Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
 
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
 
 
 
 
 
 
  34
  35/*
  36 * backref_node, mapping_node and tree_block start with this
  37 */
  38struct tree_entry {
  39	struct rb_node rb_node;
  40	u64 bytenr;
  41};
  42
  43/*
  44 * present a tree block in the backref cache
  45 */
  46struct backref_node {
  47	struct rb_node rb_node;
  48	u64 bytenr;
  49
  50	u64 new_bytenr;
  51	/* objectid of tree block owner, can be not uptodate */
  52	u64 owner;
  53	/* link to pending, changed or detached list */
  54	struct list_head list;
  55	/* list of upper level blocks reference this block */
  56	struct list_head upper;
  57	/* list of child blocks in the cache */
  58	struct list_head lower;
  59	/* NULL if this node is not tree root */
  60	struct btrfs_root *root;
  61	/* extent buffer got by COW the block */
  62	struct extent_buffer *eb;
  63	/* level of tree block */
  64	unsigned int level:8;
  65	/* is the block in non-reference counted tree */
  66	unsigned int cowonly:1;
  67	/* 1 if no child node in the cache */
  68	unsigned int lowest:1;
  69	/* is the extent buffer locked */
  70	unsigned int locked:1;
  71	/* has the block been processed */
  72	unsigned int processed:1;
  73	/* have backrefs of this block been checked */
  74	unsigned int checked:1;
  75	/*
  76	 * 1 if corresponding block has been cowed but some upper
  77	 * level block pointers may not point to the new location
  78	 */
  79	unsigned int pending:1;
  80	/*
  81	 * 1 if the backref node isn't connected to any other
  82	 * backref node.
  83	 */
  84	unsigned int detached:1;
  85};
  86
  87/*
  88 * present a block pointer in the backref cache
  89 */
  90struct backref_edge {
  91	struct list_head list[2];
  92	struct backref_node *node[2];
  93};
  94
  95#define LOWER	0
  96#define UPPER	1
  97
  98struct backref_cache {
  99	/* red black tree of all backref nodes in the cache */
 100	struct rb_root rb_root;
 101	/* for passing backref nodes to btrfs_reloc_cow_block */
 102	struct backref_node *path[BTRFS_MAX_LEVEL];
 103	/*
 104	 * list of blocks that have been cowed but some block
 105	 * pointers in upper level blocks may not reflect the
 106	 * new location
 107	 */
 108	struct list_head pending[BTRFS_MAX_LEVEL];
 109	/* list of backref nodes with no child node */
 110	struct list_head leaves;
 111	/* list of blocks that have been cowed in current transaction */
 112	struct list_head changed;
 113	/* list of detached backref node. */
 114	struct list_head detached;
 115
 116	u64 last_trans;
 117
 118	int nr_nodes;
 119	int nr_edges;
 120};
 121
 
 122/*
 123 * map address of tree root to tree
 124 */
 125struct mapping_node {
 126	struct rb_node rb_node;
 127	u64 bytenr;
 
 
 128	void *data;
 129};
 130
 131struct mapping_tree {
 132	struct rb_root rb_root;
 133	spinlock_t lock;
 134};
 135
 136/*
 137 * present a tree block to process
 138 */
 139struct tree_block {
 140	struct rb_node rb_node;
 141	u64 bytenr;
 
 
 142	struct btrfs_key key;
 143	unsigned int level:8;
 144	unsigned int key_ready:1;
 145};
 146
 147#define MAX_EXTENTS 128
 148
 149struct file_extent_cluster {
 150	u64 start;
 151	u64 end;
 152	u64 boundary[MAX_EXTENTS];
 153	unsigned int nr;
 154};
 155
 156struct reloc_control {
 157	/* block group to relocate */
 158	struct btrfs_block_group_cache *block_group;
 159	/* extent tree */
 160	struct btrfs_root *extent_root;
 161	/* inode for moving data */
 162	struct inode *data_inode;
 163
 164	struct btrfs_block_rsv *block_rsv;
 165
 166	struct backref_cache backref_cache;
 167
 168	struct file_extent_cluster cluster;
 169	/* tree blocks have been processed */
 170	struct extent_io_tree processed_blocks;
 171	/* map start of tree root to corresponding reloc tree */
 172	struct mapping_tree reloc_root_tree;
 173	/* list of reloc trees */
 174	struct list_head reloc_roots;
 
 
 175	/* size of metadata reservation for merging reloc trees */
 176	u64 merging_rsv_size;
 177	/* size of relocated tree nodes */
 178	u64 nodes_relocated;
 
 
 179
 180	u64 search_start;
 181	u64 extents_found;
 182
 183	unsigned int stage:8;
 184	unsigned int create_reloc_tree:1;
 185	unsigned int merge_reloc_tree:1;
 186	unsigned int found_file_extent:1;
 187	unsigned int commit_transaction:1;
 188};
 189
 190/* stages of data relocation */
 191#define MOVE_DATA_EXTENTS	0
 192#define UPDATE_DATA_PTRS	1
 193
 194static void remove_backref_node(struct backref_cache *cache,
 195				struct backref_node *node);
 196static void __mark_block_processed(struct reloc_control *rc,
 197				   struct backref_node *node);
 198
 199static void mapping_tree_init(struct mapping_tree *tree)
 200{
 201	tree->rb_root = RB_ROOT;
 202	spin_lock_init(&tree->lock);
 203}
 204
 205static void backref_cache_init(struct backref_cache *cache)
 206{
 207	int i;
 208	cache->rb_root = RB_ROOT;
 209	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 210		INIT_LIST_HEAD(&cache->pending[i]);
 211	INIT_LIST_HEAD(&cache->changed);
 212	INIT_LIST_HEAD(&cache->detached);
 213	INIT_LIST_HEAD(&cache->leaves);
 214}
 215
 216static void backref_cache_cleanup(struct backref_cache *cache)
 217{
 218	struct backref_node *node;
 219	int i;
 220
 221	while (!list_empty(&cache->detached)) {
 222		node = list_entry(cache->detached.next,
 223				  struct backref_node, list);
 224		remove_backref_node(cache, node);
 225	}
 226
 227	while (!list_empty(&cache->leaves)) {
 228		node = list_entry(cache->leaves.next,
 229				  struct backref_node, lower);
 230		remove_backref_node(cache, node);
 231	}
 232
 233	cache->last_trans = 0;
 234
 235	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 236		BUG_ON(!list_empty(&cache->pending[i]));
 237	BUG_ON(!list_empty(&cache->changed));
 238	BUG_ON(!list_empty(&cache->detached));
 239	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
 240	BUG_ON(cache->nr_nodes);
 241	BUG_ON(cache->nr_edges);
 242}
 243
 244static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 245{
 246	struct backref_node *node;
 247
 248	node = kzalloc(sizeof(*node), GFP_NOFS);
 249	if (node) {
 250		INIT_LIST_HEAD(&node->list);
 251		INIT_LIST_HEAD(&node->upper);
 252		INIT_LIST_HEAD(&node->lower);
 253		RB_CLEAR_NODE(&node->rb_node);
 254		cache->nr_nodes++;
 255	}
 256	return node;
 257}
 258
 259static void free_backref_node(struct backref_cache *cache,
 260			      struct backref_node *node)
 261{
 262	if (node) {
 263		cache->nr_nodes--;
 264		kfree(node);
 265	}
 266}
 267
 268static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 269{
 270	struct backref_edge *edge;
 271
 272	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 273	if (edge)
 274		cache->nr_edges++;
 275	return edge;
 276}
 277
 278static void free_backref_edge(struct backref_cache *cache,
 279			      struct backref_edge *edge)
 280{
 281	if (edge) {
 282		cache->nr_edges--;
 283		kfree(edge);
 284	}
 285}
 286
 287static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 288				   struct rb_node *node)
 289{
 290	struct rb_node **p = &root->rb_node;
 291	struct rb_node *parent = NULL;
 292	struct tree_entry *entry;
 293
 294	while (*p) {
 295		parent = *p;
 296		entry = rb_entry(parent, struct tree_entry, rb_node);
 297
 298		if (bytenr < entry->bytenr)
 299			p = &(*p)->rb_left;
 300		else if (bytenr > entry->bytenr)
 301			p = &(*p)->rb_right;
 302		else
 303			return parent;
 304	}
 305
 306	rb_link_node(node, parent, p);
 307	rb_insert_color(node, root);
 308	return NULL;
 309}
 310
 311static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 312{
 313	struct rb_node *n = root->rb_node;
 314	struct tree_entry *entry;
 315
 316	while (n) {
 317		entry = rb_entry(n, struct tree_entry, rb_node);
 318
 319		if (bytenr < entry->bytenr)
 320			n = n->rb_left;
 321		else if (bytenr > entry->bytenr)
 322			n = n->rb_right;
 323		else
 324			return n;
 325	}
 326	return NULL;
 327}
 328
 329void backref_tree_panic(struct rb_node *rb_node, int errno,
 330					  u64 bytenr)
 331{
 332
 333	struct btrfs_fs_info *fs_info = NULL;
 334	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 335					      rb_node);
 336	if (bnode->root)
 337		fs_info = bnode->root->fs_info;
 338	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
 339		    "found at offset %llu\n", (unsigned long long)bytenr);
 340}
 341
 342/*
 343 * walk up backref nodes until reach node presents tree root
 344 */
 345static struct backref_node *walk_up_backref(struct backref_node *node,
 346					    struct backref_edge *edges[],
 347					    int *index)
 348{
 349	struct backref_edge *edge;
 350	int idx = *index;
 351
 352	while (!list_empty(&node->upper)) {
 353		edge = list_entry(node->upper.next,
 354				  struct backref_edge, list[LOWER]);
 355		edges[idx++] = edge;
 356		node = edge->node[UPPER];
 357	}
 358	BUG_ON(node->detached);
 359	*index = idx;
 360	return node;
 361}
 362
 363/*
 364 * walk down backref nodes to find start of next reference path
 365 */
 366static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 367					      int *index)
 368{
 369	struct backref_edge *edge;
 370	struct backref_node *lower;
 371	int idx = *index;
 372
 373	while (idx > 0) {
 374		edge = edges[idx - 1];
 375		lower = edge->node[LOWER];
 376		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 377			idx--;
 378			continue;
 379		}
 380		edge = list_entry(edge->list[LOWER].next,
 381				  struct backref_edge, list[LOWER]);
 382		edges[idx - 1] = edge;
 383		*index = idx;
 384		return edge->node[UPPER];
 385	}
 386	*index = 0;
 387	return NULL;
 388}
 389
 390static void unlock_node_buffer(struct backref_node *node)
 391{
 392	if (node->locked) {
 393		btrfs_tree_unlock(node->eb);
 394		node->locked = 0;
 395	}
 396}
 397
 398static void drop_node_buffer(struct backref_node *node)
 399{
 400	if (node->eb) {
 401		unlock_node_buffer(node);
 402		free_extent_buffer(node->eb);
 403		node->eb = NULL;
 404	}
 405}
 406
 407static void drop_backref_node(struct backref_cache *tree,
 408			      struct backref_node *node)
 409{
 410	BUG_ON(!list_empty(&node->upper));
 411
 412	drop_node_buffer(node);
 413	list_del(&node->list);
 414	list_del(&node->lower);
 415	if (!RB_EMPTY_NODE(&node->rb_node))
 416		rb_erase(&node->rb_node, &tree->rb_root);
 417	free_backref_node(tree, node);
 418}
 419
 420/*
 421 * remove a backref node from the backref cache
 422 */
 423static void remove_backref_node(struct backref_cache *cache,
 424				struct backref_node *node)
 425{
 426	struct backref_node *upper;
 427	struct backref_edge *edge;
 428
 429	if (!node)
 430		return;
 431
 432	BUG_ON(!node->lowest && !node->detached);
 433	while (!list_empty(&node->upper)) {
 434		edge = list_entry(node->upper.next, struct backref_edge,
 435				  list[LOWER]);
 436		upper = edge->node[UPPER];
 437		list_del(&edge->list[LOWER]);
 438		list_del(&edge->list[UPPER]);
 439		free_backref_edge(cache, edge);
 440
 441		if (RB_EMPTY_NODE(&upper->rb_node)) {
 442			BUG_ON(!list_empty(&node->upper));
 443			drop_backref_node(cache, node);
 444			node = upper;
 445			node->lowest = 1;
 446			continue;
 447		}
 448		/*
 449		 * add the node to leaf node list if no other
 450		 * child block cached.
 451		 */
 452		if (list_empty(&upper->lower)) {
 453			list_add_tail(&upper->lower, &cache->leaves);
 454			upper->lowest = 1;
 455		}
 456	}
 457
 458	drop_backref_node(cache, node);
 459}
 460
 461static void update_backref_node(struct backref_cache *cache,
 462				struct backref_node *node, u64 bytenr)
 463{
 464	struct rb_node *rb_node;
 465	rb_erase(&node->rb_node, &cache->rb_root);
 466	node->bytenr = bytenr;
 467	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 468	if (rb_node)
 469		backref_tree_panic(rb_node, -EEXIST, bytenr);
 470}
 471
 472/*
 473 * update backref cache after a transaction commit
 474 */
 475static int update_backref_cache(struct btrfs_trans_handle *trans,
 476				struct backref_cache *cache)
 477{
 478	struct backref_node *node;
 479	int level = 0;
 480
 481	if (cache->last_trans == 0) {
 482		cache->last_trans = trans->transid;
 483		return 0;
 484	}
 485
 486	if (cache->last_trans == trans->transid)
 487		return 0;
 488
 489	/*
 490	 * detached nodes are used to avoid unnecessary backref
 491	 * lookup. transaction commit changes the extent tree.
 492	 * so the detached nodes are no longer useful.
 493	 */
 494	while (!list_empty(&cache->detached)) {
 495		node = list_entry(cache->detached.next,
 496				  struct backref_node, list);
 497		remove_backref_node(cache, node);
 498	}
 499
 500	while (!list_empty(&cache->changed)) {
 501		node = list_entry(cache->changed.next,
 502				  struct backref_node, list);
 503		list_del_init(&node->list);
 504		BUG_ON(node->pending);
 505		update_backref_node(cache, node, node->new_bytenr);
 506	}
 507
 508	/*
 509	 * some nodes can be left in the pending list if there were
 510	 * errors during processing the pending nodes.
 511	 */
 512	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 513		list_for_each_entry(node, &cache->pending[level], list) {
 514			BUG_ON(!node->pending);
 515			if (node->bytenr == node->new_bytenr)
 516				continue;
 517			update_backref_node(cache, node, node->new_bytenr);
 518		}
 519	}
 520
 521	cache->last_trans = 0;
 522	return 1;
 523}
 524
 
 
 
 
 
 
 
 
 
 
 
 
 525
 526static int should_ignore_root(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527{
 528	struct btrfs_root *reloc_root;
 529
 530	if (!root->ref_cows)
 531		return 0;
 532
 
 
 
 
 533	reloc_root = root->reloc_root;
 534	if (!reloc_root)
 535		return 0;
 536
 537	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 538	    root->fs_info->running_transaction->transid - 1)
 539		return 0;
 540	/*
 541	 * if there is reloc tree and it was created in previous
 542	 * transaction backref lookup can find the reloc tree,
 543	 * so backref node for the fs tree root is useless for
 544	 * relocation.
 545	 */
 546	return 1;
 547}
 
 548/*
 549 * find reloc tree by address of tree root
 550 */
 551static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 552					  u64 bytenr)
 553{
 
 554	struct rb_node *rb_node;
 555	struct mapping_node *node;
 556	struct btrfs_root *root = NULL;
 557
 
 558	spin_lock(&rc->reloc_root_tree.lock);
 559	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 560	if (rb_node) {
 561		node = rb_entry(rb_node, struct mapping_node, rb_node);
 562		root = (struct btrfs_root *)node->data;
 563	}
 564	spin_unlock(&rc->reloc_root_tree.lock);
 565	return root;
 566}
 567
 568static int is_cowonly_root(u64 root_objectid)
 569{
 570	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 571	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 572	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 573	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 574	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 575	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
 576		return 1;
 577	return 0;
 578}
 579
 580static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 581					u64 root_objectid)
 
 582{
 583	struct btrfs_key key;
 584
 585	key.objectid = root_objectid;
 586	key.type = BTRFS_ROOT_ITEM_KEY;
 587	if (is_cowonly_root(root_objectid))
 588		key.offset = 0;
 589	else
 590		key.offset = (u64)-1;
 591
 592	return btrfs_read_fs_root_no_name(fs_info, &key);
 593}
 594
 595#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 596static noinline_for_stack
 597struct btrfs_root *find_tree_root(struct reloc_control *rc,
 598				  struct extent_buffer *leaf,
 599				  struct btrfs_extent_ref_v0 *ref0)
 600{
 601	struct btrfs_root *root;
 602	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 603	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 604
 605	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 
 606
 607	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 608	BUG_ON(IS_ERR(root));
 609
 610	if (root->ref_cows &&
 611	    generation != btrfs_root_generation(&root->root_item))
 612		return NULL;
 
 
 613
 614	return root;
 615}
 616#endif
 
 617
 618static noinline_for_stack
 619int find_inline_backref(struct extent_buffer *leaf, int slot,
 620			unsigned long *ptr, unsigned long *end)
 621{
 622	struct btrfs_extent_item *ei;
 623	struct btrfs_tree_block_info *bi;
 624	u32 item_size;
 625
 626	item_size = btrfs_item_size_nr(leaf, slot);
 627#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 628	if (item_size < sizeof(*ei)) {
 629		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 630		return 1;
 631	}
 632#endif
 633	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 634	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 635		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 636
 637	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
 638		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 639		return 1;
 
 
 
 
 
 
 
 
 
 640	}
 641
 642	bi = (struct btrfs_tree_block_info *)(ei + 1);
 643	*ptr = (unsigned long)(bi + 1);
 644	*end = (unsigned long)ei + item_size;
 645	return 0;
 646}
 647
 648/*
 649 * build backref tree for a given tree block. root of the backref tree
 650 * corresponds the tree block, leaves of the backref tree correspond
 651 * roots of b-trees that reference the tree block.
 652 *
 653 * the basic idea of this function is check backrefs of a given block
 654 * to find upper level blocks that refernece the block, and then check
 655 * bakcrefs of these upper level blocks recursively. the recursion stop
 656 * when tree root is reached or backrefs for the block is cached.
 657 *
 658 * NOTE: if we find backrefs for a block are cached, we know backrefs
 659 * for all upper level blocks that directly/indirectly reference the
 660 * block are also cached.
 661 */
 662static noinline_for_stack
 663struct backref_node *build_backref_tree(struct reloc_control *rc,
 664					struct btrfs_key *node_key,
 665					int level, u64 bytenr)
 666{
 667	struct backref_cache *cache = &rc->backref_cache;
 668	struct btrfs_path *path1;
 669	struct btrfs_path *path2;
 670	struct extent_buffer *eb;
 671	struct btrfs_root *root;
 672	struct backref_node *cur;
 673	struct backref_node *upper;
 674	struct backref_node *lower;
 675	struct backref_node *node = NULL;
 676	struct backref_node *exist = NULL;
 677	struct backref_edge *edge;
 678	struct rb_node *rb_node;
 679	struct btrfs_key key;
 680	unsigned long end;
 681	unsigned long ptr;
 682	LIST_HEAD(list);
 683	LIST_HEAD(useless);
 684	int cowonly;
 685	int ret;
 686	int err = 0;
 687
 688	path1 = btrfs_alloc_path();
 689	path2 = btrfs_alloc_path();
 690	if (!path1 || !path2) {
 
 
 691		err = -ENOMEM;
 692		goto out;
 693	}
 694	path1->reada = 1;
 695	path2->reada = 2;
 696
 697	node = alloc_backref_node(cache);
 698	if (!node) {
 699		err = -ENOMEM;
 700		goto out;
 701	}
 702
 703	node->bytenr = bytenr;
 704	node->level = level;
 705	node->lowest = 1;
 706	cur = node;
 707again:
 708	end = 0;
 709	ptr = 0;
 710	key.objectid = cur->bytenr;
 711	key.type = BTRFS_EXTENT_ITEM_KEY;
 712	key.offset = (u64)-1;
 713
 714	path1->search_commit_root = 1;
 715	path1->skip_locking = 1;
 716	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 717				0, 0);
 718	if (ret < 0) {
 719		err = ret;
 720		goto out;
 721	}
 722	BUG_ON(!ret || !path1->slots[0]);
 723
 724	path1->slots[0]--;
 725
 726	WARN_ON(cur->checked);
 727	if (!list_empty(&cur->upper)) {
 728		/*
 729		 * the backref was added previously when processing
 730		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 731		 */
 732		BUG_ON(!list_is_singular(&cur->upper));
 733		edge = list_entry(cur->upper.next, struct backref_edge,
 734				  list[LOWER]);
 735		BUG_ON(!list_empty(&edge->list[UPPER]));
 736		exist = edge->node[UPPER];
 737		/*
 738		 * add the upper level block to pending list if we need
 739		 * check its backrefs
 740		 */
 741		if (!exist->checked)
 742			list_add_tail(&edge->list[UPPER], &list);
 743	} else {
 744		exist = NULL;
 745	}
 746
 747	while (1) {
 748		cond_resched();
 749		eb = path1->nodes[0];
 750
 751		if (ptr >= end) {
 752			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 753				ret = btrfs_next_leaf(rc->extent_root, path1);
 754				if (ret < 0) {
 755					err = ret;
 756					goto out;
 757				}
 758				if (ret > 0)
 759					break;
 760				eb = path1->nodes[0];
 761			}
 762
 763			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 764			if (key.objectid != cur->bytenr) {
 765				WARN_ON(exist);
 766				break;
 767			}
 768
 769			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 770				ret = find_inline_backref(eb, path1->slots[0],
 771							  &ptr, &end);
 772				if (ret)
 773					goto next;
 774			}
 775		}
 776
 777		if (ptr < end) {
 778			/* update key for inline back ref */
 779			struct btrfs_extent_inline_ref *iref;
 780			iref = (struct btrfs_extent_inline_ref *)ptr;
 781			key.type = btrfs_extent_inline_ref_type(eb, iref);
 782			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 783			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 784				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 785		}
 786
 787		if (exist &&
 788		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 789		      exist->owner == key.offset) ||
 790		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 791		      exist->bytenr == key.offset))) {
 792			exist = NULL;
 793			goto next;
 794		}
 795
 796#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 797		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 798		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 799			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 800				struct btrfs_extent_ref_v0 *ref0;
 801				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 802						struct btrfs_extent_ref_v0);
 803				if (key.objectid == key.offset) {
 804					root = find_tree_root(rc, eb, ref0);
 805					if (root && !should_ignore_root(root))
 806						cur->root = root;
 807					else
 808						list_add(&cur->list, &useless);
 809					break;
 810				}
 811				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 812								      ref0)))
 813					cur->cowonly = 1;
 814			}
 815#else
 816		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 817		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 818#endif
 819			if (key.objectid == key.offset) {
 820				/*
 821				 * only root blocks of reloc trees use
 822				 * backref of this type.
 823				 */
 824				root = find_reloc_root(rc, cur->bytenr);
 825				BUG_ON(!root);
 826				cur->root = root;
 827				break;
 828			}
 829
 830			edge = alloc_backref_edge(cache);
 831			if (!edge) {
 832				err = -ENOMEM;
 833				goto out;
 834			}
 835			rb_node = tree_search(&cache->rb_root, key.offset);
 836			if (!rb_node) {
 837				upper = alloc_backref_node(cache);
 838				if (!upper) {
 839					free_backref_edge(cache, edge);
 840					err = -ENOMEM;
 841					goto out;
 842				}
 843				upper->bytenr = key.offset;
 844				upper->level = cur->level + 1;
 845				/*
 846				 *  backrefs for the upper level block isn't
 847				 *  cached, add the block to pending list
 848				 */
 849				list_add_tail(&edge->list[UPPER], &list);
 850			} else {
 851				upper = rb_entry(rb_node, struct backref_node,
 852						 rb_node);
 853				BUG_ON(!upper->checked);
 854				INIT_LIST_HEAD(&edge->list[UPPER]);
 855			}
 856			list_add_tail(&edge->list[LOWER], &cur->upper);
 857			edge->node[LOWER] = cur;
 858			edge->node[UPPER] = upper;
 859
 860			goto next;
 861		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 862			goto next;
 863		}
 864
 865		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 866		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 867		if (IS_ERR(root)) {
 868			err = PTR_ERR(root);
 869			goto out;
 870		}
 871
 872		if (!root->ref_cows)
 873			cur->cowonly = 1;
 874
 875		if (btrfs_root_level(&root->root_item) == cur->level) {
 876			/* tree root */
 877			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 878			       cur->bytenr);
 879			if (should_ignore_root(root))
 880				list_add(&cur->list, &useless);
 881			else
 882				cur->root = root;
 883			break;
 884		}
 885
 886		level = cur->level + 1;
 887
 888		/*
 889		 * searching the tree to find upper level blocks
 890		 * reference the block.
 891		 */
 892		path2->search_commit_root = 1;
 893		path2->skip_locking = 1;
 894		path2->lowest_level = level;
 895		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 896		path2->lowest_level = 0;
 897		if (ret < 0) {
 898			err = ret;
 899			goto out;
 900		}
 901		if (ret > 0 && path2->slots[level] > 0)
 902			path2->slots[level]--;
 903
 904		eb = path2->nodes[level];
 905		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
 906			cur->bytenr);
 907
 908		lower = cur;
 909		for (; level < BTRFS_MAX_LEVEL; level++) {
 910			if (!path2->nodes[level]) {
 911				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 912				       lower->bytenr);
 913				if (should_ignore_root(root))
 914					list_add(&lower->list, &useless);
 915				else
 916					lower->root = root;
 917				break;
 918			}
 919
 920			edge = alloc_backref_edge(cache);
 921			if (!edge) {
 922				err = -ENOMEM;
 923				goto out;
 924			}
 925
 926			eb = path2->nodes[level];
 927			rb_node = tree_search(&cache->rb_root, eb->start);
 928			if (!rb_node) {
 929				upper = alloc_backref_node(cache);
 930				if (!upper) {
 931					free_backref_edge(cache, edge);
 932					err = -ENOMEM;
 933					goto out;
 934				}
 935				upper->bytenr = eb->start;
 936				upper->owner = btrfs_header_owner(eb);
 937				upper->level = lower->level + 1;
 938				if (!root->ref_cows)
 939					upper->cowonly = 1;
 940
 941				/*
 942				 * if we know the block isn't shared
 943				 * we can void checking its backrefs.
 944				 */
 945				if (btrfs_block_can_be_shared(root, eb))
 946					upper->checked = 0;
 947				else
 948					upper->checked = 1;
 949
 950				/*
 951				 * add the block to pending list if we
 952				 * need check its backrefs. only block
 953				 * at 'cur->level + 1' is added to the
 954				 * tail of pending list. this guarantees
 955				 * we check backrefs from lower level
 956				 * blocks to upper level blocks.
 957				 */
 958				if (!upper->checked &&
 959				    level == cur->level + 1) {
 960					list_add_tail(&edge->list[UPPER],
 961						      &list);
 962				} else
 963					INIT_LIST_HEAD(&edge->list[UPPER]);
 964			} else {
 965				upper = rb_entry(rb_node, struct backref_node,
 966						 rb_node);
 967				BUG_ON(!upper->checked);
 968				INIT_LIST_HEAD(&edge->list[UPPER]);
 969				if (!upper->owner)
 970					upper->owner = btrfs_header_owner(eb);
 971			}
 972			list_add_tail(&edge->list[LOWER], &lower->upper);
 973			edge->node[LOWER] = lower;
 974			edge->node[UPPER] = upper;
 975
 976			if (rb_node)
 977				break;
 978			lower = upper;
 979			upper = NULL;
 980		}
 981		btrfs_release_path(path2);
 982next:
 983		if (ptr < end) {
 984			ptr += btrfs_extent_inline_ref_size(key.type);
 985			if (ptr >= end) {
 986				WARN_ON(ptr > end);
 987				ptr = 0;
 988				end = 0;
 989			}
 990		}
 991		if (ptr >= end)
 992			path1->slots[0]++;
 993	}
 994	btrfs_release_path(path1);
 995
 996	cur->checked = 1;
 997	WARN_ON(exist);
 998
 999	/* the pending list isn't empty, take the first block to process */
1000	if (!list_empty(&list)) {
1001		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1002		list_del_init(&edge->list[UPPER]);
1003		cur = edge->node[UPPER];
1004		goto again;
1005	}
1006
1007	/*
1008	 * everything goes well, connect backref nodes and insert backref nodes
1009	 * into the cache.
1010	 */
1011	BUG_ON(!node->checked);
1012	cowonly = node->cowonly;
1013	if (!cowonly) {
1014		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1015				      &node->rb_node);
1016		if (rb_node)
1017			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1018		list_add_tail(&node->lower, &cache->leaves);
1019	}
1020
1021	list_for_each_entry(edge, &node->upper, list[LOWER])
1022		list_add_tail(&edge->list[UPPER], &list);
1023
1024	while (!list_empty(&list)) {
1025		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1026		list_del_init(&edge->list[UPPER]);
1027		upper = edge->node[UPPER];
1028		if (upper->detached) {
1029			list_del(&edge->list[LOWER]);
1030			lower = edge->node[LOWER];
1031			free_backref_edge(cache, edge);
1032			if (list_empty(&lower->upper))
1033				list_add(&lower->list, &useless);
1034			continue;
1035		}
1036
1037		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1038			if (upper->lowest) {
1039				list_del_init(&upper->lower);
1040				upper->lowest = 0;
1041			}
1042
1043			list_add_tail(&edge->list[UPPER], &upper->lower);
1044			continue;
1045		}
1046
1047		BUG_ON(!upper->checked);
1048		BUG_ON(cowonly != upper->cowonly);
1049		if (!cowonly) {
1050			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1051					      &upper->rb_node);
1052			if (rb_node)
1053				backref_tree_panic(rb_node, -EEXIST,
1054						   upper->bytenr);
1055		}
 
1056
1057		list_add_tail(&edge->list[UPPER], &upper->lower);
1058
1059		list_for_each_entry(edge, &upper->upper, list[LOWER])
1060			list_add_tail(&edge->list[UPPER], &list);
 
1061	}
1062	/*
1063	 * process useless backref nodes. backref nodes for tree leaves
1064	 * are deleted from the cache. backref nodes for upper level
1065	 * tree blocks are left in the cache to avoid unnecessary backref
1066	 * lookup.
1067	 */
1068	while (!list_empty(&useless)) {
1069		upper = list_entry(useless.next, struct backref_node, list);
1070		list_del_init(&upper->list);
1071		BUG_ON(!list_empty(&upper->upper));
1072		if (upper == node)
1073			node = NULL;
1074		if (upper->lowest) {
1075			list_del_init(&upper->lower);
1076			upper->lowest = 0;
1077		}
1078		while (!list_empty(&upper->lower)) {
1079			edge = list_entry(upper->lower.next,
1080					  struct backref_edge, list[UPPER]);
1081			list_del(&edge->list[UPPER]);
1082			list_del(&edge->list[LOWER]);
1083			lower = edge->node[LOWER];
1084			free_backref_edge(cache, edge);
1085
1086			if (list_empty(&lower->upper))
1087				list_add(&lower->list, &useless);
1088		}
1089		__mark_block_processed(rc, upper);
1090		if (upper->level > 0) {
1091			list_add(&upper->list, &cache->detached);
1092			upper->detached = 1;
1093		} else {
1094			rb_erase(&upper->rb_node, &cache->rb_root);
1095			free_backref_node(cache, upper);
1096		}
1097	}
1098out:
1099	btrfs_free_path(path1);
1100	btrfs_free_path(path2);
1101	if (err) {
1102		while (!list_empty(&useless)) {
1103			lower = list_entry(useless.next,
1104					   struct backref_node, upper);
1105			list_del_init(&lower->upper);
1106		}
1107		upper = node;
1108		INIT_LIST_HEAD(&list);
1109		while (upper) {
1110			if (RB_EMPTY_NODE(&upper->rb_node)) {
1111				list_splice_tail(&upper->upper, &list);
1112				free_backref_node(cache, upper);
1113			}
1114
1115			if (list_empty(&list))
1116				break;
1117
1118			edge = list_entry(list.next, struct backref_edge,
1119					  list[LOWER]);
1120			list_del(&edge->list[LOWER]);
1121			upper = edge->node[UPPER];
1122			free_backref_edge(cache, edge);
1123		}
1124		return ERR_PTR(err);
1125	}
1126	BUG_ON(node && node->detached);
 
