Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.5.6
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
 
  34
  35/*
  36 * backref_node, mapping_node and tree_block start with this
  37 */
  38struct tree_entry {
  39	struct rb_node rb_node;
  40	u64 bytenr;
  41};
  42
  43/*
  44 * present a tree block in the backref cache
  45 */
  46struct backref_node {
  47	struct rb_node rb_node;
  48	u64 bytenr;
  49
  50	u64 new_bytenr;
  51	/* objectid of tree block owner, can be not uptodate */
  52	u64 owner;
  53	/* link to pending, changed or detached list */
  54	struct list_head list;
  55	/* list of upper level blocks reference this block */
  56	struct list_head upper;
  57	/* list of child blocks in the cache */
  58	struct list_head lower;
  59	/* NULL if this node is not tree root */
  60	struct btrfs_root *root;
  61	/* extent buffer got by COW the block */
  62	struct extent_buffer *eb;
  63	/* level of tree block */
  64	unsigned int level:8;
  65	/* is the block in non-reference counted tree */
  66	unsigned int cowonly:1;
  67	/* 1 if no child node in the cache */
  68	unsigned int lowest:1;
  69	/* is the extent buffer locked */
  70	unsigned int locked:1;
  71	/* has the block been processed */
  72	unsigned int processed:1;
  73	/* have backrefs of this block been checked */
  74	unsigned int checked:1;
  75	/*
  76	 * 1 if corresponding block has been cowed but some upper
  77	 * level block pointers may not point to the new location
  78	 */
  79	unsigned int pending:1;
  80	/*
  81	 * 1 if the backref node isn't connected to any other
  82	 * backref node.
  83	 */
  84	unsigned int detached:1;
  85};
  86
  87/*
  88 * present a block pointer in the backref cache
  89 */
  90struct backref_edge {
  91	struct list_head list[2];
  92	struct backref_node *node[2];
  93};
  94
  95#define LOWER	0
  96#define UPPER	1
 
  97
  98struct backref_cache {
  99	/* red black tree of all backref nodes in the cache */
 100	struct rb_root rb_root;
 101	/* for passing backref nodes to btrfs_reloc_cow_block */
 102	struct backref_node *path[BTRFS_MAX_LEVEL];
 103	/*
 104	 * list of blocks that have been cowed but some block
 105	 * pointers in upper level blocks may not reflect the
 106	 * new location
 107	 */
 108	struct list_head pending[BTRFS_MAX_LEVEL];
 109	/* list of backref nodes with no child node */
 110	struct list_head leaves;
 111	/* list of blocks that have been cowed in current transaction */
 112	struct list_head changed;
 113	/* list of detached backref node. */
 114	struct list_head detached;
 115
 116	u64 last_trans;
 117
 118	int nr_nodes;
 119	int nr_edges;
 120};
 121
 122/*
 123 * map address of tree root to tree
 124 */
 125struct mapping_node {
 126	struct rb_node rb_node;
 127	u64 bytenr;
 128	void *data;
 129};
 130
 131struct mapping_tree {
 132	struct rb_root rb_root;
 133	spinlock_t lock;
 134};
 135
 136/*
 137 * present a tree block to process
 138 */
 139struct tree_block {
 140	struct rb_node rb_node;
 141	u64 bytenr;
 142	struct btrfs_key key;
 143	unsigned int level:8;
 144	unsigned int key_ready:1;
 145};
 146
 147#define MAX_EXTENTS 128
 148
 149struct file_extent_cluster {
 150	u64 start;
 151	u64 end;
 152	u64 boundary[MAX_EXTENTS];
 153	unsigned int nr;
 154};
 155
 156struct reloc_control {
 157	/* block group to relocate */
 158	struct btrfs_block_group_cache *block_group;
 159	/* extent tree */
 160	struct btrfs_root *extent_root;
 161	/* inode for moving data */
 162	struct inode *data_inode;
 163
 164	struct btrfs_block_rsv *block_rsv;
 165
 166	struct backref_cache backref_cache;
 167
 168	struct file_extent_cluster cluster;
 169	/* tree blocks have been processed */
 170	struct extent_io_tree processed_blocks;
 171	/* map start of tree root to corresponding reloc tree */
 172	struct mapping_tree reloc_root_tree;
 173	/* list of reloc trees */
 174	struct list_head reloc_roots;
 175	/* size of metadata reservation for merging reloc trees */
 176	u64 merging_rsv_size;
 177	/* size of relocated tree nodes */
 178	u64 nodes_relocated;
 
 
 179
 180	u64 search_start;
 181	u64 extents_found;
 182
 183	unsigned int stage:8;
 184	unsigned int create_reloc_tree:1;
 185	unsigned int merge_reloc_tree:1;
 186	unsigned int found_file_extent:1;
 187	unsigned int commit_transaction:1;
 188};
 189
 190/* stages of data relocation */
 191#define MOVE_DATA_EXTENTS	0
 192#define UPDATE_DATA_PTRS	1
 193
 194static void remove_backref_node(struct backref_cache *cache,
 195				struct backref_node *node);
 196static void __mark_block_processed(struct reloc_control *rc,
 197				   struct backref_node *node);
 198
 199static void mapping_tree_init(struct mapping_tree *tree)
 200{
 201	tree->rb_root = RB_ROOT;
 202	spin_lock_init(&tree->lock);
 203}
 204
 205static void backref_cache_init(struct backref_cache *cache)
 206{
 207	int i;
 208	cache->rb_root = RB_ROOT;
 209	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 210		INIT_LIST_HEAD(&cache->pending[i]);
 211	INIT_LIST_HEAD(&cache->changed);
 212	INIT_LIST_HEAD(&cache->detached);
 213	INIT_LIST_HEAD(&cache->leaves);
 214}
 215
 216static void backref_cache_cleanup(struct backref_cache *cache)
 217{
 218	struct backref_node *node;
 219	int i;
 220
 221	while (!list_empty(&cache->detached)) {
 222		node = list_entry(cache->detached.next,
 223				  struct backref_node, list);
 224		remove_backref_node(cache, node);
 225	}
 226
 227	while (!list_empty(&cache->leaves)) {
 228		node = list_entry(cache->leaves.next,
 229				  struct backref_node, lower);
 230		remove_backref_node(cache, node);
 231	}
 232
 233	cache->last_trans = 0;
 234
 235	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 236		BUG_ON(!list_empty(&cache->pending[i]));
 237	BUG_ON(!list_empty(&cache->changed));
 238	BUG_ON(!list_empty(&cache->detached));
 239	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
 240	BUG_ON(cache->nr_nodes);
 241	BUG_ON(cache->nr_edges);
 242}
 243
 244static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 245{
 246	struct backref_node *node;
 247
 248	node = kzalloc(sizeof(*node), GFP_NOFS);
 249	if (node) {
 250		INIT_LIST_HEAD(&node->list);
 251		INIT_LIST_HEAD(&node->upper);
 252		INIT_LIST_HEAD(&node->lower);
 253		RB_CLEAR_NODE(&node->rb_node);
 254		cache->nr_nodes++;
 255	}
 256	return node;
 257}
 258
 259static void free_backref_node(struct backref_cache *cache,
 260			      struct backref_node *node)
 261{
 262	if (node) {
 263		cache->nr_nodes--;
 264		kfree(node);
 265	}
 266}
 267
 268static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 269{
 270	struct backref_edge *edge;
 271
 272	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 273	if (edge)
 274		cache->nr_edges++;
 275	return edge;
 276}
 277
 278static void free_backref_edge(struct backref_cache *cache,
 279			      struct backref_edge *edge)
 280{
 281	if (edge) {
 282		cache->nr_edges--;
 283		kfree(edge);
 284	}
 285}
 286
 287static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 288				   struct rb_node *node)
 289{
 290	struct rb_node **p = &root->rb_node;
 291	struct rb_node *parent = NULL;
 292	struct tree_entry *entry;
 293
 294	while (*p) {
 295		parent = *p;
 296		entry = rb_entry(parent, struct tree_entry, rb_node);
 297
 298		if (bytenr < entry->bytenr)
 299			p = &(*p)->rb_left;
 300		else if (bytenr > entry->bytenr)
 301			p = &(*p)->rb_right;
 302		else
 303			return parent;
 304	}
 305
 306	rb_link_node(node, parent, p);
 307	rb_insert_color(node, root);
 308	return NULL;
 309}
 310
 311static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 312{
 313	struct rb_node *n = root->rb_node;
 314	struct tree_entry *entry;
 315
 316	while (n) {
 317		entry = rb_entry(n, struct tree_entry, rb_node);
 318
 319		if (bytenr < entry->bytenr)
 320			n = n->rb_left;
 321		else if (bytenr > entry->bytenr)
 322			n = n->rb_right;
 323		else
 324			return n;
 325	}
 326	return NULL;
 327}
 328
 329void backref_tree_panic(struct rb_node *rb_node, int errno,
 330					  u64 bytenr)
 331{
 332
 333	struct btrfs_fs_info *fs_info = NULL;
 334	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 335					      rb_node);
 336	if (bnode->root)
 337		fs_info = bnode->root->fs_info;
 338	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
 339		    "found at offset %llu\n", (unsigned long long)bytenr);
 
 340}
 341
 342/*
 343 * walk up backref nodes until reach node presents tree root
 344 */
 345static struct backref_node *walk_up_backref(struct backref_node *node,
 346					    struct backref_edge *edges[],
 347					    int *index)
 348{
 349	struct backref_edge *edge;
 350	int idx = *index;
 351
 352	while (!list_empty(&node->upper)) {
 353		edge = list_entry(node->upper.next,
 354				  struct backref_edge, list[LOWER]);
 355		edges[idx++] = edge;
 356		node = edge->node[UPPER];
 357	}
 358	BUG_ON(node->detached);
 359	*index = idx;
 360	return node;
 361}
 362
 363/*
 364 * walk down backref nodes to find start of next reference path
 365 */
 366static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 367					      int *index)
 368{
 369	struct backref_edge *edge;
 370	struct backref_node *lower;
 371	int idx = *index;
 372
 373	while (idx > 0) {
 374		edge = edges[idx - 1];
 375		lower = edge->node[LOWER];
 376		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 377			idx--;
 378			continue;
 379		}
 380		edge = list_entry(edge->list[LOWER].next,
 381				  struct backref_edge, list[LOWER]);
 382		edges[idx - 1] = edge;
 383		*index = idx;
 384		return edge->node[UPPER];
 385	}
 386	*index = 0;
 387	return NULL;
 388}
 389
 390static void unlock_node_buffer(struct backref_node *node)
 391{
 392	if (node->locked) {
 393		btrfs_tree_unlock(node->eb);
 394		node->locked = 0;
 395	}
 396}
 397
 398static void drop_node_buffer(struct backref_node *node)
 399{
 400	if (node->eb) {
 401		unlock_node_buffer(node);
 402		free_extent_buffer(node->eb);
 403		node->eb = NULL;
 404	}
 405}
 406
 407static void drop_backref_node(struct backref_cache *tree,
 408			      struct backref_node *node)
 409{
 410	BUG_ON(!list_empty(&node->upper));
 411
 412	drop_node_buffer(node);
 413	list_del(&node->list);
 414	list_del(&node->lower);
 415	if (!RB_EMPTY_NODE(&node->rb_node))
 416		rb_erase(&node->rb_node, &tree->rb_root);
 417	free_backref_node(tree, node);
 418}
 419
 420/*
 421 * remove a backref node from the backref cache
 422 */
 423static void remove_backref_node(struct backref_cache *cache,
 424				struct backref_node *node)
 425{
 426	struct backref_node *upper;
 427	struct backref_edge *edge;
 428
 429	if (!node)
 430		return;
 431
 432	BUG_ON(!node->lowest && !node->detached);
 433	while (!list_empty(&node->upper)) {
 434		edge = list_entry(node->upper.next, struct backref_edge,
 435				  list[LOWER]);
 436		upper = edge->node[UPPER];
 437		list_del(&edge->list[LOWER]);
 438		list_del(&edge->list[UPPER]);
 439		free_backref_edge(cache, edge);
 440
 441		if (RB_EMPTY_NODE(&upper->rb_node)) {
 442			BUG_ON(!list_empty(&node->upper));
 443			drop_backref_node(cache, node);
 444			node = upper;
 445			node->lowest = 1;
 446			continue;
 447		}
 448		/*
 449		 * add the node to leaf node list if no other
 450		 * child block cached.
 451		 */
 452		if (list_empty(&upper->lower)) {
 453			list_add_tail(&upper->lower, &cache->leaves);
 454			upper->lowest = 1;
 455		}
 456	}
 457
 458	drop_backref_node(cache, node);
 459}
 460
 461static void update_backref_node(struct backref_cache *cache,
 462				struct backref_node *node, u64 bytenr)
 463{
 464	struct rb_node *rb_node;
 465	rb_erase(&node->rb_node, &cache->rb_root);
 466	node->bytenr = bytenr;
 467	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 468	if (rb_node)
 469		backref_tree_panic(rb_node, -EEXIST, bytenr);
 470}
 471
 472/*
 473 * update backref cache after a transaction commit
 474 */
 475static int update_backref_cache(struct btrfs_trans_handle *trans,
 476				struct backref_cache *cache)
 477{
 478	struct backref_node *node;
 479	int level = 0;
 480
 481	if (cache->last_trans == 0) {
 482		cache->last_trans = trans->transid;
 483		return 0;
 484	}
 485
 486	if (cache->last_trans == trans->transid)
 487		return 0;
 488
 489	/*
 490	 * detached nodes are used to avoid unnecessary backref
 491	 * lookup. transaction commit changes the extent tree.
 492	 * so the detached nodes are no longer useful.
 493	 */
 494	while (!list_empty(&cache->detached)) {
 495		node = list_entry(cache->detached.next,
 496				  struct backref_node, list);
 497		remove_backref_node(cache, node);
 498	}
 499
 500	while (!list_empty(&cache->changed)) {
 501		node = list_entry(cache->changed.next,
 502				  struct backref_node, list);
 503		list_del_init(&node->list);
 504		BUG_ON(node->pending);
 505		update_backref_node(cache, node, node->new_bytenr);
 506	}
 507
 508	/*
 509	 * some nodes can be left in the pending list if there were
 510	 * errors during processing the pending nodes.
 511	 */
 512	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 513		list_for_each_entry(node, &cache->pending[level], list) {
 514			BUG_ON(!node->pending);
 515			if (node->bytenr == node->new_bytenr)
 516				continue;
 517			update_backref_node(cache, node, node->new_bytenr);
 518		}
 519	}
 520
 521	cache->last_trans = 0;
 522	return 1;
 523}
 524
 525
 526static int should_ignore_root(struct btrfs_root *root)
 527{
 528	struct btrfs_root *reloc_root;
 529
 530	if (!root->ref_cows)
 531		return 0;
 532
 533	reloc_root = root->reloc_root;
 534	if (!reloc_root)
 535		return 0;
 536
 537	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 538	    root->fs_info->running_transaction->transid - 1)
 539		return 0;
 540	/*
 541	 * if there is reloc tree and it was created in previous
 542	 * transaction backref lookup can find the reloc tree,
 543	 * so backref node for the fs tree root is useless for
 544	 * relocation.
 545	 */
 546	return 1;
 547}
 548/*
 549 * find reloc tree by address of tree root
 550 */
 551static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 552					  u64 bytenr)
 553{
 554	struct rb_node *rb_node;
 555	struct mapping_node *node;
 556	struct btrfs_root *root = NULL;
 557
 558	spin_lock(&rc->reloc_root_tree.lock);
 559	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 560	if (rb_node) {
 561		node = rb_entry(rb_node, struct mapping_node, rb_node);
 562		root = (struct btrfs_root *)node->data;
 563	}
 564	spin_unlock(&rc->reloc_root_tree.lock);
 565	return root;
 566}
 567
 568static int is_cowonly_root(u64 root_objectid)
 569{
 570	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 571	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 572	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 573	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 574	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 575	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
 
 
 
 576		return 1;
 577	return 0;
 578}
 579
 580static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 581					u64 root_objectid)
 582{
 583	struct btrfs_key key;
 584
 585	key.objectid = root_objectid;
 586	key.type = BTRFS_ROOT_ITEM_KEY;
 587	if (is_cowonly_root(root_objectid))
 588		key.offset = 0;
 589	else
 590		key.offset = (u64)-1;
 591
 592	return btrfs_read_fs_root_no_name(fs_info, &key);
 593}
 594
 595#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 596static noinline_for_stack
 597struct btrfs_root *find_tree_root(struct reloc_control *rc,
 598				  struct extent_buffer *leaf,
 599				  struct btrfs_extent_ref_v0 *ref0)
 600{
 601	struct btrfs_root *root;
 602	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 603	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 604
 605	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 606
 607	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 608	BUG_ON(IS_ERR(root));
 609
 610	if (root->ref_cows &&
 611	    generation != btrfs_root_generation(&root->root_item))
 612		return NULL;
 613
 614	return root;
 615}
 616#endif
 617
 618static noinline_for_stack
 619int find_inline_backref(struct extent_buffer *leaf, int slot,
 620			unsigned long *ptr, unsigned long *end)
 621{
 
 622	struct btrfs_extent_item *ei;
 623	struct btrfs_tree_block_info *bi;
 624	u32 item_size;
 625
 
 
 626	item_size = btrfs_item_size_nr(leaf, slot);
 627#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 628	if (item_size < sizeof(*ei)) {
 629		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 630		return 1;
 631	}
 632#endif
 633	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 634	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 635		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 636
 637	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
 
 638		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 639		return 1;
 640	}
 
 
 
 
 
 641
 642	bi = (struct btrfs_tree_block_info *)(ei + 1);
 643	*ptr = (unsigned long)(bi + 1);
 
 
 
 
 644	*end = (unsigned long)ei + item_size;
 645	return 0;
 646}
 647
 648/*
 649 * build backref tree for a given tree block. root of the backref tree
 650 * corresponds the tree block, leaves of the backref tree correspond
 651 * roots of b-trees that reference the tree block.
 652 *
 653 * the basic idea of this function is check backrefs of a given block
 654 * to find upper level blocks that refernece the block, and then check
 655 * bakcrefs of these upper level blocks recursively. the recursion stop
 656 * when tree root is reached or backrefs for the block is cached.
 657 *
 658 * NOTE: if we find backrefs for a block are cached, we know backrefs
 659 * for all upper level blocks that directly/indirectly reference the
 660 * block are also cached.
 661 */
 662static noinline_for_stack
 663struct backref_node *build_backref_tree(struct reloc_control *rc,
 664					struct btrfs_key *node_key,
 665					int level, u64 bytenr)
 666{
 667	struct backref_cache *cache = &rc->backref_cache;
 668	struct btrfs_path *path1;
 669	struct btrfs_path *path2;
 670	struct extent_buffer *eb;
 671	struct btrfs_root *root;
 672	struct backref_node *cur;
 673	struct backref_node *upper;
 674	struct backref_node *lower;
 675	struct backref_node *node = NULL;
 676	struct backref_node *exist = NULL;
 677	struct backref_edge *edge;
 678	struct rb_node *rb_node;
 679	struct btrfs_key key;
 680	unsigned long end;
 681	unsigned long ptr;
 682	LIST_HEAD(list);
 683	LIST_HEAD(useless);
 684	int cowonly;
 685	int ret;
 686	int err = 0;
 
 687
 688	path1 = btrfs_alloc_path();
 689	path2 = btrfs_alloc_path();
 690	if (!path1 || !path2) {
 691		err = -ENOMEM;
 692		goto out;
 693	}
 694	path1->reada = 1;
 695	path2->reada = 2;
 696
 697	node = alloc_backref_node(cache);
 698	if (!node) {
 699		err = -ENOMEM;
 700		goto out;
 701	}
 702
 703	node->bytenr = bytenr;
 704	node->level = level;
 705	node->lowest = 1;
 706	cur = node;
 707again:
 708	end = 0;
 709	ptr = 0;
 710	key.objectid = cur->bytenr;
 711	key.type = BTRFS_EXTENT_ITEM_KEY;
 712	key.offset = (u64)-1;
 713
 714	path1->search_commit_root = 1;
 715	path1->skip_locking = 1;
 716	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 717				0, 0);
 718	if (ret < 0) {
 719		err = ret;
 720		goto out;
 721	}
 722	BUG_ON(!ret || !path1->slots[0]);
 
 723
 724	path1->slots[0]--;
 725
 726	WARN_ON(cur->checked);
 727	if (!list_empty(&cur->upper)) {
 728		/*
 729		 * the backref was added previously when processing
 730		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 731		 */
 732		BUG_ON(!list_is_singular(&cur->upper));
 733		edge = list_entry(cur->upper.next, struct backref_edge,
 734				  list[LOWER]);
 735		BUG_ON(!list_empty(&edge->list[UPPER]));
 736		exist = edge->node[UPPER];
 737		/*
 738		 * add the upper level block to pending list if we need
 739		 * check its backrefs
 740		 */
 741		if (!exist->checked)
 742			list_add_tail(&edge->list[UPPER], &list);
 743	} else {
 744		exist = NULL;
 745	}
 746
 747	while (1) {
 748		cond_resched();
 749		eb = path1->nodes[0];
 750
 751		if (ptr >= end) {
 752			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 753				ret = btrfs_next_leaf(rc->extent_root, path1);
 754				if (ret < 0) {
 755					err = ret;
 756					goto out;
 757				}
 758				if (ret > 0)
 759					break;
 760				eb = path1->nodes[0];
 761			}
 762
 763			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 764			if (key.objectid != cur->bytenr) {
 765				WARN_ON(exist);
 766				break;
 767			}
 768
 769			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 
 770				ret = find_inline_backref(eb, path1->slots[0],
 771							  &ptr, &end);
 772				if (ret)
 773					goto next;
 774			}
 775		}
 776
 777		if (ptr < end) {
 778			/* update key for inline back ref */
 779			struct btrfs_extent_inline_ref *iref;
 780			iref = (struct btrfs_extent_inline_ref *)ptr;
 781			key.type = btrfs_extent_inline_ref_type(eb, iref);
 782			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 783			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 784				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 785		}
 786
 787		if (exist &&
 788		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 789		      exist->owner == key.offset) ||
 790		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 791		      exist->bytenr == key.offset))) {
 792			exist = NULL;
 793			goto next;
 794		}
 795
 796#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 797		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 798		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 799			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 800				struct btrfs_extent_ref_v0 *ref0;
 801				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 802						struct btrfs_extent_ref_v0);
 803				if (key.objectid == key.offset) {
 804					root = find_tree_root(rc, eb, ref0);
 805					if (root && !should_ignore_root(root))
 806						cur->root = root;
 807					else
 808						list_add(&cur->list, &useless);
 809					break;
 810				}
 811				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 812								      ref0)))
 813					cur->cowonly = 1;
 814			}
 815#else
 816		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 817		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 818#endif
 819			if (key.objectid == key.offset) {
 820				/*
 821				 * only root blocks of reloc trees use
 822				 * backref of this type.
 823				 */
 824				root = find_reloc_root(rc, cur->bytenr);
 825				BUG_ON(!root);
 826				cur->root = root;
 827				break;
 828			}
 829
 830			edge = alloc_backref_edge(cache);
 831			if (!edge) {
 832				err = -ENOMEM;
 833				goto out;
 834			}
 835			rb_node = tree_search(&cache->rb_root, key.offset);
 836			if (!rb_node) {
 837				upper = alloc_backref_node(cache);
 838				if (!upper) {
 839					free_backref_edge(cache, edge);
 840					err = -ENOMEM;
 841					goto out;
 842				}
 843				upper->bytenr = key.offset;
 844				upper->level = cur->level + 1;
 845				/*
 846				 *  backrefs for the upper level block isn't
 847				 *  cached, add the block to pending list
 848				 */
 849				list_add_tail(&edge->list[UPPER], &list);
 850			} else {
 851				upper = rb_entry(rb_node, struct backref_node,
 852						 rb_node);
 853				BUG_ON(!upper->checked);
 854				INIT_LIST_HEAD(&edge->list[UPPER]);
 855			}
 856			list_add_tail(&edge->list[LOWER], &cur->upper);
 857			edge->node[LOWER] = cur;
 858			edge->node[UPPER] = upper;
 859
 860			goto next;
 861		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 862			goto next;
 863		}
 864
 865		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 866		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 867		if (IS_ERR(root)) {
 868			err = PTR_ERR(root);
 869			goto out;
 870		}
 871
 872		if (!root->ref_cows)
 873			cur->cowonly = 1;
 874
 875		if (btrfs_root_level(&root->root_item) == cur->level) {
 876			/* tree root */
 877			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 878			       cur->bytenr);
 879			if (should_ignore_root(root))
 880				list_add(&cur->list, &useless);
 881			else
 882				cur->root = root;
 883			break;
 884		}
 885
 886		level = cur->level + 1;
 887
 888		/*
 889		 * searching the tree to find upper level blocks
 890		 * reference the block.
 891		 */
 892		path2->search_commit_root = 1;
 893		path2->skip_locking = 1;
 894		path2->lowest_level = level;
 895		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 896		path2->lowest_level = 0;
 897		if (ret < 0) {
 898			err = ret;
 899			goto out;
 900		}
 901		if (ret > 0 && path2->slots[level] > 0)
 902			path2->slots[level]--;
 903
 904		eb = path2->nodes[level];
 905		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
 906			cur->bytenr);
 907
 
 
 
 
 
 
 
 908		lower = cur;
 
 909		for (; level < BTRFS_MAX_LEVEL; level++) {
 910			if (!path2->nodes[level]) {
 911				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 912				       lower->bytenr);
 913				if (should_ignore_root(root))
 914					list_add(&lower->list, &useless);
 915				else
 916					lower->root = root;
 917				break;
 918			}
 919
 920			edge = alloc_backref_edge(cache);
 921			if (!edge) {
 922				err = -ENOMEM;
 923				goto out;
 924			}
 925
 926			eb = path2->nodes[level];
 927			rb_node = tree_search(&cache->rb_root, eb->start);
 928			if (!rb_node) {
 929				upper = alloc_backref_node(cache);
 930				if (!upper) {
 931					free_backref_edge(cache, edge);
 932					err = -ENOMEM;
 933					goto out;
 934				}
 935				upper->bytenr = eb->start;
 936				upper->owner = btrfs_header_owner(eb);
 937				upper->level = lower->level + 1;
 938				if (!root->ref_cows)
 
 939					upper->cowonly = 1;
 940
 941				/*
 942				 * if we know the block isn't shared
 943				 * we can void checking its backrefs.
 944				 */
 945				if (btrfs_block_can_be_shared(root, eb))
 946					upper->checked = 0;
 947				else
 948					upper->checked = 1;
 949
 950				/*
 951				 * add the block to pending list if we
 952				 * need check its backrefs. only block
 953				 * at 'cur->level + 1' is added to the
 954				 * tail of pending list. this guarantees
 955				 * we check backrefs from lower level
 956				 * blocks to upper level blocks.
 957				 */
 958				if (!upper->checked &&
 959				    level == cur->level + 1) {
 960					list_add_tail(&edge->list[UPPER],
 961						      &list);
 962				} else
 
