_lock);
2358
 
 
 
 
 
 
2359	return r;
2360}
2361
2362static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2363			   void *v)
2364{
2365	int cpu = (long)v;
2366
2367	if (!kvm_usage_count)
2368		return NOTIFY_OK;
2369
2370	val &= ~CPU_TASKS_FROZEN;
2371	switch (val) {
2372	case CPU_DYING:
2373		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2374		       cpu);
2375		hardware_disable(NULL);
2376		break;
2377	case CPU_STARTING:
2378		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2379		       cpu);
2380		hardware_enable(NULL);
2381		break;
2382	}
2383	return NOTIFY_OK;
2384}
2385
 
 
 
 
 
 
 
2386
2387asmlinkage void kvm_spurious_fault(void)
2388{
2389	/* Fault while not rebooting.  We want the trace. */
2390	BUG();
 
 
 
 
 
2391}
2392EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2393
2394static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2395		      void *v)
2396{
2397	/*
2398	 * Some (well, at least mine) BIOSes hang on reboot if
2399	 * in vmx root mode.
2400	 *
2401	 * And Intel TXT required VMX off for all cpu when system shutdown.
2402	 */
2403	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2404	kvm_rebooting = true;
2405	on_each_cpu(hardware_disable_nolock, NULL, 1);
2406	return NOTIFY_OK;
2407}
2408
2409static struct notifier_block kvm_reboot_notifier = {
2410	.notifier_call = kvm_reboot,
2411	.priority = 0,
2412};
 
 
 
 
 
 
 
 
 
 
 
 
2413
2414static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2415{
2416	int i;
2417
2418	for (i = 0; i < bus->dev_count; i++) {
2419		struct kvm_io_device *pos = bus->range[i].dev;
2420
2421		kvm_iodevice_destructor(pos);
2422	}
2423	kfree(bus);
2424}
2425
2426int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
 
2427{
2428	const struct kvm_io_range *r1 = p1;
2429	const struct kvm_io_range *r2 = p2;
2430
2431	if (r1->addr < r2->addr)
2432		return -1;
2433	if (r1->addr + r1->len > r2->addr + r2->len)
 
 
 
 
 
 
 
 
 
 
 
2434		return 1;
 
2435	return 0;
2436}
2437
2438int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2439			  gpa_t addr, int len)
2440{
2441	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2442		.addr = addr,
2443		.len = len,
2444		.dev = dev,
2445	};
2446
2447	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2448		kvm_io_bus_sort_cmp, NULL);
2449
2450	return 0;
2451}
2452
2453int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2454			     gpa_t addr, int len)
2455{
2456	struct kvm_io_range *range, key;
2457	int off;
2458
2459	key = (struct kvm_io_range) {
2460		.addr = addr,
2461		.len = len,
2462	};
2463
2464	range = bsearch(&key, bus->range, bus->dev_count,
2465			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2466	if (range == NULL)
2467		return -ENOENT;
2468
2469	off = range - bus->range;
2470
2471	while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2472		off--;
2473
2474	return off;
2475}
2476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2477/* kvm_io_bus_write - called under kvm->slots_lock */
2478int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2479		     int len, const void *val)
2480{
2481	int idx;
2482	struct kvm_io_bus *bus;
2483	struct kvm_io_range range;
 
2484
2485	range = (struct kvm_io_range) {
2486		.addr = addr,
2487		.len = len,
2488	};
2489
2490	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2491	idx = kvm_io_bus_get_first_dev(bus, addr, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2492	if (idx < 0)
2493		return -EOPNOTSUPP;
2494
2495	while (idx < bus->dev_count &&
2496		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2497		if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2498			return 0;
 
2499		idx++;
2500	}
2501
2502	return -EOPNOTSUPP;
2503}
2504
2505/* kvm_io_bus_read - called under kvm->slots_lock */
2506int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2507		    int len, void *val)
2508{
2509	int idx;
2510	struct kvm_io_bus *bus;
2511	struct kvm_io_range range;
 
2512
2513	range = (struct kvm_io_range) {
2514		.addr = addr,
2515		.len = len,
2516	};
2517
2518	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2519	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2520	if (idx < 0)
2521		return -EOPNOTSUPP;
2522
2523	while (idx < bus->dev_count &&
2524		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2525		if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2526			return 0;
2527		idx++;
2528	}
2529
2530	return -EOPNOTSUPP;
2531}
2532
2533/* Caller must hold slots_lock. */
2534int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2535			    int len, struct kvm_io_device *dev)
2536{
 
2537	struct kvm_io_bus *new_bus, *bus;
 
 
 
2538
2539	bus = kvm->buses[bus_idx];
2540	if (bus->dev_count > NR_IOBUS_DEVS - 1)
 
 
 
 
2541		return -ENOSPC;
2542
2543	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2544			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2545	if (!new_bus)
2546		return -ENOMEM;
2547	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2548	       sizeof(struct kvm_io_range)));
2549	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
2550	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2551	synchronize_srcu_expedited(&kvm->srcu);
2552	kfree(bus);
2553
2554	return 0;
2555}
2556
2557/* Caller must hold slots_lock. */
2558int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2559			      struct kvm_io_device *dev)
2560{
2561	int i, r;
2562	struct kvm_io_bus *new_bus, *bus;
2563
2564	bus = kvm->buses[bus_idx];
2565	r = -ENOENT;
2566	for (i = 0; i < bus->dev_count; i++)
 
 
 
 
2567		if (bus->range[i].dev == dev) {
2568			r = 0;
2569			break;
2570		}
 
2571
2572	if (r)
2573		return r;
2574
2575	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2576			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2577	if (!new_bus)
2578		return -ENOMEM;
2579
2580	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2581	new_bus->dev_count--;
2582	memcpy(new_bus->range + i, bus->range + i + 1,
2583	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
 
 
 
 
2584
2585	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2586	synchronize_srcu_expedited(&kvm->srcu);
 
 
 
 
 
 
 
 
 
 
 
 
2587	kfree(bus);
2588	return r;
2589}
2590
2591static struct notifier_block kvm_cpu_notifier = {
2592	.notifier_call = kvm_cpu_hotplug,
2593};
 
 
 
2594
2595static int vm_stat_get(void *_offset, u64 *val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2596{
2597	unsigned offset = (long)_offset;
2598	struct kvm *kvm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2599
2600	*val = 0;
2601	raw_spin_lock(&kvm_lock);
2602	list_for_each_entry(kvm, &vm_list, vm_list)
2603		*val += *(u32 *)((void *)kvm + offset);
2604	raw_spin_unlock(&kvm_lock);
2605	return 0;
2606}
2607
2608DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
 
 
2609
2610static int vcpu_stat_get(void *_offset, u64 *val)
 
 
 
2611{
2612	unsigned offset = (long)_offset;
2613	struct kvm *kvm;
 
 
 
 
 
 
2614	struct kvm_vcpu *vcpu;
2615	int i;
2616
2617	*val = 0;
2618	raw_spin_lock(&kvm_lock);
2619	list_for_each_entry(kvm, &vm_list, vm_list)
2620		kvm_for_each_vcpu(i, vcpu, kvm)
2621			*val += *(u32 *)((void *)vcpu + offset);
2622
2623	raw_spin_unlock(&kvm_lock);
 
 
2624	return 0;
2625}
2626
2627DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
 
 
 
2628
2629static const struct file_operations *stat_fops[] = {
2630	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2631	[KVM_STAT_VM]   = &vm_stat_fops,
2632};
 
2633
2634static int kvm_init_debug(void)
2635{
2636	int r = -EFAULT;
2637	struct kvm_stats_debugfs_item *p;
2638
2639	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2640	if (kvm_debugfs_dir == NULL)
2641		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642
2643	for (p = debugfs_entries; p->name; ++p) {
2644		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2645						(void *)(long)p->offset,
2646						stat_fops[p->kind]);
2647		if (p->dentry == NULL)
2648			goto out_dir;
 
 
 
 
 
 
2649	}
2650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2651	return 0;
 
2652
2653out_dir:
2654	debugfs_remove_recursive(kvm_debugfs_dir);
2655out:
2656	return r;
 
 
 
 
 
 
 
 
 
 
 
2657}
2658
2659static void kvm_exit_debug(void)
 
 
 
2660{
2661	struct kvm_stats_debugfs_item *p;
 
 
2662
2663	for (p = debugfs_entries; p->name; ++p)
2664		debugfs_remove(p->dentry);
2665	debugfs_remove(kvm_debugfs_dir);
 
 
 
 
 
2666}
2667
2668static int kvm_suspend(void)
2669{
2670	if (kvm_usage_count)
2671		hardware_disable_nolock(NULL);
 
 
 
 
 
 
 
 
 
 
2672	return 0;
2673}
2674
2675static void kvm_resume(void)
 
 
 
 
2676{
2677	if (kvm_usage_count) {
2678		WARN_ON(raw_spin_is_locked(&kvm_lock));
2679		hardware_enable_nolock(NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2680	}
 
 
 
 
2681}
2682
2683static struct syscore_ops kvm_syscore_ops = {
2684	.suspend = kvm_suspend,
2685	.resume = kvm_resume,
2686};
 
2687
2688struct page *bad_page;
2689pfn_t bad_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2690
2691static inline
2692struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2693{
2694	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2695}
2696
2697static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2698{
2699	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2700
 
 
 
 
2701	kvm_arch_vcpu_load(vcpu, cpu);
 
 
2702}
2703
2704static void kvm_sched_out(struct preempt_notifier *pn,
2705			  struct task_struct *next)
2706{
2707	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2708
 
 
 
 
 
 
2709	kvm_arch_vcpu_put(vcpu);
 
2710}
2711
2712int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2713		  struct module *module)
 
 
 
 
 
 
 
 
2714{
2715	int r;
2716	int cpu;
2717
2718	r = kvm_arch_init(opaque);
2719	if (r)
2720		goto out_fail;
2721
2722	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 
 
2723
2724	if (bad_page == NULL) {
2725		r = -ENOMEM;
2726		goto out;
2727	}
2728
2729	bad_pfn = page_to_pfn(bad_page);
 
 
 
 
 
 
2730
2731	hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 
 
 
 
2732
2733	if (hwpoison_page == NULL) {
2734		r = -ENOMEM;
2735		goto out_free_0;
2736	}
2737
2738	hwpoison_pfn = page_to_pfn(hwpoison_page);
 
 
2739
2740	fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 
2741
2742	if (fault_page == NULL) {
2743		r = -ENOMEM;
2744		goto out_free_0;
2745	}
2746
2747	fault_pfn = page_to_pfn(fault_page);
 
 
2748
2749	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2750		r = -ENOMEM;
2751		goto out_free_0;
2752	}
2753
2754	r = kvm_arch_hardware_setup();
2755	if (r < 0)
2756		goto out_free_0a;
 
 
2757
2758	for_each_online_cpu(cpu) {
2759		smp_call_function_single(cpu,
2760				kvm_arch_check_processor_compat,
2761				&r, 1);
2762		if (r < 0)
2763			goto out_free_1;
2764	}
 
 
 
2765
2766	r = register_cpu_notifier(&kvm_cpu_notifier);
2767	if (r)
2768		goto out_free_2;
2769	register_reboot_notifier(&kvm_reboot_notifier);
2770
2771	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2772	if (!vcpu_align)
2773		vcpu_align = __alignof__(struct kvm_vcpu);
2774	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2775					   0, NULL);
2776	if (!kvm_vcpu_cache) {
2777		r = -ENOMEM;
2778		goto out_free_3;
 
 
 
 
 
 
 
 
 
 
 
2779	}
2780
 
 
 
 
2781	r = kvm_async_pf_init();
2782	if (r)
2783		goto out_free;
2784
2785	kvm_chardev_ops.owner = module;
2786	kvm_vm_fops.owner = module;
2787	kvm_vcpu_fops.owner = module;
2788
2789	r = misc_register(&kvm_dev);
2790	if (r) {
2791		printk(KERN_ERR "kvm: misc device register failed\n");
2792		goto out_unreg;
2793	}
2794
2795	register_syscore_ops(&kvm_syscore_ops);
2796
2797	kvm_preempt_ops.sched_in = kvm_sched_in;
2798	kvm_preempt_ops.sched_out = kvm_sched_out;
2799
2800	r = kvm_init_debug();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2801	if (r) {
2802		printk(KERN_ERR "kvm: create debugfs files failed\n");
2803		goto out_undebugfs;
2804	}
2805
2806	return 0;
2807
2808out_undebugfs:
2809	unregister_syscore_ops(&kvm_syscore_ops);
2810out_unreg:
 
 
2811	kvm_async_pf_deinit();
2812out_free:
 
 
 
 
 
2813	kmem_cache_destroy(kvm_vcpu_cache);
2814out_free_3:
2815	unregister_reboot_notifier(&kvm_reboot_notifier);
2816	unregister_cpu_notifier(&kvm_cpu_notifier);
2817out_free_2:
2818out_free_1:
2819	kvm_arch_hardware_unsetup();
2820out_free_0a:
2821	free_cpumask_var(cpus_hardware_enabled);
2822out_free_0:
2823	if (fault_page)
2824		__free_page(fault_page);
2825	if (hwpoison_page)
2826		__free_page(hwpoison_page);
2827	__free_page(bad_page);
2828out:
2829	kvm_arch_exit();
2830out_fail:
2831	return r;
2832}
2833EXPORT_SYMBOL_GPL(kvm_init);
2834
2835void kvm_exit(void)
2836{
2837	kvm_exit_debug();
 
 
 
 
 
 
2838	misc_deregister(&kvm_dev);
 
 
 
 
 
 
2839	kmem_cache_destroy(kvm_vcpu_cache);
 
2840	kvm_async_pf_deinit();
2841	unregister_syscore_ops(&kvm_syscore_ops);
2842	unregister_reboot_notifier(&kvm_reboot_notifier);
2843	unregister_cpu_notifier(&kvm_cpu_notifier);
2844	on_each_cpu(hardware_disable_nolock, NULL, 1);
2845	kvm_arch_hardware_unsetup();
2846	kvm_arch_exit();
2847	free_cpumask_var(cpus_hardware_enabled);
2848	__free_page(fault_page);
2849	__free_page(hwpoison_page);
2850	__free_page(bad_page);
2851}
2852EXPORT_SYMBOL_GPL(kvm_exit);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine (KVM) Hypervisor
 
 
 
   4 *
   5 * Copyright (C) 2006 Qumranet, Inc.
   6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   7 *
   8 * Authors:
   9 *   Avi Kivity   <avi@qumranet.com>
  10 *   Yaniv Kamay  <yaniv@qumranet.com>
 
 
 
 
  11 */
  12
  13#include <kvm/iodev.h>
  14
  15#include <linux/kvm_host.h>
  16#include <linux/kvm.h>
  17#include <linux/module.h>
  18#include <linux/errno.h>
  19#include <linux/percpu.h>
  20#include <linux/mm.h>
  21#include <linux/miscdevice.h>
  22#include <linux/vmalloc.h>
  23#include <linux/reboot.h>
  24#include <linux/debugfs.h>
  25#include <linux/highmem.h>
  26#include <linux/file.h>
  27#include <linux/syscore_ops.h>
  28#include <linux/cpu.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/mm.h>
  31#include <linux/sched/stat.h>
  32#include <linux/cpumask.h>
  33#include <linux/smp.h>
  34#include <linux/anon_inodes.h>
  35#include <linux/profile.h>
  36#include <linux/kvm_para.h>
  37#include <linux/pagemap.h>
  38#include <linux/mman.h>
  39#include <linux/swap.h>
  40#include <linux/bitops.h>
  41#include <linux/spinlock.h>
  42#include <linux/compat.h>
  43#include <linux/srcu.h>
  44#include <linux/hugetlb.h>
  45#include <linux/slab.h>
  46#include <linux/sort.h>
  47#include <linux/bsearch.h>
  48#include <linux/io.h>
  49#include <linux/lockdep.h>
  50#include <linux/kthread.h>
  51#include <linux/suspend.h>
  52
  53#include <asm/processor.h>
  54#include <asm/ioctl.h>
  55#include <linux/uaccess.h>
 
  56
  57#include "coalesced_mmio.h"
  58#include "async_pf.h"
  59#include "kvm_mm.h"
  60#include "vfio.h"
  61
  62#include <trace/events/ipi.h>
  63
  64#define CREATE_TRACE_POINTS
  65#include <trace/events/kvm.h>
  66
  67#include <linux/kvm_dirty_ring.h>
  68
  69
  70/* Worst case buffer size needed for holding an integer. */
  71#define ITOA_MAX_LEN 12
  72
  73MODULE_AUTHOR("Qumranet");
  74MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
  75MODULE_LICENSE("GPL");
  76
  77/* Architectures should define their poll value according to the halt latency */
  78unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  79module_param(halt_poll_ns, uint, 0644);
  80EXPORT_SYMBOL_GPL(halt_poll_ns);
  81
  82/* Default doubles per-vcpu halt_poll_ns. */
  83unsigned int halt_poll_ns_grow = 2;
  84module_param(halt_poll_ns_grow, uint, 0644);
  85EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  86
  87/* The start value to grow halt_poll_ns from */
  88unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
  89module_param(halt_poll_ns_grow_start, uint, 0644);
  90EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
  91
  92/* Default halves per-vcpu halt_poll_ns. */
  93unsigned int halt_poll_ns_shrink = 2;
  94module_param(halt_poll_ns_shrink, uint, 0644);
  95EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  96
  97/*
  98 * Allow direct access (from KVM or the CPU) without MMU notifier protection
  99 * to unpinned pages.
 100 */
 101static bool allow_unsafe_mappings;
 102module_param(allow_unsafe_mappings, bool, 0444);
 103
 104/*
 105 * Ordering of locks:
 106 *
 107 *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
 108 */
 109
 110DEFINE_MUTEX(kvm_lock);
 111LIST_HEAD(vm_list);
 112
 113static struct kmem_cache *kvm_vcpu_cache;
 
 
 
 
 
 114
 115static __read_mostly struct preempt_ops kvm_preempt_ops;
 116static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
 117
 118static struct dentry *kvm_debugfs_dir;
 119
 120static const struct file_operations stat_fops_per_vm;
 121
 122static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 123			   unsigned long arg);
 124#ifdef CONFIG_KVM_COMPAT
 125static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 126				  unsigned long arg);
 127#define KVM_COMPAT(c)	.compat_ioctl	= (c)
 128#else
 129/*
 130 * For architectures that don't implement a compat infrastructure,
 131 * adopt a double line of defense:
 132 * - Prevent a compat task from opening /dev/kvm
 133 * - If the open has been done by a 64bit task, and the KVM fd
 134 *   passed to a compat task, let the ioctls fail.
 135 */
 136static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
 137				unsigned long arg) { return -EINVAL; }
 138
 139static int kvm_no_compat_open(struct inode *inode, struct file *file)
 140{
 141	return is_compat_task() ? -ENODEV : 0;
 142}
 143#define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
 144			.open		= kvm_no_compat_open
 145#endif
 146static int kvm_enable_virtualization(void);
 147static void kvm_disable_virtualization(void);
 148
 149static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 150
 151#define KVM_EVENT_CREATE_VM 0
 152#define KVM_EVENT_DESTROY_VM 1
 153static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 154static unsigned long long kvm_createvm_count;
 155static unsigned long long kvm_active_vms;
 
 
 
 
 
 156
 157static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158
 159__weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
 160{
 161}
 162
 163/*
 164 * Switches to specified vcpu, until a matching vcpu_put()
 165 */
 166void vcpu_load(struct kvm_vcpu *vcpu)
 167{
 168	int cpu = get_cpu();
 169
 170	__this_cpu_write(kvm_running_vcpu, vcpu);
 
 
 
 
 
 
 
 
 
 171	preempt_notifier_register(&vcpu->preempt_notifier);
 172	kvm_arch_vcpu_load(vcpu, cpu);
 173	put_cpu();
 174}
 175EXPORT_SYMBOL_GPL(vcpu_load);
 176
 177void vcpu_put(struct kvm_vcpu *vcpu)
 178{
 179	preempt_disable();
 180	kvm_arch_vcpu_put(vcpu);
 181	preempt_notifier_unregister(&vcpu->preempt_notifier);
 182	__this_cpu_write(kvm_running_vcpu, NULL);
 183	preempt_enable();
 184}
 185EXPORT_SYMBOL_GPL(vcpu_put);
 186
 187/* TODO: merge with kvm_arch_vcpu_should_kick */
 188static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 189{
 190	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 191
 192	/*
 193	 * We need to wait for the VCPU to reenable interrupts and get out of
 194	 * READING_SHADOW_PAGE_TABLES mode.
 195	 */
 196	if (req & KVM_REQUEST_WAIT)
 197		return mode != OUTSIDE_GUEST_MODE;
 198
 199	/*
 200	 * Need to kick a running VCPU, but otherwise there is nothing to do.
 201	 */
 202	return mode == IN_GUEST_MODE;
 203}
 204
 205static void ack_kick(void *_completed)
 206{
 207}
 208
 209static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
 210{
 211	if (cpumask_empty(cpus))
 212		return false;
 213
 214	smp_call_function_many(cpus, ack_kick, NULL, wait);
 215	return true;
 216}
 217
 218static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
 219				  struct cpumask *tmp, int current_cpu)
 220{
 221	int cpu;
 222
 223	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
 224		__kvm_make_request(req, vcpu);
 225
 226	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 227		return;
 228
 229	/*
 230	 * Note, the vCPU could get migrated to a different pCPU at any point
 231	 * after kvm_request_needs_ipi(), which could result in sending an IPI
 232	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
 233	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
 234	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
 235	 * after this point is also OK, as the requirement is only that KVM wait
 236	 * for vCPUs that were reading SPTEs _before_ any changes were
 237	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
 238	 */
 239	if (kvm_request_needs_ipi(vcpu, req)) {
 240		cpu = READ_ONCE(vcpu->cpu);
 241		if (cpu != -1 && cpu != current_cpu)
 242			__cpumask_set_cpu(cpu, tmp);
 243	}
 244}
 245
 246bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
 247				 unsigned long *vcpu_bitmap)
 248{
 
 
 
 249	struct kvm_vcpu *vcpu;
 250	struct cpumask *cpus;
 251	int i, me;
 252	bool called;
 253
 254	me = get_cpu();
 255
 256	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
 257	cpumask_clear(cpus);
 258
 259	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
 260		vcpu = kvm_get_vcpu(kvm, i);
 261		if (!vcpu)
 262			continue;
 263		kvm_make_vcpu_request(vcpu, req, cpus, me);
 264	}
 265
 266	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
 267	put_cpu();
 268
 269	return called;
 270}
 271
 272bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 273{
 274	struct kvm_vcpu *vcpu;
 275	struct cpumask *cpus;
 276	unsigned long i;
 277	bool called;
 278	int me;
 279
 280	me = get_cpu();
 
 
 
 281
 282	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
 283	cpumask_clear(cpus);
 284
 285	kvm_for_each_vcpu(i, vcpu, kvm)
 286		kvm_make_vcpu_request(vcpu, req, cpus, me);
 287
 288	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
 
 
 
 
 