 
1127	return node;
1128}
1129
1130/*
1131 * helper to add backref node for the newly created snapshot.
1132 * the backref node is created by cloning backref node that
1133 * corresponds to root of source tree
1134 */
1135static int clone_backref_node(struct btrfs_trans_handle *trans,
1136			      struct reloc_control *rc,
1137			      struct btrfs_root *src,
1138			      struct btrfs_root *dest)
1139{
1140	struct btrfs_root *reloc_root = src->reloc_root;
1141	struct backref_cache *cache = &rc->backref_cache;
1142	struct backref_node *node = NULL;
1143	struct backref_node *new_node;
1144	struct backref_edge *edge;
1145	struct backref_edge *new_edge;
1146	struct rb_node *rb_node;
1147
1148	if (cache->last_trans > 0)
1149		update_backref_cache(trans, cache);
1150
1151	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1152	if (rb_node) {
1153		node = rb_entry(rb_node, struct backref_node, rb_node);
1154		if (node->detached)
1155			node = NULL;
1156		else
1157			BUG_ON(node->new_bytenr != reloc_root->node->start);
1158	}
1159
1160	if (!node) {
1161		rb_node = tree_search(&cache->rb_root,
1162				      reloc_root->commit_root->start);
1163		if (rb_node) {
1164			node = rb_entry(rb_node, struct backref_node,
1165					rb_node);
1166			BUG_ON(node->detached);
1167		}
1168	}
1169
1170	if (!node)
1171		return 0;
1172
1173	new_node = alloc_backref_node(cache);
 
1174	if (!new_node)
1175		return -ENOMEM;
1176
1177	new_node->bytenr = dest->node->start;
1178	new_node->level = node->level;
1179	new_node->lowest = node->lowest;
1180	new_node->checked = 1;
1181	new_node->root = dest;
 
1182
1183	if (!node->lowest) {
1184		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1185			new_edge = alloc_backref_edge(cache);
1186			if (!new_edge)
1187				goto fail;
1188
1189			new_edge->node[UPPER] = new_node;
1190			new_edge->node[LOWER] = edge->node[LOWER];
1191			list_add_tail(&new_edge->list[UPPER],
1192				      &new_node->lower);
1193		}
1194	} else {
1195		list_add_tail(&new_node->lower, &cache->leaves);
1196	}
1197
1198	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1199			      &new_node->rb_node);
1200	if (rb_node)
1201		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1202
1203	if (!new_node->lowest) {
1204		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1205			list_add_tail(&new_edge->list[LOWER],
1206				      &new_edge->node[LOWER]->upper);
1207		}
1208	}
1209	return 0;
1210fail:
1211	while (!list_empty(&new_node->lower)) {
1212		new_edge = list_entry(new_node->lower.next,
1213				      struct backref_edge, list[UPPER]);
1214		list_del(&new_edge->list[UPPER]);
1215		free_backref_edge(cache, new_edge);
1216	}
1217	free_backref_node(cache, new_node);
1218	return -ENOMEM;
1219}
1220
1221/*
1222 * helper to add 'address of tree root -> reloc tree' mapping
1223 */
1224static int __must_check __add_reloc_root(struct btrfs_root *root)
1225{
 
1226	struct rb_node *rb_node;
1227	struct mapping_node *node;
1228	struct reloc_control *rc = root->fs_info->reloc_ctl;
1229
1230	node = kmalloc(sizeof(*node), GFP_NOFS);
1231	if (!node)
1232		return -ENOMEM;
1233
1234	node->bytenr = root->node->start;
1235	node->data = root;
1236
1237	spin_lock(&rc->reloc_root_tree.lock);
1238	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1239			      node->bytenr, &node->rb_node);
1240	spin_unlock(&rc->reloc_root_tree.lock);
1241	if (rb_node) {
1242		kfree(node);
1243		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1244			    "for start=%llu while inserting into relocation "
1245			    "tree\n");
1246	}
1247
1248	list_add_tail(&root->root_list, &rc->reloc_roots);
1249	return 0;
1250}
1251
1252/*
1253 * helper to update/delete the 'address of tree root -> reloc tree'
1254 * mapping
1255 */
1256static int __update_reloc_root(struct btrfs_root *root, int del)
1257{
 
1258	struct rb_node *rb_node;
1259	struct mapping_node *node = NULL;
1260	struct reloc_control *rc = root->fs_info->reloc_ctl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261
1262	spin_lock(&rc->reloc_root_tree.lock);
1263	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1264			      root->commit_root->start);
1265	if (rb_node) {
1266		node = rb_entry(rb_node, struct mapping_node, rb_node);
1267		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1268	}
1269	spin_unlock(&rc->reloc_root_tree.lock);
1270
 
 
1271	BUG_ON((struct btrfs_root *)node->data != root);
1272
1273	if (!del) {
1274		spin_lock(&rc->reloc_root_tree.lock);
1275		node->bytenr = root->node->start;
1276		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1277				      node->bytenr, &node->rb_node);
1278		spin_unlock(&rc->reloc_root_tree.lock);
1279		if (rb_node)
1280			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1281	} else {
1282		spin_lock(&root->fs_info->trans_lock);
1283		list_del_init(&root->root_list);
1284		spin_unlock(&root->fs_info->trans_lock);
1285		kfree(node);
1286	}
1287	return 0;
1288}
1289
1290static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1291					struct btrfs_root *root, u64 objectid)
1292{
 
1293	struct btrfs_root *reloc_root;
1294	struct extent_buffer *eb;
1295	struct btrfs_root_item *root_item;
1296	struct btrfs_key root_key;
1297	int ret;
1298
1299	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1300	BUG_ON(!root_item);
1301
1302	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1303	root_key.type = BTRFS_ROOT_ITEM_KEY;
1304	root_key.offset = objectid;
1305
1306	if (root->root_key.objectid == objectid) {
 
 
1307		/* called by btrfs_init_reloc_root */
1308		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1309				      BTRFS_TREE_RELOC_OBJECTID);
1310		BUG_ON(ret);
1311
1312		btrfs_set_root_last_snapshot(&root->root_item,
1313					     trans->transid - 1);
 
 
 
 
 
 
 
1314	} else {
1315		/*
1316		 * called by btrfs_reloc_post_snapshot_hook.
1317		 * the source tree is a reloc tree, all tree blocks
1318		 * modified after it was created have RELOC flag
1319		 * set in their headers. so it's OK to not update
1320		 * the 'last_snapshot'.
1321		 */
1322		ret = btrfs_copy_root(trans, root, root->node, &eb,
1323				      BTRFS_TREE_RELOC_OBJECTID);
1324		BUG_ON(ret);
1325	}
1326
1327	memcpy(root_item, &root->root_item, sizeof(*root_item));
1328	btrfs_set_root_bytenr(root_item, eb->start);
1329	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1330	btrfs_set_root_generation(root_item, trans->transid);
1331
1332	if (root->root_key.objectid == objectid) {
1333		btrfs_set_root_refs(root_item, 0);
1334		memset(&root_item->drop_progress, 0,
1335		       sizeof(struct btrfs_disk_key));
1336		root_item->drop_level = 0;
1337	}
1338
1339	btrfs_tree_unlock(eb);
1340	free_extent_buffer(eb);
1341
1342	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1343				&root_key, root_item);
1344	BUG_ON(ret);
1345	kfree(root_item);
1346
1347	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1348						 &root_key);
1349	BUG_ON(IS_ERR(reloc_root));
 
1350	reloc_root->last_trans = trans->transid;
1351	return reloc_root;
1352}
1353
1354/*
1355 * create reloc tree for a given fs tree. reloc tree is just a
1356 * snapshot of the fs tree with special root objectid.
 
 
 
1357 */
1358int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1359			  struct btrfs_root *root)
1360{
 
1361	struct btrfs_root *reloc_root;
1362	struct reloc_control *rc = root->fs_info->reloc_ctl;
 
1363	int clear_rsv = 0;
1364	int ret;
1365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366	if (root->reloc_root) {
1367		reloc_root = root->reloc_root;
1368		reloc_root->last_trans = trans->transid;
1369		return 0;
1370	}
1371
1372	if (!rc || !rc->create_reloc_tree ||
 
 
 
 
1373	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1374		return 0;
1375
1376	if (!trans->block_rsv) {
 
1377		trans->block_rsv = rc->block_rsv;
1378		clear_rsv = 1;
1379	}
1380	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1381	if (clear_rsv)
1382		trans->block_rsv = NULL;
1383
1384	ret = __add_reloc_root(reloc_root);
1385	BUG_ON(ret < 0);
1386	root->reloc_root = reloc_root;
1387	return 0;
1388}
1389
1390/*
1391 * update root item of reloc tree
1392 */
1393int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1394			    struct btrfs_root *root)
1395{
 
1396	struct btrfs_root *reloc_root;
1397	struct btrfs_root_item *root_item;
1398	int del = 0;
1399	int ret;
1400
1401	if (!root->reloc_root)
1402		goto out;
1403
1404	reloc_root = root->reloc_root;
1405	root_item = &reloc_root->root_item;
1406
1407	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
 
 
 
 
 
 
 
 
1408	    btrfs_root_refs(root_item) == 0) {
1409		root->reloc_root = NULL;
1410		del = 1;
 
 
 
 
 
1411	}
1412
1413	__update_reloc_root(reloc_root, del);
1414
1415	if (reloc_root->commit_root != reloc_root->node) {
 
1416		btrfs_set_root_node(root_item, reloc_root->node);
1417		free_extent_buffer(reloc_root->commit_root);
1418		reloc_root->commit_root = btrfs_root_node(reloc_root);
1419	}
1420
1421	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1422				&reloc_root->root_key, root_item);
1423	BUG_ON(ret);
1424
1425out:
1426	return 0;
1427}
1428
1429/*
1430 * helper to find first cached inode with inode number >= objectid
1431 * in a subvolume
1432 */
1433static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1434{
1435	struct rb_node *node;
1436	struct rb_node *prev;
1437	struct btrfs_inode *entry;
1438	struct inode *inode;
1439
1440	spin_lock(&root->inode_lock);
1441again:
1442	node = root->inode_tree.rb_node;
1443	prev = NULL;
1444	while (node) {
1445		prev = node;
1446		entry = rb_entry(node, struct btrfs_inode, rb_node);
1447
1448		if (objectid < btrfs_ino(&entry->vfs_inode))
1449			node = node->rb_left;
1450		else if (objectid > btrfs_ino(&entry->vfs_inode))
1451			node = node->rb_right;
1452		else
1453			break;
1454	}
1455	if (!node) {
1456		while (prev) {
1457			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1458			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1459				node = prev;
1460				break;
1461			}
1462			prev = rb_next(prev);
1463		}
1464	}
1465	while (node) {
1466		entry = rb_entry(node, struct btrfs_inode, rb_node);
1467		inode = igrab(&entry->vfs_inode);
1468		if (inode) {
1469			spin_unlock(&root->inode_lock);
1470			return inode;
1471		}
1472
1473		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1474		if (cond_resched_lock(&root->inode_lock))
1475			goto again;
1476
1477		node = rb_next(node);
1478	}
1479	spin_unlock(&root->inode_lock);
1480	return NULL;
1481}
1482
1483static int in_block_group(u64 bytenr,
1484			  struct btrfs_block_group_cache *block_group)
1485{
1486	if (bytenr >= block_group->key.objectid &&
1487	    bytenr < block_group->key.objectid + block_group->key.offset)
1488		return 1;
1489	return 0;
1490}
1491
1492/*
1493 * get new location of data
1494 */
1495static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1496			    u64 bytenr, u64 num_bytes)
1497{
1498	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1499	struct btrfs_path *path;
1500	struct btrfs_file_extent_item *fi;
1501	struct extent_buffer *leaf;
1502	int ret;
1503
1504	path = btrfs_alloc_path();
1505	if (!path)
1506		return -ENOMEM;
1507
1508	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1509	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1510				       bytenr, 0);
1511	if (ret < 0)
1512		goto out;
1513	if (ret > 0) {
1514		ret = -ENOENT;
1515		goto out;
1516	}
1517
1518	leaf = path->nodes[0];
1519	fi = btrfs_item_ptr(leaf, path->slots[0],
1520			    struct btrfs_file_extent_item);
1521
1522	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1523	       btrfs_file_extent_compression(leaf, fi) ||
1524	       btrfs_file_extent_encryption(leaf, fi) ||
1525	       btrfs_file_extent_other_encoding(leaf, fi));
1526
1527	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1528		ret = 1;
1529		goto out;
1530	}
1531
1532	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1533	ret = 0;
1534out:
1535	btrfs_free_path(path);
1536	return ret;
1537}
1538
1539/*
1540 * update file extent items in the tree leaf to point to
1541 * the new locations.
1542 */
1543static noinline_for_stack
1544int replace_file_extents(struct btrfs_trans_handle *trans,
1545			 struct reloc_control *rc,
1546			 struct btrfs_root *root,
1547			 struct extent_buffer *leaf)
1548{
 
1549	struct btrfs_key key;
1550	struct btrfs_file_extent_item *fi;
1551	struct inode *inode = NULL;
1552	u64 parent;
1553	u64 bytenr;
1554	u64 new_bytenr = 0;
1555	u64 num_bytes;
1556	u64 end;
1557	u32 nritems;
1558	u32 i;
1559	int ret;
1560	int first = 1;
1561	int dirty = 0;
1562
1563	if (rc->stage != UPDATE_DATA_PTRS)
1564		return 0;
1565
1566	/* reloc trees always use full backref */
1567	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1568		parent = leaf->start;
1569	else
1570		parent = 0;
1571
1572	nritems = btrfs_header_nritems(leaf);
1573	for (i = 0; i < nritems; i++) {
 
 
1574		cond_resched();
1575		btrfs_item_key_to_cpu(leaf, &key, i);
1576		if (key.type != BTRFS_EXTENT_DATA_KEY)
1577			continue;
1578		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1579		if (btrfs_file_extent_type(leaf, fi) ==
1580		    BTRFS_FILE_EXTENT_INLINE)
1581			continue;
1582		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1583		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1584		if (bytenr == 0)
1585			continue;
1586		if (!in_block_group(bytenr, rc->block_group))
 
1587			continue;
1588
1589		/*
1590		 * if we are modifying block in fs tree, wait for readpage
1591		 * to complete and drop the extent cache
1592		 */
1593		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1594			if (first) {
1595				inode = find_next_inode(root, key.objectid);
1596				first = 0;
1597			} else if (inode && btrfs_ino(inode) < key.objectid) {
1598				btrfs_add_delayed_iput(inode);
1599				inode = find_next_inode(root, key.objectid);
1600			}
1601			if (inode && btrfs_ino(inode) == key.objectid) {
1602				end = key.offset +
1603				      btrfs_file_extent_num_bytes(leaf, fi);
1604				WARN_ON(!IS_ALIGNED(key.offset,
1605						    root->sectorsize));
1606				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1607				end--;
1608				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1609						      key.offset, end);
1610				if (!ret)
1611					continue;
1612
1613				btrfs_drop_extent_cache(inode, key.offset, end,
1614							1);
1615				unlock_extent(&BTRFS_I(inode)->io_tree,
1616					      key.offset, end);
1617			}
1618		}
1619
1620		ret = get_new_location(rc->data_inode, &new_bytenr,
1621				       bytenr, num_bytes);
1622		if (ret > 0) {
1623			WARN_ON(1);
1624			continue;
 
 
 
1625		}
1626		BUG_ON(ret < 0);
1627
1628		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1629		dirty = 1;
1630
1631		key.offset -= btrfs_file_extent_offset(leaf, fi);
1632		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1633					   num_bytes, parent,
1634					   btrfs_header_owner(leaf),
1635					   key.objectid, key.offset, 1);
1636		BUG_ON(ret);
 
 
 
 
 
1637
1638		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1639					parent, btrfs_header_owner(leaf),
1640					key.objectid, key.offset, 1);
1641		BUG_ON(ret);
 
 
 
 
 
 
1642	}
1643	if (dirty)
1644		btrfs_mark_buffer_dirty(leaf);
1645	if (inode)
1646		btrfs_add_delayed_iput(inode);
1647	return 0;
1648}
1649
1650static noinline_for_stack
1651int memcmp_node_keys(struct extent_buffer *eb, int slot,
1652		     struct btrfs_path *path, int level)
1653{
1654	struct btrfs_disk_key key1;
1655	struct btrfs_disk_key key2;
1656	btrfs_node_key(eb, &key1, slot);
1657	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1658	return memcmp(&key1, &key2, sizeof(key1));
1659}
1660
1661/*
1662 * try to replace tree blocks in fs tree with the new blocks
1663 * in reloc tree. tree blocks haven't been modified since the
1664 * reloc tree was create can be replaced.
1665 *
1666 * if a block was replaced, level of the block + 1 is returned.
1667 * if no block got replaced, 0 is returned. if there are other
1668 * errors, a negative error number is returned.
1669 */
1670static noinline_for_stack
1671int replace_path(struct btrfs_trans_handle *trans,
1672		 struct btrfs_root *dest, struct btrfs_root *src,
1673		 struct btrfs_path *path, struct btrfs_key *next_key,
1674		 int lowest_level, int max_level)
1675{
 
1676	struct extent_buffer *eb;
1677	struct extent_buffer *parent;
 
1678	struct btrfs_key key;
1679	u64 old_bytenr;
1680	u64 new_bytenr;
1681	u64 old_ptr_gen;
1682	u64 new_ptr_gen;
1683	u64 last_snapshot;
1684	u32 blocksize;
1685	int cow = 0;
1686	int level;
1687	int ret;
1688	int slot;
1689
1690	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1691	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1692
1693	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1694again:
1695	slot = path->slots[lowest_level];
1696	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1697
1698	eb = btrfs_lock_root_node(dest);
1699	btrfs_set_lock_blocking(eb);
1700	level = btrfs_header_level(eb);
1701
1702	if (level < lowest_level) {
1703		btrfs_tree_unlock(eb);
1704		free_extent_buffer(eb);
1705		return 0;
1706	}
1707
1708	if (cow) {
1709		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1710		BUG_ON(ret);
1711	}
1712	btrfs_set_lock_blocking(eb);
1713
1714	if (next_key) {
1715		next_key->objectid = (u64)-1;
1716		next_key->type = (u8)-1;
1717		next_key->offset = (u64)-1;
1718	}
1719
1720	parent = eb;
1721	while (1) {
 
 
1722		level = btrfs_header_level(parent);
1723		BUG_ON(level < lowest_level);
1724
1725		ret = btrfs_bin_search(parent, &key, level, &slot);
 
 
1726		if (ret && slot > 0)
1727			slot--;
1728
1729		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1730			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1731
1732		old_bytenr = btrfs_node_blockptr(parent, slot);
1733		blocksize = btrfs_level_size(dest, level - 1);
1734		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
 
1735
1736		if (level <= max_level) {
1737			eb = path->nodes[level];
1738			new_bytenr = btrfs_node_blockptr(eb,
1739							path->slots[level]);
1740			new_ptr_gen = btrfs_node_ptr_generation(eb,
1741							path->slots[level]);
1742		} else {
1743			new_bytenr = 0;
1744			new_ptr_gen = 0;
1745		}
1746
1747		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1748			WARN_ON(1);
1749			ret = level;
1750			break;
1751		}
1752
1753		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1754		    memcmp_node_keys(parent, slot, path, level)) {
1755			if (level <= lowest_level) {
1756				ret = 0;
1757				break;
1758			}
1759
1760			eb = read_tree_block(dest, old_bytenr, blocksize,
1761					     old_ptr_gen);
1762			BUG_ON(!eb);
 
 
 
 
 
 
 
1763			btrfs_tree_lock(eb);
1764			if (cow) {
1765				ret = btrfs_cow_block(trans, dest, eb, parent,
1766						      slot, &eb);
1767				BUG_ON(ret);
1768			}
1769			btrfs_set_lock_blocking(eb);
1770
1771			btrfs_tree_unlock(parent);
1772			free_extent_buffer(parent);
1773
1774			parent = eb;
1775			continue;
1776		}
1777
1778		if (!cow) {
1779			btrfs_tree_unlock(parent);
1780			free_extent_buffer(parent);
1781			cow = 1;
1782			goto again;
1783		}
1784
1785		btrfs_node_key_to_cpu(path->nodes[level], &key,
1786				      path->slots[level]);
1787		btrfs_release_path(path);
1788
1789		path->lowest_level = level;
1790		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1791		path->lowest_level = 0;
1792		BUG_ON(ret);
1793
1794		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795		 * swap blocks in fs tree and reloc tree.
1796		 */
1797		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1798		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1799		btrfs_mark_buffer_dirty(parent);
1800
1801		btrfs_set_node_blockptr(path->nodes[level],
1802					path->slots[level], old_bytenr);
1803		btrfs_set_node_ptr_generation(path->nodes[level],
1804					      path->slots[level], old_ptr_gen);
1805		btrfs_mark_buffer_dirty(path->nodes[level]);
1806
1807		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1808					path->nodes[level]->start,
1809					src->root_key.objectid, level - 1, 0,
1810					1);
 
1811		BUG_ON(ret);
1812		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1813					0, dest->root_key.objectid, level - 1,
1814					0, 1);
 
 
1815		BUG_ON(ret);
1816
1817		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1818					path->nodes[level]->start,
1819					src->root_key.objectid, level - 1, 0,
1820					1);
 
1821		BUG_ON(ret);
1822
1823		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1824					0, dest->root_key.objectid, level - 1,
1825					0, 1);
 
 
1826		BUG_ON(ret);
1827
1828		btrfs_unlock_up_safe(path, 0);
1829
1830		ret = level;
1831		break;
1832	}
1833	btrfs_tree_unlock(parent);
1834	free_extent_buffer(parent);
1835	return ret;
1836}
1837
1838/*
1839 * helper to find next relocated block in reloc tree
1840 */
1841static noinline_for_stack
1842int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1843		       int *level)
1844{
1845	struct extent_buffer *eb;
1846	int i;
1847	u64 last_snapshot;
1848	u32 nritems;
1849
1850	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1851
1852	for (i = 0; i < *level; i++) {
1853		free_extent_buffer(path->nodes[i]);
1854		path->nodes[i] = NULL;
1855	}
1856
1857	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1858		eb = path->nodes[i];
1859		nritems = btrfs_header_nritems(eb);
1860		while (path->slots[i] + 1 < nritems) {
1861			path->slots[i]++;
1862			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1863			    last_snapshot)
1864				continue;
1865
1866			*level = i;
1867			return 0;
1868		}
1869		free_extent_buffer(path->nodes[i]);
1870		path->nodes[i] = NULL;
1871	}
1872	return 1;
1873}
1874
1875/*
1876 * walk down reloc tree to find relocated block of lowest level
1877 */
1878static noinline_for_stack
1879int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1880			 int *level)
1881{
 
1882	struct extent_buffer *eb = NULL;
1883	int i;
1884	u64 bytenr;
1885	u64 ptr_gen = 0;
1886	u64 last_snapshot;
1887	u32 blocksize;
1888	u32 nritems;
1889
1890	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1891
1892	for (i = *level; i > 0; i--) {
 
 
1893		eb = path->nodes[i];
1894		nritems = btrfs_header_nritems(eb);
1895		while (path->slots[i] < nritems) {
1896			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1897			if (ptr_gen > last_snapshot)
1898				break;
1899			path->slots[i]++;
1900		}
1901		if (path->slots[i] >= nritems) {
1902			if (i == *level)
1903				break;
1904			*level = i + 1;
1905			return 0;
1906		}
1907		if (i == 1) {
1908			*level = i;
1909			return 0;
1910		}
1911
1912		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1913		blocksize = btrfs_level_size(root, i - 1);
1914		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
 
 
 
 
 
 
 
1915		BUG_ON(btrfs_header_level(eb) != i - 1);
1916		path->nodes[i - 1] = eb;
1917		path->slots[i - 1] = 0;
1918	}
1919	return 1;
1920}
1921
1922/*
1923 * invalidate extent cache for file extents whose key in range of
1924 * [min_key, max_key)
1925 */
1926static int invalidate_extent_cache(struct btrfs_root *root,
1927				   struct btrfs_key *min_key,
1928				   struct btrfs_key *max_key)
1929{
 
1930	struct inode *inode = NULL;
1931	u64 objectid;
1932	u64 start, end;
1933	u64 ino;
1934
1935	objectid = min_key->objectid;
1936	while (1) {
1937		cond_resched();
1938		iput(inode);
1939
1940		if (objectid > max_key->objectid)
1941			break;
1942
1943		inode = find_next_inode(root, objectid);
1944		if (!inode)
1945			break;
1946		ino = btrfs_ino(inode);
1947
1948		if (ino > max_key->objectid) {
1949			iput(inode);
1950			break;
1951		}
1952
1953		objectid = ino + 1;
1954		if (!S_ISREG(inode->i_mode))
1955			continue;
1956
1957		if (unlikely(min_key->objectid == ino)) {
1958			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1959				continue;
1960			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1961				start = 0;
1962			else {
1963				start = min_key->offset;
1964				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1965			}
1966		} else {
1967			start = 0;
1968		}
1969
1970		if (unlikely(max_key->objectid == ino)) {
1971			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1972				continue;
1973			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1974				end = (u64)-1;
1975			} else {
1976				if (max_key->offset == 0)
1977					continue;
1978				end = max_key->offset;
1979				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1980				end--;
1981			}
1982		} else {
1983			end = (u64)-1;
1984		}
1985
1986		/* the lock_extent waits for readpage to complete */
1987		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1988		btrfs_drop_extent_cache(inode, start, end, 1);
1989		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1990	}
1991	return 0;
1992}
1993
1994static int find_next_key(struct btrfs_path *path, int level,
1995			 struct btrfs_key *key)
1996
1997{
1998	while (level < BTRFS_MAX_LEVEL) {
1999		if (!path->nodes[level])
2000			break;
2001		if (path->slots[level] + 1 <
2002		    btrfs_header_nritems(path->nodes[level])) {
2003			btrfs_node_key_to_cpu(path->nodes[level], key,
2004					      path->slots[level] + 1);
2005			return 0;
2006		}
2007		level++;
2008	}
2009	return 1;
2010}
2011
2012/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013 * merge the relocated tree blocks in reloc tree with corresponding
2014 * fs tree.
2015 */
2016static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2017					       struct btrfs_root *root)
2018{
2019	LIST_HEAD(inode_list);
2020	struct btrfs_key key;
2021	struct btrfs_key next_key;
2022	struct btrfs_trans_handle *trans;
2023	struct btrfs_root *reloc_root;
2024	struct btrfs_root_item *root_item;
2025	struct btrfs_path *path;
2026	struct extent_buffer *leaf;
2027	unsigned long nr;
2028	int level;
2029	int max_level;
2030	int replaced = 0;
2031	int ret;
2032	int err = 0;
2033	u32 min_reserved;
2034
2035	path = btrfs_alloc_path();
2036	if (!path)
2037		return -ENOMEM;
2038	path->reada = 1;
2039
2040	reloc_root = root->reloc_root;
2041	root_item = &reloc_root->root_item;
2042
2043	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2044		level = btrfs_root_level(root_item);
2045		extent_buffer_get(reloc_root->node);
2046		path->nodes[level] = reloc_root->node;
2047		path->slots[level] = 0;
2048	} else {
2049		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2050
2051		level = root_item->drop_level;
2052		BUG_ON(level == 0);
2053		path->lowest_level = level;
2054		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2055		path->lowest_level = 0;
2056		if (ret < 0) {
2057			btrfs_free_path(path);
2058			return ret;
2059		}
2060
2061		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2062				      path->slots[level]);
2063		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2064
2065		btrfs_unlock_up_safe(path, 0);
2066	}
2067
2068	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
 
 
 
 
 
 
 
 
2069	memset(&next_key, 0, sizeof(next_key));
2070
2071	while (1) {
2072		trans = btrfs_start_transaction(root, 0);
2073		BUG_ON(IS_ERR(trans));
2074		trans->block_rsv = rc->block_rsv;
2075
2076		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved);
2077		if (ret) {
2078			BUG_ON(ret != -EAGAIN);
2079			ret = btrfs_commit_transaction(trans, root);
2080			BUG_ON(ret);
2081			continue;
 
 
 
 
2082		}
2083
 
 
 
 
 
 
 
 
 
 
 
 
 
2084		replaced = 0;
2085		max_level = level;
2086
2087		ret = walk_down_reloc_tree(reloc_root, path, &level);
2088		if (ret < 0) {
2089			err = ret;
2090			goto out;
2091		}
2092		if (ret > 0)
2093			break;
2094
2095		if (!find_next_key(path, level, &key) &&
2096		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2097			ret = 0;
2098		} else {
2099			ret = replace_path(trans, root, reloc_root, path,
2100					   &next_key, level, max_level);
2101		}
2102		if (ret < 0) {
2103			err = ret;
2104			goto out;
2105		}
2106
2107		if (ret > 0) {
2108			level = ret;
2109			btrfs_node_key_to_cpu(path->nodes[level], &key,
2110					      path->slots[level]);
2111			replaced = 1;
2112		}
2113
2114		ret = walk_up_reloc_tree(reloc_root, path, &level);
2115		if (ret > 0)
2116			break;
2117
2118		BUG_ON(level == 0);
2119		/*
2120		 * save the merging progress in the drop_progress.
2121		 * this is OK since root refs == 1 in this case.
2122		 */
2123		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2124			       path->slots[level]);
2125		root_item->drop_level = level;
2126
2127		nr = trans->blocks_used;
2128		btrfs_end_transaction_throttle(trans, root);
2129
2130		btrfs_btree_balance_dirty(root, nr);
2131
2132		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2133			invalidate_extent_cache(root, &key, &next_key);
2134	}
2135
2136	/*
2137	 * handle the case only one block in the fs tree need to be
2138	 * relocated and the block is tree root.
2139	 */
2140	leaf = btrfs_lock_root_node(root);
2141	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2142	btrfs_tree_unlock(leaf);
2143	free_extent_buffer(leaf);
2144	if (ret < 0)
2145		err = ret;
2146out:
2147	btrfs_free_path(path);
2148
2149	if (err == 0) {
2150		memset(&root_item->drop_progress, 0,
2151		       sizeof(root_item->drop_progress));
2152		root_item->drop_level = 0;
2153		btrfs_set_root_refs(root_item, 0);
2154		btrfs_update_reloc_root(trans, root);
2155	}
2156
2157	nr = trans->blocks_used;
2158	btrfs_end_transaction_throttle(trans, root);
2159
2160	btrfs_btree_balance_dirty(root, nr);
2161
2162	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2163		invalidate_extent_cache(root, &key, &next_key);
2164
2165	return err;
2166}
2167
2168static noinline_for_stack
2169int prepare_to_merge(struct reloc_control *rc, int err)
2170{
2171	struct btrfs_root *root = rc->extent_root;
 