 
 963					INIT_LIST_HEAD(&edge->list[UPPER]);
 
 964			} else {
 965				upper = rb_entry(rb_node, struct backref_node,
 966						 rb_node);
 967				BUG_ON(!upper->checked);
 968				INIT_LIST_HEAD(&edge->list[UPPER]);
 969				if (!upper->owner)
 970					upper->owner = btrfs_header_owner(eb);
 971			}
 972			list_add_tail(&edge->list[LOWER], &lower->upper);
 973			edge->node[LOWER] = lower;
 974			edge->node[UPPER] = upper;
 975
 976			if (rb_node)
 977				break;
 978			lower = upper;
 979			upper = NULL;
 980		}
 981		btrfs_release_path(path2);
 982next:
 983		if (ptr < end) {
 984			ptr += btrfs_extent_inline_ref_size(key.type);
 985			if (ptr >= end) {
 986				WARN_ON(ptr > end);
 987				ptr = 0;
 988				end = 0;
 989			}
 990		}
 991		if (ptr >= end)
 992			path1->slots[0]++;
 993	}
 994	btrfs_release_path(path1);
 995
 996	cur->checked = 1;
 997	WARN_ON(exist);
 998
 999	/* the pending list isn't empty, take the first block to process */
1000	if (!list_empty(&list)) {
1001		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1002		list_del_init(&edge->list[UPPER]);
1003		cur = edge->node[UPPER];
1004		goto again;
1005	}
1006
1007	/*
1008	 * everything goes well, connect backref nodes and insert backref nodes
1009	 * into the cache.
1010	 */
1011	BUG_ON(!node->checked);
1012	cowonly = node->cowonly;
1013	if (!cowonly) {
1014		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1015				      &node->rb_node);
1016		if (rb_node)
1017			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1018		list_add_tail(&node->lower, &cache->leaves);
1019	}
1020
1021	list_for_each_entry(edge, &node->upper, list[LOWER])
1022		list_add_tail(&edge->list[UPPER], &list);
1023
1024	while (!list_empty(&list)) {
1025		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1026		list_del_init(&edge->list[UPPER]);
1027		upper = edge->node[UPPER];
1028		if (upper->detached) {
1029			list_del(&edge->list[LOWER]);
1030			lower = edge->node[LOWER];
1031			free_backref_edge(cache, edge);
1032			if (list_empty(&lower->upper))
1033				list_add(&lower->list, &useless);
1034			continue;
1035		}
1036
1037		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1038			if (upper->lowest) {
1039				list_del_init(&upper->lower);
1040				upper->lowest = 0;
1041			}
1042
1043			list_add_tail(&edge->list[UPPER], &upper->lower);
1044			continue;
1045		}
1046
1047		BUG_ON(!upper->checked);
1048		BUG_ON(cowonly != upper->cowonly);
 
 
 
 
 
 
 
 
 
 
 
 
 
1049		if (!cowonly) {
1050			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1051					      &upper->rb_node);
1052			if (rb_node)
1053				backref_tree_panic(rb_node, -EEXIST,
1054						   upper->bytenr);
1055		}
1056
1057		list_add_tail(&edge->list[UPPER], &upper->lower);
1058
1059		list_for_each_entry(edge, &upper->upper, list[LOWER])
1060			list_add_tail(&edge->list[UPPER], &list);
1061	}
1062	/*
1063	 * process useless backref nodes. backref nodes for tree leaves
1064	 * are deleted from the cache. backref nodes for upper level
1065	 * tree blocks are left in the cache to avoid unnecessary backref
1066	 * lookup.
1067	 */
1068	while (!list_empty(&useless)) {
1069		upper = list_entry(useless.next, struct backref_node, list);
1070		list_del_init(&upper->list);
1071		BUG_ON(!list_empty(&upper->upper));
1072		if (upper == node)
1073			node = NULL;
1074		if (upper->lowest) {
1075			list_del_init(&upper->lower);
1076			upper->lowest = 0;
1077		}
1078		while (!list_empty(&upper->lower)) {
1079			edge = list_entry(upper->lower.next,
1080					  struct backref_edge, list[UPPER]);
1081			list_del(&edge->list[UPPER]);
1082			list_del(&edge->list[LOWER]);
1083			lower = edge->node[LOWER];
1084			free_backref_edge(cache, edge);
1085
1086			if (list_empty(&lower->upper))
1087				list_add(&lower->list, &useless);
1088		}
1089		__mark_block_processed(rc, upper);
1090		if (upper->level > 0) {
1091			list_add(&upper->list, &cache->detached);
1092			upper->detached = 1;
1093		} else {
1094			rb_erase(&upper->rb_node, &cache->rb_root);
1095			free_backref_node(cache, upper);
1096		}
1097	}
1098out:
1099	btrfs_free_path(path1);
1100	btrfs_free_path(path2);
1101	if (err) {
1102		while (!list_empty(&useless)) {
1103			lower = list_entry(useless.next,
1104					   struct backref_node, upper);
1105			list_del_init(&lower->upper);
1106		}
1107		upper = node;
1108		INIT_LIST_HEAD(&list);
1109		while (upper) {
1110			if (RB_EMPTY_NODE(&upper->rb_node)) {
1111				list_splice_tail(&upper->upper, &list);
1112				free_backref_node(cache, upper);
1113			}
1114
1115			if (list_empty(&list))
1116				break;
1117
1118			edge = list_entry(list.next, struct backref_edge,
1119					  list[LOWER]);
1120			list_del(&edge->list[LOWER]);
 
1121			upper = edge->node[UPPER];
1122			free_backref_edge(cache, edge);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123		}
 
 
 
 
 
 
 
 
 
 
 
1124		return ERR_PTR(err);
1125	}
1126	BUG_ON(node && node->detached);
1127	return node;
1128}
1129
1130/*
1131 * helper to add backref node for the newly created snapshot.
1132 * the backref node is created by cloning backref node that
1133 * corresponds to root of source tree
1134 */
1135static int clone_backref_node(struct btrfs_trans_handle *trans,
1136			      struct reloc_control *rc,
1137			      struct btrfs_root *src,
1138			      struct btrfs_root *dest)
1139{
1140	struct btrfs_root *reloc_root = src->reloc_root;
1141	struct backref_cache *cache = &rc->backref_cache;
1142	struct backref_node *node = NULL;
1143	struct backref_node *new_node;
1144	struct backref_edge *edge;
1145	struct backref_edge *new_edge;
1146	struct rb_node *rb_node;
1147
1148	if (cache->last_trans > 0)
1149		update_backref_cache(trans, cache);
1150
1151	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1152	if (rb_node) {
1153		node = rb_entry(rb_node, struct backref_node, rb_node);
1154		if (node->detached)
1155			node = NULL;
1156		else
1157			BUG_ON(node->new_bytenr != reloc_root->node->start);
1158	}
1159
1160	if (!node) {
1161		rb_node = tree_search(&cache->rb_root,
1162				      reloc_root->commit_root->start);
1163		if (rb_node) {
1164			node = rb_entry(rb_node, struct backref_node,
1165					rb_node);
1166			BUG_ON(node->detached);
1167		}
1168	}
1169
1170	if (!node)
1171		return 0;
1172
1173	new_node = alloc_backref_node(cache);
1174	if (!new_node)
1175		return -ENOMEM;
1176
1177	new_node->bytenr = dest->node->start;
1178	new_node->level = node->level;
1179	new_node->lowest = node->lowest;
1180	new_node->checked = 1;
1181	new_node->root = dest;
1182
1183	if (!node->lowest) {
1184		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1185			new_edge = alloc_backref_edge(cache);
1186			if (!new_edge)
1187				goto fail;
1188
1189			new_edge->node[UPPER] = new_node;
1190			new_edge->node[LOWER] = edge->node[LOWER];
1191			list_add_tail(&new_edge->list[UPPER],
1192				      &new_node->lower);
1193		}
1194	} else {
1195		list_add_tail(&new_node->lower, &cache->leaves);
1196	}
1197
1198	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1199			      &new_node->rb_node);
1200	if (rb_node)
1201		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1202
1203	if (!new_node->lowest) {
1204		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1205			list_add_tail(&new_edge->list[LOWER],
1206				      &new_edge->node[LOWER]->upper);
1207		}
1208	}
1209	return 0;
1210fail:
1211	while (!list_empty(&new_node->lower)) {
1212		new_edge = list_entry(new_node->lower.next,
1213				      struct backref_edge, list[UPPER]);
1214		list_del(&new_edge->list[UPPER]);
1215		free_backref_edge(cache, new_edge);
1216	}
1217	free_backref_node(cache, new_node);
1218	return -ENOMEM;
1219}
1220
1221/*
1222 * helper to add 'address of tree root -> reloc tree' mapping
1223 */
1224static int __must_check __add_reloc_root(struct btrfs_root *root)
1225{
 
1226	struct rb_node *rb_node;
1227	struct mapping_node *node;
1228	struct reloc_control *rc = root->fs_info->reloc_ctl;
1229
1230	node = kmalloc(sizeof(*node), GFP_NOFS);
1231	if (!node)
1232		return -ENOMEM;
1233
1234	node->bytenr = root->node->start;
1235	node->data = root;
1236
1237	spin_lock(&rc->reloc_root_tree.lock);
1238	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1239			      node->bytenr, &node->rb_node);
1240	spin_unlock(&rc->reloc_root_tree.lock);
1241	if (rb_node) {
 
 
 
1242		kfree(node);
1243		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1244			    "for start=%llu while inserting into relocation "
1245			    "tree\n");
1246	}
1247
1248	list_add_tail(&root->root_list, &rc->reloc_roots);
1249	return 0;
1250}
1251
1252/*
1253 * helper to update/delete the 'address of tree root -> reloc tree'
1254 * mapping
1255 */
1256static int __update_reloc_root(struct btrfs_root *root, int del)
1257{
 
1258	struct rb_node *rb_node;
1259	struct mapping_node *node = NULL;
1260	struct reloc_control *rc = root->fs_info->reloc_ctl;
1261
1262	spin_lock(&rc->reloc_root_tree.lock);
1263	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1264			      root->commit_root->start);
1265	if (rb_node) {
1266		node = rb_entry(rb_node, struct mapping_node, rb_node);
1267		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1268	}
1269	spin_unlock(&rc->reloc_root_tree.lock);
1270
 
 
1271	BUG_ON((struct btrfs_root *)node->data != root);
1272
1273	if (!del) {
1274		spin_lock(&rc->reloc_root_tree.lock);
1275		node->bytenr = root->node->start;
1276		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1277				      node->bytenr, &node->rb_node);
1278		spin_unlock(&rc->reloc_root_tree.lock);
1279		if (rb_node)
1280			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1281	} else {
1282		spin_lock(&root->fs_info->trans_lock);
1283		list_del_init(&root->root_list);
1284		spin_unlock(&root->fs_info->trans_lock);
1285		kfree(node);
 
 
 
 
 
 
 
 
 
 
1286	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1287	return 0;
1288}
1289
1290static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1291					struct btrfs_root *root, u64 objectid)
1292{
 
1293	struct btrfs_root *reloc_root;
1294	struct extent_buffer *eb;
1295	struct btrfs_root_item *root_item;
1296	struct btrfs_key root_key;
1297	int ret;
1298
1299	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1300	BUG_ON(!root_item);
1301
1302	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1303	root_key.type = BTRFS_ROOT_ITEM_KEY;
1304	root_key.offset = objectid;
1305
1306	if (root->root_key.objectid == objectid) {
 
 
1307		/* called by btrfs_init_reloc_root */
1308		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1309				      BTRFS_TREE_RELOC_OBJECTID);
1310		BUG_ON(ret);
1311
1312		btrfs_set_root_last_snapshot(&root->root_item,
1313					     trans->transid - 1);
 
 
 
 
 
 
 
1314	} else {
1315		/*
1316		 * called by btrfs_reloc_post_snapshot_hook.
1317		 * the source tree is a reloc tree, all tree blocks
1318		 * modified after it was created have RELOC flag
1319		 * set in their headers. so it's OK to not update
1320		 * the 'last_snapshot'.
1321		 */
1322		ret = btrfs_copy_root(trans, root, root->node, &eb,
1323				      BTRFS_TREE_RELOC_OBJECTID);
1324		BUG_ON(ret);
1325	}
1326
1327	memcpy(root_item, &root->root_item, sizeof(*root_item));
1328	btrfs_set_root_bytenr(root_item, eb->start);
1329	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1330	btrfs_set_root_generation(root_item, trans->transid);
1331
1332	if (root->root_key.objectid == objectid) {
1333		btrfs_set_root_refs(root_item, 0);
1334		memset(&root_item->drop_progress, 0,
1335		       sizeof(struct btrfs_disk_key));
1336		root_item->drop_level = 0;
1337	}
1338
1339	btrfs_tree_unlock(eb);
1340	free_extent_buffer(eb);
1341
1342	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1343				&root_key, root_item);
1344	BUG_ON(ret);
1345	kfree(root_item);
1346
1347	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1348						 &root_key);
1349	BUG_ON(IS_ERR(reloc_root));
1350	reloc_root->last_trans = trans->transid;
1351	return reloc_root;
1352}
1353
1354/*
1355 * create reloc tree for a given fs tree. reloc tree is just a
1356 * snapshot of the fs tree with special root objectid.
1357 */
1358int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1359			  struct btrfs_root *root)
1360{
 
1361	struct btrfs_root *reloc_root;
1362	struct reloc_control *rc = root->fs_info->reloc_ctl;
 
1363	int clear_rsv = 0;
1364	int ret;
1365
1366	if (root->reloc_root) {
1367		reloc_root = root->reloc_root;
1368		reloc_root->last_trans = trans->transid;
1369		return 0;
1370	}
1371
1372	if (!rc || !rc->create_reloc_tree ||
1373	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1374		return 0;
1375
1376	if (!trans->block_rsv) {
 
1377		trans->block_rsv = rc->block_rsv;
1378		clear_rsv = 1;
1379	}
1380	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1381	if (clear_rsv)
1382		trans->block_rsv = NULL;
1383
1384	ret = __add_reloc_root(reloc_root);
1385	BUG_ON(ret < 0);
1386	root->reloc_root = reloc_root;
1387	return 0;
1388}
1389
1390/*
1391 * update root item of reloc tree
1392 */
1393int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1394			    struct btrfs_root *root)
1395{
 
1396	struct btrfs_root *reloc_root;
1397	struct btrfs_root_item *root_item;
1398	int del = 0;
1399	int ret;
1400
1401	if (!root->reloc_root)
1402		goto out;
1403
1404	reloc_root = root->reloc_root;
1405	root_item = &reloc_root->root_item;
1406
1407	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1408	    btrfs_root_refs(root_item) == 0) {
1409		root->reloc_root = NULL;
1410		del = 1;
1411	}
1412
1413	__update_reloc_root(reloc_root, del);
1414
1415	if (reloc_root->commit_root != reloc_root->node) {
1416		btrfs_set_root_node(root_item, reloc_root->node);
1417		free_extent_buffer(reloc_root->commit_root);
1418		reloc_root->commit_root = btrfs_root_node(reloc_root);
1419	}
1420
1421	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1422				&reloc_root->root_key, root_item);
1423	BUG_ON(ret);
1424
1425out:
1426	return 0;
1427}
1428
1429/*
1430 * helper to find first cached inode with inode number >= objectid
1431 * in a subvolume
1432 */
1433static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1434{
1435	struct rb_node *node;
1436	struct rb_node *prev;
1437	struct btrfs_inode *entry;
1438	struct inode *inode;
1439
1440	spin_lock(&root->inode_lock);
1441again:
1442	node = root->inode_tree.rb_node;
1443	prev = NULL;
1444	while (node) {
1445		prev = node;
1446		entry = rb_entry(node, struct btrfs_inode, rb_node);
1447
1448		if (objectid < btrfs_ino(&entry->vfs_inode))
1449			node = node->rb_left;
1450		else if (objectid > btrfs_ino(&entry->vfs_inode))
1451			node = node->rb_right;
1452		else
1453			break;
1454	}
1455	if (!node) {
1456		while (prev) {
1457			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1458			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1459				node = prev;
1460				break;
1461			}
1462			prev = rb_next(prev);
1463		}
1464	}
1465	while (node) {
1466		entry = rb_entry(node, struct btrfs_inode, rb_node);
1467		inode = igrab(&entry->vfs_inode);
1468		if (inode) {
1469			spin_unlock(&root->inode_lock);
1470			return inode;
1471		}
1472
1473		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1474		if (cond_resched_lock(&root->inode_lock))
1475			goto again;
1476
1477		node = rb_next(node);
1478	}
1479	spin_unlock(&root->inode_lock);
1480	return NULL;
1481}
1482
1483static int in_block_group(u64 bytenr,
1484			  struct btrfs_block_group_cache *block_group)
1485{
1486	if (bytenr >= block_group->key.objectid &&
1487	    bytenr < block_group->key.objectid + block_group->key.offset)
1488		return 1;
1489	return 0;
1490}
1491
1492/*
1493 * get new location of data
1494 */
1495static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1496			    u64 bytenr, u64 num_bytes)
1497{
1498	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1499	struct btrfs_path *path;
1500	struct btrfs_file_extent_item *fi;
1501	struct extent_buffer *leaf;
1502	int ret;
1503
1504	path = btrfs_alloc_path();
1505	if (!path)
1506		return -ENOMEM;
1507
1508	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1509	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1510				       bytenr, 0);
1511	if (ret < 0)
1512		goto out;
1513	if (ret > 0) {
1514		ret = -ENOENT;
1515		goto out;
1516	}
1517
1518	leaf = path->nodes[0];
1519	fi = btrfs_item_ptr(leaf, path->slots[0],
1520			    struct btrfs_file_extent_item);
1521
1522	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1523	       btrfs_file_extent_compression(leaf, fi) ||
1524	       btrfs_file_extent_encryption(leaf, fi) ||
1525	       btrfs_file_extent_other_encoding(leaf, fi));
1526
1527	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1528		ret = 1;
1529		goto out;
1530	}
1531
1532	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1533	ret = 0;
1534out:
1535	btrfs_free_path(path);
1536	return ret;
1537}
1538
1539/*
1540 * update file extent items in the tree leaf to point to
1541 * the new locations.
1542 */
1543static noinline_for_stack
1544int replace_file_extents(struct btrfs_trans_handle *trans,
1545			 struct reloc_control *rc,
1546			 struct btrfs_root *root,
1547			 struct extent_buffer *leaf)
1548{
 
1549	struct btrfs_key key;
1550	struct btrfs_file_extent_item *fi;
1551	struct inode *inode = NULL;
1552	u64 parent;
1553	u64 bytenr;
1554	u64 new_bytenr = 0;
1555	u64 num_bytes;
1556	u64 end;
1557	u32 nritems;
1558	u32 i;
1559	int ret;
1560	int first = 1;
1561	int dirty = 0;
1562
1563	if (rc->stage != UPDATE_DATA_PTRS)
1564		return 0;
1565
1566	/* reloc trees always use full backref */
1567	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1568		parent = leaf->start;
1569	else
1570		parent = 0;
1571
1572	nritems = btrfs_header_nritems(leaf);
1573	for (i = 0; i < nritems; i++) {
1574		cond_resched();
1575		btrfs_item_key_to_cpu(leaf, &key, i);
1576		if (key.type != BTRFS_EXTENT_DATA_KEY)
1577			continue;
1578		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1579		if (btrfs_file_extent_type(leaf, fi) ==
1580		    BTRFS_FILE_EXTENT_INLINE)
1581			continue;
1582		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1583		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1584		if (bytenr == 0)
1585			continue;
1586		if (!in_block_group(bytenr, rc->block_group))
1587			continue;
1588
1589		/*
1590		 * if we are modifying block in fs tree, wait for readpage
1591		 * to complete and drop the extent cache
1592		 */
1593		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1594			if (first) {
1595				inode = find_next_inode(root, key.objectid);
1596				first = 0;
1597			} else if (inode && btrfs_ino(inode) < key.objectid) {
1598				btrfs_add_delayed_iput(inode);
1599				inode = find_next_inode(root, key.objectid);
1600			}
1601			if (inode && btrfs_ino(inode) == key.objectid) {
1602				end = key.offset +
1603				      btrfs_file_extent_num_bytes(leaf, fi);
1604				WARN_ON(!IS_ALIGNED(key.offset,
1605						    root->sectorsize));
1606				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1607				end--;
1608				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1609						      key.offset, end);
1610				if (!ret)
1611					continue;
1612
1613				btrfs_drop_extent_cache(inode, key.offset, end,
1614							1);
1615				unlock_extent(&BTRFS_I(inode)->io_tree,
1616					      key.offset, end);
1617			}
1618		}
1619
1620		ret = get_new_location(rc->data_inode, &new_bytenr,
1621				       bytenr, num_bytes);
1622		if (ret > 0) {
1623			WARN_ON(1);
1624			continue;
 
 
 
1625		}
1626		BUG_ON(ret < 0);
1627
1628		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1629		dirty = 1;
1630
1631		key.offset -= btrfs_file_extent_offset(leaf, fi);
1632		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1633					   num_bytes, parent,
1634					   btrfs_header_owner(leaf),
1635					   key.objectid, key.offset, 1);
1636		BUG_ON(ret);
 
 
 
1637
1638		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1639					parent, btrfs_header_owner(leaf),
1640					key.objectid, key.offset, 1);
1641		BUG_ON(ret);
 
 
 
1642	}
1643	if (dirty)
1644		btrfs_mark_buffer_dirty(leaf);
1645	if (inode)
1646		btrfs_add_delayed_iput(inode);
1647	return 0;
1648}
1649
1650static noinline_for_stack
1651int memcmp_node_keys(struct extent_buffer *eb, int slot,
1652		     struct btrfs_path *path, int level)
1653{
1654	struct btrfs_disk_key key1;
1655	struct btrfs_disk_key key2;
1656	btrfs_node_key(eb, &key1, slot);
1657	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1658	return memcmp(&key1, &key2, sizeof(key1));
1659}
1660
1661/*
1662 * try to replace tree blocks in fs tree with the new blocks
1663 * in reloc tree. tree blocks haven't been modified since the
1664 * reloc tree was create can be replaced.
1665 *
1666 * if a block was replaced, level of the block + 1 is returned.
1667 * if no block got replaced, 0 is returned. if there are other
1668 * errors, a negative error number is returned.
1669 */
1670static noinline_for_stack
1671int replace_path(struct btrfs_trans_handle *trans,
1672		 struct btrfs_root *dest, struct btrfs_root *src,
1673		 struct btrfs_path *path, struct btrfs_key *next_key,
1674		 int lowest_level, int max_level)
1675{
 
1676	struct extent_buffer *eb;
1677	struct extent_buffer *parent;
1678	struct btrfs_key key;
1679	u64 old_bytenr;
1680	u64 new_bytenr;
1681	u64 old_ptr_gen;
1682	u64 new_ptr_gen;
1683	u64 last_snapshot;
1684	u32 blocksize;
1685	int cow = 0;
1686	int level;
1687	int ret;
1688	int slot;
1689
1690	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1691	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1692
1693	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1694again:
1695	slot = path->slots[lowest_level];
1696	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1697
1698	eb = btrfs_lock_root_node(dest);
1699	btrfs_set_lock_blocking(eb);
1700	level = btrfs_header_level(eb);
1701
1702	if (level < lowest_level) {
1703		btrfs_tree_unlock(eb);
1704		free_extent_buffer(eb);
1705		return 0;
1706	}
1707
1708	if (cow) {
1709		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1710		BUG_ON(ret);
1711	}
1712	btrfs_set_lock_blocking(eb);
1713
1714	if (next_key) {
1715		next_key->objectid = (u64)-1;
1716		next_key->type = (u8)-1;
1717		next_key->offset = (u64)-1;
1718	}
1719
1720	parent = eb;
1721	while (1) {
1722		level = btrfs_header_level(parent);
1723		BUG_ON(level < lowest_level);
1724
1725		ret = btrfs_bin_search(parent, &key, level, &slot);
1726		if (ret && slot > 0)
1727			slot--;
1728
1729		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1730			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1731
1732		old_bytenr = btrfs_node_blockptr(parent, slot);
1733		blocksize = btrfs_level_size(dest, level - 1);
1734		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1735
1736		if (level <= max_level) {
1737			eb = path->nodes[level];
1738			new_bytenr = btrfs_node_blockptr(eb,
1739							path->slots[level]);
1740			new_ptr_gen = btrfs_node_ptr_generation(eb,
1741							path->slots[level]);
1742		} else {
1743			new_bytenr = 0;
1744			new_ptr_gen = 0;
1745		}
1746
1747		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1748			WARN_ON(1);
1749			ret = level;
1750			break;
1751		}
1752
1753		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1754		    memcmp_node_keys(parent, slot, path, level)) {
1755			if (level <= lowest_level) {
1756				ret = 0;
1757				break;
1758			}
1759
1760			eb = read_tree_block(dest, old_bytenr, blocksize,
1761					     old_ptr_gen);
1762			BUG_ON(!eb);
 
 
 
 
 
 
1763			btrfs_tree_lock(eb);
1764			if (cow) {
1765				ret = btrfs_cow_block(trans, dest, eb, parent,
1766						      slot, &eb);
1767				BUG_ON(ret);
1768			}
1769			btrfs_set_lock_blocking(eb);
1770
1771			btrfs_tree_unlock(parent);
1772			free_extent_buffer(parent);
1773
1774			parent = eb;
1775			continue;
1776		}
1777
1778		if (!cow) {
1779			btrfs_tree_unlock(parent);
1780			free_extent_buffer(parent);
1781			cow = 1;
1782			goto again;
1783		}
1784
1785		btrfs_node_key_to_cpu(path->nodes[level], &key,
1786				      path->slots[level]);
1787		btrfs_release_path(path);
1788
1789		path->lowest_level = level;
1790		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1791		path->lowest_level = 0;
1792		BUG_ON(ret);
1793
1794		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795		 * swap blocks in fs tree and reloc tree.
1796		 */
1797		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1798		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1799		btrfs_mark_buffer_dirty(parent);
1800
1801		btrfs_set_node_blockptr(path->nodes[level],
1802					path->slots[level], old_bytenr);
1803		btrfs_set_node_ptr_generation(path->nodes[level],
1804					      path->slots[level], old_ptr_gen);
1805		btrfs_mark_buffer_dirty(path->nodes[level]);
1806
1807		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1808					path->nodes[level]->start,
1809					src->root_key.objectid, level - 1, 0,
1810					1);
1811		BUG_ON(ret);
1812		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1813					0, dest->root_key.objectid, level - 1,
1814					0, 1);
1815		BUG_ON(ret);
1816
1817		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1818					path->nodes[level]->start,
1819					src->root_key.objectid, level - 1, 0,
1820					1);
1821		BUG_ON(ret);
1822
1823		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1824					0, dest->root_key.objectid, level - 1,
1825					0, 1);
1826		BUG_ON(ret);
1827
1828		btrfs_unlock_up_safe(path, 0);
1829
1830		ret = level;
1831		break;
1832	}
1833	btrfs_tree_unlock(parent);
1834	free_extent_buffer(parent);
1835	return ret;
1836}
1837
1838/*
1839 * helper to find next relocated block in reloc tree
1840 */
1841static noinline_for_stack
1842int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1843		       int *level)
1844{
1845	struct extent_buffer *eb;
1846	int i;
1847	u64 last_snapshot;
1848	u32 nritems;
1849
1850	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1851
1852	for (i = 0; i < *level; i++) {
1853		free_extent_buffer(path->nodes[i]);
1854		path->nodes[i] = NULL;
1855	}
1856
1857	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1858		eb = path->nodes[i];
1859		nritems = btrfs_header_nritems(eb);
1860		while (path->slots[i] + 1 < nritems) {
1861			path->slots[i]++;
1862			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1863			    last_snapshot)
1864				continue;
1865
1866			*level = i;
1867			return 0;
1868		}
1869		free_extent_buffer(path->nodes[i]);
1870		path->nodes[i] = NULL;
1871	}
1872	return 1;
1873}
1874
1875/*
1876 * walk down reloc tree to find relocated block of lowest level
1877 */
1878static noinline_for_stack
1879int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1880			 int *level)
1881{
 
1882	struct extent_buffer *eb = NULL;
1883	int i;
1884	u64 bytenr;
1885	u64 ptr_gen = 0;
1886	u64 last_snapshot;
1887	u32 blocksize;
1888	u32 nritems;
1889
1890	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1891
1892	for (i = *level; i > 0; i--) {
1893		eb = path->nodes[i];
1894		nritems = btrfs_header_nritems(eb);
1895		while (path->slots[i] < nritems) {
1896			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1897			if (ptr_gen > last_snapshot)
1898				break;
1899			path->slots[i]++;
1900		}
1901		if (path->slots[i] >= nritems) {
1902			if (i == *level)
1903				break;
1904			*level = i + 1;
1905			return 0;
1906		}
1907		if (i == 1) {
1908			*level = i;
1909			return 0;
1910		}
1911
1912		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1913		blocksize = btrfs_level_size(root, i - 1);
1914		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
 