 
 289	put_cpu();
 290
 291	return called;
 292}
 293EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
 294
 295void kvm_flush_remote_tlbs(struct kvm *kvm)
 296{
 297	++kvm->stat.generic.remote_tlb_flush_requests;
 298
 299	/*
 300	 * We want to publish modifications to the page tables before reading
 301	 * mode. Pairs with a memory barrier in arch-specific code.
 302	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 303	 * and smp_mb in walk_shadow_page_lockless_begin/end.
 304	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 305	 *
 306	 * There is already an smp_mb__after_atomic() before
 307	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 308	 * barrier here.
 309	 */
 310	if (!kvm_arch_flush_remote_tlbs(kvm)
 311	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 312		++kvm->stat.generic.remote_tlb_flush;
 313}
 314EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 315
 316void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
 317{
 318	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
 319		return;
 320
 321	/*
 322	 * Fall back to a flushing entire TLBs if the architecture range-based
 323	 * TLB invalidation is unsupported or can't be performed for whatever
 324	 * reason.
 325	 */
 326	kvm_flush_remote_tlbs(kvm);
 327}
 328
 329void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
 330				   const struct kvm_memory_slot *memslot)
 331{
 332	/*
 333	 * All current use cases for flushing the TLBs for a specific memslot
 334	 * are related to dirty logging, and many do the TLB flush out of
 335	 * mmu_lock. The interaction between the various operations on memslot
 336	 * must be serialized by slots_locks to ensure the TLB flush from one
 337	 * operation is observed by any other operation on the same memslot.
 338	 */
 339	lockdep_assert_held(&kvm->slots_lock);
 340	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
 341}
 342
 343static void kvm_flush_shadow_all(struct kvm *kvm)
 344{
 345	kvm_arch_flush_shadow_all(kvm);
 346	kvm_arch_guest_memory_reclaimed(kvm);
 347}
 348
 349#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
 350static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
 351					       gfp_t gfp_flags)
 352{
 353	void *page;
 354
 355	gfp_flags |= mc->gfp_zero;
 356
 357	if (mc->kmem_cache)
 358		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
 359
 360	page = (void *)__get_free_page(gfp_flags);
 361	if (page && mc->init_value)
 362		memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
 363	return page;
 364}
 365
 366int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
 367{
 368	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
 369	void *obj;
 370
 371	if (mc->nobjs >= min)
 372		return 0;
 373
 374	if (unlikely(!mc->objects)) {
 375		if (WARN_ON_ONCE(!capacity))
 376			return -EIO;
 377
 378		/*
 379		 * Custom init values can be used only for page allocations,
 380		 * and obviously conflict with __GFP_ZERO.
 381		 */
 382		if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
 383			return -EIO;
 384
 385		mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
 386		if (!mc->objects)
 387			return -ENOMEM;
 388
 389		mc->capacity = capacity;
 390	}
 391
 392	/* It is illegal to request a different capacity across topups. */
 393	if (WARN_ON_ONCE(mc->capacity != capacity))
 394		return -EIO;
 395
 396	while (mc->nobjs < mc->capacity) {
 397		obj = mmu_memory_cache_alloc_obj(mc, gfp);
 398		if (!obj)
 399			return mc->nobjs >= min ? 0 : -ENOMEM;
 400		mc->objects[mc->nobjs++] = obj;
 401	}
 402	return 0;
 403}
 404
 405int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
 406{
 407	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
 408}
 409
 410int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
 411{
 412	return mc->nobjs;
 413}
 414
 415void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 416{
 417	while (mc->nobjs) {
 418		if (mc->kmem_cache)
 419			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
 420		else
 421			free_page((unsigned long)mc->objects[--mc->nobjs]);
 422	}
 423
 424	kvfree(mc->objects);
 425
 426	mc->objects = NULL;
 427	mc->capacity = 0;
 428}
 429
 430void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 431{
 432	void *p;
 433
 434	if (WARN_ON(!mc->nobjs))
 435		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
 436	else
 437		p = mc->objects[--mc->nobjs];
 438	BUG_ON(!p);
 439	return p;
 440}
 441#endif
 442
 443static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 444{
 445	mutex_init(&vcpu->mutex);
 446	vcpu->cpu = -1;
 447	vcpu->kvm = kvm;
 448	vcpu->vcpu_id = id;
 449	vcpu->pid = NULL;
 450	rwlock_init(&vcpu->pid_lock);
 451#ifndef __KVM_HAVE_ARCH_WQP
 452	rcuwait_init(&vcpu->wait);
 453#endif
 454	kvm_async_pf_vcpu_init(vcpu);
 455
 456	kvm_vcpu_set_in_spin_loop(vcpu, false);
 457	kvm_vcpu_set_dy_eligible(vcpu, false);
 458	vcpu->preempted = false;
 459	vcpu->ready = false;
 460	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
 461	vcpu->last_used_slot = NULL;
 
 
 
 
 
 462
 463	/* Fill the stats id string for the vcpu */
 464	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
 465		 task_pid_nr(current), id);
 
 466}
 
 467
 468static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
 469{
 470	kvm_arch_vcpu_destroy(vcpu);
 471	kvm_dirty_ring_free(&vcpu->dirty_ring);
 472
 473	/*
 474	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
 475	 * the vcpu->pid pointer, and at destruction time all file descriptors
 476	 * are already gone.
 477	 */
 478	put_pid(vcpu->pid);
 479
 480	free_page((unsigned long)vcpu->run);
 481	kmem_cache_free(kvm_vcpu_cache, vcpu);
 482}
 
 483
 484void kvm_destroy_vcpus(struct kvm *kvm)
 485{
 486	unsigned long i;
 487	struct kvm_vcpu *vcpu;
 488
 489	kvm_for_each_vcpu(i, vcpu, kvm) {
 490		kvm_vcpu_destroy(vcpu);
 491		xa_erase(&kvm->vcpu_array, i);
 492	}
 493
 494	atomic_set(&kvm->online_vcpus, 0);
 495}
 496EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
 497
 498#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
 499static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 500{
 501	return container_of(mn, struct kvm, mmu_notifier);
 502}
 503
 504typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
 
 
 
 
 
 505
 506typedef void (*on_lock_fn_t)(struct kvm *kvm);
 507
 508struct kvm_mmu_notifier_range {
 509	/*
 510	 * 64-bit addresses, as KVM notifiers can operate on host virtual
 511	 * addresses (unsigned long) and guest physical addresses (64-bit).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512	 */
 513	u64 start;
 514	u64 end;
 515	union kvm_mmu_notifier_arg arg;
 516	gfn_handler_t handler;
 517	on_lock_fn_t on_lock;
 518	bool flush_on_ret;
 519	bool may_block;
 520};
 521
 522/*
 523 * The inner-most helper returns a tuple containing the return value from the
 524 * arch- and action-specific handler, plus a flag indicating whether or not at
 525 * least one memslot was found, i.e. if the handler found guest memory.
 526 *
 527 * Note, most notifiers are averse to booleans, so even though KVM tracks the
 528 * return from arch code as a bool, outer helpers will cast it to an int. :-(
 529 */
 530typedef struct kvm_mmu_notifier_return {
 531	bool ret;
 532	bool found_memslot;
 533} kvm_mn_ret_t;
 534
 535/*
 536 * Use a dedicated stub instead of NULL to indicate that there is no callback
 537 * function/handler.  The compiler technically can't guarantee that a real
 538 * function will have a non-zero address, and so it will generate code to
 539 * check for !NULL, whereas comparing against a stub will be elided at compile
 540 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
 541 */
 542static void kvm_null_fn(void)
 543{
 544
 545}
 546#define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
 547
 548/* Iterate over each memslot intersecting [start, last] (inclusive) range */
 549#define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
 550	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
 551	     node;							     \
 552	     node = interval_tree_iter_next(node, start, last))	     \
 553
 554static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
 555							   const struct kvm_mmu_notifier_range *range)
 556{
 557	struct kvm_mmu_notifier_return r = {
 558		.ret = false,
 559		.found_memslot = false,
 560	};
 561	struct kvm_gfn_range gfn_range;
 562	struct kvm_memory_slot *slot;
 563	struct kvm_memslots *slots;
 564	int i, idx;
 565
 566	if (WARN_ON_ONCE(range->end <= range->start))
 567		return r;
 568
 569	/* A null handler is allowed if and only if on_lock() is provided. */
 570	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
 571			 IS_KVM_NULL_FN(range->handler)))
 572		return r;
 573
 574	idx = srcu_read_lock(&kvm->srcu);
 
 575
 576	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
 577		struct interval_tree_node *node;
 578
 579		slots = __kvm_memslots(kvm, i);
 580		kvm_for_each_memslot_in_hva_range(node, slots,
 581						  range->start, range->end - 1) {
 582			unsigned long hva_start, hva_end;
 583
 584			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
 585			hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
 586			hva_end = min_t(unsigned long, range->end,
 587					slot->userspace_addr + (slot->npages << PAGE_SHIFT));
 588
 589			/*
 590			 * To optimize for the likely case where the address
 591			 * range is covered by zero or one memslots, don't
 592			 * bother making these conditional (to avoid writes on
 593			 * the second or later invocation of the handler).
 594			 */
 595			gfn_range.arg = range->arg;
 596			gfn_range.may_block = range->may_block;
 597
 598			/*
 599			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
 600			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
 601			 */
 602			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
 603			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
 604			gfn_range.slot = slot;
 605
 606			if (!r.found_memslot) {
 607				r.found_memslot = true;
 608				KVM_MMU_LOCK(kvm);
 609				if (!IS_KVM_NULL_FN(range->on_lock))
 610					range->on_lock(kvm);
 611
 612				if (IS_KVM_NULL_FN(range->handler))
 613					goto mmu_unlock;
 614			}
 615			r.ret |= range->handler(kvm, &gfn_range);
 616		}
 617	}
 618
 619	if (range->flush_on_ret && r.ret)
 620		kvm_flush_remote_tlbs(kvm);
 621
 622mmu_unlock:
 623	if (r.found_memslot)
 624		KVM_MMU_UNLOCK(kvm);
 625
 626	srcu_read_unlock(&kvm->srcu, idx);
 627
 628	return r;
 629}
 630
 631static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
 632						unsigned long start,
 633						unsigned long end,
 634						gfn_handler_t handler,
 635						bool flush_on_ret)
 636{
 637	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 638	const struct kvm_mmu_notifier_range range = {
 639		.start		= start,
 640		.end		= end,
 641		.handler	= handler,
 642		.on_lock	= (void *)kvm_null_fn,
 643		.flush_on_ret	= flush_on_ret,
 644		.may_block	= false,
 645	};
 646
 647	return __kvm_handle_hva_range(kvm, &range).ret;
 
 
 
 
 
 648}
 649
 650static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
 651							 unsigned long start,
 652							 unsigned long end,
 653							 gfn_handler_t handler)
 654{
 655	return kvm_handle_hva_range(mn, start, end, handler, false);
 656}
 657
 658void kvm_mmu_invalidate_begin(struct kvm *kvm)
 659{
 660	lockdep_assert_held_write(&kvm->mmu_lock);
 661	/*
 662	 * The count increase must become visible at unlock time as no
 663	 * spte can be established without taking the mmu_lock and
 664	 * count is also read inside the mmu_lock critical section.
 665	 */
 666	kvm->mmu_invalidate_in_progress++;
 
 
 
 
 
 
 667
 668	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
 669		kvm->mmu_invalidate_range_start = INVALID_GPA;
 670		kvm->mmu_invalidate_range_end = INVALID_GPA;
 671	}
 672}
 673
 674void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
 675{
 676	lockdep_assert_held_write(&kvm->mmu_lock);
 677
 678	WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
 679
 680	if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
 681		kvm->mmu_invalidate_range_start = start;
 682		kvm->mmu_invalidate_range_end = end;
 683	} else {
 684		/*
 685		 * Fully tracking multiple concurrent ranges has diminishing
 686		 * returns. Keep things simple and just find the minimal range
 687		 * which includes the current and new ranges. As there won't be
 688		 * enough information to subtract a range after its invalidate
 689		 * completes, any ranges invalidated concurrently will
 690		 * accumulate and persist until all outstanding invalidates
 691		 * complete.
 692		 */
 693		kvm->mmu_invalidate_range_start =
 694			min(kvm->mmu_invalidate_range_start, start);
 695		kvm->mmu_invalidate_range_end =
 696			max(kvm->mmu_invalidate_range_end, end);
 697	}
 698}
 699
 700bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
 701{
 702	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
 703	return kvm_unmap_gfn_range(kvm, range);
 704}
 705
 706static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 707					const struct mmu_notifier_range *range)
 708{
 709	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 710	const struct kvm_mmu_notifier_range hva_range = {
 711		.start		= range->start,
 712		.end		= range->end,
 713		.handler	= kvm_mmu_unmap_gfn_range,
 714		.on_lock	= kvm_mmu_invalidate_begin,
 715		.flush_on_ret	= true,
 716		.may_block	= mmu_notifier_range_blockable(range),
 717	};
 718
 719	trace_kvm_unmap_hva_range(range->start, range->end);
 720
 721	/*
 722	 * Prevent memslot modification between range_start() and range_end()
 723	 * so that conditionally locking provides the same result in both
 724	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
 725	 * adjustments will be imbalanced.
 726	 *
 727	 * Pairs with the decrement in range_end().
 728	 */
 729	spin_lock(&kvm->mn_invalidate_lock);
 730	kvm->mn_active_invalidate_count++;
 731	spin_unlock(&kvm->mn_invalidate_lock);
 732
 733	/*
 734	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
 735	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
 736	 * each cache's lock.  There are relatively few caches in existence at
 737	 * any given time, and the caches themselves can check for hva overlap,
 738	 * i.e. don't need to rely on memslot overlap checks for performance.
 739	 * Because this runs without holding mmu_lock, the pfn caches must use
 740	 * mn_active_invalidate_count (see above) instead of
 741	 * mmu_invalidate_in_progress.
 742	 */
 743	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
 744
 745	/*
 746	 * If one or more memslots were found and thus zapped, notify arch code
 747	 * that guest memory has been reclaimed.  This needs to be done *after*
 748	 * dropping mmu_lock, as x86's reclaim path is slooooow.
 749	 */
 750	if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
 751		kvm_arch_guest_memory_reclaimed(kvm);
 752
 753	return 0;
 754}
 755
 756void kvm_mmu_invalidate_end(struct kvm *kvm)
 757{
 758	lockdep_assert_held_write(&kvm->mmu_lock);
 759
 
 760	/*
 761	 * This sequence increase will notify the kvm page fault that
 762	 * the page that is going to be mapped in the spte could have
 763	 * been freed.
 764	 */
 765	kvm->mmu_invalidate_seq++;
 766	smp_wmb();
 767	/*
 768	 * The above sequence increase must be visible before the
 769	 * below count decrease, which is ensured by the smp_wmb above
 770	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
 771	 */
 772	kvm->mmu_invalidate_in_progress--;
 773	KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
 774
 775	/*
 776	 * Assert that at least one range was added between start() and end().
 777	 * Not adding a range isn't fatal, but it is a KVM bug.
 778	 */
 779	WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
 780}
 781
 782static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 783					const struct mmu_notifier_range *range)
 
 784{
 785	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 786	const struct kvm_mmu_notifier_range hva_range = {
 787		.start		= range->start,
 788		.end		= range->end,
 789		.handler	= (void *)kvm_null_fn,
 790		.on_lock	= kvm_mmu_invalidate_end,
 791		.flush_on_ret	= false,
 792		.may_block	= mmu_notifier_range_blockable(range),
 793	};
 794	bool wake;
 795
 796	__kvm_handle_hva_range(kvm, &hva_range);
 
 797
 798	/* Pairs with the increment in range_start(). */
 799	spin_lock(&kvm->mn_invalidate_lock);
 800	if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
 801		--kvm->mn_active_invalidate_count;
 802	wake = !kvm->mn_active_invalidate_count;
 803	spin_unlock(&kvm->mn_invalidate_lock);
 804
 805	/*
 806	 * There can only be one waiter, since the wait happens under
 807	 * slots_lock.
 808	 */
 809	if (wake)
 810		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
 811}
 812
 813static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 814					      struct mm_struct *mm,
 815					      unsigned long start,
 816					      unsigned long end)
 817{
 818	trace_kvm_age_hva(start, end);
 819
 820	return kvm_handle_hva_range(mn, start, end, kvm_age_gfn,
 821				    !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
 822}
 823
 824static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 825					struct mm_struct *mm,
 826					unsigned long start,
 827					unsigned long end)
 828{
 829	trace_kvm_age_hva(start, end);
 830
 831	/*
 832	 * Even though we do not flush TLB, this will still adversely
 833	 * affect performance on pre-Haswell Intel EPT, where there is
 834	 * no EPT Access Bit to clear so that we have to tear down EPT
 835	 * tables instead. If we find this unacceptable, we can always
 836	 * add a parameter to kvm_age_hva so that it effectively doesn't
 837	 * do anything on clear_young.
 838	 *
 839	 * Also note that currently we never issue secondary TLB flushes
 840	 * from clear_young, leaving this job up to the regular system
 841	 * cadence. If we find this inaccurate, we might come up with a
 842	 * more sophisticated heuristic later.
 843	 */
 844	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
 845}
 846
 847static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 848				       struct mm_struct *mm,
 849				       unsigned long address)
 850{
 851	trace_kvm_test_age_hva(address);
 
 852
 853	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
 854					     kvm_test_age_gfn);
 
 
 
 
 
 855}
 856
 857static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 858				     struct mm_struct *mm)
 859{
 860	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 861	int idx;
 862
 863	idx = srcu_read_lock(&kvm->srcu);
 864	kvm_flush_shadow_all(kvm);
 865	srcu_read_unlock(&kvm->srcu, idx);
 866}
 867
 868static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 
 869	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
 870	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
 871	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
 872	.clear_young		= kvm_mmu_notifier_clear_young,
 873	.test_young		= kvm_mmu_notifier_test_young,
 
 874	.release		= kvm_mmu_notifier_release,
 875};
 876
 877static int kvm_init_mmu_notifier(struct kvm *kvm)
 878{
 879	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 880	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 881}
 882
 883#else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
 884
 885static int kvm_init_mmu_notifier(struct kvm *kvm)
 886{
 887	return 0;
 888}
 889
 890#endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
 891
 892#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
 893static int kvm_pm_notifier_call(struct notifier_block *bl,
 894				unsigned long state,
 895				void *unused)
 896{
 897	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
 898
 899	return kvm_arch_pm_notifier(kvm, state);
 900}
 901
 902static void kvm_init_pm_notifier(struct kvm *kvm)
 903{
 904	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
 905	/* Suspend KVM before we suspend ftrace, RCU, etc. */
 906	kvm->pm_notifier.priority = INT_MAX;
 907	register_pm_notifier(&kvm->pm_notifier);
 908}
 909
 910static void kvm_destroy_pm_notifier(struct kvm *kvm)
 911{
 912	unregister_pm_notifier(&kvm->pm_notifier);
 913}
 914#else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
 915static void kvm_init_pm_notifier(struct kvm *kvm)
 916{
 917}
 918
 919static void kvm_destroy_pm_notifier(struct kvm *kvm)
 920{
 921}
 922#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
 923
 924static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 925{
 926	if (!memslot->dirty_bitmap)
 927		return;
 928
 929	vfree(memslot->dirty_bitmap);
 930	memslot->dirty_bitmap = NULL;
 931}
 932
 933/* This does not remove the slot from struct kvm_memslots data structures */
 934static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
 935{
 936	if (slot->flags & KVM_MEM_GUEST_MEMFD)
 937		kvm_gmem_unbind(slot);
 938
 939	kvm_destroy_dirty_bitmap(slot);
 940
 941	kvm_arch_free_memslot(kvm, slot);
 942
 943	kfree(slot);
 944}
 945
 946static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 947{
 948	struct hlist_node *idnode;
 949	struct kvm_memory_slot *memslot;
 950	int bkt;
 951
 952	/*
 953	 * The same memslot objects live in both active and inactive sets,
 954	 * arbitrarily free using index '1' so the second invocation of this
 955	 * function isn't operating over a structure with dangling pointers
 956	 * (even though this function isn't actually touching them).
 957	 */
 958	if (!slots->node_idx)
 959		return;
 960
 961	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
 962		kvm_free_memslot(kvm, memslot);
 963}
 964
 965static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
 966{
 967	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
 968	case KVM_STATS_TYPE_INSTANT:
 969		return 0444;
 970	case KVM_STATS_TYPE_CUMULATIVE:
 971	case KVM_STATS_TYPE_PEAK:
 972	default:
 973		return 0644;
 974	}
 975}
 976
 977
 978static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 979{
 980	int i;
 981	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
 982				      kvm_vcpu_stats_header.num_desc;
 983
 984	if (IS_ERR(kvm->debugfs_dentry))
 985		return;
 986
 987	debugfs_remove_recursive(kvm->debugfs_dentry);
 988
 989	if (kvm->debugfs_stat_data) {
 990		for (i = 0; i < kvm_debugfs_num_entries; i++)
 991			kfree(kvm->debugfs_stat_data[i]);
 992		kfree(kvm->debugfs_stat_data);
 993	}
 994}
 995
 996static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
 997{
 998	static DEFINE_MUTEX(kvm_debugfs_lock);
 999	struct dentry *dent;
1000	char dir_name[ITOA_MAX_LEN * 2];
1001	struct kvm_stat_data *stat_data;
1002	const struct _kvm_stats_desc *pdesc;
1003	int i, ret = -ENOMEM;
1004	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1005				      kvm_vcpu_stats_header.num_desc;
1006
1007	if (!debugfs_initialized())
1008		return 0;
1009
1010	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1011	mutex_lock(&kvm_debugfs_lock);
1012	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1013	if (dent) {
1014		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1015		dput(dent);
1016		mutex_unlock(&kvm_debugfs_lock);
1017		return 0;
1018	}
1019	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1020	mutex_unlock(&kvm_debugfs_lock);
1021	if (IS_ERR(dent))
1022		return 0;
1023
1024	kvm->debugfs_dentry = dent;
1025	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1026					 sizeof(*kvm->debugfs_stat_data),
1027					 GFP_KERNEL_ACCOUNT);
1028	if (!kvm->debugfs_stat_data)
1029		goto out_err;
1030
1031	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1032		pdesc = &kvm_vm_stats_desc[i];
1033		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1034		if (!stat_data)
1035			goto out_err;
1036
1037		stat_data->kvm = kvm;
1038		stat_data->desc = pdesc;
1039		stat_data->kind = KVM_STAT_VM;
1040		kvm->debugfs_stat_data[i] = stat_data;
1041		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1042				    kvm->debugfs_dentry, stat_data,
1043				    &stat_fops_per_vm);
1044	}
1045
1046	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1047		pdesc = &kvm_vcpu_stats_desc[i];
1048		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1049		if (!stat_data)
1050			goto out_err;
1051
1052		stat_data->kvm = kvm;
1053		stat_data->desc = pdesc;
1054		stat_data->kind = KVM_STAT_VCPU;
1055		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1056		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1057				    kvm->debugfs_dentry, stat_data,
1058				    &stat_fops_per_vm);
1059	}
1060
1061	kvm_arch_create_vm_debugfs(kvm);
1062	return 0;
1063out_err:
1064	kvm_destroy_vm_debugfs(kvm);
1065	return ret;
1066}
1067
1068/*
1069 * Called after the VM is otherwise initialized, but just before adding it to
1070 * the vm_list.
1071 */
1072int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1073{
1074	return 0;
1075}
1076
1077/*
1078 * Called just after removing the VM from the vm_list, but before doing any
1079 * other destruction.
1080 */
1081void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1082{
1083}
1084
1085/*
1086 * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1087 * be setup already, so we can create arch-specific debugfs entries under it.
1088 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1089 * a per-arch destroy interface is not needed.
1090 */
1091void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1092{
1093}
1094
1095static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1096{
 
1097	struct kvm *kvm = kvm_arch_alloc_vm();
1098	struct kvm_memslots *slots;
1099	int r, i, j;
1100
1101	if (!kvm)
1102		return ERR_PTR(-ENOMEM);
1103
1104	KVM_MMU_LOCK_INIT(kvm);
1105	mmgrab(current->mm);
1106	kvm->mm = current->mm;
1107	kvm_eventfd_init(kvm);
1108	mutex_init(&kvm->lock);
1109	mutex_init(&kvm->irq_lock);
1110	mutex_init(&kvm->slots_lock);
1111	mutex_init(&kvm->slots_arch_lock);
1112	spin_lock_init(&kvm->mn_invalidate_lock);
1113	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1114	xa_init(&kvm->vcpu_array);
1115#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1116	xa_init(&kvm->mem_attr_array);
1117#endif
1118
1119	INIT_LIST_HEAD(&kvm->gpc_list);
1120	spin_lock_init(&kvm->gpc_lock);
 
1121
1122	INIT_LIST_HEAD(&kvm->devices);
1123	kvm->max_vcpus = KVM_MAX_VCPUS;
1124
1125	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1126
1127	/*
1128	 * Force subsequent debugfs file creations to fail if the VM directory
1129	 * is not created (by kvm_create_vm_debugfs()).
1130	 */
1131	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1132
1133	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1134		 task_pid_nr(current));
1135
1136	r = -ENOMEM;
 
 
 