2172	struct btrfs_root *reloc_root;
2173	struct btrfs_trans_handle *trans;
2174	LIST_HEAD(reloc_roots);
2175	u64 num_bytes = 0;
2176	int ret;
2177
2178	mutex_lock(&root->fs_info->reloc_mutex);
2179	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2180	rc->merging_rsv_size += rc->nodes_relocated * 2;
2181	mutex_unlock(&root->fs_info->reloc_mutex);
2182
2183again:
2184	if (!err) {
2185		num_bytes = rc->merging_rsv_size;
2186		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes);
 
2187		if (ret)
2188			err = ret;
2189	}
2190
2191	trans = btrfs_join_transaction(rc->extent_root);
2192	if (IS_ERR(trans)) {
2193		if (!err)
2194			btrfs_block_rsv_release(rc->extent_root,
2195						rc->block_rsv, num_bytes);
2196		return PTR_ERR(trans);
2197	}
2198
2199	if (!err) {
2200		if (num_bytes != rc->merging_rsv_size) {
2201			btrfs_end_transaction(trans, rc->extent_root);
2202			btrfs_block_rsv_release(rc->extent_root,
2203						rc->block_rsv, num_bytes);
2204			goto again;
2205		}
2206	}
2207
2208	rc->merge_reloc_tree = 1;
2209
2210	while (!list_empty(&rc->reloc_roots)) {
2211		reloc_root = list_entry(rc->reloc_roots.next,
2212					struct btrfs_root, root_list);
2213		list_del_init(&reloc_root->root_list);
2214
2215		root = read_fs_root(reloc_root->fs_info,
2216				    reloc_root->root_key.offset);
2217		BUG_ON(IS_ERR(root));
2218		BUG_ON(root->reloc_root != reloc_root);
2219
2220		/*
2221		 * set reference count to 1, so btrfs_recover_relocation
2222		 * knows it should resumes merging
2223		 */
2224		if (!err)
2225			btrfs_set_root_refs(&reloc_root->root_item, 1);
2226		btrfs_update_reloc_root(trans, root);
2227
2228		list_add(&reloc_root->root_list, &reloc_roots);
 
2229	}
2230
2231	list_splice(&reloc_roots, &rc->reloc_roots);
2232
2233	if (!err)
2234		btrfs_commit_transaction(trans, rc->extent_root);
2235	else
2236		btrfs_end_transaction(trans, rc->extent_root);
2237	return err;
2238}
2239
2240static noinline_for_stack
2241int merge_reloc_roots(struct reloc_control *rc)
 
 
 
 
 
 
 
 
 
2242{
 
2243	struct btrfs_root *root;
2244	struct btrfs_root *reloc_root;
2245	LIST_HEAD(reloc_roots);
2246	int found = 0;
2247	int ret;
2248again:
2249	root = rc->extent_root;
2250
2251	/*
2252	 * this serializes us with btrfs_record_root_in_transaction,
2253	 * we have to make sure nobody is in the middle of
2254	 * adding their roots to the list while we are
2255	 * doing this splice
2256	 */
2257	mutex_lock(&root->fs_info->reloc_mutex);
2258	list_splice_init(&rc->reloc_roots, &reloc_roots);
2259	mutex_unlock(&root->fs_info->reloc_mutex);
2260
2261	while (!list_empty(&reloc_roots)) {
2262		found = 1;
2263		reloc_root = list_entry(reloc_roots.next,
2264					struct btrfs_root, root_list);
2265
 
 
2266		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2267			root = read_fs_root(reloc_root->fs_info,
2268					    reloc_root->root_key.offset);
2269			BUG_ON(IS_ERR(root));
2270			BUG_ON(root->reloc_root != reloc_root);
2271
2272			ret = merge_reloc_root(rc, root);
2273			BUG_ON(ret);
 
 
 
 
 
 
2274		} else {
 
 
 
 
 
 
 
 
 
 
2275			list_del_init(&reloc_root->root_list);
 
 
 
2276		}
2277		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2278		BUG_ON(ret < 0);
2279	}
2280
2281	if (found) {
2282		found = 0;
2283		goto again;
2284	}
2285	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2286	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2287}
2288
2289static void free_block_list(struct rb_root *blocks)
2290{
2291	struct tree_block *block;
2292	struct rb_node *rb_node;
2293	while ((rb_node = rb_first(blocks))) {
2294		block = rb_entry(rb_node, struct tree_block, rb_node);
2295		rb_erase(rb_node, blocks);
2296		kfree(block);
2297	}
2298}
2299
2300static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2301				      struct btrfs_root *reloc_root)
2302{
 
2303	struct btrfs_root *root;
 
2304
2305	if (reloc_root->last_trans == trans->transid)
2306		return 0;
2307
2308	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2309	BUG_ON(IS_ERR(root));
2310	BUG_ON(root->reloc_root != reloc_root);
 
 
2311
2312	return btrfs_record_root_in_trans(trans, root);
2313}
2314
2315static noinline_for_stack
2316struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2317				     struct reloc_control *rc,
2318				     struct backref_node *node,
2319				     struct backref_edge *edges[], int *nr)
2320{
2321	struct backref_node *next;
2322	struct btrfs_root *root;
2323	int index = 0;
2324
2325	next = node;
2326	while (1) {
2327		cond_resched();
2328		next = walk_up_backref(next, edges, &index);
2329		root = next->root;
2330		BUG_ON(!root);
2331		BUG_ON(!root->ref_cows);
2332
2333		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2334			record_reloc_root_in_trans(trans, root);
2335			break;
2336		}
2337
2338		btrfs_record_root_in_trans(trans, root);
2339		root = root->reloc_root;
2340
2341		if (next->new_bytenr != root->node->start) {
2342			BUG_ON(next->new_bytenr);
2343			BUG_ON(!list_empty(&next->list));
2344			next->new_bytenr = root->node->start;
2345			next->root = root;
 
 
2346			list_add_tail(&next->list,
2347				      &rc->backref_cache.changed);
2348			__mark_block_processed(rc, next);
2349			break;
2350		}
2351
2352		WARN_ON(1);
2353		root = NULL;
2354		next = walk_down_backref(edges, &index);
2355		if (!next || next->level <= node->level)
2356			break;
2357	}
2358	if (!root)
2359		return NULL;
2360
2361	*nr = index;
2362	next = node;
2363	/* setup backref node path for btrfs_reloc_cow_block */
2364	while (1) {
2365		rc->backref_cache.path[next->level] = next;
2366		if (--index < 0)
2367			break;
2368		next = edges[index]->node[UPPER];
2369	}
2370	return root;
2371}
2372
2373/*
2374 * select a tree root for relocation. return NULL if the block
2375 * is reference counted. we should use do_relocation() in this
2376 * case. return a tree root pointer if the block isn't reference
2377 * counted. return -ENOENT if the block is root of reloc tree.
 
 
 
2378 */
2379static noinline_for_stack
2380struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2381				   struct backref_node *node)
2382{
2383	struct backref_node *next;
2384	struct btrfs_root *root;
2385	struct btrfs_root *fs_root = NULL;
2386	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2387	int index = 0;
2388
2389	next = node;
2390	while (1) {
2391		cond_resched();
2392		next = walk_up_backref(next, edges, &index);
2393		root = next->root;
2394		BUG_ON(!root);
2395
2396		/* no other choice for non-references counted tree */
2397		if (!root->ref_cows)
2398			return root;
2399
2400		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2401			fs_root = root;
2402
2403		if (next != node)
2404			return NULL;
2405
2406		next = walk_down_backref(edges, &index);
2407		if (!next || next->level <= node->level)
2408			break;
2409	}
2410
2411	if (!fs_root)
2412		return ERR_PTR(-ENOENT);
2413	return fs_root;
2414}
2415
2416static noinline_for_stack
2417u64 calcu_metadata_size(struct reloc_control *rc,
2418			struct backref_node *node, int reserve)
2419{
2420	struct backref_node *next = node;
2421	struct backref_edge *edge;
2422	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
 
2423	u64 num_bytes = 0;
2424	int index = 0;
2425
2426	BUG_ON(reserve && node->processed);
2427
2428	while (next) {
2429		cond_resched();
2430		while (1) {
2431			if (next->processed && (reserve || next != node))
2432				break;
2433
2434			num_bytes += btrfs_level_size(rc->extent_root,
2435						      next->level);
2436
2437			if (list_empty(&next->upper))
2438				break;
2439
2440			edge = list_entry(next->upper.next,
2441					  struct backref_edge, list[LOWER]);
2442			edges[index++] = edge;
2443			next = edge->node[UPPER];
2444		}
2445		next = walk_down_backref(edges, &index);
2446	}
2447	return num_bytes;
2448}
2449
2450static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2451				  struct reloc_control *rc,
2452				  struct backref_node *node)
2453{
2454	struct btrfs_root *root = rc->extent_root;
 
2455	u64 num_bytes;
2456	int ret;
 
2457
2458	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2459
2460	trans->block_rsv = rc->block_rsv;
2461	ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes);
 
 
 
 
 
 
 
 
2462	if (ret) {
2463		if (ret == -EAGAIN)
2464			rc->commit_transaction = 1;
2465		return ret;
 
 
 
 
 
 
 
 
 
 
2466	}
2467
2468	return 0;
2469}
2470
2471static void release_metadata_space(struct reloc_control *rc,
2472				   struct backref_node *node)
2473{
2474	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2475	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2476}
2477
2478/*
2479 * relocate a block tree, and then update pointers in upper level
2480 * blocks that reference the block to point to the new location.
2481 *
2482 * if called by link_to_upper, the block has already been relocated.
2483 * in that case this function just updates pointers.
2484 */
2485static int do_relocation(struct btrfs_trans_handle *trans,
2486			 struct reloc_control *rc,
2487			 struct backref_node *node,
2488			 struct btrfs_key *key,
2489			 struct btrfs_path *path, int lowest)
2490{
2491	struct backref_node *upper;
2492	struct backref_edge *edge;
2493	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
 
2494	struct btrfs_root *root;
2495	struct extent_buffer *eb;
2496	u32 blocksize;
2497	u64 bytenr;
2498	u64 generation;
2499	int nr;
2500	int slot;
2501	int ret;
2502	int err = 0;
2503
2504	BUG_ON(lowest && node->eb);
2505
2506	path->lowest_level = node->level + 1;
2507	rc->backref_cache.path[node->level] = node;
2508	list_for_each_entry(edge, &node->upper, list[LOWER]) {
 
 
 
2509		cond_resched();
2510
2511		upper = edge->node[UPPER];
2512		root = select_reloc_root(trans, rc, upper, edges, &nr);
2513		BUG_ON(!root);
2514
2515		if (upper->eb && !upper->locked) {
2516			if (!lowest) {
2517				ret = btrfs_bin_search(upper->eb, key,
2518						       upper->level, &slot);
 
 
 
2519				BUG_ON(ret);
2520				bytenr = btrfs_node_blockptr(upper->eb, slot);
2521				if (node->eb->start == bytenr)
2522					goto next;
2523			}
2524			drop_node_buffer(upper);
2525		}
2526
2527		if (!upper->eb) {
2528			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2529			if (ret < 0) {
2530				err = ret;
 
 
 
 
 
2531				break;
2532			}
2533			BUG_ON(ret > 0);
2534
2535			if (!upper->eb) {
2536				upper->eb = path->nodes[upper->level];
2537				path->nodes[upper->level] = NULL;
2538			} else {
2539				BUG_ON(upper->eb != path->nodes[upper->level]);
2540			}
2541
2542			upper->locked = 1;
2543			path->locks[upper->level] = 0;
2544
2545			slot = path->slots[upper->level];
2546			btrfs_release_path(path);
2547		} else {
2548			ret = btrfs_bin_search(upper->eb, key, upper->level,
2549					       &slot);
 
 
 
2550			BUG_ON(ret);
2551		}
2552
2553		bytenr = btrfs_node_blockptr(upper->eb, slot);
2554		if (lowest) {
2555			BUG_ON(bytenr != node->bytenr);
 
 
 
 
 
 
 
2556		} else {
2557			if (node->eb->start == bytenr)
2558				goto next;
2559		}
2560
2561		blocksize = btrfs_level_size(root, node->level);
2562		generation = btrfs_node_ptr_generation(upper->eb, slot);
2563		eb = read_tree_block(root, bytenr, blocksize, generation);
2564		if (!eb) {
 
 
 
 
 
 
2565			err = -EIO;
2566			goto next;
2567		}
2568		btrfs_tree_lock(eb);
2569		btrfs_set_lock_blocking(eb);
2570
2571		if (!node->eb) {
2572			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2573					      slot, &eb);
2574			btrfs_tree_unlock(eb);
2575			free_extent_buffer(eb);
2576			if (ret < 0) {
2577				err = ret;
2578				goto next;
2579			}
2580			BUG_ON(node->eb != eb);
2581		} else {
2582			btrfs_set_node_blockptr(upper->eb, slot,
2583						node->eb->start);
2584			btrfs_set_node_ptr_generation(upper->eb, slot,
2585						      trans->transid);
2586			btrfs_mark_buffer_dirty(upper->eb);
2587
2588			ret = btrfs_inc_extent_ref(trans, root,
2589						node->eb->start, blocksize,
2590						upper->eb->start,
2591						btrfs_header_owner(upper->eb),
2592						node->level, 0, 1);
 
 
2593			BUG_ON(ret);
2594
2595			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2596			BUG_ON(ret);
2597		}
2598next:
2599		if (!upper->pending)
2600			drop_node_buffer(upper);
2601		else
2602			unlock_node_buffer(upper);
2603		if (err)
2604			break;
2605	}
2606
2607	if (!err && node->pending) {
2608		drop_node_buffer(node);
2609		list_move_tail(&node->list, &rc->backref_cache.changed);
2610		node->pending = 0;
2611	}
2612
2613	path->lowest_level = 0;
2614	BUG_ON(err == -ENOSPC);
2615	return err;
2616}
2617
2618static int link_to_upper(struct btrfs_trans_handle *trans,
2619			 struct reloc_control *rc,
2620			 struct backref_node *node,
2621			 struct btrfs_path *path)
2622{
2623	struct btrfs_key key;
2624
2625	btrfs_node_key_to_cpu(node->eb, &key, 0);
2626	return do_relocation(trans, rc, node, &key, path, 0);
2627}
2628
2629static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2630				struct reloc_control *rc,
2631				struct btrfs_path *path, int err)
2632{
2633	LIST_HEAD(list);
2634	struct backref_cache *cache = &rc->backref_cache;
2635	struct backref_node *node;
2636	int level;
2637	int ret;
2638
2639	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2640		while (!list_empty(&cache->pending[level])) {
2641			node = list_entry(cache->pending[level].next,
2642					  struct backref_node, list);
2643			list_move_tail(&node->list, &list);
2644			BUG_ON(!node->pending);
2645
2646			if (!err) {
2647				ret = link_to_upper(trans, rc, node, path);
2648				if (ret < 0)
2649					err = ret;
2650			}
2651		}
2652		list_splice_init(&list, &cache->pending[level]);
2653	}
2654	return err;
2655}
2656
2657static void mark_block_processed(struct reloc_control *rc,
2658				 u64 bytenr, u32 blocksize)
2659{
2660	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2661			EXTENT_DIRTY, GFP_NOFS);
2662}
2663
2664static void __mark_block_processed(struct reloc_control *rc,
2665				   struct backref_node *node)
2666{
2667	u32 blocksize;
2668	if (node->level == 0 ||
2669	    in_block_group(node->bytenr, rc->block_group)) {
2670		blocksize = btrfs_level_size(rc->extent_root, node->level);
2671		mark_block_processed(rc, node->bytenr, blocksize);
2672	}
2673	node->processed = 1;
2674}
2675
2676/*
2677 * mark a block and all blocks directly/indirectly reference the block
2678 * as processed.
2679 */
2680static void update_processed_blocks(struct reloc_control *rc,
2681				    struct backref_node *node)
2682{
2683	struct backref_node *next = node;
2684	struct backref_edge *edge;
2685	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2686	int index = 0;
2687
2688	while (next) {
2689		cond_resched();
2690		while (1) {
2691			if (next->processed)
2692				break;
2693
2694			__mark_block_processed(rc, next);
2695
2696			if (list_empty(&next->upper))
2697				break;
2698
2699			edge = list_entry(next->upper.next,
2700					  struct backref_edge, list[LOWER]);
2701			edges[index++] = edge;
2702			next = edge->node[UPPER];
2703		}
2704		next = walk_down_backref(edges, &index);
2705	}
2706}
2707
2708static int tree_block_processed(u64 bytenr, u32 blocksize,
2709				struct reloc_control *rc)
2710{
 
 
2711	if (test_range_bit(&rc->processed_blocks, bytenr,
2712			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2713		return 1;
2714	return 0;
2715}
2716
2717static int get_tree_block_key(struct reloc_control *rc,
2718			      struct tree_block *block)
2719{
2720	struct extent_buffer *eb;
2721
2722	BUG_ON(block->key_ready);
2723	eb = read_tree_block(rc->extent_root, block->bytenr,
2724			     block->key.objectid, block->key.offset);
2725	BUG_ON(!eb);
2726	WARN_ON(btrfs_header_level(eb) != block->level);
 
 
 
2727	if (block->level == 0)
2728		btrfs_item_key_to_cpu(eb, &block->key, 0);
2729	else
2730		btrfs_node_key_to_cpu(eb, &block->key, 0);
2731	free_extent_buffer(eb);
2732	block->key_ready = 1;
2733	return 0;
2734}
2735
2736static int reada_tree_block(struct reloc_control *rc,
2737			    struct tree_block *block)
2738{
2739	BUG_ON(block->key_ready);
2740	readahead_tree_block(rc->extent_root, block->bytenr,
2741			     block->key.objectid, block->key.offset);
2742	return 0;
2743}
2744
2745/*
2746 * helper function to relocate a tree block
2747 */
2748static int relocate_tree_block(struct btrfs_trans_handle *trans,
2749				struct reloc_control *rc,
2750				struct backref_node *node,
2751				struct btrfs_key *key,
2752				struct btrfs_path *path)
2753{
2754	struct btrfs_root *root;
2755	int release = 0;
2756	int ret = 0;
2757
2758	if (!node)
2759		return 0;
2760
 
 
 
 
 
 
 
 
2761	BUG_ON(node->processed);
2762	root = select_one_root(trans, node);
2763	if (root == ERR_PTR(-ENOENT)) {
2764		update_processed_blocks(rc, node);
2765		goto out;
2766	}
2767
2768	if (!root || root->ref_cows) {
2769		ret = reserve_metadata_space(trans, rc, node);
2770		if (ret)
2771			goto out;
2772		release = 1;
2773	}
2774
2775	if (root) {
2776		if (root->ref_cows) {
2777			BUG_ON(node->new_bytenr);
2778			BUG_ON(!list_empty(&node->list));
2779			btrfs_record_root_in_trans(trans, root);
2780			root = root->reloc_root;
2781			node->new_bytenr = root->node->start;
2782			node->root = root;
 
 
2783			list_add_tail(&node->list, &rc->backref_cache.changed);
2784		} else {
2785			path->lowest_level = node->level;
2786			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2787			btrfs_release_path(path);
2788			if (ret > 0)
2789				ret = 0;
2790		}
2791		if (!ret)
2792			update_processed_blocks(rc, node);
2793	} else {
2794		ret = do_relocation(trans, rc, node, key, path, 1);
2795	}
2796out:
2797	if (ret || node->level == 0 || node->cowonly) {
2798		if (release)
2799			release_metadata_space(rc, node);
2800		remove_backref_node(&rc->backref_cache, node);
2801	}
2802	return ret;
2803}
2804
2805/*
2806 * relocate a list of blocks
2807 */
2808static noinline_for_stack
2809int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2810			 struct reloc_control *rc, struct rb_root *blocks)
2811{
2812	struct backref_node *node;
 
2813	struct btrfs_path *path;
2814	struct tree_block *block;
2815	struct rb_node *rb_node;
2816	int ret;
2817	int err = 0;
2818
2819	path = btrfs_alloc_path();
2820	if (!path)
2821		return -ENOMEM;
2822
2823	rb_node = rb_first(blocks);
2824	while (rb_node) {
2825		block = rb_entry(rb_node, struct tree_block, rb_node);
2826		if (!block->key_ready)
2827			reada_tree_block(rc, block);
2828		rb_node = rb_next(rb_node);
2829	}
2830
2831	rb_node = rb_first(blocks);
2832	while (rb_node) {
2833		block = rb_entry(rb_node, struct tree_block, rb_node);
2834		if (!block->key_ready)
2835			get_tree_block_key(rc, block);
2836		rb_node = rb_next(rb_node);
2837	}
2838
2839	rb_node = rb_first(blocks);
2840	while (rb_node) {
2841		block = rb_entry(rb_node, struct tree_block, rb_node);
 
 
 
 
 
2842
 
 
2843		node = build_backref_tree(rc, &block->key,
2844					  block->level, block->bytenr);
2845		if (IS_ERR(node)) {
2846			err = PTR_ERR(node);
2847			goto out;
2848		}
2849
2850		ret = relocate_tree_block(trans, rc, node, &block->key,
2851					  path);
2852		if (ret < 0) {
2853			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2854				err = ret;
2855			goto out;
2856		}
2857		rb_node = rb_next(rb_node);
2858	}
2859out:
2860	free_block_list(blocks);
2861	err = finish_pending_nodes(trans, rc, path, err);
2862
 
2863	btrfs_free_path(path);
 
 
2864	return err;
2865}
2866
2867static noinline_for_stack
2868int prealloc_file_extent_cluster(struct inode *inode,
2869				 struct file_extent_cluster *cluster)
2870{
2871	u64 alloc_hint = 0;
2872	u64 start;
2873	u64 end;
2874	u64 offset = BTRFS_I(inode)->index_cnt;
2875	u64 num_bytes;
2876	int nr = 0;
2877	int ret = 0;
 
 
 
2878
2879	BUG_ON(cluster->start != cluster->boundary[0]);
2880	mutex_lock(&inode->i_mutex);
2881
2882	ret = btrfs_check_data_free_space(inode, cluster->end +
2883					  1 - cluster->start);
2884	if (ret)
2885		goto out;
2886
2887	while (nr < cluster->nr) {
 
2888		start = cluster->boundary[nr] - offset;
2889		if (nr + 1 < cluster->nr)
2890			end = cluster->boundary[nr + 1] - 1 - offset;
2891		else
2892			end = cluster->end - offset;
2893
2894		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2895		num_bytes = end + 1 - start;
2896		ret = btrfs_prealloc_file_range(inode, 0, start,
2897						num_bytes, num_bytes,
2898						end + 1, &alloc_hint);
2899		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
 
2900		if (ret)
2901			break;
2902		nr++;
2903	}
2904	btrfs_free_reserved_data_space(inode, cluster->end +
2905				       1 - cluster->start);
2906out:
2907	mutex_unlock(&inode->i_mutex);
 
2908	return ret;
2909}
2910
2911static noinline_for_stack
2912int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2913			 u64 block_start)
2914{
2915	struct btrfs_root *root = BTRFS_I(inode)->root;
2916	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2917	struct extent_map *em;
2918	int ret = 0;
2919
2920	em = alloc_extent_map();
2921	if (!em)
2922		return -ENOMEM;
2923
2924	em->start = start;
2925	em->len = end + 1 - start;
2926	em->block_len = em->len;
2927	em->block_start = block_start;
2928	em->bdev = root->fs_info->fs_devices->latest_bdev;
2929	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2930
2931	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2932	while (1) {
2933		write_lock(&em_tree->lock);
2934		ret = add_extent_mapping(em_tree, em);
2935		write_unlock(&em_tree->lock);
2936		if (ret != -EEXIST) {
2937			free_extent_map(em);
2938			break;
2939		}
2940		btrfs_drop_extent_cache(inode, start, end, 0);
2941	}
2942	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2943	return ret;
2944}
2945
 
 
 
 
 
 
 
 
 
 
2946static int relocate_file_extent_cluster(struct inode *inode,
2947					struct file_extent_cluster *cluster)
2948{
 
2949	u64 page_start;
2950	u64 page_end;
2951	u64 offset = BTRFS_I(inode)->index_cnt;
2952	unsigned long index;
2953	unsigned long last_index;
2954	struct page *page;
2955	struct file_ra_state *ra;
2956	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2957	int nr = 0;
2958	int ret = 0;
2959
2960	if (!cluster->nr)
2961		return 0;
2962
2963	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2964	if (!ra)
2965		return -ENOMEM;
2966
2967	ret = prealloc_file_extent_cluster(inode, cluster);
2968	if (ret)
2969		goto out;
2970
2971	file_ra_state_init(ra, inode->i_mapping);
2972
2973	ret = setup_extent_mapping(inode, cluster->start - offset,
2974				   cluster->end - offset, cluster->start);
2975	if (ret)
2976		goto out;
2977
2978	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
2979	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
2980	while (index <= last_index) {
2981		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
 
2982		if (ret)
2983			goto out;
2984
2985		page = find_lock_page(inode->i_mapping, index);
2986		if (!page) {
2987			page_cache_sync_readahead(inode->i_mapping,
2988						  ra, NULL, index,
2989						  last_index + 1 - index);
2990			page = find_or_create_page(inode->i_mapping, index,
2991						   mask);
2992			if (!page) {
2993				btrfs_delalloc_release_metadata(inode,
2994							PAGE_CACHE_SIZE);
 
 
2995				ret = -ENOMEM;
2996				goto out;
2997			}
2998		}
2999
3000		if (PageReadahead(page)) {
3001			page_cache_async_readahead(inode->i_mapping,
3002						   ra, NULL, page, index,
3003						   last_index + 1 - index);
3004		}
3005
3006		if (!PageUptodate(page)) {
3007			btrfs_readpage(NULL, page);
3008			lock_page(page);
3009			if (!PageUptodate(page)) {
3010				unlock_page(page);
3011				page_cache_release(page);
3012				btrfs_delalloc_release_metadata(inode,
3013							PAGE_CACHE_SIZE);
 
 
3014				ret = -EIO;
3015				goto out;
3016			}
3017		}
3018
3019		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
3020		page_end = page_start + PAGE_CACHE_SIZE - 1;
3021
3022		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3023
3024		set_page_extent_mapped(page);
3025
3026		if (nr < cluster->nr &&
3027		    page_start + offset == cluster->boundary[nr]) {
3028			set_extent_bits(&BTRFS_I(inode)->io_tree,
3029					page_start, page_end,
3030					EXTENT_BOUNDARY, GFP_NOFS);
3031			nr++;
3032		}
3033
3034		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035		set_page_dirty(page);
3036
3037		unlock_extent(&BTRFS_I(inode)->io_tree,
3038			      page_start, page_end);
3039		unlock_page(page);
3040		page_cache_release(page);
3041
3042		index++;
 
3043		balance_dirty_pages_ratelimited(inode->i_mapping);
3044		btrfs_throttle(BTRFS_I(inode)->root);
 
 
 
 
3045	}
3046	WARN_ON(nr != cluster->nr);
3047out:
3048	kfree(ra);
3049	return ret;
3050}
3051
3052static noinline_for_stack
3053int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3054			 struct file_extent_cluster *cluster)
3055{
3056	int ret;
3057
3058	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3059		ret = relocate_file_extent_cluster(inode, cluster);
3060		if (ret)
3061			return ret;
3062		cluster->nr = 0;
3063	}
3064
3065	if (!cluster->nr)
3066		cluster->start = extent_key->objectid;
3067	else
3068		BUG_ON(cluster->nr >= MAX_EXTENTS);
3069	cluster->end = extent_key->objectid + extent_key->offset - 1;
3070	cluster->boundary[cluster->nr] = extent_key->objectid;
3071	cluster->nr++;
3072
3073	if (cluster->nr >= MAX_EXTENTS) {
3074		ret = relocate_file_extent_cluster(inode, cluster);
3075		if (ret)
3076			return ret;
3077		cluster->nr = 0;
3078	}
3079	return 0;
3080}
3081
3082#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3083static int get_ref_objectid_v0(struct reloc_control *rc,
3084			       struct btrfs_path *path,
3085			       struct btrfs_key *extent_key,
3086			       u64 *ref_objectid, int *path_change)
3087{
3088	struct btrfs_key key;
3089	struct extent_buffer *leaf;
3090	struct btrfs_extent_ref_v0 *ref0;
3091	int ret;
3092	int slot;
3093
3094	leaf = path->nodes[0];
3095	slot = path->slots[0];
3096	while (1) {
3097		if (slot >= btrfs_header_nritems(leaf)) {
3098			ret = btrfs_next_leaf(rc->extent_root, path);
3099			if (ret < 0)
3100				return ret;
3101			BUG_ON(ret > 0);
3102			leaf = path->nodes[0];
3103			slot = path->slots[0];
3104			if (path_change)
3105				*path_change = 1;
3106		}
3107		btrfs_item_key_to_cpu(leaf, &key, slot);
3108		if (key.objectid != extent_key->objectid)
3109			return -ENOENT;
3110
3111		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3112			slot++;
3113			continue;
3114		}
3115		ref0 = btrfs_item_ptr(leaf, slot,
3116				struct btrfs_extent_ref_v0);
3117		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3118		break;
3119	}
3120	return 0;
3121}
3122#endif
3123
3124/*
3125 * helper to add a tree block to the list.
3126 * the major work is getting the generation and level of the block
3127 */
3128static int add_tree_block(struct reloc_control *rc,
3129			  struct btrfs_key *extent_key,
3130			  struct btrfs_path *path,
3131			  struct rb_root *blocks)
3132{
3133	struct extent_buffer *eb;
3134	struct btrfs_extent_item *ei;
3135	struct btrfs_tree_block_info *bi;
3136	struct tree_block *block;
3137	struct rb_node *rb_node;
3138	u32 item_size;
3139	int level = -1;
3140	int generation;
3141
3142	eb =  path->nodes[0];
3143	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3144
3145	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
 
3146		ei = btrfs_item_ptr(eb, path->slots[0],
3147				struct btrfs_extent_item);
3148		bi = (struct btrfs_tree_block_info *)(ei + 1);
 
 
 
 
 
3149		generation = btrfs_extent_generation(eb, ei);
3150		level = btrfs_tree_block_level(eb, bi);
 
 
 
3151	} else {
3152#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3153		u64 ref_owner;
3154		int ret;
3155
3156		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3157		ret = get_ref_objectid_v0(rc, path, extent_key,
3158					  &ref_owner, NULL);
3159		if (ret < 0)
3160			return ret;
3161		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3162		level = (int)ref_owner;
3163		/* FIXME: get real generation */
3164		generation = 0;
3165#else
3166		BUG();
3167#endif
3168	}
3169
3170	btrfs_release_path(path);
3171
3172	BUG_ON(level == -1);
3173
3174	block = kmalloc(sizeof(*block), GFP_NOFS);
3175	if (!block)
3176		return -ENOMEM;
3177
3178	block->bytenr = extent_key->objectid;
3179	block->key.objectid = extent_key->offset;
3180	block->key.offset = generation;
3181	block->level = level;
3182	block->key_ready = 0;
3183
3184	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3185	if (rb_node)
3186		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
 
3187
3188	return 0;
3189}
3190
3191/*
3192 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3193 */
3194static int __add_tree_block(struct reloc_control *rc,
3195			    u64 bytenr, u32 blocksize,
3196			    struct rb_root *blocks)
3197{
 
3198	struct btrfs_path *path;
3199	struct btrfs_key key;
3200	int ret;
 
3201
3202	if (tree_block_processed(bytenr, blocksize, rc))
3203		return 0;
3204
3205	if (tree_search(blocks, bytenr))
3206		return 0;
3207
3208	path = btrfs_alloc_path();
3209	if (!path)
3210		return -ENOMEM;
3211
3212	key.objectid = bytenr;
3213	key.type = BTRFS_EXTENT_ITEM_KEY;
3214	key.offset = blocksize;
 