 
 
 
 
1915		BUG_ON(btrfs_header_level(eb) != i - 1);
1916		path->nodes[i - 1] = eb;
1917		path->slots[i - 1] = 0;
1918	}
1919	return 1;
1920}
1921
1922/*
1923 * invalidate extent cache for file extents whose key in range of
1924 * [min_key, max_key)
1925 */
1926static int invalidate_extent_cache(struct btrfs_root *root,
1927				   struct btrfs_key *min_key,
1928				   struct btrfs_key *max_key)
1929{
 
1930	struct inode *inode = NULL;
1931	u64 objectid;
1932	u64 start, end;
1933	u64 ino;
1934
1935	objectid = min_key->objectid;
1936	while (1) {
1937		cond_resched();
1938		iput(inode);
1939
1940		if (objectid > max_key->objectid)
1941			break;
1942
1943		inode = find_next_inode(root, objectid);
1944		if (!inode)
1945			break;
1946		ino = btrfs_ino(inode);
1947
1948		if (ino > max_key->objectid) {
1949			iput(inode);
1950			break;
1951		}
1952
1953		objectid = ino + 1;
1954		if (!S_ISREG(inode->i_mode))
1955			continue;
1956
1957		if (unlikely(min_key->objectid == ino)) {
1958			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1959				continue;
1960			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1961				start = 0;
1962			else {
1963				start = min_key->offset;
1964				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1965			}
1966		} else {
1967			start = 0;
1968		}
1969
1970		if (unlikely(max_key->objectid == ino)) {
1971			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1972				continue;
1973			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1974				end = (u64)-1;
1975			} else {
1976				if (max_key->offset == 0)
1977					continue;
1978				end = max_key->offset;
1979				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1980				end--;
1981			}
1982		} else {
1983			end = (u64)-1;
1984		}
1985
1986		/* the lock_extent waits for readpage to complete */
1987		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1988		btrfs_drop_extent_cache(inode, start, end, 1);
1989		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1990	}
1991	return 0;
1992}
1993
1994static int find_next_key(struct btrfs_path *path, int level,
1995			 struct btrfs_key *key)
1996
1997{
1998	while (level < BTRFS_MAX_LEVEL) {
1999		if (!path->nodes[level])
2000			break;
2001		if (path->slots[level] + 1 <
2002		    btrfs_header_nritems(path->nodes[level])) {
2003			btrfs_node_key_to_cpu(path->nodes[level], key,
2004					      path->slots[level] + 1);
2005			return 0;
2006		}
2007		level++;
2008	}
2009	return 1;
2010}
2011
2012/*
2013 * merge the relocated tree blocks in reloc tree with corresponding
2014 * fs tree.
2015 */
2016static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2017					       struct btrfs_root *root)
2018{
 
2019	LIST_HEAD(inode_list);
2020	struct btrfs_key key;
2021	struct btrfs_key next_key;
2022	struct btrfs_trans_handle *trans;
2023	struct btrfs_root *reloc_root;
2024	struct btrfs_root_item *root_item;
2025	struct btrfs_path *path;
2026	struct extent_buffer *leaf;
2027	unsigned long nr;
2028	int level;
2029	int max_level;
2030	int replaced = 0;
2031	int ret;
2032	int err = 0;
2033	u32 min_reserved;
2034
2035	path = btrfs_alloc_path();
2036	if (!path)
2037		return -ENOMEM;
2038	path->reada = 1;
2039
2040	reloc_root = root->reloc_root;
2041	root_item = &reloc_root->root_item;
2042
2043	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2044		level = btrfs_root_level(root_item);
2045		extent_buffer_get(reloc_root->node);
2046		path->nodes[level] = reloc_root->node;
2047		path->slots[level] = 0;
2048	} else {
2049		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2050
2051		level = root_item->drop_level;
2052		BUG_ON(level == 0);
2053		path->lowest_level = level;
2054		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2055		path->lowest_level = 0;
2056		if (ret < 0) {
2057			btrfs_free_path(path);
2058			return ret;
2059		}
2060
2061		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2062				      path->slots[level]);
2063		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2064
2065		btrfs_unlock_up_safe(path, 0);
2066	}
2067
2068	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2069	memset(&next_key, 0, sizeof(next_key));
2070
2071	while (1) {
2072		trans = btrfs_start_transaction(root, 0);
2073		BUG_ON(IS_ERR(trans));
2074		trans->block_rsv = rc->block_rsv;
2075
2076		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved);
2077		if (ret) {
2078			BUG_ON(ret != -EAGAIN);
2079			ret = btrfs_commit_transaction(trans, root);
2080			BUG_ON(ret);
2081			continue;
2082		}
 
 
 
 
 
 
 
2083
2084		replaced = 0;
2085		max_level = level;
2086
2087		ret = walk_down_reloc_tree(reloc_root, path, &level);
2088		if (ret < 0) {
2089			err = ret;
2090			goto out;
2091		}
2092		if (ret > 0)
2093			break;
2094
2095		if (!find_next_key(path, level, &key) &&
2096		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2097			ret = 0;
2098		} else {
2099			ret = replace_path(trans, root, reloc_root, path,
2100					   &next_key, level, max_level);
2101		}
2102		if (ret < 0) {
2103			err = ret;
2104			goto out;
2105		}
2106
2107		if (ret > 0) {
2108			level = ret;
2109			btrfs_node_key_to_cpu(path->nodes[level], &key,
2110					      path->slots[level]);
2111			replaced = 1;
2112		}
2113
2114		ret = walk_up_reloc_tree(reloc_root, path, &level);
2115		if (ret > 0)
2116			break;
2117
2118		BUG_ON(level == 0);
2119		/*
2120		 * save the merging progress in the drop_progress.
2121		 * this is OK since root refs == 1 in this case.
2122		 */
2123		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2124			       path->slots[level]);
2125		root_item->drop_level = level;
2126
2127		nr = trans->blocks_used;
2128		btrfs_end_transaction_throttle(trans, root);
2129
2130		btrfs_btree_balance_dirty(root, nr);
2131
2132		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2133			invalidate_extent_cache(root, &key, &next_key);
2134	}
2135
2136	/*
2137	 * handle the case only one block in the fs tree need to be
2138	 * relocated and the block is tree root.
2139	 */
2140	leaf = btrfs_lock_root_node(root);
2141	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2142	btrfs_tree_unlock(leaf);
2143	free_extent_buffer(leaf);
2144	if (ret < 0)
2145		err = ret;
2146out:
2147	btrfs_free_path(path);
2148
2149	if (err == 0) {
2150		memset(&root_item->drop_progress, 0,
2151		       sizeof(root_item->drop_progress));
2152		root_item->drop_level = 0;
2153		btrfs_set_root_refs(root_item, 0);
2154		btrfs_update_reloc_root(trans, root);
2155	}
2156
2157	nr = trans->blocks_used;
2158	btrfs_end_transaction_throttle(trans, root);
2159
2160	btrfs_btree_balance_dirty(root, nr);
2161
2162	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2163		invalidate_extent_cache(root, &key, &next_key);
2164
2165	return err;
2166}
2167
2168static noinline_for_stack
2169int prepare_to_merge(struct reloc_control *rc, int err)
2170{
2171	struct btrfs_root *root = rc->extent_root;
 
2172	struct btrfs_root *reloc_root;
2173	struct btrfs_trans_handle *trans;
2174	LIST_HEAD(reloc_roots);
2175	u64 num_bytes = 0;
2176	int ret;
2177
2178	mutex_lock(&root->fs_info->reloc_mutex);
2179	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2180	rc->merging_rsv_size += rc->nodes_relocated * 2;
2181	mutex_unlock(&root->fs_info->reloc_mutex);
2182
2183again:
2184	if (!err) {
2185		num_bytes = rc->merging_rsv_size;
2186		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes);
 
2187		if (ret)
2188			err = ret;
2189	}
2190
2191	trans = btrfs_join_transaction(rc->extent_root);
2192	if (IS_ERR(trans)) {
2193		if (!err)
2194			btrfs_block_rsv_release(rc->extent_root,
2195						rc->block_rsv, num_bytes);
2196		return PTR_ERR(trans);
2197	}
2198
2199	if (!err) {
2200		if (num_bytes != rc->merging_rsv_size) {
2201			btrfs_end_transaction(trans, rc->extent_root);
2202			btrfs_block_rsv_release(rc->extent_root,
2203						rc->block_rsv, num_bytes);
2204			goto again;
2205		}
2206	}
2207
2208	rc->merge_reloc_tree = 1;
2209
2210	while (!list_empty(&rc->reloc_roots)) {
2211		reloc_root = list_entry(rc->reloc_roots.next,
2212					struct btrfs_root, root_list);
2213		list_del_init(&reloc_root->root_list);
2214
2215		root = read_fs_root(reloc_root->fs_info,
2216				    reloc_root->root_key.offset);
2217		BUG_ON(IS_ERR(root));
2218		BUG_ON(root->reloc_root != reloc_root);
2219
2220		/*
2221		 * set reference count to 1, so btrfs_recover_relocation
2222		 * knows it should resumes merging
2223		 */
2224		if (!err)
2225			btrfs_set_root_refs(&reloc_root->root_item, 1);
2226		btrfs_update_reloc_root(trans, root);
2227
2228		list_add(&reloc_root->root_list, &reloc_roots);
2229	}
2230
2231	list_splice(&reloc_roots, &rc->reloc_roots);
2232
2233	if (!err)
2234		btrfs_commit_transaction(trans, rc->extent_root);
2235	else
2236		btrfs_end_transaction(trans, rc->extent_root);
2237	return err;
2238}
2239
2240static noinline_for_stack
2241int merge_reloc_roots(struct reloc_control *rc)
2242{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2243	struct btrfs_root *root;
2244	struct btrfs_root *reloc_root;
2245	LIST_HEAD(reloc_roots);
2246	int found = 0;
2247	int ret;
2248again:
2249	root = rc->extent_root;
2250
2251	/*
2252	 * this serializes us with btrfs_record_root_in_transaction,
2253	 * we have to make sure nobody is in the middle of
2254	 * adding their roots to the list while we are
2255	 * doing this splice
2256	 */
2257	mutex_lock(&root->fs_info->reloc_mutex);
2258	list_splice_init(&rc->reloc_roots, &reloc_roots);
2259	mutex_unlock(&root->fs_info->reloc_mutex);
2260
2261	while (!list_empty(&reloc_roots)) {
2262		found = 1;
2263		reloc_root = list_entry(reloc_roots.next,
2264					struct btrfs_root, root_list);
2265
2266		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2267			root = read_fs_root(reloc_root->fs_info,
2268					    reloc_root->root_key.offset);
2269			BUG_ON(IS_ERR(root));
2270			BUG_ON(root->reloc_root != reloc_root);
2271
2272			ret = merge_reloc_root(rc, root);
2273			BUG_ON(ret);
 
 
 
 
 
2274		} else {
2275			list_del_init(&reloc_root->root_list);
2276		}
 
2277		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2278		BUG_ON(ret < 0);
 
 
 
 
 
2279	}
2280
2281	if (found) {
2282		found = 0;
2283		goto again;
2284	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2285	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2286	return 0;
2287}
2288
2289static void free_block_list(struct rb_root *blocks)
2290{
2291	struct tree_block *block;
2292	struct rb_node *rb_node;
2293	while ((rb_node = rb_first(blocks))) {
2294		block = rb_entry(rb_node, struct tree_block, rb_node);
2295		rb_erase(rb_node, blocks);
2296		kfree(block);
2297	}
2298}
2299
2300static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2301				      struct btrfs_root *reloc_root)
2302{
 
2303	struct btrfs_root *root;
2304
2305	if (reloc_root->last_trans == trans->transid)
2306		return 0;
2307
2308	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2309	BUG_ON(IS_ERR(root));
2310	BUG_ON(root->reloc_root != reloc_root);
2311
2312	return btrfs_record_root_in_trans(trans, root);
2313}
2314
2315static noinline_for_stack
2316struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2317				     struct reloc_control *rc,
2318				     struct backref_node *node,
2319				     struct backref_edge *edges[], int *nr)
2320{
2321	struct backref_node *next;
2322	struct btrfs_root *root;
2323	int index = 0;
2324
2325	next = node;
2326	while (1) {
2327		cond_resched();
2328		next = walk_up_backref(next, edges, &index);
2329		root = next->root;
2330		BUG_ON(!root);
2331		BUG_ON(!root->ref_cows);
2332
2333		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2334			record_reloc_root_in_trans(trans, root);
2335			break;
2336		}
2337
2338		btrfs_record_root_in_trans(trans, root);
2339		root = root->reloc_root;
2340
2341		if (next->new_bytenr != root->node->start) {
2342			BUG_ON(next->new_bytenr);
2343			BUG_ON(!list_empty(&next->list));
2344			next->new_bytenr = root->node->start;
2345			next->root = root;
2346			list_add_tail(&next->list,
2347				      &rc->backref_cache.changed);
2348			__mark_block_processed(rc, next);
2349			break;
2350		}
2351
2352		WARN_ON(1);
2353		root = NULL;
2354		next = walk_down_backref(edges, &index);
2355		if (!next || next->level <= node->level)
2356			break;
2357	}
2358	if (!root)
2359		return NULL;
2360
2361	*nr = index;
2362	next = node;
2363	/* setup backref node path for btrfs_reloc_cow_block */
2364	while (1) {
2365		rc->backref_cache.path[next->level] = next;
2366		if (--index < 0)
2367			break;
2368		next = edges[index]->node[UPPER];
2369	}
2370	return root;
2371}
2372
2373/*
2374 * select a tree root for relocation. return NULL if the block
2375 * is reference counted. we should use do_relocation() in this
2376 * case. return a tree root pointer if the block isn't reference
2377 * counted. return -ENOENT if the block is root of reloc tree.
2378 */
2379static noinline_for_stack
2380struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2381				   struct backref_node *node)
2382{
2383	struct backref_node *next;
2384	struct btrfs_root *root;
2385	struct btrfs_root *fs_root = NULL;
2386	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2387	int index = 0;
2388
2389	next = node;
2390	while (1) {
2391		cond_resched();
2392		next = walk_up_backref(next, edges, &index);
2393		root = next->root;
2394		BUG_ON(!root);
2395
2396		/* no other choice for non-references counted tree */
2397		if (!root->ref_cows)
2398			return root;
2399
2400		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2401			fs_root = root;
2402
2403		if (next != node)
2404			return NULL;
2405
2406		next = walk_down_backref(edges, &index);
2407		if (!next || next->level <= node->level)
2408			break;
2409	}
2410
2411	if (!fs_root)
2412		return ERR_PTR(-ENOENT);
2413	return fs_root;
2414}
2415
2416static noinline_for_stack
2417u64 calcu_metadata_size(struct reloc_control *rc,
2418			struct backref_node *node, int reserve)
2419{
 
2420	struct backref_node *next = node;
2421	struct backref_edge *edge;
2422	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2423	u64 num_bytes = 0;
2424	int index = 0;
2425
2426	BUG_ON(reserve && node->processed);
2427
2428	while (next) {
2429		cond_resched();
2430		while (1) {
2431			if (next->processed && (reserve || next != node))
2432				break;
2433
2434			num_bytes += btrfs_level_size(rc->extent_root,
2435						      next->level);
2436
2437			if (list_empty(&next->upper))
2438				break;
2439
2440			edge = list_entry(next->upper.next,
2441					  struct backref_edge, list[LOWER]);
2442			edges[index++] = edge;
2443			next = edge->node[UPPER];
2444		}
2445		next = walk_down_backref(edges, &index);
2446	}
2447	return num_bytes;
2448}
2449
2450static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2451				  struct reloc_control *rc,
2452				  struct backref_node *node)
2453{
2454	struct btrfs_root *root = rc->extent_root;
 
2455	u64 num_bytes;
2456	int ret;
 
2457
2458	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2459
2460	trans->block_rsv = rc->block_rsv;
2461	ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes);
 
 
 
 
 
 
 
 
2462	if (ret) {
2463		if (ret == -EAGAIN)
2464			rc->commit_transaction = 1;
2465		return ret;
 
 
 
 
 
 
 
 
 
 
2466	}
2467
2468	return 0;
2469}
2470
2471static void release_metadata_space(struct reloc_control *rc,
2472				   struct backref_node *node)
2473{
2474	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2475	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2476}
2477
2478/*
2479 * relocate a block tree, and then update pointers in upper level
2480 * blocks that reference the block to point to the new location.
2481 *
2482 * if called by link_to_upper, the block has already been relocated.
2483 * in that case this function just updates pointers.
2484 */
2485static int do_relocation(struct btrfs_trans_handle *trans,
2486			 struct reloc_control *rc,
2487			 struct backref_node *node,
2488			 struct btrfs_key *key,
2489			 struct btrfs_path *path, int lowest)
2490{
 
2491	struct backref_node *upper;
2492	struct backref_edge *edge;
2493	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2494	struct btrfs_root *root;
2495	struct extent_buffer *eb;
2496	u32 blocksize;
2497	u64 bytenr;
2498	u64 generation;
2499	int nr;
2500	int slot;
2501	int ret;
2502	int err = 0;
2503
2504	BUG_ON(lowest && node->eb);
2505
2506	path->lowest_level = node->level + 1;
2507	rc->backref_cache.path[node->level] = node;
2508	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2509		cond_resched();
2510
2511		upper = edge->node[UPPER];
2512		root = select_reloc_root(trans, rc, upper, edges, &nr);
2513		BUG_ON(!root);
2514
2515		if (upper->eb && !upper->locked) {
2516			if (!lowest) {
2517				ret = btrfs_bin_search(upper->eb, key,
2518						       upper->level, &slot);
2519				BUG_ON(ret);
2520				bytenr = btrfs_node_blockptr(upper->eb, slot);
2521				if (node->eb->start == bytenr)
2522					goto next;
2523			}
2524			drop_node_buffer(upper);
2525		}
2526
2527		if (!upper->eb) {
2528			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2529			if (ret < 0) {
2530				err = ret;
 
 
 
 
 
2531				break;
2532			}
2533			BUG_ON(ret > 0);
2534
2535			if (!upper->eb) {
2536				upper->eb = path->nodes[upper->level];
2537				path->nodes[upper->level] = NULL;
2538			} else {
2539				BUG_ON(upper->eb != path->nodes[upper->level]);
2540			}
2541
2542			upper->locked = 1;
2543			path->locks[upper->level] = 0;
2544
2545			slot = path->slots[upper->level];
2546			btrfs_release_path(path);
2547		} else {
2548			ret = btrfs_bin_search(upper->eb, key, upper->level,
2549					       &slot);
2550			BUG_ON(ret);
2551		}
2552
2553		bytenr = btrfs_node_blockptr(upper->eb, slot);
2554		if (lowest) {
2555			BUG_ON(bytenr != node->bytenr);
 
 
 
 
 
 
 
2556		} else {
2557			if (node->eb->start == bytenr)
2558				goto next;
2559		}
2560
2561		blocksize = btrfs_level_size(root, node->level);
2562		generation = btrfs_node_ptr_generation(upper->eb, slot);
2563		eb = read_tree_block(root, bytenr, blocksize, generation);
2564		if (!eb) {
 
 
 
 
2565			err = -EIO;
2566			goto next;
2567		}
2568		btrfs_tree_lock(eb);
2569		btrfs_set_lock_blocking(eb);
2570
2571		if (!node->eb) {
2572			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2573					      slot, &eb);
2574			btrfs_tree_unlock(eb);
2575			free_extent_buffer(eb);
2576			if (ret < 0) {
2577				err = ret;
2578				goto next;
2579			}
2580			BUG_ON(node->eb != eb);
2581		} else {
2582			btrfs_set_node_blockptr(upper->eb, slot,
2583						node->eb->start);
2584			btrfs_set_node_ptr_generation(upper->eb, slot,
2585						      trans->transid);
2586			btrfs_mark_buffer_dirty(upper->eb);
2587
2588			ret = btrfs_inc_extent_ref(trans, root,
2589						node->eb->start, blocksize,
2590						upper->eb->start,
2591						btrfs_header_owner(upper->eb),
2592						node->level, 0, 1);
2593			BUG_ON(ret);
2594
2595			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2596			BUG_ON(ret);
2597		}
2598next:
2599		if (!upper->pending)
2600			drop_node_buffer(upper);
2601		else
2602			unlock_node_buffer(upper);
2603		if (err)
2604			break;
2605	}
2606
2607	if (!err && node->pending) {
2608		drop_node_buffer(node);
2609		list_move_tail(&node->list, &rc->backref_cache.changed);
2610		node->pending = 0;
2611	}
2612
2613	path->lowest_level = 0;
2614	BUG_ON(err == -ENOSPC);
2615	return err;
2616}
2617
2618static int link_to_upper(struct btrfs_trans_handle *trans,
2619			 struct reloc_control *rc,
2620			 struct backref_node *node,
2621			 struct btrfs_path *path)
2622{
2623	struct btrfs_key key;
2624
2625	btrfs_node_key_to_cpu(node->eb, &key, 0);
2626	return do_relocation(trans, rc, node, &key, path, 0);
2627}
2628
2629static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2630				struct reloc_control *rc,
2631				struct btrfs_path *path, int err)
2632{
2633	LIST_HEAD(list);
2634	struct backref_cache *cache = &rc->backref_cache;
2635	struct backref_node *node;
2636	int level;
2637	int ret;
2638
2639	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2640		while (!list_empty(&cache->pending[level])) {
2641			node = list_entry(cache->pending[level].next,
2642					  struct backref_node, list);
2643			list_move_tail(&node->list, &list);
2644			BUG_ON(!node->pending);
2645
2646			if (!err) {
2647				ret = link_to_upper(trans, rc, node, path);
2648				if (ret < 0)
2649					err = ret;
2650			}
2651		}
2652		list_splice_init(&list, &cache->pending[level]);
2653	}
2654	return err;
2655}
2656
2657static void mark_block_processed(struct reloc_control *rc,
2658				 u64 bytenr, u32 blocksize)
2659{
2660	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2661			EXTENT_DIRTY, GFP_NOFS);
2662}
2663
2664static void __mark_block_processed(struct reloc_control *rc,
2665				   struct backref_node *node)
2666{
2667	u32 blocksize;
2668	if (node->level == 0 ||
2669	    in_block_group(node->bytenr, rc->block_group)) {
2670		blocksize = btrfs_level_size(rc->extent_root, node->level);
2671		mark_block_processed(rc, node->bytenr, blocksize);
2672	}
2673	node->processed = 1;
2674}
2675
2676/*
2677 * mark a block and all blocks directly/indirectly reference the block
2678 * as processed.
2679 */
2680static void update_processed_blocks(struct reloc_control *rc,
2681				    struct backref_node *node)
2682{
2683	struct backref_node *next = node;
2684	struct backref_edge *edge;
2685	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2686	int index = 0;
2687
2688	while (next) {
2689		cond_resched();
2690		while (1) {
2691			if (next->processed)
2692				break;
2693
2694			__mark_block_processed(rc, next);
2695
2696			if (list_empty(&next->upper))
2697				break;
2698
2699			edge = list_entry(next->upper.next,
2700					  struct backref_edge, list[LOWER]);
2701			edges[index++] = edge;
2702			next = edge->node[UPPER];
2703		}
2704		next = walk_down_backref(edges, &index);
2705	}
2706}
2707
2708static int tree_block_processed(u64 bytenr, u32 blocksize,
2709				struct reloc_control *rc)
2710{
 
 
2711	if (test_range_bit(&rc->processed_blocks, bytenr,
2712			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2713		return 1;
2714	return 0;
2715}
2716
2717static int get_tree_block_key(struct reloc_control *rc,
2718			      struct tree_block *block)
2719{
2720	struct extent_buffer *eb;
2721
2722	BUG_ON(block->key_ready);
2723	eb = read_tree_block(rc->extent_root, block->bytenr,
2724			     block->key.objectid, block->key.offset);
2725	BUG_ON(!eb);
 
 
 
 
2726	WARN_ON(btrfs_header_level(eb) != block->level);
2727	if (block->level == 0)
2728		btrfs_item_key_to_cpu(eb, &block->key, 0);
2729	else
2730		btrfs_node_key_to_cpu(eb, &block->key, 0);
2731	free_extent_buffer(eb);
2732	block->key_ready = 1;
2733	return 0;
2734}
2735
2736static int reada_tree_block(struct reloc_control *rc,
2737			    struct tree_block *block)
2738{
2739	BUG_ON(block->key_ready);
2740	readahead_tree_block(rc->extent_root, block->bytenr,
2741			     block->key.objectid, block->key.offset);
2742	return 0;
2743}
2744
2745/*
2746 * helper function to relocate a tree block
2747 */
2748static int relocate_tree_block(struct btrfs_trans_handle *trans,
2749				struct reloc_control *rc,
2750				struct backref_node *node,
2751				struct btrfs_key *key,
2752				struct btrfs_path *path)
2753{
2754	struct btrfs_root *root;
2755	int release = 0;
2756	int ret = 0;
2757
2758	if (!node)
2759		return 0;
2760
2761	BUG_ON(node->processed);
2762	root = select_one_root(trans, node);
2763	if (root == ERR_PTR(-ENOENT)) {
2764		update_processed_blocks(rc, node);
2765		goto out;
2766	}
2767
2768	if (!root || root->ref_cows) {
2769		ret = reserve_metadata_space(trans, rc, node);
2770		if (ret)
2771			goto out;
2772		release = 1;
2773	}
2774
2775	if (root) {
2776		if (root->ref_cows) {
2777			BUG_ON(node->new_bytenr);
2778			BUG_ON(!list_empty(&node->list));
2779			btrfs_record_root_in_trans(trans, root);
2780			root = root->reloc_root;
2781			node->new_bytenr = root->node->start;
2782			node->root = root;
2783			list_add_tail(&node->list, &rc->backref_cache.changed);
2784		} else {
2785			path->lowest_level = node->level;
2786			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2787			btrfs_release_path(path);
2788			if (ret > 0)
2789				ret = 0;
2790		}
2791		if (!ret)
2792			update_processed_blocks(rc, node);
2793	} else {
2794		ret = do_relocation(trans, rc, node, key, path, 1);
2795	}
2796out:
2797	if (ret || node->level == 0 || node->cowonly) {
2798		if (release)
2799			release_metadata_space(rc, node);
2800		remove_backref_node(&rc->backref_cache, node);
2801	}
2802	return ret;
2803}
2804
2805/*
2806 * relocate a list of blocks
2807 */
2808static noinline_for_stack
2809int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2810			 struct reloc_control *rc, struct rb_root *blocks)
2811{
 
2812	struct backref_node *node;
2813	struct btrfs_path *path;
2814	struct tree_block *block;
2815	struct rb_node *rb_node;
2816	int ret;
2817	int err = 0;
2818
2819	path = btrfs_alloc_path();
2820	if (!path)
2821		return -ENOMEM;
 
 
2822
2823	rb_node = rb_first(blocks);
2824	while (rb_node) {
2825		block = rb_entry(rb_node, struct tree_block, rb_node);
2826		if (!block->key_ready)
2827			reada_tree_block(rc, block);
2828		rb_node = rb_next(rb_node);
2829	}
2830
2831	rb_node = rb_first(blocks);
2832	while (rb_node) {
2833		block = rb_entry(rb_node, struct tree_block, rb_node);
2834		if (!block->key_ready)
2835			get_tree_block_key(rc, block);
 
 
 