 
1137	if (init_srcu_struct(&kvm->srcu))
1138		goto out_err_no_srcu;
1139	if (init_srcu_struct(&kvm->irq_srcu))
1140		goto out_err_no_irq_srcu;
1141
1142	r = kvm_init_irq_routing(kvm);
1143	if (r)
1144		goto out_err_no_irq_routing;
1145
1146	refcount_set(&kvm->users_count, 1);
1147
1148	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1149		for (j = 0; j < 2; j++) {
1150			slots = &kvm->__memslots[i][j];
1151
1152			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1153			slots->hva_tree = RB_ROOT_CACHED;
1154			slots->gfn_tree = RB_ROOT;
1155			hash_init(slots->id_hash);
1156			slots->node_idx = j;
1157
1158			/* Generations must be different for each address space. */
1159			slots->generation = i;
1160		}
1161
1162		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1163	}
1164
1165	r = -ENOMEM;
1166	for (i = 0; i < KVM_NR_BUSES; i++) {
1167		rcu_assign_pointer(kvm->buses[i],
1168			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1169		if (!kvm->buses[i])
1170			goto out_err_no_arch_destroy_vm;
1171	}
1172
1173	r = kvm_arch_init_vm(kvm, type);
1174	if (r)
1175		goto out_err_no_arch_destroy_vm;
1176
1177	r = kvm_enable_virtualization();
1178	if (r)
1179		goto out_err_no_disable;
1180
1181#ifdef CONFIG_HAVE_KVM_IRQCHIP
1182	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1183#endif
1184
1185	r = kvm_init_mmu_notifier(kvm);
1186	if (r)
1187		goto out_err_no_mmu_notifier;
1188
1189	r = kvm_coalesced_mmio_init(kvm);
1190	if (r < 0)
1191		goto out_no_coalesced_mmio;
1192
1193	r = kvm_create_vm_debugfs(kvm, fdname);
1194	if (r)
1195		goto out_err_no_debugfs;
1196
1197	r = kvm_arch_post_init_vm(kvm);
1198	if (r)
1199		goto out_err;
1200
1201	mutex_lock(&kvm_lock);
1202	list_add(&kvm->vm_list, &vm_list);
1203	mutex_unlock(&kvm_lock);
1204
1205	preempt_notifier_inc();
1206	kvm_init_pm_notifier(kvm);
1207
1208	return kvm;
1209
1210out_err:
1211	kvm_destroy_vm_debugfs(kvm);
1212out_err_no_debugfs:
1213	kvm_coalesced_mmio_free(kvm);
1214out_no_coalesced_mmio:
1215#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1216	if (kvm->mmu_notifier.ops)
1217		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1218#endif
1219out_err_no_mmu_notifier:
1220	kvm_disable_virtualization();
1221out_err_no_disable:
1222	kvm_arch_destroy_vm(kvm);
1223out_err_no_arch_destroy_vm:
1224	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1225	for (i = 0; i < KVM_NR_BUSES; i++)
1226		kfree(kvm_get_bus(kvm, i));
1227	kvm_free_irq_routing(kvm);
1228out_err_no_irq_routing:
1229	cleanup_srcu_struct(&kvm->irq_srcu);
1230out_err_no_irq_srcu:
1231	cleanup_srcu_struct(&kvm->srcu);
1232out_err_no_srcu:
1233	kvm_arch_free_vm(kvm);
1234	mmdrop(current->mm);
1235	return ERR_PTR(r);
1236}
1237
1238static void kvm_destroy_devices(struct kvm *kvm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239{
1240	struct kvm_device *dev, *tmp;
 
 
 
 
1241
1242	/*
1243	 * We do not need to take the kvm->lock here, because nobody else
1244	 * has a reference to the struct kvm at this point and therefore
1245	 * cannot access the devices list anyhow.
1246	 *
1247	 * The device list is generally managed as an rculist, but list_del()
1248	 * is used intentionally here. If a bug in KVM introduced a reader that
1249	 * was not backed by a reference on the kvm struct, the hope is that
1250	 * it'd consume the poisoned forward pointer instead of suffering a
1251	 * use-after-free, even though this cannot be guaranteed.
1252	 */
1253	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1254		list_del(&dev->vm_node);
1255		dev->ops->destroy(dev);
1256	}
1257}
1258
1259static void kvm_destroy_vm(struct kvm *kvm)
1260{
1261	int i;
1262	struct mm_struct *mm = kvm->mm;
1263
1264	kvm_destroy_pm_notifier(kvm);
1265	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1266	kvm_destroy_vm_debugfs(kvm);
1267	kvm_arch_sync_events(kvm);
1268	mutex_lock(&kvm_lock);
1269	list_del(&kvm->vm_list);
1270	mutex_unlock(&kvm_lock);
1271	kvm_arch_pre_destroy_vm(kvm);
1272
1273	kvm_free_irq_routing(kvm);
1274	for (i = 0; i < KVM_NR_BUSES; i++) {
1275		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1276
1277		if (bus)
1278			kvm_io_bus_destroy(bus);
1279		kvm->buses[i] = NULL;
1280	}
1281	kvm_coalesced_mmio_free(kvm);
1282#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1283	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1284	/*
1285	 * At this point, pending calls to invalidate_range_start()
1286	 * have completed but no more MMU notifiers will run, so
1287	 * mn_active_invalidate_count may remain unbalanced.
1288	 * No threads can be waiting in kvm_swap_active_memslots() as the
1289	 * last reference on KVM has been dropped, but freeing
1290	 * memslots would deadlock without this manual intervention.
1291	 *
1292	 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1293	 * notifier between a start() and end(), then there shouldn't be any
1294	 * in-progress invalidations.
1295	 */
1296	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1297	if (kvm->mn_active_invalidate_count)
1298		kvm->mn_active_invalidate_count = 0;
1299	else
1300		WARN_ON(kvm->mmu_invalidate_in_progress);
1301#else
1302	kvm_flush_shadow_all(kvm);
1303#endif
1304	kvm_arch_destroy_vm(kvm);
1305	kvm_destroy_devices(kvm);
1306	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1307		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1308		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1309	}
1310	cleanup_srcu_struct(&kvm->irq_srcu);
1311	cleanup_srcu_struct(&kvm->srcu);
1312#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1313	xa_destroy(&kvm->mem_attr_array);
1314#endif
1315	kvm_arch_free_vm(kvm);
1316	preempt_notifier_dec();
1317	kvm_disable_virtualization();
1318	mmdrop(mm);
1319}
1320
1321void kvm_get_kvm(struct kvm *kvm)
1322{
1323	refcount_inc(&kvm->users_count);
1324}
1325EXPORT_SYMBOL_GPL(kvm_get_kvm);
1326
1327/*
1328 * Make sure the vm is not during destruction, which is a safe version of
1329 * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1330 */
1331bool kvm_get_kvm_safe(struct kvm *kvm)
1332{
1333	return refcount_inc_not_zero(&kvm->users_count);
1334}
1335EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1336
1337void kvm_put_kvm(struct kvm *kvm)
1338{
1339	if (refcount_dec_and_test(&kvm->users_count))
1340		kvm_destroy_vm(kvm);
1341}
1342EXPORT_SYMBOL_GPL(kvm_put_kvm);
1343
1344/*
1345 * Used to put a reference that was taken on behalf of an object associated
1346 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1347 * of the new file descriptor fails and the reference cannot be transferred to
1348 * its final owner.  In such cases, the caller is still actively using @kvm and
1349 * will fail miserably if the refcount unexpectedly hits zero.
1350 */
1351void kvm_put_kvm_no_destroy(struct kvm *kvm)
1352{
1353	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1354}
1355EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1356
1357static int kvm_vm_release(struct inode *inode, struct file *filp)
1358{
1359	struct kvm *kvm = filp->private_data;
1360
1361	kvm_irqfd_release(kvm);
1362
1363	kvm_put_kvm(kvm);
1364	return 0;
1365}
1366
1367/*
1368 * Allocation size is twice as large as the actual dirty bitmap size.
1369 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1370 */
1371static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1372{
1373	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
 
 
 
 
 
 
1374
1375	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1376	if (!memslot->dirty_bitmap)
1377		return -ENOMEM;
1378
 
1379	return 0;
1380}
1381
1382static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1383{
1384	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1385	int node_idx_inactive = active->node_idx ^ 1;
1386
1387	return &kvm->__memslots[as_id][node_idx_inactive];
1388}
1389
1390/*
1391 * Helper to get the address space ID when one of memslot pointers may be NULL.
1392 * This also serves as a sanity that at least one of the pointers is non-NULL,
1393 * and that their address space IDs don't diverge.
1394 */
1395static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1396				  struct kvm_memory_slot *b)
1397{
1398	if (WARN_ON_ONCE(!a && !b))
1399		return 0;
1400
1401	if (!a)
1402		return b->as_id;
1403	if (!b)
1404		return a->as_id;
1405
1406	WARN_ON_ONCE(a->as_id != b->as_id);
1407	return a->as_id;
1408}
1409
1410static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1411				struct kvm_memory_slot *slot)
1412{
1413	struct rb_root *gfn_tree = &slots->gfn_tree;
1414	struct rb_node **node, *parent;
1415	int idx = slots->node_idx;
1416
1417	parent = NULL;
1418	for (node = &gfn_tree->rb_node; *node; ) {
1419		struct kvm_memory_slot *tmp;
1420
1421		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1422		parent = *node;
1423		if (slot->base_gfn < tmp->base_gfn)
1424			node = &(*node)->rb_left;
1425		else if (slot->base_gfn > tmp->base_gfn)
1426			node = &(*node)->rb_right;
1427		else
1428			BUG();
1429	}
1430
1431	rb_link_node(&slot->gfn_node[idx], parent, node);
1432	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1433}
1434
1435static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1436			       struct kvm_memory_slot *slot)
1437{
1438	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1439}
1440
1441static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1442				 struct kvm_memory_slot *old,
1443				 struct kvm_memory_slot *new)
1444{
1445	int idx = slots->node_idx;
1446
1447	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1448
1449	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1450			&slots->gfn_tree);
1451}
1452
1453/*
1454 * Replace @old with @new in the inactive memslots.
1455 *
1456 * With NULL @old this simply adds @new.
1457 * With NULL @new this simply removes @old.
1458 *
1459 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1460 * appropriately.
1461 */
1462static void kvm_replace_memslot(struct kvm *kvm,
1463				struct kvm_memory_slot *old,
1464				struct kvm_memory_slot *new)
1465{
1466	int as_id = kvm_memslots_get_as_id(old, new);
1467	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1468	int idx = slots->node_idx;
1469
1470	if (old) {
1471		hash_del(&old->id_node[idx]);
1472		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1473
1474		if ((long)old == atomic_long_read(&slots->last_used_slot))
1475			atomic_long_set(&slots->last_used_slot, (long)new);
1476
1477		if (!new) {
1478			kvm_erase_gfn_node(slots, old);
1479			return;
1480		}
1481	}
1482
1483	/*
1484	 * Initialize @new's hva range.  Do this even when replacing an @old
1485	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1486	 */
1487	new->hva_node[idx].start = new->userspace_addr;
1488	new->hva_node[idx].last = new->userspace_addr +
1489				  (new->npages << PAGE_SHIFT) - 1;
1490
1491	/*
1492	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1493	 * hva_node needs to be swapped with remove+insert even though hva can't
1494	 * change when replacing an existing slot.
1495	 */
1496	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1497	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1498
1499	/*
1500	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1501	 * switch the node in the gfn tree instead of removing the old and
1502	 * inserting the new as two separate operations. Replacement is a
1503	 * single O(1) operation versus two O(log(n)) operations for
1504	 * remove+insert.
1505	 */
1506	if (old && old->base_gfn == new->base_gfn) {
1507		kvm_replace_gfn_node(slots, old, new);
1508	} else {
1509		if (old)
1510			kvm_erase_gfn_node(slots, old);
1511		kvm_insert_gfn_node(slots, new);
1512	}
1513}
1514
1515/*
1516 * Flags that do not access any of the extra space of struct
1517 * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1518 * only allows these.
1519 */
1520#define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1521	(KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1522
1523static int check_memory_region_flags(struct kvm *kvm,
1524				     const struct kvm_userspace_memory_region2 *mem)
1525{
1526	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1527
1528	if (kvm_arch_has_private_mem(kvm))
1529		valid_flags |= KVM_MEM_GUEST_MEMFD;
1530
1531	/* Dirty logging private memory is not currently supported. */
1532	if (mem->flags & KVM_MEM_GUEST_MEMFD)
1533		valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1534
1535	/*
1536	 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1537	 * read-only memslots have emulated MMIO, not page fault, semantics,
1538	 * and KVM doesn't allow emulated MMIO for private memory.
1539	 */
1540	if (kvm_arch_has_readonly_mem(kvm) &&
1541	    !(mem->flags & KVM_MEM_GUEST_MEMFD))
1542		valid_flags |= KVM_MEM_READONLY;
1543
1544	if (mem->flags & ~valid_flags)
1545		return -EINVAL;
1546
1547	return 0;
1548}
1549
1550static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1551{
1552	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1553
1554	/* Grab the generation from the activate memslots. */
1555	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1556
1557	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1558	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1559
1560	/*
1561	 * Do not store the new memslots while there are invalidations in
1562	 * progress, otherwise the locking in invalidate_range_start and
1563	 * invalidate_range_end will be unbalanced.
1564	 */
1565	spin_lock(&kvm->mn_invalidate_lock);
1566	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1567	while (kvm->mn_active_invalidate_count) {
1568		set_current_state(TASK_UNINTERRUPTIBLE);
1569		spin_unlock(&kvm->mn_invalidate_lock);
1570		schedule();
1571		spin_lock(&kvm->mn_invalidate_lock);
1572	}
1573	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1574	rcu_assign_pointer(kvm->memslots[as_id], slots);
1575	spin_unlock(&kvm->mn_invalidate_lock);
1576
1577	/*
1578	 * Acquired in kvm_set_memslot. Must be released before synchronize
1579	 * SRCU below in order to avoid deadlock with another thread
1580	 * acquiring the slots_arch_lock in an srcu critical section.
1581	 */
1582	mutex_unlock(&kvm->slots_arch_lock);
1583
1584	synchronize_srcu_expedited(&kvm->srcu);
1585
1586	/*
1587	 * Increment the new memslot generation a second time, dropping the
1588	 * update in-progress flag and incrementing the generation based on
1589	 * the number of address spaces.  This provides a unique and easily
1590	 * identifiable generation number while the memslots are in flux.
1591	 */
1592	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1593
1594	/*
1595	 * Generations must be unique even across address spaces.  We do not need
1596	 * a global counter for that, instead the generation space is evenly split
1597	 * across address spaces.  For example, with two address spaces, address
1598	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1599	 * use generations 1, 3, 5, ...
1600	 */
1601	gen += kvm_arch_nr_memslot_as_ids(kvm);
1602
1603	kvm_arch_memslots_updated(kvm, gen);
1604
1605	slots->generation = gen;
1606}
1607
1608static int kvm_prepare_memory_region(struct kvm *kvm,
1609				     const struct kvm_memory_slot *old,
1610				     struct kvm_memory_slot *new,
1611				     enum kvm_mr_change change)
1612{
1613	int r;
1614
1615	/*
1616	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1617	 * will be freed on "commit".  If logging is enabled in both old and
1618	 * new, reuse the existing bitmap.  If logging is enabled only in the
1619	 * new and KVM isn't using a ring buffer, allocate and initialize a
1620	 * new bitmap.
1621	 */
1622	if (change != KVM_MR_DELETE) {
1623		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1624			new->dirty_bitmap = NULL;
1625		else if (old && old->dirty_bitmap)
1626			new->dirty_bitmap = old->dirty_bitmap;
1627		else if (kvm_use_dirty_bitmap(kvm)) {
1628			r = kvm_alloc_dirty_bitmap(new);
1629			if (r)
1630				return r;
1631
1632			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1633				bitmap_set(new->dirty_bitmap, 0, new->npages);
1634		}
1635	}
1636
1637	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1638
1639	/* Free the bitmap on failure if it was allocated above. */
1640	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1641		kvm_destroy_dirty_bitmap(new);
1642
1643	return r;
1644}
1645
1646static void kvm_commit_memory_region(struct kvm *kvm,
1647				     struct kvm_memory_slot *old,
1648				     const struct kvm_memory_slot *new,
1649				     enum kvm_mr_change change)
1650{
1651	int old_flags = old ? old->flags : 0;
1652	int new_flags = new ? new->flags : 0;
1653	/*
1654	 * Update the total number of memslot pages before calling the arch
1655	 * hook so that architectures can consume the result directly.
1656	 */
1657	if (change == KVM_MR_DELETE)
1658		kvm->nr_memslot_pages -= old->npages;
1659	else if (change == KVM_MR_CREATE)
1660		kvm->nr_memslot_pages += new->npages;
1661
1662	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1663		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1664		atomic_set(&kvm->nr_memslots_dirty_logging,
1665			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1666	}
1667
1668	kvm_arch_commit_memory_region(kvm, old, new, change);
1669
1670	switch (change) {
1671	case KVM_MR_CREATE:
1672		/* Nothing more to do. */
1673		break;
1674	case KVM_MR_DELETE:
1675		/* Free the old memslot and all its metadata. */
1676		kvm_free_memslot(kvm, old);
1677		break;
1678	case KVM_MR_MOVE:
1679	case KVM_MR_FLAGS_ONLY:
1680		/*
1681		 * Free the dirty bitmap as needed; the below check encompasses
1682		 * both the flags and whether a ring buffer is being used)
1683		 */
1684		if (old->dirty_bitmap && !new->dirty_bitmap)
1685			kvm_destroy_dirty_bitmap(old);
1686
1687		/*
1688		 * The final quirk.  Free the detached, old slot, but only its
1689		 * memory, not any metadata.  Metadata, including arch specific
1690		 * data, may be reused by @new.
1691		 */
1692		kfree(old);
1693		break;
1694	default:
1695		BUG();
1696	}
1697}
1698
1699/*
1700 * Activate @new, which must be installed in the inactive slots by the caller,
1701 * by swapping the active slots and then propagating @new to @old once @old is
1702 * unreachable and can be safely modified.
1703 *
1704 * With NULL @old this simply adds @new to @active (while swapping the sets).
1705 * With NULL @new this simply removes @old from @active and frees it
1706 * (while also swapping the sets).
1707 */
1708static void kvm_activate_memslot(struct kvm *kvm,
1709				 struct kvm_memory_slot *old,
1710				 struct kvm_memory_slot *new)
1711{
1712	int as_id = kvm_memslots_get_as_id(old, new);
1713
1714	kvm_swap_active_memslots(kvm, as_id);
1715
1716	/* Propagate the new memslot to the now inactive memslots. */
1717	kvm_replace_memslot(kvm, old, new);
1718}
1719
1720static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1721			     const struct kvm_memory_slot *src)
1722{
1723	dest->base_gfn = src->base_gfn;
1724	dest->npages = src->npages;
1725	dest->dirty_bitmap = src->dirty_bitmap;
1726	dest->arch = src->arch;
1727	dest->userspace_addr = src->userspace_addr;
1728	dest->flags = src->flags;
1729	dest->id = src->id;
1730	dest->as_id = src->as_id;
1731}
1732
1733static void kvm_invalidate_memslot(struct kvm *kvm,
1734				   struct kvm_memory_slot *old,
1735				   struct kvm_memory_slot *invalid_slot)
1736{
1737	/*
1738	 * Mark the current slot INVALID.  As with all memslot modifications,
1739	 * this must be done on an unreachable slot to avoid modifying the
1740	 * current slot in the active tree.
1741	 */
1742	kvm_copy_memslot(invalid_slot, old);
1743	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1744	kvm_replace_memslot(kvm, old, invalid_slot);
1745
1746	/*
1747	 * Activate the slot that is now marked INVALID, but don't propagate
1748	 * the slot to the now inactive slots. The slot is either going to be
1749	 * deleted or recreated as a new slot.
1750	 */
1751	kvm_swap_active_memslots(kvm, old->as_id);
1752
1753	/*
1754	 * From this point no new shadow pages pointing to a deleted, or moved,
1755	 * memslot will be created.  Validation of sp->gfn happens in:
1756	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1757	 *	- kvm_is_visible_gfn (mmu_check_root)
1758	 */
1759	kvm_arch_flush_shadow_memslot(kvm, old);
1760	kvm_arch_guest_memory_reclaimed(kvm);
1761
1762	/* Was released by kvm_swap_active_memslots(), reacquire. */
1763	mutex_lock(&kvm->slots_arch_lock);
1764
1765	/*
1766	 * Copy the arch-specific field of the newly-installed slot back to the
1767	 * old slot as the arch data could have changed between releasing
1768	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1769	 * above.  Writers are required to retrieve memslots *after* acquiring
1770	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1771	 */
1772	old->arch = invalid_slot->arch;
1773}
1774
1775static void kvm_create_memslot(struct kvm *kvm,
1776			       struct kvm_memory_slot *new)
1777{
1778	/* Add the new memslot to the inactive set and activate. */
1779	kvm_replace_memslot(kvm, NULL, new);
1780	kvm_activate_memslot(kvm, NULL, new);
1781}
1782
1783static void kvm_delete_memslot(struct kvm *kvm,
1784			       struct kvm_memory_slot *old,
1785			       struct kvm_memory_slot *invalid_slot)
1786{
1787	/*
1788	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1789	 * the "new" slot, and for the invalid version in the active slots.
1790	 */
1791	kvm_replace_memslot(kvm, old, NULL);
1792	kvm_activate_memslot(kvm, invalid_slot, NULL);
1793}
1794
1795static void kvm_move_memslot(struct kvm *kvm,
1796			     struct kvm_memory_slot *old,
1797			     struct kvm_memory_slot *new,
1798			     struct kvm_memory_slot *invalid_slot)
1799{
1800	/*
1801	 * Replace the old memslot in the inactive slots, and then swap slots
1802	 * and replace the current INVALID with the new as well.
1803	 */
1804	kvm_replace_memslot(kvm, old, new);
1805	kvm_activate_memslot(kvm, invalid_slot, new);
1806}
1807
1808static void kvm_update_flags_memslot(struct kvm *kvm,
1809				     struct kvm_memory_slot *old,
1810				     struct kvm_memory_slot *new)
1811{
1812	/*
1813	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1814	 * an intermediate step. Instead, the old memslot is simply replaced
1815	 * with a new, updated copy in both memslot sets.
1816	 */
1817	kvm_replace_memslot(kvm, old, new);
1818	kvm_activate_memslot(kvm, old, new);
1819}
1820
1821static int kvm_set_memslot(struct kvm *kvm,
1822			   struct kvm_memory_slot *old,
1823			   struct kvm_memory_slot *new,
1824			   enum kvm_mr_change change)
1825{
1826	struct kvm_memory_slot *invalid_slot;
1827	int r;
1828
1829	/*
1830	 * Released in kvm_swap_active_memslots().
1831	 *
1832	 * Must be held from before the current memslots are copied until after
1833	 * the new memslots are installed with rcu_assign_pointer, then
1834	 * released before the synchronize srcu in kvm_swap_active_memslots().
1835	 *
1836	 * When modifying memslots outside of the slots_lock, must be held
1837	 * before reading the pointer to the current memslots until after all
1838	 * changes to those memslots are complete.
1839	 *
1840	 * These rules ensure that installing new memslots does not lose
1841	 * changes made to the previous memslots.
1842	 */
1843	mutex_lock(&kvm->slots_arch_lock);
1844
1845	/*
1846	 * Invalidate the old slot if it's being deleted or moved.  This is
1847	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1848	 * continue running by ensuring there are no mappings or shadow pages
1849	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1850	 * (and without a lock), a window would exist between effecting the
1851	 * delete/move and committing the changes in arch code where KVM or a
1852	 * guest could access a non-existent memslot.
1853	 *
1854	 * Modifications are done on a temporary, unreachable slot.  The old
1855	 * slot needs to be preserved in case a later step fails and the
1856	 * invalidation needs to be reverted.
1857	 */
1858	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1859		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1860		if (!invalid_slot) {
1861			mutex_unlock(&kvm->slots_arch_lock);
1862			return -ENOMEM;
1863		}
1864		kvm_invalidate_memslot(kvm, old, invalid_slot);
1865	}
1866
1867	r = kvm_prepare_memory_region(kvm, old, new, change);
1868	if (r) {
1869		/*
1870		 * For DELETE/MOVE, revert the above INVALID change.  No
1871		 * modifications required since the original slot was preserved
1872		 * in the inactive slots.  Changing the active memslots also
1873		 * release slots_arch_lock.
1874		 */
1875		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1876			kvm_activate_memslot(kvm, invalid_slot, old);
1877			kfree(invalid_slot);
1878		} else {
1879			mutex_unlock(&kvm->slots_arch_lock);
1880		}
1881		return r;
1882	}
1883
1884	/*
1885	 * For DELETE and MOVE, the working slot is now active as the INVALID
1886	 * version of the old slot.  MOVE is particularly special as it reuses
1887	 * the old slot and returns a copy of the old slot (in working_slot).
1888	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1889	 * old slot is detached but otherwise preserved.
1890	 */
1891	if (change == KVM_MR_CREATE)
1892		kvm_create_memslot(kvm, new);
1893	else if (change == KVM_MR_DELETE)
1894		kvm_delete_memslot(kvm, old, invalid_slot);
1895	else if (change == KVM_MR_MOVE)
1896		kvm_move_memslot(kvm, old, new, invalid_slot);
1897	else if (change == KVM_MR_FLAGS_ONLY)
1898		kvm_update_flags_memslot(kvm, old, new);
1899	else
1900		BUG();
1901
1902	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1903	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1904		kfree(invalid_slot);
1905
1906	/*
1907	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1908	 * will directly hit the final, active memslot.  Architectures are
1909	 * responsible for knowing that new->arch may be stale.
1910	 */
1911	kvm_commit_memory_region(kvm, old, new, change);
1912
1913	return 0;
1914}
1915
1916static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1917				      gfn_t start, gfn_t end)
1918{
1919	struct kvm_memslot_iter iter;
1920
1921	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1922		if (iter.slot->id != id)
1923			return true;
1924	}
1925
1926	return false;
1927}
1928
1929/*
1930 * Allocate some memory and give it an address in the guest physical address
1931 * space.
1932 *
1933 * Discontiguous memory is allowed, mostly for framebuffers.
1934 *
1935 * Must be called holding kvm->slots_lock for write.
1936 */
1937int __kvm_set_memory_region(struct kvm *kvm,
1938			    const struct kvm_userspace_memory_region2 *mem)
 