 
 
 
 
3215
3216	path->search_commit_root = 1;
3217	path->skip_locking = 1;
3218	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3219	if (ret < 0)
3220		goto out;
3221	BUG_ON(ret);
3222
3223	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3224	ret = add_tree_block(rc, &key, path, blocks);
3225out:
3226	btrfs_free_path(path);
3227	return ret;
3228}
3229
3230/*
3231 * helper to check if the block use full backrefs for pointers in it
3232 */
3233static int block_use_full_backref(struct reloc_control *rc,
3234				  struct extent_buffer *eb)
3235{
3236	u64 flags;
3237	int ret;
3238
3239	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3240	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3241		return 1;
3242
3243	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3244				       eb->start, eb->len, NULL, &flags);
3245	BUG_ON(ret);
3246
3247	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3248		ret = 1;
3249	else
3250		ret = 0;
3251	return ret;
3252}
3253
3254static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3255				    struct inode *inode, u64 ino)
 
 
3256{
3257	struct btrfs_key key;
3258	struct btrfs_path *path;
3259	struct btrfs_root *root = fs_info->tree_root;
3260	struct btrfs_trans_handle *trans;
3261	unsigned long nr;
3262	int ret = 0;
3263
3264	if (inode)
3265		goto truncate;
3266
3267	key.objectid = ino;
3268	key.type = BTRFS_INODE_ITEM_KEY;
3269	key.offset = 0;
3270
3271	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3272	if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) {
3273		if (inode && !IS_ERR(inode))
3274			iput(inode);
3275		return -ENOENT;
3276	}
3277
3278truncate:
3279	path = btrfs_alloc_path();
3280	if (!path) {
3281		ret = -ENOMEM;
3282		goto out;
3283	}
3284
3285	trans = btrfs_join_transaction(root);
3286	if (IS_ERR(trans)) {
3287		btrfs_free_path(path);
3288		ret = PTR_ERR(trans);
3289		goto out;
3290	}
3291
3292	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3293
3294	btrfs_free_path(path);
3295	nr = trans->blocks_used;
3296	btrfs_end_transaction(trans, root);
3297	btrfs_btree_balance_dirty(root, nr);
3298out:
3299	iput(inode);
3300	return ret;
3301}
3302
3303/*
3304 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3305 * this function scans fs tree to find blocks reference the data extent
3306 */
3307static int find_data_references(struct reloc_control *rc,
3308				struct btrfs_key *extent_key,
3309				struct extent_buffer *leaf,
3310				struct btrfs_extent_data_ref *ref,
3311				struct rb_root *blocks)
3312{
3313	struct btrfs_path *path;
3314	struct tree_block *block;
3315	struct btrfs_root *root;
3316	struct btrfs_file_extent_item *fi;
3317	struct rb_node *rb_node;
3318	struct btrfs_key key;
3319	u64 ref_root;
3320	u64 ref_objectid;
3321	u64 ref_offset;
3322	u32 ref_count;
3323	u32 nritems;
3324	int err = 0;
3325	int added = 0;
3326	int counted;
3327	int ret;
3328
3329	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3330	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3331	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3332	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3333
3334	/*
3335	 * This is an extent belonging to the free space cache, lets just delete
3336	 * it and redo the search.
3337	 */
3338	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3339		ret = delete_block_group_cache(rc->extent_root->fs_info,
3340					       NULL, ref_objectid);
3341		if (ret != -ENOENT)
3342			return ret;
3343		ret = 0;
3344	}
3345
3346	path = btrfs_alloc_path();
3347	if (!path)
3348		return -ENOMEM;
3349	path->reada = 1;
3350
3351	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3352	if (IS_ERR(root)) {
3353		err = PTR_ERR(root);
3354		goto out;
3355	}
3356
3357	key.objectid = ref_objectid;
3358	key.type = BTRFS_EXTENT_DATA_KEY;
3359	if (ref_offset > ((u64)-1 << 32))
3360		key.offset = 0;
3361	else
3362		key.offset = ref_offset;
3363
3364	path->search_commit_root = 1;
3365	path->skip_locking = 1;
3366	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3367	if (ret < 0) {
3368		err = ret;
3369		goto out;
3370	}
3371
3372	leaf = path->nodes[0];
3373	nritems = btrfs_header_nritems(leaf);
3374	/*
3375	 * the references in tree blocks that use full backrefs
3376	 * are not counted in
3377	 */
3378	if (block_use_full_backref(rc, leaf))
3379		counted = 0;
3380	else
3381		counted = 1;
3382	rb_node = tree_search(blocks, leaf->start);
3383	if (rb_node) {
3384		if (counted)
3385			added = 1;
3386		else
3387			path->slots[0] = nritems;
3388	}
3389
3390	while (ref_count > 0) {
3391		while (path->slots[0] >= nritems) {
3392			ret = btrfs_next_leaf(root, path);
3393			if (ret < 0) {
3394				err = ret;
3395				goto out;
3396			}
3397			if (ret > 0) {
3398				WARN_ON(1);
3399				goto out;
3400			}
3401
3402			leaf = path->nodes[0];
3403			nritems = btrfs_header_nritems(leaf);
3404			added = 0;
3405
3406			if (block_use_full_backref(rc, leaf))
3407				counted = 0;
3408			else
3409				counted = 1;
3410			rb_node = tree_search(blocks, leaf->start);
3411			if (rb_node) {
3412				if (counted)
3413					added = 1;
3414				else
3415					path->slots[0] = nritems;
3416			}
3417		}
3418
3419		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3420		if (key.objectid != ref_objectid ||
3421		    key.type != BTRFS_EXTENT_DATA_KEY) {
3422			WARN_ON(1);
 
 
 
 
 
3423			break;
3424		}
3425
3426		fi = btrfs_item_ptr(leaf, path->slots[0],
3427				    struct btrfs_file_extent_item);
3428
3429		if (btrfs_file_extent_type(leaf, fi) ==
3430		    BTRFS_FILE_EXTENT_INLINE)
3431			goto next;
3432
3433		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3434		    extent_key->objectid)
3435			goto next;
3436
3437		key.offset -= btrfs_file_extent_offset(leaf, fi);
3438		if (key.offset != ref_offset)
3439			goto next;
3440
3441		if (counted)
3442			ref_count--;
3443		if (added)
3444			goto next;
3445
3446		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3447			block = kmalloc(sizeof(*block), GFP_NOFS);
3448			if (!block) {
3449				err = -ENOMEM;
3450				break;
3451			}
3452			block->bytenr = leaf->start;
3453			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3454			block->level = 0;
3455			block->key_ready = 1;
3456			rb_node = tree_insert(blocks, block->bytenr,
3457					      &block->rb_node);
3458			if (rb_node)
3459				backref_tree_panic(rb_node, -EEXIST,
3460						   block->bytenr);
3461		}
3462		if (counted)
3463			added = 1;
3464		else
3465			path->slots[0] = nritems;
3466next:
3467		path->slots[0]++;
3468
3469	}
3470out:
3471	btrfs_free_path(path);
3472	return err;
 
 
3473}
3474
3475/*
3476 * hepler to find all tree blocks that reference a given data extent
3477 */
3478static noinline_for_stack
3479int add_data_references(struct reloc_control *rc,
3480			struct btrfs_key *extent_key,
3481			struct btrfs_path *path,
3482			struct rb_root *blocks)
3483{
3484	struct btrfs_key key;
3485	struct extent_buffer *eb;
3486	struct btrfs_extent_data_ref *dref;
3487	struct btrfs_extent_inline_ref *iref;
3488	unsigned long ptr;
3489	unsigned long end;
3490	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3491	int ret;
3492	int err = 0;
3493
3494	eb = path->nodes[0];
3495	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3496	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3497#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3498	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3499		ptr = end;
3500	else
3501#endif
3502		ptr += sizeof(struct btrfs_extent_item);
3503
3504	while (ptr < end) {
3505		iref = (struct btrfs_extent_inline_ref *)ptr;
3506		key.type = btrfs_extent_inline_ref_type(eb, iref);
3507		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3508			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3509			ret = __add_tree_block(rc, key.offset, blocksize,
3510					       blocks);
3511		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3512			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3513			ret = find_data_references(rc, extent_key,
3514						   eb, dref, blocks);
3515		} else {
3516			BUG();
3517		}
3518		ptr += btrfs_extent_inline_ref_size(key.type);
3519	}
3520	WARN_ON(ptr > end);
3521
3522	while (1) {
3523		cond_resched();
3524		eb = path->nodes[0];
3525		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3526			ret = btrfs_next_leaf(rc->extent_root, path);
3527			if (ret < 0) {
3528				err = ret;
3529				break;
3530			}
3531			if (ret > 0)
3532				break;
3533			eb = path->nodes[0];
3534		}
3535
3536		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3537		if (key.objectid != extent_key->objectid)
3538			break;
3539
3540#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3541		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3542		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3543#else
3544		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3545		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3546#endif
3547			ret = __add_tree_block(rc, key.offset, blocksize,
3548					       blocks);
3549		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3550			dref = btrfs_item_ptr(eb, path->slots[0],
3551					      struct btrfs_extent_data_ref);
3552			ret = find_data_references(rc, extent_key,
3553						   eb, dref, blocks);
3554		} else {
3555			ret = 0;
3556		}
3557		if (ret) {
3558			err = ret;
 
 
 
 
 
3559			break;
3560		}
3561		path->slots[0]++;
3562	}
3563	btrfs_release_path(path);
3564	if (err)
3565		free_block_list(blocks);
3566	return err;
 
3567}
3568
3569/*
3570 * hepler to find next unprocessed extent
3571 */
3572static noinline_for_stack
3573int find_next_extent(struct btrfs_trans_handle *trans,
3574		     struct reloc_control *rc, struct btrfs_path *path,
3575		     struct btrfs_key *extent_key)
3576{
 
3577	struct btrfs_key key;
3578	struct extent_buffer *leaf;
3579	u64 start, end, last;
3580	int ret;
3581
3582	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3583	while (1) {
3584		cond_resched();
3585		if (rc->search_start >= last) {
3586			ret = 1;
3587			break;
3588		}
3589
3590		key.objectid = rc->search_start;
3591		key.type = BTRFS_EXTENT_ITEM_KEY;
3592		key.offset = 0;
3593
3594		path->search_commit_root = 1;
3595		path->skip_locking = 1;
3596		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3597					0, 0);
3598		if (ret < 0)
3599			break;
3600next:
3601		leaf = path->nodes[0];
3602		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3603			ret = btrfs_next_leaf(rc->extent_root, path);
3604			if (ret != 0)
3605				break;
3606			leaf = path->nodes[0];
3607		}
3608
3609		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3610		if (key.objectid >= last) {
3611			ret = 1;
3612			break;
3613		}
3614
3615		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
 
 
 
 
 
 
3616		    key.objectid + key.offset <= rc->search_start) {
3617			path->slots[0]++;
3618			goto next;
3619		}
3620
 
 
 
 
 
 
 
3621		ret = find_first_extent_bit(&rc->processed_blocks,
3622					    key.objectid, &start, &end,
3623					    EXTENT_DIRTY);
3624
3625		if (ret == 0 && start <= key.objectid) {
3626			btrfs_release_path(path);
3627			rc->search_start = end + 1;
3628		} else {
3629			rc->search_start = key.objectid + key.offset;
 
 
 
 
3630			memcpy(extent_key, &key, sizeof(key));
3631			return 0;
3632		}
3633	}
3634	btrfs_release_path(path);
3635	return ret;
3636}
3637
3638static void set_reloc_control(struct reloc_control *rc)
3639{
3640	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3641
3642	mutex_lock(&fs_info->reloc_mutex);
3643	fs_info->reloc_ctl = rc;
3644	mutex_unlock(&fs_info->reloc_mutex);
3645}
3646
3647static void unset_reloc_control(struct reloc_control *rc)
3648{
3649	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3650
3651	mutex_lock(&fs_info->reloc_mutex);
3652	fs_info->reloc_ctl = NULL;
3653	mutex_unlock(&fs_info->reloc_mutex);
3654}
3655
3656static int check_extent_flags(u64 flags)
3657{
3658	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3659	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3660		return 1;
3661	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3662	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3663		return 1;
3664	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3665	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3666		return 1;
3667	return 0;
3668}
3669
3670static noinline_for_stack
3671int prepare_to_relocate(struct reloc_control *rc)
3672{
3673	struct btrfs_trans_handle *trans;
3674	int ret;
3675
3676	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root);
 
3677	if (!rc->block_rsv)
3678		return -ENOMEM;
3679
3680	/*
3681	 * reserve some space for creating reloc trees.
3682	 * btrfs_init_reloc_root will use them when there
3683	 * is no reservation in transaction handle.
3684	 */
3685	ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv,
3686				  rc->extent_root->nodesize * 256);
3687	if (ret)
3688		return ret;
3689
3690	memset(&rc->cluster, 0, sizeof(rc->cluster));
3691	rc->search_start = rc->block_group->key.objectid;
3692	rc->extents_found = 0;
3693	rc->nodes_relocated = 0;
3694	rc->merging_rsv_size = 0;
 
 
 
 
 
 
 
 
3695
3696	rc->create_reloc_tree = 1;
3697	set_reloc_control(rc);
3698
3699	trans = btrfs_join_transaction(rc->extent_root);
3700	BUG_ON(IS_ERR(trans));
3701	btrfs_commit_transaction(trans, rc->extent_root);
 
 
 
 
 
 
 
 
3702	return 0;
3703}
3704
3705static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3706{
 
3707	struct rb_root blocks = RB_ROOT;
3708	struct btrfs_key key;
3709	struct btrfs_trans_handle *trans = NULL;
3710	struct btrfs_path *path;
3711	struct btrfs_extent_item *ei;
3712	unsigned long nr;
3713	u64 flags;
3714	u32 item_size;
3715	int ret;
3716	int err = 0;
3717	int progress = 0;
3718
3719	path = btrfs_alloc_path();
3720	if (!path)
3721		return -ENOMEM;
3722	path->reada = 1;
3723
3724	ret = prepare_to_relocate(rc);
3725	if (ret) {
3726		err = ret;
3727		goto out_free;
3728	}
3729
3730	while (1) {
 
 
 
 
 
 
 
 
3731		progress++;
3732		trans = btrfs_start_transaction(rc->extent_root, 0);
3733		BUG_ON(IS_ERR(trans));
 
 
 
 
3734restart:
3735		if (update_backref_cache(trans, &rc->backref_cache)) {
3736			btrfs_end_transaction(trans, rc->extent_root);
 
3737			continue;
3738		}
3739
3740		ret = find_next_extent(trans, rc, path, &key);
3741		if (ret < 0)
3742			err = ret;
3743		if (ret != 0)
3744			break;
3745
3746		rc->extents_found++;
3747
3748		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3749				    struct btrfs_extent_item);
3750		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3751		if (item_size >= sizeof(*ei)) {
3752			flags = btrfs_extent_flags(path->nodes[0], ei);
3753			ret = check_extent_flags(flags);
3754			BUG_ON(ret);
3755
 
 
 
 
3756		} else {
3757#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3758			u64 ref_owner;
3759			int path_change = 0;
3760
3761			BUG_ON(item_size !=
3762			       sizeof(struct btrfs_extent_item_v0));
3763			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3764						  &path_change);
3765			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3766				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3767			else
3768				flags = BTRFS_EXTENT_FLAG_DATA;
3769
3770			if (path_change) {
3771				btrfs_release_path(path);
3772
3773				path->search_commit_root = 1;
3774				path->skip_locking = 1;
3775				ret = btrfs_search_slot(NULL, rc->extent_root,
3776							&key, path, 0, 0);
3777				if (ret < 0) {
3778					err = ret;
3779					break;
3780				}
3781				BUG_ON(ret > 0);
3782			}
3783#else
3784			BUG();
3785#endif
3786		}
3787
3788		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3789			ret = add_tree_block(rc, &key, path, &blocks);
3790		} else if (rc->stage == UPDATE_DATA_PTRS &&
3791			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3792			ret = add_data_references(rc, &key, path, &blocks);
3793		} else {
3794			btrfs_release_path(path);
3795			ret = 0;
3796		}
3797		if (ret < 0) {
3798			err = ret;
3799			break;
3800		}
3801
3802		if (!RB_EMPTY_ROOT(&blocks)) {
3803			ret = relocate_tree_blocks(trans, rc, &blocks);
3804			if (ret < 0) {
3805				if (ret != -EAGAIN) {
3806					err = ret;
3807					break;
3808				}
3809				rc->extents_found--;
3810				rc->search_start = key.objectid;
3811			}
3812		}
3813
3814		ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5);
3815		if (ret < 0) {
3816			if (ret != -ENOSPC) {
3817				err = ret;
3818				WARN_ON(1);
3819				break;
3820			}
3821			rc->commit_transaction = 1;
3822		}
3823
3824		if (rc->commit_transaction) {
3825			rc->commit_transaction = 0;
3826			ret = btrfs_commit_transaction(trans, rc->extent_root);
3827			BUG_ON(ret);
3828		} else {
3829			nr = trans->blocks_used;
3830			btrfs_end_transaction_throttle(trans, rc->extent_root);
3831			btrfs_btree_balance_dirty(rc->extent_root, nr);
3832		}
3833		trans = NULL;
3834
3835		if (rc->stage == MOVE_DATA_EXTENTS &&
3836		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3837			rc->found_file_extent = 1;
3838			ret = relocate_data_extent(rc->data_inode,
3839						   &key, &rc->cluster);
3840			if (ret < 0) {
3841				err = ret;
3842				break;
3843			}
3844		}
 
 
 
 
3845	}
3846	if (trans && progress && err == -ENOSPC) {
3847		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
3848					      rc->block_group->flags);
3849		if (ret == 0) {
3850			err = 0;
3851			progress = 0;
3852			goto restart;
3853		}
3854	}
3855
3856	btrfs_release_path(path);
3857	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3858			  GFP_NOFS);
3859
3860	if (trans) {
3861		nr = trans->blocks_used;
3862		btrfs_end_transaction_throttle(trans, rc->extent_root);
3863		btrfs_btree_balance_dirty(rc->extent_root, nr);
3864	}
3865
3866	if (!err) {
3867		ret = relocate_file_extent_cluster(rc->data_inode,
3868						   &rc->cluster);
3869		if (ret < 0)
3870			err = ret;
3871	}
3872
3873	rc->create_reloc_tree = 0;
3874	set_reloc_control(rc);
3875
3876	backref_cache_cleanup(&rc->backref_cache);
3877	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3878
 
 
 
 
 
 
 
 
3879	err = prepare_to_merge(rc, err);
3880
3881	merge_reloc_roots(rc);
3882
3883	rc->merge_reloc_tree = 0;
3884	unset_reloc_control(rc);
3885	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3886
3887	/* get rid of pinned extents */
3888	trans = btrfs_join_transaction(rc->extent_root);
3889	if (IS_ERR(trans))
3890		err = PTR_ERR(trans);
3891	else
3892		btrfs_commit_transaction(trans, rc->extent_root);
 
3893out_free:
3894	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
 
 
 
3895	btrfs_free_path(path);
3896	return err;
3897}
3898
3899static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3900				 struct btrfs_root *root, u64 objectid)
3901{
3902	struct btrfs_path *path;
3903	struct btrfs_inode_item *item;
3904	struct extent_buffer *leaf;
3905	int ret;
3906
3907	path = btrfs_alloc_path();
3908	if (!path)
3909		return -ENOMEM;
3910
3911	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3912	if (ret)
3913		goto out;
3914
3915	leaf = path->nodes[0];
3916	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3917	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3918	btrfs_set_inode_generation(leaf, item, 1);
3919	btrfs_set_inode_size(leaf, item, 0);
3920	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3921	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3922					  BTRFS_INODE_PREALLOC);
3923	btrfs_mark_buffer_dirty(leaf);
3924	btrfs_release_path(path);
3925out:
3926	btrfs_free_path(path);
3927	return ret;
3928}
3929
3930/*
3931 * helper to create inode for data relocation.
3932 * the inode is in data relocation tree and its link count is 0
3933 */
3934static noinline_for_stack
3935struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3936				 struct btrfs_block_group_cache *group)
3937{
3938	struct inode *inode = NULL;
3939	struct btrfs_trans_handle *trans;
3940	struct btrfs_root *root;
3941	struct btrfs_key key;
3942	unsigned long nr;
3943	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3944	int err = 0;
3945
3946	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3947	if (IS_ERR(root))
3948		return ERR_CAST(root);
3949
3950	trans = btrfs_start_transaction(root, 6);
3951	if (IS_ERR(trans))
 
3952		return ERR_CAST(trans);
 
3953
3954	err = btrfs_find_free_objectid(root, &objectid);
3955	if (err)
3956		goto out;
3957
3958	err = __insert_orphan_inode(trans, root, objectid);
3959	BUG_ON(err);
3960
3961	key.objectid = objectid;
3962	key.type = BTRFS_INODE_ITEM_KEY;
3963	key.offset = 0;
3964	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
3965	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3966	BTRFS_I(inode)->index_cnt = group->key.objectid;
3967
3968	err = btrfs_orphan_add(trans, inode);
3969out:
3970	nr = trans->blocks_used;
3971	btrfs_end_transaction(trans, root);
3972	btrfs_btree_balance_dirty(root, nr);
3973	if (err) {
3974		if (inode)
3975			iput(inode);
3976		inode = ERR_PTR(err);
3977	}
3978	return inode;
3979}
3980
3981static struct reloc_control *alloc_reloc_control(void)
3982{
3983	struct reloc_control *rc;
3984
3985	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3986	if (!rc)
3987		return NULL;
3988
3989	INIT_LIST_HEAD(&rc->reloc_roots);
3990	backref_cache_init(&rc->backref_cache);
 
3991	mapping_tree_init(&rc->reloc_root_tree);
3992	extent_io_tree_init(&rc->processed_blocks, NULL);
 
3993	return rc;
3994}
3995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3996/*
3997 * function to relocate all extents in a block group.
3998 */
3999int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4000{
4001	struct btrfs_fs_info *fs_info = extent_root->fs_info;
 
4002	struct reloc_control *rc;
4003	struct inode *inode;
4004	struct btrfs_path *path;
4005	int ret;
4006	int rw = 0;
4007	int err = 0;
4008
4009	rc = alloc_reloc_control();
4010	if (!rc)
 
 
 
 
 
 
 
 
 
 
4011		return -ENOMEM;
 
4012
4013	rc->extent_root = extent_root;
 
4014
4015	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4016	BUG_ON(!rc->block_group);
4017
4018	if (!rc->block_group->ro) {
4019		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4020		if (ret) {
4021			err = ret;
4022			goto out;
4023		}
4024		rw = 1;
4025	}
 
4026
4027	path = btrfs_alloc_path();
4028	if (!path) {
4029		err = -ENOMEM;
4030		goto out;
4031	}
4032
4033	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4034					path);
4035	btrfs_free_path(path);
4036
4037	if (!IS_ERR(inode))
4038		ret = delete_block_group_cache(fs_info, inode, 0);
4039	else
4040		ret = PTR_ERR(inode);
4041
4042	if (ret && ret != -ENOENT) {
4043		err = ret;
4044		goto out;
4045	}
4046
4047	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4048	if (IS_ERR(rc->data_inode)) {
4049		err = PTR_ERR(rc->data_inode);
4050		rc->data_inode = NULL;
4051		goto out;
4052	}
4053
4054	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4055	       (unsigned long long)rc->block_group->key.objectid,
4056	       (unsigned long long)rc->block_group->flags);
4057
4058	btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
4059	btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
 
 
 
4060
4061	while (1) {
4062		mutex_lock(&fs_info->cleaner_mutex);
4063
4064		btrfs_clean_old_snapshots(fs_info->tree_root);
4065		ret = relocate_block_group(rc);
4066
4067		mutex_unlock(&fs_info->cleaner_mutex);
4068		if (ret < 0) {
4069			err = ret;
4070			goto out;
4071		}
4072
4073		if (rc->extents_found == 0)
4074			break;
4075
4076		printk(KERN_INFO "btrfs: found %llu extents\n",
4077			(unsigned long long)rc->extents_found);
4078
 
 
 
 
 
 
 
 
 
 
4079		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4080			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
 
 
 
4081			invalidate_mapping_pages(rc->data_inode->i_mapping,
4082						 0, -1);
4083			rc->stage = UPDATE_DATA_PTRS;
4084		}
4085	}
4086
4087	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4088				     rc->block_group->key.objectid,
4089				     rc->block_group->key.objectid +
4090				     rc->block_group->key.offset - 1);
 
 
 
 
 
4091
4092	WARN_ON(rc->block_group->pinned > 0);
4093	WARN_ON(rc->block_group->reserved > 0);
4094	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4095out:
4096	if (err && rw)
4097		btrfs_set_block_group_rw(extent_root, rc->block_group);
4098	iput(rc->data_inode);
4099	btrfs_put_block_group(rc->block_group);
4100	kfree(rc);
4101	return err;
4102}
4103
4104static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4105{
 
4106	struct btrfs_trans_handle *trans;
4107	int ret, err;
4108
4109	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4110	if (IS_ERR(trans))
4111		return PTR_ERR(trans);
4112
4113	memset(&root->root_item.drop_progress, 0,
4114		sizeof(root->root_item.drop_progress));
4115	root->root_item.drop_level = 0;
4116	btrfs_set_root_refs(&root->root_item, 0);
4117	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4118				&root->root_key, &root->root_item);
4119
4120	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4121	if (err)
4122		return err;
4123	return ret;
4124}
4125
4126/*
4127 * recover relocation interrupted by system crash.
4128 *
4129 * this function resumes merging reloc trees with corresponding fs trees.
4130 * this is important for keeping the sharing of tree blocks
4131 */
4132int btrfs_recover_relocation(struct btrfs_root *root)
4133{
 
4134	LIST_HEAD(reloc_roots);
4135	struct btrfs_key key;
4136	struct btrfs_root *fs_root;
4137	struct btrfs_root *reloc_root;
4138	struct btrfs_path *path;
4139	struct extent_buffer *leaf;
4140	struct reloc_control *rc = NULL;
4141	struct btrfs_trans_handle *trans;
4142	int ret;
4143	int err = 0;
4144
4145	path = btrfs_alloc_path();
4146	if (!path)
4147		return -ENOMEM;
4148	path->reada = -1;
4149
4150	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4151	key.type = BTRFS_ROOT_ITEM_KEY;
4152	key.offset = (u64)-1;
4153
4154	while (1) {
4155		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4156					path, 0, 0);
4157		if (ret < 0) {
4158			err = ret;
4159			goto out;
4160		}
4161		if (ret > 0) {
4162			if (path->slots[0] == 0)
4163				break;
4164			path->slots[0]--;
4165		}
4166		leaf = path->nodes[0];
4167		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4168		btrfs_release_path(path);
4169
4170		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4171		    key.type != BTRFS_ROOT_ITEM_KEY)
4172			break;
4173
4174		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4175		if (IS_ERR(reloc_root)) {
4176			err = PTR_ERR(reloc_root);
4177			goto out;
4178		}
4179
 
4180		list_add(&reloc_root->root_list, &reloc_roots);
4181
4182		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4183			fs_root = read_fs_root(root->fs_info,
4184					       reloc_root->root_key.offset);
4185			if (IS_ERR(fs_root)) {
4186				ret = PTR_ERR(fs_root);
4187				if (ret != -ENOENT) {
4188					err = ret;
4189					goto out;
4190				}
4191				ret = mark_garbage_root(reloc_root);
4192				if (ret < 0) {
4193					err = ret;
4194					goto out;
4195				}
 
 
4196			}
4197		}
4198
4199		if (key.offset == 0)
4200			break;
4201
4202		key.offset--;
4203	}
4204	btrfs_release_path(path);
4205
4206	if (list_empty(&reloc_roots))
4207		goto out;
4208
4209	rc = alloc_reloc_control();
4210	if (!rc) {
4211		err = -ENOMEM;
4212		goto out;
4213	}
4214
4215	rc->extent_root = root->fs_info->extent_root;
4216
4217	set_reloc_control(rc);
4218
4219	trans = btrfs_join_transaction(rc->extent_root);
4220	if (IS_ERR(trans)) {
4221		unset_reloc_control(rc);
4222		err = PTR_ERR(trans);
4223		goto out_free;
4224	}
4225
4226	rc->merge_reloc_tree = 1;
4227
4228	while (!list_empty(&reloc_roots)) {
4229		reloc_root = list_entry(reloc_roots.next,
4230					struct btrfs_root, root_list);
4231		list_del(&reloc_root->root_list);
4232
4233		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4234			list_add_tail(&reloc_root->root_list,
4235				      &rc->reloc_roots);
4236			continue;
4237		}
4238
4239		fs_root = read_fs_root(root->fs_info,
4240				       reloc_root->root_key.offset);
4241		if (IS_ERR(fs_root)) {
4242			err = PTR_ERR(fs_root);
4243			goto out_free;
 
 
4244		}
4245
4246		err = __add_reloc_root(reloc_root);
4247		BUG_ON(err < 0); /* -ENOMEM or logic error */
4248		fs_root->reloc_root = reloc_root;
 
4249	}
4250
4251	err = btrfs_commit_transaction(trans, rc->extent_root);
4252	if (err)
4253		goto out_free;
4254
4255	merge_reloc_roots(rc);
4256
4257	unset_reloc_control(rc);
4258
4259	trans = btrfs_join_transaction(rc->extent_root);
4260	if (IS_ERR(trans))
4261		err = PTR_ERR(trans);
4262	else
4263		err = btrfs_commit_transaction(trans, rc->extent_root);
4264out_free:
4265	kfree(rc);
4266out:
4267	while (!list_empty(&reloc_roots)) {
4268		reloc_root = list_entry(reloc_roots.next,
4269					struct btrfs_root, root_list);
4270		list_del(&reloc_root->root_list);
4271		free_extent_buffer(reloc_root->node);
4272		free_extent_buffer(reloc_root->commit_root);
4273		kfree(reloc_root);
4274	}
 
 
 
 
 
 
 
 
 
 
 
4275	btrfs_free_path(path);
4276
4277	if (err == 0) {
4278		/* cleanup orphan inode in data relocation tree */
4279		fs_root = read_fs_root(root->fs_info,
4280				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4281		if (IS_ERR(fs_root))
4282			err = PTR_ERR(fs_root);
4283		else
4284			err = btrfs_orphan_cleanup(fs_root);
4285	}
4286	return err;
4287}
4288
4289/*
4290 * helper to add ordered checksum for data relocation.
4291 *
4292 * cloning checksum properly handles the nodatasum extents.
4293 * it also saves CPU time to re-calculate the checksum.
4294 */
4295int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4296{
 
4297	struct btrfs_ordered_sum *sums;
4298	struct btrfs_sector_sum *sector_sum;
4299	struct btrfs_ordered_extent *ordered;
4300	struct btrfs_root *root = BTRFS_I(inode)->root;
4301	size_t offset;
4302	int ret;
4303	u64 disk_bytenr;
 
4304	LIST_HEAD(list);
4305
4306	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4307	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4308
4309	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4310	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4311				       disk_bytenr + len - 1, &list, 0);
4312	if (ret)
4313		goto out;
4314
4315	while (!list_empty(&list)) {
4316		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4317		list_del_init(&sums->list);
4318
4319		sector_sum = sums->sums;
4320		sums->bytenr = ordered->start;
4321
4322		offset = 0;
4323		while (offset < sums->len) {
4324			sector_sum->bytenr += ordered->start - disk_bytenr;
4325			sector_sum++;
4326			offset += root->sectorsize;
4327		}
 
 
 
 
 