2836		rb_node = rb_next(rb_node);
2837	}
2838
2839	rb_node = rb_first(blocks);
2840	while (rb_node) {
2841		block = rb_entry(rb_node, struct tree_block, rb_node);
2842
2843		node = build_backref_tree(rc, &block->key,
2844					  block->level, block->bytenr);
2845		if (IS_ERR(node)) {
2846			err = PTR_ERR(node);
2847			goto out;
2848		}
2849
2850		ret = relocate_tree_block(trans, rc, node, &block->key,
2851					  path);
2852		if (ret < 0) {
2853			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2854				err = ret;
2855			goto out;
2856		}
2857		rb_node = rb_next(rb_node);
2858	}
2859out:
2860	free_block_list(blocks);
2861	err = finish_pending_nodes(trans, rc, path, err);
2862
 
2863	btrfs_free_path(path);
 
 
2864	return err;
2865}
2866
2867static noinline_for_stack
2868int prealloc_file_extent_cluster(struct inode *inode,
2869				 struct file_extent_cluster *cluster)
2870{
2871	u64 alloc_hint = 0;
2872	u64 start;
2873	u64 end;
2874	u64 offset = BTRFS_I(inode)->index_cnt;
2875	u64 num_bytes;
2876	int nr = 0;
2877	int ret = 0;
 
 
 
2878
2879	BUG_ON(cluster->start != cluster->boundary[0]);
2880	mutex_lock(&inode->i_mutex);
2881
2882	ret = btrfs_check_data_free_space(inode, cluster->end +
2883					  1 - cluster->start);
2884	if (ret)
2885		goto out;
2886
 
2887	while (nr < cluster->nr) {
2888		start = cluster->boundary[nr] - offset;
2889		if (nr + 1 < cluster->nr)
2890			end = cluster->boundary[nr + 1] - 1 - offset;
2891		else
2892			end = cluster->end - offset;
2893
2894		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2895		num_bytes = end + 1 - start;
 
 
 
2896		ret = btrfs_prealloc_file_range(inode, 0, start,
2897						num_bytes, num_bytes,
2898						end + 1, &alloc_hint);
 
2899		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2900		if (ret)
2901			break;
2902		nr++;
2903	}
2904	btrfs_free_reserved_data_space(inode, cluster->end +
2905				       1 - cluster->start);
 
2906out:
2907	mutex_unlock(&inode->i_mutex);
2908	return ret;
2909}
2910
2911static noinline_for_stack
2912int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2913			 u64 block_start)
2914{
2915	struct btrfs_root *root = BTRFS_I(inode)->root;
2916	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2917	struct extent_map *em;
2918	int ret = 0;
2919
2920	em = alloc_extent_map();
2921	if (!em)
2922		return -ENOMEM;
2923
2924	em->start = start;
2925	em->len = end + 1 - start;
2926	em->block_len = em->len;
2927	em->block_start = block_start;
2928	em->bdev = root->fs_info->fs_devices->latest_bdev;
2929	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2930
2931	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2932	while (1) {
2933		write_lock(&em_tree->lock);
2934		ret = add_extent_mapping(em_tree, em);
2935		write_unlock(&em_tree->lock);
2936		if (ret != -EEXIST) {
2937			free_extent_map(em);
2938			break;
2939		}
2940		btrfs_drop_extent_cache(inode, start, end, 0);
2941	}
2942	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2943	return ret;
2944}
2945
2946static int relocate_file_extent_cluster(struct inode *inode,
2947					struct file_extent_cluster *cluster)
2948{
 
2949	u64 page_start;
2950	u64 page_end;
2951	u64 offset = BTRFS_I(inode)->index_cnt;
2952	unsigned long index;
2953	unsigned long last_index;
2954	struct page *page;
2955	struct file_ra_state *ra;
2956	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2957	int nr = 0;
2958	int ret = 0;
2959
2960	if (!cluster->nr)
2961		return 0;
2962
2963	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2964	if (!ra)
2965		return -ENOMEM;
2966
2967	ret = prealloc_file_extent_cluster(inode, cluster);
2968	if (ret)
2969		goto out;
2970
2971	file_ra_state_init(ra, inode->i_mapping);
2972
2973	ret = setup_extent_mapping(inode, cluster->start - offset,
2974				   cluster->end - offset, cluster->start);
2975	if (ret)
2976		goto out;
2977
2978	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
2979	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
2980	while (index <= last_index) {
2981		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
2982		if (ret)
2983			goto out;
2984
2985		page = find_lock_page(inode->i_mapping, index);
2986		if (!page) {
2987			page_cache_sync_readahead(inode->i_mapping,
2988						  ra, NULL, index,
2989						  last_index + 1 - index);
2990			page = find_or_create_page(inode->i_mapping, index,
2991						   mask);
2992			if (!page) {
2993				btrfs_delalloc_release_metadata(inode,
2994							PAGE_CACHE_SIZE);
2995				ret = -ENOMEM;
2996				goto out;
2997			}
2998		}
2999
3000		if (PageReadahead(page)) {
3001			page_cache_async_readahead(inode->i_mapping,
3002						   ra, NULL, page, index,
3003						   last_index + 1 - index);
3004		}
3005
3006		if (!PageUptodate(page)) {
3007			btrfs_readpage(NULL, page);
3008			lock_page(page);
3009			if (!PageUptodate(page)) {
3010				unlock_page(page);
3011				page_cache_release(page);
3012				btrfs_delalloc_release_metadata(inode,
3013							PAGE_CACHE_SIZE);
3014				ret = -EIO;
3015				goto out;
3016			}
3017		}
3018
3019		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
3020		page_end = page_start + PAGE_CACHE_SIZE - 1;
3021
3022		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3023
3024		set_page_extent_mapped(page);
3025
3026		if (nr < cluster->nr &&
3027		    page_start + offset == cluster->boundary[nr]) {
3028			set_extent_bits(&BTRFS_I(inode)->io_tree,
3029					page_start, page_end,
3030					EXTENT_BOUNDARY, GFP_NOFS);
3031			nr++;
3032		}
3033
3034		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3035		set_page_dirty(page);
3036
3037		unlock_extent(&BTRFS_I(inode)->io_tree,
3038			      page_start, page_end);
3039		unlock_page(page);
3040		page_cache_release(page);
3041
3042		index++;
3043		balance_dirty_pages_ratelimited(inode->i_mapping);
3044		btrfs_throttle(BTRFS_I(inode)->root);
3045	}
3046	WARN_ON(nr != cluster->nr);
3047out:
3048	kfree(ra);
3049	return ret;
3050}
3051
3052static noinline_for_stack
3053int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3054			 struct file_extent_cluster *cluster)
3055{
3056	int ret;
3057
3058	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3059		ret = relocate_file_extent_cluster(inode, cluster);
3060		if (ret)
3061			return ret;
3062		cluster->nr = 0;
3063	}
3064
3065	if (!cluster->nr)
3066		cluster->start = extent_key->objectid;
3067	else
3068		BUG_ON(cluster->nr >= MAX_EXTENTS);
3069	cluster->end = extent_key->objectid + extent_key->offset - 1;
3070	cluster->boundary[cluster->nr] = extent_key->objectid;
3071	cluster->nr++;
3072
3073	if (cluster->nr >= MAX_EXTENTS) {
3074		ret = relocate_file_extent_cluster(inode, cluster);
3075		if (ret)
3076			return ret;
3077		cluster->nr = 0;
3078	}
3079	return 0;
3080}
3081
3082#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3083static int get_ref_objectid_v0(struct reloc_control *rc,
3084			       struct btrfs_path *path,
3085			       struct btrfs_key *extent_key,
3086			       u64 *ref_objectid, int *path_change)
3087{
3088	struct btrfs_key key;
3089	struct extent_buffer *leaf;
3090	struct btrfs_extent_ref_v0 *ref0;
3091	int ret;
3092	int slot;
3093
3094	leaf = path->nodes[0];
3095	slot = path->slots[0];
3096	while (1) {
3097		if (slot >= btrfs_header_nritems(leaf)) {
3098			ret = btrfs_next_leaf(rc->extent_root, path);
3099			if (ret < 0)
3100				return ret;
3101			BUG_ON(ret > 0);
3102			leaf = path->nodes[0];
3103			slot = path->slots[0];
3104			if (path_change)
3105				*path_change = 1;
3106		}
3107		btrfs_item_key_to_cpu(leaf, &key, slot);
3108		if (key.objectid != extent_key->objectid)
3109			return -ENOENT;
3110
3111		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3112			slot++;
3113			continue;
3114		}
3115		ref0 = btrfs_item_ptr(leaf, slot,
3116				struct btrfs_extent_ref_v0);
3117		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3118		break;
3119	}
3120	return 0;
3121}
3122#endif
3123
3124/*
3125 * helper to add a tree block to the list.
3126 * the major work is getting the generation and level of the block
3127 */
3128static int add_tree_block(struct reloc_control *rc,
3129			  struct btrfs_key *extent_key,
3130			  struct btrfs_path *path,
3131			  struct rb_root *blocks)
3132{
3133	struct extent_buffer *eb;
3134	struct btrfs_extent_item *ei;
3135	struct btrfs_tree_block_info *bi;
3136	struct tree_block *block;
3137	struct rb_node *rb_node;
3138	u32 item_size;
3139	int level = -1;
3140	int generation;
3141
3142	eb =  path->nodes[0];
3143	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3144
3145	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
 
3146		ei = btrfs_item_ptr(eb, path->slots[0],
3147				struct btrfs_extent_item);
3148		bi = (struct btrfs_tree_block_info *)(ei + 1);
 
 
 
 
 
3149		generation = btrfs_extent_generation(eb, ei);
3150		level = btrfs_tree_block_level(eb, bi);
3151	} else {
3152#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3153		u64 ref_owner;
3154		int ret;
3155
3156		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3157		ret = get_ref_objectid_v0(rc, path, extent_key,
3158					  &ref_owner, NULL);
3159		if (ret < 0)
3160			return ret;
3161		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3162		level = (int)ref_owner;
3163		/* FIXME: get real generation */
3164		generation = 0;
3165#else
3166		BUG();
3167#endif
3168	}
3169
3170	btrfs_release_path(path);
3171
3172	BUG_ON(level == -1);
3173
3174	block = kmalloc(sizeof(*block), GFP_NOFS);
3175	if (!block)
3176		return -ENOMEM;
3177
3178	block->bytenr = extent_key->objectid;
3179	block->key.objectid = extent_key->offset;
3180	block->key.offset = generation;
3181	block->level = level;
3182	block->key_ready = 0;
3183
3184	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3185	if (rb_node)
3186		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3187
3188	return 0;
3189}
3190
3191/*
3192 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3193 */
3194static int __add_tree_block(struct reloc_control *rc,
3195			    u64 bytenr, u32 blocksize,
3196			    struct rb_root *blocks)
3197{
 
3198	struct btrfs_path *path;
3199	struct btrfs_key key;
3200	int ret;
 
3201
3202	if (tree_block_processed(bytenr, blocksize, rc))
3203		return 0;
3204
3205	if (tree_search(blocks, bytenr))
3206		return 0;
3207
3208	path = btrfs_alloc_path();
3209	if (!path)
3210		return -ENOMEM;
3211
3212	key.objectid = bytenr;
3213	key.type = BTRFS_EXTENT_ITEM_KEY;
3214	key.offset = blocksize;
 
 
 
 
 
3215
3216	path->search_commit_root = 1;
3217	path->skip_locking = 1;
3218	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3219	if (ret < 0)
3220		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3221	BUG_ON(ret);
3222
3223	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3224	ret = add_tree_block(rc, &key, path, blocks);
3225out:
3226	btrfs_free_path(path);
3227	return ret;
3228}
3229
3230/*
3231 * helper to check if the block use full backrefs for pointers in it
3232 */
3233static int block_use_full_backref(struct reloc_control *rc,
3234				  struct extent_buffer *eb)
3235{
3236	u64 flags;
3237	int ret;
3238
3239	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3240	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3241		return 1;
3242
3243	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3244				       eb->start, eb->len, NULL, &flags);
 
3245	BUG_ON(ret);
3246
3247	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3248		ret = 1;
3249	else
3250		ret = 0;
3251	return ret;
3252}
3253
3254static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3255				    struct inode *inode, u64 ino)
 
 
3256{
3257	struct btrfs_key key;
3258	struct btrfs_path *path;
3259	struct btrfs_root *root = fs_info->tree_root;
3260	struct btrfs_trans_handle *trans;
3261	unsigned long nr;
3262	int ret = 0;
3263
3264	if (inode)
3265		goto truncate;
3266
3267	key.objectid = ino;
3268	key.type = BTRFS_INODE_ITEM_KEY;
3269	key.offset = 0;
3270
3271	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3272	if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) {
3273		if (inode && !IS_ERR(inode))
3274			iput(inode);
3275		return -ENOENT;
3276	}
3277
3278truncate:
3279	path = btrfs_alloc_path();
3280	if (!path) {
3281		ret = -ENOMEM;
3282		goto out;
3283	}
3284
3285	trans = btrfs_join_transaction(root);
3286	if (IS_ERR(trans)) {
3287		btrfs_free_path(path);
3288		ret = PTR_ERR(trans);
3289		goto out;
3290	}
3291
3292	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3293
3294	btrfs_free_path(path);
3295	nr = trans->blocks_used;
3296	btrfs_end_transaction(trans, root);
3297	btrfs_btree_balance_dirty(root, nr);
3298out:
3299	iput(inode);
3300	return ret;
3301}
3302
3303/*
3304 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3305 * this function scans fs tree to find blocks reference the data extent
3306 */
3307static int find_data_references(struct reloc_control *rc,
3308				struct btrfs_key *extent_key,
3309				struct extent_buffer *leaf,
3310				struct btrfs_extent_data_ref *ref,
3311				struct rb_root *blocks)
3312{
 
3313	struct btrfs_path *path;
3314	struct tree_block *block;
3315	struct btrfs_root *root;
3316	struct btrfs_file_extent_item *fi;
3317	struct rb_node *rb_node;
3318	struct btrfs_key key;
3319	u64 ref_root;
3320	u64 ref_objectid;
3321	u64 ref_offset;
3322	u32 ref_count;
3323	u32 nritems;
3324	int err = 0;
3325	int added = 0;
3326	int counted;
3327	int ret;
3328
3329	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3330	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3331	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3332	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3333
3334	/*
3335	 * This is an extent belonging to the free space cache, lets just delete
3336	 * it and redo the search.
3337	 */
3338	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3339		ret = delete_block_group_cache(rc->extent_root->fs_info,
3340					       NULL, ref_objectid);
3341		if (ret != -ENOENT)
3342			return ret;
3343		ret = 0;
3344	}
3345
3346	path = btrfs_alloc_path();
3347	if (!path)
3348		return -ENOMEM;
3349	path->reada = 1;
3350
3351	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3352	if (IS_ERR(root)) {
3353		err = PTR_ERR(root);
3354		goto out;
3355	}
3356
3357	key.objectid = ref_objectid;
3358	key.type = BTRFS_EXTENT_DATA_KEY;
3359	if (ref_offset > ((u64)-1 << 32))
3360		key.offset = 0;
3361	else
3362		key.offset = ref_offset;
3363
3364	path->search_commit_root = 1;
3365	path->skip_locking = 1;
3366	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3367	if (ret < 0) {
3368		err = ret;
3369		goto out;
3370	}
3371
3372	leaf = path->nodes[0];
3373	nritems = btrfs_header_nritems(leaf);
3374	/*
3375	 * the references in tree blocks that use full backrefs
3376	 * are not counted in
3377	 */
3378	if (block_use_full_backref(rc, leaf))
3379		counted = 0;
3380	else
3381		counted = 1;
3382	rb_node = tree_search(blocks, leaf->start);
3383	if (rb_node) {
3384		if (counted)
3385			added = 1;
3386		else
3387			path->slots[0] = nritems;
3388	}
3389
3390	while (ref_count > 0) {
3391		while (path->slots[0] >= nritems) {
3392			ret = btrfs_next_leaf(root, path);
3393			if (ret < 0) {
3394				err = ret;
3395				goto out;
3396			}
3397			if (ret > 0) {
3398				WARN_ON(1);
3399				goto out;
3400			}
3401
3402			leaf = path->nodes[0];
3403			nritems = btrfs_header_nritems(leaf);
3404			added = 0;
3405
3406			if (block_use_full_backref(rc, leaf))
3407				counted = 0;
3408			else
3409				counted = 1;
3410			rb_node = tree_search(blocks, leaf->start);
3411			if (rb_node) {
3412				if (counted)
3413					added = 1;
3414				else
3415					path->slots[0] = nritems;
3416			}
3417		}
3418
3419		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3420		if (key.objectid != ref_objectid ||
3421		    key.type != BTRFS_EXTENT_DATA_KEY) {
3422			WARN_ON(1);
3423			break;
3424		}
3425
3426		fi = btrfs_item_ptr(leaf, path->slots[0],
3427				    struct btrfs_file_extent_item);
3428
3429		if (btrfs_file_extent_type(leaf, fi) ==
3430		    BTRFS_FILE_EXTENT_INLINE)
3431			goto next;
3432
3433		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3434		    extent_key->objectid)
3435			goto next;
3436
3437		key.offset -= btrfs_file_extent_offset(leaf, fi);
3438		if (key.offset != ref_offset)
3439			goto next;
3440
3441		if (counted)
3442			ref_count--;
3443		if (added)
3444			goto next;
3445
3446		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3447			block = kmalloc(sizeof(*block), GFP_NOFS);
3448			if (!block) {
3449				err = -ENOMEM;
3450				break;
3451			}
3452			block->bytenr = leaf->start;
3453			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3454			block->level = 0;
3455			block->key_ready = 1;
3456			rb_node = tree_insert(blocks, block->bytenr,
3457					      &block->rb_node);
3458			if (rb_node)
3459				backref_tree_panic(rb_node, -EEXIST,
3460						   block->bytenr);
3461		}
3462		if (counted)
3463			added = 1;
3464		else
3465			path->slots[0] = nritems;
3466next:
3467		path->slots[0]++;
3468
3469	}
3470out:
3471	btrfs_free_path(path);
3472	return err;
3473}
3474
3475/*
3476 * hepler to find all tree blocks that reference a given data extent
3477 */
3478static noinline_for_stack
3479int add_data_references(struct reloc_control *rc,
3480			struct btrfs_key *extent_key,
3481			struct btrfs_path *path,
3482			struct rb_root *blocks)
3483{
3484	struct btrfs_key key;
3485	struct extent_buffer *eb;
3486	struct btrfs_extent_data_ref *dref;
3487	struct btrfs_extent_inline_ref *iref;
3488	unsigned long ptr;
3489	unsigned long end;
3490	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3491	int ret;
3492	int err = 0;
3493
3494	eb = path->nodes[0];
3495	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3496	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3497#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3498	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3499		ptr = end;
3500	else
3501#endif
3502		ptr += sizeof(struct btrfs_extent_item);
3503
3504	while (ptr < end) {
3505		iref = (struct btrfs_extent_inline_ref *)ptr;
3506		key.type = btrfs_extent_inline_ref_type(eb, iref);
3507		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3508			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3509			ret = __add_tree_block(rc, key.offset, blocksize,
3510					       blocks);
3511		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3512			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3513			ret = find_data_references(rc, extent_key,
3514						   eb, dref, blocks);
3515		} else {
3516			BUG();
3517		}
 
 
 
 
3518		ptr += btrfs_extent_inline_ref_size(key.type);
3519	}
3520	WARN_ON(ptr > end);
3521
3522	while (1) {
3523		cond_resched();
3524		eb = path->nodes[0];
3525		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3526			ret = btrfs_next_leaf(rc->extent_root, path);
3527			if (ret < 0) {
3528				err = ret;
3529				break;
3530			}
3531			if (ret > 0)
3532				break;
3533			eb = path->nodes[0];
3534		}
3535
3536		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3537		if (key.objectid != extent_key->objectid)
3538			break;
3539
3540#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3541		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3542		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3543#else
3544		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3545		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3546#endif
3547			ret = __add_tree_block(rc, key.offset, blocksize,
3548					       blocks);
3549		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3550			dref = btrfs_item_ptr(eb, path->slots[0],
3551					      struct btrfs_extent_data_ref);
3552			ret = find_data_references(rc, extent_key,
3553						   eb, dref, blocks);
3554		} else {
3555			ret = 0;
3556		}
3557		if (ret) {
3558			err = ret;
3559			break;
3560		}
3561		path->slots[0]++;
3562	}
 
3563	btrfs_release_path(path);
3564	if (err)
3565		free_block_list(blocks);
3566	return err;
3567}
3568
3569/*
3570 * hepler to find next unprocessed extent
3571 */
3572static noinline_for_stack
3573int find_next_extent(struct btrfs_trans_handle *trans,
3574		     struct reloc_control *rc, struct btrfs_path *path,
3575		     struct btrfs_key *extent_key)
3576{
 
3577	struct btrfs_key key;
3578	struct extent_buffer *leaf;
3579	u64 start, end, last;
3580	int ret;
3581
3582	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3583	while (1) {
3584		cond_resched();
3585		if (rc->search_start >= last) {
3586			ret = 1;
3587			break;
3588		}
3589
3590		key.objectid = rc->search_start;
3591		key.type = BTRFS_EXTENT_ITEM_KEY;
3592		key.offset = 0;
3593
3594		path->search_commit_root = 1;
3595		path->skip_locking = 1;
3596		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3597					0, 0);
3598		if (ret < 0)
3599			break;
3600next:
3601		leaf = path->nodes[0];
3602		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3603			ret = btrfs_next_leaf(rc->extent_root, path);
3604			if (ret != 0)
3605				break;
3606			leaf = path->nodes[0];
3607		}
3608
3609		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3610		if (key.objectid >= last) {
3611			ret = 1;
3612			break;
3613		}
3614
3615		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
 
 
 
 
 
 
3616		    key.objectid + key.offset <= rc->search_start) {
3617			path->slots[0]++;
3618			goto next;
3619		}
3620
 
 
 
 
 
 
 
3621		ret = find_first_extent_bit(&rc->processed_blocks,
3622					    key.objectid, &start, &end,
3623					    EXTENT_DIRTY);
3624
3625		if (ret == 0 && start <= key.objectid) {
3626			btrfs_release_path(path);
3627			rc->search_start = end + 1;
3628		} else {
3629			rc->search_start = key.objectid + key.offset;
 
 
 
 
3630			memcpy(extent_key, &key, sizeof(key));
3631			return 0;
3632		}
3633	}
3634	btrfs_release_path(path);
3635	return ret;
3636}
3637
3638static void set_reloc_control(struct reloc_control *rc)
3639{
3640	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3641
3642	mutex_lock(&fs_info->reloc_mutex);
3643	fs_info->reloc_ctl = rc;
3644	mutex_unlock(&fs_info->reloc_mutex);
3645}
3646
3647static void unset_reloc_control(struct reloc_control *rc)
3648{
3649	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3650
3651	mutex_lock(&fs_info->reloc_mutex);
3652	fs_info->reloc_ctl = NULL;
3653	mutex_unlock(&fs_info->reloc_mutex);
3654}
3655
3656static int check_extent_flags(u64 flags)
3657{
3658	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3659	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3660		return 1;
3661	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3662	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3663		return 1;
3664	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3665	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3666		return 1;
3667	return 0;
3668}
3669
3670static noinline_for_stack
3671int prepare_to_relocate(struct reloc_control *rc)
3672{
3673	struct btrfs_trans_handle *trans;
3674	int ret;
3675
3676	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root);
 
3677	if (!rc->block_rsv)
3678		return -ENOMEM;
3679
3680	/*
3681	 * reserve some space for creating reloc trees.
3682	 * btrfs_init_reloc_root will use them when there
3683	 * is no reservation in transaction handle.
3684	 */
3685	ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv,
3686				  rc->extent_root->nodesize * 256);
3687	if (ret)
3688		return ret;
3689
3690	memset(&rc->cluster, 0, sizeof(rc->cluster));
3691	rc->search_start = rc->block_group->key.objectid;
3692	rc->extents_found = 0;
3693	rc->nodes_relocated = 0;
3694	rc->merging_rsv_size = 0;
 
 
 
 
 
 
 
 
3695
3696	rc->create_reloc_tree = 1;
3697	set_reloc_control(rc);
3698
3699	trans = btrfs_join_transaction(rc->extent_root);
3700	BUG_ON(IS_ERR(trans));
3701	btrfs_commit_transaction(trans, rc->extent_root);
 
 
 
 
 
 
 
 
3702	return 0;
3703}
3704
3705static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3706{
 
3707	struct rb_root blocks = RB_ROOT;
3708	struct btrfs_key key;
3709	struct btrfs_trans_handle *trans = NULL;
3710	struct btrfs_path *path;
3711	struct btrfs_extent_item *ei;
3712	unsigned long nr;
3713	u64 flags;
3714	u32 item_size;
3715	int ret;
3716	int err = 0;
3717	int progress = 0;
3718
3719	path = btrfs_alloc_path();
3720	if (!path)
3721		return -ENOMEM;
3722	path->reada = 1;
3723
3724	ret = prepare_to_relocate(rc);
3725	if (ret) {
3726		err = ret;
3727		goto out_free;
3728	}
3729
3730	while (1) {
 
 
 
 
 
 
 
 
3731		progress++;
3732		trans = btrfs_start_transaction(rc->extent_root, 0);
3733		BUG_ON(IS_ERR(trans));
 
 
 
 
3734restart:
3735		if (update_backref_cache(trans, &rc->backref_cache)) {
3736			btrfs_end_transaction(trans, rc->extent_root);
3737			continue;
3738		}
3739
3740		ret = find_next_extent(trans, rc, path, &key);
3741		if (ret < 0)
3742			err = ret;
3743		if (ret != 0)
3744			break;
3745
3746		rc->extents_found++;
3747
3748		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3749				    struct btrfs_extent_item);
3750		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3751		if (item_size >= sizeof(*ei)) {
3752			flags = btrfs_extent_flags(path->nodes[0], ei);
3753			ret = check_extent_flags(flags);
3754			BUG_ON(ret);
3755
3756		} else {
3757#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3758			u64 ref_owner;
3759			int path_change = 0;
3760
3761			BUG_ON(item_size !=
3762			       sizeof(struct btrfs_extent_item_v0));
3763			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3764						  &path_change);
 
 
 
 
3765			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3766				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3767			else
3768				flags = BTRFS_EXTENT_FLAG_DATA;
3769
3770			if (path_change) {
3771				btrfs_release_path(path);
3772
3773				path->search_commit_root = 1;
3774				path->skip_locking = 1;
3775				ret = btrfs_search_slot(NULL, rc->extent_root,
3776							&key, path, 0, 0);
3777				if (ret < 0) {
3778					err = ret;
3779					break;
3780				}
3781				BUG_ON(ret > 0);
3782			}
3783#else
3784			BUG();
3785#endif
3786		}
3787
3788		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3789			ret = add_tree_block(rc, &key, path, &blocks);
3790		} else if (rc->stage == UPDATE_DATA_PTRS &&
3791			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3792			ret = add_data_references(rc, &key, path, &blocks);
3793		} else {
3794			btrfs_release_path(path);
3795			ret = 0;
3796		}
3797		if (ret < 0) {
3798			err = ret;
3799			break;
3800		}
3801
3802		if (!RB_EMPTY_ROOT(&blocks)) {
3803			ret = relocate_tree_blocks(trans, rc, &blocks);
3804			if (ret < 0) {
 
 
 
 
 