1939{
1940	struct kvm_memory_slot *old, *new;
1941	struct kvm_memslots *slots;
1942	enum kvm_mr_change change;
1943	unsigned long npages;
1944	gfn_t base_gfn;
1945	int as_id, id;
1946	int r;
1947
1948	r = check_memory_region_flags(kvm, mem);
1949	if (r)
1950		return r;
1951
1952	as_id = mem->slot >> 16;
1953	id = (u16)mem->slot;
1954
 
1955	/* General sanity checks */
1956	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1957	    (mem->memory_size != (unsigned long)mem->memory_size))
1958		return -EINVAL;
1959	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1960		return -EINVAL;
1961	/* We can read the guest memory with __xxx_user() later on. */
1962	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1963	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1964	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1965			mem->memory_size))
1966		return -EINVAL;
1967	if (mem->flags & KVM_MEM_GUEST_MEMFD &&
1968	    (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
1969	     mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
1970		return -EINVAL;
1971	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
1972		return -EINVAL;
1973	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1974		return -EINVAL;
1975	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1976		return -EINVAL;
 
 
1977
1978	slots = __kvm_memslots(kvm, as_id);
 
 
1979
1980	/*
1981	 * Note, the old memslot (and the pointer itself!) may be invalidated
1982	 * and/or destroyed by kvm_set_memslot().
1983	 */
1984	old = id_to_memslot(slots, id);
1985
1986	if (!mem->memory_size) {
1987		if (!old || !old->npages)
1988			return -EINVAL;
1989
1990		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1991			return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
1992
1993		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
 
 
 
 
1994	}
1995
1996	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1997	npages = (mem->memory_size >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1998
1999	if (!old || !old->npages) {
2000		change = KVM_MR_CREATE;
2001
2002		/*
2003		 * To simplify KVM internals, the total number of pages across
2004		 * all memslots must fit in an unsigned long.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2005		 */
2006		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2007			return -EINVAL;
2008	} else { /* Modify an existing slot. */
2009		/* Private memslots are immutable, they can only be deleted. */
2010		if (mem->flags & KVM_MEM_GUEST_MEMFD)
2011			return -EINVAL;
2012		if ((mem->userspace_addr != old->userspace_addr) ||
2013		    (npages != old->npages) ||
2014		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2015			return -EINVAL;
2016
2017		if (base_gfn != old->base_gfn)
2018			change = KVM_MR_MOVE;
2019		else if (mem->flags != old->flags)
2020			change = KVM_MR_FLAGS_ONLY;
2021		else /* Nothing to change. */
2022			return 0;
2023	}
2024
2025	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2026	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2027		return -EEXIST;
2028
2029	/* Allocate a slot that will persist in the memslot. */
2030	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2031	if (!new)
2032		return -ENOMEM;
2033
2034	new->as_id = as_id;
2035	new->id = id;
2036	new->base_gfn = base_gfn;
2037	new->npages = npages;
2038	new->flags = mem->flags;
2039	new->userspace_addr = mem->userspace_addr;
2040	if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2041		r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2042		if (r)
2043			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044	}
2045
2046	r = kvm_set_memslot(kvm, old, new, change);
2047	if (r)
2048		goto out_unbind;
 
 
 
 
 
 
 
 
 
 
 
 
 
2049
2050	return 0;
2051
2052out_unbind:
2053	if (mem->flags & KVM_MEM_GUEST_MEMFD)
2054		kvm_gmem_unbind(new);
2055out:
2056	kfree(new);
2057	return r;
 
2058}
2059EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2060
2061int kvm_set_memory_region(struct kvm *kvm,
2062			  const struct kvm_userspace_memory_region2 *mem)
 
2063{
2064	int r;
2065
2066	mutex_lock(&kvm->slots_lock);
2067	r = __kvm_set_memory_region(kvm, mem);
2068	mutex_unlock(&kvm->slots_lock);
2069	return r;
2070}
2071EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2072
2073static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2074					  struct kvm_userspace_memory_region2 *mem)
 
 
2075{
2076	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2077		return -EINVAL;
2078
2079	return kvm_set_memory_region(kvm, mem);
2080}
2081
2082#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2083/**
2084 * kvm_get_dirty_log - get a snapshot of dirty pages
2085 * @kvm:	pointer to kvm instance
2086 * @log:	slot id and address to which we copy the log
2087 * @is_dirty:	set to '1' if any dirty pages were found
2088 * @memslot:	set to the associated memslot, always valid on success
2089 */
2090int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2091		      int *is_dirty, struct kvm_memory_slot **memslot)
2092{
2093	struct kvm_memslots *slots;
2094	int i, as_id, id;
2095	unsigned long n;
2096	unsigned long any = 0;
2097
2098	/* Dirty ring tracking may be exclusive to dirty log tracking */
2099	if (!kvm_use_dirty_bitmap(kvm))
2100		return -ENXIO;
2101
2102	*memslot = NULL;
2103	*is_dirty = 0;
2104
2105	as_id = log->slot >> 16;
2106	id = (u16)log->slot;
2107	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2108		return -EINVAL;
2109
2110	slots = __kvm_memslots(kvm, as_id);
2111	*memslot = id_to_memslot(slots, id);
2112	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2113		return -ENOENT;
2114
2115	kvm_arch_sync_dirty_log(kvm, *memslot);
2116
2117	n = kvm_dirty_bitmap_bytes(*memslot);
2118
2119	for (i = 0; !any && i < n/sizeof(long); ++i)
2120		any = (*memslot)->dirty_bitmap[i];
2121
2122	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2123		return -EFAULT;
 
2124
2125	if (any)
2126		*is_dirty = 1;
2127	return 0;
 
 
 
2128}
2129EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2130
2131#else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2132/**
2133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2134 *	and reenable dirty page tracking for the corresponding pages.
2135 * @kvm:	pointer to kvm instance
2136 * @log:	slot id and address to which we copy the log
2137 *
2138 * We need to keep it in mind that VCPU threads can write to the bitmap
2139 * concurrently. So, to avoid losing track of dirty pages we keep the
2140 * following order:
2141 *
2142 *    1. Take a snapshot of the bit and clear it if needed.
2143 *    2. Write protect the corresponding page.
2144 *    3. Copy the snapshot to the userspace.
2145 *    4. Upon return caller flushes TLB's if needed.
2146 *
2147 * Between 2 and 4, the guest may write to the page using the remaining TLB
2148 * entry.  This is not a problem because the page is reported dirty using
2149 * the snapshot taken before and step 4 ensures that writes done after
2150 * exiting to userspace will be logged for the next call.
2151 *
2152 */
2153static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2154{
2155	struct kvm_memslots *slots;
2156	struct kvm_memory_slot *memslot;
2157	int i, as_id, id;
2158	unsigned long n;
2159	unsigned long *dirty_bitmap;
2160	unsigned long *dirty_bitmap_buffer;
2161	bool flush;
2162
2163	/* Dirty ring tracking may be exclusive to dirty log tracking */
2164	if (!kvm_use_dirty_bitmap(kvm))
2165		return -ENXIO;
2166
2167	as_id = log->slot >> 16;
2168	id = (u16)log->slot;
2169	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2170		return -EINVAL;
2171
2172	slots = __kvm_memslots(kvm, as_id);
2173	memslot = id_to_memslot(slots, id);
2174	if (!memslot || !memslot->dirty_bitmap)
2175		return -ENOENT;
2176
2177	dirty_bitmap = memslot->dirty_bitmap;
2178
2179	kvm_arch_sync_dirty_log(kvm, memslot);
2180
2181	n = kvm_dirty_bitmap_bytes(memslot);
2182	flush = false;
2183	if (kvm->manual_dirty_log_protect) {
2184		/*
2185		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2186		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2187		 * is some code duplication between this function and
2188		 * kvm_get_dirty_log, but hopefully all architecture
2189		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2190		 * can be eliminated.
2191		 */
2192		dirty_bitmap_buffer = dirty_bitmap;
2193	} else {
2194		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2195		memset(dirty_bitmap_buffer, 0, n);
2196
2197		KVM_MMU_LOCK(kvm);
2198		for (i = 0; i < n / sizeof(long); i++) {
2199			unsigned long mask;
2200			gfn_t offset;
2201
2202			if (!dirty_bitmap[i])
2203				continue;
2204
2205			flush = true;
2206			mask = xchg(&dirty_bitmap[i], 0);
2207			dirty_bitmap_buffer[i] = mask;
2208
2209			offset = i * BITS_PER_LONG;
2210			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2211								offset, mask);
2212		}
2213		KVM_MMU_UNLOCK(kvm);
2214	}
2215
2216	if (flush)
2217		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2218
2219	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2220		return -EFAULT;
2221	return 0;
2222}
 
2223
2224
2225/**
2226 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2227 * @kvm: kvm instance
2228 * @log: slot id and address to which we copy the log
2229 *
2230 * Steps 1-4 below provide general overview of dirty page logging. See
2231 * kvm_get_dirty_log_protect() function description for additional details.
2232 *
2233 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2234 * always flush the TLB (step 4) even if previous step failed  and the dirty
2235 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2236 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2237 * writes will be marked dirty for next log read.
2238 *
2239 *   1. Take a snapshot of the bit and clear it if needed.
2240 *   2. Write protect the corresponding page.
2241 *   3. Copy the snapshot to the userspace.
2242 *   4. Flush TLB's if needed.
2243 */
2244static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2245				      struct kvm_dirty_log *log)
2246{
2247	int r;
2248
2249	mutex_lock(&kvm->slots_lock);
2250
2251	r = kvm_get_dirty_log_protect(kvm, log);
2252
2253	mutex_unlock(&kvm->slots_lock);
2254	return r;
2255}
 
2256
2257/**
2258 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2259 *	and reenable dirty page tracking for the corresponding pages.
2260 * @kvm:	pointer to kvm instance
2261 * @log:	slot id and address from which to fetch the bitmap of dirty pages
2262 */
2263static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2264				       struct kvm_clear_dirty_log *log)
2265{
2266	struct kvm_memslots *slots;
2267	struct kvm_memory_slot *memslot;
2268	int as_id, id;
2269	gfn_t offset;
2270	unsigned long i, n;
2271	unsigned long *dirty_bitmap;
2272	unsigned long *dirty_bitmap_buffer;
2273	bool flush;
2274
2275	/* Dirty ring tracking may be exclusive to dirty log tracking */
2276	if (!kvm_use_dirty_bitmap(kvm))
2277		return -ENXIO;
2278
2279	as_id = log->slot >> 16;
2280	id = (u16)log->slot;
2281	if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2282		return -EINVAL;
2283
2284	if (log->first_page & 63)
2285		return -EINVAL;
2286
2287	slots = __kvm_memslots(kvm, as_id);
2288	memslot = id_to_memslot(slots, id);
2289	if (!memslot || !memslot->dirty_bitmap)
2290		return -ENOENT;
2291
2292	dirty_bitmap = memslot->dirty_bitmap;
2293
2294	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2295
2296	if (log->first_page > memslot->npages ||
2297	    log->num_pages > memslot->npages - log->first_page ||
2298	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2299	    return -EINVAL;
2300
2301	kvm_arch_sync_dirty_log(kvm, memslot);
2302
2303	flush = false;
2304	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2305	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2306		return -EFAULT;
2307
2308	KVM_MMU_LOCK(kvm);
2309	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2310		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2311	     i++, offset += BITS_PER_LONG) {
2312		unsigned long mask = *dirty_bitmap_buffer++;
2313		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2314		if (!mask)
2315			continue;
2316
2317		mask &= atomic_long_fetch_andnot(mask, p);
2318
2319		/*
2320		 * mask contains the bits that really have been cleared.  This
2321		 * never includes any bits beyond the length of the memslot (if
2322		 * the length is not aligned to 64 pages), therefore it is not
2323		 * a problem if userspace sets them in log->dirty_bitmap.
2324		*/
2325		if (mask) {
2326			flush = true;
2327			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2328								offset, mask);
2329		}
2330	}
2331	KVM_MMU_UNLOCK(kvm);
2332
2333	if (flush)
2334		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2335
2336	return 0;
2337}
 
2338
2339static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2340					struct kvm_clear_dirty_log *log)
2341{
2342	int r;
2343
2344	mutex_lock(&kvm->slots_lock);
2345
2346	r = kvm_clear_dirty_log_protect(kvm, log);
2347
2348	mutex_unlock(&kvm->slots_lock);
2349	return r;
2350}
2351#endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2352
2353#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2354static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2355{
2356	if (!kvm || kvm_arch_has_private_mem(kvm))
2357		return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2358
2359	return 0;
2360}
 
2361
2362/*
2363 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2364 * such that the bits in @mask match @attrs.
2365 */
2366bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2367				     unsigned long mask, unsigned long attrs)
2368{
2369	XA_STATE(xas, &kvm->mem_attr_array, start);
2370	unsigned long index;
2371	void *entry;
2372
2373	mask &= kvm_supported_mem_attributes(kvm);
2374	if (attrs & ~mask)
2375		return false;
2376
2377	if (end == start + 1)
2378		return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2379
2380	guard(rcu)();
2381	if (!attrs)
2382		return !xas_find(&xas, end - 1);
2383
2384	for (index = start; index < end; index++) {
2385		do {
2386			entry = xas_next(&xas);
2387		} while (xas_retry(&xas, entry));
2388
2389		if (xas.xa_index != index ||
2390		    (xa_to_value(entry) & mask) != attrs)
2391			return false;
2392	}
2393
2394	return true;
2395}
 
2396
2397static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2398						 struct kvm_mmu_notifier_range *range)
2399{
2400	struct kvm_gfn_range gfn_range;
2401	struct kvm_memory_slot *slot;
2402	struct kvm_memslots *slots;
2403	struct kvm_memslot_iter iter;
2404	bool found_memslot = false;
2405	bool ret = false;
2406	int i;
2407
2408	gfn_range.arg = range->arg;
2409	gfn_range.may_block = range->may_block;
2410
2411	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2412		slots = __kvm_memslots(kvm, i);
2413
2414		kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2415			slot = iter.slot;
2416			gfn_range.slot = slot;
2417
2418			gfn_range.start = max(range->start, slot->base_gfn);
2419			gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2420			if (gfn_range.start >= gfn_range.end)
2421				continue;
2422
2423			if (!found_memslot) {
2424				found_memslot = true;
2425				KVM_MMU_LOCK(kvm);
2426				if (!IS_KVM_NULL_FN(range->on_lock))
2427					range->on_lock(kvm);
2428			}
2429
2430			ret |= range->handler(kvm, &gfn_range);
2431		}
2432	}
2433
2434	if (range->flush_on_ret && ret)
2435		kvm_flush_remote_tlbs(kvm);
2436
2437	if (found_memslot)
2438		KVM_MMU_UNLOCK(kvm);
2439}
 
2440
2441static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2442					  struct kvm_gfn_range *range)
2443{
2444	/*
2445	 * Unconditionally add the range to the invalidation set, regardless of
2446	 * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2447	 * if KVM supports RWX attributes in the future and the attributes are
2448	 * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2449	 * adding the range allows KVM to require that MMU invalidations add at
2450	 * least one range between begin() and end(), e.g. allows KVM to detect
2451	 * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2452	 * but it's not obvious that allowing new mappings while the attributes
2453	 * are in flux is desirable or worth the complexity.
2454	 */
2455	kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2456
2457	return kvm_arch_pre_set_memory_attributes(kvm, range);
2458}
2459
2460/* Set @attributes for the gfn range [@start, @end). */
2461static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2462				     unsigned long attributes)
2463{
2464	struct kvm_mmu_notifier_range pre_set_range = {
2465		.start = start,
2466		.end = end,
2467		.handler = kvm_pre_set_memory_attributes,
2468		.on_lock = kvm_mmu_invalidate_begin,
2469		.flush_on_ret = true,
2470		.may_block = true,
2471	};
2472	struct kvm_mmu_notifier_range post_set_range = {
2473		.start = start,
2474		.end = end,
2475		.arg.attributes = attributes,
2476		.handler = kvm_arch_post_set_memory_attributes,
2477		.on_lock = kvm_mmu_invalidate_end,
2478		.may_block = true,
2479	};
2480	unsigned long i;
2481	void *entry;
2482	int r = 0;
2483
2484	entry = attributes ? xa_mk_value(attributes) : NULL;
2485
2486	mutex_lock(&kvm->slots_lock);
2487
2488	/* Nothing to do if the entire range as the desired attributes. */
2489	if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2490		goto out_unlock;
2491
2492	/*
2493	 * Reserve memory ahead of time to avoid having to deal with failures
2494	 * partway through setting the new attributes.
2495	 */
2496	for (i = start; i < end; i++) {
2497		r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2498		if (r)
2499			goto out_unlock;
2500	}
2501
2502	kvm_handle_gfn_range(kvm, &pre_set_range);
2503
2504	for (i = start; i < end; i++) {
2505		r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2506				    GFP_KERNEL_ACCOUNT));
2507		KVM_BUG_ON(r, kvm);
2508	}
2509
2510	kvm_handle_gfn_range(kvm, &post_set_range);
2511
2512out_unlock:
2513	mutex_unlock(&kvm->slots_lock);
2514
2515	return r;
2516}
2517static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2518					   struct kvm_memory_attributes *attrs)
2519{
2520	gfn_t start, end;
2521
2522	/* flags is currently not used. */
2523	if (attrs->flags)
2524		return -EINVAL;
2525	if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2526		return -EINVAL;
2527	if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2528		return -EINVAL;
2529	if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2530		return -EINVAL;
2531
2532	start = attrs->address >> PAGE_SHIFT;
2533	end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2534
2535	/*
2536	 * xarray tracks data using "unsigned long", and as a result so does
2537	 * KVM.  For simplicity, supports generic attributes only on 64-bit
2538	 * architectures.
2539	 */
2540	BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2541
2542	return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2543}
2544#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2545
2546struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2547{
2548	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2549}
2550EXPORT_SYMBOL_GPL(gfn_to_memslot);
2551
2552struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2553{
2554	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2555	u64 gen = slots->generation;
2556	struct kvm_memory_slot *slot;
2557
2558	/*
2559	 * This also protects against using a memslot from a different address space,
2560	 * since different address spaces have different generation numbers.
2561	 */
2562	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2563		vcpu->last_used_slot = NULL;
2564		vcpu->last_used_slot_gen = gen;
2565	}
2566
2567	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2568	if (slot)
2569		return slot;
2570
2571	/*
2572	 * Fall back to searching all memslots. We purposely use
2573	 * search_memslots() instead of __gfn_to_memslot() to avoid
2574	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2575	 */
2576	slot = search_memslots(slots, gfn, false);
2577	if (slot) {
2578		vcpu->last_used_slot = slot;
2579		return slot;
2580	}
2581
2582	return NULL;
2583}
2584
2585bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2586{
2587	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2588
2589	return kvm_is_visible_memslot(memslot);
2590}
2591EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2592
2593bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2594{
2595	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2596
2597	return kvm_is_visible_memslot(memslot);
2598}
2599EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2600
2601unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2602{
2603	struct vm_area_struct *vma;
2604	unsigned long addr, size;
2605
2606	size = PAGE_SIZE;
2607
2608	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2609	if (kvm_is_error_hva(addr))
2610		return PAGE_SIZE;
2611
2612	mmap_read_lock(current->mm);
2613	vma = find_vma(current->mm, addr);
2614	if (!vma)
2615		goto out;
2616
2617	size = vma_kernel_pagesize(vma);
2618
2619out:
2620	mmap_read_unlock(current->mm);
2621
2622	return size;
2623}
2624
2625static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2626{
2627	return slot->flags & KVM_MEM_READONLY;
2628}
2629
2630static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2631				       gfn_t *nr_pages, bool write)
2632{
2633	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2634		return KVM_HVA_ERR_BAD;
2635
2636	if (memslot_is_readonly(slot) && write)
2637		return KVM_HVA_ERR_RO_BAD;
2638
2639	if (nr_pages)
2640		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2641
2642	return __gfn_to_hva_memslot(slot, gfn);
2643}
2644
2645static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2646				     gfn_t *nr_pages)
2647{
2648	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2649}
2650
2651unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2652					gfn_t gfn)
2653{
2654	return gfn_to_hva_many(slot, gfn, NULL);
2655}
2656EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2657
2658unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2659{
2660	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2661}
2662EXPORT_SYMBOL_GPL(gfn_to_hva);
2663
2664unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2665{
2666	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
 
2667}
2668EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2669
2670/*
2671 * Return the hva of a @gfn and the R/W attribute if possible.
2672 *
2673 * @slot: the kvm_memory_slot which contains @gfn
2674 * @gfn: the gfn to be translated
2675 * @writable: used to return the read/write attribute of the @slot if the hva
2676 * is valid and @writable is not NULL
2677 */
2678unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2679				      gfn_t gfn, bool *writable)
2680{
2681	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2682
2683	if (!kvm_is_error_hva(hva) && writable)
2684		*writable = !memslot_is_readonly(slot);
2685
2686	return hva;
2687}
2688
2689unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2690{
2691	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2692
2693	return gfn_to_hva_memslot_prot(slot, gfn, writable);
 
 
2694}
2695
2696unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
 
2697{
2698	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
 
 
2699
2700	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2701}
2702
2703static bool kvm_is_ad_tracked_page(struct page *page)
2704{
2705	/*
2706	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2707	 * touched (e.g. set dirty) except by its owner".
2708	 */
2709	return !PageReserved(page);
2710}
2711
2712static void kvm_set_page_dirty(struct page *page)
2713{
2714	if (kvm_is_ad_tracked_page(page))
2715		SetPageDirty(page);
2716}
2717
2718static void kvm_set_page_accessed(struct page *page)
2719{
2720	if (kvm_is_ad_tracked_page(page))
2721		mark_page_accessed(page);
2722}
2723
2724void kvm_release_page_clean(struct page *page)
2725{
2726	if (!page)
2727		return;
2728
2729	kvm_set_page_accessed(page);
2730	put_page(page);
2731}
2732EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2733
2734void kvm_release_page_dirty(struct page *page)
2735{
2736	if (!page)
2737		return;
 
 
 
 
2738
2739	kvm_set_page_dirty(page);
2740	kvm_release_page_clean(page);
2741}
2742EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
 
 
 
 
 
 
 
 
 
2743
2744static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
2745				 struct follow_pfnmap_args *map, bool writable)
2746{
2747	kvm_pfn_t pfn;
2748
2749	WARN_ON_ONCE(!!page == !!map);
 
2750
2751	if (kfp->map_writable)
2752		*kfp->map_writable = writable;
 
 
 
 
 
2753
2754	if (map)
2755		pfn = map->pfn;
2756	else
2757		pfn = page_to_pfn(page);
2758
2759	*kfp->refcounted_page = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
2760
2761	return pfn;
2762}
2763
2764/*
2765 * The fast path to get the writable pfn which will be stored in @pfn,
2766 * true indicates success, otherwise false is returned.
2767 */
2768static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2769{
2770	struct page *page;
2771	bool r;
2772
2773	/*
2774	 * Try the fast-only path when the caller wants to pin/get the page for
2775	 * writing.  If the caller only wants to read the page, KVM must go
2776	 * down the full, slow path in order to avoid racing an operation that
2777	 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
2778	 * at the old, read-only page while mm/ points at a new, writable page.
2779	 */
2780	if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
2781		return false;
2782
2783	if (kfp->pin)
2784		r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
2785	else
2786		r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
2787
2788	if (r) {
2789		*pfn = kvm_resolve_pfn(kfp, page, NULL, true);
2790		return true;
2791	}
2792
2793	return false;
2794}
 
2795
2796/*
2797 * The slow path to get the pfn of the specified host virtual address,
2798 * 1 indicates success, -errno is returned if error is detected.
2799 */
2800static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2801{
2802	/*
2803	 * When a VCPU accesses a page that is not mapped into the secondary
2804	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2805	 * make progress. We always want to honor NUMA hinting faults in that
2806	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2807	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2808	 * mapped into the secondary MMU and gets accessed by a VCPU.
2809	 *
2810	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2811	 * implicitly honor NUMA hinting faults and don't need this flag.
2812	 */
2813	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
2814	struct page *page, *wpage;
2815	int npages;
2816
2817	if (kfp->pin)
2818		npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
2819	else
2820		npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
2821	if (npages != 1)
2822		return npages;
2823
2824	/*
2825	 * Pinning is mutually exclusive with opportunistically mapping a read
2826	 * fault as writable, as KVM should never pin pages when mapping memory
2827	 * into the guest (pinning is only for direct accesses from KVM).
2828	 */
2829	if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
2830		goto out;
2831
2832	/* map read fault as writable if possible */
2833	if (!(flags & FOLL_WRITE) && kfp->map_writable &&
2834	    get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
2835		put_page(page);
2836		page = wpage;
2837		flags |= FOLL_WRITE;
2838	}
2839
2840out:
2841	*pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
2842	return npages;
2843}
2844
2845static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2846{
2847	if (unlikely(!(vma->vm_flags & VM_READ)))
2848		return false;
2849
2850	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2851		return false;
2852
2853	return true;
2854}
 