4328
4329		btrfs_add_ordered_sum(inode, ordered, sums);
4330	}
4331out:
4332	btrfs_put_ordered_extent(ordered);
4333	return ret;
4334}
4335
4336void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4337			   struct btrfs_root *root, struct extent_buffer *buf,
4338			   struct extent_buffer *cow)
4339{
 
4340	struct reloc_control *rc;
4341	struct backref_node *node;
4342	int first_cow = 0;
4343	int level;
4344	int ret;
4345
4346	rc = root->fs_info->reloc_ctl;
4347	if (!rc)
4348		return;
4349
4350	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4351	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4352
4353	level = btrfs_header_level(buf);
4354	if (btrfs_header_generation(buf) <=
4355	    btrfs_root_last_snapshot(&root->root_item))
4356		first_cow = 1;
4357
4358	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4359	    rc->create_reloc_tree) {
4360		WARN_ON(!first_cow && level == 0);
4361
4362		node = rc->backref_cache.path[level];
4363		BUG_ON(node->bytenr != buf->start &&
4364		       node->new_bytenr != buf->start);
4365
4366		drop_node_buffer(node);
4367		extent_buffer_get(cow);
4368		node->eb = cow;
4369		node->new_bytenr = cow->start;
4370
4371		if (!node->pending) {
4372			list_move_tail(&node->list,
4373				       &rc->backref_cache.pending[level]);
4374			node->pending = 1;
4375		}
4376
4377		if (first_cow)
4378			__mark_block_processed(rc, node);
4379
4380		if (first_cow && level > 0)
4381			rc->nodes_relocated += buf->len;
4382	}
4383
4384	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4385		ret = replace_file_extents(trans, rc, root, cow);
4386		BUG_ON(ret);
4387	}
4388}
4389
4390/*
4391 * called before creating snapshot. it calculates metadata reservation
4392 * requried for relocating tree blocks in the snapshot
4393 */
4394void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4395			      struct btrfs_pending_snapshot *pending,
4396			      u64 *bytes_to_reserve)
4397{
4398	struct btrfs_root *root;
4399	struct reloc_control *rc;
4400
4401	root = pending->root;
4402	if (!root->reloc_root)
4403		return;
4404
4405	rc = root->fs_info->reloc_ctl;
4406	if (!rc->merge_reloc_tree)
4407		return;
4408
4409	root = root->reloc_root;
4410	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4411	/*
4412	 * relocation is in the stage of merging trees. the space
4413	 * used by merging a reloc tree is twice the size of
4414	 * relocated tree nodes in the worst case. half for cowing
4415	 * the reloc tree, half for cowing the fs tree. the space
4416	 * used by cowing the reloc tree will be freed after the
4417	 * tree is dropped. if we create snapshot, cowing the fs
4418	 * tree may use more space than it frees. so we need
4419	 * reserve extra space.
4420	 */
4421	*bytes_to_reserve += rc->nodes_relocated;
4422}
4423
4424/*
4425 * called after snapshot is created. migrate block reservation
4426 * and create reloc root for the newly created snapshot
 
 
 
 
4427 */
4428int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4429			       struct btrfs_pending_snapshot *pending)
4430{
4431	struct btrfs_root *root = pending->root;
4432	struct btrfs_root *reloc_root;
4433	struct btrfs_root *new_root;
4434	struct reloc_control *rc;
4435	int ret;
4436
4437	if (!root->reloc_root)
4438		return 0;
4439
4440	rc = root->fs_info->reloc_ctl;
4441	rc->merging_rsv_size += rc->nodes_relocated;
4442
4443	if (rc->merge_reloc_tree) {
4444		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4445					      rc->block_rsv,
4446					      rc->nodes_relocated);
4447		if (ret)
4448			return ret;
4449	}
4450
4451	new_root = pending->snap;
4452	reloc_root = create_reloc_root(trans, root->reloc_root,
4453				       new_root->root_key.objectid);
4454	if (IS_ERR(reloc_root))
4455		return PTR_ERR(reloc_root);
4456
4457	ret = __add_reloc_root(reloc_root);
4458	BUG_ON(ret < 0);
4459	new_root->reloc_root = reloc_root;
4460
4461	if (rc->create_reloc_tree)
4462		ret = clone_backref_node(trans, rc, root, reloc_root);
4463	return ret;
4464}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2009 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/pagemap.h>
   8#include <linux/writeback.h>
   9#include <linux/blkdev.h>
  10#include <linux/rbtree.h>
  11#include <linux/slab.h>
  12#include <linux/error-injection.h>
  13#include "ctree.h"
  14#include "disk-io.h"
  15#include "transaction.h"
  16#include "volumes.h"
  17#include "locking.h"
  18#include "btrfs_inode.h"
  19#include "async-thread.h"
  20#include "free-space-cache.h"
  21#include "inode-map.h"
  22#include "qgroup.h"
  23#include "print-tree.h"
  24#include "delalloc-space.h"
  25#include "block-group.h"
  26#include "backref.h"
  27#include "misc.h"
  28
  29/*
  30 * Relocation overview
  31 *
  32 * [What does relocation do]
  33 *
  34 * The objective of relocation is to relocate all extents of the target block
  35 * group to other block groups.
  36 * This is utilized by resize (shrink only), profile converting, compacting
  37 * space, or balance routine to spread chunks over devices.
  38 *
  39 * 		Before		|		After
  40 * ------------------------------------------------------------------
  41 *  BG A: 10 data extents	| BG A: deleted
  42 *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
  43 *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
  44 *
  45 * [How does relocation work]
  46 *
  47 * 1.   Mark the target block group read-only
  48 *      New extents won't be allocated from the target block group.
  49 *
  50 * 2.1  Record each extent in the target block group
  51 *      To build a proper map of extents to be relocated.
  52 *
  53 * 2.2  Build data reloc tree and reloc trees
  54 *      Data reloc tree will contain an inode, recording all newly relocated
  55 *      data extents.
  56 *      There will be only one data reloc tree for one data block group.
  57 *
  58 *      Reloc tree will be a special snapshot of its source tree, containing
  59 *      relocated tree blocks.
  60 *      Each tree referring to a tree block in target block group will get its
  61 *      reloc tree built.
  62 *
  63 * 2.3  Swap source tree with its corresponding reloc tree
  64 *      Each involved tree only refers to new extents after swap.
  65 *
  66 * 3.   Cleanup reloc trees and data reloc tree.
  67 *      As old extents in the target block group are still referenced by reloc
  68 *      trees, we need to clean them up before really freeing the target block
  69 *      group.
  70 *
  71 * The main complexity is in steps 2.2 and 2.3.
  72 *
  73 * The entry point of relocation is relocate_block_group() function.
 
 
 
 
 
 
 
 
 
  74 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76#define RELOCATION_RESERVED_NODES	256
  77/*
  78 * map address of tree root to tree
  79 */
  80struct mapping_node {
  81	struct {
  82		struct rb_node rb_node;
  83		u64 bytenr;
  84	}; /* Use rb_simle_node for search/insert */
  85	void *data;
  86};
  87
  88struct mapping_tree {
  89	struct rb_root rb_root;
  90	spinlock_t lock;
  91};
  92
  93/*
  94 * present a tree block to process
  95 */
  96struct tree_block {
  97	struct {
  98		struct rb_node rb_node;
  99		u64 bytenr;
 100	}; /* Use rb_simple_node for search/insert */
 101	struct btrfs_key key;
 102	unsigned int level:8;
 103	unsigned int key_ready:1;
 104};
 105
 106#define MAX_EXTENTS 128
 107
 108struct file_extent_cluster {
 109	u64 start;
 110	u64 end;
 111	u64 boundary[MAX_EXTENTS];
 112	unsigned int nr;
 113};
 114
 115struct reloc_control {
 116	/* block group to relocate */
 117	struct btrfs_block_group *block_group;
 118	/* extent tree */
 119	struct btrfs_root *extent_root;
 120	/* inode for moving data */
 121	struct inode *data_inode;
 122
 123	struct btrfs_block_rsv *block_rsv;
 124
 125	struct btrfs_backref_cache backref_cache;
 126
 127	struct file_extent_cluster cluster;
 128	/* tree blocks have been processed */
 129	struct extent_io_tree processed_blocks;
 130	/* map start of tree root to corresponding reloc tree */
 131	struct mapping_tree reloc_root_tree;
 132	/* list of reloc trees */
 133	struct list_head reloc_roots;
 134	/* list of subvolume trees that get relocated */
 135	struct list_head dirty_subvol_roots;
 136	/* size of metadata reservation for merging reloc trees */
 137	u64 merging_rsv_size;
 138	/* size of relocated tree nodes */
 139	u64 nodes_relocated;
 140	/* reserved size for block group relocation*/
 141	u64 reserved_bytes;
 142
 143	u64 search_start;
 144	u64 extents_found;
 145
 146	unsigned int stage:8;
 147	unsigned int create_reloc_tree:1;
 148	unsigned int merge_reloc_tree:1;
 149	unsigned int found_file_extent:1;
 
 150};
 151
 152/* stages of data relocation */
 153#define MOVE_DATA_EXTENTS	0
 154#define UPDATE_DATA_PTRS	1
 155
 156static void mark_block_processed(struct reloc_control *rc,
 157				 struct btrfs_backref_node *node)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158{
 159	u32 blocksize;
 
 
 
 
 
 
 160
 161	if (node->level == 0 ||
 162	    in_range(node->bytenr, rc->block_group->start,
 163		     rc->block_group->length)) {
 164		blocksize = rc->extent_root->fs_info->nodesize;
 165		set_extent_bits(&rc->processed_blocks, node->bytenr,
 166				node->bytenr + blocksize - 1, EXTENT_DIRTY);
 167	}
 168	node->processed = 1;
 
 
 
 169}
 170
 
 
 
 
 171
 172static void mapping_tree_init(struct mapping_tree *tree)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173{
 174	tree->rb_root = RB_ROOT;
 175	spin_lock_init(&tree->lock);
 
 
 
 
 
 
 176}
 177
 178/*
 179 * walk up backref nodes until reach node presents tree root
 180 */
 181static struct btrfs_backref_node *walk_up_backref(
 182		struct btrfs_backref_node *node,
 183		struct btrfs_backref_edge *edges[], int *index)
 184{
 185	struct btrfs_backref_edge *edge;
 186	int idx = *index;
 187
 188	while (!list_empty(&node->upper)) {
 189		edge = list_entry(node->upper.next,
 190				  struct btrfs_backref_edge, list[LOWER]);
 191		edges[idx++] = edge;
 192		node = edge->node[UPPER];
 193	}
 194	BUG_ON(node->detached);
 195	*index = idx;
 196	return node;
 197}
 198
 199/*
 200 * walk down backref nodes to find start of next reference path
 201 */
 202static struct btrfs_backref_node *walk_down_backref(
 203		struct btrfs_backref_edge *edges[], int *index)
 204{
 205	struct btrfs_backref_edge *edge;
 206	struct btrfs_backref_node *lower;
 207	int idx = *index;
 208
 209	while (idx > 0) {
 210		edge = edges[idx - 1];
 211		lower = edge->node[LOWER];
 212		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 213			idx--;
 214			continue;
 215		}
 216		edge = list_entry(edge->list[LOWER].next,
 217				  struct btrfs_backref_edge, list[LOWER]);
 218		edges[idx - 1] = edge;
 219		*index = idx;
 220		return edge->node[UPPER];
 221	}
 222	*index = 0;
 223	return NULL;
 224}
 225
 226static void update_backref_node(struct btrfs_backref_cache *cache,
 227				struct btrfs_backref_node *node, u64 bytenr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228{
 229	struct rb_node *rb_node;
 230	rb_erase(&node->rb_node, &cache->rb_root);
 231	node->bytenr = bytenr;
 232	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 233	if (rb_node)
 234		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
 235}
 236
 237/*
 238 * update backref cache after a transaction commit
 239 */
 240static int update_backref_cache(struct btrfs_trans_handle *trans,
 241				struct btrfs_backref_cache *cache)
 242{
 243	struct btrfs_backref_node *node;
 244	int level = 0;
 245
 246	if (cache->last_trans == 0) {
 247		cache->last_trans = trans->transid;
 248		return 0;
 249	}
 250
 251	if (cache->last_trans == trans->transid)
 252		return 0;
 253
 254	/*
 255	 * detached nodes are used to avoid unnecessary backref
 256	 * lookup. transaction commit changes the extent tree.
 257	 * so the detached nodes are no longer useful.
 258	 */
 259	while (!list_empty(&cache->detached)) {
 260		node = list_entry(cache->detached.next,
 261				  struct btrfs_backref_node, list);
 262		btrfs_backref_cleanup_node(cache, node);
 263	}
 264
 265	while (!list_empty(&cache->changed)) {
 266		node = list_entry(cache->changed.next,
 267				  struct btrfs_backref_node, list);
 268		list_del_init(&node->list);
 269		BUG_ON(node->pending);
 270		update_backref_node(cache, node, node->new_bytenr);
 271	}
 272
 273	/*
 274	 * some nodes can be left in the pending list if there were
 275	 * errors during processing the pending nodes.
 276	 */
 277	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 278		list_for_each_entry(node, &cache->pending[level], list) {
 279			BUG_ON(!node->pending);
 280			if (node->bytenr == node->new_bytenr)
 281				continue;
 282			update_backref_node(cache, node, node->new_bytenr);
 283		}
 284	}
 285
 286	cache->last_trans = 0;
 287	return 1;
 288}
 289
 290static bool reloc_root_is_dead(struct btrfs_root *root)
 291{
 292	/*
 293	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
 294	 * btrfs_update_reloc_root. We need to see the updated bit before
 295	 * trying to access reloc_root
 296	 */
 297	smp_rmb();
 298	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
 299		return true;
 300	return false;
 301}
 302
 303/*
 304 * Check if this subvolume tree has valid reloc tree.
 305 *
 306 * Reloc tree after swap is considered dead, thus not considered as valid.
 307 * This is enough for most callers, as they don't distinguish dead reloc root
 308 * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
 309 * special case.
 310 */
 311static bool have_reloc_root(struct btrfs_root *root)
 312{
 313	if (reloc_root_is_dead(root))
 314		return false;
 315	if (!root->reloc_root)
 316		return false;
 317	return true;
 318}
 319
 320int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
 321{
 322	struct btrfs_root *reloc_root;
 323
 324	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 325		return 0;
 326
 327	/* This root has been merged with its reloc tree, we can ignore it */
 328	if (reloc_root_is_dead(root))
 329		return 1;
 330
 331	reloc_root = root->reloc_root;
 332	if (!reloc_root)
 333		return 0;
 334
 335	if (btrfs_header_generation(reloc_root->commit_root) ==
 336	    root->fs_info->running_transaction->transid)
 337		return 0;
 338	/*
 339	 * if there is reloc tree and it was created in previous
 340	 * transaction backref lookup can find the reloc tree,
 341	 * so backref node for the fs tree root is useless for
 342	 * relocation.
 343	 */
 344	return 1;
 345}
 346
 347/*
 348 * find reloc tree by address of tree root
 349 */
 350struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 
 351{
 352	struct reloc_control *rc = fs_info->reloc_ctl;
 353	struct rb_node *rb_node;
 354	struct mapping_node *node;
 355	struct btrfs_root *root = NULL;
 356
 357	ASSERT(rc);
 358	spin_lock(&rc->reloc_root_tree.lock);
 359	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
 360	if (rb_node) {
 361		node = rb_entry(rb_node, struct mapping_node, rb_node);
 362		root = (struct btrfs_root *)node->data;
 363	}
 364	spin_unlock(&rc->reloc_root_tree.lock);
 365	return btrfs_grab_root(root);
 366}
 367
 368/*
 369 * For useless nodes, do two major clean ups:
 370 *
 371 * - Cleanup the children edges and nodes
 372 *   If child node is also orphan (no parent) during cleanup, then the child
 373 *   node will also be cleaned up.
 374 *
 375 * - Freeing up leaves (level 0), keeps nodes detached
 376 *   For nodes, the node is still cached as "detached"
 377 *
 378 * Return false if @node is not in the @useless_nodes list.
 379 * Return true if @node is in the @useless_nodes list.
 380 */
 381static bool handle_useless_nodes(struct reloc_control *rc,
 382				 struct btrfs_backref_node *node)
 383{
 384	struct btrfs_backref_cache *cache = &rc->backref_cache;
 385	struct list_head *useless_node = &cache->useless_node;
 386	bool ret = false;
 
 
 
 
 
 387
 388	while (!list_empty(useless_node)) {
 389		struct btrfs_backref_node *cur;
 390
 391		cur = list_first_entry(useless_node, struct btrfs_backref_node,
 392				 list);
 393		list_del_init(&cur->list);
 
 
 
 
 
 
 394
 395		/* Only tree root nodes can be added to @useless_nodes */
 396		ASSERT(list_empty(&cur->upper));
 397
 398		if (cur == node)
 399			ret = true;
 400
 401		/* The node is the lowest node */
 402		if (cur->lowest) {
 403			list_del_init(&cur->lower);
 404			cur->lowest = 0;
 405		}
 406
 407		/* Cleanup the lower edges */
 408		while (!list_empty(&cur->lower)) {
 409			struct btrfs_backref_edge *edge;
 410			struct btrfs_backref_node *lower;
 411
 412			edge = list_entry(cur->lower.next,
 413					struct btrfs_backref_edge, list[UPPER]);
 414			list_del(&edge->list[UPPER]);
 415			list_del(&edge->list[LOWER]);
 416			lower = edge->node[LOWER];
 417			btrfs_backref_free_edge(cache, edge);
 
 418
 419			/* Child node is also orphan, queue for cleanup */
 420			if (list_empty(&lower->upper))
 421				list_add(&lower->list, useless_node);
 422		}
 423		/* Mark this block processed for relocation */
 424		mark_block_processed(rc, cur);
 
 
 
 
 425
 426		/*
 427		 * Backref nodes for tree leaves are deleted from the cache.
 428		 * Backref nodes for upper level tree blocks are left in the
 429		 * cache to avoid unnecessary backref lookup.
 430		 */
 431		if (cur->level > 0) {
 432			list_add(&cur->list, &cache->detached);
 433			cur->detached = 1;
 434		} else {
 435			rb_erase(&cur->rb_node, &cache->rb_root);
 436			btrfs_backref_free_node(cache, cur);
 437		}
 438	}
 439	return ret;
 
 
 
 
 440}
 441
 442/*
 443 * Build backref tree for a given tree block. Root of the backref tree
 444 * corresponds the tree block, leaves of the backref tree correspond roots of
 445 * b-trees that reference the tree block.
 446 *
 447 * The basic idea of this function is check backrefs of a given block to find
 448 * upper level blocks that reference the block, and then check backrefs of
 449 * these upper level blocks recursively. The recursion stops when tree root is
 450 * reached or backrefs for the block is cached.
 451 *
 452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
 453 * all upper level blocks that directly/indirectly reference the block are also
 454 * cached.
 455 */
 456static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
 457			struct reloc_control *rc, struct btrfs_key *node_key,
 458			int level, u64 bytenr)
 459{
 460	struct btrfs_backref_iter *iter;
 461	struct btrfs_backref_cache *cache = &rc->backref_cache;
 462	/* For searching parent of TREE_BLOCK_REF */
 463	struct btrfs_path *path;
 464	struct btrfs_backref_node *cur;
 465	struct btrfs_backref_node *node = NULL;
 466	struct btrfs_backref_edge *edge;
 
 
 
 
 
 
 
 
 
 
 
 
 467	int ret;
 468	int err = 0;
 469
 470	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
 471	if (!iter)
 472		return ERR_PTR(-ENOMEM);
 473	path = btrfs_alloc_path();
 474	if (!path) {
 475		err = -ENOMEM;
 476		goto out;
 477	}
 
 
 478
 479	node = btrfs_backref_alloc_node(cache, bytenr, level);
 480	if (!node) {
 481		err = -ENOMEM;
 482		goto out;
 483	}
 484
 
 
 485	node->lowest = 1;
 486	cur = node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487
 488	/* Breadth-first search to build backref cache */
 489	do {
 490		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
 491						  cur);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492		if (ret < 0) {
 493			err = ret;
 494			goto out;
 495		}
 496		edge = list_first_entry_or_null(&cache->pending_edge,
 497				struct btrfs_backref_edge, list[UPPER]);
 498		/*
 499		 * The pending list isn't empty, take the first block to
 500		 * process
 501		 */
 502		if (edge) {
 503			list_del_init(&edge->list[UPPER]);
 504			cur = edge->node[UPPER];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505		}
 506	} while (edge);
 507
 508	/* Finish the upper linkage of newly added edges/nodes */
 509	ret = btrfs_backref_finish_upper_links(cache, node);
 510	if (ret < 0) {
 511		err = ret;
 512		goto out;
 513	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514
 515	if (handle_useless_nodes(rc, node))
 516		node = NULL;
 
 
 
 
 
 
 
 
 
 
 517out:
 518	btrfs_backref_iter_free(iter);
 519	btrfs_free_path(path);
 520	if (err) {
 521		btrfs_backref_error_cleanup(cache, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522		return ERR_PTR(err);
 523	}
 524	ASSERT(!node || !node->detached);
 525	ASSERT(list_empty(&cache->useless_node) &&
 526	       list_empty(&cache->pending_edge));
 527	return node;
 528}
 529
 530/*
 531 * helper to add backref node for the newly created snapshot.
 532 * the backref node is created by cloning backref node that
 533 * corresponds to root of source tree
 534 */
 535static int clone_backref_node(struct btrfs_trans_handle *trans,
 536			      struct reloc_control *rc,
 537			      struct btrfs_root *src,
 538			      struct btrfs_root *dest)
 539{
 540	struct btrfs_root *reloc_root = src->reloc_root;
 541	struct btrfs_backref_cache *cache = &rc->backref_cache;
 542	struct btrfs_backref_node *node = NULL;
 543	struct btrfs_backref_node *new_node;
 544	struct btrfs_backref_edge *edge;
 545	struct btrfs_backref_edge *new_edge;
 546	struct rb_node *rb_node;
 547
 548	if (cache->last_trans > 0)
 549		update_backref_cache(trans, cache);
 550
 551	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
 552	if (rb_node) {
 553		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
 554		if (node->detached)
 555			node = NULL;
 556		else
 557			BUG_ON(node->new_bytenr != reloc_root->node->start);
 558	}
 559
 560	if (!node) {
 561		rb_node = rb_simple_search(&cache->rb_root,
 562					   reloc_root->commit_root->start);
 563		if (rb_node) {
 564			node = rb_entry(rb_node, struct btrfs_backref_node,
 565					rb_node);
 566			BUG_ON(node->detached);
 567		}
 568	}
 569
 570	if (!node)
 571		return 0;
 572
 573	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
 574					    node->level);
 575	if (!new_node)
 576		return -ENOMEM;
 577
 
 
 578	new_node->lowest = node->lowest;
 579	new_node->checked = 1;
 580	new_node->root = btrfs_grab_root(dest);
 581	ASSERT(new_node->root);
 582
 583	if (!node->lowest) {
 584		list_for_each_entry(edge, &node->lower, list[UPPER]) {
 585			new_edge = btrfs_backref_alloc_edge(cache);
 586			if (!new_edge)
 587				goto fail;
 588
 589			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
 590						new_node, LINK_UPPER);
 
 
 591		}
 592	} else {
 593		list_add_tail(&new_node->lower, &cache->leaves);
 594	}
 595
 596	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
 597				   &new_node->rb_node);
 598	if (rb_node)
 599		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
 600
 601	if (!new_node->lowest) {
 602		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
 603			list_add_tail(&new_edge->list[LOWER],
 604				      &new_edge->node[LOWER]->upper);
 605		}
 606	}
 607	return 0;
 608fail:
 609	while (!list_empty(&new_node->lower)) {
 610		new_edge = list_entry(new_node->lower.next,
 611				      struct btrfs_backref_edge, list[UPPER]);
 612		list_del(&new_edge->list[UPPER]);
 613		btrfs_backref_free_edge(cache, new_edge);
 614	}
 615	btrfs_backref_free_node(cache, new_node);
 616	return -ENOMEM;
 617}
 618
 619/*
 620 * helper to add 'address of tree root -> reloc tree' mapping
 621 */
 622static int __must_check __add_reloc_root(struct btrfs_root *root)
 623{
 624	struct btrfs_fs_info *fs_info = root->fs_info;
 625	struct rb_node *rb_node;
 626	struct mapping_node *node;
 627	struct reloc_control *rc = fs_info->reloc_ctl;
 628
 629	node = kmalloc(sizeof(*node), GFP_NOFS);
 630	if (!node)
 631		return -ENOMEM;
 632
 633	node->bytenr = root->commit_root->start;
 634	node->data = root;
 635
 636	spin_lock(&rc->reloc_root_tree.lock);
 637	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 638				   node->bytenr, &node->rb_node);
 639	spin_unlock(&rc->reloc_root_tree.lock);
 640	if (rb_node) {
 641		btrfs_panic(fs_info, -EEXIST,
 642			    "Duplicate root found for start=%llu while inserting into relocation tree",
 643			    node->bytenr);
 
 644	}
 645
 646	list_add_tail(&root->root_list, &rc->reloc_roots);
 647	return 0;
 648}
 649
 650/*
 651 * helper to delete the 'address of tree root -> reloc tree'
 652 * mapping
 653 */
 654static void __del_reloc_root(struct btrfs_root *root)
 655{
 656	struct btrfs_fs_info *fs_info = root->fs_info;
 657	struct rb_node *rb_node;
 658	struct mapping_node *node = NULL;
 659	struct reloc_control *rc = fs_info->reloc_ctl;
 660	bool put_ref = false;
 661
 662	if (rc && root->node) {
 663		spin_lock(&rc->reloc_root_tree.lock);
 664		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 665					   root->commit_root->start);
 666		if (rb_node) {
 667			node = rb_entry(rb_node, struct mapping_node, rb_node);
 668			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 669			RB_CLEAR_NODE(&node->rb_node);
 670		}
 671		spin_unlock(&rc->reloc_root_tree.lock);
 672		if (!node)
 673			return;
 674		BUG_ON((struct btrfs_root *)node->data != root);
 675	}
 676
 677	/*
 678	 * We only put the reloc root here if it's on the list.  There's a lot
 679	 * of places where the pattern is to splice the rc->reloc_roots, process
 680	 * the reloc roots, and then add the reloc root back onto
 681	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
 682	 * list we don't want the reference being dropped, because the guy
 683	 * messing with the list is in charge of the reference.
 684	 */
 685	spin_lock(&fs_info->trans_lock);
 686	if (!list_empty(&root->root_list)) {
 687		put_ref = true;
 688		list_del_init(&root->root_list);
 689	}
 690	spin_unlock(&fs_info->trans_lock);
 691	if (put_ref)
 692		btrfs_put_root(root);
 693	kfree(node);
 694}
 695
 696/*
 697 * helper to update the 'address of tree root -> reloc tree'
 698 * mapping
 699 */
 700static int __update_reloc_root(struct btrfs_root *root)
 701{
 702	struct btrfs_fs_info *fs_info = root->fs_info;
 703	struct rb_node *rb_node;
 704	struct mapping_node *node = NULL;
 705	struct reloc_control *rc = fs_info->reloc_ctl;
 706
 707	spin_lock(&rc->reloc_root_tree.lock);
 708	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
 709				   root->commit_root->start);
 710	if (rb_node) {
 711		node = rb_entry(rb_node, struct mapping_node, rb_node);
 712		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
 713	}
 714	spin_unlock(&rc->reloc_root_tree.lock);
 715
 716	if (!node)
 717		return 0;
 718	BUG_ON((struct btrfs_root *)node->data != root);
 719
 720	spin_lock(&rc->reloc_root_tree.lock);
 721	node->bytenr = root->node->start;
 722	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
 723				   node->bytenr, &node->rb_node);
 724	spin_unlock(&rc->reloc_root_tree.lock);
 725	if (rb_node)
 726		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
 
 
 
 
 
 
 
 727	return 0;
 728}
 729
 730static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
 731					struct btrfs_root *root, u64 objectid)
 732{
 733	struct btrfs_fs_info *fs_info = root->fs_info;
 734	struct btrfs_root *reloc_root;
 735	struct extent_buffer *eb;
 736	struct btrfs_root_item *root_item;
 737	struct btrfs_key root_key;
 738	int ret;
 739
 740	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
 741	BUG_ON(!root_item);
 742
 743	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
 744	root_key.type = BTRFS_ROOT_ITEM_KEY;
 745	root_key.offset = objectid;
 746
 747	if (root->root_key.objectid == objectid) {
 748		u64 commit_root_gen;
 749
 750		/* called by btrfs_init_reloc_root */
 751		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
 752				      BTRFS_TREE_RELOC_OBJECTID);
 753		BUG_ON(ret);
 754		/*
 755		 * Set the last_snapshot field to the generation of the commit
 756		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
 757		 * correctly (returns true) when the relocation root is created
 758		 * either inside the critical section of a transaction commit
 759		 * (through transaction.c:qgroup_account_snapshot()) and when
 760		 * it's created before the transaction commit is started.
 761		 */
 762		commit_root_gen = btrfs_header_generation(root->commit_root);
 763		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
 764	} else {
 765		/*
 766		 * called by btrfs_reloc_post_snapshot_hook.
 767		 * the source tree is a reloc tree, all tree blocks
 768		 * modified after it was created have RELOC flag
 769		 * set in their headers. so it's OK to not update
 770		 * the 'last_snapshot'.
 771		 */
 772		ret = btrfs_copy_root(trans, root, root->node, &eb,
 773				      BTRFS_TREE_RELOC_OBJECTID);
 774		BUG_ON(ret);
 775	}
 776
 777	memcpy(root_item, &root->root_item, sizeof(*root_item));
 778	btrfs_set_root_bytenr(root_item, eb->start);
 779	btrfs_set_root_level(root_item, btrfs_header_level(eb));
 780	btrfs_set_root_generation(root_item, trans->transid);
 781
 782	if (root->root_key.objectid == objectid) {
 783		btrfs_set_root_refs(root_item, 0);
 784		memset(&root_item->drop_progress, 0,
 785		       sizeof(struct btrfs_disk_key));
 786		root_item->drop_level = 0;
 787	}
 788
 789	btrfs_tree_unlock(eb);
 790	free_extent_buffer(eb);
 791
 792	ret = btrfs_insert_root(trans, fs_info->tree_root,
 793				&root_key, root_item);
 794	BUG_ON(ret);
 795	kfree(root_item);
 796
 797	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
 
 798	BUG_ON(IS_ERR(reloc_root));
 799	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
 800	reloc_root->last_trans = trans->transid;
 801	return reloc_root;
 802}
 803
 804/*
 805 * create reloc tree for a given fs tree. reloc tree is just a
 806 * snapshot of the fs tree with special root objectid.
 807 *
 808 * The reloc_root comes out of here with two references, one for
 809 * root->reloc_root, and another for being on the rc->reloc_roots list.
 810 */
 811int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
 812			  struct btrfs_root *root)
 813{
 814	struct btrfs_fs_info *fs_info = root->fs_info;
 815	struct btrfs_root *reloc_root;
 816	struct reloc_control *rc = fs_info->reloc_ctl;
 817	struct btrfs_block_rsv *rsv;
 818	int clear_rsv = 0;
 819	int ret;
 820
 821	if (!rc)
 822		return 0;
 823
 824	/*
 825	 * The subvolume has reloc tree but the swap is finished, no need to
 826	 * create/update the dead reloc tree
 827	 */
 828	if (reloc_root_is_dead(root))
 829		return 0;
 830
 831	/*
 832	 * This is subtle but important.  We do not do
 833	 * record_root_in_transaction for reloc roots, instead we record their
 834	 * corresponding fs root, and then here we update the last trans for the
 835	 * reloc root.  This means that we have to do this for the entire life
 836	 * of the reloc root, regardless of which stage of the relocation we are
 837	 * in.
 838	 */
 839	if (root->reloc_root) {
 840		reloc_root = root->reloc_root;
 841		reloc_root->last_trans = trans->transid;
 842		return 0;
 843	}
 844
 845	/*
 846	 * We are merging reloc roots, we do not need new reloc trees.  Also
 847	 * reloc trees never need their own reloc tree.
 848	 */
 849	if (!rc->create_reloc_tree ||
 850	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 851		return 0;
 852
 853	if (!trans->reloc_reserved) {
 854		rsv = trans->block_rsv;
 855		trans->block_rsv = rc->block_rsv;
 856		clear_rsv = 1;
 857	}
 858	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
 859	if (clear_rsv)
 860		trans->block_rsv = rsv;
 861
 862	ret = __add_reloc_root(reloc_root);
 863	BUG_ON(ret < 0);
 864	root->reloc_root = btrfs_grab_root(reloc_root);
 865	return 0;
 866}
 867
 868/*
 869 * update root item of reloc tree
 870 */
 871int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
 872			    struct btrfs_root *root)
 873{
 874	struct btrfs_fs_info *fs_info = root->fs_info;
 875	struct btrfs_root *reloc_root;
 876	struct btrfs_root_item *root_item;
 