 
3805				if (ret != -EAGAIN) {
3806					err = ret;
3807					break;
3808				}
3809				rc->extents_found--;
3810				rc->search_start = key.objectid;
3811			}
3812		}
3813
3814		ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5);
3815		if (ret < 0) {
3816			if (ret != -ENOSPC) {
3817				err = ret;
3818				WARN_ON(1);
3819				break;
3820			}
3821			rc->commit_transaction = 1;
3822		}
3823
3824		if (rc->commit_transaction) {
3825			rc->commit_transaction = 0;
3826			ret = btrfs_commit_transaction(trans, rc->extent_root);
3827			BUG_ON(ret);
3828		} else {
3829			nr = trans->blocks_used;
3830			btrfs_end_transaction_throttle(trans, rc->extent_root);
3831			btrfs_btree_balance_dirty(rc->extent_root, nr);
3832		}
3833		trans = NULL;
3834
3835		if (rc->stage == MOVE_DATA_EXTENTS &&
3836		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3837			rc->found_file_extent = 1;
3838			ret = relocate_data_extent(rc->data_inode,
3839						   &key, &rc->cluster);
3840			if (ret < 0) {
3841				err = ret;
3842				break;
3843			}
3844		}
3845	}
3846	if (trans && progress && err == -ENOSPC) {
3847		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
3848					      rc->block_group->flags);
3849		if (ret == 0) {
3850			err = 0;
3851			progress = 0;
3852			goto restart;
3853		}
3854	}
3855
3856	btrfs_release_path(path);
3857	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3858			  GFP_NOFS);
3859
3860	if (trans) {
3861		nr = trans->blocks_used;
3862		btrfs_end_transaction_throttle(trans, rc->extent_root);
3863		btrfs_btree_balance_dirty(rc->extent_root, nr);
3864	}
3865
3866	if (!err) {
3867		ret = relocate_file_extent_cluster(rc->data_inode,
3868						   &rc->cluster);
3869		if (ret < 0)
3870			err = ret;
3871	}
3872
3873	rc->create_reloc_tree = 0;
3874	set_reloc_control(rc);
3875
3876	backref_cache_cleanup(&rc->backref_cache);
3877	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3878
3879	err = prepare_to_merge(rc, err);
3880
3881	merge_reloc_roots(rc);
3882
3883	rc->merge_reloc_tree = 0;
3884	unset_reloc_control(rc);
3885	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3886
3887	/* get rid of pinned extents */
3888	trans = btrfs_join_transaction(rc->extent_root);
3889	if (IS_ERR(trans))
3890		err = PTR_ERR(trans);
3891	else
3892		btrfs_commit_transaction(trans, rc->extent_root);
 
3893out_free:
3894	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
3895	btrfs_free_path(path);
3896	return err;
3897}
3898
3899static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3900				 struct btrfs_root *root, u64 objectid)
3901{
3902	struct btrfs_path *path;
3903	struct btrfs_inode_item *item;
3904	struct extent_buffer *leaf;
3905	int ret;
3906
3907	path = btrfs_alloc_path();
3908	if (!path)
3909		return -ENOMEM;
3910
3911	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3912	if (ret)
3913		goto out;
3914
3915	leaf = path->nodes[0];
3916	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3917	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3918	btrfs_set_inode_generation(leaf, item, 1);
3919	btrfs_set_inode_size(leaf, item, 0);
3920	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3921	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3922					  BTRFS_INODE_PREALLOC);
3923	btrfs_mark_buffer_dirty(leaf);
3924	btrfs_release_path(path);
3925out:
3926	btrfs_free_path(path);
3927	return ret;
3928}
3929
3930/*
3931 * helper to create inode for data relocation.
3932 * the inode is in data relocation tree and its link count is 0
3933 */
3934static noinline_for_stack
3935struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3936				 struct btrfs_block_group_cache *group)
3937{
3938	struct inode *inode = NULL;
3939	struct btrfs_trans_handle *trans;
3940	struct btrfs_root *root;
3941	struct btrfs_key key;
3942	unsigned long nr;
3943	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3944	int err = 0;
3945
3946	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3947	if (IS_ERR(root))
3948		return ERR_CAST(root);
3949
3950	trans = btrfs_start_transaction(root, 6);
3951	if (IS_ERR(trans))
3952		return ERR_CAST(trans);
3953
3954	err = btrfs_find_free_objectid(root, &objectid);
3955	if (err)
3956		goto out;
3957
3958	err = __insert_orphan_inode(trans, root, objectid);
3959	BUG_ON(err);
3960
3961	key.objectid = objectid;
3962	key.type = BTRFS_INODE_ITEM_KEY;
3963	key.offset = 0;
3964	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
3965	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3966	BTRFS_I(inode)->index_cnt = group->key.objectid;
3967
3968	err = btrfs_orphan_add(trans, inode);
3969out:
3970	nr = trans->blocks_used;
3971	btrfs_end_transaction(trans, root);
3972	btrfs_btree_balance_dirty(root, nr);
3973	if (err) {
3974		if (inode)
3975			iput(inode);
3976		inode = ERR_PTR(err);
3977	}
3978	return inode;
3979}
3980
3981static struct reloc_control *alloc_reloc_control(void)
3982{
3983	struct reloc_control *rc;
3984
3985	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3986	if (!rc)
3987		return NULL;
3988
3989	INIT_LIST_HEAD(&rc->reloc_roots);
3990	backref_cache_init(&rc->backref_cache);
3991	mapping_tree_init(&rc->reloc_root_tree);
3992	extent_io_tree_init(&rc->processed_blocks, NULL);
 
3993	return rc;
3994}
3995
3996/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3997 * function to relocate all extents in a block group.
3998 */
3999int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4000{
4001	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4002	struct reloc_control *rc;
4003	struct inode *inode;
4004	struct btrfs_path *path;
4005	int ret;
4006	int rw = 0;
4007	int err = 0;
4008
4009	rc = alloc_reloc_control();
4010	if (!rc)
4011		return -ENOMEM;
4012
4013	rc->extent_root = extent_root;
4014
4015	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4016	BUG_ON(!rc->block_group);
4017
4018	if (!rc->block_group->ro) {
4019		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4020		if (ret) {
4021			err = ret;
4022			goto out;
4023		}
4024		rw = 1;
4025	}
 
4026
4027	path = btrfs_alloc_path();
4028	if (!path) {
4029		err = -ENOMEM;
4030		goto out;
4031	}
4032
4033	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4034					path);
4035	btrfs_free_path(path);
4036
4037	if (!IS_ERR(inode))
4038		ret = delete_block_group_cache(fs_info, inode, 0);
4039	else
4040		ret = PTR_ERR(inode);
4041
4042	if (ret && ret != -ENOENT) {
4043		err = ret;
4044		goto out;
4045	}
4046
4047	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4048	if (IS_ERR(rc->data_inode)) {
4049		err = PTR_ERR(rc->data_inode);
4050		rc->data_inode = NULL;
4051		goto out;
4052	}
4053
4054	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4055	       (unsigned long long)rc->block_group->key.objectid,
4056	       (unsigned long long)rc->block_group->flags);
4057
4058	btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
4059	btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
 
 
 
4060
4061	while (1) {
4062		mutex_lock(&fs_info->cleaner_mutex);
4063
4064		btrfs_clean_old_snapshots(fs_info->tree_root);
4065		ret = relocate_block_group(rc);
4066
4067		mutex_unlock(&fs_info->cleaner_mutex);
4068		if (ret < 0) {
4069			err = ret;
4070			goto out;
4071		}
4072
4073		if (rc->extents_found == 0)
4074			break;
4075
4076		printk(KERN_INFO "btrfs: found %llu extents\n",
4077			(unsigned long long)rc->extents_found);
4078
4079		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4080			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
 
 
 
 
 
4081			invalidate_mapping_pages(rc->data_inode->i_mapping,
4082						 0, -1);
4083			rc->stage = UPDATE_DATA_PTRS;
4084		}
4085	}
4086
4087	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4088				     rc->block_group->key.objectid,
4089				     rc->block_group->key.objectid +
4090				     rc->block_group->key.offset - 1);
4091
4092	WARN_ON(rc->block_group->pinned > 0);
4093	WARN_ON(rc->block_group->reserved > 0);
4094	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4095out:
4096	if (err && rw)
4097		btrfs_set_block_group_rw(extent_root, rc->block_group);
4098	iput(rc->data_inode);
4099	btrfs_put_block_group(rc->block_group);
4100	kfree(rc);
4101	return err;
4102}
4103
4104static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4105{
 
4106	struct btrfs_trans_handle *trans;
4107	int ret, err;
4108
4109	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4110	if (IS_ERR(trans))
4111		return PTR_ERR(trans);
4112
4113	memset(&root->root_item.drop_progress, 0,
4114		sizeof(root->root_item.drop_progress));
4115	root->root_item.drop_level = 0;
4116	btrfs_set_root_refs(&root->root_item, 0);
4117	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4118				&root->root_key, &root->root_item);
4119
4120	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4121	if (err)
4122		return err;
4123	return ret;
4124}
4125
4126/*
4127 * recover relocation interrupted by system crash.
4128 *
4129 * this function resumes merging reloc trees with corresponding fs trees.
4130 * this is important for keeping the sharing of tree blocks
4131 */
4132int btrfs_recover_relocation(struct btrfs_root *root)
4133{
 
4134	LIST_HEAD(reloc_roots);
4135	struct btrfs_key key;
4136	struct btrfs_root *fs_root;
4137	struct btrfs_root *reloc_root;
4138	struct btrfs_path *path;
4139	struct extent_buffer *leaf;
4140	struct reloc_control *rc = NULL;
4141	struct btrfs_trans_handle *trans;
4142	int ret;
4143	int err = 0;
4144
4145	path = btrfs_alloc_path();
4146	if (!path)
4147		return -ENOMEM;
4148	path->reada = -1;
4149
4150	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4151	key.type = BTRFS_ROOT_ITEM_KEY;
4152	key.offset = (u64)-1;
4153
4154	while (1) {
4155		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4156					path, 0, 0);
4157		if (ret < 0) {
4158			err = ret;
4159			goto out;
4160		}
4161		if (ret > 0) {
4162			if (path->slots[0] == 0)
4163				break;
4164			path->slots[0]--;
4165		}
4166		leaf = path->nodes[0];
4167		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4168		btrfs_release_path(path);
4169
4170		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4171		    key.type != BTRFS_ROOT_ITEM_KEY)
4172			break;
4173
4174		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4175		if (IS_ERR(reloc_root)) {
4176			err = PTR_ERR(reloc_root);
4177			goto out;
4178		}
4179
4180		list_add(&reloc_root->root_list, &reloc_roots);
4181
4182		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4183			fs_root = read_fs_root(root->fs_info,
4184					       reloc_root->root_key.offset);
4185			if (IS_ERR(fs_root)) {
4186				ret = PTR_ERR(fs_root);
4187				if (ret != -ENOENT) {
4188					err = ret;
4189					goto out;
4190				}
4191				ret = mark_garbage_root(reloc_root);
4192				if (ret < 0) {
4193					err = ret;
4194					goto out;
4195				}
4196			}
4197		}
4198
4199		if (key.offset == 0)
4200			break;
4201
4202		key.offset--;
4203	}
4204	btrfs_release_path(path);
4205
4206	if (list_empty(&reloc_roots))
4207		goto out;
4208
4209	rc = alloc_reloc_control();
4210	if (!rc) {
4211		err = -ENOMEM;
4212		goto out;
4213	}
4214
4215	rc->extent_root = root->fs_info->extent_root;
4216
4217	set_reloc_control(rc);
4218
4219	trans = btrfs_join_transaction(rc->extent_root);
4220	if (IS_ERR(trans)) {
4221		unset_reloc_control(rc);
4222		err = PTR_ERR(trans);
4223		goto out_free;
4224	}
4225
4226	rc->merge_reloc_tree = 1;
4227
4228	while (!list_empty(&reloc_roots)) {
4229		reloc_root = list_entry(reloc_roots.next,
4230					struct btrfs_root, root_list);
4231		list_del(&reloc_root->root_list);
4232
4233		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4234			list_add_tail(&reloc_root->root_list,
4235				      &rc->reloc_roots);
4236			continue;
4237		}
4238
4239		fs_root = read_fs_root(root->fs_info,
4240				       reloc_root->root_key.offset);
4241		if (IS_ERR(fs_root)) {
4242			err = PTR_ERR(fs_root);
4243			goto out_free;
4244		}
4245
4246		err = __add_reloc_root(reloc_root);
4247		BUG_ON(err < 0); /* -ENOMEM or logic error */
4248		fs_root->reloc_root = reloc_root;
4249	}
4250
4251	err = btrfs_commit_transaction(trans, rc->extent_root);
4252	if (err)
4253		goto out_free;
4254
4255	merge_reloc_roots(rc);
4256
4257	unset_reloc_control(rc);
4258
4259	trans = btrfs_join_transaction(rc->extent_root);
4260	if (IS_ERR(trans))
4261		err = PTR_ERR(trans);
4262	else
4263		err = btrfs_commit_transaction(trans, rc->extent_root);
 
4264out_free:
4265	kfree(rc);
4266out:
4267	while (!list_empty(&reloc_roots)) {
4268		reloc_root = list_entry(reloc_roots.next,
4269					struct btrfs_root, root_list);
4270		list_del(&reloc_root->root_list);
4271		free_extent_buffer(reloc_root->node);
4272		free_extent_buffer(reloc_root->commit_root);
4273		kfree(reloc_root);
4274	}
4275	btrfs_free_path(path);
4276
4277	if (err == 0) {
4278		/* cleanup orphan inode in data relocation tree */
4279		fs_root = read_fs_root(root->fs_info,
4280				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4281		if (IS_ERR(fs_root))
4282			err = PTR_ERR(fs_root);
4283		else
4284			err = btrfs_orphan_cleanup(fs_root);
4285	}
4286	return err;
4287}
4288
4289/*
4290 * helper to add ordered checksum for data relocation.
4291 *
4292 * cloning checksum properly handles the nodatasum extents.
4293 * it also saves CPU time to re-calculate the checksum.
4294 */
4295int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4296{
 
4297	struct btrfs_ordered_sum *sums;
4298	struct btrfs_sector_sum *sector_sum;
4299	struct btrfs_ordered_extent *ordered;
4300	struct btrfs_root *root = BTRFS_I(inode)->root;
4301	size_t offset;
4302	int ret;
4303	u64 disk_bytenr;
 
4304	LIST_HEAD(list);
4305
4306	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4307	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4308
4309	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4310	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4311				       disk_bytenr + len - 1, &list, 0);
4312	if (ret)
4313		goto out;
4314
4315	while (!list_empty(&list)) {
4316		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4317		list_del_init(&sums->list);
4318
4319		sector_sum = sums->sums;
4320		sums->bytenr = ordered->start;
4321
4322		offset = 0;
4323		while (offset < sums->len) {
4324			sector_sum->bytenr += ordered->start - disk_bytenr;
4325			sector_sum++;
4326			offset += root->sectorsize;
4327		}
 
 
 
 
 
4328
4329		btrfs_add_ordered_sum(inode, ordered, sums);
4330	}
4331out:
4332	btrfs_put_ordered_extent(ordered);
4333	return ret;
4334}
4335
4336void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4337			   struct btrfs_root *root, struct extent_buffer *buf,
4338			   struct extent_buffer *cow)
4339{
 
4340	struct reloc_control *rc;
4341	struct backref_node *node;
4342	int first_cow = 0;
4343	int level;
4344	int ret;
4345
4346	rc = root->fs_info->reloc_ctl;
4347	if (!rc)
4348		return;
4349
4350	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4351	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4352
 
 
 
 
 
4353	level = btrfs_header_level(buf);
4354	if (btrfs_header_generation(buf) <=
4355	    btrfs_root_last_snapshot(&root->root_item))
4356		first_cow = 1;
4357
4358	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4359	    rc->create_reloc_tree) {
4360		WARN_ON(!first_cow && level == 0);
4361
4362		node = rc->backref_cache.path[level];
4363		BUG_ON(node->bytenr != buf->start &&
4364		       node->new_bytenr != buf->start);
4365
4366		drop_node_buffer(node);
4367		extent_buffer_get(cow);
4368		node->eb = cow;
4369		node->new_bytenr = cow->start;
4370
4371		if (!node->pending) {
4372			list_move_tail(&node->list,
4373				       &rc->backref_cache.pending[level]);
4374			node->pending = 1;
4375		}
4376
4377		if (first_cow)
4378			__mark_block_processed(rc, node);
4379
4380		if (first_cow && level > 0)
4381			rc->nodes_relocated += buf->len;
4382	}
4383
4384	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4385		ret = replace_file_extents(trans, rc, root, cow);
4386		BUG_ON(ret);
4387	}
4388}
4389
4390/*
4391 * called before creating snapshot. it calculates metadata reservation
4392 * requried for relocating tree blocks in the snapshot
4393 */
4394void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4395			      struct btrfs_pending_snapshot *pending,
4396			      u64 *bytes_to_reserve)
4397{
4398	struct btrfs_root *root;
4399	struct reloc_control *rc;
4400
4401	root = pending->root;
4402	if (!root->reloc_root)
4403		return;
4404
4405	rc = root->fs_info->reloc_ctl;
4406	if (!rc->merge_reloc_tree)
4407		return;
4408
4409	root = root->reloc_root;
4410	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4411	/*
4412	 * relocation is in the stage of merging trees. the space
4413	 * used by merging a reloc tree is twice the size of
4414	 * relocated tree nodes in the worst case. half for cowing
4415	 * the reloc tree, half for cowing the fs tree. the space
4416	 * used by cowing the reloc tree will be freed after the
4417	 * tree is dropped. if we create snapshot, cowing the fs
4418	 * tree may use more space than it frees. so we need
4419	 * reserve extra space.
4420	 */
4421	*bytes_to_reserve += rc->nodes_relocated;
4422}
4423
4424/*
4425 * called after snapshot is created. migrate block reservation
4426 * and create reloc root for the newly created snapshot
4427 */
4428int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4429			       struct btrfs_pending_snapshot *pending)
4430{
4431	struct btrfs_root *root = pending->root;
4432	struct btrfs_root *reloc_root;
4433	struct btrfs_root *new_root;
4434	struct reloc_control *rc;
4435	int ret;
4436
4437	if (!root->reloc_root)
4438		return 0;
4439
4440	rc = root->fs_info->reloc_ctl;
4441	rc->merging_rsv_size += rc->nodes_relocated;
4442
4443	if (rc->merge_reloc_tree) {
4444		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4445					      rc->block_rsv,
4446					      rc->nodes_relocated);
4447		if (ret)
4448			return ret;
4449	}
4450
4451	new_root = pending->snap;
4452	reloc_root = create_reloc_root(trans, root->reloc_root,
4453				       new_root->root_key.objectid);
4454	if (IS_ERR(reloc_root))
4455		return PTR_ERR(reloc_root);
4456
4457	ret = __add_reloc_root(reloc_root);
4458	BUG_ON(ret < 0);
4459	new_root->reloc_root = reloc_root;
4460
4461	if (rc->create_reloc_tree)
4462		ret = clone_backref_node(trans, rc, root, reloc_root);
4463	return ret;
4464}
v4.10.11
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
  34#include "qgroup.h"
  35
  36/*
  37 * backref_node, mapping_node and tree_block start with this
  38 */
  39struct tree_entry {
  40	struct rb_node rb_node;
  41	u64 bytenr;
  42};
  43
  44/*
  45 * present a tree block in the backref cache
  46 */
  47struct backref_node {
  48	struct rb_node rb_node;
  49	u64 bytenr;
  50
  51	u64 new_bytenr;
  52	/* objectid of tree block owner, can be not uptodate */
  53	u64 owner;
  54	/* link to pending, changed or detached list */
  55	struct list_head list;
  56	/* list of upper level blocks reference this block */
  57	struct list_head upper;
  58	/* list of child blocks in the cache */
  59	struct list_head lower;
  60	/* NULL if this node is not tree root */
  61	struct btrfs_root *root;
  62	/* extent buffer got by COW the block */
  63	struct extent_buffer *eb;
  64	/* level of tree block */
  65	unsigned int level:8;
  66	/* is the block in non-reference counted tree */
  67	unsigned int cowonly:1;
  68	/* 1 if no child node in the cache */
  69	unsigned int lowest:1;
  70	/* is the extent buffer locked */
  71	unsigned int locked:1;
  72	/* has the block been processed */
  73	unsigned int processed:1;
  74	/* have backrefs of this block been checked */
  75	unsigned int checked:1;
  76	/*
  77	 * 1 if corresponding block has been cowed but some upper
  78	 * level block pointers may not point to the new location
  79	 */
  80	unsigned int pending:1;
  81	/*
  82	 * 1 if the backref node isn't connected to any other
  83	 * backref node.
  84	 */
  85	unsigned int detached:1;
  86};
  87
  88/*
  89 * present a block pointer in the backref cache
  90 */
  91struct backref_edge {
  92	struct list_head list[2];
  93	struct backref_node *node[2];
  94};
  95
  96#define LOWER	0
  97#define UPPER	1
  98#define RELOCATION_RESERVED_NODES	256
  99
 100struct backref_cache {
 101	/* red black tree of all backref nodes in the cache */
 102	struct rb_root rb_root;
 103	/* for passing backref nodes to btrfs_reloc_cow_block */
 104	struct backref_node *path[BTRFS_MAX_LEVEL];
 105	/*
 106	 * list of blocks that have been cowed but some block
 107	 * pointers in upper level blocks may not reflect the
 108	 * new location
 109	 */
 110	struct list_head pending[BTRFS_MAX_LEVEL];
 111	/* list of backref nodes with no child node */
 112	struct list_head leaves;
 113	/* list of blocks that have been cowed in current transaction */
 114	struct list_head changed;
 115	/* list of detached backref node. */
 116	struct list_head detached;
 117
 118	u64 last_trans;
 119
 120	int nr_nodes;
 121	int nr_edges;
 122};
 123
 124/*
 125 * map address of tree root to tree
 126 */
 127struct mapping_node {
 128	struct rb_node rb_node;
 129	u64 bytenr;
 130	void *data;
 131};
 132
 133struct mapping_tree {
 134	struct rb_root rb_root;
 135	spinlock_t lock;
 136};
 137
 138/*
 139 * present a tree block to process
 140 */
 141struct tree_block {
 142	struct rb_node rb_node;
 143	u64 bytenr;
 144	struct btrfs_key key;
 145	unsigned int level:8;
 146	unsigned int key_ready:1;
 147};
 148
 149#define MAX_EXTENTS 128
 150
 151struct file_extent_cluster {
 152	u64 start;
 153	u64 end;
 154	u64 boundary[MAX_EXTENTS];
 155	unsigned int nr;
 156};
 157
 158struct reloc_control {
 159	/* block group to relocate */
 160	struct btrfs_block_group_cache *block_group;
 161	/* extent tree */
 162	struct btrfs_root *extent_root;
 163	/* inode for moving data */
 164	struct inode *data_inode;
 165
 166	struct btrfs_block_rsv *block_rsv;
 167
 168	struct backref_cache backref_cache;
 169
 170	struct file_extent_cluster cluster;
 171	/* tree blocks have been processed */
 172	struct extent_io_tree processed_blocks;
 173	/* map start of tree root to corresponding reloc tree */
 174	struct mapping_tree reloc_root_tree;
 175	/* list of reloc trees */
 176	struct list_head reloc_roots;
 177	/* size of metadata reservation for merging reloc trees */
 178	u64 merging_rsv_size;
 179	/* size of relocated tree nodes */
 180	u64 nodes_relocated;
 181	/* reserved size for block group relocation*/
 182	u64 reserved_bytes;
 183
 184	u64 search_start;
 185	u64 extents_found;
 186
 187	unsigned int stage:8;
 188	unsigned int create_reloc_tree:1;
 189	unsigned int merge_reloc_tree:1;
 190	unsigned int found_file_extent:1;
 
 191};
 192
 193/* stages of data relocation */
 194#define MOVE_DATA_EXTENTS	0
 195#define UPDATE_DATA_PTRS	1
 196
 197static void remove_backref_node(struct backref_cache *cache,
 198				struct backref_node *node);
 199static void __mark_block_processed(struct reloc_control *rc,
 200				   struct backref_node *node);
 201
 202static void mapping_tree_init(struct mapping_tree *tree)
 203{
 204	tree->rb_root = RB_ROOT;
 205	spin_lock_init(&tree->lock);
 206}
 207
 208static void backref_cache_init(struct backref_cache *cache)
 209{
 210	int i;
 211	cache->rb_root = RB_ROOT;
 212	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 213		INIT_LIST_HEAD(&cache->pending[i]);
 214	INIT_LIST_HEAD(&cache->changed);
 215	INIT_LIST_HEAD(&cache->detached);
 216	INIT_LIST_HEAD(&cache->leaves);
 217}
 218
 219static void backref_cache_cleanup(struct backref_cache *cache)
 220{
 221	struct backref_node *node;
 222	int i;
 223
 224	while (!list_empty(&cache->detached)) {
 225		node = list_entry(cache->detached.next,
 226				  struct backref_node, list);
 227		remove_backref_node(cache, node);
 228	}
 229
 230	while (!list_empty(&cache->leaves)) {
 231		node = list_entry(cache->leaves.next,
 232				  struct backref_node, lower);
 233		remove_backref_node(cache, node);
 234	}
 235
 236	cache->last_trans = 0;
 237
 238	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 239		ASSERT(list_empty(&cache->pending[i]));
 240	ASSERT(list_empty(&cache->changed));
 241	ASSERT(list_empty(&cache->detached));
 242	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
 243	ASSERT(!cache->nr_nodes);
 244	ASSERT(!cache->nr_edges);
 245}
 246
 247static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 248{
 249	struct backref_node *node;
 250
 251	node = kzalloc(sizeof(*node), GFP_NOFS);
 252	if (node) {
 253		INIT_LIST_HEAD(&node->list);
 254		INIT_LIST_HEAD(&node->upper);
 255		INIT_LIST_HEAD(&node->lower);
 256		RB_CLEAR_NODE(&node->rb_node);
 257		cache->nr_nodes++;
 258	}
 259	return node;
 260}
 261
 262static void free_backref_node(struct backref_cache *cache,
 263			      struct backref_node *node)
 264{
 265	if (node) {
 266		cache->nr_nodes--;
 267		kfree(node);
 268	}
 269}
 270
 271static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 272{
 273	struct backref_edge *edge;
 274
 275	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 276	if (edge)
 277		cache->nr_edges++;
 278	return edge;
 279}
 280
 281static void free_backref_edge(struct backref_cache *cache,
 282			      struct backref_edge *edge)
 283{
 284	if (edge) {
 285		cache->nr_edges--;
 286		kfree(edge);
 287	}
 288}
 289
 290static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 291				   struct rb_node *node)
 292{
 293	struct rb_node **p = &root->rb_node;
 294	struct rb_node *parent = NULL;
 295	struct tree_entry *entry;
 296
 297	while (*p) {
 298		parent = *p;
 299		entry = rb_entry(parent, struct tree_entry, rb_node);
 300
 301		if (bytenr < entry->bytenr)
 302			p = &(*p)->rb_left;
 303		else if (bytenr > entry->bytenr)
 304			p = &(*p)->rb_right;
 305		else
 306			return parent;
 307	}
 308
 309	rb_link_node(node, parent, p);
 310	rb_insert_color(node, root);
 311	return NULL;
 312}
 313
 314static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 315{
 316	struct rb_node *n = root->rb_node;
 317	struct tree_entry *entry;
 318
 319	while (n) {
 320		entry = rb_entry(n, struct tree_entry, rb_node);
 321
 322		if (bytenr < entry->bytenr)
 323			n = n->rb_left;
 324		else if (bytenr > entry->bytenr)
 325			n = n->rb_right;
 326		else
 327			return n;
 328	}
 329	return NULL;
 330}
 331
 332static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
 