2855
2856static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2857			       struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
2858{
2859	struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
2860	bool write_fault = kfp->flags & FOLL_WRITE;
2861	int r;
2862
2863	/*
2864	 * Remapped memory cannot be pinned in any meaningful sense.  Bail if
2865	 * the caller wants to pin the page, i.e. access the page outside of
2866	 * MMU notifier protection, and unsafe umappings are disallowed.
2867	 */
2868	if (kfp->pin && !allow_unsafe_mappings)
2869		return -EINVAL;
2870
2871	r = follow_pfnmap_start(&args);
2872	if (r) {
2873		/*
2874		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2875		 * not call the fault handler, so do it here.
2876		 */
2877		bool unlocked = false;
2878		r = fixup_user_fault(current->mm, kfp->hva,
2879				     (write_fault ? FAULT_FLAG_WRITE : 0),
2880				     &unlocked);
2881		if (unlocked)
2882			return -EAGAIN;
2883		if (r)
2884			return r;
2885
2886		r = follow_pfnmap_start(&args);
2887		if (r)
2888			return r;
2889	}
2890
2891	if (write_fault && !args.writable) {
2892		*p_pfn = KVM_PFN_ERR_RO_FAULT;
2893		goto out;
2894	}
2895
2896	*p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
2897out:
2898	follow_pfnmap_end(&args);
2899	return r;
2900}
 
2901
2902kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
2903{
2904	struct vm_area_struct *vma;
2905	kvm_pfn_t pfn;
2906	int npages, r;
2907
2908	might_sleep();
2909
2910	if (WARN_ON_ONCE(!kfp->refcounted_page))
2911		return KVM_PFN_ERR_FAULT;
2912
2913	if (hva_to_pfn_fast(kfp, &pfn))
2914		return pfn;
2915
2916	npages = hva_to_pfn_slow(kfp, &pfn);
2917	if (npages == 1)
2918		return pfn;
2919	if (npages == -EINTR || npages == -EAGAIN)
2920		return KVM_PFN_ERR_SIGPENDING;
2921	if (npages == -EHWPOISON)
2922		return KVM_PFN_ERR_HWPOISON;
2923
2924	mmap_read_lock(current->mm);
2925retry:
2926	vma = vma_lookup(current->mm, kfp->hva);
2927
2928	if (vma == NULL)
2929		pfn = KVM_PFN_ERR_FAULT;
2930	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2931		r = hva_to_pfn_remapped(vma, kfp, &pfn);
2932		if (r == -EAGAIN)
2933			goto retry;
2934		if (r < 0)
2935			pfn = KVM_PFN_ERR_FAULT;
2936	} else {
2937		if ((kfp->flags & FOLL_NOWAIT) &&
2938		    vma_is_valid(vma, kfp->flags & FOLL_WRITE))
2939			pfn = KVM_PFN_ERR_NEEDS_IO;
2940		else
2941			pfn = KVM_PFN_ERR_FAULT;
2942	}
2943	mmap_read_unlock(current->mm);
2944	return pfn;
2945}
 
2946
2947static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
 
2948{
2949	kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
2950				     kfp->flags & FOLL_WRITE);
2951
2952	if (kfp->hva == KVM_HVA_ERR_RO_BAD)
2953		return KVM_PFN_ERR_RO_FAULT;
2954
2955	if (kvm_is_error_hva(kfp->hva))
2956		return KVM_PFN_NOSLOT;
2957
2958	if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
2959		*kfp->map_writable = false;
2960		kfp->map_writable = NULL;
2961	}
2962
2963	return hva_to_pfn(kfp);
2964}
 
2965
2966kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
2967			    unsigned int foll, bool *writable,
2968			    struct page **refcounted_page)
2969{
2970	struct kvm_follow_pfn kfp = {
2971		.slot = slot,
2972		.gfn = gfn,
2973		.flags = foll,
2974		.map_writable = writable,
2975		.refcounted_page = refcounted_page,
2976	};
2977
2978	if (WARN_ON_ONCE(!writable || !refcounted_page))
2979		return KVM_PFN_ERR_FAULT;
2980
2981	*writable = false;
2982	*refcounted_page = NULL;
2983
2984	return kvm_follow_pfn(&kfp);
2985}
2986EXPORT_SYMBOL_GPL(__kvm_faultin_pfn);
2987
2988int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
2989		       struct page **pages, int nr_pages)
2990{
2991	unsigned long addr;
2992	gfn_t entry = 0;
2993
2994	addr = gfn_to_hva_many(slot, gfn, &entry);
2995	if (kvm_is_error_hva(addr))
2996		return -1;
2997
2998	if (entry < nr_pages)
2999		return 0;
3000
3001	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3002}
3003EXPORT_SYMBOL_GPL(kvm_prefetch_pages);
3004
3005/*
3006 * Don't use this API unless you are absolutely, positively certain that KVM
3007 * needs to get a struct page, e.g. to pin the page for firmware DMA.
3008 *
3009 * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
3010 *	  its refcount.
3011 */
3012struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
3013{
3014	struct page *refcounted_page = NULL;
3015	struct kvm_follow_pfn kfp = {
3016		.slot = gfn_to_memslot(kvm, gfn),
3017		.gfn = gfn,
3018		.flags = write ? FOLL_WRITE : 0,
3019		.refcounted_page = &refcounted_page,
3020	};
3021
3022	(void)kvm_follow_pfn(&kfp);
3023	return refcounted_page;
3024}
3025EXPORT_SYMBOL_GPL(__gfn_to_page);
3026
3027int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
3028		   bool writable)
3029{
3030	struct kvm_follow_pfn kfp = {
3031		.slot = gfn_to_memslot(vcpu->kvm, gfn),
3032		.gfn = gfn,
3033		.flags = writable ? FOLL_WRITE : 0,
3034		.refcounted_page = &map->pinned_page,
3035		.pin = true,
3036	};
3037
3038	map->pinned_page = NULL;
3039	map->page = NULL;
3040	map->hva = NULL;
3041	map->gfn = gfn;
3042	map->writable = writable;
3043
3044	map->pfn = kvm_follow_pfn(&kfp);
3045	if (is_error_noslot_pfn(map->pfn))
3046		return -EINVAL;
3047
3048	if (pfn_valid(map->pfn)) {
3049		map->page = pfn_to_page(map->pfn);
3050		map->hva = kmap(map->page);
3051#ifdef CONFIG_HAS_IOMEM
3052	} else {
3053		map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
3054#endif
3055	}
3056
3057	return map->hva ? 0 : -EFAULT;
 
 
 
3058}
3059EXPORT_SYMBOL_GPL(__kvm_vcpu_map);
3060
3061void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
3062{
3063	if (!map->hva)
3064		return;
 
3065
3066	if (map->page)
3067		kunmap(map->page);
3068#ifdef CONFIG_HAS_IOMEM
3069	else
3070		memunmap(map->hva);
3071#endif
3072
3073	if (map->writable)
3074		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
 
 
 
3075
3076	if (map->pinned_page) {
3077		if (map->writable)
3078			kvm_set_page_dirty(map->pinned_page);
3079		kvm_set_page_accessed(map->pinned_page);
3080		unpin_user_page(map->pinned_page);
 
3081	}
 
 
3082
3083	map->hva = NULL;
3084	map->page = NULL;
3085	map->pinned_page = NULL;
 
3086}
3087EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
 
 
 
 
 
 
 
3088
3089static int next_segment(unsigned long len, int offset)
3090{
3091	if (len > PAGE_SIZE - offset)
3092		return PAGE_SIZE - offset;
3093	else
3094		return len;
3095}
3096
3097/* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
3098static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3099				 void *data, int offset, int len)
3100{
3101	int r;
3102	unsigned long addr;
3103
3104	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3105		return -EFAULT;
3106
3107	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3108	if (kvm_is_error_hva(addr))
3109		return -EFAULT;
3110	r = __copy_from_user(data, (void __user *)addr + offset, len);
3111	if (r)
3112		return -EFAULT;
3113	return 0;
3114}
3115
3116int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3117			int len)
3118{
3119	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3120
3121	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3122}
3123EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3124
3125int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3126			     int offset, int len)
3127{
3128	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3129
3130	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3131}
3132EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3133
3134int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3135{
3136	gfn_t gfn = gpa >> PAGE_SHIFT;
3137	int seg;
3138	int offset = offset_in_page(gpa);
3139	int ret;
3140
3141	while ((seg = next_segment(len, offset)) != 0) {
3142		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3143		if (ret < 0)
3144			return ret;
3145		offset = 0;
3146		len -= seg;
3147		data += seg;
3148		++gfn;
3149	}
3150	return 0;
3151}
3152EXPORT_SYMBOL_GPL(kvm_read_guest);
3153
3154int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
 
3155{
 
 
3156	gfn_t gfn = gpa >> PAGE_SHIFT;
3157	int seg;
3158	int offset = offset_in_page(gpa);
3159	int ret;
3160
3161	while ((seg = next_segment(len, offset)) != 0) {
3162		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3163		if (ret < 0)
3164			return ret;
3165		offset = 0;
3166		len -= seg;
3167		data += seg;
3168		++gfn;
3169	}
3170	return 0;
3171}
3172EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3173
3174static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3175			           void *data, int offset, unsigned long len)
3176{
3177	int r;
3178	unsigned long addr;
3179
3180	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3181		return -EFAULT;
3182
3183	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3184	if (kvm_is_error_hva(addr))
3185		return -EFAULT;
3186	pagefault_disable();
3187	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3188	pagefault_enable();
3189	if (r)
3190		return -EFAULT;
3191	return 0;
3192}
 
3193
3194int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3195			       void *data, unsigned long len)
3196{
3197	gfn_t gfn = gpa >> PAGE_SHIFT;
3198	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3199	int offset = offset_in_page(gpa);
3200
3201	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3202}
3203EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3204
3205/* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
3206static int __kvm_write_guest_page(struct kvm *kvm,
3207				  struct kvm_memory_slot *memslot, gfn_t gfn,
3208			          const void *data, int offset, int len)
3209{
3210	int r;
3211	unsigned long addr;
3212
3213	if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3214		return -EFAULT;
3215
3216	addr = gfn_to_hva_memslot(memslot, gfn);
3217	if (kvm_is_error_hva(addr))
3218		return -EFAULT;
3219	r = __copy_to_user((void __user *)addr + offset, data, len);
3220	if (r)
3221		return -EFAULT;
3222	mark_page_dirty_in_slot(kvm, memslot, gfn);
3223	return 0;
3224}
3225
3226int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3227			 const void *data, int offset, int len)
3228{
3229	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3230
3231	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3232}
3233EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3234
3235int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3236			      const void *data, int offset, int len)
3237{
3238	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3239
3240	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3241}
3242EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3243
3244int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3245		    unsigned long len)
3246{
3247	gfn_t gfn = gpa >> PAGE_SHIFT;
3248	int seg;
3249	int offset = offset_in_page(gpa);
3250	int ret;
3251
3252	while ((seg = next_segment(len, offset)) != 0) {
3253		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3254		if (ret < 0)
3255			return ret;
3256		offset = 0;
3257		len -= seg;
3258		data += seg;
3259		++gfn;
3260	}
3261	return 0;
3262}
3263EXPORT_SYMBOL_GPL(kvm_write_guest);
3264
3265int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3266		         unsigned long len)
3267{
 
 
3268	gfn_t gfn = gpa >> PAGE_SHIFT;
3269	int seg;
3270	int offset = offset_in_page(gpa);
3271	int ret;
3272
3273	while ((seg = next_segment(len, offset)) != 0) {
3274		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3275		if (ret < 0)
3276			return ret;
3277		offset = 0;
3278		len -= seg;
3279		data += seg;
3280		++gfn;
3281	}
3282	return 0;
3283}
3284EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3285
3286static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3287				       struct gfn_to_hva_cache *ghc,
3288				       gpa_t gpa, unsigned long len)
3289{
3290	int offset = offset_in_page(gpa);
3291	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3292	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3293	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3294	gfn_t nr_pages_avail;
3295
3296	/* Update ghc->generation before performing any error checks. */
3297	ghc->generation = slots->generation;
3298
3299	if (start_gfn > end_gfn) {
3300		ghc->hva = KVM_HVA_ERR_BAD;
3301		return -EINVAL;
3302	}
3303
3304	/*
3305	 * If the requested region crosses two memslots, we still
3306	 * verify that the entire region is valid here.
3307	 */
3308	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3309		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3310		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3311					   &nr_pages_avail);
3312		if (kvm_is_error_hva(ghc->hva))
3313			return -EFAULT;
3314	}
3315
3316	/* Use the slow path for cross page reads and writes. */
3317	if (nr_pages_needed == 1)
3318		ghc->hva += offset;
3319	else
3320		ghc->memslot = NULL;
3321
3322	ghc->gpa = gpa;
3323	ghc->len = len;
3324	return 0;
3325}
3326
3327int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3328			      gpa_t gpa, unsigned long len)
3329{
3330	struct kvm_memslots *slots = kvm_memslots(kvm);
3331	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3332}
3333EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3334
3335int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3336				  void *data, unsigned int offset,
3337				  unsigned long len)
3338{
3339	struct kvm_memslots *slots = kvm_memslots(kvm);
3340	int r;
3341	gpa_t gpa = ghc->gpa + offset;
3342
3343	if (WARN_ON_ONCE(len + offset > ghc->len))
3344		return -EINVAL;
3345
3346	if (slots->generation != ghc->generation) {
3347		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3348			return -EFAULT;
3349	}
3350
3351	if (kvm_is_error_hva(ghc->hva))
3352		return -EFAULT;
3353
3354	if (unlikely(!ghc->memslot))
3355		return kvm_write_guest(kvm, gpa, data, len);
3356
3357	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3358	if (r)
3359		return -EFAULT;
3360	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3361
3362	return 0;
3363}
3364EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3365
3366int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3367			   void *data, unsigned long len)
3368{
3369	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3370}
3371EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3372
3373int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3374				 void *data, unsigned int offset,
3375				 unsigned long len)
3376{
3377	struct kvm_memslots *slots = kvm_memslots(kvm);
3378	int r;
3379	gpa_t gpa = ghc->gpa + offset;
3380
3381	if (WARN_ON_ONCE(len + offset > ghc->len))
3382		return -EINVAL;
3383
3384	if (slots->generation != ghc->generation) {
3385		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3386			return -EFAULT;
3387	}
3388
3389	if (kvm_is_error_hva(ghc->hva))
3390		return -EFAULT;
3391
3392	if (unlikely(!ghc->memslot))
3393		return kvm_read_guest(kvm, gpa, data, len);
3394
3395	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3396	if (r)
3397		return -EFAULT;
3398
3399	return 0;
3400}
3401EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3402
3403int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3404			  void *data, unsigned long len)
3405{
3406	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
 
3407}
3408EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3409
3410int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3411{
3412	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3413	gfn_t gfn = gpa >> PAGE_SHIFT;
3414	int seg;
3415	int offset = offset_in_page(gpa);
3416	int ret;
3417
3418	while ((seg = next_segment(len, offset)) != 0) {
3419		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3420		if (ret < 0)
3421			return ret;
3422		offset = 0;
3423		len -= seg;
3424		++gfn;
3425	}
3426	return 0;
3427}
3428EXPORT_SYMBOL_GPL(kvm_clear_guest);
3429
3430void mark_page_dirty_in_slot(struct kvm *kvm,
3431			     const struct kvm_memory_slot *memslot,
3432		 	     gfn_t gfn)
3433{
3434	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3435
3436#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3437	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3438		return;
3439
3440	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3441#endif
3442
3443	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3444		unsigned long rel_gfn = gfn - memslot->base_gfn;
3445		u32 slot = (memslot->as_id << 16) | memslot->id;
3446
3447		if (kvm->dirty_ring_size && vcpu)
3448			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3449		else if (memslot->dirty_bitmap)
3450			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3451	}
3452}
3453EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3454
3455void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3456{
3457	struct kvm_memory_slot *memslot;
3458
3459	memslot = gfn_to_memslot(kvm, gfn);
3460	mark_page_dirty_in_slot(kvm, memslot, gfn);
3461}
3462EXPORT_SYMBOL_GPL(mark_page_dirty);
3463
3464void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3465{
3466	struct kvm_memory_slot *memslot;
3467
3468	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3469	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3470}
3471EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3472
3473void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3474{
3475	if (!vcpu->sigset_active)
3476		return;
3477
3478	/*
3479	 * This does a lockless modification of ->real_blocked, which is fine
3480	 * because, only current can change ->real_blocked and all readers of
3481	 * ->real_blocked don't care as long ->real_blocked is always a subset
3482	 * of ->blocked.
3483	 */
3484	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3485}
3486
3487void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3488{
3489	if (!vcpu->sigset_active)
3490		return;
3491
3492	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3493	sigemptyset(&current->real_blocked);
3494}
3495
3496static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3497{
3498	unsigned int old, val, grow, grow_start;
3499
3500	old = val = vcpu->halt_poll_ns;
3501	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3502	grow = READ_ONCE(halt_poll_ns_grow);
3503	if (!grow)
3504		goto out;
3505
3506	val *= grow;
3507	if (val < grow_start)
3508		val = grow_start;
3509
3510	vcpu->halt_poll_ns = val;
3511out:
3512	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3513}
3514
3515static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3516{
3517	unsigned int old, val, shrink, grow_start;
3518
3519	old = val = vcpu->halt_poll_ns;
3520	shrink = READ_ONCE(halt_poll_ns_shrink);
3521	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3522	if (shrink == 0)
3523		val = 0;
3524	else
3525		val /= shrink;
3526
3527	if (val < grow_start)
3528		val = 0;
3529
3530	vcpu->halt_poll_ns = val;
3531	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3532}
3533
3534static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3535{
3536	int ret = -EINTR;
3537	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3538
3539	if (kvm_arch_vcpu_runnable(vcpu))
3540		goto out;
3541	if (kvm_cpu_has_pending_timer(vcpu))
3542		goto out;
3543	if (signal_pending(current))
3544		goto out;
3545	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3546		goto out;
3547
3548	ret = 0;
3549out:
3550	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3551	return ret;
3552}
3553
3554/*
3555 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3556 * pending.  This is mostly used when halting a vCPU, but may also be used
3557 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3558 */
3559bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3560{
3561	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3562	bool waited = false;
3563
3564	vcpu->stat.generic.blocking = 1;
3565
3566	preempt_disable();
3567	kvm_arch_vcpu_blocking(vcpu);
3568	prepare_to_rcuwait(wait);
3569	preempt_enable();
3570
3571	for (;;) {
3572		set_current_state(TASK_INTERRUPTIBLE);
3573
3574		if (kvm_vcpu_check_block(vcpu) < 0)
 
 
 
 
 
 
3575			break;
3576
3577		waited = true;
3578		schedule();
3579	}
3580
3581	preempt_disable();
3582	finish_rcuwait(wait);
3583	kvm_arch_vcpu_unblocking(vcpu);
3584	preempt_enable();
3585
3586	vcpu->stat.generic.blocking = 0;
3587
3588	return waited;
3589}
3590
3591static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3592					  ktime_t end, bool success)
3593{
3594	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3595	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3596
3597	++vcpu->stat.generic.halt_attempted_poll;
3598
3599	if (success) {
3600		++vcpu->stat.generic.halt_successful_poll;
3601
3602		if (!vcpu_valid_wakeup(vcpu))
3603			++vcpu->stat.generic.halt_poll_invalid;
3604
3605		stats->halt_poll_success_ns += poll_ns;
3606		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3607	} else {
3608		stats->halt_poll_fail_ns += poll_ns;
3609		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3610	}
3611}
3612
3613static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3614{
3615	struct kvm *kvm = vcpu->kvm;
3616
3617	if (kvm->override_halt_poll_ns) {
3618		/*
3619		 * Ensure kvm->max_halt_poll_ns is not read before
3620		 * kvm->override_halt_poll_ns.
3621		 *
3622		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3623		 */
3624		smp_rmb();
3625		return READ_ONCE(kvm->max_halt_poll_ns);
3626	}
3627
3628	return READ_ONCE(halt_poll_ns);
3629}
3630
3631/*
3632 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3633 * polling is enabled, busy wait for a short time before blocking to avoid the
3634 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3635 * is halted.
3636 */
3637void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3638{
3639	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3640	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3641	ktime_t start, cur, poll_end;
3642	bool waited = false;
3643	bool do_halt_poll;
3644	u64 halt_ns;
3645
3646	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3647		vcpu->halt_poll_ns = max_halt_poll_ns;
3648
3649	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3650
3651	start = cur = poll_end = ktime_get();
3652	if (do_halt_poll) {
3653		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3654
3655		do {
3656			if (kvm_vcpu_check_block(vcpu) < 0)
3657				goto out;
3658			cpu_relax();
3659			poll_end = cur = ktime_get();
3660		} while (kvm_vcpu_can_poll(cur, stop));
3661	}
3662
3663	waited = kvm_vcpu_block(vcpu);
3664
3665	cur = ktime_get();
3666	if (waited) {
3667		vcpu->stat.generic.halt_wait_ns +=
3668			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3669		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3670				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3671	}
3672out:
3673	/* The total time the vCPU was "halted", including polling time. */
3674	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3675
3676	/*
3677	 * Note, halt-polling is considered successful so long as the vCPU was
3678	 * never actually scheduled out, i.e. even if the wake event arrived
3679	 * after of the halt-polling loop itself, but before the full wait.
3680	 */
3681	if (do_halt_poll)
3682		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3683
3684	if (halt_poll_allowed) {
3685		/* Recompute the max halt poll time in case it changed. */
3686		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3687
3688		if (!vcpu_valid_wakeup(vcpu)) {
3689			shrink_halt_poll_ns(vcpu);
3690		} else if (max_halt_poll_ns) {
3691			if (halt_ns <= vcpu->halt_poll_ns)
3692				;
3693			/* we had a long block, shrink polling */
3694			else if (vcpu->halt_poll_ns &&
3695				 halt_ns > max_halt_poll_ns)
3696				shrink_halt_poll_ns(vcpu);
3697			/* we had a short halt and our poll time is too small */
3698			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3699				 halt_ns < max_halt_poll_ns)
3700				grow_halt_poll_ns(vcpu);
3701		} else {
3702			vcpu->halt_poll_ns = 0;
3703		}
3704	}
3705
3706	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3707}
3708EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3709
3710bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3711{
3712	if (__kvm_vcpu_wake_up(vcpu)) {
3713		WRITE_ONCE(vcpu->ready, true);
3714		++vcpu->stat.generic.halt_wakeup;
3715		return true;
3716	}
3717
3718	return false;
3719}
3720EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3721
3722#ifndef CONFIG_S390
3723/*
3724 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3725 */
3726void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3727{
3728	int me, cpu;
 
 
3729
3730	if (kvm_vcpu_wake_up(vcpu))
3731		return;
 
 
 
3732
3733	me = get_cpu();
3734	/*
3735	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3736	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3737	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3738	 * within the vCPU thread itself.
3739	 */
3740	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3741		if (vcpu->mode == IN_GUEST_MODE)
3742			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3743		goto out;
3744	}
3745
3746	/*
3747	 * Note, the vCPU could get migrated to a different pCPU at any point
3748	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3749	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3750	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3751	 * vCPU also requires it to leave IN_GUEST_MODE.
3752	 */
3753	if (kvm_arch_vcpu_should_kick(vcpu)) {
3754		cpu = READ_ONCE(vcpu->cpu);
3755		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3756			smp_send_reschedule(cpu);
3757	}
3758out:
3759	put_cpu();
3760}
3761EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3762#endif /* !CONFIG_S390 */
3763
3764int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3765{
 
 
 
 
 
 
 
 
 
3766	struct task_struct *task = NULL;
3767	int ret;
3768
3769	if (!read_trylock(&target->pid_lock))
3770		return 0;
3771
3772	if (target->pid)
3773		task = get_pid_task(target->pid, PIDTYPE_PID);
3774
3775	read_unlock(&target->pid_lock);
3776
3777	if (!task)
3778		return 0;
3779	ret = yield_to(task, 1);
 
 
 
 
 
 
 