 877	int ret;
 878
 879	if (!have_reloc_root(root))
 880		goto out;
 881
 882	reloc_root = root->reloc_root;
 883	root_item = &reloc_root->root_item;
 884
 885	/*
 886	 * We are probably ok here, but __del_reloc_root() will drop its ref of
 887	 * the root.  We have the ref for root->reloc_root, but just in case
 888	 * hold it while we update the reloc root.
 889	 */
 890	btrfs_grab_root(reloc_root);
 891
 892	/* root->reloc_root will stay until current relocation finished */
 893	if (fs_info->reloc_ctl->merge_reloc_tree &&
 894	    btrfs_root_refs(root_item) == 0) {
 895		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
 896		/*
 897		 * Mark the tree as dead before we change reloc_root so
 898		 * have_reloc_root will not touch it from now on.
 899		 */
 900		smp_wmb();
 901		__del_reloc_root(reloc_root);
 902	}
 903
 
 
 904	if (reloc_root->commit_root != reloc_root->node) {
 905		__update_reloc_root(reloc_root);
 906		btrfs_set_root_node(root_item, reloc_root->node);
 907		free_extent_buffer(reloc_root->commit_root);
 908		reloc_root->commit_root = btrfs_root_node(reloc_root);
 909	}
 910
 911	ret = btrfs_update_root(trans, fs_info->tree_root,
 912				&reloc_root->root_key, root_item);
 913	BUG_ON(ret);
 914	btrfs_put_root(reloc_root);
 915out:
 916	return 0;
 917}
 918
 919/*
 920 * helper to find first cached inode with inode number >= objectid
 921 * in a subvolume
 922 */
 923static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
 924{
 925	struct rb_node *node;
 926	struct rb_node *prev;
 927	struct btrfs_inode *entry;
 928	struct inode *inode;
 929
 930	spin_lock(&root->inode_lock);
 931again:
 932	node = root->inode_tree.rb_node;
 933	prev = NULL;
 934	while (node) {
 935		prev = node;
 936		entry = rb_entry(node, struct btrfs_inode, rb_node);
 937
 938		if (objectid < btrfs_ino(entry))
 939			node = node->rb_left;
 940		else if (objectid > btrfs_ino(entry))
 941			node = node->rb_right;
 942		else
 943			break;
 944	}
 945	if (!node) {
 946		while (prev) {
 947			entry = rb_entry(prev, struct btrfs_inode, rb_node);
 948			if (objectid <= btrfs_ino(entry)) {
 949				node = prev;
 950				break;
 951			}
 952			prev = rb_next(prev);
 953		}
 954	}
 955	while (node) {
 956		entry = rb_entry(node, struct btrfs_inode, rb_node);
 957		inode = igrab(&entry->vfs_inode);
 958		if (inode) {
 959			spin_unlock(&root->inode_lock);
 960			return inode;
 961		}
 962
 963		objectid = btrfs_ino(entry) + 1;
 964		if (cond_resched_lock(&root->inode_lock))
 965			goto again;
 966
 967		node = rb_next(node);
 968	}
 969	spin_unlock(&root->inode_lock);
 970	return NULL;
 971}
 972
 
 
 
 
 
 
 
 
 
 973/*
 974 * get new location of data
 975 */
 976static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
 977			    u64 bytenr, u64 num_bytes)
 978{
 979	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
 980	struct btrfs_path *path;
 981	struct btrfs_file_extent_item *fi;
 982	struct extent_buffer *leaf;
 983	int ret;
 984
 985	path = btrfs_alloc_path();
 986	if (!path)
 987		return -ENOMEM;
 988
 989	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
 990	ret = btrfs_lookup_file_extent(NULL, root, path,
 991			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
 992	if (ret < 0)
 993		goto out;
 994	if (ret > 0) {
 995		ret = -ENOENT;
 996		goto out;
 997	}
 998
 999	leaf = path->nodes[0];
1000	fi = btrfs_item_ptr(leaf, path->slots[0],
1001			    struct btrfs_file_extent_item);
1002
1003	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1004	       btrfs_file_extent_compression(leaf, fi) ||
1005	       btrfs_file_extent_encryption(leaf, fi) ||
1006	       btrfs_file_extent_other_encoding(leaf, fi));
1007
1008	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1009		ret = -EINVAL;
1010		goto out;
1011	}
1012
1013	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1014	ret = 0;
1015out:
1016	btrfs_free_path(path);
1017	return ret;
1018}
1019
1020/*
1021 * update file extent items in the tree leaf to point to
1022 * the new locations.
1023 */
1024static noinline_for_stack
1025int replace_file_extents(struct btrfs_trans_handle *trans,
1026			 struct reloc_control *rc,
1027			 struct btrfs_root *root,
1028			 struct extent_buffer *leaf)
1029{
1030	struct btrfs_fs_info *fs_info = root->fs_info;
1031	struct btrfs_key key;
1032	struct btrfs_file_extent_item *fi;
1033	struct inode *inode = NULL;
1034	u64 parent;
1035	u64 bytenr;
1036	u64 new_bytenr = 0;
1037	u64 num_bytes;
1038	u64 end;
1039	u32 nritems;
1040	u32 i;
1041	int ret = 0;
1042	int first = 1;
1043	int dirty = 0;
1044
1045	if (rc->stage != UPDATE_DATA_PTRS)
1046		return 0;
1047
1048	/* reloc trees always use full backref */
1049	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1050		parent = leaf->start;
1051	else
1052		parent = 0;
1053
1054	nritems = btrfs_header_nritems(leaf);
1055	for (i = 0; i < nritems; i++) {
1056		struct btrfs_ref ref = { 0 };
1057
1058		cond_resched();
1059		btrfs_item_key_to_cpu(leaf, &key, i);
1060		if (key.type != BTRFS_EXTENT_DATA_KEY)
1061			continue;
1062		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1063		if (btrfs_file_extent_type(leaf, fi) ==
1064		    BTRFS_FILE_EXTENT_INLINE)
1065			continue;
1066		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1067		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1068		if (bytenr == 0)
1069			continue;
1070		if (!in_range(bytenr, rc->block_group->start,
1071			      rc->block_group->length))
1072			continue;
1073
1074		/*
1075		 * if we are modifying block in fs tree, wait for readpage
1076		 * to complete and drop the extent cache
1077		 */
1078		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1079			if (first) {
1080				inode = find_next_inode(root, key.objectid);
1081				first = 0;
1082			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1083				btrfs_add_delayed_iput(inode);
1084				inode = find_next_inode(root, key.objectid);
1085			}
1086			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1087				end = key.offset +
1088				      btrfs_file_extent_num_bytes(leaf, fi);
1089				WARN_ON(!IS_ALIGNED(key.offset,
1090						    fs_info->sectorsize));
1091				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1092				end--;
1093				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1094						      key.offset, end);
1095				if (!ret)
1096					continue;
1097
1098				btrfs_drop_extent_cache(BTRFS_I(inode),
1099						key.offset,	end, 1);
1100				unlock_extent(&BTRFS_I(inode)->io_tree,
1101					      key.offset, end);
1102			}
1103		}
1104
1105		ret = get_new_location(rc->data_inode, &new_bytenr,
1106				       bytenr, num_bytes);
1107		if (ret) {
1108			/*
1109			 * Don't have to abort since we've not changed anything
1110			 * in the file extent yet.
1111			 */
1112			break;
1113		}
 
1114
1115		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1116		dirty = 1;
1117
1118		key.offset -= btrfs_file_extent_offset(leaf, fi);
1119		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1120				       num_bytes, parent);
1121		ref.real_root = root->root_key.objectid;
1122		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1123				    key.objectid, key.offset);
1124		ret = btrfs_inc_extent_ref(trans, &ref);
1125		if (ret) {
1126			btrfs_abort_transaction(trans, ret);
1127			break;
1128		}
1129
1130		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1131				       num_bytes, parent);
1132		ref.real_root = root->root_key.objectid;
1133		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1134				    key.objectid, key.offset);
1135		ret = btrfs_free_extent(trans, &ref);
1136		if (ret) {
1137			btrfs_abort_transaction(trans, ret);
1138			break;
1139		}
1140	}
1141	if (dirty)
1142		btrfs_mark_buffer_dirty(leaf);
1143	if (inode)
1144		btrfs_add_delayed_iput(inode);
1145	return ret;
1146}
1147
1148static noinline_for_stack
1149int memcmp_node_keys(struct extent_buffer *eb, int slot,
1150		     struct btrfs_path *path, int level)
1151{
1152	struct btrfs_disk_key key1;
1153	struct btrfs_disk_key key2;
1154	btrfs_node_key(eb, &key1, slot);
1155	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1156	return memcmp(&key1, &key2, sizeof(key1));
1157}
1158
1159/*
1160 * try to replace tree blocks in fs tree with the new blocks
1161 * in reloc tree. tree blocks haven't been modified since the
1162 * reloc tree was create can be replaced.
1163 *
1164 * if a block was replaced, level of the block + 1 is returned.
1165 * if no block got replaced, 0 is returned. if there are other
1166 * errors, a negative error number is returned.
1167 */
1168static noinline_for_stack
1169int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1170		 struct btrfs_root *dest, struct btrfs_root *src,
1171		 struct btrfs_path *path, struct btrfs_key *next_key,
1172		 int lowest_level, int max_level)
1173{
1174	struct btrfs_fs_info *fs_info = dest->fs_info;
1175	struct extent_buffer *eb;
1176	struct extent_buffer *parent;
1177	struct btrfs_ref ref = { 0 };
1178	struct btrfs_key key;
1179	u64 old_bytenr;
1180	u64 new_bytenr;
1181	u64 old_ptr_gen;
1182	u64 new_ptr_gen;
1183	u64 last_snapshot;
1184	u32 blocksize;
1185	int cow = 0;
1186	int level;
1187	int ret;
1188	int slot;
1189
1190	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1191	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1192
1193	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1194again:
1195	slot = path->slots[lowest_level];
1196	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1197
1198	eb = btrfs_lock_root_node(dest);
1199	btrfs_set_lock_blocking_write(eb);
1200	level = btrfs_header_level(eb);
1201
1202	if (level < lowest_level) {
1203		btrfs_tree_unlock(eb);
1204		free_extent_buffer(eb);
1205		return 0;
1206	}
1207
1208	if (cow) {
1209		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1210		BUG_ON(ret);
1211	}
1212	btrfs_set_lock_blocking_write(eb);
1213
1214	if (next_key) {
1215		next_key->objectid = (u64)-1;
1216		next_key->type = (u8)-1;
1217		next_key->offset = (u64)-1;
1218	}
1219
1220	parent = eb;
1221	while (1) {
1222		struct btrfs_key first_key;
1223
1224		level = btrfs_header_level(parent);
1225		BUG_ON(level < lowest_level);
1226
1227		ret = btrfs_bin_search(parent, &key, &slot);
1228		if (ret < 0)
1229			break;
1230		if (ret && slot > 0)
1231			slot--;
1232
1233		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1234			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1235
1236		old_bytenr = btrfs_node_blockptr(parent, slot);
1237		blocksize = fs_info->nodesize;
1238		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1239		btrfs_node_key_to_cpu(parent, &first_key, slot);
1240
1241		if (level <= max_level) {
1242			eb = path->nodes[level];
1243			new_bytenr = btrfs_node_blockptr(eb,
1244							path->slots[level]);
1245			new_ptr_gen = btrfs_node_ptr_generation(eb,
1246							path->slots[level]);
1247		} else {
1248			new_bytenr = 0;
1249			new_ptr_gen = 0;
1250		}
1251
1252		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
 
1253			ret = level;
1254			break;
1255		}
1256
1257		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1258		    memcmp_node_keys(parent, slot, path, level)) {
1259			if (level <= lowest_level) {
1260				ret = 0;
1261				break;
1262			}
1263
1264			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1265					     level - 1, &first_key);
1266			if (IS_ERR(eb)) {
1267				ret = PTR_ERR(eb);
1268				break;
1269			} else if (!extent_buffer_uptodate(eb)) {
1270				ret = -EIO;
1271				free_extent_buffer(eb);
1272				break;
1273			}
1274			btrfs_tree_lock(eb);
1275			if (cow) {
1276				ret = btrfs_cow_block(trans, dest, eb, parent,
1277						      slot, &eb);
1278				BUG_ON(ret);
1279			}
1280			btrfs_set_lock_blocking_write(eb);
1281
1282			btrfs_tree_unlock(parent);
1283			free_extent_buffer(parent);
1284
1285			parent = eb;
1286			continue;
1287		}
1288
1289		if (!cow) {
1290			btrfs_tree_unlock(parent);
1291			free_extent_buffer(parent);
1292			cow = 1;
1293			goto again;
1294		}
1295
1296		btrfs_node_key_to_cpu(path->nodes[level], &key,
1297				      path->slots[level]);
1298		btrfs_release_path(path);
1299
1300		path->lowest_level = level;
1301		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1302		path->lowest_level = 0;
1303		BUG_ON(ret);
1304
1305		/*
1306		 * Info qgroup to trace both subtrees.
1307		 *
1308		 * We must trace both trees.
1309		 * 1) Tree reloc subtree
1310		 *    If not traced, we will leak data numbers
1311		 * 2) Fs subtree
1312		 *    If not traced, we will double count old data
1313		 *
1314		 * We don't scan the subtree right now, but only record
1315		 * the swapped tree blocks.
1316		 * The real subtree rescan is delayed until we have new
1317		 * CoW on the subtree root node before transaction commit.
1318		 */
1319		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1320				rc->block_group, parent, slot,
1321				path->nodes[level], path->slots[level],
1322				last_snapshot);
1323		if (ret < 0)
1324			break;
1325		/*
1326		 * swap blocks in fs tree and reloc tree.
1327		 */
1328		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1329		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1330		btrfs_mark_buffer_dirty(parent);
1331
1332		btrfs_set_node_blockptr(path->nodes[level],
1333					path->slots[level], old_bytenr);
1334		btrfs_set_node_ptr_generation(path->nodes[level],
1335					      path->slots[level], old_ptr_gen);
1336		btrfs_mark_buffer_dirty(path->nodes[level]);
1337
1338		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1339				       blocksize, path->nodes[level]->start);
1340		ref.skip_qgroup = true;
1341		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1342		ret = btrfs_inc_extent_ref(trans, &ref);
1343		BUG_ON(ret);
1344		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1345				       blocksize, 0);
1346		ref.skip_qgroup = true;
1347		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1348		ret = btrfs_inc_extent_ref(trans, &ref);
1349		BUG_ON(ret);
1350
1351		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1352				       blocksize, path->nodes[level]->start);
1353		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1354		ref.skip_qgroup = true;
1355		ret = btrfs_free_extent(trans, &ref);
1356		BUG_ON(ret);
1357
1358		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1359				       blocksize, 0);
1360		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1361		ref.skip_qgroup = true;
1362		ret = btrfs_free_extent(trans, &ref);
1363		BUG_ON(ret);
1364
1365		btrfs_unlock_up_safe(path, 0);
1366
1367		ret = level;
1368		break;
1369	}
1370	btrfs_tree_unlock(parent);
1371	free_extent_buffer(parent);
1372	return ret;
1373}
1374
1375/*
1376 * helper to find next relocated block in reloc tree
1377 */
1378static noinline_for_stack
1379int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1380		       int *level)
1381{
1382	struct extent_buffer *eb;
1383	int i;
1384	u64 last_snapshot;
1385	u32 nritems;
1386
1387	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1388
1389	for (i = 0; i < *level; i++) {
1390		free_extent_buffer(path->nodes[i]);
1391		path->nodes[i] = NULL;
1392	}
1393
1394	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1395		eb = path->nodes[i];
1396		nritems = btrfs_header_nritems(eb);
1397		while (path->slots[i] + 1 < nritems) {
1398			path->slots[i]++;
1399			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1400			    last_snapshot)
1401				continue;
1402
1403			*level = i;
1404			return 0;
1405		}
1406		free_extent_buffer(path->nodes[i]);
1407		path->nodes[i] = NULL;
1408	}
1409	return 1;
1410}
1411
1412/*
1413 * walk down reloc tree to find relocated block of lowest level
1414 */
1415static noinline_for_stack
1416int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1417			 int *level)
1418{
1419	struct btrfs_fs_info *fs_info = root->fs_info;
1420	struct extent_buffer *eb = NULL;
1421	int i;
1422	u64 bytenr;
1423	u64 ptr_gen = 0;
1424	u64 last_snapshot;
 
1425	u32 nritems;
1426
1427	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1428
1429	for (i = *level; i > 0; i--) {
1430		struct btrfs_key first_key;
1431
1432		eb = path->nodes[i];
1433		nritems = btrfs_header_nritems(eb);
1434		while (path->slots[i] < nritems) {
1435			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1436			if (ptr_gen > last_snapshot)
1437				break;
1438			path->slots[i]++;
1439		}
1440		if (path->slots[i] >= nritems) {
1441			if (i == *level)
1442				break;
1443			*level = i + 1;
1444			return 0;
1445		}
1446		if (i == 1) {
1447			*level = i;
1448			return 0;
1449		}
1450
1451		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1452		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
1453		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
1454				     &first_key);
1455		if (IS_ERR(eb)) {
1456			return PTR_ERR(eb);
1457		} else if (!extent_buffer_uptodate(eb)) {
1458			free_extent_buffer(eb);
1459			return -EIO;
1460		}
1461		BUG_ON(btrfs_header_level(eb) != i - 1);
1462		path->nodes[i - 1] = eb;
1463		path->slots[i - 1] = 0;
1464	}
1465	return 1;
1466}
1467
1468/*
1469 * invalidate extent cache for file extents whose key in range of
1470 * [min_key, max_key)
1471 */
1472static int invalidate_extent_cache(struct btrfs_root *root,
1473				   struct btrfs_key *min_key,
1474				   struct btrfs_key *max_key)
1475{
1476	struct btrfs_fs_info *fs_info = root->fs_info;
1477	struct inode *inode = NULL;
1478	u64 objectid;
1479	u64 start, end;
1480	u64 ino;
1481
1482	objectid = min_key->objectid;
1483	while (1) {
1484		cond_resched();
1485		iput(inode);
1486
1487		if (objectid > max_key->objectid)
1488			break;
1489
1490		inode = find_next_inode(root, objectid);
1491		if (!inode)
1492			break;
1493		ino = btrfs_ino(BTRFS_I(inode));
1494
1495		if (ino > max_key->objectid) {
1496			iput(inode);
1497			break;
1498		}
1499
1500		objectid = ino + 1;
1501		if (!S_ISREG(inode->i_mode))
1502			continue;
1503
1504		if (unlikely(min_key->objectid == ino)) {
1505			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1506				continue;
1507			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1508				start = 0;
1509			else {
1510				start = min_key->offset;
1511				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1512			}
1513		} else {
1514			start = 0;
1515		}
1516
1517		if (unlikely(max_key->objectid == ino)) {
1518			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1519				continue;
1520			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1521				end = (u64)-1;
1522			} else {
1523				if (max_key->offset == 0)
1524					continue;
1525				end = max_key->offset;
1526				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1527				end--;
1528			}
1529		} else {
1530			end = (u64)-1;
1531		}
1532
1533		/* the lock_extent waits for readpage to complete */
1534		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1535		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1536		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1537	}
1538	return 0;
1539}
1540
1541static int find_next_key(struct btrfs_path *path, int level,
1542			 struct btrfs_key *key)
1543
1544{
1545	while (level < BTRFS_MAX_LEVEL) {
1546		if (!path->nodes[level])
1547			break;
1548		if (path->slots[level] + 1 <
1549		    btrfs_header_nritems(path->nodes[level])) {
1550			btrfs_node_key_to_cpu(path->nodes[level], key,
1551					      path->slots[level] + 1);
1552			return 0;
1553		}
1554		level++;
1555	}
1556	return 1;
1557}
1558
1559/*
1560 * Insert current subvolume into reloc_control::dirty_subvol_roots
1561 */
1562static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1563				struct reloc_control *rc,
1564				struct btrfs_root *root)
1565{
1566	struct btrfs_root *reloc_root = root->reloc_root;
1567	struct btrfs_root_item *reloc_root_item;
1568
1569	/* @root must be a subvolume tree root with a valid reloc tree */
1570	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1571	ASSERT(reloc_root);
1572
1573	reloc_root_item = &reloc_root->root_item;
1574	memset(&reloc_root_item->drop_progress, 0,
1575		sizeof(reloc_root_item->drop_progress));
1576	reloc_root_item->drop_level = 0;
1577	btrfs_set_root_refs(reloc_root_item, 0);
1578	btrfs_update_reloc_root(trans, root);
1579
1580	if (list_empty(&root->reloc_dirty_list)) {
1581		btrfs_grab_root(root);
1582		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1583	}
1584}
1585
1586static int clean_dirty_subvols(struct reloc_control *rc)
1587{
1588	struct btrfs_root *root;
1589	struct btrfs_root *next;
1590	int ret = 0;
1591	int ret2;
1592
1593	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1594				 reloc_dirty_list) {
1595		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1596			/* Merged subvolume, cleanup its reloc root */
1597			struct btrfs_root *reloc_root = root->reloc_root;
1598
1599			list_del_init(&root->reloc_dirty_list);
1600			root->reloc_root = NULL;
1601			/*
1602			 * Need barrier to ensure clear_bit() only happens after
1603			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1604			 */
1605			smp_wmb();
1606			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1607			if (reloc_root) {
1608				/*
1609				 * btrfs_drop_snapshot drops our ref we hold for
1610				 * ->reloc_root.  If it fails however we must
1611				 * drop the ref ourselves.
1612				 */
1613				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1614				if (ret2 < 0) {
1615					btrfs_put_root(reloc_root);
1616					if (!ret)
1617						ret = ret2;
1618				}
1619			}
1620			btrfs_put_root(root);
1621		} else {
1622			/* Orphan reloc tree, just clean it up */
1623			ret2 = btrfs_drop_snapshot(root, 0, 1);
1624			if (ret2 < 0) {
1625				btrfs_put_root(root);
1626				if (!ret)
1627					ret = ret2;
1628			}
1629		}
1630	}
1631	return ret;
1632}
1633
1634/*
1635 * merge the relocated tree blocks in reloc tree with corresponding
1636 * fs tree.
1637 */
1638static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1639					       struct btrfs_root *root)
1640{
1641	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1642	struct btrfs_key key;
1643	struct btrfs_key next_key;
1644	struct btrfs_trans_handle *trans = NULL;
1645	struct btrfs_root *reloc_root;
1646	struct btrfs_root_item *root_item;
1647	struct btrfs_path *path;
1648	struct extent_buffer *leaf;
 
1649	int level;
1650	int max_level;
1651	int replaced = 0;
1652	int ret;
1653	int err = 0;
1654	u32 min_reserved;
1655
1656	path = btrfs_alloc_path();
1657	if (!path)
1658		return -ENOMEM;
1659	path->reada = READA_FORWARD;
1660
1661	reloc_root = root->reloc_root;
1662	root_item = &reloc_root->root_item;
1663
1664	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1665		level = btrfs_root_level(root_item);
1666		atomic_inc(&reloc_root->node->refs);
1667		path->nodes[level] = reloc_root->node;
1668		path->slots[level] = 0;
1669	} else {
1670		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1671
1672		level = root_item->drop_level;
1673		BUG_ON(level == 0);
1674		path->lowest_level = level;
1675		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1676		path->lowest_level = 0;
1677		if (ret < 0) {
1678			btrfs_free_path(path);
1679			return ret;
1680		}
1681
1682		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1683				      path->slots[level]);
1684		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1685
1686		btrfs_unlock_up_safe(path, 0);
1687	}
1688
1689	/*
1690	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1691	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1692	 * block COW, we COW at most from level 1 to root level for each tree.
1693	 *
1694	 * Thus the needed metadata size is at most root_level * nodesize,
1695	 * and * 2 since we have two trees to COW.
1696	 */
1697	min_reserved = fs_info->nodesize * btrfs_root_level(root_item) * 2;
1698	memset(&next_key, 0, sizeof(next_key));
1699
1700	while (1) {
1701		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1702					     BTRFS_RESERVE_FLUSH_LIMIT);
 
 
 
1703		if (ret) {
1704			err = ret;
1705			goto out;
1706		}
1707		trans = btrfs_start_transaction(root, 0);
1708		if (IS_ERR(trans)) {
1709			err = PTR_ERR(trans);
1710			trans = NULL;
1711			goto out;
1712		}
1713
1714		/*
1715		 * At this point we no longer have a reloc_control, so we can't
1716		 * depend on btrfs_init_reloc_root to update our last_trans.
1717		 *
1718		 * But that's ok, we started the trans handle on our
1719		 * corresponding fs_root, which means it's been added to the
1720		 * dirty list.  At commit time we'll still call
1721		 * btrfs_update_reloc_root() and update our root item
1722		 * appropriately.
1723		 */
1724		reloc_root->last_trans = trans->transid;
1725		trans->block_rsv = rc->block_rsv;
1726
1727		replaced = 0;
1728		max_level = level;
1729
1730		ret = walk_down_reloc_tree(reloc_root, path, &level);
1731		if (ret < 0) {
1732			err = ret;
1733			goto out;
1734		}
1735		if (ret > 0)
1736			break;
1737
1738		if (!find_next_key(path, level, &key) &&
1739		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1740			ret = 0;
1741		} else {
1742			ret = replace_path(trans, rc, root, reloc_root, path,
1743					   &next_key, level, max_level);
1744		}
1745		if (ret < 0) {
1746			err = ret;
1747			goto out;
1748		}
1749
1750		if (ret > 0) {
1751			level = ret;
1752			btrfs_node_key_to_cpu(path->nodes[level], &key,
1753					      path->slots[level]);
1754			replaced = 1;
1755		}
1756
1757		ret = walk_up_reloc_tree(reloc_root, path, &level);
1758		if (ret > 0)
1759			break;
1760
1761		BUG_ON(level == 0);
1762		/*
1763		 * save the merging progress in the drop_progress.
1764		 * this is OK since root refs == 1 in this case.
1765		 */
1766		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1767			       path->slots[level]);
1768		root_item->drop_level = level;
1769
1770		btrfs_end_transaction_throttle(trans);
1771		trans = NULL;
1772
1773		btrfs_btree_balance_dirty(fs_info);
1774
1775		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1776			invalidate_extent_cache(root, &key, &next_key);
1777	}
1778
1779	/*
1780	 * handle the case only one block in the fs tree need to be
1781	 * relocated and the block is tree root.
1782	 */
1783	leaf = btrfs_lock_root_node(root);
1784	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
1785	btrfs_tree_unlock(leaf);
1786	free_extent_buffer(leaf);
1787	if (ret < 0)
1788		err = ret;
1789out:
1790	btrfs_free_path(path);
1791
1792	if (err == 0)
1793		insert_dirty_subvol(trans, rc, root);
 
 
 
 
 
1794
1795	if (trans)
1796		btrfs_end_transaction_throttle(trans);
1797
1798	btrfs_btree_balance_dirty(fs_info);
1799
1800	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1801		invalidate_extent_cache(root, &key, &next_key);
1802
1803	return err;
1804}
1805
1806static noinline_for_stack
1807int prepare_to_merge(struct reloc_control *rc, int err)
1808{
1809	struct btrfs_root *root = rc->extent_root;
1810	struct btrfs_fs_info *fs_info = root->fs_info;
1811	struct btrfs_root *reloc_root;
1812	struct btrfs_trans_handle *trans;
1813	LIST_HEAD(reloc_roots);
1814	u64 num_bytes = 0;
1815	int ret;
1816
1817	mutex_lock(&fs_info->reloc_mutex);
1818	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1819	rc->merging_rsv_size += rc->nodes_relocated * 2;
1820	mutex_unlock(&fs_info->reloc_mutex);
1821
1822again:
1823	if (!err) {
1824		num_bytes = rc->merging_rsv_size;
1825		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1826					  BTRFS_RESERVE_FLUSH_ALL);
1827		if (ret)
1828			err = ret;
1829	}
1830
1831	trans = btrfs_join_transaction(rc->extent_root);
1832	if (IS_ERR(trans)) {
1833		if (!err)
1834			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1835						num_bytes, NULL);
1836		return PTR_ERR(trans);
1837	}
1838
1839	if (!err) {
1840		if (num_bytes != rc->merging_rsv_size) {
1841			btrfs_end_transaction(trans);
1842			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1843						num_bytes, NULL);
1844			goto again;
1845		}
1846	}
1847
1848	rc->merge_reloc_tree = 1;
1849
1850	while (!list_empty(&rc->reloc_roots)) {
1851		reloc_root = list_entry(rc->reloc_roots.next,
1852					struct btrfs_root, root_list);
1853		list_del_init(&reloc_root->root_list);
1854
1855		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1856				false);
1857		BUG_ON(IS_ERR(root));
1858		BUG_ON(root->reloc_root != reloc_root);
1859
1860		/*
1861		 * set reference count to 1, so btrfs_recover_relocation
1862		 * knows it should resumes merging
1863		 */
1864		if (!err)
1865			btrfs_set_root_refs(&reloc_root->root_item, 1);
1866		btrfs_update_reloc_root(trans, root);
1867
1868		list_add(&reloc_root->root_list, &reloc_roots);
1869		btrfs_put_root(root);
1870	}
1871
1872	list_splice(&reloc_roots, &rc->reloc_roots);
1873
1874	if (!err)
1875		btrfs_commit_transaction(trans);
1876	else
1877		btrfs_end_transaction(trans);
1878	return err;
1879}
1880
1881static noinline_for_stack
1882void free_reloc_roots(struct list_head *list)
1883{
1884	struct btrfs_root *reloc_root, *tmp;
1885
1886	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1887		__del_reloc_root(reloc_root);
1888}
1889
1890static noinline_for_stack
1891void merge_reloc_roots(struct reloc_control *rc)
1892{
1893	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1894	struct btrfs_root *root;
1895	struct btrfs_root *reloc_root;
1896	LIST_HEAD(reloc_roots);
1897	int found = 0;
1898	int ret = 0;
1899again:
1900	root = rc->extent_root;
1901
1902	/*
1903	 * this serializes us with btrfs_record_root_in_transaction,
1904	 * we have to make sure nobody is in the middle of
1905	 * adding their roots to the list while we are
1906	 * doing this splice
1907	 */
1908	mutex_lock(&fs_info->reloc_mutex);
1909	list_splice_init(&rc->reloc_roots, &reloc_roots);
1910	mutex_unlock(&fs_info->reloc_mutex);
1911
1912	while (!list_empty(&reloc_roots)) {
1913		found = 1;
1914		reloc_root = list_entry(reloc_roots.next,
1915					struct btrfs_root, root_list);
1916
1917		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1918					 false);
1919		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
 