 333{
 334
 335	struct btrfs_fs_info *fs_info = NULL;
 336	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 337					      rb_node);
 338	if (bnode->root)
 339		fs_info = bnode->root->fs_info;
 340	btrfs_panic(fs_info, errno,
 341		    "Inconsistency in backref cache found at offset %llu",
 342		    bytenr);
 343}
 344
 345/*
 346 * walk up backref nodes until reach node presents tree root
 347 */
 348static struct backref_node *walk_up_backref(struct backref_node *node,
 349					    struct backref_edge *edges[],
 350					    int *index)
 351{
 352	struct backref_edge *edge;
 353	int idx = *index;
 354
 355	while (!list_empty(&node->upper)) {
 356		edge = list_entry(node->upper.next,
 357				  struct backref_edge, list[LOWER]);
 358		edges[idx++] = edge;
 359		node = edge->node[UPPER];
 360	}
 361	BUG_ON(node->detached);
 362	*index = idx;
 363	return node;
 364}
 365
 366/*
 367 * walk down backref nodes to find start of next reference path
 368 */
 369static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 370					      int *index)
 371{
 372	struct backref_edge *edge;
 373	struct backref_node *lower;
 374	int idx = *index;
 375
 376	while (idx > 0) {
 377		edge = edges[idx - 1];
 378		lower = edge->node[LOWER];
 379		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 380			idx--;
 381			continue;
 382		}
 383		edge = list_entry(edge->list[LOWER].next,
 384				  struct backref_edge, list[LOWER]);
 385		edges[idx - 1] = edge;
 386		*index = idx;
 387		return edge->node[UPPER];
 388	}
 389	*index = 0;
 390	return NULL;
 391}
 392
 393static void unlock_node_buffer(struct backref_node *node)
 394{
 395	if (node->locked) {
 396		btrfs_tree_unlock(node->eb);
 397		node->locked = 0;
 398	}
 399}
 400
 401static void drop_node_buffer(struct backref_node *node)
 402{
 403	if (node->eb) {
 404		unlock_node_buffer(node);
 405		free_extent_buffer(node->eb);
 406		node->eb = NULL;
 407	}
 408}
 409
 410static void drop_backref_node(struct backref_cache *tree,
 411			      struct backref_node *node)
 412{
 413	BUG_ON(!list_empty(&node->upper));
 414
 415	drop_node_buffer(node);
 416	list_del(&node->list);
 417	list_del(&node->lower);
 418	if (!RB_EMPTY_NODE(&node->rb_node))
 419		rb_erase(&node->rb_node, &tree->rb_root);
 420	free_backref_node(tree, node);
 421}
 422
 423/*
 424 * remove a backref node from the backref cache
 425 */
 426static void remove_backref_node(struct backref_cache *cache,
 427				struct backref_node *node)
 428{
 429	struct backref_node *upper;
 430	struct backref_edge *edge;
 431
 432	if (!node)
 433		return;
 434
 435	BUG_ON(!node->lowest && !node->detached);
 436	while (!list_empty(&node->upper)) {
 437		edge = list_entry(node->upper.next, struct backref_edge,
 438				  list[LOWER]);
 439		upper = edge->node[UPPER];
 440		list_del(&edge->list[LOWER]);
 441		list_del(&edge->list[UPPER]);
 442		free_backref_edge(cache, edge);
 443
 444		if (RB_EMPTY_NODE(&upper->rb_node)) {
 445			BUG_ON(!list_empty(&node->upper));
 446			drop_backref_node(cache, node);
 447			node = upper;
 448			node->lowest = 1;
 449			continue;
 450		}
 451		/*
 452		 * add the node to leaf node list if no other
 453		 * child block cached.
 454		 */
 455		if (list_empty(&upper->lower)) {
 456			list_add_tail(&upper->lower, &cache->leaves);
 457			upper->lowest = 1;
 458		}
 459	}
 460
 461	drop_backref_node(cache, node);
 462}
 463
 464static void update_backref_node(struct backref_cache *cache,
 465				struct backref_node *node, u64 bytenr)
 466{
 467	struct rb_node *rb_node;
 468	rb_erase(&node->rb_node, &cache->rb_root);
 469	node->bytenr = bytenr;
 470	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 471	if (rb_node)
 472		backref_tree_panic(rb_node, -EEXIST, bytenr);
 473}
 474
 475/*
 476 * update backref cache after a transaction commit
 477 */
 478static int update_backref_cache(struct btrfs_trans_handle *trans,
 479				struct backref_cache *cache)
 480{
 481	struct backref_node *node;
 482	int level = 0;
 483
 484	if (cache->last_trans == 0) {
 485		cache->last_trans = trans->transid;
 486		return 0;
 487	}
 488
 489	if (cache->last_trans == trans->transid)
 490		return 0;
 491
 492	/*
 493	 * detached nodes are used to avoid unnecessary backref
 494	 * lookup. transaction commit changes the extent tree.
 495	 * so the detached nodes are no longer useful.
 496	 */
 497	while (!list_empty(&cache->detached)) {
 498		node = list_entry(cache->detached.next,
 499				  struct backref_node, list);
 500		remove_backref_node(cache, node);
 501	}
 502
 503	while (!list_empty(&cache->changed)) {
 504		node = list_entry(cache->changed.next,
 505				  struct backref_node, list);
 506		list_del_init(&node->list);
 507		BUG_ON(node->pending);
 508		update_backref_node(cache, node, node->new_bytenr);
 509	}
 510
 511	/*
 512	 * some nodes can be left in the pending list if there were
 513	 * errors during processing the pending nodes.
 514	 */
 515	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 516		list_for_each_entry(node, &cache->pending[level], list) {
 517			BUG_ON(!node->pending);
 518			if (node->bytenr == node->new_bytenr)
 519				continue;
 520			update_backref_node(cache, node, node->new_bytenr);
 521		}
 522	}
 523
 524	cache->last_trans = 0;
 525	return 1;
 526}
 527
 528
 529static int should_ignore_root(struct btrfs_root *root)
 530{
 531	struct btrfs_root *reloc_root;
 532
 533	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 534		return 0;
 535
 536	reloc_root = root->reloc_root;
 537	if (!reloc_root)
 538		return 0;
 539
 540	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 541	    root->fs_info->running_transaction->transid - 1)
 542		return 0;
 543	/*
 544	 * if there is reloc tree and it was created in previous
 545	 * transaction backref lookup can find the reloc tree,
 546	 * so backref node for the fs tree root is useless for
 547	 * relocation.
 548	 */
 549	return 1;
 550}
 551/*
 552 * find reloc tree by address of tree root
 553 */
 554static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 555					  u64 bytenr)
 556{
 557	struct rb_node *rb_node;
 558	struct mapping_node *node;
 559	struct btrfs_root *root = NULL;
 560
 561	spin_lock(&rc->reloc_root_tree.lock);
 562	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 563	if (rb_node) {
 564		node = rb_entry(rb_node, struct mapping_node, rb_node);
 565		root = (struct btrfs_root *)node->data;
 566	}
 567	spin_unlock(&rc->reloc_root_tree.lock);
 568	return root;
 569}
 570
 571static int is_cowonly_root(u64 root_objectid)
 572{
 573	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 574	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 575	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 576	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 577	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 578	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
 579	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
 580	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
 581	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
 582		return 1;
 583	return 0;
 584}
 585
 586static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 587					u64 root_objectid)
 588{
 589	struct btrfs_key key;
 590
 591	key.objectid = root_objectid;
 592	key.type = BTRFS_ROOT_ITEM_KEY;
 593	if (is_cowonly_root(root_objectid))
 594		key.offset = 0;
 595	else
 596		key.offset = (u64)-1;
 597
 598	return btrfs_get_fs_root(fs_info, &key, false);
 599}
 600
 601#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 602static noinline_for_stack
 603struct btrfs_root *find_tree_root(struct reloc_control *rc,
 604				  struct extent_buffer *leaf,
 605				  struct btrfs_extent_ref_v0 *ref0)
 606{
 607	struct btrfs_root *root;
 608	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 609	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 610
 611	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 612
 613	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 614	BUG_ON(IS_ERR(root));
 615
 616	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 617	    generation != btrfs_root_generation(&root->root_item))
 618		return NULL;
 619
 620	return root;
 621}
 622#endif
 623
 624static noinline_for_stack
 625int find_inline_backref(struct extent_buffer *leaf, int slot,
 626			unsigned long *ptr, unsigned long *end)
 627{
 628	struct btrfs_key key;
 629	struct btrfs_extent_item *ei;
 630	struct btrfs_tree_block_info *bi;
 631	u32 item_size;
 632
 633	btrfs_item_key_to_cpu(leaf, &key, slot);
 634
 635	item_size = btrfs_item_size_nr(leaf, slot);
 636#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 637	if (item_size < sizeof(*ei)) {
 638		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 639		return 1;
 640	}
 641#endif
 642	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 643	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 644		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 645
 646	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 647	    item_size <= sizeof(*ei) + sizeof(*bi)) {
 648		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 649		return 1;
 650	}
 651	if (key.type == BTRFS_METADATA_ITEM_KEY &&
 652	    item_size <= sizeof(*ei)) {
 653		WARN_ON(item_size < sizeof(*ei));
 654		return 1;
 655	}
 656
 657	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 658		bi = (struct btrfs_tree_block_info *)(ei + 1);
 659		*ptr = (unsigned long)(bi + 1);
 660	} else {
 661		*ptr = (unsigned long)(ei + 1);
 662	}
 663	*end = (unsigned long)ei + item_size;
 664	return 0;
 665}
 666
 667/*
 668 * build backref tree for a given tree block. root of the backref tree
 669 * corresponds the tree block, leaves of the backref tree correspond
 670 * roots of b-trees that reference the tree block.
 671 *
 672 * the basic idea of this function is check backrefs of a given block
 673 * to find upper level blocks that reference the block, and then check
 674 * backrefs of these upper level blocks recursively. the recursion stop
 675 * when tree root is reached or backrefs for the block is cached.
 676 *
 677 * NOTE: if we find backrefs for a block are cached, we know backrefs
 678 * for all upper level blocks that directly/indirectly reference the
 679 * block are also cached.
 680 */
 681static noinline_for_stack
 682struct backref_node *build_backref_tree(struct reloc_control *rc,
 683					struct btrfs_key *node_key,
 684					int level, u64 bytenr)
 685{
 686	struct backref_cache *cache = &rc->backref_cache;
 687	struct btrfs_path *path1;
 688	struct btrfs_path *path2;
 689	struct extent_buffer *eb;
 690	struct btrfs_root *root;
 691	struct backref_node *cur;
 692	struct backref_node *upper;
 693	struct backref_node *lower;
 694	struct backref_node *node = NULL;
 695	struct backref_node *exist = NULL;
 696	struct backref_edge *edge;
 697	struct rb_node *rb_node;
 698	struct btrfs_key key;
 699	unsigned long end;
 700	unsigned long ptr;
 701	LIST_HEAD(list);
 702	LIST_HEAD(useless);
 703	int cowonly;
 704	int ret;
 705	int err = 0;
 706	bool need_check = true;
 707
 708	path1 = btrfs_alloc_path();
 709	path2 = btrfs_alloc_path();
 710	if (!path1 || !path2) {
 711		err = -ENOMEM;
 712		goto out;
 713	}
 714	path1->reada = READA_FORWARD;
 715	path2->reada = READA_FORWARD;
 716
 717	node = alloc_backref_node(cache);
 718	if (!node) {
 719		err = -ENOMEM;
 720		goto out;
 721	}
 722
 723	node->bytenr = bytenr;
 724	node->level = level;
 725	node->lowest = 1;
 726	cur = node;
 727again:
 728	end = 0;
 729	ptr = 0;
 730	key.objectid = cur->bytenr;
 731	key.type = BTRFS_METADATA_ITEM_KEY;
 732	key.offset = (u64)-1;
 733
 734	path1->search_commit_root = 1;
 735	path1->skip_locking = 1;
 736	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 737				0, 0);
 738	if (ret < 0) {
 739		err = ret;
 740		goto out;
 741	}
 742	ASSERT(ret);
 743	ASSERT(path1->slots[0]);
 744
 745	path1->slots[0]--;
 746
 747	WARN_ON(cur->checked);
 748	if (!list_empty(&cur->upper)) {
 749		/*
 750		 * the backref was added previously when processing
 751		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 752		 */
 753		ASSERT(list_is_singular(&cur->upper));
 754		edge = list_entry(cur->upper.next, struct backref_edge,
 755				  list[LOWER]);
 756		ASSERT(list_empty(&edge->list[UPPER]));
 757		exist = edge->node[UPPER];
 758		/*
 759		 * add the upper level block to pending list if we need
 760		 * check its backrefs
 761		 */
 762		if (!exist->checked)
 763			list_add_tail(&edge->list[UPPER], &list);
 764	} else {
 765		exist = NULL;
 766	}
 767
 768	while (1) {
 769		cond_resched();
 770		eb = path1->nodes[0];
 771
 772		if (ptr >= end) {
 773			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 774				ret = btrfs_next_leaf(rc->extent_root, path1);
 775				if (ret < 0) {
 776					err = ret;
 777					goto out;
 778				}
 779				if (ret > 0)
 780					break;
 781				eb = path1->nodes[0];
 782			}
 783
 784			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 785			if (key.objectid != cur->bytenr) {
 786				WARN_ON(exist);
 787				break;
 788			}
 789
 790			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 791			    key.type == BTRFS_METADATA_ITEM_KEY) {
 792				ret = find_inline_backref(eb, path1->slots[0],
 793							  &ptr, &end);
 794				if (ret)
 795					goto next;
 796			}
 797		}
 798
 799		if (ptr < end) {
 800			/* update key for inline back ref */
 801			struct btrfs_extent_inline_ref *iref;
 802			iref = (struct btrfs_extent_inline_ref *)ptr;
 803			key.type = btrfs_extent_inline_ref_type(eb, iref);
 804			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 805			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 806				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 807		}
 808
 809		if (exist &&
 810		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 811		      exist->owner == key.offset) ||
 812		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 813		      exist->bytenr == key.offset))) {
 814			exist = NULL;
 815			goto next;
 816		}
 817
 818#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 819		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 820		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 821			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 822				struct btrfs_extent_ref_v0 *ref0;
 823				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 824						struct btrfs_extent_ref_v0);
 825				if (key.objectid == key.offset) {
 826					root = find_tree_root(rc, eb, ref0);
 827					if (root && !should_ignore_root(root))
 828						cur->root = root;
 829					else
 830						list_add(&cur->list, &useless);
 831					break;
 832				}
 833				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 834								      ref0)))
 835					cur->cowonly = 1;
 836			}
 837#else
 838		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
 839		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 840#endif
 841			if (key.objectid == key.offset) {
 842				/*
 843				 * only root blocks of reloc trees use
 844				 * backref of this type.
 845				 */
 846				root = find_reloc_root(rc, cur->bytenr);
 847				ASSERT(root);
 848				cur->root = root;
 849				break;
 850			}
 851
 852			edge = alloc_backref_edge(cache);
 853			if (!edge) {
 854				err = -ENOMEM;
 855				goto out;
 856			}
 857			rb_node = tree_search(&cache->rb_root, key.offset);
 858			if (!rb_node) {
 859				upper = alloc_backref_node(cache);
 860				if (!upper) {
 861					free_backref_edge(cache, edge);
 862					err = -ENOMEM;
 863					goto out;
 864				}
 865				upper->bytenr = key.offset;
 866				upper->level = cur->level + 1;
 867				/*
 868				 *  backrefs for the upper level block isn't
 869				 *  cached, add the block to pending list
 870				 */
 871				list_add_tail(&edge->list[UPPER], &list);
 872			} else {
 873				upper = rb_entry(rb_node, struct backref_node,
 874						 rb_node);
 875				ASSERT(upper->checked);
 876				INIT_LIST_HEAD(&edge->list[UPPER]);
 877			}
 878			list_add_tail(&edge->list[LOWER], &cur->upper);
 879			edge->node[LOWER] = cur;
 880			edge->node[UPPER] = upper;
 881
 882			goto next;
 883		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 884			goto next;
 885		}
 886
 887		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 888		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 889		if (IS_ERR(root)) {
 890			err = PTR_ERR(root);
 891			goto out;
 892		}
 893
 894		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
 895			cur->cowonly = 1;
 896
 897		if (btrfs_root_level(&root->root_item) == cur->level) {
 898			/* tree root */
 899			ASSERT(btrfs_root_bytenr(&root->root_item) ==
 900			       cur->bytenr);
 901			if (should_ignore_root(root))
 902				list_add(&cur->list, &useless);
 903			else
 904				cur->root = root;
 905			break;
 906		}
 907
 908		level = cur->level + 1;
 909
 910		/*
 911		 * searching the tree to find upper level blocks
 912		 * reference the block.
 913		 */
 914		path2->search_commit_root = 1;
 915		path2->skip_locking = 1;
 916		path2->lowest_level = level;
 917		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 918		path2->lowest_level = 0;
 919		if (ret < 0) {
 920			err = ret;
 921			goto out;
 922		}
 923		if (ret > 0 && path2->slots[level] > 0)
 924			path2->slots[level]--;
 925
 926		eb = path2->nodes[level];
 927		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
 928		    cur->bytenr) {
 929			btrfs_err(root->fs_info,
 930	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
 931				  cur->bytenr, level - 1, root->objectid,
 932				  node_key->objectid, node_key->type,
 933				  node_key->offset);
 934			err = -ENOENT;
 935			goto out;
 936		}
 937		lower = cur;
 938		need_check = true;
 939		for (; level < BTRFS_MAX_LEVEL; level++) {
 940			if (!path2->nodes[level]) {
 941				ASSERT(btrfs_root_bytenr(&root->root_item) ==
 942				       lower->bytenr);
 943				if (should_ignore_root(root))
 944					list_add(&lower->list, &useless);
 945				else
 946					lower->root = root;
 947				break;
 948			}
 949
 950			edge = alloc_backref_edge(cache);
 951			if (!edge) {
 952				err = -ENOMEM;
 953				goto out;
 954			}
 955
 956			eb = path2->nodes[level];
 957			rb_node = tree_search(&cache->rb_root, eb->start);
 958			if (!rb_node) {
 959				upper = alloc_backref_node(cache);
 960				if (!upper) {
 961					free_backref_edge(cache, edge);
 962					err = -ENOMEM;
 963					goto out;
 964				}
 965				upper->bytenr = eb->start;
 966				upper->owner = btrfs_header_owner(eb);
 967				upper->level = lower->level + 1;
 968				if (!test_bit(BTRFS_ROOT_REF_COWS,
 969					      &root->state))
 970					upper->cowonly = 1;
 971
 972				/*
 973				 * if we know the block isn't shared
 974				 * we can void checking its backrefs.
 975				 */
 976				if (btrfs_block_can_be_shared(root, eb))
 977					upper->checked = 0;
 978				else
 979					upper->checked = 1;
 980
 981				/*
 982				 * add the block to pending list if we
 983				 * need check its backrefs, we only do this once
 984				 * while walking up a tree as we will catch
 985				 * anything else later on.
 
 
 986				 */
 987				if (!upper->checked && need_check) {
 988					need_check = false;
 989					list_add_tail(&edge->list[UPPER],
 990						      &list);
 991				} else {
 992					if (upper->checked)
 993						need_check = true;
 994					INIT_LIST_HEAD(&edge->list[UPPER]);
 995				}
 996			} else {
 997				upper = rb_entry(rb_node, struct backref_node,
 998						 rb_node);
 999				ASSERT(upper->checked);
1000				INIT_LIST_HEAD(&edge->list[UPPER]);
1001				if (!upper->owner)
1002					upper->owner = btrfs_header_owner(eb);
1003			}
1004			list_add_tail(&edge->list[LOWER], &lower->upper);
1005			edge->node[LOWER] = lower;
1006			edge->node[UPPER] = upper;
1007
1008			if (rb_node)
1009				break;
1010			lower = upper;
1011			upper = NULL;
1012		}
1013		btrfs_release_path(path2);
1014next:
1015		if (ptr < end) {
1016			ptr += btrfs_extent_inline_ref_size(key.type);
1017			if (ptr >= end) {
1018				WARN_ON(ptr > end);
1019				ptr = 0;
1020				end = 0;
1021			}
1022		}
1023		if (ptr >= end)
1024			path1->slots[0]++;
1025	}
1026	btrfs_release_path(path1);
1027
1028	cur->checked = 1;
1029	WARN_ON(exist);
1030
1031	/* the pending list isn't empty, take the first block to process */
1032	if (!list_empty(&list)) {
1033		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1034		list_del_init(&edge->list[UPPER]);
1035		cur = edge->node[UPPER];
1036		goto again;
1037	}
1038
1039	/*
1040	 * everything goes well, connect backref nodes and insert backref nodes
1041	 * into the cache.
1042	 */
1043	ASSERT(node->checked);
1044	cowonly = node->cowonly;
1045	if (!cowonly) {
1046		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1047				      &node->rb_node);
1048		if (rb_node)
1049			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1050		list_add_tail(&node->lower, &cache->leaves);
1051	}
1052
1053	list_for_each_entry(edge, &node->upper, list[LOWER])
1054		list_add_tail(&edge->list[UPPER], &list);
1055
1056	while (!list_empty(&list)) {
1057		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1058		list_del_init(&edge->list[UPPER]);
1059		upper = edge->node[UPPER];
1060		if (upper->detached) {
1061			list_del(&edge->list[LOWER]);
1062			lower = edge->node[LOWER];
1063			free_backref_edge(cache, edge);
1064			if (list_empty(&lower->upper))
1065				list_add(&lower->list, &useless);
1066			continue;
1067		}
1068
1069		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1070			if (upper->lowest) {
1071				list_del_init(&upper->lower);
1072				upper->lowest = 0;
1073			}
1074
1075			list_add_tail(&edge->list[UPPER], &upper->lower);
1076			continue;
1077		}
1078
1079		if (!upper->checked) {
1080			/*
1081			 * Still want to blow up for developers since this is a
1082			 * logic bug.
1083			 */
1084			ASSERT(0);
1085			err = -EINVAL;
1086			goto out;
1087		}
1088		if (cowonly != upper->cowonly) {
1089			ASSERT(0);
1090			err = -EINVAL;
1091			goto out;
1092		}
1093
1094		if (!cowonly) {
1095			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1096					      &upper->rb_node);
1097			if (rb_node)
1098				backref_tree_panic(rb_node, -EEXIST,
1099						   upper->bytenr);
1100		}
1101
1102		list_add_tail(&edge->list[UPPER], &upper->lower);
1103
1104		list_for_each_entry(edge, &upper->upper, list[LOWER])
1105			list_add_tail(&edge->list[UPPER], &list);
1106	}
1107	/*
1108	 * process useless backref nodes. backref nodes for tree leaves
1109	 * are deleted from the cache. backref nodes for upper level
1110	 * tree blocks are left in the cache to avoid unnecessary backref
1111	 * lookup.
1112	 */
1113	while (!list_empty(&useless)) {
1114		upper = list_entry(useless.next, struct backref_node, list);
1115		list_del_init(&upper->list);
1116		ASSERT(list_empty(&upper->upper));
1117		if (upper == node)
1118			node = NULL;
1119		if (upper->lowest) {
1120			list_del_init(&upper->lower);
1121			upper->lowest = 0;
1122		}
1123		while (!list_empty(&upper->lower)) {
1124			edge = list_entry(upper->lower.next,
1125					  struct backref_edge, list[UPPER]);
1126			list_del(&edge->list[UPPER]);
1127			list_del(&edge->list[LOWER]);
1128			lower = edge->node[LOWER];
1129			free_backref_edge(cache, edge);
1130
1131			if (list_empty(&lower->upper))
1132				list_add(&lower->list, &useless);
1133		}
1134		__mark_block_processed(rc, upper);
1135		if (upper->level > 0) {
1136			list_add(&upper->list, &cache->detached);
1137			upper->detached = 1;
1138		} else {
1139			rb_erase(&upper->rb_node, &cache->rb_root);
1140			free_backref_node(cache, upper);
1141		}
1142	}
1143out:
1144	btrfs_free_path(path1);
1145	btrfs_free_path(path2);
1146	if (err) {
1147		while (!list_empty(&useless)) {
1148			lower = list_entry(useless.next,
1149					   struct backref_node, list);
1150			list_del_init(&lower->list);
1151		}
1152		while (!list_empty(&list)) {
1153			edge = list_first_entry(&list, struct backref_edge,
1154						list[UPPER]);
1155			list_del(&edge->list[UPPER]);
 
 
 
 
 
 
 
 
 
1156			list_del(&edge->list[LOWER]);
1157			lower = edge->node[LOWER];
1158			upper = edge->node[UPPER];
1159			free_backref_edge(cache, edge);
1160
1161			/*
1162			 * Lower is no longer linked to any upper backref nodes
1163			 * and isn't in the cache, we can free it ourselves.
1164			 */
1165			if (list_empty(&lower->upper) &&
1166			    RB_EMPTY_NODE(&lower->rb_node))
1167				list_add(&lower->list, &useless);
1168
1169			if (!RB_EMPTY_NODE(&upper->rb_node))
1170				continue;
1171
1172			/* Add this guy's upper edges to the list to process */
1173			list_for_each_entry(edge, &upper->upper, list[LOWER])
1174				list_add_tail(&edge->list[UPPER], &list);
1175			if (list_empty(&upper->upper))
1176				list_add(&upper->list, &useless);
1177		}
1178
1179		while (!list_empty(&useless)) {
1180			lower = list_entry(useless.next,
1181					   struct backref_node, list);
1182			list_del_init(&lower->list);
1183			if (lower == node)
1184				node = NULL;
1185			free_backref_node(cache, lower);
1186		}
1187
1188		free_backref_node(cache, node);
1189		return ERR_PTR(err);
1190	}
1191	ASSERT(!node || !node->detached);
1192	return node;
1193}
1194
1195/*
1196 * helper to add backref node for the newly created snapshot.
1197 * the backref node is created by cloning backref node that
1198 * corresponds to root of source tree
1199 */
1200static int clone_backref_node(struct btrfs_trans_handle *trans,
1201			      struct reloc_control *rc,
1202			      struct btrfs_root *src,
1203			      struct btrfs_root *dest)
1204{
1205	struct btrfs_root *reloc_root = src->reloc_root;
1206	struct backref_cache *cache = &rc->backref_cache;
1207	struct backref_node *node = NULL;
1208	struct backref_node *new_node;
1209	struct backref_edge *edge;
1210	struct backref_edge *new_edge;
1211	struct rb_node *rb_node;
1212
1213	if (cache->last_trans > 0)
1214		update_backref_cache(trans, cache);
1215
1216	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1217	if (rb_node) {
1218		node = rb_entry(rb_node, struct backref_node, rb_node);
1219		if (node->detached)
1220			node = NULL;
1221		else
1222			BUG_ON(node->new_bytenr != reloc_root->node->start);
1223	}
1224
1225	if (!node) {
1226		rb_node = tree_search(&cache->rb_root,
1227				      reloc_root->commit_root->start);
1228		if (rb_node) {
1229			node = rb_entry(rb_node, struct backref_node,
1230					rb_node);
1231			BUG_ON(node->detached);
1232		}
1233	}
1234
1235	if (!node)
1236		return 0;
1237
1238	new_node = alloc_backref_node(cache);
1239	if (!new_node)
1240		return -ENOMEM;
1241
1242	new_node->bytenr = dest->node->start;
1243	new_node->level = node->level;
1244	new_node->lowest = node->lowest;
1245	new_node->checked = 1;
1246	new_node->root = dest;
1247
1248	if (!node->lowest) {
1249		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1250			new_edge = alloc_backref_edge(cache);
1251			if (!new_edge)
1252				goto fail;
1253
1254			new_edge->node[UPPER] = new_node;
1255			new_edge->node[LOWER] = edge->node[LOWER];
1256			list_add_tail(&new_edge->list[UPPER],
1257				      &new_node->lower);
1258		}
1259	} else {
1260		list_add_tail(&new_node->lower, &cache->leaves);
1261	}
1262
1263	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1264			      &new_node->rb_node);
1265	if (rb_node)
1266		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1267
1268	if (!new_node->lowest) {
1269		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1270			list_add_tail(&new_edge->list[LOWER],
1271				      &new_edge->node[LOWER]->upper);
1272		}
1273	}
1274	return 0;
1275fail:
1276	while (!list_empty(&new_node->lower)) {
1277		new_edge = list_entry(new_node->lower.next,
1278				      struct backref_edge, list[UPPER]);
1279		list_del(&new_edge->list[UPPER]);
1280		free_backref_edge(cache, new_edge);
1281	}
1282	free_backref_node(cache, new_node);
1283	return -ENOMEM;
1284}
1285
1286/*
1287 * helper to add 'address of tree root -> reloc tree' mapping
1288 */
1289static int __must_check __add_reloc_root(struct btrfs_root *root)
1290{
1291	struct btrfs_fs_info *fs_info = root->fs_info;
1292	struct rb_node *rb_node;
1293	struct mapping_node *node;
1294	struct reloc_control *rc = fs_info->reloc_ctl;
1295
1296	node = kmalloc(sizeof(*node), GFP_NOFS);
1297	if (!node)
1298		return -ENOMEM;
1299
1300	node->bytenr = root->node->start;
1301	node->data = root;
1302
1303	spin_lock(&rc->reloc_root_tree.lock);
1304	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1305			      node->bytenr, &node->rb_node);
1306	spin_unlock(&rc->reloc_root_tree.lock);
1307	if (rb_node) {
1308		btrfs_panic(fs_info, -EEXIST,
1309			    "Duplicate root found for start=%llu while inserting into relocation tree",
1310			    node->bytenr);
1311		kfree(node);
1312		return -EEXIST;
 