3780	put_task_struct(task);
3781
3782	return ret;
3783}
3784EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3785
3786/*
3787 * Helper that checks whether a VCPU is eligible for directed yield.
3788 * Most eligible candidate to yield is decided by following heuristics:
3789 *
3790 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3791 *  (preempted lock holder), indicated by @in_spin_loop.
3792 *  Set at the beginning and cleared at the end of interception/PLE handler.
3793 *
3794 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3795 *  chance last time (mostly it has become eligible now since we have probably
3796 *  yielded to lockholder in last iteration. This is done by toggling
3797 *  @dy_eligible each time a VCPU checked for eligibility.)
3798 *
3799 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3800 *  to preempted lock-holder could result in wrong VCPU selection and CPU
3801 *  burning. Giving priority for a potential lock-holder increases lock
3802 *  progress.
3803 *
3804 *  Since algorithm is based on heuristics, accessing another VCPU data without
3805 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3806 *  and continue with next VCPU and so on.
3807 */
3808static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3809{
3810#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3811	bool eligible;
3812
3813	eligible = !vcpu->spin_loop.in_spin_loop ||
3814		    vcpu->spin_loop.dy_eligible;
3815
3816	if (vcpu->spin_loop.in_spin_loop)
3817		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3818
3819	return eligible;
3820#else
3821	return true;
3822#endif
3823}
3824
3825/*
3826 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3827 * a vcpu_load/vcpu_put pair.  However, for most architectures
3828 * kvm_arch_vcpu_runnable does not require vcpu_load.
3829 */
3830bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3831{
3832	return kvm_arch_vcpu_runnable(vcpu);
3833}
3834
3835static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3836{
3837	if (kvm_arch_dy_runnable(vcpu))
3838		return true;
3839
3840#ifdef CONFIG_KVM_ASYNC_PF
3841	if (!list_empty_careful(&vcpu->async_pf.done))
3842		return true;
3843#endif
3844
3845	return false;
3846}
3847
3848/*
3849 * By default, simply query the target vCPU's current mode when checking if a
3850 * vCPU was preempted in kernel mode.  All architectures except x86 (or more
3851 * specifical, except VMX) allow querying whether or not a vCPU is in kernel
3852 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
3853 * directly for cross-vCPU checks is functionally correct and accurate.
3854 */
3855bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
3856{
3857	return kvm_arch_vcpu_in_kernel(vcpu);
3858}
3859
3860bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3861{
3862	return false;
3863}
3864
3865void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3866{
3867	int nr_vcpus, start, i, idx, yielded;
3868	struct kvm *kvm = me->kvm;
3869	struct kvm_vcpu *vcpu;
3870	int try = 3;
3871
3872	nr_vcpus = atomic_read(&kvm->online_vcpus);
3873	if (nr_vcpus < 2)
3874		return;
3875
3876	/* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
3877	smp_rmb();
3878
3879	kvm_vcpu_set_in_spin_loop(me, true);
3880
3881	/*
3882	 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely
3883	 * waiting for a resource to become available.  Attempt to yield to a
3884	 * vCPU that is runnable, but not currently running, e.g. because the
3885	 * vCPU was preempted by a higher priority task.  With luck, the vCPU
3886	 * that was preempted is holding a lock or some other resource that the
3887	 * current vCPU is waiting to acquire, and yielding to the other vCPU
3888	 * will allow it to make forward progress and release the lock (or kick
3889	 * the spinning vCPU, etc).
3890	 *
3891	 * Since KVM has no insight into what exactly the guest is doing,
3892	 * approximate a round-robin selection by iterating over all vCPUs,
3893	 * starting at the last boosted vCPU.  I.e. if N=kvm->last_boosted_vcpu,
3894	 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
3895	 *
3896	 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
3897	 * they may all try to yield to the same vCPU(s).  But as above, this
3898	 * is all best effort due to KVM's lack of visibility into the guest.
3899	 */
3900	start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
3901	for (i = 0; i < nr_vcpus; i++) {
3902		idx = (start + i) % nr_vcpus;
3903		if (idx == me->vcpu_idx)
3904			continue;
3905
3906		vcpu = xa_load(&kvm->vcpu_array, idx);
3907		if (!READ_ONCE(vcpu->ready))
3908			continue;
3909		if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3910			continue;
3911
3912		/*
3913		 * Treat the target vCPU as being in-kernel if it has a pending
3914		 * interrupt, as the vCPU trying to yield may be spinning
3915		 * waiting on IPI delivery, i.e. the target vCPU is in-kernel
3916		 * for the purposes of directed yield.
3917		 */
3918		if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3919		    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3920		    !kvm_arch_vcpu_preempted_in_kernel(vcpu))
3921			continue;
3922
3923		if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3924			continue;
3925
3926		yielded = kvm_vcpu_yield_to(vcpu);
3927		if (yielded > 0) {
3928			WRITE_ONCE(kvm->last_boosted_vcpu, i);
3929			break;
3930		} else if (yielded < 0 && !--try) {
3931			break;
3932		}
3933	}
3934	kvm_vcpu_set_in_spin_loop(me, false);
3935
3936	/* Ensure vcpu is not eligible during next spinloop */
3937	kvm_vcpu_set_dy_eligible(me, false);
3938}
3939EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3940
3941static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3942{
3943#ifdef CONFIG_HAVE_KVM_DIRTY_RING
3944	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3945	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3946	     kvm->dirty_ring_size / PAGE_SIZE);
3947#else
3948	return false;
3949#endif
3950}
3951
3952static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3953{
3954	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3955	struct page *page;
3956
3957	if (vmf->pgoff == 0)
3958		page = virt_to_page(vcpu->run);
3959#ifdef CONFIG_X86
3960	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3961		page = virt_to_page(vcpu->arch.pio_data);
3962#endif
3963#ifdef CONFIG_KVM_MMIO
3964	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3965		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3966#endif
3967	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3968		page = kvm_dirty_ring_get_page(
3969		    &vcpu->dirty_ring,
3970		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3971	else
3972		return kvm_arch_vcpu_fault(vcpu, vmf);
3973	get_page(page);
3974	vmf->page = page;
3975	return 0;
3976}
3977
3978static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3979	.fault = kvm_vcpu_fault,
3980};
3981
3982static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3983{
3984	struct kvm_vcpu *vcpu = file->private_data;
3985	unsigned long pages = vma_pages(vma);
3986
3987	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3988	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3989	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3990		return -EINVAL;
3991
3992	vma->vm_ops = &kvm_vcpu_vm_ops;
3993	return 0;
3994}
3995
3996static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3997{
3998	struct kvm_vcpu *vcpu = filp->private_data;
3999
4000	kvm_put_kvm(vcpu->kvm);
4001	return 0;
4002}
4003
4004static struct file_operations kvm_vcpu_fops = {
4005	.release        = kvm_vcpu_release,
4006	.unlocked_ioctl = kvm_vcpu_ioctl,
 
 
 
4007	.mmap           = kvm_vcpu_mmap,
4008	.llseek		= noop_llseek,
4009	KVM_COMPAT(kvm_vcpu_compat_ioctl),
4010};
4011
4012/*
4013 * Allocates an inode for the vcpu.
4014 */
4015static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4016{
4017	char name[8 + 1 + ITOA_MAX_LEN + 1];
4018
4019	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4020	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4021}
4022
4023#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4024static int vcpu_get_pid(void *data, u64 *val)
4025{
4026	struct kvm_vcpu *vcpu = data;
4027
4028	read_lock(&vcpu->pid_lock);
4029	*val = pid_nr(vcpu->pid);
4030	read_unlock(&vcpu->pid_lock);
4031	return 0;
4032}
4033
4034DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4035
4036static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4037{
4038	struct dentry *debugfs_dentry;
4039	char dir_name[ITOA_MAX_LEN * 2];
4040
4041	if (!debugfs_initialized())
4042		return;
4043
4044	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4045	debugfs_dentry = debugfs_create_dir(dir_name,
4046					    vcpu->kvm->debugfs_dentry);
4047	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4048			    &vcpu_get_pid_fops);
4049
4050	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4051}
4052#endif
4053
4054/*
4055 * Creates some virtual cpus.  Good luck creating more than one.
4056 */
4057static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4058{
4059	int r;
4060	struct kvm_vcpu *vcpu;
4061	struct page *page;
4062
4063	/*
4064	 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4065	 * too-large values instead of silently truncating.
4066	 *
4067	 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4068	 * changing the storage type (at the very least, IDs should be tracked
4069	 * as unsigned ints).
4070	 */
4071	BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4072	if (id >= KVM_MAX_VCPU_IDS)
4073		return -EINVAL;
4074
4075	mutex_lock(&kvm->lock);
4076	if (kvm->created_vcpus >= kvm->max_vcpus) {
4077		mutex_unlock(&kvm->lock);
4078		return -EINVAL;
4079	}
4080
4081	r = kvm_arch_vcpu_precreate(kvm, id);
4082	if (r) {
4083		mutex_unlock(&kvm->lock);
4084		return r;
4085	}
4086
4087	kvm->created_vcpus++;
4088	mutex_unlock(&kvm->lock);
4089
4090	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4091	if (!vcpu) {
4092		r = -ENOMEM;
4093		goto vcpu_decrement;
4094	}
4095
4096	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4097	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4098	if (!page) {
4099		r = -ENOMEM;
4100		goto vcpu_free;
4101	}
4102	vcpu->run = page_address(page);
4103
4104	kvm_vcpu_init(vcpu, kvm, id);
4105
4106	r = kvm_arch_vcpu_create(vcpu);
4107	if (r)
4108		goto vcpu_free_run_page;
4109
4110	if (kvm->dirty_ring_size) {
4111		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4112					 id, kvm->dirty_ring_size);
4113		if (r)
4114			goto arch_vcpu_destroy;
4115	}
4116
4117	mutex_lock(&kvm->lock);
4118
4119#ifdef CONFIG_LOCKDEP
4120	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4121	mutex_lock(&vcpu->mutex);
4122	mutex_unlock(&vcpu->mutex);
4123#endif
4124
4125	if (kvm_get_vcpu_by_id(kvm, id)) {
4126		r = -EEXIST;
4127		goto unlock_vcpu_destroy;
4128	}
4129
4130	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4131	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4132	if (r)
4133		goto unlock_vcpu_destroy;
 
 
 
4134
4135	/* Now it's all set up, let userspace reach it */
4136	kvm_get_kvm(kvm);
4137	r = create_vcpu_fd(vcpu);
4138	if (r < 0)
4139		goto kvm_put_xa_release;
4140
4141	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4142		r = -EINVAL;
4143		goto kvm_put_xa_release;
4144	}
4145
4146	/*
4147	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4148	 * pointer before kvm->online_vcpu's incremented value.
4149	 */
4150	smp_wmb();
4151	atomic_inc(&kvm->online_vcpus);
4152
4153	mutex_unlock(&kvm->lock);
4154	kvm_arch_vcpu_postcreate(vcpu);
4155	kvm_create_vcpu_debugfs(vcpu);
4156	return r;
4157
4158kvm_put_xa_release:
4159	kvm_put_kvm_no_destroy(kvm);
4160	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4161unlock_vcpu_destroy:
4162	mutex_unlock(&kvm->lock);
4163	kvm_dirty_ring_free(&vcpu->dirty_ring);
4164arch_vcpu_destroy:
4165	kvm_arch_vcpu_destroy(vcpu);
4166vcpu_free_run_page:
4167	free_page((unsigned long)vcpu->run);
4168vcpu_free:
4169	kmem_cache_free(kvm_vcpu_cache, vcpu);
4170vcpu_decrement:
4171	mutex_lock(&kvm->lock);
4172	kvm->created_vcpus--;
4173	mutex_unlock(&kvm->lock);
4174	return r;
4175}
4176
4177static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4178{
4179	if (sigset) {
4180		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4181		vcpu->sigset_active = 1;
4182		vcpu->sigset = *sigset;
4183	} else
4184		vcpu->sigset_active = 0;
4185	return 0;
4186}
4187
4188static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4189			      size_t size, loff_t *offset)
4190{
4191	struct kvm_vcpu *vcpu = file->private_data;
4192
4193	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4194			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4195			sizeof(vcpu->stat), user_buffer, size, offset);
4196}
4197
4198static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4199{
4200	struct kvm_vcpu *vcpu = file->private_data;
4201
4202	kvm_put_kvm(vcpu->kvm);
4203	return 0;
4204}
4205
4206static const struct file_operations kvm_vcpu_stats_fops = {
4207	.owner = THIS_MODULE,
4208	.read = kvm_vcpu_stats_read,
4209	.release = kvm_vcpu_stats_release,
4210	.llseek = noop_llseek,
4211};
4212
4213static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4214{
4215	int fd;
4216	struct file *file;
4217	char name[15 + ITOA_MAX_LEN + 1];
4218
4219	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4220
4221	fd = get_unused_fd_flags(O_CLOEXEC);
4222	if (fd < 0)
4223		return fd;
4224
4225	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4226	if (IS_ERR(file)) {
4227		put_unused_fd(fd);
4228		return PTR_ERR(file);
4229	}
4230
4231	kvm_get_kvm(vcpu->kvm);
4232
4233	file->f_mode |= FMODE_PREAD;
4234	fd_install(fd, file);
4235
4236	return fd;
4237}
4238
4239#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4240static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4241				     struct kvm_pre_fault_memory *range)
4242{
4243	int idx;
4244	long r;
4245	u64 full_size;
4246
4247	if (range->flags)
4248		return -EINVAL;
4249
4250	if (!PAGE_ALIGNED(range->gpa) ||
4251	    !PAGE_ALIGNED(range->size) ||
4252	    range->gpa + range->size <= range->gpa)
4253		return -EINVAL;
4254
4255	vcpu_load(vcpu);
4256	idx = srcu_read_lock(&vcpu->kvm->srcu);
4257
4258	full_size = range->size;
4259	do {
4260		if (signal_pending(current)) {
4261			r = -EINTR;
4262			break;
4263		}
4264
4265		r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4266		if (WARN_ON_ONCE(r == 0 || r == -EIO))
4267			break;
4268
4269		if (r < 0)
4270			break;
4271
4272		range->size -= r;
4273		range->gpa += r;
4274		cond_resched();
4275	} while (range->size);
4276
4277	srcu_read_unlock(&vcpu->kvm->srcu, idx);
4278	vcpu_put(vcpu);
4279
4280	/* Return success if at least one page was mapped successfully.  */
4281	return full_size == range->size ? r : 0;
4282}
4283#endif
4284
4285static long kvm_vcpu_ioctl(struct file *filp,
4286			   unsigned int ioctl, unsigned long arg)
4287{
4288	struct kvm_vcpu *vcpu = filp->private_data;
4289	void __user *argp = (void __user *)arg;
4290	int r;
4291	struct kvm_fpu *fpu = NULL;
4292	struct kvm_sregs *kvm_sregs = NULL;
4293
4294	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4295		return -EIO;
4296
4297	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4298		return -EINVAL;
4299
4300	/*
4301	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4302	 * execution; mutex_lock() would break them.
4303	 */
4304	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4305	if (r != -ENOIOCTLCMD)
4306		return r;
 
4307
4308	if (mutex_lock_killable(&vcpu->mutex))
4309		return -EINTR;
4310	switch (ioctl) {
4311	case KVM_RUN: {
4312		struct pid *oldpid;
4313		r = -EINVAL;
4314		if (arg)
4315			goto out;
4316
4317		/*
4318		 * Note, vcpu->pid is primarily protected by vcpu->mutex. The
4319		 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to
4320		 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
4321		 * directly to this vCPU
4322		 */
4323		oldpid = vcpu->pid;
4324		if (unlikely(oldpid != task_pid(current))) {
4325			/* The thread running this VCPU changed. */
4326			struct pid *newpid;
4327
4328			r = kvm_arch_vcpu_run_pid_change(vcpu);
4329			if (r)
4330				break;
4331
4332			newpid = get_task_pid(current, PIDTYPE_PID);
4333			write_lock(&vcpu->pid_lock);
4334			vcpu->pid = newpid;
4335			write_unlock(&vcpu->pid_lock);
4336
4337			put_pid(oldpid);
4338		}
4339		vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4340		r = kvm_arch_vcpu_ioctl_run(vcpu);
4341		vcpu->wants_to_run = false;
4342
4343		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4344		break;
4345	}
4346	case KVM_GET_REGS: {
4347		struct kvm_regs *kvm_regs;
4348
4349		r = -ENOMEM;
4350		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4351		if (!kvm_regs)
4352			goto out;
4353		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4354		if (r)
4355			goto out_free1;
4356		r = -EFAULT;
4357		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4358			goto out_free1;
4359		r = 0;
4360out_free1:
4361		kfree(kvm_regs);
4362		break;
4363	}
4364	case KVM_SET_REGS: {
4365		struct kvm_regs *kvm_regs;
4366
 
4367		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4368		if (IS_ERR(kvm_regs)) {
4369			r = PTR_ERR(kvm_regs);
4370			goto out;
4371		}
4372		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
 
 
 
 
4373		kfree(kvm_regs);
4374		break;
4375	}
4376	case KVM_GET_SREGS: {
4377		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4378		r = -ENOMEM;
4379		if (!kvm_sregs)
4380			goto out;
4381		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4382		if (r)
4383			goto out;
4384		r = -EFAULT;
4385		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4386			goto out;
4387		r = 0;
4388		break;
4389	}
4390	case KVM_SET_SREGS: {
4391		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4392		if (IS_ERR(kvm_sregs)) {
4393			r = PTR_ERR(kvm_sregs);
4394			kvm_sregs = NULL;
4395			goto out;
4396		}
4397		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
 
 
 
4398		break;
4399	}
4400	case KVM_GET_MP_STATE: {
4401		struct kvm_mp_state mp_state;
4402
4403		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4404		if (r)
4405			goto out;
4406		r = -EFAULT;
4407		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4408			goto out;
4409		r = 0;
4410		break;
4411	}
4412	case KVM_SET_MP_STATE: {
4413		struct kvm_mp_state mp_state;
4414
4415		r = -EFAULT;
4416		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4417			goto out;
4418		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
 
 
 
4419		break;
4420	}
4421	case KVM_TRANSLATE: {
4422		struct kvm_translation tr;
4423
4424		r = -EFAULT;
4425		if (copy_from_user(&tr, argp, sizeof(tr)))
4426			goto out;
4427		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4428		if (r)
4429			goto out;
4430		r = -EFAULT;
4431		if (copy_to_user(argp, &tr, sizeof(tr)))
4432			goto out;
4433		r = 0;
4434		break;
4435	}
4436	case KVM_SET_GUEST_DEBUG: {
4437		struct kvm_guest_debug dbg;
4438
4439		r = -EFAULT;
4440		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4441			goto out;
4442		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
 
 
 
4443		break;
4444	}
4445	case KVM_SET_SIGNAL_MASK: {
4446		struct kvm_signal_mask __user *sigmask_arg = argp;
4447		struct kvm_signal_mask kvm_sigmask;
4448		sigset_t sigset, *p;
4449
4450		p = NULL;
4451		if (argp) {
4452			r = -EFAULT;
4453			if (copy_from_user(&kvm_sigmask, argp,
4454					   sizeof(kvm_sigmask)))
4455				goto out;
4456			r = -EINVAL;
4457			if (kvm_sigmask.len != sizeof(sigset))
4458				goto out;
4459			r = -EFAULT;
4460			if (copy_from_user(&sigset, sigmask_arg->sigset,
4461					   sizeof(sigset)))
4462				goto out;
4463			p = &sigset;
4464		}
4465		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4466		break;
4467	}
4468	case KVM_GET_FPU: {
4469		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4470		r = -ENOMEM;
4471		if (!fpu)
4472			goto out;
4473		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4474		if (r)
4475			goto out;
4476		r = -EFAULT;
4477		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4478			goto out;
4479		r = 0;
4480		break;
4481	}
4482	case KVM_SET_FPU: {
4483		fpu = memdup_user(argp, sizeof(*fpu));
4484		if (IS_ERR(fpu)) {
4485			r = PTR_ERR(fpu);
4486			fpu = NULL;
4487			goto out;
4488		}
4489		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
 
 
 
4490		break;
4491	}
4492	case KVM_GET_STATS_FD: {
4493		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4494		break;
4495	}
4496#ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4497	case KVM_PRE_FAULT_MEMORY: {
4498		struct kvm_pre_fault_memory range;
4499
4500		r = -EFAULT;
4501		if (copy_from_user(&range, argp, sizeof(range)))
4502			break;
4503		r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4504		/* Pass back leftover range. */
4505		if (copy_to_user(argp, &range, sizeof(range)))
4506			r = -EFAULT;
4507		break;
4508	}
4509#endif
4510	default:
4511		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4512	}
4513out:
4514	mutex_unlock(&vcpu->mutex);
4515	kfree(fpu);
4516	kfree(kvm_sregs);
4517	return r;
4518}
4519
4520#ifdef CONFIG_KVM_COMPAT
4521static long kvm_vcpu_compat_ioctl(struct file *filp,
4522				  unsigned int ioctl, unsigned long arg)
4523{
4524	struct kvm_vcpu *vcpu = filp->private_data;
4525	void __user *argp = compat_ptr(arg);
4526	int r;
4527
4528	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4529		return -EIO;
4530
4531	switch (ioctl) {
4532	case KVM_SET_SIGNAL_MASK: {
4533		struct kvm_signal_mask __user *sigmask_arg = argp;
4534		struct kvm_signal_mask kvm_sigmask;
 