 
1920			BUG_ON(IS_ERR(root));
1921			BUG_ON(root->reloc_root != reloc_root);
 
1922			ret = merge_reloc_root(rc, root);
1923			btrfs_put_root(root);
1924			if (ret) {
1925				if (list_empty(&reloc_root->root_list))
1926					list_add_tail(&reloc_root->root_list,
1927						      &reloc_roots);
1928				goto out;
1929			}
1930		} else {
1931			if (!IS_ERR(root)) {
1932				if (root->reloc_root == reloc_root) {
1933					root->reloc_root = NULL;
1934					btrfs_put_root(reloc_root);
1935				}
1936				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1937					  &root->state);
1938				btrfs_put_root(root);
1939			}
1940
1941			list_del_init(&reloc_root->root_list);
1942			/* Don't forget to queue this reloc root for cleanup */
1943			list_add_tail(&reloc_root->reloc_dirty_list,
1944				      &rc->dirty_subvol_roots);
1945		}
 
 
1946	}
1947
1948	if (found) {
1949		found = 0;
1950		goto again;
1951	}
1952out:
1953	if (ret) {
1954		btrfs_handle_fs_error(fs_info, ret, NULL);
1955		free_reloc_roots(&reloc_roots);
1956
1957		/* new reloc root may be added */
1958		mutex_lock(&fs_info->reloc_mutex);
1959		list_splice_init(&rc->reloc_roots, &reloc_roots);
1960		mutex_unlock(&fs_info->reloc_mutex);
1961		free_reloc_roots(&reloc_roots);
1962	}
1963
1964	/*
1965	 * We used to have
1966	 *
1967	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1968	 *
1969	 * here, but it's wrong.  If we fail to start the transaction in
1970	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1971	 * have actually been removed from the reloc_root_tree rb tree.  This is
1972	 * fine because we're bailing here, and we hold a reference on the root
1973	 * for the list that holds it, so these roots will be cleaned up when we
1974	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1975	 * will be cleaned up on unmount.
1976	 *
1977	 * The remaining nodes will be cleaned up by free_reloc_control.
1978	 */
1979}
1980
1981static void free_block_list(struct rb_root *blocks)
1982{
1983	struct tree_block *block;
1984	struct rb_node *rb_node;
1985	while ((rb_node = rb_first(blocks))) {
1986		block = rb_entry(rb_node, struct tree_block, rb_node);
1987		rb_erase(rb_node, blocks);
1988		kfree(block);
1989	}
1990}
1991
1992static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1993				      struct btrfs_root *reloc_root)
1994{
1995	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1996	struct btrfs_root *root;
1997	int ret;
1998
1999	if (reloc_root->last_trans == trans->transid)
2000		return 0;
2001
2002	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2003	BUG_ON(IS_ERR(root));
2004	BUG_ON(root->reloc_root != reloc_root);
2005	ret = btrfs_record_root_in_trans(trans, root);
2006	btrfs_put_root(root);
2007
2008	return ret;
2009}
2010
2011static noinline_for_stack
2012struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2013				     struct reloc_control *rc,
2014				     struct btrfs_backref_node *node,
2015				     struct btrfs_backref_edge *edges[])
2016{
2017	struct btrfs_backref_node *next;
2018	struct btrfs_root *root;
2019	int index = 0;
2020
2021	next = node;
2022	while (1) {
2023		cond_resched();
2024		next = walk_up_backref(next, edges, &index);
2025		root = next->root;
2026		BUG_ON(!root);
2027		BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2028
2029		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2030			record_reloc_root_in_trans(trans, root);
2031			break;
2032		}
2033
2034		btrfs_record_root_in_trans(trans, root);
2035		root = root->reloc_root;
2036
2037		if (next->new_bytenr != root->node->start) {
2038			BUG_ON(next->new_bytenr);
2039			BUG_ON(!list_empty(&next->list));
2040			next->new_bytenr = root->node->start;
2041			btrfs_put_root(next->root);
2042			next->root = btrfs_grab_root(root);
2043			ASSERT(next->root);
2044			list_add_tail(&next->list,
2045				      &rc->backref_cache.changed);
2046			mark_block_processed(rc, next);
2047			break;
2048		}
2049
2050		WARN_ON(1);
2051		root = NULL;
2052		next = walk_down_backref(edges, &index);
2053		if (!next || next->level <= node->level)
2054			break;
2055	}
2056	if (!root)
2057		return NULL;
2058
 
2059	next = node;
2060	/* setup backref node path for btrfs_reloc_cow_block */
2061	while (1) {
2062		rc->backref_cache.path[next->level] = next;
2063		if (--index < 0)
2064			break;
2065		next = edges[index]->node[UPPER];
2066	}
2067	return root;
2068}
2069
2070/*
2071 * Select a tree root for relocation.
2072 *
2073 * Return NULL if the block is not shareable. We should use do_relocation() in
2074 * this case.
2075 *
2076 * Return a tree root pointer if the block is shareable.
2077 * Return -ENOENT if the block is root of reloc tree.
2078 */
2079static noinline_for_stack
2080struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
 
2081{
2082	struct btrfs_backref_node *next;
2083	struct btrfs_root *root;
2084	struct btrfs_root *fs_root = NULL;
2085	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2086	int index = 0;
2087
2088	next = node;
2089	while (1) {
2090		cond_resched();
2091		next = walk_up_backref(next, edges, &index);
2092		root = next->root;
2093		BUG_ON(!root);
2094
2095		/* No other choice for non-shareable tree */
2096		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2097			return root;
2098
2099		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2100			fs_root = root;
2101
2102		if (next != node)
2103			return NULL;
2104
2105		next = walk_down_backref(edges, &index);
2106		if (!next || next->level <= node->level)
2107			break;
2108	}
2109
2110	if (!fs_root)
2111		return ERR_PTR(-ENOENT);
2112	return fs_root;
2113}
2114
2115static noinline_for_stack
2116u64 calcu_metadata_size(struct reloc_control *rc,
2117			struct btrfs_backref_node *node, int reserve)
2118{
2119	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2120	struct btrfs_backref_node *next = node;
2121	struct btrfs_backref_edge *edge;
2122	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2123	u64 num_bytes = 0;
2124	int index = 0;
2125
2126	BUG_ON(reserve && node->processed);
2127
2128	while (next) {
2129		cond_resched();
2130		while (1) {
2131			if (next->processed && (reserve || next != node))
2132				break;
2133
2134			num_bytes += fs_info->nodesize;
 
2135
2136			if (list_empty(&next->upper))
2137				break;
2138
2139			edge = list_entry(next->upper.next,
2140					struct btrfs_backref_edge, list[LOWER]);
2141			edges[index++] = edge;
2142			next = edge->node[UPPER];
2143		}
2144		next = walk_down_backref(edges, &index);
2145	}
2146	return num_bytes;
2147}
2148
2149static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2150				  struct reloc_control *rc,
2151				  struct btrfs_backref_node *node)
2152{
2153	struct btrfs_root *root = rc->extent_root;
2154	struct btrfs_fs_info *fs_info = root->fs_info;
2155	u64 num_bytes;
2156	int ret;
2157	u64 tmp;
2158
2159	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2160
2161	trans->block_rsv = rc->block_rsv;
2162	rc->reserved_bytes += num_bytes;
2163
2164	/*
2165	 * We are under a transaction here so we can only do limited flushing.
2166	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2167	 * transaction and try to refill when we can flush all the things.
2168	 */
2169	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2170				BTRFS_RESERVE_FLUSH_LIMIT);
2171	if (ret) {
2172		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2173		while (tmp <= rc->reserved_bytes)
2174			tmp <<= 1;
2175		/*
2176		 * only one thread can access block_rsv at this point,
2177		 * so we don't need hold lock to protect block_rsv.
2178		 * we expand more reservation size here to allow enough
2179		 * space for relocation and we will return earlier in
2180		 * enospc case.
2181		 */
2182		rc->block_rsv->size = tmp + fs_info->nodesize *
2183				      RELOCATION_RESERVED_NODES;
2184		return -EAGAIN;
2185	}
2186
2187	return 0;
2188}
2189
 
 
 
 
 
 
 
2190/*
2191 * relocate a block tree, and then update pointers in upper level
2192 * blocks that reference the block to point to the new location.
2193 *
2194 * if called by link_to_upper, the block has already been relocated.
2195 * in that case this function just updates pointers.
2196 */
2197static int do_relocation(struct btrfs_trans_handle *trans,
2198			 struct reloc_control *rc,
2199			 struct btrfs_backref_node *node,
2200			 struct btrfs_key *key,
2201			 struct btrfs_path *path, int lowest)
2202{
2203	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2204	struct btrfs_backref_node *upper;
2205	struct btrfs_backref_edge *edge;
2206	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2207	struct btrfs_root *root;
2208	struct extent_buffer *eb;
2209	u32 blocksize;
2210	u64 bytenr;
2211	u64 generation;
 
2212	int slot;
2213	int ret;
2214	int err = 0;
2215
2216	BUG_ON(lowest && node->eb);
2217
2218	path->lowest_level = node->level + 1;
2219	rc->backref_cache.path[node->level] = node;
2220	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2221		struct btrfs_key first_key;
2222		struct btrfs_ref ref = { 0 };
2223
2224		cond_resched();
2225
2226		upper = edge->node[UPPER];
2227		root = select_reloc_root(trans, rc, upper, edges);
2228		BUG_ON(!root);
2229
2230		if (upper->eb && !upper->locked) {
2231			if (!lowest) {
2232				ret = btrfs_bin_search(upper->eb, key, &slot);
2233				if (ret < 0) {
2234					err = ret;
2235					goto next;
2236				}
2237				BUG_ON(ret);
2238				bytenr = btrfs_node_blockptr(upper->eb, slot);
2239				if (node->eb->start == bytenr)
2240					goto next;
2241			}
2242			btrfs_backref_drop_node_buffer(upper);
2243		}
2244
2245		if (!upper->eb) {
2246			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2247			if (ret) {
2248				if (ret < 0)
2249					err = ret;
2250				else
2251					err = -ENOENT;
2252
2253				btrfs_release_path(path);
2254				break;
2255			}
 
2256
2257			if (!upper->eb) {
2258				upper->eb = path->nodes[upper->level];
2259				path->nodes[upper->level] = NULL;
2260			} else {
2261				BUG_ON(upper->eb != path->nodes[upper->level]);
2262			}
2263
2264			upper->locked = 1;
2265			path->locks[upper->level] = 0;
2266
2267			slot = path->slots[upper->level];
2268			btrfs_release_path(path);
2269		} else {
2270			ret = btrfs_bin_search(upper->eb, key, &slot);
2271			if (ret < 0) {
2272				err = ret;
2273				goto next;
2274			}
2275			BUG_ON(ret);
2276		}
2277
2278		bytenr = btrfs_node_blockptr(upper->eb, slot);
2279		if (lowest) {
2280			if (bytenr != node->bytenr) {
2281				btrfs_err(root->fs_info,
2282		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2283					  bytenr, node->bytenr, slot,
2284					  upper->eb->start);
2285				err = -EIO;
2286				goto next;
2287			}
2288		} else {
2289			if (node->eb->start == bytenr)
2290				goto next;
2291		}
2292
2293		blocksize = root->fs_info->nodesize;
2294		generation = btrfs_node_ptr_generation(upper->eb, slot);
2295		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2296		eb = read_tree_block(fs_info, bytenr, generation,
2297				     upper->level - 1, &first_key);
2298		if (IS_ERR(eb)) {
2299			err = PTR_ERR(eb);
2300			goto next;
2301		} else if (!extent_buffer_uptodate(eb)) {
2302			free_extent_buffer(eb);
2303			err = -EIO;
2304			goto next;
2305		}
2306		btrfs_tree_lock(eb);
2307		btrfs_set_lock_blocking_write(eb);
2308
2309		if (!node->eb) {
2310			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2311					      slot, &eb);
2312			btrfs_tree_unlock(eb);
2313			free_extent_buffer(eb);
2314			if (ret < 0) {
2315				err = ret;
2316				goto next;
2317			}
2318			BUG_ON(node->eb != eb);
2319		} else {
2320			btrfs_set_node_blockptr(upper->eb, slot,
2321						node->eb->start);
2322			btrfs_set_node_ptr_generation(upper->eb, slot,
2323						      trans->transid);
2324			btrfs_mark_buffer_dirty(upper->eb);
2325
2326			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2327					       node->eb->start, blocksize,
2328					       upper->eb->start);
2329			ref.real_root = root->root_key.objectid;
2330			btrfs_init_tree_ref(&ref, node->level,
2331					    btrfs_header_owner(upper->eb));
2332			ret = btrfs_inc_extent_ref(trans, &ref);
2333			BUG_ON(ret);
2334
2335			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2336			BUG_ON(ret);
2337		}
2338next:
2339		if (!upper->pending)
2340			btrfs_backref_drop_node_buffer(upper);
2341		else
2342			btrfs_backref_unlock_node_buffer(upper);
2343		if (err)
2344			break;
2345	}
2346
2347	if (!err && node->pending) {
2348		btrfs_backref_drop_node_buffer(node);
2349		list_move_tail(&node->list, &rc->backref_cache.changed);
2350		node->pending = 0;
2351	}
2352
2353	path->lowest_level = 0;
2354	BUG_ON(err == -ENOSPC);
2355	return err;
2356}
2357
2358static int link_to_upper(struct btrfs_trans_handle *trans,
2359			 struct reloc_control *rc,
2360			 struct btrfs_backref_node *node,
2361			 struct btrfs_path *path)
2362{
2363	struct btrfs_key key;
2364
2365	btrfs_node_key_to_cpu(node->eb, &key, 0);
2366	return do_relocation(trans, rc, node, &key, path, 0);
2367}
2368
2369static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2370				struct reloc_control *rc,
2371				struct btrfs_path *path, int err)
2372{
2373	LIST_HEAD(list);
2374	struct btrfs_backref_cache *cache = &rc->backref_cache;
2375	struct btrfs_backref_node *node;
2376	int level;
2377	int ret;
2378
2379	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2380		while (!list_empty(&cache->pending[level])) {
2381			node = list_entry(cache->pending[level].next,
2382					  struct btrfs_backref_node, list);
2383			list_move_tail(&node->list, &list);
2384			BUG_ON(!node->pending);
2385
2386			if (!err) {
2387				ret = link_to_upper(trans, rc, node, path);
2388				if (ret < 0)
2389					err = ret;
2390			}
2391		}
2392		list_splice_init(&list, &cache->pending[level]);
2393	}
2394	return err;
2395}
2396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397/*
2398 * mark a block and all blocks directly/indirectly reference the block
2399 * as processed.
2400 */
2401static void update_processed_blocks(struct reloc_control *rc,
2402				    struct btrfs_backref_node *node)
2403{
2404	struct btrfs_backref_node *next = node;
2405	struct btrfs_backref_edge *edge;
2406	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2407	int index = 0;
2408
2409	while (next) {
2410		cond_resched();
2411		while (1) {
2412			if (next->processed)
2413				break;
2414
2415			mark_block_processed(rc, next);
2416
2417			if (list_empty(&next->upper))
2418				break;
2419
2420			edge = list_entry(next->upper.next,
2421					struct btrfs_backref_edge, list[LOWER]);
2422			edges[index++] = edge;
2423			next = edge->node[UPPER];
2424		}
2425		next = walk_down_backref(edges, &index);
2426	}
2427}
2428
2429static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
 
2430{
2431	u32 blocksize = rc->extent_root->fs_info->nodesize;
2432
2433	if (test_range_bit(&rc->processed_blocks, bytenr,
2434			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2435		return 1;
2436	return 0;
2437}
2438
2439static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2440			      struct tree_block *block)
2441{
2442	struct extent_buffer *eb;
2443
2444	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2445			     block->level, NULL);
2446	if (IS_ERR(eb)) {
2447		return PTR_ERR(eb);
2448	} else if (!extent_buffer_uptodate(eb)) {
2449		free_extent_buffer(eb);
2450		return -EIO;
2451	}
2452	if (block->level == 0)
2453		btrfs_item_key_to_cpu(eb, &block->key, 0);
2454	else
2455		btrfs_node_key_to_cpu(eb, &block->key, 0);
2456	free_extent_buffer(eb);
2457	block->key_ready = 1;
2458	return 0;
2459}
2460
 
 
 
 
 
 
 
 
 
2461/*
2462 * helper function to relocate a tree block
2463 */
2464static int relocate_tree_block(struct btrfs_trans_handle *trans,
2465				struct reloc_control *rc,
2466				struct btrfs_backref_node *node,
2467				struct btrfs_key *key,
2468				struct btrfs_path *path)
2469{
2470	struct btrfs_root *root;
 
2471	int ret = 0;
2472
2473	if (!node)
2474		return 0;
2475
2476	/*
2477	 * If we fail here we want to drop our backref_node because we are going
2478	 * to start over and regenerate the tree for it.
2479	 */
2480	ret = reserve_metadata_space(trans, rc, node);
2481	if (ret)
2482		goto out;
2483
2484	BUG_ON(node->processed);
2485	root = select_one_root(node);
2486	if (root == ERR_PTR(-ENOENT)) {
2487		update_processed_blocks(rc, node);
2488		goto out;
2489	}
2490
 
 
 
 
 
 
 
2491	if (root) {
2492		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2493			BUG_ON(node->new_bytenr);
2494			BUG_ON(!list_empty(&node->list));
2495			btrfs_record_root_in_trans(trans, root);
2496			root = root->reloc_root;
2497			node->new_bytenr = root->node->start;
2498			btrfs_put_root(node->root);
2499			node->root = btrfs_grab_root(root);
2500			ASSERT(node->root);
2501			list_add_tail(&node->list, &rc->backref_cache.changed);
2502		} else {
2503			path->lowest_level = node->level;
2504			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2505			btrfs_release_path(path);
2506			if (ret > 0)
2507				ret = 0;
2508		}
2509		if (!ret)
2510			update_processed_blocks(rc, node);
2511	} else {
2512		ret = do_relocation(trans, rc, node, key, path, 1);
2513	}
2514out:
2515	if (ret || node->level == 0 || node->cowonly)
2516		btrfs_backref_cleanup_node(&rc->backref_cache, node);
 
 
 
2517	return ret;
2518}
2519
2520/*
2521 * relocate a list of blocks
2522 */
2523static noinline_for_stack
2524int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2525			 struct reloc_control *rc, struct rb_root *blocks)
2526{
2527	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2528	struct btrfs_backref_node *node;
2529	struct btrfs_path *path;
2530	struct tree_block *block;
2531	struct tree_block *next;
2532	int ret;
2533	int err = 0;
2534
2535	path = btrfs_alloc_path();
2536	if (!path) {
2537		err = -ENOMEM;
2538		goto out_free_blocks;
 
 
 
 
 
 
2539	}
2540
2541	/* Kick in readahead for tree blocks with missing keys */
2542	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
 
2543		if (!block->key_ready)
2544			readahead_tree_block(fs_info, block->bytenr);
 
2545	}
2546
2547	/* Get first keys */
2548	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2549		if (!block->key_ready) {
2550			err = get_tree_block_key(fs_info, block);
2551			if (err)
2552				goto out_free_path;
2553		}
2554	}
2555
2556	/* Do tree relocation */
2557	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2558		node = build_backref_tree(rc, &block->key,
2559					  block->level, block->bytenr);
2560		if (IS_ERR(node)) {
2561			err = PTR_ERR(node);
2562			goto out;
2563		}
2564
2565		ret = relocate_tree_block(trans, rc, node, &block->key,
2566					  path);
2567		if (ret < 0) {
2568			err = ret;
2569			break;
 
2570		}
 
2571	}
2572out:
 
2573	err = finish_pending_nodes(trans, rc, path, err);
2574
2575out_free_path:
2576	btrfs_free_path(path);
2577out_free_blocks:
2578	free_block_list(blocks);
2579	return err;
2580}
2581
2582static noinline_for_stack int prealloc_file_extent_cluster(
2583				struct btrfs_inode *inode,
2584				struct file_extent_cluster *cluster)
2585{
2586	u64 alloc_hint = 0;
2587	u64 start;
2588	u64 end;
2589	u64 offset = inode->index_cnt;
2590	u64 num_bytes;
2591	int nr;
2592	int ret = 0;
2593	u64 prealloc_start = cluster->start - offset;
2594	u64 prealloc_end = cluster->end - offset;
2595	u64 cur_offset = prealloc_start;
2596
2597	BUG_ON(cluster->start != cluster->boundary[0]);
2598	ret = btrfs_alloc_data_chunk_ondemand(inode,
2599					      prealloc_end + 1 - prealloc_start);
 
 
2600	if (ret)
2601		return ret;
2602
2603	inode_lock(&inode->vfs_inode);
2604	for (nr = 0; nr < cluster->nr; nr++) {
2605		start = cluster->boundary[nr] - offset;
2606		if (nr + 1 < cluster->nr)
2607			end = cluster->boundary[nr + 1] - 1 - offset;
2608		else
2609			end = cluster->end - offset;
2610
2611		lock_extent(&inode->io_tree, start, end);
2612		num_bytes = end + 1 - start;
2613		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2614						num_bytes, num_bytes,
2615						end + 1, &alloc_hint);
2616		cur_offset = end + 1;
2617		unlock_extent(&inode->io_tree, start, end);
2618		if (ret)
2619			break;
 
2620	}
2621	inode_unlock(&inode->vfs_inode);
2622
2623	if (cur_offset < prealloc_end)
2624		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2625					       prealloc_end + 1 - cur_offset);
2626	return ret;
2627}
2628
2629static noinline_for_stack
2630int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2631			 u64 block_start)
2632{
 
2633	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2634	struct extent_map *em;
2635	int ret = 0;
2636
2637	em = alloc_extent_map();
2638	if (!em)
2639		return -ENOMEM;
2640
2641	em->start = start;
2642	em->len = end + 1 - start;
2643	em->block_len = em->len;
2644	em->block_start = block_start;
 
2645	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2646
2647	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2648	while (1) {
2649		write_lock(&em_tree->lock);
2650		ret = add_extent_mapping(em_tree, em, 0);
2651		write_unlock(&em_tree->lock);
2652		if (ret != -EEXIST) {
2653			free_extent_map(em);
2654			break;
2655		}
2656		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2657	}
2658	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2659	return ret;
2660}
2661
2662/*
2663 * Allow error injection to test balance cancellation
2664 */
2665int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2666{
2667	return atomic_read(&fs_info->balance_cancel_req) ||
2668		fatal_signal_pending(current);
2669}
2670ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2671
2672static int relocate_file_extent_cluster(struct inode *inode,
2673					struct file_extent_cluster *cluster)
2674{
2675	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2676	u64 page_start;
2677	u64 page_end;
2678	u64 offset = BTRFS_I(inode)->index_cnt;
2679	unsigned long index;
2680	unsigned long last_index;
2681	struct page *page;
2682	struct file_ra_state *ra;
2683	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2684	int nr = 0;
2685	int ret = 0;
2686
2687	if (!cluster->nr)
2688		return 0;
2689
2690	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2691	if (!ra)
2692		return -ENOMEM;
2693
2694	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2695	if (ret)
2696		goto out;
2697
2698	file_ra_state_init(ra, inode->i_mapping);
2699
2700	ret = setup_extent_mapping(inode, cluster->start - offset,
2701				   cluster->end - offset, cluster->start);
2702	if (ret)
2703		goto out;
2704
2705	index = (cluster->start - offset) >> PAGE_SHIFT;
2706	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2707	while (index <= last_index) {
2708		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2709				PAGE_SIZE);
2710		if (ret)
2711			goto out;
2712
2713		page = find_lock_page(inode->i_mapping, index);
2714		if (!page) {
2715			page_cache_sync_readahead(inode->i_mapping,
2716						  ra, NULL, index,
2717						  last_index + 1 - index);
2718			page = find_or_create_page(inode->i_mapping, index,
2719						   mask);
2720			if (!page) {
2721				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2722							PAGE_SIZE, true);
2723				btrfs_delalloc_release_extents(BTRFS_I(inode),
2724							PAGE_SIZE);
2725				ret = -ENOMEM;
2726				goto out;
2727			}
2728		}
2729
2730		if (PageReadahead(page)) {
2731			page_cache_async_readahead(inode->i_mapping,
2732						   ra, NULL, page, index,
2733						   last_index + 1 - index);
2734		}
2735
2736		if (!PageUptodate(page)) {
2737			btrfs_readpage(NULL, page);
2738			lock_page(page);
2739			if (!PageUptodate(page)) {
2740				unlock_page(page);
2741				put_page(page);
2742				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2743							PAGE_SIZE, true);
2744				btrfs_delalloc_release_extents(BTRFS_I(inode),
2745							       PAGE_SIZE);
2746				ret = -EIO;
2747				goto out;
2748			}
2749		}
2750
2751		page_start = page_offset(page);
2752		page_end = page_start + PAGE_SIZE - 1;
2753
2754		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2755
2756		set_page_extent_mapped(page);
2757
2758		if (nr < cluster->nr &&
2759		    page_start + offset == cluster->boundary[nr]) {
2760			set_extent_bits(&BTRFS_I(inode)->io_tree,
2761					page_start, page_end,
2762					EXTENT_BOUNDARY);
2763			nr++;
2764		}
2765
2766		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2767						page_end, 0, NULL);
2768		if (ret) {
2769			unlock_page(page);
2770			put_page(page);
2771			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2772							 PAGE_SIZE, true);
2773			btrfs_delalloc_release_extents(BTRFS_I(inode),
2774			                               PAGE_SIZE);
2775
2776			clear_extent_bits(&BTRFS_I(inode)->io_tree,
2777					  page_start, page_end,
2778					  EXTENT_LOCKED | EXTENT_BOUNDARY);
2779			goto out;
2780
2781		}
2782		set_page_dirty(page);
2783
2784		unlock_extent(&BTRFS_I(inode)->io_tree,
2785			      page_start, page_end);
2786		unlock_page(page);
2787		put_page(page);
2788
2789		index++;
2790		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2791		balance_dirty_pages_ratelimited(inode->i_mapping);
2792		btrfs_throttle(fs_info);
2793		if (btrfs_should_cancel_balance(fs_info)) {
2794			ret = -ECANCELED;
2795			goto out;
2796		}
2797	}
2798	WARN_ON(nr != cluster->nr);
2799out:
2800	kfree(ra);
2801	return ret;
2802}
2803
2804static noinline_for_stack
2805int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2806			 struct file_extent_cluster *cluster)
2807{
2808	int ret;
2809
2810	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2811		ret = relocate_file_extent_cluster(inode, cluster);
2812		if (ret)
2813			return ret;
2814		cluster->nr = 0;
2815	}
2816
2817	if (!cluster->nr)
2818		cluster->start = extent_key->objectid;
2819	else
2820		BUG_ON(cluster->nr >= MAX_EXTENTS);
2821	cluster->end = extent_key->objectid + extent_key->offset - 1;
2822	cluster->boundary[cluster->nr] = extent_key->objectid;
2823	cluster->nr++;
2824
2825	if (cluster->nr >= MAX_EXTENTS) {
2826		ret = relocate_file_extent_cluster(inode, cluster);
2827		if (ret)
2828			return ret;
2829		cluster->nr = 0;
2830	}
2831	return 0;
2832}
2833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2834/*
2835 * helper to add a tree block to the list.
2836 * the major work is getting the generation and level of the block
2837 */
2838static int add_tree_block(struct reloc_control *rc,
2839			  struct btrfs_key *extent_key,
2840			  struct btrfs_path *path,
2841			  struct rb_root *blocks)
2842{
2843	struct extent_buffer *eb;
2844	struct btrfs_extent_item *ei;
2845	struct btrfs_tree_block_info *bi;
2846	struct tree_block *block;
2847	struct rb_node *rb_node;
2848	u32 item_size;
2849	int level = -1;
2850	u64 generation;
2851
2852	eb =  path->nodes[0];
2853	item_size = btrfs_item_size_nr(eb, path->slots[0]);
2854
2855	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2856	    item_size >= sizeof(*ei) + sizeof(*bi)) {
2857		ei = btrfs_item_ptr(eb, path->slots[0],
2858				struct btrfs_extent_item);
2859		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2860			bi = (struct btrfs_tree_block_info *)(ei + 1);
2861			level = btrfs_tree_block_level(eb, bi);
2862		} else {
2863			level = (int)extent_key->offset;
2864		}
2865		generation = btrfs_extent_generation(eb, ei);
2866	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2867		btrfs_print_v0_err(eb->fs_info);
2868		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2869		return -EINVAL;
2870	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2871		BUG();
 
2872	}
2873
2874	btrfs_release_path(path);
2875
2876	BUG_ON(level == -1);
2877
2878	block = kmalloc(sizeof(*block), GFP_NOFS);
2879	if (!block)
2880		return -ENOMEM;
2881
2882	block->bytenr = extent_key->objectid;
2883	block->key.objectid = rc->extent_root->fs_info->nodesize;
2884	block->key.offset = generation;
2885	block->level = level;
2886	block->key_ready = 0;
2887
2888	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2889	if (rb_node)
2890		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2891				    -EEXIST);
2892
2893	return 0;
2894}
2895
2896/*
2897 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2898 */
2899static int __add_tree_block(struct reloc_control *rc,
2900			    u64 bytenr, u32 blocksize,
2901			    struct rb_root *blocks)
2902{
2903	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2904	struct btrfs_path *path;
2905	struct btrfs_key key;
2906	int ret;
2907	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2908
2909	if (tree_block_processed(bytenr, rc))
2910		return 0;
2911
2912	if (rb_simple_search(blocks, bytenr))
2913		return 0;
2914
2915	path = btrfs_alloc_path();
2916	if (!path)
2917		return -ENOMEM;
2918again:
2919	key.objectid = bytenr;
2920	if (skinny) {
2921		key.type = BTRFS_METADATA_ITEM_KEY;
2922		key.offset = (u64)-1;
2923	} else {
2924		key.type = BTRFS_EXTENT_ITEM_KEY;
2925		key.offset = blocksize;
2926	}
2927
2928	path->search_commit_root = 1;
2929	path->skip_locking = 1;
2930	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2931	if (ret < 0)
2932		goto out;
 
2933
2934	if (ret > 0 && skinny) {
2935		if (path->slots[0]) {
2936			path->slots[0]--;
2937			btrfs_item_key_to_cpu(path->nodes[0], &key,
2938					      path->slots[0]);
2939			if (key.objectid == bytenr &&
2940			    (key.type == BTRFS_METADATA_ITEM_KEY ||
2941			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
2942			      key.offset == blocksize)))
2943				ret = 0;
2944		}
2945
2946		if (ret) {
2947			skinny = false;
2948			btrfs_release_path(path);
2949			goto again;
2950		}
2951	}
2952	if (ret) {
2953		ASSERT(ret == 1);
2954		btrfs_print_leaf(path->nodes[0]);
2955		btrfs_err(fs_info,
2956	     "tree block extent item (%llu) is not found in extent tree",
2957		     bytenr);
2958		WARN_ON(1);
2959		ret = -EINVAL;
2960		goto out;
2961	}
2962
2963	ret = add_tree_block(rc, &key, path, blocks);
2964out:
2965	btrfs_free_path(path);
2966	return ret;
2967}
2968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2969static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2970				    struct btrfs_block_group *block_group,
2971				    struct inode *inode,
2972				    u64 ino)
2973{
 
 
2974	struct btrfs_root *root = fs_info->tree_root;
2975	struct btrfs_trans_handle *trans;
 
2976	int ret = 0;
2977
2978	if (inode)
2979		goto truncate;
2980
2981	inode = btrfs_iget(fs_info->sb, ino, root);
2982	if (IS_ERR(inode))
 