 
1313	}
1314
1315	list_add_tail(&root->root_list, &rc->reloc_roots);
1316	return 0;
1317}
1318
1319/*
1320 * helper to delete the 'address of tree root -> reloc tree'
1321 * mapping
1322 */
1323static void __del_reloc_root(struct btrfs_root *root)
1324{
1325	struct btrfs_fs_info *fs_info = root->fs_info;
1326	struct rb_node *rb_node;
1327	struct mapping_node *node = NULL;
1328	struct reloc_control *rc = fs_info->reloc_ctl;
1329
1330	spin_lock(&rc->reloc_root_tree.lock);
1331	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1332			      root->node->start);
1333	if (rb_node) {
1334		node = rb_entry(rb_node, struct mapping_node, rb_node);
1335		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1336	}
1337	spin_unlock(&rc->reloc_root_tree.lock);
1338
1339	if (!node)
1340		return;
1341	BUG_ON((struct btrfs_root *)node->data != root);
1342
1343	spin_lock(&fs_info->trans_lock);
1344	list_del_init(&root->root_list);
1345	spin_unlock(&fs_info->trans_lock);
1346	kfree(node);
1347}
1348
1349/*
1350 * helper to update the 'address of tree root -> reloc tree'
1351 * mapping
1352 */
1353static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1354{
1355	struct btrfs_fs_info *fs_info = root->fs_info;
1356	struct rb_node *rb_node;
1357	struct mapping_node *node = NULL;
1358	struct reloc_control *rc = fs_info->reloc_ctl;
1359
1360	spin_lock(&rc->reloc_root_tree.lock);
1361	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1362			      root->node->start);
1363	if (rb_node) {
1364		node = rb_entry(rb_node, struct mapping_node, rb_node);
1365		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1366	}
1367	spin_unlock(&rc->reloc_root_tree.lock);
1368
1369	if (!node)
1370		return 0;
1371	BUG_ON((struct btrfs_root *)node->data != root);
1372
1373	spin_lock(&rc->reloc_root_tree.lock);
1374	node->bytenr = new_bytenr;
1375	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1376			      node->bytenr, &node->rb_node);
1377	spin_unlock(&rc->reloc_root_tree.lock);
1378	if (rb_node)
1379		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1380	return 0;
1381}
1382
1383static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1384					struct btrfs_root *root, u64 objectid)
1385{
1386	struct btrfs_fs_info *fs_info = root->fs_info;
1387	struct btrfs_root *reloc_root;
1388	struct extent_buffer *eb;
1389	struct btrfs_root_item *root_item;
1390	struct btrfs_key root_key;
1391	int ret;
1392
1393	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1394	BUG_ON(!root_item);
1395
1396	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1397	root_key.type = BTRFS_ROOT_ITEM_KEY;
1398	root_key.offset = objectid;
1399
1400	if (root->root_key.objectid == objectid) {
1401		u64 commit_root_gen;
1402
1403		/* called by btrfs_init_reloc_root */
1404		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1405				      BTRFS_TREE_RELOC_OBJECTID);
1406		BUG_ON(ret);
1407		/*
1408		 * Set the last_snapshot field to the generation of the commit
1409		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1410		 * correctly (returns true) when the relocation root is created
1411		 * either inside the critical section of a transaction commit
1412		 * (through transaction.c:qgroup_account_snapshot()) and when
1413		 * it's created before the transaction commit is started.
1414		 */
1415		commit_root_gen = btrfs_header_generation(root->commit_root);
1416		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1417	} else {
1418		/*
1419		 * called by btrfs_reloc_post_snapshot_hook.
1420		 * the source tree is a reloc tree, all tree blocks
1421		 * modified after it was created have RELOC flag
1422		 * set in their headers. so it's OK to not update
1423		 * the 'last_snapshot'.
1424		 */
1425		ret = btrfs_copy_root(trans, root, root->node, &eb,
1426				      BTRFS_TREE_RELOC_OBJECTID);
1427		BUG_ON(ret);
1428	}
1429
1430	memcpy(root_item, &root->root_item, sizeof(*root_item));
1431	btrfs_set_root_bytenr(root_item, eb->start);
1432	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1433	btrfs_set_root_generation(root_item, trans->transid);
1434
1435	if (root->root_key.objectid == objectid) {
1436		btrfs_set_root_refs(root_item, 0);
1437		memset(&root_item->drop_progress, 0,
1438		       sizeof(struct btrfs_disk_key));
1439		root_item->drop_level = 0;
1440	}
1441
1442	btrfs_tree_unlock(eb);
1443	free_extent_buffer(eb);
1444
1445	ret = btrfs_insert_root(trans, fs_info->tree_root,
1446				&root_key, root_item);
1447	BUG_ON(ret);
1448	kfree(root_item);
1449
1450	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
 
1451	BUG_ON(IS_ERR(reloc_root));
1452	reloc_root->last_trans = trans->transid;
1453	return reloc_root;
1454}
1455
1456/*
1457 * create reloc tree for a given fs tree. reloc tree is just a
1458 * snapshot of the fs tree with special root objectid.
1459 */
1460int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1461			  struct btrfs_root *root)
1462{
1463	struct btrfs_fs_info *fs_info = root->fs_info;
1464	struct btrfs_root *reloc_root;
1465	struct reloc_control *rc = fs_info->reloc_ctl;
1466	struct btrfs_block_rsv *rsv;
1467	int clear_rsv = 0;
1468	int ret;
1469
1470	if (root->reloc_root) {
1471		reloc_root = root->reloc_root;
1472		reloc_root->last_trans = trans->transid;
1473		return 0;
1474	}
1475
1476	if (!rc || !rc->create_reloc_tree ||
1477	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1478		return 0;
1479
1480	if (!trans->reloc_reserved) {
1481		rsv = trans->block_rsv;
1482		trans->block_rsv = rc->block_rsv;
1483		clear_rsv = 1;
1484	}
1485	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1486	if (clear_rsv)
1487		trans->block_rsv = rsv;
1488
1489	ret = __add_reloc_root(reloc_root);
1490	BUG_ON(ret < 0);
1491	root->reloc_root = reloc_root;
1492	return 0;
1493}
1494
1495/*
1496 * update root item of reloc tree
1497 */
1498int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1499			    struct btrfs_root *root)
1500{
1501	struct btrfs_fs_info *fs_info = root->fs_info;
1502	struct btrfs_root *reloc_root;
1503	struct btrfs_root_item *root_item;
 
1504	int ret;
1505
1506	if (!root->reloc_root)
1507		goto out;
1508
1509	reloc_root = root->reloc_root;
1510	root_item = &reloc_root->root_item;
1511
1512	if (fs_info->reloc_ctl->merge_reloc_tree &&
1513	    btrfs_root_refs(root_item) == 0) {
1514		root->reloc_root = NULL;
1515		__del_reloc_root(reloc_root);
1516	}
1517
 
 
1518	if (reloc_root->commit_root != reloc_root->node) {
1519		btrfs_set_root_node(root_item, reloc_root->node);
1520		free_extent_buffer(reloc_root->commit_root);
1521		reloc_root->commit_root = btrfs_root_node(reloc_root);
1522	}
1523
1524	ret = btrfs_update_root(trans, fs_info->tree_root,
1525				&reloc_root->root_key, root_item);
1526	BUG_ON(ret);
1527
1528out:
1529	return 0;
1530}
1531
1532/*
1533 * helper to find first cached inode with inode number >= objectid
1534 * in a subvolume
1535 */
1536static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1537{
1538	struct rb_node *node;
1539	struct rb_node *prev;
1540	struct btrfs_inode *entry;
1541	struct inode *inode;
1542
1543	spin_lock(&root->inode_lock);
1544again:
1545	node = root->inode_tree.rb_node;
1546	prev = NULL;
1547	while (node) {
1548		prev = node;
1549		entry = rb_entry(node, struct btrfs_inode, rb_node);
1550
1551		if (objectid < btrfs_ino(&entry->vfs_inode))
1552			node = node->rb_left;
1553		else if (objectid > btrfs_ino(&entry->vfs_inode))
1554			node = node->rb_right;
1555		else
1556			break;
1557	}
1558	if (!node) {
1559		while (prev) {
1560			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1561			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1562				node = prev;
1563				break;
1564			}
1565			prev = rb_next(prev);
1566		}
1567	}
1568	while (node) {
1569		entry = rb_entry(node, struct btrfs_inode, rb_node);
1570		inode = igrab(&entry->vfs_inode);
1571		if (inode) {
1572			spin_unlock(&root->inode_lock);
1573			return inode;
1574		}
1575
1576		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1577		if (cond_resched_lock(&root->inode_lock))
1578			goto again;
1579
1580		node = rb_next(node);
1581	}
1582	spin_unlock(&root->inode_lock);
1583	return NULL;
1584}
1585
1586static int in_block_group(u64 bytenr,
1587			  struct btrfs_block_group_cache *block_group)
1588{
1589	if (bytenr >= block_group->key.objectid &&
1590	    bytenr < block_group->key.objectid + block_group->key.offset)
1591		return 1;
1592	return 0;
1593}
1594
1595/*
1596 * get new location of data
1597 */
1598static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1599			    u64 bytenr, u64 num_bytes)
1600{
1601	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1602	struct btrfs_path *path;
1603	struct btrfs_file_extent_item *fi;
1604	struct extent_buffer *leaf;
1605	int ret;
1606
1607	path = btrfs_alloc_path();
1608	if (!path)
1609		return -ENOMEM;
1610
1611	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1612	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1613				       bytenr, 0);
1614	if (ret < 0)
1615		goto out;
1616	if (ret > 0) {
1617		ret = -ENOENT;
1618		goto out;
1619	}
1620
1621	leaf = path->nodes[0];
1622	fi = btrfs_item_ptr(leaf, path->slots[0],
1623			    struct btrfs_file_extent_item);
1624
1625	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1626	       btrfs_file_extent_compression(leaf, fi) ||
1627	       btrfs_file_extent_encryption(leaf, fi) ||
1628	       btrfs_file_extent_other_encoding(leaf, fi));
1629
1630	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1631		ret = -EINVAL;
1632		goto out;
1633	}
1634
1635	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1636	ret = 0;
1637out:
1638	btrfs_free_path(path);
1639	return ret;
1640}
1641
1642/*
1643 * update file extent items in the tree leaf to point to
1644 * the new locations.
1645 */
1646static noinline_for_stack
1647int replace_file_extents(struct btrfs_trans_handle *trans,
1648			 struct reloc_control *rc,
1649			 struct btrfs_root *root,
1650			 struct extent_buffer *leaf)
1651{
1652	struct btrfs_fs_info *fs_info = root->fs_info;
1653	struct btrfs_key key;
1654	struct btrfs_file_extent_item *fi;
1655	struct inode *inode = NULL;
1656	u64 parent;
1657	u64 bytenr;
1658	u64 new_bytenr = 0;
1659	u64 num_bytes;
1660	u64 end;
1661	u32 nritems;
1662	u32 i;
1663	int ret = 0;
1664	int first = 1;
1665	int dirty = 0;
1666
1667	if (rc->stage != UPDATE_DATA_PTRS)
1668		return 0;
1669
1670	/* reloc trees always use full backref */
1671	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1672		parent = leaf->start;
1673	else
1674		parent = 0;
1675
1676	nritems = btrfs_header_nritems(leaf);
1677	for (i = 0; i < nritems; i++) {
1678		cond_resched();
1679		btrfs_item_key_to_cpu(leaf, &key, i);
1680		if (key.type != BTRFS_EXTENT_DATA_KEY)
1681			continue;
1682		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1683		if (btrfs_file_extent_type(leaf, fi) ==
1684		    BTRFS_FILE_EXTENT_INLINE)
1685			continue;
1686		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1687		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1688		if (bytenr == 0)
1689			continue;
1690		if (!in_block_group(bytenr, rc->block_group))
1691			continue;
1692
1693		/*
1694		 * if we are modifying block in fs tree, wait for readpage
1695		 * to complete and drop the extent cache
1696		 */
1697		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1698			if (first) {
1699				inode = find_next_inode(root, key.objectid);
1700				first = 0;
1701			} else if (inode && btrfs_ino(inode) < key.objectid) {
1702				btrfs_add_delayed_iput(inode);
1703				inode = find_next_inode(root, key.objectid);
1704			}
1705			if (inode && btrfs_ino(inode) == key.objectid) {
1706				end = key.offset +
1707				      btrfs_file_extent_num_bytes(leaf, fi);
1708				WARN_ON(!IS_ALIGNED(key.offset,
1709						    fs_info->sectorsize));
1710				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1711				end--;
1712				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1713						      key.offset, end);
1714				if (!ret)
1715					continue;
1716
1717				btrfs_drop_extent_cache(inode, key.offset, end,
1718							1);
1719				unlock_extent(&BTRFS_I(inode)->io_tree,
1720					      key.offset, end);
1721			}
1722		}
1723
1724		ret = get_new_location(rc->data_inode, &new_bytenr,
1725				       bytenr, num_bytes);
1726		if (ret) {
1727			/*
1728			 * Don't have to abort since we've not changed anything
1729			 * in the file extent yet.
1730			 */
1731			break;
1732		}
 
1733
1734		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1735		dirty = 1;
1736
1737		key.offset -= btrfs_file_extent_offset(leaf, fi);
1738		ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
1739					   num_bytes, parent,
1740					   btrfs_header_owner(leaf),
1741					   key.objectid, key.offset);
1742		if (ret) {
1743			btrfs_abort_transaction(trans, ret);
1744			break;
1745		}
1746
1747		ret = btrfs_free_extent(trans, fs_info, bytenr, num_bytes,
1748					parent, btrfs_header_owner(leaf),
1749					key.objectid, key.offset);
1750		if (ret) {
1751			btrfs_abort_transaction(trans, ret);
1752			break;
1753		}
1754	}
1755	if (dirty)
1756		btrfs_mark_buffer_dirty(leaf);
1757	if (inode)
1758		btrfs_add_delayed_iput(inode);
1759	return ret;
1760}
1761
1762static noinline_for_stack
1763int memcmp_node_keys(struct extent_buffer *eb, int slot,
1764		     struct btrfs_path *path, int level)
1765{
1766	struct btrfs_disk_key key1;
1767	struct btrfs_disk_key key2;
1768	btrfs_node_key(eb, &key1, slot);
1769	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1770	return memcmp(&key1, &key2, sizeof(key1));
1771}
1772
1773/*
1774 * try to replace tree blocks in fs tree with the new blocks
1775 * in reloc tree. tree blocks haven't been modified since the
1776 * reloc tree was create can be replaced.
1777 *
1778 * if a block was replaced, level of the block + 1 is returned.
1779 * if no block got replaced, 0 is returned. if there are other
1780 * errors, a negative error number is returned.
1781 */
1782static noinline_for_stack
1783int replace_path(struct btrfs_trans_handle *trans,
1784		 struct btrfs_root *dest, struct btrfs_root *src,
1785		 struct btrfs_path *path, struct btrfs_key *next_key,
1786		 int lowest_level, int max_level)
1787{
1788	struct btrfs_fs_info *fs_info = dest->fs_info;
1789	struct extent_buffer *eb;
1790	struct extent_buffer *parent;
1791	struct btrfs_key key;
1792	u64 old_bytenr;
1793	u64 new_bytenr;
1794	u64 old_ptr_gen;
1795	u64 new_ptr_gen;
1796	u64 last_snapshot;
1797	u32 blocksize;
1798	int cow = 0;
1799	int level;
1800	int ret;
1801	int slot;
1802
1803	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1804	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1805
1806	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1807again:
1808	slot = path->slots[lowest_level];
1809	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1810
1811	eb = btrfs_lock_root_node(dest);
1812	btrfs_set_lock_blocking(eb);
1813	level = btrfs_header_level(eb);
1814
1815	if (level < lowest_level) {
1816		btrfs_tree_unlock(eb);
1817		free_extent_buffer(eb);
1818		return 0;
1819	}
1820
1821	if (cow) {
1822		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1823		BUG_ON(ret);
1824	}
1825	btrfs_set_lock_blocking(eb);
1826
1827	if (next_key) {
1828		next_key->objectid = (u64)-1;
1829		next_key->type = (u8)-1;
1830		next_key->offset = (u64)-1;
1831	}
1832
1833	parent = eb;
1834	while (1) {
1835		level = btrfs_header_level(parent);
1836		BUG_ON(level < lowest_level);
1837
1838		ret = btrfs_bin_search(parent, &key, level, &slot);
1839		if (ret && slot > 0)
1840			slot--;
1841
1842		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1843			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1844
1845		old_bytenr = btrfs_node_blockptr(parent, slot);
1846		blocksize = fs_info->nodesize;
1847		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1848
1849		if (level <= max_level) {
1850			eb = path->nodes[level];
1851			new_bytenr = btrfs_node_blockptr(eb,
1852							path->slots[level]);
1853			new_ptr_gen = btrfs_node_ptr_generation(eb,
1854							path->slots[level]);
1855		} else {
1856			new_bytenr = 0;
1857			new_ptr_gen = 0;
1858		}
1859
1860		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
 
1861			ret = level;
1862			break;
1863		}
1864
1865		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1866		    memcmp_node_keys(parent, slot, path, level)) {
1867			if (level <= lowest_level) {
1868				ret = 0;
1869				break;
1870			}
1871
1872			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen);
1873			if (IS_ERR(eb)) {
1874				ret = PTR_ERR(eb);
1875				break;
1876			} else if (!extent_buffer_uptodate(eb)) {
1877				ret = -EIO;
1878				free_extent_buffer(eb);
1879				break;
1880			}
1881			btrfs_tree_lock(eb);
1882			if (cow) {
1883				ret = btrfs_cow_block(trans, dest, eb, parent,
1884						      slot, &eb);
1885				BUG_ON(ret);
1886			}
1887			btrfs_set_lock_blocking(eb);
1888
1889			btrfs_tree_unlock(parent);
1890			free_extent_buffer(parent);
1891
1892			parent = eb;
1893			continue;
1894		}
1895
1896		if (!cow) {
1897			btrfs_tree_unlock(parent);
1898			free_extent_buffer(parent);
1899			cow = 1;
1900			goto again;
1901		}
1902
1903		btrfs_node_key_to_cpu(path->nodes[level], &key,
1904				      path->slots[level]);
1905		btrfs_release_path(path);
1906
1907		path->lowest_level = level;
1908		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1909		path->lowest_level = 0;
1910		BUG_ON(ret);
1911
1912		/*
1913		 * Info qgroup to trace both subtrees.
1914		 *
1915		 * We must trace both trees.
1916		 * 1) Tree reloc subtree
1917		 *    If not traced, we will leak data numbers
1918		 * 2) Fs subtree
1919		 *    If not traced, we will double count old data
1920		 *    and tree block numbers, if current trans doesn't free
1921		 *    data reloc tree inode.
1922		 */
1923		ret = btrfs_qgroup_trace_subtree(trans, src, parent,
1924				btrfs_header_generation(parent),
1925				btrfs_header_level(parent));
1926		if (ret < 0)
1927			break;
1928		ret = btrfs_qgroup_trace_subtree(trans, dest,
1929				path->nodes[level],
1930				btrfs_header_generation(path->nodes[level]),
1931				btrfs_header_level(path->nodes[level]));
1932		if (ret < 0)
1933			break;
1934
1935		/*
1936		 * swap blocks in fs tree and reloc tree.
1937		 */
1938		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1939		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1940		btrfs_mark_buffer_dirty(parent);
1941
1942		btrfs_set_node_blockptr(path->nodes[level],
1943					path->slots[level], old_bytenr);
1944		btrfs_set_node_ptr_generation(path->nodes[level],
1945					      path->slots[level], old_ptr_gen);
1946		btrfs_mark_buffer_dirty(path->nodes[level]);
1947
1948		ret = btrfs_inc_extent_ref(trans, fs_info, old_bytenr,
1949					blocksize, path->nodes[level]->start,
1950					src->root_key.objectid, level - 1, 0);
 
1951		BUG_ON(ret);
1952		ret = btrfs_inc_extent_ref(trans, fs_info, new_bytenr,
1953					blocksize, 0, dest->root_key.objectid,
1954					level - 1, 0);
1955		BUG_ON(ret);
1956
1957		ret = btrfs_free_extent(trans, fs_info, new_bytenr, blocksize,
1958					path->nodes[level]->start,
1959					src->root_key.objectid, level - 1, 0);
 
1960		BUG_ON(ret);
1961
1962		ret = btrfs_free_extent(trans, fs_info, old_bytenr, blocksize,
1963					0, dest->root_key.objectid, level - 1,
1964					0);
1965		BUG_ON(ret);
1966
1967		btrfs_unlock_up_safe(path, 0);
1968
1969		ret = level;
1970		break;
1971	}
1972	btrfs_tree_unlock(parent);
1973	free_extent_buffer(parent);
1974	return ret;
1975}
1976
1977/*
1978 * helper to find next relocated block in reloc tree
1979 */
1980static noinline_for_stack
1981int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1982		       int *level)
1983{
1984	struct extent_buffer *eb;
1985	int i;
1986	u64 last_snapshot;
1987	u32 nritems;
1988
1989	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1990
1991	for (i = 0; i < *level; i++) {
1992		free_extent_buffer(path->nodes[i]);
1993		path->nodes[i] = NULL;
1994	}
1995
1996	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1997		eb = path->nodes[i];
1998		nritems = btrfs_header_nritems(eb);
1999		while (path->slots[i] + 1 < nritems) {
2000			path->slots[i]++;
2001			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
2002			    last_snapshot)
2003				continue;
2004
2005			*level = i;
2006			return 0;
2007		}
2008		free_extent_buffer(path->nodes[i]);
2009		path->nodes[i] = NULL;
2010	}
2011	return 1;
2012}
2013
2014/*
2015 * walk down reloc tree to find relocated block of lowest level
2016 */
2017static noinline_for_stack
2018int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2019			 int *level)
2020{
2021	struct btrfs_fs_info *fs_info = root->fs_info;
2022	struct extent_buffer *eb = NULL;
2023	int i;
2024	u64 bytenr;
2025	u64 ptr_gen = 0;
2026	u64 last_snapshot;
 
2027	u32 nritems;
2028
2029	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2030
2031	for (i = *level; i > 0; i--) {
2032		eb = path->nodes[i];
2033		nritems = btrfs_header_nritems(eb);
2034		while (path->slots[i] < nritems) {
2035			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2036			if (ptr_gen > last_snapshot)
2037				break;
2038			path->slots[i]++;
2039		}
2040		if (path->slots[i] >= nritems) {
2041			if (i == *level)
2042				break;
2043			*level = i + 1;
2044			return 0;
2045		}
2046		if (i == 1) {
2047			*level = i;
2048			return 0;
2049		}
2050
2051		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2052		eb = read_tree_block(fs_info, bytenr, ptr_gen);
2053		if (IS_ERR(eb)) {
2054			return PTR_ERR(eb);
2055		} else if (!extent_buffer_uptodate(eb)) {
2056			free_extent_buffer(eb);
2057			return -EIO;
2058		}
2059		BUG_ON(btrfs_header_level(eb) != i - 1);
2060		path->nodes[i - 1] = eb;
2061		path->slots[i - 1] = 0;
2062	}
2063	return 1;
2064}
2065
2066/*
2067 * invalidate extent cache for file extents whose key in range of
2068 * [min_key, max_key)
2069 */
2070static int invalidate_extent_cache(struct btrfs_root *root,
2071				   struct btrfs_key *min_key,
2072				   struct btrfs_key *max_key)
2073{
2074	struct btrfs_fs_info *fs_info = root->fs_info;
2075	struct inode *inode = NULL;
2076	u64 objectid;
2077	u64 start, end;
2078	u64 ino;
2079
2080	objectid = min_key->objectid;
2081	while (1) {
2082		cond_resched();
2083		iput(inode);
2084
2085		if (objectid > max_key->objectid)
2086			break;
2087
2088		inode = find_next_inode(root, objectid);
2089		if (!inode)
2090			break;
2091		ino = btrfs_ino(inode);
2092
2093		if (ino > max_key->objectid) {
2094			iput(inode);
2095			break;
2096		}
2097
2098		objectid = ino + 1;
2099		if (!S_ISREG(inode->i_mode))
2100			continue;
2101
2102		if (unlikely(min_key->objectid == ino)) {
2103			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2104				continue;
2105			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2106				start = 0;
2107			else {
2108				start = min_key->offset;
2109				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2110			}
2111		} else {
2112			start = 0;
2113		}
2114
2115		if (unlikely(max_key->objectid == ino)) {
2116			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2117				continue;
2118			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2119				end = (u64)-1;
2120			} else {
2121				if (max_key->offset == 0)
2122					continue;
2123				end = max_key->offset;
2124				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2125				end--;
2126			}
2127		} else {
2128			end = (u64)-1;
2129		}
2130
2131		/* the lock_extent waits for readpage to complete */
2132		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2133		btrfs_drop_extent_cache(inode, start, end, 1);
2134		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135	}
2136	return 0;
2137}
2138
2139static int find_next_key(struct btrfs_path *path, int level,
2140			 struct btrfs_key *key)
2141
2142{
2143	while (level < BTRFS_MAX_LEVEL) {
2144		if (!path->nodes[level])
2145			break;
2146		if (path->slots[level] + 1 <
2147		    btrfs_header_nritems(path->nodes[level])) {
2148			btrfs_node_key_to_cpu(path->nodes[level], key,
2149					      path->slots[level] + 1);
2150			return 0;
2151		}
2152		level++;
2153	}
2154	return 1;
2155}
2156
2157/*
2158 * merge the relocated tree blocks in reloc tree with corresponding
2159 * fs tree.
2160 */
2161static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2162					       struct btrfs_root *root)
2163{
2164	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2165	LIST_HEAD(inode_list);
2166	struct btrfs_key key;
2167	struct btrfs_key next_key;
2168	struct btrfs_trans_handle *trans = NULL;
2169	struct btrfs_root *reloc_root;
2170	struct btrfs_root_item *root_item;
2171	struct btrfs_path *path;
2172	struct extent_buffer *leaf;
 
2173	int level;
2174	int max_level;
2175	int replaced = 0;
2176	int ret;
2177	int err = 0;
2178	u32 min_reserved;
2179
2180	path = btrfs_alloc_path();
2181	if (!path)
2182		return -ENOMEM;
2183	path->reada = READA_FORWARD;
2184
2185	reloc_root = root->reloc_root;
2186	root_item = &reloc_root->root_item;
2187
2188	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2189		level = btrfs_root_level(root_item);
2190		extent_buffer_get(reloc_root->node);
2191		path->nodes[level] = reloc_root->node;
2192		path->slots[level] = 0;
2193	} else {
2194		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2195
2196		level = root_item->drop_level;
2197		BUG_ON(level == 0);
2198		path->lowest_level = level;
2199		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2200		path->lowest_level = 0;
2201		if (ret < 0) {
2202			btrfs_free_path(path);
2203			return ret;
2204		}
2205
2206		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2207				      path->slots[level]);
2208		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2209
2210		btrfs_unlock_up_safe(path, 0);
2211	}
2212
2213	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2214	memset(&next_key, 0, sizeof(next_key));
2215
2216	while (1) {
2217		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2218					     BTRFS_RESERVE_FLUSH_ALL);
 