4535		sigset_t sigset;
4536
4537		if (argp) {
4538			r = -EFAULT;
4539			if (copy_from_user(&kvm_sigmask, argp,
4540					   sizeof(kvm_sigmask)))
4541				goto out;
4542			r = -EINVAL;
4543			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4544				goto out;
4545			r = -EFAULT;
4546			if (get_compat_sigset(&sigset,
4547					      (compat_sigset_t __user *)sigmask_arg->sigset))
4548				goto out;
4549			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4550		} else
4551			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4552		break;
4553	}
4554	default:
4555		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4556	}
4557
4558out:
4559	return r;
4560}
4561#endif
4562
4563static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4564{
4565	struct kvm_device *dev = filp->private_data;
4566
4567	if (dev->ops->mmap)
4568		return dev->ops->mmap(dev, vma);
4569
4570	return -ENODEV;
4571}
4572
4573static int kvm_device_ioctl_attr(struct kvm_device *dev,
4574				 int (*accessor)(struct kvm_device *dev,
4575						 struct kvm_device_attr *attr),
4576				 unsigned long arg)
4577{
4578	struct kvm_device_attr attr;
4579
4580	if (!accessor)
4581		return -EPERM;
4582
4583	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4584		return -EFAULT;
4585
4586	return accessor(dev, &attr);
4587}
4588
4589static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4590			     unsigned long arg)
4591{
4592	struct kvm_device *dev = filp->private_data;
4593
4594	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4595		return -EIO;
4596
4597	switch (ioctl) {
4598	case KVM_SET_DEVICE_ATTR:
4599		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4600	case KVM_GET_DEVICE_ATTR:
4601		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4602	case KVM_HAS_DEVICE_ATTR:
4603		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4604	default:
4605		if (dev->ops->ioctl)
4606			return dev->ops->ioctl(dev, ioctl, arg);
4607
4608		return -ENOTTY;
4609	}
4610}
4611
4612static int kvm_device_release(struct inode *inode, struct file *filp)
4613{
4614	struct kvm_device *dev = filp->private_data;
4615	struct kvm *kvm = dev->kvm;
4616
4617	if (dev->ops->release) {
4618		mutex_lock(&kvm->lock);
4619		list_del_rcu(&dev->vm_node);
4620		synchronize_rcu();
4621		dev->ops->release(dev);
4622		mutex_unlock(&kvm->lock);
4623	}
4624
4625	kvm_put_kvm(kvm);
4626	return 0;
4627}
4628
4629static struct file_operations kvm_device_fops = {
4630	.unlocked_ioctl = kvm_device_ioctl,
4631	.release = kvm_device_release,
4632	KVM_COMPAT(kvm_device_ioctl),
4633	.mmap = kvm_device_mmap,
4634};
4635
4636struct kvm_device *kvm_device_from_filp(struct file *filp)
4637{
4638	if (filp->f_op != &kvm_device_fops)
4639		return NULL;
4640
4641	return filp->private_data;
4642}
4643
4644static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4645#ifdef CONFIG_KVM_MPIC
4646	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4647	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4648#endif
4649};
4650
4651int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4652{
4653	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4654		return -ENOSPC;
4655
4656	if (kvm_device_ops_table[type] != NULL)
4657		return -EEXIST;
4658
4659	kvm_device_ops_table[type] = ops;
4660	return 0;
4661}
4662
4663void kvm_unregister_device_ops(u32 type)
4664{
4665	if (kvm_device_ops_table[type] != NULL)
4666		kvm_device_ops_table[type] = NULL;
4667}
4668
4669static int kvm_ioctl_create_device(struct kvm *kvm,
4670				   struct kvm_create_device *cd)
4671{
4672	const struct kvm_device_ops *ops;
4673	struct kvm_device *dev;
4674	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4675	int type;
4676	int ret;
4677
4678	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4679		return -ENODEV;
4680
4681	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4682	ops = kvm_device_ops_table[type];
4683	if (ops == NULL)
4684		return -ENODEV;
4685
4686	if (test)
4687		return 0;
4688
4689	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4690	if (!dev)
4691		return -ENOMEM;
4692
4693	dev->ops = ops;
4694	dev->kvm = kvm;
4695
4696	mutex_lock(&kvm->lock);
4697	ret = ops->create(dev, type);
4698	if (ret < 0) {
4699		mutex_unlock(&kvm->lock);
4700		kfree(dev);
4701		return ret;
4702	}
4703	list_add_rcu(&dev->vm_node, &kvm->devices);
4704	mutex_unlock(&kvm->lock);
4705
4706	if (ops->init)
4707		ops->init(dev);
4708
4709	kvm_get_kvm(kvm);
4710	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4711	if (ret < 0) {
4712		kvm_put_kvm_no_destroy(kvm);
4713		mutex_lock(&kvm->lock);
4714		list_del_rcu(&dev->vm_node);
4715		synchronize_rcu();
4716		if (ops->release)
4717			ops->release(dev);
4718		mutex_unlock(&kvm->lock);
4719		if (ops->destroy)
4720			ops->destroy(dev);
4721		return ret;
4722	}
4723
4724	cd->fd = ret;
4725	return 0;
4726}
4727
4728static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4729{
4730	switch (arg) {
4731	case KVM_CAP_USER_MEMORY:
4732	case KVM_CAP_USER_MEMORY2:
4733	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4734	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4735	case KVM_CAP_INTERNAL_ERROR_DATA:
4736#ifdef CONFIG_HAVE_KVM_MSI
4737	case KVM_CAP_SIGNAL_MSI:
4738#endif
4739#ifdef CONFIG_HAVE_KVM_IRQCHIP
4740	case KVM_CAP_IRQFD:
4741#endif
4742	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4743	case KVM_CAP_CHECK_EXTENSION_VM:
4744	case KVM_CAP_ENABLE_CAP_VM:
4745	case KVM_CAP_HALT_POLL:
4746		return 1;
4747#ifdef CONFIG_KVM_MMIO
4748	case KVM_CAP_COALESCED_MMIO:
4749		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4750	case KVM_CAP_COALESCED_PIO:
4751		return 1;
4752#endif
4753#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4754	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4755		return KVM_DIRTY_LOG_MANUAL_CAPS;
4756#endif
4757#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4758	case KVM_CAP_IRQ_ROUTING:
4759		return KVM_MAX_IRQ_ROUTES;
4760#endif
4761#if KVM_MAX_NR_ADDRESS_SPACES > 1
4762	case KVM_CAP_MULTI_ADDRESS_SPACE:
4763		if (kvm)
4764			return kvm_arch_nr_memslot_as_ids(kvm);
4765		return KVM_MAX_NR_ADDRESS_SPACES;
4766#endif
4767	case KVM_CAP_NR_MEMSLOTS:
4768		return KVM_USER_MEM_SLOTS;
4769	case KVM_CAP_DIRTY_LOG_RING:
4770#ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4771		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4772#else
4773		return 0;
4774#endif
4775	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4776#ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4777		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4778#else
4779		return 0;
4780#endif
4781#ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4782	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4783#endif
4784	case KVM_CAP_BINARY_STATS_FD:
4785	case KVM_CAP_SYSTEM_EVENT_DATA:
4786	case KVM_CAP_DEVICE_CTRL:
4787		return 1;
4788#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4789	case KVM_CAP_MEMORY_ATTRIBUTES:
4790		return kvm_supported_mem_attributes(kvm);
4791#endif
4792#ifdef CONFIG_KVM_PRIVATE_MEM
4793	case KVM_CAP_GUEST_MEMFD:
4794		return !kvm || kvm_arch_has_private_mem(kvm);
4795#endif
4796	default:
4797		break;
4798	}
4799	return kvm_vm_ioctl_check_extension(kvm, arg);
4800}
4801
4802static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4803{
4804	int r;
4805
4806	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4807		return -EINVAL;
4808
4809	/* the size should be power of 2 */
4810	if (!size || (size & (size - 1)))
4811		return -EINVAL;
4812
4813	/* Should be bigger to keep the reserved entries, or a page */
4814	if (size < kvm_dirty_ring_get_rsvd_entries() *
4815	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4816		return -EINVAL;
4817
4818	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4819	    sizeof(struct kvm_dirty_gfn))
4820		return -E2BIG;
4821
4822	/* We only allow it to set once */
4823	if (kvm->dirty_ring_size)
4824		return -EINVAL;
4825
4826	mutex_lock(&kvm->lock);
4827
4828	if (kvm->created_vcpus) {
4829		/* We don't allow to change this value after vcpu created */
4830		r = -EINVAL;
4831	} else {
4832		kvm->dirty_ring_size = size;
4833		r = 0;
4834	}
4835
4836	mutex_unlock(&kvm->lock);
4837	return r;
4838}
4839
4840static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4841{
4842	unsigned long i;
4843	struct kvm_vcpu *vcpu;
4844	int cleared = 0;
4845
4846	if (!kvm->dirty_ring_size)
4847		return -EINVAL;
4848
4849	mutex_lock(&kvm->slots_lock);
4850
4851	kvm_for_each_vcpu(i, vcpu, kvm)
4852		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4853
4854	mutex_unlock(&kvm->slots_lock);
4855
4856	if (cleared)
4857		kvm_flush_remote_tlbs(kvm);
4858
4859	return cleared;
4860}
4861
4862int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4863						  struct kvm_enable_cap *cap)
4864{
4865	return -EINVAL;
4866}
4867
4868bool kvm_are_all_memslots_empty(struct kvm *kvm)
4869{
4870	int i;
4871
4872	lockdep_assert_held(&kvm->slots_lock);
4873
4874	for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4875		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4876			return false;
4877	}
4878
4879	return true;
4880}
4881EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4882
4883static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4884					   struct kvm_enable_cap *cap)
4885{
4886	switch (cap->cap) {
4887#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4888	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4889		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4890
4891		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4892			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4893
4894		if (cap->flags || (cap->args[0] & ~allowed_options))
4895			return -EINVAL;
4896		kvm->manual_dirty_log_protect = cap->args[0];
4897		return 0;
4898	}
4899#endif
4900	case KVM_CAP_HALT_POLL: {
4901		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4902			return -EINVAL;
4903
4904		kvm->max_halt_poll_ns = cap->args[0];
4905
4906		/*
4907		 * Ensure kvm->override_halt_poll_ns does not become visible
4908		 * before kvm->max_halt_poll_ns.
4909		 *
4910		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4911		 */
4912		smp_wmb();
4913		kvm->override_halt_poll_ns = true;
4914
4915		return 0;
4916	}
4917	case KVM_CAP_DIRTY_LOG_RING:
4918	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4919		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4920			return -EINVAL;
4921
4922		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4923	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4924		int r = -EINVAL;
4925
4926		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4927		    !kvm->dirty_ring_size || cap->flags)
4928			return r;
4929
4930		mutex_lock(&kvm->slots_lock);
4931
4932		/*
4933		 * For simplicity, allow enabling ring+bitmap if and only if
4934		 * there are no memslots, e.g. to ensure all memslots allocate
4935		 * a bitmap after the capability is enabled.
4936		 */
4937		if (kvm_are_all_memslots_empty(kvm)) {
4938			kvm->dirty_ring_with_bitmap = true;
4939			r = 0;
4940		}
4941
4942		mutex_unlock(&kvm->slots_lock);
4943
4944		return r;
4945	}
4946	default:
4947		return kvm_vm_ioctl_enable_cap(kvm, cap);
4948	}
4949}
4950
4951static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4952			      size_t size, loff_t *offset)
4953{
4954	struct kvm *kvm = file->private_data;
4955
4956	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4957				&kvm_vm_stats_desc[0], &kvm->stat,
4958				sizeof(kvm->stat), user_buffer, size, offset);
4959}
4960
4961static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4962{
4963	struct kvm *kvm = file->private_data;
4964
4965	kvm_put_kvm(kvm);
4966	return 0;
4967}
4968
4969static const struct file_operations kvm_vm_stats_fops = {
4970	.owner = THIS_MODULE,
4971	.read = kvm_vm_stats_read,
4972	.release = kvm_vm_stats_release,
4973	.llseek = noop_llseek,
4974};
4975
4976static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4977{
4978	int fd;
4979	struct file *file;
4980
4981	fd = get_unused_fd_flags(O_CLOEXEC);
4982	if (fd < 0)
4983		return fd;
4984
4985	file = anon_inode_getfile("kvm-vm-stats",
4986			&kvm_vm_stats_fops, kvm, O_RDONLY);
4987	if (IS_ERR(file)) {
4988		put_unused_fd(fd);
4989		return PTR_ERR(file);
4990	}
4991
4992	kvm_get_kvm(kvm);
4993
4994	file->f_mode |= FMODE_PREAD;
4995	fd_install(fd, file);
4996
4997	return fd;
4998}
4999
5000#define SANITY_CHECK_MEM_REGION_FIELD(field)					\
5001do {										\
5002	BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=		\
5003		     offsetof(struct kvm_userspace_memory_region2, field));	\
5004	BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=		\
5005		     sizeof_field(struct kvm_userspace_memory_region2, field));	\
5006} while (0)
5007
5008static long kvm_vm_ioctl(struct file *filp,
5009			   unsigned int ioctl, unsigned long arg)
5010{
5011	struct kvm *kvm = filp->private_data;
5012	void __user *argp = (void __user *)arg;
5013	int r;
5014
5015	if (kvm->mm != current->mm || kvm->vm_dead)
5016		return -EIO;
5017	switch (ioctl) {
5018	case KVM_CREATE_VCPU:
5019		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5020		break;
5021	case KVM_ENABLE_CAP: {
5022		struct kvm_enable_cap cap;
5023
5024		r = -EFAULT;
5025		if (copy_from_user(&cap, argp, sizeof(cap)))
5026			goto out;
5027		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5028		break;
5029	}
5030	case KVM_SET_USER_MEMORY_REGION2:
5031	case KVM_SET_USER_MEMORY_REGION: {
5032		struct kvm_userspace_memory_region2 mem;
5033		unsigned long size;
5034
5035		if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5036			/*
5037			 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5038			 * accessed, but avoid leaking kernel memory in case of a bug.
5039			 */
5040			memset(&mem, 0, sizeof(mem));
5041			size = sizeof(struct kvm_userspace_memory_region);
5042		} else {
5043			size = sizeof(struct kvm_userspace_memory_region2);
5044		}
5045
5046		/* Ensure the common parts of the two structs are identical. */
5047		SANITY_CHECK_MEM_REGION_FIELD(slot);
5048		SANITY_CHECK_MEM_REGION_FIELD(flags);
5049		SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5050		SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5051		SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5052
5053		r = -EFAULT;
5054		if (copy_from_user(&mem, argp, size))
 
5055			goto out;
5056
5057		r = -EINVAL;
5058		if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5059		    (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5060			goto out;
5061
5062		r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5063		break;
5064	}
5065	case KVM_GET_DIRTY_LOG: {
5066		struct kvm_dirty_log log;
5067
5068		r = -EFAULT;
5069		if (copy_from_user(&log, argp, sizeof(log)))
5070			goto out;
5071		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5072		break;
5073	}
5074#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5075	case KVM_CLEAR_DIRTY_LOG: {
5076		struct kvm_clear_dirty_log log;
5077
5078		r = -EFAULT;
5079		if (copy_from_user(&log, argp, sizeof(log)))
5080			goto out;
5081		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5082		break;
5083	}
5084#endif
5085#ifdef CONFIG_KVM_MMIO
5086	case KVM_REGISTER_COALESCED_MMIO: {
5087		struct kvm_coalesced_mmio_zone zone;
5088
5089		r = -EFAULT;
5090		if (copy_from_user(&zone, argp, sizeof(zone)))
5091			goto out;
5092		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
 
 
 
5093		break;
5094	}
5095	case KVM_UNREGISTER_COALESCED_MMIO: {
5096		struct kvm_coalesced_mmio_zone zone;
5097
5098		r = -EFAULT;
5099		if (copy_from_user(&zone, argp, sizeof(zone)))
5100			goto out;
5101		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
 
 
 
5102		break;
5103	}
5104#endif
5105	case KVM_IRQFD: {
5106		struct kvm_irqfd data;
5107
5108		r = -EFAULT;
5109		if (copy_from_user(&data, argp, sizeof(data)))
5110			goto out;
5111		r = kvm_irqfd(kvm, &data);
5112		break;
5113	}
5114	case KVM_IOEVENTFD: {
5115		struct kvm_ioeventfd data;
5116
5117		r = -EFAULT;
5118		if (copy_from_user(&data, argp, sizeof(data)))
5119			goto out;
5120		r = kvm_ioeventfd(kvm, &data);
5121		break;
5122	}
 
 
 
 
 
 
 
 
 
 
 
5123#ifdef CONFIG_HAVE_KVM_MSI
5124	case KVM_SIGNAL_MSI: {
5125		struct kvm_msi msi;
5126
5127		r = -EFAULT;
5128		if (copy_from_user(&msi, argp, sizeof(msi)))
5129			goto out;
5130		r = kvm_send_userspace_msi(kvm, &msi);
5131		break;
5132	}
5133#endif
5134#ifdef __KVM_HAVE_IRQ_LINE
5135	case KVM_IRQ_LINE_STATUS:
5136	case KVM_IRQ_LINE: {
5137		struct kvm_irq_level irq_event;
5138
5139		r = -EFAULT;
5140		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5141			goto out;
5142
5143		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5144					ioctl == KVM_IRQ_LINE_STATUS);
5145		if (r)
5146			goto out;
5147
5148		r = -EFAULT;
5149		if (ioctl == KVM_IRQ_LINE_STATUS) {
5150			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5151				goto out;
5152		}
5153
5154		r = 0;
5155		break;
5156	}
5157#endif
5158#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5159	case KVM_SET_GSI_ROUTING: {
5160		struct kvm_irq_routing routing;
5161		struct kvm_irq_routing __user *urouting;
5162		struct kvm_irq_routing_entry *entries = NULL;
5163
5164		r = -EFAULT;
5165		if (copy_from_user(&routing, argp, sizeof(routing)))
5166			goto out;
5167		r = -EINVAL;
5168		if (!kvm_arch_can_set_irq_routing(kvm))
5169			goto out;
5170		if (routing.nr > KVM_MAX_IRQ_ROUTES)
5171			goto out;
5172		if (routing.flags)
5173			goto out;
5174		if (routing.nr) {
5175			urouting = argp;
5176			entries = vmemdup_array_user(urouting->entries,
5177						     routing.nr, sizeof(*entries));
5178			if (IS_ERR(entries)) {
5179				r = PTR_ERR(entries);
5180				goto out;
5181			}
5182		}
5183		r = kvm_set_irq_routing(kvm, entries, routing.nr,
5184					routing.flags);
5185		kvfree(entries);
5186		break;
5187	}
5188#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5189#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5190	case KVM_SET_MEMORY_ATTRIBUTES: {
5191		struct kvm_memory_attributes attrs;
5192
5193		r = -EFAULT;
5194		if (copy_from_user(&attrs, argp, sizeof(attrs)))
5195			goto out;
5196
5197		r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5198		break;
5199	}
5200#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5201	case KVM_CREATE_DEVICE: {
5202		struct kvm_create_device cd;
5203
5204		r = -EFAULT;
5205		if (copy_from_user(&cd, argp, sizeof(cd)))
5206			goto out;
5207
5208		r = kvm_ioctl_create_device(kvm, &cd);
5209		if (r)
5210			goto out;
5211
5212		r = -EFAULT;
5213		if (copy_to_user(argp, &cd, sizeof(cd)))
5214			goto out;
5215
5216		r = 0;
5217		break;
5218	}
5219	case KVM_CHECK_EXTENSION:
5220		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5221		break;
5222	case KVM_RESET_DIRTY_RINGS:
5223		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5224		break;
5225	case KVM_GET_STATS_FD:
5226		r = kvm_vm_ioctl_get_stats_fd(kvm);
5227		break;
5228#ifdef CONFIG_KVM_PRIVATE_MEM
5229	case KVM_CREATE_GUEST_MEMFD: {
5230		struct kvm_create_guest_memfd guest_memfd;
5231
5232		r = -EFAULT;
5233		if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5234			goto out;
5235
5236		r = kvm_gmem_create(kvm, &guest_memfd);
5237		break;
5238	}
5239#endif
5240	default:
5241		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
 
 
5242	}
5243out:
5244	return r;
5245}
5246
5247#ifdef CONFIG_KVM_COMPAT
5248struct compat_kvm_dirty_log {
5249	__u32 slot;
5250	__u32 padding1;
5251	union {
5252		compat_uptr_t dirty_bitmap; /* one bit per page */
5253		__u64 padding2;
5254	};
5255};
5256
5257struct compat_kvm_clear_dirty_log {
5258	__u32 slot;
5259	__u32 num_pages;
5260	__u64 first_page;
5261	union {
5262		compat_uptr_t dirty_bitmap; /* one bit per page */
5263		__u64 padding2;
5264	};
5265};
5266
5267long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5268				     unsigned long arg)
5269{
5270	return -ENOTTY;
5271}
5272
5273static long kvm_vm_compat_ioctl(struct file *filp,
5274			   unsigned int ioctl, unsigned long arg)
5275{
5276	struct kvm *kvm = filp->private_data;
5277	int r;
5278
5279	if (kvm->mm != current->mm || kvm->vm_dead)
5280		return -EIO;
5281
5282	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5283	if (r != -ENOTTY)
5284		return r;
5285
5286	switch (ioctl) {
5287#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5288	case KVM_CLEAR_DIRTY_LOG: {
5289		struct compat_kvm_clear_dirty_log compat_log;
5290		struct kvm_clear_dirty_log log;
5291
5292		if (copy_from_user(&compat_log, (void __user *)arg,
5293				   sizeof(compat_log)))
5294			return -EFAULT;
5295		log.slot	 = compat_log.slot;
5296		log.num_pages	 = compat_log.num_pages;
5297		log.first_page	 = compat_log.first_page;
5298		log.padding2	 = compat_log.padding2;
5299		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5300
5301		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5302		break;
5303	}
5304#endif
5305	case KVM_GET_DIRTY_LOG: {
5306		struct compat_kvm_dirty_log compat_log;
5307		struct kvm_dirty_log log;
5308
 
5309		if (copy_from_user(&compat_log, (void __user *)arg,
5310				   sizeof(compat_log)))
5311			return -EFAULT;
5312		log.slot	 = compat_log.slot;
5313		log.padding1	 = compat_log.padding1;
5314		log.padding2	 = compat_log.padding2;
5315		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5316
5317		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
 
 
5318		break;
5319	}
5320	default:
5321		r = kvm_vm_ioctl(filp, ioctl, arg);
5322	}
 
 
5323	return r;
5324}
5325#endif
5326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5327static struct file_operations kvm_vm_fops = {
5328	.release        = kvm_vm_release,
5329	.unlocked_ioctl = kvm_vm_ioctl,
 
 
 
 
5330	.llseek		= noop_llseek,
5331	KVM_COMPAT(kvm_vm_compat_ioctl),
5332};
5333
5334bool file_is_kvm(struct file *file)
5335{
5336	return file && file->f_op == &kvm_vm_fops;
5337}
5338EXPORT_SYMBOL_GPL(file_is_kvm);
5339
5340static int kvm_dev_ioctl_create_vm(unsigned long type)
5341{
5342	char fdname[ITOA_MAX_LEN + 1];
5343	int r, fd;
5344	struct kvm *kvm;
5345	struct file *file;
5346
5347	fd = get_unused_fd_flags(O_CLOEXEC);
5348	if (fd < 0)
5349		return fd;
 
 
 
 
 
 
 
 
 
 
5350
5351	snprintf(fdname, sizeof(fdname), "%d", fd);
 
5352
5353	kvm = kvm_create_vm(type, fdname);
5354	if (IS_ERR(kvm)) {
5355		r = PTR_ERR(kvm);
5356		goto put_fd;
5357	}
5358
5359	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5360	if (IS_ERR(file)) {
5361		r = PTR_ERR(file);
5362		goto put_kvm;
 
 
 
 
 
 
 
 
 
 
5363	}
5364
5365	/*
5366	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5367	 * already set, with ->release() being kvm_vm_release().  In error
5368	 * cases it will be called by the final fput(file) and will take
5369	 * care of doing kvm_put_kvm(kvm).
5370	 */
5371	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5372
5373	fd_install(fd, file);
5374	return fd;
5375
5376put_kvm:
5377	kvm_put_kvm(kvm);
5378put_fd:
5379	put_unused_fd(fd);
5380	return r;
5381}
5382
5383static long kvm_dev_ioctl(struct file *filp,
5384			  unsigned int ioctl, unsigned long arg)
5385{
5386	int r = -EINVAL;
5387
5388	switch (ioctl) {
5389	case KVM_GET_API_VERSION:
 
5390		if (arg)
5391			goto out;
5392		r = KVM_API_VERSION;
5393		break;
5394	case KVM_CREATE_VM:
5395		r = kvm_dev_ioctl_create_vm(arg);
5396		break;
5397	case KVM_CHECK_EXTENSION:
5398		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5399		break;
5400	case KVM_GET_VCPU_MMAP_SIZE:
 
5401		if (arg)
5402			goto out;
5403		r = PAGE_SIZE;     /* struct kvm_run */
5404#ifdef CONFIG_X86
5405		r += PAGE_SIZE;    /* pio data page */
5406#endif
5407#ifdef CONFIG_KVM_MMIO
5408		r += PAGE_SIZE;    /* coalesced mmio ring page */
5409#endif
5410		break;
 
 
 
 
 
5411	default:
5412		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5413	}
5414out:
5415	return r;
5416}
5417
5418static struct file_operations kvm_chardev_ops = {
5419	.unlocked_ioctl = kvm_dev_ioctl,
 
5420	.llseek		= noop_llseek,
5421	KVM_COMPAT(kvm_dev_ioctl),
5422};
5423
5424static struct miscdevice kvm_dev = {
5425	KVM_MINOR,
5426	"kvm",
5427	&kvm_chardev_ops,
5428};
5429
5430#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5431static bool enable_virt_at_load = true;
5432module_param(enable_virt_at_load, bool, 0444);
5433
5434__visible bool kvm_rebooting;
5435EXPORT_SYMBOL_GPL(kvm_rebooting);
5436
5437static DEFINE_PER_CPU(bool, virtualization_enabled);
5438static DEFINE_MUTEX(kvm_usage_lock);
5439static int kvm_usage_count;
5440
5441__weak void kvm_arch_enable_virtualization(void)
5442{
 
 
5443
5444}
5445
5446__weak void kvm_arch_disable_virtualization(void)
5447{
5448
5449}
5450
5451static int kvm_enable_virtualization_cpu(void)
5452{
5453	if (__this_cpu_read(virtualization_enabled))
5454		return 0;
5455
5456	if (kvm_arch_enable_virtualization_cpu()) {
5457		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5458			raw_smp_processor_id());
5459		return -EIO;
 
5460	}
5461
5462	__this_cpu_write(virtualization_enabled, true);
5463	return 0;
5464}
5465
5466static int kvm_online_cpu(unsigned int cpu)
5467{
5468	/*
5469	 * Abort the CPU online process if hardware virtualization cannot
5470	 * be enabled. Otherwise running VMs would encounter unrecoverable
5471	 * errors when scheduled to this CPU.
5472	 */
5473	return kvm_enable_virtualization_cpu();
5474}
5475
5476static void kvm_disable_virtualization_cpu(void *ign)
5477{
5478	if (!__this_cpu_read(virtualization_enabled))
 
 
5479		return;
5480
5481	kvm_arch_disable_virtualization_cpu();
5482
5483	__this_cpu_write(virtualization_enabled, false);
5484}
5485
5486static int kvm_offline_cpu(unsigned int cpu)
5487{
5488	kvm_disable_virtualization_cpu(NULL);
5489	return 0;
 