 
 
 
 
 
2983		return -ENOENT;
 
2984
2985truncate:
2986	ret = btrfs_check_trunc_cache_free_space(fs_info,
2987						 &fs_info->global_block_rsv);
2988	if (ret)
2989		goto out;
 
2990
2991	trans = btrfs_join_transaction(root);
2992	if (IS_ERR(trans)) {
 
2993		ret = PTR_ERR(trans);
2994		goto out;
2995	}
2996
2997	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
2998
2999	btrfs_end_transaction(trans);
3000	btrfs_btree_balance_dirty(fs_info);
 
 
3001out:
3002	iput(inode);
3003	return ret;
3004}
3005
3006/*
3007 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3008 * cache inode, to avoid free space cache data extent blocking data relocation.
3009 */
3010static int delete_v1_space_cache(struct extent_buffer *leaf,
3011				 struct btrfs_block_group *block_group,
3012				 u64 data_bytenr)
 
 
3013{
3014	u64 space_cache_ino;
3015	struct btrfs_file_extent_item *ei;
 
 
 
3016	struct btrfs_key key;
3017	bool found = false;
3018	int i;
 
 
 
 
 
 
3019	int ret;
3020
3021	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3022		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3023
3024	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3025		btrfs_item_key_to_cpu(leaf, &key, i);
3026		if (key.type != BTRFS_EXTENT_DATA_KEY)
3027			continue;
3028		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3029		if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG &&
3030		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3031			found = true;
3032			space_cache_ino = key.objectid;
3033			break;
3034		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035	}
3036	if (!found)
3037		return -ENOENT;
3038	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3039					space_cache_ino);
3040	return ret;
3041}
3042
3043/*
3044 * helper to find all tree blocks that reference a given data extent
3045 */
3046static noinline_for_stack
3047int add_data_references(struct reloc_control *rc,
3048			struct btrfs_key *extent_key,
3049			struct btrfs_path *path,
3050			struct rb_root *blocks)
3051{
3052	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3053	struct ulist *leaves = NULL;
3054	struct ulist_iterator leaf_uiter;
3055	struct ulist_node *ref_node = NULL;
3056	const u32 blocksize = fs_info->nodesize;
3057	int ret = 0;
 
 
 
3058
3059	btrfs_release_path(path);
3060	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3061				   0, &leaves, NULL, true);
3062	if (ret < 0)
3063		return ret;
 
 
 
 
3064
3065	ULIST_ITER_INIT(&leaf_uiter);
3066	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3067		struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3068
3069		eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL);
3070		if (IS_ERR(eb)) {
3071			ret = PTR_ERR(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
3072			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073		}
3074		ret = delete_v1_space_cache(eb, rc->block_group,
3075					    extent_key->objectid);
3076		free_extent_buffer(eb);
3077		if (ret < 0)
3078			break;
3079		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3080		if (ret < 0)
3081			break;
 
 
3082	}
3083	if (ret < 0)
 
3084		free_block_list(blocks);
3085	ulist_free(leaves);
3086	return ret;
3087}
3088
3089/*
3090 * helper to find next unprocessed extent
3091 */
3092static noinline_for_stack
3093int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
 
3094		     struct btrfs_key *extent_key)
3095{
3096	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3097	struct btrfs_key key;
3098	struct extent_buffer *leaf;
3099	u64 start, end, last;
3100	int ret;
3101
3102	last = rc->block_group->start + rc->block_group->length;
3103	while (1) {
3104		cond_resched();
3105		if (rc->search_start >= last) {
3106			ret = 1;
3107			break;
3108		}
3109
3110		key.objectid = rc->search_start;
3111		key.type = BTRFS_EXTENT_ITEM_KEY;
3112		key.offset = 0;
3113
3114		path->search_commit_root = 1;
3115		path->skip_locking = 1;
3116		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3117					0, 0);
3118		if (ret < 0)
3119			break;
3120next:
3121		leaf = path->nodes[0];
3122		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3123			ret = btrfs_next_leaf(rc->extent_root, path);
3124			if (ret != 0)
3125				break;
3126			leaf = path->nodes[0];
3127		}
3128
3129		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3130		if (key.objectid >= last) {
3131			ret = 1;
3132			break;
3133		}
3134
3135		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3136		    key.type != BTRFS_METADATA_ITEM_KEY) {
3137			path->slots[0]++;
3138			goto next;
3139		}
3140
3141		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3142		    key.objectid + key.offset <= rc->search_start) {
3143			path->slots[0]++;
3144			goto next;
3145		}
3146
3147		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3148		    key.objectid + fs_info->nodesize <=
3149		    rc->search_start) {
3150			path->slots[0]++;
3151			goto next;
3152		}
3153
3154		ret = find_first_extent_bit(&rc->processed_blocks,
3155					    key.objectid, &start, &end,
3156					    EXTENT_DIRTY, NULL);
3157
3158		if (ret == 0 && start <= key.objectid) {
3159			btrfs_release_path(path);
3160			rc->search_start = end + 1;
3161		} else {
3162			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3163				rc->search_start = key.objectid + key.offset;
3164			else
3165				rc->search_start = key.objectid +
3166					fs_info->nodesize;
3167			memcpy(extent_key, &key, sizeof(key));
3168			return 0;
3169		}
3170	}
3171	btrfs_release_path(path);
3172	return ret;
3173}
3174
3175static void set_reloc_control(struct reloc_control *rc)
3176{
3177	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3178
3179	mutex_lock(&fs_info->reloc_mutex);
3180	fs_info->reloc_ctl = rc;
3181	mutex_unlock(&fs_info->reloc_mutex);
3182}
3183
3184static void unset_reloc_control(struct reloc_control *rc)
3185{
3186	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3187
3188	mutex_lock(&fs_info->reloc_mutex);
3189	fs_info->reloc_ctl = NULL;
3190	mutex_unlock(&fs_info->reloc_mutex);
3191}
3192
3193static int check_extent_flags(u64 flags)
3194{
3195	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3196	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3197		return 1;
3198	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3199	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3200		return 1;
3201	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3202	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3203		return 1;
3204	return 0;
3205}
3206
3207static noinline_for_stack
3208int prepare_to_relocate(struct reloc_control *rc)
3209{
3210	struct btrfs_trans_handle *trans;
3211	int ret;
3212
3213	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3214					      BTRFS_BLOCK_RSV_TEMP);
3215	if (!rc->block_rsv)
3216		return -ENOMEM;
3217
 
 
 
 
 
 
 
 
 
 
3218	memset(&rc->cluster, 0, sizeof(rc->cluster));
3219	rc->search_start = rc->block_group->start;
3220	rc->extents_found = 0;
3221	rc->nodes_relocated = 0;
3222	rc->merging_rsv_size = 0;
3223	rc->reserved_bytes = 0;
3224	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3225			      RELOCATION_RESERVED_NODES;
3226	ret = btrfs_block_rsv_refill(rc->extent_root,
3227				     rc->block_rsv, rc->block_rsv->size,
3228				     BTRFS_RESERVE_FLUSH_ALL);
3229	if (ret)
3230		return ret;
3231
3232	rc->create_reloc_tree = 1;
3233	set_reloc_control(rc);
3234
3235	trans = btrfs_join_transaction(rc->extent_root);
3236	if (IS_ERR(trans)) {
3237		unset_reloc_control(rc);
3238		/*
3239		 * extent tree is not a ref_cow tree and has no reloc_root to
3240		 * cleanup.  And callers are responsible to free the above
3241		 * block rsv.
3242		 */
3243		return PTR_ERR(trans);
3244	}
3245	btrfs_commit_transaction(trans);
3246	return 0;
3247}
3248
3249static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3250{
3251	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3252	struct rb_root blocks = RB_ROOT;
3253	struct btrfs_key key;
3254	struct btrfs_trans_handle *trans = NULL;
3255	struct btrfs_path *path;
3256	struct btrfs_extent_item *ei;
 
3257	u64 flags;
3258	u32 item_size;
3259	int ret;
3260	int err = 0;
3261	int progress = 0;
3262
3263	path = btrfs_alloc_path();
3264	if (!path)
3265		return -ENOMEM;
3266	path->reada = READA_FORWARD;
3267
3268	ret = prepare_to_relocate(rc);
3269	if (ret) {
3270		err = ret;
3271		goto out_free;
3272	}
3273
3274	while (1) {
3275		rc->reserved_bytes = 0;
3276		ret = btrfs_block_rsv_refill(rc->extent_root,
3277					rc->block_rsv, rc->block_rsv->size,
3278					BTRFS_RESERVE_FLUSH_ALL);
3279		if (ret) {
3280			err = ret;
3281			break;
3282		}
3283		progress++;
3284		trans = btrfs_start_transaction(rc->extent_root, 0);
3285		if (IS_ERR(trans)) {
3286			err = PTR_ERR(trans);
3287			trans = NULL;
3288			break;
3289		}
3290restart:
3291		if (update_backref_cache(trans, &rc->backref_cache)) {
3292			btrfs_end_transaction(trans);
3293			trans = NULL;
3294			continue;
3295		}
3296
3297		ret = find_next_extent(rc, path, &key);
3298		if (ret < 0)
3299			err = ret;
3300		if (ret != 0)
3301			break;
3302
3303		rc->extents_found++;
3304
3305		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3306				    struct btrfs_extent_item);
3307		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3308		if (item_size >= sizeof(*ei)) {
3309			flags = btrfs_extent_flags(path->nodes[0], ei);
3310			ret = check_extent_flags(flags);
3311			BUG_ON(ret);
3312		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3313			err = -EINVAL;
3314			btrfs_print_v0_err(trans->fs_info);
3315			btrfs_abort_transaction(trans, err);
3316			break;
3317		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3318			BUG();
 
3319		}
3320
3321		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3322			ret = add_tree_block(rc, &key, path, &blocks);
3323		} else if (rc->stage == UPDATE_DATA_PTRS &&
3324			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3325			ret = add_data_references(rc, &key, path, &blocks);
3326		} else {
3327			btrfs_release_path(path);
3328			ret = 0;
3329		}
3330		if (ret < 0) {
3331			err = ret;
3332			break;
3333		}
3334
3335		if (!RB_EMPTY_ROOT(&blocks)) {
3336			ret = relocate_tree_blocks(trans, rc, &blocks);
3337			if (ret < 0) {
3338				if (ret != -EAGAIN) {
3339					err = ret;
3340					break;
3341				}
3342				rc->extents_found--;
3343				rc->search_start = key.objectid;
3344			}
3345		}
3346
3347		btrfs_end_transaction_throttle(trans);
3348		btrfs_btree_balance_dirty(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3349		trans = NULL;
3350
3351		if (rc->stage == MOVE_DATA_EXTENTS &&
3352		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3353			rc->found_file_extent = 1;
3354			ret = relocate_data_extent(rc->data_inode,
3355						   &key, &rc->cluster);
3356			if (ret < 0) {
3357				err = ret;
3358				break;
3359			}
3360		}
3361		if (btrfs_should_cancel_balance(fs_info)) {
3362			err = -ECANCELED;
3363			break;
3364		}
3365	}
3366	if (trans && progress && err == -ENOSPC) {
3367		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3368		if (ret == 1) {
 
3369			err = 0;
3370			progress = 0;
3371			goto restart;
3372		}
3373	}
3374
3375	btrfs_release_path(path);
3376	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
 
3377
3378	if (trans) {
3379		btrfs_end_transaction_throttle(trans);
3380		btrfs_btree_balance_dirty(fs_info);
 
3381	}
3382
3383	if (!err) {
3384		ret = relocate_file_extent_cluster(rc->data_inode,
3385						   &rc->cluster);
3386		if (ret < 0)
3387			err = ret;
3388	}
3389
3390	rc->create_reloc_tree = 0;
3391	set_reloc_control(rc);
3392
3393	btrfs_backref_release_cache(&rc->backref_cache);
3394	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3395
3396	/*
3397	 * Even in the case when the relocation is cancelled, we should all go
3398	 * through prepare_to_merge() and merge_reloc_roots().
3399	 *
3400	 * For error (including cancelled balance), prepare_to_merge() will
3401	 * mark all reloc trees orphan, then queue them for cleanup in
3402	 * merge_reloc_roots()
3403	 */
3404	err = prepare_to_merge(rc, err);
3405
3406	merge_reloc_roots(rc);
3407
3408	rc->merge_reloc_tree = 0;
3409	unset_reloc_control(rc);
3410	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3411
3412	/* get rid of pinned extents */
3413	trans = btrfs_join_transaction(rc->extent_root);
3414	if (IS_ERR(trans)) {
3415		err = PTR_ERR(trans);
3416		goto out_free;
3417	}
3418	btrfs_commit_transaction(trans);
3419out_free:
3420	ret = clean_dirty_subvols(rc);
3421	if (ret < 0 && !err)
3422		err = ret;
3423	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3424	btrfs_free_path(path);
3425	return err;
3426}
3427
3428static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3429				 struct btrfs_root *root, u64 objectid)
3430{
3431	struct btrfs_path *path;
3432	struct btrfs_inode_item *item;
3433	struct extent_buffer *leaf;
3434	int ret;
3435
3436	path = btrfs_alloc_path();
3437	if (!path)
3438		return -ENOMEM;
3439
3440	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3441	if (ret)
3442		goto out;
3443
3444	leaf = path->nodes[0];
3445	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3446	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3447	btrfs_set_inode_generation(leaf, item, 1);
3448	btrfs_set_inode_size(leaf, item, 0);
3449	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3450	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3451					  BTRFS_INODE_PREALLOC);
3452	btrfs_mark_buffer_dirty(leaf);
 
3453out:
3454	btrfs_free_path(path);
3455	return ret;
3456}
3457
3458/*
3459 * helper to create inode for data relocation.
3460 * the inode is in data relocation tree and its link count is 0
3461 */
3462static noinline_for_stack
3463struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3464				 struct btrfs_block_group *group)
3465{
3466	struct inode *inode = NULL;
3467	struct btrfs_trans_handle *trans;
3468	struct btrfs_root *root;
3469	u64 objectid;
 
 
3470	int err = 0;
3471
3472	root = btrfs_grab_root(fs_info->data_reloc_root);
 
 
 
3473	trans = btrfs_start_transaction(root, 6);
3474	if (IS_ERR(trans)) {
3475		btrfs_put_root(root);
3476		return ERR_CAST(trans);
3477	}
3478
3479	err = btrfs_find_free_objectid(root, &objectid);
3480	if (err)
3481		goto out;
3482
3483	err = __insert_orphan_inode(trans, root, objectid);
3484	BUG_ON(err);
3485
3486	inode = btrfs_iget(fs_info->sb, objectid, root);
3487	BUG_ON(IS_ERR(inode));
3488	BTRFS_I(inode)->index_cnt = group->start;
 
 
 
3489
3490	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3491out:
3492	btrfs_put_root(root);
3493	btrfs_end_transaction(trans);
3494	btrfs_btree_balance_dirty(fs_info);
3495	if (err) {
3496		if (inode)
3497			iput(inode);
3498		inode = ERR_PTR(err);
3499	}
3500	return inode;
3501}
3502
3503static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3504{
3505	struct reloc_control *rc;
3506
3507	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3508	if (!rc)
3509		return NULL;
3510
3511	INIT_LIST_HEAD(&rc->reloc_roots);
3512	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3513	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3514	mapping_tree_init(&rc->reloc_root_tree);
3515	extent_io_tree_init(fs_info, &rc->processed_blocks,
3516			    IO_TREE_RELOC_BLOCKS, NULL);
3517	return rc;
3518}
3519
3520static void free_reloc_control(struct reloc_control *rc)
3521{
3522	struct mapping_node *node, *tmp;
3523
3524	free_reloc_roots(&rc->reloc_roots);
3525	rbtree_postorder_for_each_entry_safe(node, tmp,
3526			&rc->reloc_root_tree.rb_root, rb_node)
3527		kfree(node);
3528
3529	kfree(rc);
3530}
3531
3532/*
3533 * Print the block group being relocated
3534 */
3535static void describe_relocation(struct btrfs_fs_info *fs_info,
3536				struct btrfs_block_group *block_group)
3537{
3538	char buf[128] = {'\0'};
3539
3540	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3541
3542	btrfs_info(fs_info,
3543		   "relocating block group %llu flags %s",
3544		   block_group->start, buf);
3545}
3546
3547static const char *stage_to_string(int stage)
3548{
3549	if (stage == MOVE_DATA_EXTENTS)
3550		return "move data extents";
3551	if (stage == UPDATE_DATA_PTRS)
3552		return "update data pointers";
3553	return "unknown";
3554}
3555
3556/*
3557 * function to relocate all extents in a block group.
3558 */
3559int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3560{
3561	struct btrfs_block_group *bg;
3562	struct btrfs_root *extent_root = fs_info->extent_root;
3563	struct reloc_control *rc;
3564	struct inode *inode;
3565	struct btrfs_path *path;
3566	int ret;
3567	int rw = 0;
3568	int err = 0;
3569
3570	bg = btrfs_lookup_block_group(fs_info, group_start);
3571	if (!bg)
3572		return -ENOENT;
3573
3574	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3575		btrfs_put_block_group(bg);
3576		return -ETXTBSY;
3577	}
3578
3579	rc = alloc_reloc_control(fs_info);
3580	if (!rc) {
3581		btrfs_put_block_group(bg);
3582		return -ENOMEM;
3583	}
3584
3585	rc->extent_root = extent_root;
3586	rc->block_group = bg;
3587
3588	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3589	if (ret) {
3590		err = ret;
3591		goto out;
 
 
 
 
 
 
3592	}
3593	rw = 1;
3594
3595	path = btrfs_alloc_path();
3596	if (!path) {
3597		err = -ENOMEM;
3598		goto out;
3599	}
3600
3601	inode = lookup_free_space_inode(rc->block_group, path);
 
3602	btrfs_free_path(path);
3603
3604	if (!IS_ERR(inode))
3605		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3606	else
3607		ret = PTR_ERR(inode);
3608
3609	if (ret && ret != -ENOENT) {
3610		err = ret;
3611		goto out;
3612	}
3613
3614	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3615	if (IS_ERR(rc->data_inode)) {
3616		err = PTR_ERR(rc->data_inode);
3617		rc->data_inode = NULL;
3618		goto out;
3619	}
3620
3621	describe_relocation(fs_info, rc->block_group);
 
 
3622
3623	btrfs_wait_block_group_reservations(rc->block_group);
3624	btrfs_wait_nocow_writers(rc->block_group);
3625	btrfs_wait_ordered_roots(fs_info, U64_MAX,
3626				 rc->block_group->start,
3627				 rc->block_group->length);
3628
3629	while (1) {
3630		int finishes_stage;
3631
3632		mutex_lock(&fs_info->cleaner_mutex);
3633		ret = relocate_block_group(rc);
 
3634		mutex_unlock(&fs_info->cleaner_mutex);
3635		if (ret < 0)
3636			err = ret;
 
 
 
 
 
 
 
 
3637
3638		finishes_stage = rc->stage;
3639		/*
3640		 * We may have gotten ENOSPC after we already dirtied some
3641		 * extents.  If writeout happens while we're relocating a
3642		 * different block group we could end up hitting the
3643		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3644		 * btrfs_reloc_cow_block.  Make sure we write everything out
3645		 * properly so we don't trip over this problem, and then break
3646		 * out of the loop if we hit an error.
3647		 */
3648		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3649			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3650						       (u64)-1);
3651			if (ret)
3652				err = ret;
3653			invalidate_mapping_pages(rc->data_inode->i_mapping,
3654						 0, -1);
3655			rc->stage = UPDATE_DATA_PTRS;
3656		}
 
3657
3658		if (err < 0)
3659			goto out;
3660
3661		if (rc->extents_found == 0)
3662			break;
3663
3664		btrfs_info(fs_info, "found %llu extents, stage: %s",
3665			   rc->extents_found, stage_to_string(finishes_stage));
3666	}
3667
3668	WARN_ON(rc->block_group->pinned > 0);
3669	WARN_ON(rc->block_group->reserved > 0);
3670	WARN_ON(rc->block_group->used > 0);
3671out:
3672	if (err && rw)
3673		btrfs_dec_block_group_ro(rc->block_group);
3674	iput(rc->data_inode);
3675	btrfs_put_block_group(rc->block_group);
3676	free_reloc_control(rc);
3677	return err;
3678}
3679
3680static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3681{
3682	struct btrfs_fs_info *fs_info = root->fs_info;
3683	struct btrfs_trans_handle *trans;
3684	int ret, err;
3685
3686	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3687	if (IS_ERR(trans))
3688		return PTR_ERR(trans);
3689
3690	memset(&root->root_item.drop_progress, 0,
3691		sizeof(root->root_item.drop_progress));
3692	root->root_item.drop_level = 0;
3693	btrfs_set_root_refs(&root->root_item, 0);
3694	ret = btrfs_update_root(trans, fs_info->tree_root,
3695				&root->root_key, &root->root_item);
3696
3697	err = btrfs_end_transaction(trans);
3698	if (err)
3699		return err;
3700	return ret;
3701}
3702
3703/*
3704 * recover relocation interrupted by system crash.
3705 *
3706 * this function resumes merging reloc trees with corresponding fs trees.
3707 * this is important for keeping the sharing of tree blocks
3708 */
3709int btrfs_recover_relocation(struct btrfs_root *root)
3710{
3711	struct btrfs_fs_info *fs_info = root->fs_info;
3712	LIST_HEAD(reloc_roots);
3713	struct btrfs_key key;
3714	struct btrfs_root *fs_root;
3715	struct btrfs_root *reloc_root;
3716	struct btrfs_path *path;
3717	struct extent_buffer *leaf;
3718	struct reloc_control *rc = NULL;
3719	struct btrfs_trans_handle *trans;
3720	int ret;
3721	int err = 0;
3722
3723	path = btrfs_alloc_path();
3724	if (!path)
3725		return -ENOMEM;
3726	path->reada = READA_BACK;
3727
3728	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3729	key.type = BTRFS_ROOT_ITEM_KEY;
3730	key.offset = (u64)-1;
3731
3732	while (1) {
3733		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3734					path, 0, 0);
3735		if (ret < 0) {
3736			err = ret;
3737			goto out;
3738		}
3739		if (ret > 0) {
3740			if (path->slots[0] == 0)
3741				break;
3742			path->slots[0]--;
3743		}
3744		leaf = path->nodes[0];
3745		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3746		btrfs_release_path(path);
3747
3748		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3749		    key.type != BTRFS_ROOT_ITEM_KEY)
3750			break;
3751
3752		reloc_root = btrfs_read_tree_root(root, &key);
3753		if (IS_ERR(reloc_root)) {
3754			err = PTR_ERR(reloc_root);
3755			goto out;
3756		}
3757
3758		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3759		list_add(&reloc_root->root_list, &reloc_roots);
3760
3761		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3762			fs_root = btrfs_get_fs_root(fs_info,
3763					reloc_root->root_key.offset, false);
3764			if (IS_ERR(fs_root)) {
3765				ret = PTR_ERR(fs_root);
3766				if (ret != -ENOENT) {
3767					err = ret;
3768					goto out;
3769				}
3770				ret = mark_garbage_root(reloc_root);
3771				if (ret < 0) {
3772					err = ret;
3773					goto out;
3774				}
3775			} else {
3776				btrfs_put_root(fs_root);
3777			}
3778		}
3779
3780		if (key.offset == 0)
3781			break;
3782
3783		key.offset--;
3784	}
3785	btrfs_release_path(path);
3786
3787	if (list_empty(&reloc_roots))
3788		goto out;
3789
3790	rc = alloc_reloc_control(fs_info);
3791	if (!rc) {
3792		err = -ENOMEM;
3793		goto out;
3794	}
3795
3796	rc->extent_root = fs_info->extent_root;
3797
3798	set_reloc_control(rc);
3799
3800	trans = btrfs_join_transaction(rc->extent_root);
3801	if (IS_ERR(trans)) {
 
3802		err = PTR_ERR(trans);
3803		goto out_unset;
3804	}
3805
3806	rc->merge_reloc_tree = 1;
3807
3808	while (!list_empty(&reloc_roots)) {
3809		reloc_root = list_entry(reloc_roots.next,
3810					struct btrfs_root, root_list);
3811		list_del(&reloc_root->root_list);
3812
3813		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3814			list_add_tail(&reloc_root->root_list,
3815				      &rc->reloc_roots);
3816			continue;
3817		}
3818
3819		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3820					    false);
3821		if (IS_ERR(fs_root)) {
3822			err = PTR_ERR(fs_root);
3823			list_add_tail(&reloc_root->root_list, &reloc_roots);
3824			btrfs_end_transaction(trans);
3825			goto out_unset;
3826		}
3827
3828		err = __add_reloc_root(reloc_root);
3829		BUG_ON(err < 0); /* -ENOMEM or logic error */
3830		fs_root->reloc_root = btrfs_grab_root(reloc_root);
3831		btrfs_put_root(fs_root);
3832	}
3833
3834	err = btrfs_commit_transaction(trans);
3835	if (err)
3836		goto out_unset;
3837
3838	merge_reloc_roots(rc);
3839
3840	unset_reloc_control(rc);
3841
3842	trans = btrfs_join_transaction(rc->extent_root);
3843	if (IS_ERR(trans)) {
3844		err = PTR_ERR(trans);
3845		goto out_clean;
 
 
 
 
 
 
 
 
 
 
 
3846	}
3847	err = btrfs_commit_transaction(trans);
3848out_clean:
3849	ret = clean_dirty_subvols(rc);
3850	if (ret < 0 && !err)
3851		err = ret;
3852out_unset:
3853	unset_reloc_control(rc);
3854	free_reloc_control(rc);
3855out:
3856	free_reloc_roots(&reloc_roots);
3857
3858	btrfs_free_path(path);
3859
3860	if (err == 0) {
3861		/* cleanup orphan inode in data relocation tree */
3862		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3863		ASSERT(fs_root);
3864		err = btrfs_orphan_cleanup(fs_root);
3865		btrfs_put_root(fs_root);
 
 
3866	}
3867	return err;
3868}
3869
3870/*
3871 * helper to add ordered checksum for data relocation.
3872 *
3873 * cloning checksum properly handles the nodatasum extents.
3874 * it also saves CPU time to re-calculate the checksum.
3875 */
3876int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
3877{
3878	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3879	struct btrfs_ordered_sum *sums;
 
3880	struct btrfs_ordered_extent *ordered;
 
 
3881	int ret;
3882	u64 disk_bytenr;
3883	u64 new_bytenr;
3884	LIST_HEAD(list);
3885
3886	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3887	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3888
3889	disk_bytenr = file_pos + inode->index_cnt;
3890	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3891				       disk_bytenr + len - 1, &list, 0);
3892	if (ret)
3893		goto out;
3894
3895	while (!list_empty(&list)) {
3896		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3897		list_del_init(&sums->list);
3898
3899		/*
3900		 * We need to offset the new_bytenr based on where the csum is.
3901		 * We need to do this because we will read in entire prealloc
3902		 * extents but we may have written to say the middle of the
3903		 * prealloc extent, so we need to make sure the csum goes with
3904		 * the right disk offset.
3905		 *
3906		 * We can do this because the data reloc inode refers strictly
3907		 * to the on disk bytes, so we don't have to worry about
3908		 * disk_len vs real len like with real inodes since it's all
3909		 * disk length.
3910		 */
3911		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3912		sums->bytenr = new_bytenr;
3913
3914		btrfs_add_ordered_sum(ordered, sums);
3915	}
3916out:
3917	btrfs_put_ordered_extent(ordered);
3918	return ret;
3919}
3920
3921int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3922			  struct btrfs_root *root, struct extent_buffer *buf,
3923			  struct extent_buffer *cow)
3924{
3925	struct btrfs_fs_info *fs_info = root->fs_info;
3926	struct reloc_control *rc;
3927	struct btrfs_backref_node *node;
3928	int first_cow = 0;
3929	int level;
3930	int ret = 0;
3931
3932	rc = fs_info->reloc_ctl;
3933	if (!rc)
3934		return 0;
3935
3936	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3937	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3938
3939	level = btrfs_header_level(buf);
3940	if (btrfs_header_generation(buf) <=
3941	    btrfs_root_last_snapshot(&root->root_item))
3942		first_cow = 1;
3943
3944	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3945	    rc->create_reloc_tree) {
3946		WARN_ON(!first_cow && level == 0);
3947
3948		node = rc->backref_cache.path[level];
3949		BUG_ON(node->bytenr != buf->start &&
3950		       node->new_bytenr != buf->start);
3951
3952		btrfs_backref_drop_node_buffer(node);
3953		atomic_inc(&cow->refs);
3954		node->eb = cow;
3955		node->new_bytenr = cow->start;
3956
3957		if (!node->pending) {
3958			list_move_tail(&node->list,
3959				       &rc->backref_cache.pending[level]);
3960			node->pending = 1;
3961		}
3962
3963		if (first_cow)
3964			mark_block_processed(rc, node);
3965
3966		if (first_cow && level > 0)
3967			rc->nodes_relocated += buf->len;
3968	}
3969
3970	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
3971		ret = replace_file_extents(trans, rc, root, cow);
3972	return ret;
 
3973}
3974
3975/*
3976 * called before creating snapshot. it calculates metadata reservation
3977 * required for relocating tree blocks in the snapshot
3978 */
3979void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
 
3980			      u64 *bytes_to_reserve)
3981{
3982	struct btrfs_root *root = pending->root;
3983	struct reloc_control *rc = root->fs_info->reloc_ctl;
3984
3985	if (!rc || !have_reloc_root(root))
 
3986		return;
3987
 
3988	if (!rc->merge_reloc_tree)
3989		return;
3990
3991	root = root->reloc_root;
3992	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
3993	/*
3994	 * relocation is in the stage of merging trees. the space
3995	 * used by merging a reloc tree is twice the size of
3996	 * relocated tree nodes in the worst case. half for cowing
3997	 * the reloc tree, half for cowing the fs tree. the space
3998	 * used by cowing the reloc tree will be freed after the
3999	 * tree is dropped. if we create snapshot, cowing the fs
4000	 * tree may use more space than it frees. so we need
4001	 * reserve extra space.
4002	 */
4003	*bytes_to_reserve += rc->nodes_relocated;
4004}
4005
4006/*
4007 * called after snapshot is created. migrate block reservation
4008 * and create reloc root for the newly created snapshot
4009 *
4010 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4011 * references held on the reloc_root, one for root->reloc_root and one for
4012 * rc->reloc_roots.
4013 */
4014int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4015			       struct btrfs_pending_snapshot *pending)
4016{
4017	struct btrfs_root *root = pending->root;
4018	struct btrfs_root *reloc_root;
4019	struct btrfs_root *new_root;
4020	struct reloc_control *rc = root->fs_info->reloc_ctl;
4021	int ret;
4022
4023	if (!rc || !have_reloc_root(root))
4024		return 0;
4025
4026	rc = root->fs_info->reloc_ctl;
4027	rc->merging_rsv_size += rc->nodes_relocated;
4028
4029	if (rc->merge_reloc_tree) {
4030		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4031					      rc->block_rsv,
4032					      rc->nodes_relocated, true);
4033		if (ret)
4034			return ret;
4035	}
4036
4037	new_root = pending->snap;
4038	reloc_root = create_reloc_root(trans, root->reloc_root,
4039				       new_root->root_key.objectid);
4040	if (IS_ERR(reloc_root))
4041		return PTR_ERR(reloc_root);
4042
4043	ret = __add_reloc_root(reloc_root);
4044	BUG_ON(ret < 0);
4045	new_root->reloc_root = btrfs_grab_root(reloc_root);
4046
4047	if (rc->create_reloc_tree)
4048		ret = clone_backref_node(trans, rc, root, reloc_root);
4049	return ret;
4050}