5490}
5491
5492static void kvm_shutdown(void)
5493{
5494	/*
5495	 * Disable hardware virtualization and set kvm_rebooting to indicate
5496	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5497	 * that relevant errors and exceptions aren't entirely unexpected.
5498	 * Some flavors of hardware virtualization need to be disabled before
5499	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5500	 * on x86, virtualization can block INIT interrupts, which are used by
5501	 * firmware to pull APs back under firmware control.  Note, this path
5502	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5503	 * 100% comprehensive.
5504	 */
5505	pr_info("kvm: exiting hardware virtualization\n");
5506	kvm_rebooting = true;
5507	on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5508}
5509
5510static int kvm_suspend(void)
5511{
5512	/*
5513	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5514	 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5515	 * count is stable.  Assert that kvm_usage_lock is not held to ensure
5516	 * the system isn't suspended while KVM is enabling hardware.  Hardware
5517	 * enabling can be preempted, but the task cannot be frozen until it has
5518	 * dropped all locks (userspace tasks are frozen via a fake signal).
5519	 */
5520	lockdep_assert_not_held(&kvm_usage_lock);
5521	lockdep_assert_irqs_disabled();
5522
5523	kvm_disable_virtualization_cpu(NULL);
5524	return 0;
5525}
5526
5527static void kvm_resume(void)
5528{
5529	lockdep_assert_not_held(&kvm_usage_lock);
5530	lockdep_assert_irqs_disabled();
5531
5532	WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5533}
5534
5535static struct syscore_ops kvm_syscore_ops = {
5536	.suspend = kvm_suspend,
5537	.resume = kvm_resume,
5538	.shutdown = kvm_shutdown,
5539};
5540
5541static int kvm_enable_virtualization(void)
5542{
5543	int r;
5544
5545	guard(mutex)(&kvm_usage_lock);
5546
5547	if (kvm_usage_count++)
5548		return 0;
 
 
5549
5550	kvm_arch_enable_virtualization();
5551
5552	r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5553			      kvm_online_cpu, kvm_offline_cpu);
5554	if (r)
5555		goto err_cpuhp;
5556
5557	register_syscore_ops(&kvm_syscore_ops);
5558
5559	/*
5560	 * Undo virtualization enabling and bail if the system is going down.
5561	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5562	 * possible for an in-flight operation to enable virtualization after
5563	 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
5564	 * invoked.  Note, this relies on system_state being set _before_
5565	 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5566	 * or this CPU observes the impending shutdown.  Which is why KVM uses
5567	 * a syscore ops hook instead of registering a dedicated reboot
5568	 * notifier (the latter runs before system_state is updated).
5569	 */
5570	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5571	    system_state == SYSTEM_RESTART) {
5572		r = -EBUSY;
5573		goto err_rebooting;
5574	}
5575
5576	return 0;
5577
5578err_rebooting:
5579	unregister_syscore_ops(&kvm_syscore_ops);
5580	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5581err_cpuhp:
5582	kvm_arch_disable_virtualization();
5583	--kvm_usage_count;
5584	return r;
5585}
5586
5587static void kvm_disable_virtualization(void)
 
5588{
5589	guard(mutex)(&kvm_usage_lock);
5590
5591	if (--kvm_usage_count)
5592		return;
5593
5594	unregister_syscore_ops(&kvm_syscore_ops);
5595	cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5596	kvm_arch_disable_virtualization();
 
 
 
 
 
 
 
 
 
 
 
5597}
5598
5599static int kvm_init_virtualization(void)
5600{
5601	if (enable_virt_at_load)
5602		return kvm_enable_virtualization();
5603
5604	return 0;
5605}
5606
5607static void kvm_uninit_virtualization(void)
5608{
5609	if (enable_virt_at_load)
5610		kvm_disable_virtualization();
5611}
5612#else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5613static int kvm_enable_virtualization(void)
5614{
5615	return 0;
5616}
 
5617
5618static int kvm_init_virtualization(void)
 
5619{
5620	return 0;
 
 
 
 
 
 
 
 
 
5621}
5622
5623static void kvm_disable_virtualization(void)
5624{
5625
5626}
5627
5628static void kvm_uninit_virtualization(void)
5629{
5630
5631}
5632#endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5633
5634static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5635{
5636	if (dev->ops->destructor)
5637		dev->ops->destructor(dev);
5638}
5639
5640static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5641{
5642	int i;
5643
5644	for (i = 0; i < bus->dev_count; i++) {
5645		struct kvm_io_device *pos = bus->range[i].dev;
5646
5647		kvm_iodevice_destructor(pos);
5648	}
5649	kfree(bus);
5650}
5651
5652static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5653				 const struct kvm_io_range *r2)
5654{
5655	gpa_t addr1 = r1->addr;
5656	gpa_t addr2 = r2->addr;
5657
5658	if (addr1 < addr2)
5659		return -1;
5660
5661	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5662	 * accept any overlapping write.  Any order is acceptable for
5663	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5664	 * we process all of them.
5665	 */
5666	if (r2->len) {
5667		addr1 += r1->len;
5668		addr2 += r2->len;
5669	}
5670
5671	if (addr1 > addr2)
5672		return 1;
5673
5674	return 0;
5675}
5676
5677static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
 
5678{
5679	return kvm_io_bus_cmp(p1, p2);
 
 
 
 
 
 
 
 
 
5680}
5681
5682static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5683			     gpa_t addr, int len)
5684{
5685	struct kvm_io_range *range, key;
5686	int off;
5687
5688	key = (struct kvm_io_range) {
5689		.addr = addr,
5690		.len = len,
5691	};
5692
5693	range = bsearch(&key, bus->range, bus->dev_count,
5694			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5695	if (range == NULL)
5696		return -ENOENT;
5697
5698	off = range - bus->range;
5699
5700	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5701		off--;
5702
5703	return off;
5704}
5705
5706static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5707			      struct kvm_io_range *range, const void *val)
5708{
5709	int idx;
5710
5711	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5712	if (idx < 0)
5713		return -EOPNOTSUPP;
5714
5715	while (idx < bus->dev_count &&
5716		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5717		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5718					range->len, val))
5719			return idx;
5720		idx++;
5721	}
5722
5723	return -EOPNOTSUPP;
5724}
5725
5726/* kvm_io_bus_write - called under kvm->slots_lock */
5727int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5728		     int len, const void *val)
5729{
 
5730	struct kvm_io_bus *bus;
5731	struct kvm_io_range range;
5732	int r;
5733
5734	range = (struct kvm_io_range) {
5735		.addr = addr,
5736		.len = len,
5737	};
5738
5739	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5740	if (!bus)
5741		return -ENOMEM;
5742	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5743	return r < 0 ? r : 0;
5744}
5745EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5746
5747/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5748int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5749			    gpa_t addr, int len, const void *val, long cookie)
5750{
5751	struct kvm_io_bus *bus;
5752	struct kvm_io_range range;
5753
5754	range = (struct kvm_io_range) {
5755		.addr = addr,
5756		.len = len,
5757	};
5758
5759	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5760	if (!bus)
5761		return -ENOMEM;
5762
5763	/* First try the device referenced by cookie. */
5764	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5765	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5766		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5767					val))
5768			return cookie;
5769
5770	/*
5771	 * cookie contained garbage; fall back to search and return the
5772	 * correct cookie value.
5773	 */
5774	return __kvm_io_bus_write(vcpu, bus, &range, val);
5775}
5776
5777static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5778			     struct kvm_io_range *range, void *val)
5779{
5780	int idx;
5781
5782	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5783	if (idx < 0)
5784		return -EOPNOTSUPP;
5785
5786	while (idx < bus->dev_count &&
5787		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5788		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5789				       range->len, val))
5790			return idx;
5791		idx++;
5792	}
5793
5794	return -EOPNOTSUPP;
5795}
5796
5797/* kvm_io_bus_read - called under kvm->slots_lock */
5798int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5799		    int len, void *val)
5800{
 
5801	struct kvm_io_bus *bus;
5802	struct kvm_io_range range;
5803	int r;
5804
5805	range = (struct kvm_io_range) {
5806		.addr = addr,
5807		.len = len,
5808	};
5809
5810	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5811	if (!bus)
5812		return -ENOMEM;
5813	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5814	return r < 0 ? r : 0;
 
 
 
 
 
 
 
 
5815}
5816
 
5817int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5818			    int len, struct kvm_io_device *dev)
5819{
5820	int i;
5821	struct kvm_io_bus *new_bus, *bus;
5822	struct kvm_io_range range;
5823
5824	lockdep_assert_held(&kvm->slots_lock);
5825
5826	bus = kvm_get_bus(kvm, bus_idx);
5827	if (!bus)
5828		return -ENOMEM;
5829
5830	/* exclude ioeventfd which is limited by maximum fd */
5831	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5832		return -ENOSPC;
5833
5834	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5835			  GFP_KERNEL_ACCOUNT);
5836	if (!new_bus)
5837		return -ENOMEM;
5838
5839	range = (struct kvm_io_range) {
5840		.addr = addr,
5841		.len = len,
5842		.dev = dev,
5843	};
5844
5845	for (i = 0; i < bus->dev_count; i++)
5846		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5847			break;
5848
5849	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5850	new_bus->dev_count++;
5851	new_bus->range[i] = range;
5852	memcpy(new_bus->range + i + 1, bus->range + i,
5853		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5854	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5855	synchronize_srcu_expedited(&kvm->srcu);
5856	kfree(bus);
5857
5858	return 0;
5859}
5860
 
5861int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5862			      struct kvm_io_device *dev)
5863{
5864	int i;
5865	struct kvm_io_bus *new_bus, *bus;
5866
5867	lockdep_assert_held(&kvm->slots_lock);
5868
5869	bus = kvm_get_bus(kvm, bus_idx);
5870	if (!bus)
5871		return 0;
5872
5873	for (i = 0; i < bus->dev_count; i++) {
5874		if (bus->range[i].dev == dev) {
 
5875			break;
5876		}
5877	}
5878
5879	if (i == bus->dev_count)
5880		return 0;
 
 
 
 
 
5881
5882	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5883			  GFP_KERNEL_ACCOUNT);
5884	if (new_bus) {
5885		memcpy(new_bus, bus, struct_size(bus, range, i));
5886		new_bus->dev_count--;
5887		memcpy(new_bus->range + i, bus->range + i + 1,
5888				flex_array_size(new_bus, range, new_bus->dev_count - i));
5889	}
5890
5891	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5892	synchronize_srcu_expedited(&kvm->srcu);
5893
5894	/*
5895	 * If NULL bus is installed, destroy the old bus, including all the
5896	 * attached devices. Otherwise, destroy the caller's device only.
5897	 */
5898	if (!new_bus) {
5899		pr_err("kvm: failed to shrink bus, removing it completely\n");
5900		kvm_io_bus_destroy(bus);
5901		return -ENOMEM;
5902	}
5903
5904	kvm_iodevice_destructor(dev);
5905	kfree(bus);
5906	return 0;
5907}
5908
5909struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5910					 gpa_t addr)
5911{
5912	struct kvm_io_bus *bus;
5913	int dev_idx, srcu_idx;
5914	struct kvm_io_device *iodev = NULL;
5915
5916	srcu_idx = srcu_read_lock(&kvm->srcu);
5917
5918	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5919	if (!bus)
5920		goto out_unlock;
5921
5922	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5923	if (dev_idx < 0)
5924		goto out_unlock;
5925
5926	iodev = bus->range[dev_idx].dev;
5927
5928out_unlock:
5929	srcu_read_unlock(&kvm->srcu, srcu_idx);
5930
5931	return iodev;
5932}
5933EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5934
5935static int kvm_debugfs_open(struct inode *inode, struct file *file,
5936			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5937			   const char *fmt)
5938{
5939	int ret;
5940	struct kvm_stat_data *stat_data = inode->i_private;
5941
5942	/*
5943	 * The debugfs files are a reference to the kvm struct which
5944        * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5945        * avoids the race between open and the removal of the debugfs directory.
5946	 */
5947	if (!kvm_get_kvm_safe(stat_data->kvm))
5948		return -ENOENT;
5949
5950	ret = simple_attr_open(inode, file, get,
5951			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
5952			       ? set : NULL, fmt);
5953	if (ret)
5954		kvm_put_kvm(stat_data->kvm);
5955
5956	return ret;
5957}
5958
5959static int kvm_debugfs_release(struct inode *inode, struct file *file)
5960{
5961	struct kvm_stat_data *stat_data = inode->i_private;
5962
5963	simple_attr_release(inode, file);
5964	kvm_put_kvm(stat_data->kvm);
5965
 
 
 
 
 
5966	return 0;
5967}
5968
5969static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5970{
5971	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5972
5973	return 0;
5974}
5975
5976static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5977{
5978	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5979
5980	return 0;
5981}
5982
5983static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5984{
5985	unsigned long i;
5986	struct kvm_vcpu *vcpu;
 
5987
5988	*val = 0;
 
 
 
 
5989
5990	kvm_for_each_vcpu(i, vcpu, kvm)
5991		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5992
5993	return 0;
5994}
5995
5996static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5997{
5998	unsigned long i;
5999	struct kvm_vcpu *vcpu;
6000
6001	kvm_for_each_vcpu(i, vcpu, kvm)
6002		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6003
6004	return 0;
6005}
6006
6007static int kvm_stat_data_get(void *data, u64 *val)
6008{
6009	int r = -EFAULT;
6010	struct kvm_stat_data *stat_data = data;
6011
6012	switch (stat_data->kind) {
6013	case KVM_STAT_VM:
6014		r = kvm_get_stat_per_vm(stat_data->kvm,
6015					stat_data->desc->desc.offset, val);
6016		break;
6017	case KVM_STAT_VCPU:
6018		r = kvm_get_stat_per_vcpu(stat_data->kvm,
6019					  stat_data->desc->desc.offset, val);
6020		break;
6021	}
6022
6023	return r;
6024}
6025
6026static int kvm_stat_data_clear(void *data, u64 val)
6027{
6028	int r = -EFAULT;
6029	struct kvm_stat_data *stat_data = data;
6030
6031	if (val)
6032		return -EINVAL;
6033
6034	switch (stat_data->kind) {
6035	case KVM_STAT_VM:
6036		r = kvm_clear_stat_per_vm(stat_data->kvm,
6037					  stat_data->desc->desc.offset);
6038		break;
6039	case KVM_STAT_VCPU:
6040		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6041					    stat_data->desc->desc.offset);
6042		break;
6043	}
6044
6045	return r;
6046}
6047
6048static int kvm_stat_data_open(struct inode *inode, struct file *file)
6049{
6050	__simple_attr_check_format("%llu\n", 0ull);
6051	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6052				kvm_stat_data_clear, "%llu\n");
6053}
6054
6055static const struct file_operations stat_fops_per_vm = {
6056	.owner = THIS_MODULE,
6057	.open = kvm_stat_data_open,
6058	.release = kvm_debugfs_release,
6059	.read = simple_attr_read,
6060	.write = simple_attr_write,
6061};
6062
6063static int vm_stat_get(void *_offset, u64 *val)
6064{
6065	unsigned offset = (long)_offset;
6066	struct kvm *kvm;
6067	u64 tmp_val;
6068
6069	*val = 0;
6070	mutex_lock(&kvm_lock);
6071	list_for_each_entry(kvm, &vm_list, vm_list) {
6072		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6073		*val += tmp_val;
6074	}
6075	mutex_unlock(&kvm_lock);
6076	return 0;
6077}
6078
6079static int vm_stat_clear(void *_offset, u64 val)
6080{
6081	unsigned offset = (long)_offset;
6082	struct kvm *kvm;
6083
6084	if (val)
6085		return -EINVAL;
6086
6087	mutex_lock(&kvm_lock);
6088	list_for_each_entry(kvm, &vm_list, vm_list) {
6089		kvm_clear_stat_per_vm(kvm, offset);
6090	}
6091	mutex_unlock(&kvm_lock);
6092
6093	return 0;
6094}
6095
6096DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6097DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6098
6099static int vcpu_stat_get(void *_offset, u64 *val)
6100{
6101	unsigned offset = (long)_offset;
6102	struct kvm *kvm;
6103	u64 tmp_val;
6104
6105	*val = 0;
6106	mutex_lock(&kvm_lock);
6107	list_for_each_entry(kvm, &vm_list, vm_list) {
6108		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6109		*val += tmp_val;
6110	}
6111	mutex_unlock(&kvm_lock);
6112	return 0;
6113}
6114
6115static int vcpu_stat_clear(void *_offset, u64 val)
6116{
6117	unsigned offset = (long)_offset;
6118	struct kvm *kvm;
6119
6120	if (val)
6121		return -EINVAL;
6122
6123	mutex_lock(&kvm_lock);
6124	list_for_each_entry(kvm, &vm_list, vm_list) {
6125		kvm_clear_stat_per_vcpu(kvm, offset);
6126	}
6127	mutex_unlock(&kvm_lock);
6128
6129	return 0;
6130}
6131
6132DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6133			"%llu\n");
6134DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6135
6136static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6137{
6138	struct kobj_uevent_env *env;
6139	unsigned long long created, active;
6140
6141	if (!kvm_dev.this_device || !kvm)
6142		return;
6143
6144	mutex_lock(&kvm_lock);
6145	if (type == KVM_EVENT_CREATE_VM) {
6146		kvm_createvm_count++;
6147		kvm_active_vms++;
6148	} else if (type == KVM_EVENT_DESTROY_VM) {
6149		kvm_active_vms--;
6150	}
6151	created = kvm_createvm_count;
6152	active = kvm_active_vms;
6153	mutex_unlock(&kvm_lock);
6154
6155	env = kzalloc(sizeof(*env), GFP_KERNEL);
6156	if (!env)
6157		return;
6158
6159	add_uevent_var(env, "CREATED=%llu", created);
6160	add_uevent_var(env, "COUNT=%llu", active);
6161
6162	if (type == KVM_EVENT_CREATE_VM) {
6163		add_uevent_var(env, "EVENT=create");
6164		kvm->userspace_pid = task_pid_nr(current);
6165	} else if (type == KVM_EVENT_DESTROY_VM) {
6166		add_uevent_var(env, "EVENT=destroy");
6167	}
6168	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6169
6170	if (!IS_ERR(kvm->debugfs_dentry)) {
6171		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6172
6173		if (p) {
6174			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6175			if (!IS_ERR(tmp))
6176				add_uevent_var(env, "STATS_PATH=%s", tmp);
6177			kfree(p);
6178		}
6179	}
6180	/* no need for checks, since we are adding at most only 5 keys */
6181	env->envp[env->envp_idx++] = NULL;
6182	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6183	kfree(env);
6184}
6185
6186static void kvm_init_debug(void)
6187{
6188	const struct file_operations *fops;
6189	const struct _kvm_stats_desc *pdesc;
6190	int i;
6191
6192	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6193
6194	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6195		pdesc = &kvm_vm_stats_desc[i];
6196		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6197			fops = &vm_stat_fops;
6198		else
6199			fops = &vm_stat_readonly_fops;
6200		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6201				kvm_debugfs_dir,
6202				(void *)(long)pdesc->desc.offset, fops);
6203	}
6204
6205	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6206		pdesc = &kvm_vcpu_stats_desc[i];
6207		if (kvm_stats_debugfs_mode(pdesc) & 0222)
6208			fops = &vcpu_stat_fops;
6209		else
6210			fops = &vcpu_stat_readonly_fops;
6211		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6212				kvm_debugfs_dir,
6213				(void *)(long)pdesc->desc.offset, fops);
6214	}
6215}
6216
6217static inline
6218struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6219{
6220	return container_of(pn, struct kvm_vcpu, preempt_notifier);
6221}
6222
6223static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6224{
6225	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6226
6227	WRITE_ONCE(vcpu->preempted, false);
6228	WRITE_ONCE(vcpu->ready, false);
6229
6230	__this_cpu_write(kvm_running_vcpu, vcpu);
6231	kvm_arch_vcpu_load(vcpu, cpu);
6232
6233	WRITE_ONCE(vcpu->scheduled_out, false);
6234}
6235
6236static void kvm_sched_out(struct preempt_notifier *pn,
6237			  struct task_struct *next)
6238{
6239	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6240
6241	WRITE_ONCE(vcpu->scheduled_out, true);
6242
6243	if (task_is_runnable(current) && vcpu->wants_to_run) {
6244		WRITE_ONCE(vcpu->preempted, true);
6245		WRITE_ONCE(vcpu->ready, true);
6246	}
6247	kvm_arch_vcpu_put(vcpu);
6248	__this_cpu_write(kvm_running_vcpu, NULL);
6249}
6250
6251/**
6252 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6253 *
6254 * We can disable preemption locally around accessing the per-CPU variable,
6255 * and use the resolved vcpu pointer after enabling preemption again,
6256 * because even if the current thread is migrated to another CPU, reading
6257 * the per-CPU value later will give us the same value as we update the
6258 * per-CPU variable in the preempt notifier handlers.
6259 */
6260struct kvm_vcpu *kvm_get_running_vcpu(void)
6261{
6262	struct kvm_vcpu *vcpu;
 
 
 
 
 
6263
6264	preempt_disable();
6265	vcpu = __this_cpu_read(kvm_running_vcpu);
6266	preempt_enable();
6267
6268	return vcpu;
6269}
6270EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
 
6271
6272/**
6273 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6274 */
6275struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6276{
6277        return &kvm_running_vcpu;
6278}
6279
6280#ifdef CONFIG_GUEST_PERF_EVENTS
6281static unsigned int kvm_guest_state(void)
6282{
6283	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6284	unsigned int state;
6285
6286	if (!kvm_arch_pmi_in_guest(vcpu))
6287		return 0;
 
 
6288
6289	state = PERF_GUEST_ACTIVE;
6290	if (!kvm_arch_vcpu_in_kernel(vcpu))
6291		state |= PERF_GUEST_USER;
6292
6293	return state;
6294}
6295
6296static unsigned long kvm_guest_get_ip(void)
6297{
6298	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
 
6299
6300	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6301	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6302		return 0;
6303
6304	return kvm_arch_vcpu_get_ip(vcpu);
6305}
 
 
6306
6307static struct perf_guest_info_callbacks kvm_guest_cbs = {
6308	.state			= kvm_guest_state,
6309	.get_ip			= kvm_guest_get_ip,
6310	.handle_intel_pt_intr	= NULL,
6311};
6312
6313void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6314{
6315	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6316	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6317}
6318void kvm_unregister_perf_callbacks(void)
6319{
6320	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6321}
6322#endif
6323
6324int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6325{
6326	int r;
6327	int cpu;
6328
6329	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6330	if (!vcpu_align)
6331		vcpu_align = __alignof__(struct kvm_vcpu);
6332	kvm_vcpu_cache =
6333		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6334					   SLAB_ACCOUNT,
6335					   offsetof(struct kvm_vcpu, arch),
6336					   offsetofend(struct kvm_vcpu, stats_id)
6337					   - offsetof(struct kvm_vcpu, arch),
6338					   NULL);
6339	if (!kvm_vcpu_cache)
6340		return -ENOMEM;
6341
6342	for_each_possible_cpu(cpu) {
6343		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6344					    GFP_KERNEL, cpu_to_node(cpu))) {
6345			r = -ENOMEM;
6346			goto err_cpu_kick_mask;
6347		}
6348	}
6349
6350	r = kvm_irqfd_init();
6351	if (r)
6352		goto err_irqfd;
6353
6354	r = kvm_async_pf_init();
6355	if (r)
6356		goto err_async_pf;
6357
6358	kvm_chardev_ops.owner = module;
6359	kvm_vm_fops.owner = module;
6360	kvm_vcpu_fops.owner = module;
6361	kvm_device_fops.owner = module;
 
 
 
 
 
 
 
6362
6363	kvm_preempt_ops.sched_in = kvm_sched_in;
6364	kvm_preempt_ops.sched_out = kvm_sched_out;
6365
6366	kvm_init_debug();
6367
6368	r = kvm_vfio_ops_init();
6369	if (WARN_ON_ONCE(r))
6370		goto err_vfio;
6371
6372	kvm_gmem_init(module);
6373
6374	r = kvm_init_virtualization();
6375	if (r)
6376		goto err_virt;
6377
6378	/*
6379	 * Registration _must_ be the very last thing done, as this exposes
6380	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6381	 */
6382	r = misc_register(&kvm_dev);
6383	if (r) {
6384		pr_err("kvm: misc device register failed\n");
6385		goto err_register;
6386	}
6387
6388	return 0;
6389
6390err_register:
6391	kvm_uninit_virtualization();
6392err_virt:
6393	kvm_vfio_ops_exit();
6394err_vfio:
6395	kvm_async_pf_deinit();
6396err_async_pf:
6397	kvm_irqfd_exit();
6398err_irqfd:
6399err_cpu_kick_mask:
6400	for_each_possible_cpu(cpu)
6401		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6402	kmem_cache_destroy(kvm_vcpu_cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6403	return r;
6404}
6405EXPORT_SYMBOL_GPL(kvm_init);
6406
6407void kvm_exit(void)
6408{
6409	int cpu;
6410
6411	/*
6412	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6413	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6414	 * to KVM while the module is being stopped.
6415	 */
6416	misc_deregister(&kvm_dev);
6417
6418	kvm_uninit_virtualization();
6419
6420	debugfs_remove_recursive(kvm_debugfs_dir);
6421	for_each_possible_cpu(cpu)
6422		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6423	kmem_cache_destroy(kvm_vcpu_cache);
6424	kvm_vfio_ops_exit();
6425	kvm_async_pf_deinit();
6426	kvm_irqfd_exit();
 
 
 
 
 
 
 
 
 
6427}
6428EXPORT_SYMBOL_GPL(kvm_exit);