 
 
2219		if (ret) {
2220			err = ret;
2221			goto out;
 
 
2222		}
2223		trans = btrfs_start_transaction(root, 0);
2224		if (IS_ERR(trans)) {
2225			err = PTR_ERR(trans);
2226			trans = NULL;
2227			goto out;
2228		}
2229		trans->block_rsv = rc->block_rsv;
2230
2231		replaced = 0;
2232		max_level = level;
2233
2234		ret = walk_down_reloc_tree(reloc_root, path, &level);
2235		if (ret < 0) {
2236			err = ret;
2237			goto out;
2238		}
2239		if (ret > 0)
2240			break;
2241
2242		if (!find_next_key(path, level, &key) &&
2243		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2244			ret = 0;
2245		} else {
2246			ret = replace_path(trans, root, reloc_root, path,
2247					   &next_key, level, max_level);
2248		}
2249		if (ret < 0) {
2250			err = ret;
2251			goto out;
2252		}
2253
2254		if (ret > 0) {
2255			level = ret;
2256			btrfs_node_key_to_cpu(path->nodes[level], &key,
2257					      path->slots[level]);
2258			replaced = 1;
2259		}
2260
2261		ret = walk_up_reloc_tree(reloc_root, path, &level);
2262		if (ret > 0)
2263			break;
2264
2265		BUG_ON(level == 0);
2266		/*
2267		 * save the merging progress in the drop_progress.
2268		 * this is OK since root refs == 1 in this case.
2269		 */
2270		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2271			       path->slots[level]);
2272		root_item->drop_level = level;
2273
2274		btrfs_end_transaction_throttle(trans);
2275		trans = NULL;
2276
2277		btrfs_btree_balance_dirty(fs_info);
2278
2279		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2280			invalidate_extent_cache(root, &key, &next_key);
2281	}
2282
2283	/*
2284	 * handle the case only one block in the fs tree need to be
2285	 * relocated and the block is tree root.
2286	 */
2287	leaf = btrfs_lock_root_node(root);
2288	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2289	btrfs_tree_unlock(leaf);
2290	free_extent_buffer(leaf);
2291	if (ret < 0)
2292		err = ret;
2293out:
2294	btrfs_free_path(path);
2295
2296	if (err == 0) {
2297		memset(&root_item->drop_progress, 0,
2298		       sizeof(root_item->drop_progress));
2299		root_item->drop_level = 0;
2300		btrfs_set_root_refs(root_item, 0);
2301		btrfs_update_reloc_root(trans, root);
2302	}
2303
2304	if (trans)
2305		btrfs_end_transaction_throttle(trans);
2306
2307	btrfs_btree_balance_dirty(fs_info);
2308
2309	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2310		invalidate_extent_cache(root, &key, &next_key);
2311
2312	return err;
2313}
2314
2315static noinline_for_stack
2316int prepare_to_merge(struct reloc_control *rc, int err)
2317{
2318	struct btrfs_root *root = rc->extent_root;
2319	struct btrfs_fs_info *fs_info = root->fs_info;
2320	struct btrfs_root *reloc_root;
2321	struct btrfs_trans_handle *trans;
2322	LIST_HEAD(reloc_roots);
2323	u64 num_bytes = 0;
2324	int ret;
2325
2326	mutex_lock(&fs_info->reloc_mutex);
2327	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2328	rc->merging_rsv_size += rc->nodes_relocated * 2;
2329	mutex_unlock(&fs_info->reloc_mutex);
2330
2331again:
2332	if (!err) {
2333		num_bytes = rc->merging_rsv_size;
2334		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2335					  BTRFS_RESERVE_FLUSH_ALL);
2336		if (ret)
2337			err = ret;
2338	}
2339
2340	trans = btrfs_join_transaction(rc->extent_root);
2341	if (IS_ERR(trans)) {
2342		if (!err)
2343			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2344						num_bytes);
2345		return PTR_ERR(trans);
2346	}
2347
2348	if (!err) {
2349		if (num_bytes != rc->merging_rsv_size) {
2350			btrfs_end_transaction(trans);
2351			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2352						num_bytes);
2353			goto again;
2354		}
2355	}
2356
2357	rc->merge_reloc_tree = 1;
2358
2359	while (!list_empty(&rc->reloc_roots)) {
2360		reloc_root = list_entry(rc->reloc_roots.next,
2361					struct btrfs_root, root_list);
2362		list_del_init(&reloc_root->root_list);
2363
2364		root = read_fs_root(fs_info, reloc_root->root_key.offset);
 
2365		BUG_ON(IS_ERR(root));
2366		BUG_ON(root->reloc_root != reloc_root);
2367
2368		/*
2369		 * set reference count to 1, so btrfs_recover_relocation
2370		 * knows it should resumes merging
2371		 */
2372		if (!err)
2373			btrfs_set_root_refs(&reloc_root->root_item, 1);
2374		btrfs_update_reloc_root(trans, root);
2375
2376		list_add(&reloc_root->root_list, &reloc_roots);
2377	}
2378
2379	list_splice(&reloc_roots, &rc->reloc_roots);
2380
2381	if (!err)
2382		btrfs_commit_transaction(trans);
2383	else
2384		btrfs_end_transaction(trans);
2385	return err;
2386}
2387
2388static noinline_for_stack
2389void free_reloc_roots(struct list_head *list)
2390{
2391	struct btrfs_root *reloc_root;
2392
2393	while (!list_empty(list)) {
2394		reloc_root = list_entry(list->next, struct btrfs_root,
2395					root_list);
2396		free_extent_buffer(reloc_root->node);
2397		free_extent_buffer(reloc_root->commit_root);
2398		reloc_root->node = NULL;
2399		reloc_root->commit_root = NULL;
2400		__del_reloc_root(reloc_root);
2401	}
2402}
2403
2404static noinline_for_stack
2405void merge_reloc_roots(struct reloc_control *rc)
2406{
2407	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2408	struct btrfs_root *root;
2409	struct btrfs_root *reloc_root;
2410	LIST_HEAD(reloc_roots);
2411	int found = 0;
2412	int ret = 0;
2413again:
2414	root = rc->extent_root;
2415
2416	/*
2417	 * this serializes us with btrfs_record_root_in_transaction,
2418	 * we have to make sure nobody is in the middle of
2419	 * adding their roots to the list while we are
2420	 * doing this splice
2421	 */
2422	mutex_lock(&fs_info->reloc_mutex);
2423	list_splice_init(&rc->reloc_roots, &reloc_roots);
2424	mutex_unlock(&fs_info->reloc_mutex);
2425
2426	while (!list_empty(&reloc_roots)) {
2427		found = 1;
2428		reloc_root = list_entry(reloc_roots.next,
2429					struct btrfs_root, root_list);
2430
2431		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2432			root = read_fs_root(fs_info,
2433					    reloc_root->root_key.offset);
2434			BUG_ON(IS_ERR(root));
2435			BUG_ON(root->reloc_root != reloc_root);
2436
2437			ret = merge_reloc_root(rc, root);
2438			if (ret) {
2439				if (list_empty(&reloc_root->root_list))
2440					list_add_tail(&reloc_root->root_list,
2441						      &reloc_roots);
2442				goto out;
2443			}
2444		} else {
2445			list_del_init(&reloc_root->root_list);
2446		}
2447
2448		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2449		if (ret < 0) {
2450			if (list_empty(&reloc_root->root_list))
2451				list_add_tail(&reloc_root->root_list,
2452					      &reloc_roots);
2453			goto out;
2454		}
2455	}
2456
2457	if (found) {
2458		found = 0;
2459		goto again;
2460	}
2461out:
2462	if (ret) {
2463		btrfs_handle_fs_error(fs_info, ret, NULL);
2464		if (!list_empty(&reloc_roots))
2465			free_reloc_roots(&reloc_roots);
2466
2467		/* new reloc root may be added */
2468		mutex_lock(&fs_info->reloc_mutex);
2469		list_splice_init(&rc->reloc_roots, &reloc_roots);
2470		mutex_unlock(&fs_info->reloc_mutex);
2471		if (!list_empty(&reloc_roots))
2472			free_reloc_roots(&reloc_roots);
2473	}
2474
2475	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
 
2476}
2477
2478static void free_block_list(struct rb_root *blocks)
2479{
2480	struct tree_block *block;
2481	struct rb_node *rb_node;
2482	while ((rb_node = rb_first(blocks))) {
2483		block = rb_entry(rb_node, struct tree_block, rb_node);
2484		rb_erase(rb_node, blocks);
2485		kfree(block);
2486	}
2487}
2488
2489static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2490				      struct btrfs_root *reloc_root)
2491{
2492	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2493	struct btrfs_root *root;
2494
2495	if (reloc_root->last_trans == trans->transid)
2496		return 0;
2497
2498	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2499	BUG_ON(IS_ERR(root));
2500	BUG_ON(root->reloc_root != reloc_root);
2501
2502	return btrfs_record_root_in_trans(trans, root);
2503}
2504
2505static noinline_for_stack
2506struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2507				     struct reloc_control *rc,
2508				     struct backref_node *node,
2509				     struct backref_edge *edges[])
2510{
2511	struct backref_node *next;
2512	struct btrfs_root *root;
2513	int index = 0;
2514
2515	next = node;
2516	while (1) {
2517		cond_resched();
2518		next = walk_up_backref(next, edges, &index);
2519		root = next->root;
2520		BUG_ON(!root);
2521		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2522
2523		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2524			record_reloc_root_in_trans(trans, root);
2525			break;
2526		}
2527
2528		btrfs_record_root_in_trans(trans, root);
2529		root = root->reloc_root;
2530
2531		if (next->new_bytenr != root->node->start) {
2532			BUG_ON(next->new_bytenr);
2533			BUG_ON(!list_empty(&next->list));
2534			next->new_bytenr = root->node->start;
2535			next->root = root;
2536			list_add_tail(&next->list,
2537				      &rc->backref_cache.changed);
2538			__mark_block_processed(rc, next);
2539			break;
2540		}
2541
2542		WARN_ON(1);
2543		root = NULL;
2544		next = walk_down_backref(edges, &index);
2545		if (!next || next->level <= node->level)
2546			break;
2547	}
2548	if (!root)
2549		return NULL;
2550
 
2551	next = node;
2552	/* setup backref node path for btrfs_reloc_cow_block */
2553	while (1) {
2554		rc->backref_cache.path[next->level] = next;
2555		if (--index < 0)
2556			break;
2557		next = edges[index]->node[UPPER];
2558	}
2559	return root;
2560}
2561
2562/*
2563 * select a tree root for relocation. return NULL if the block
2564 * is reference counted. we should use do_relocation() in this
2565 * case. return a tree root pointer if the block isn't reference
2566 * counted. return -ENOENT if the block is root of reloc tree.
2567 */
2568static noinline_for_stack
2569struct btrfs_root *select_one_root(struct backref_node *node)
 
2570{
2571	struct backref_node *next;
2572	struct btrfs_root *root;
2573	struct btrfs_root *fs_root = NULL;
2574	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2575	int index = 0;
2576
2577	next = node;
2578	while (1) {
2579		cond_resched();
2580		next = walk_up_backref(next, edges, &index);
2581		root = next->root;
2582		BUG_ON(!root);
2583
2584		/* no other choice for non-references counted tree */
2585		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2586			return root;
2587
2588		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2589			fs_root = root;
2590
2591		if (next != node)
2592			return NULL;
2593
2594		next = walk_down_backref(edges, &index);
2595		if (!next || next->level <= node->level)
2596			break;
2597	}
2598
2599	if (!fs_root)
2600		return ERR_PTR(-ENOENT);
2601	return fs_root;
2602}
2603
2604static noinline_for_stack
2605u64 calcu_metadata_size(struct reloc_control *rc,
2606			struct backref_node *node, int reserve)
2607{
2608	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2609	struct backref_node *next = node;
2610	struct backref_edge *edge;
2611	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2612	u64 num_bytes = 0;
2613	int index = 0;
2614
2615	BUG_ON(reserve && node->processed);
2616
2617	while (next) {
2618		cond_resched();
2619		while (1) {
2620			if (next->processed && (reserve || next != node))
2621				break;
2622
2623			num_bytes += fs_info->nodesize;
 
2624
2625			if (list_empty(&next->upper))
2626				break;
2627
2628			edge = list_entry(next->upper.next,
2629					  struct backref_edge, list[LOWER]);
2630			edges[index++] = edge;
2631			next = edge->node[UPPER];
2632		}
2633		next = walk_down_backref(edges, &index);
2634	}
2635	return num_bytes;
2636}
2637
2638static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2639				  struct reloc_control *rc,
2640				  struct backref_node *node)
2641{
2642	struct btrfs_root *root = rc->extent_root;
2643	struct btrfs_fs_info *fs_info = root->fs_info;
2644	u64 num_bytes;
2645	int ret;
2646	u64 tmp;
2647
2648	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2649
2650	trans->block_rsv = rc->block_rsv;
2651	rc->reserved_bytes += num_bytes;
2652
2653	/*
2654	 * We are under a transaction here so we can only do limited flushing.
2655	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2656	 * transaction and try to refill when we can flush all the things.
2657	 */
2658	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2659				BTRFS_RESERVE_FLUSH_LIMIT);
2660	if (ret) {
2661		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2662		while (tmp <= rc->reserved_bytes)
2663			tmp <<= 1;
2664		/*
2665		 * only one thread can access block_rsv at this point,
2666		 * so we don't need hold lock to protect block_rsv.
2667		 * we expand more reservation size here to allow enough
2668		 * space for relocation and we will return eailer in
2669		 * enospc case.
2670		 */
2671		rc->block_rsv->size = tmp + fs_info->nodesize *
2672				      RELOCATION_RESERVED_NODES;
2673		return -EAGAIN;
2674	}
2675
2676	return 0;
2677}
2678
 
 
 
 
 
 
 
2679/*
2680 * relocate a block tree, and then update pointers in upper level
2681 * blocks that reference the block to point to the new location.
2682 *
2683 * if called by link_to_upper, the block has already been relocated.
2684 * in that case this function just updates pointers.
2685 */
2686static int do_relocation(struct btrfs_trans_handle *trans,
2687			 struct reloc_control *rc,
2688			 struct backref_node *node,
2689			 struct btrfs_key *key,
2690			 struct btrfs_path *path, int lowest)
2691{
2692	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2693	struct backref_node *upper;
2694	struct backref_edge *edge;
2695	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2696	struct btrfs_root *root;
2697	struct extent_buffer *eb;
2698	u32 blocksize;
2699	u64 bytenr;
2700	u64 generation;
 
2701	int slot;
2702	int ret;
2703	int err = 0;
2704
2705	BUG_ON(lowest && node->eb);
2706
2707	path->lowest_level = node->level + 1;
2708	rc->backref_cache.path[node->level] = node;
2709	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2710		cond_resched();
2711
2712		upper = edge->node[UPPER];
2713		root = select_reloc_root(trans, rc, upper, edges);
2714		BUG_ON(!root);
2715
2716		if (upper->eb && !upper->locked) {
2717			if (!lowest) {
2718				ret = btrfs_bin_search(upper->eb, key,
2719						       upper->level, &slot);
2720				BUG_ON(ret);
2721				bytenr = btrfs_node_blockptr(upper->eb, slot);
2722				if (node->eb->start == bytenr)
2723					goto next;
2724			}
2725			drop_node_buffer(upper);
2726		}
2727
2728		if (!upper->eb) {
2729			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2730			if (ret) {
2731				if (ret < 0)
2732					err = ret;
2733				else
2734					err = -ENOENT;
2735
2736				btrfs_release_path(path);
2737				break;
2738			}
 
2739
2740			if (!upper->eb) {
2741				upper->eb = path->nodes[upper->level];
2742				path->nodes[upper->level] = NULL;
2743			} else {
2744				BUG_ON(upper->eb != path->nodes[upper->level]);
2745			}
2746
2747			upper->locked = 1;
2748			path->locks[upper->level] = 0;
2749
2750			slot = path->slots[upper->level];
2751			btrfs_release_path(path);
2752		} else {
2753			ret = btrfs_bin_search(upper->eb, key, upper->level,
2754					       &slot);
2755			BUG_ON(ret);
2756		}
2757
2758		bytenr = btrfs_node_blockptr(upper->eb, slot);
2759		if (lowest) {
2760			if (bytenr != node->bytenr) {
2761				btrfs_err(root->fs_info,
2762		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2763					  bytenr, node->bytenr, slot,
2764					  upper->eb->start);
2765				err = -EIO;
2766				goto next;
2767			}
2768		} else {
2769			if (node->eb->start == bytenr)
2770				goto next;
2771		}
2772
2773		blocksize = root->fs_info->nodesize;
2774		generation = btrfs_node_ptr_generation(upper->eb, slot);
2775		eb = read_tree_block(fs_info, bytenr, generation);
2776		if (IS_ERR(eb)) {
2777			err = PTR_ERR(eb);
2778			goto next;
2779		} else if (!extent_buffer_uptodate(eb)) {
2780			free_extent_buffer(eb);
2781			err = -EIO;
2782			goto next;
2783		}
2784		btrfs_tree_lock(eb);
2785		btrfs_set_lock_blocking(eb);
2786
2787		if (!node->eb) {
2788			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2789					      slot, &eb);
2790			btrfs_tree_unlock(eb);
2791			free_extent_buffer(eb);
2792			if (ret < 0) {
2793				err = ret;
2794				goto next;
2795			}
2796			BUG_ON(node->eb != eb);
2797		} else {
2798			btrfs_set_node_blockptr(upper->eb, slot,
2799						node->eb->start);
2800			btrfs_set_node_ptr_generation(upper->eb, slot,
2801						      trans->transid);
2802			btrfs_mark_buffer_dirty(upper->eb);
2803
2804			ret = btrfs_inc_extent_ref(trans, root->fs_info,
2805						node->eb->start, blocksize,
2806						upper->eb->start,
2807						btrfs_header_owner(upper->eb),
2808						node->level, 0);
2809			BUG_ON(ret);
2810
2811			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2812			BUG_ON(ret);
2813		}
2814next:
2815		if (!upper->pending)
2816			drop_node_buffer(upper);
2817		else
2818			unlock_node_buffer(upper);
2819		if (err)
2820			break;
2821	}
2822
2823	if (!err && node->pending) {
2824		drop_node_buffer(node);
2825		list_move_tail(&node->list, &rc->backref_cache.changed);
2826		node->pending = 0;
2827	}
2828
2829	path->lowest_level = 0;
2830	BUG_ON(err == -ENOSPC);
2831	return err;
2832}
2833
2834static int link_to_upper(struct btrfs_trans_handle *trans,
2835			 struct reloc_control *rc,
2836			 struct backref_node *node,
2837			 struct btrfs_path *path)
2838{
2839	struct btrfs_key key;
2840
2841	btrfs_node_key_to_cpu(node->eb, &key, 0);
2842	return do_relocation(trans, rc, node, &key, path, 0);
2843}
2844
2845static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2846				struct reloc_control *rc,
2847				struct btrfs_path *path, int err)
2848{
2849	LIST_HEAD(list);
2850	struct backref_cache *cache = &rc->backref_cache;
2851	struct backref_node *node;
2852	int level;
2853	int ret;
2854
2855	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2856		while (!list_empty(&cache->pending[level])) {
2857			node = list_entry(cache->pending[level].next,
2858					  struct backref_node, list);
2859			list_move_tail(&node->list, &list);
2860			BUG_ON(!node->pending);
2861
2862			if (!err) {
2863				ret = link_to_upper(trans, rc, node, path);
2864				if (ret < 0)
2865					err = ret;
2866			}
2867		}
2868		list_splice_init(&list, &cache->pending[level]);
2869	}
2870	return err;
2871}
2872
2873static void mark_block_processed(struct reloc_control *rc,
2874				 u64 bytenr, u32 blocksize)
2875{
2876	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2877			EXTENT_DIRTY);
2878}
2879
2880static void __mark_block_processed(struct reloc_control *rc,
2881				   struct backref_node *node)
2882{
2883	u32 blocksize;
2884	if (node->level == 0 ||
2885	    in_block_group(node->bytenr, rc->block_group)) {
2886		blocksize = rc->extent_root->fs_info->nodesize;
2887		mark_block_processed(rc, node->bytenr, blocksize);
2888	}
2889	node->processed = 1;
2890}
2891
2892/*
2893 * mark a block and all blocks directly/indirectly reference the block
2894 * as processed.
2895 */
2896static void update_processed_blocks(struct reloc_control *rc,
2897				    struct backref_node *node)
2898{
2899	struct backref_node *next = node;
2900	struct backref_edge *edge;
2901	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2902	int index = 0;
2903
2904	while (next) {
2905		cond_resched();
2906		while (1) {
2907			if (next->processed)
2908				break;
2909
2910			__mark_block_processed(rc, next);
2911
2912			if (list_empty(&next->upper))
2913				break;
2914
2915			edge = list_entry(next->upper.next,
2916					  struct backref_edge, list[LOWER]);
2917			edges[index++] = edge;
2918			next = edge->node[UPPER];
2919		}
2920		next = walk_down_backref(edges, &index);
2921	}
2922}
2923
2924static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
 
2925{
2926	u32 blocksize = rc->extent_root->fs_info->nodesize;
2927
2928	if (test_range_bit(&rc->processed_blocks, bytenr,
2929			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2930		return 1;
2931	return 0;
2932}
2933
2934static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2935			      struct tree_block *block)
2936{
2937	struct extent_buffer *eb;
2938
2939	BUG_ON(block->key_ready);
2940	eb = read_tree_block(fs_info, block->bytenr, block->key.offset);
2941	if (IS_ERR(eb)) {
2942		return PTR_ERR(eb);
2943	} else if (!extent_buffer_uptodate(eb)) {
2944		free_extent_buffer(eb);
2945		return -EIO;
2946	}
2947	WARN_ON(btrfs_header_level(eb) != block->level);
2948	if (block->level == 0)
2949		btrfs_item_key_to_cpu(eb, &block->key, 0);
2950	else
2951		btrfs_node_key_to_cpu(eb, &block->key, 0);
2952	free_extent_buffer(eb);
2953	block->key_ready = 1;
2954	return 0;
2955}
2956
 
 
 
 
 
 
 
 
 
2957/*
2958 * helper function to relocate a tree block
2959 */
2960static int relocate_tree_block(struct btrfs_trans_handle *trans,
2961				struct reloc_control *rc,
2962				struct backref_node *node,
2963				struct btrfs_key *key,
2964				struct btrfs_path *path)
2965{
2966	struct btrfs_root *root;
 
2967	int ret = 0;
2968
2969	if (!node)
2970		return 0;
2971
2972	BUG_ON(node->processed);
2973	root = select_one_root(node);
2974	if (root == ERR_PTR(-ENOENT)) {
2975		update_processed_blocks(rc, node);
2976		goto out;
2977	}
2978
2979	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2980		ret = reserve_metadata_space(trans, rc, node);
2981		if (ret)
2982			goto out;
 
2983	}
2984
2985	if (root) {
2986		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2987			BUG_ON(node->new_bytenr);
2988			BUG_ON(!list_empty(&node->list));
2989			btrfs_record_root_in_trans(trans, root);
2990			root = root->reloc_root;
2991			node->new_bytenr = root->node->start;
2992			node->root = root;
2993			list_add_tail(&node->list, &rc->backref_cache.changed);
2994		} else {
2995			path->lowest_level = node->level;
2996			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2997			btrfs_release_path(path);
2998			if (ret > 0)
2999				ret = 0;
3000		}
3001		if (!ret)
3002			update_processed_blocks(rc, node);
3003	} else {
3004		ret = do_relocation(trans, rc, node, key, path, 1);
3005	}
3006out:
3007	if (ret || node->level == 0 || node->cowonly)
 
 
3008		remove_backref_node(&rc->backref_cache, node);
 
3009	return ret;
3010}
3011
3012/*
3013 * relocate a list of blocks
3014 */
3015static noinline_for_stack
3016int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3017			 struct reloc_control *rc, struct rb_root *blocks)
3018{
3019	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3020	struct backref_node *node;
3021	struct btrfs_path *path;
3022	struct tree_block *block;
3023	struct rb_node *rb_node;
3024	int ret;
3025	int err = 0;
3026
3027	path = btrfs_alloc_path();
3028	if (!path) {
3029		err = -ENOMEM;
3030		goto out_free_blocks;
3031	}
3032
3033	rb_node = rb_first(blocks);
3034	while (rb_node) {
3035		block = rb_entry(rb_node, struct tree_block, rb_node);
3036		if (!block->key_ready)
3037			readahead_tree_block(fs_info, block->bytenr);
3038		rb_node = rb_next(rb_node);
3039	}
3040
3041	rb_node = rb_first(blocks);
3042	while (rb_node) {
3043		block = rb_entry(rb_node, struct tree_block, rb_node);
3044		if (!block->key_ready) {
3045			err = get_tree_block_key(fs_info, block);
3046			if (err)
3047				goto out_free_path;
3048		}
3049		rb_node = rb_next(rb_node);
3050	}
3051
3052	rb_node = rb_first(blocks);
3053	while (rb_node) {
3054		block = rb_entry(rb_node, struct tree_block, rb_node);
3055
3056		node = build_backref_tree(rc, &block->key,
3057					  block->level, block->bytenr);
3058		if (IS_ERR(node)) {
3059			err = PTR_ERR(node);
3060			goto out;
3061		}
3062
3063		ret = relocate_tree_block(trans, rc, node, &block->key,
3064					  path);
3065		if (ret < 0) {
3066			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3067				err = ret;
3068			goto out;
3069		}
3070		rb_node = rb_next(rb_node);
3071	}
3072out:
 
3073	err = finish_pending_nodes(trans, rc, path, err);
3074
3075out_free_path:
3076	btrfs_free_path(path);
3077out_free_blocks:
3078	free_block_list(blocks);
3079	return err;
3080}
3081
3082static noinline_for_stack
3083int prealloc_file_extent_cluster(struct inode *inode,
3084				 struct file_extent_cluster *cluster)
3085{
3086	u64 alloc_hint = 0;
3087	u64 start;
3088	u64 end;
3089	u64 offset = BTRFS_I(inode)->index_cnt;
3090	u64 num_bytes;
3091	int nr = 0;
3092	int ret = 0;
3093	u64 prealloc_start = cluster->start - offset;
3094	u64 prealloc_end = cluster->end - offset;
3095	u64 cur_offset;
3096
3097	BUG_ON(cluster->start != cluster->boundary[0]);
3098	inode_lock(inode);
3099
3100	ret = btrfs_check_data_free_space(inode, prealloc_start,
3101					  prealloc_end + 1 - prealloc_start);
3102	if (ret)
3103		goto out;
3104
3105	cur_offset = prealloc_start;
3106	while (nr < cluster->nr) {
3107		start = cluster->boundary[nr] - offset;
3108		if (nr + 1 < cluster->nr)
3109			end = cluster->boundary[nr + 1] - 1 - offset;
3110		else
3111			end = cluster->end - offset;
3112
3113		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3114		num_bytes = end + 1 - start;
3115		if (cur_offset < start)
3116			btrfs_free_reserved_data_space(inode, cur_offset,
3117					start - cur_offset);
3118		ret = btrfs_prealloc_file_range(inode, 0, start,
3119						num_bytes, num_bytes,
3120						end + 1, &alloc_hint);
3121		cur_offset = end + 1;
3122		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3123		if (ret)
3124			break;
3125		nr++;
3126	}
3127	if (cur_offset < prealloc_end)
3128		btrfs_free_reserved_data_space(inode, cur_offset,
3129				       prealloc_end + 1 - cur_offset);
3130out:
3131	inode_unlock(inode);
3132	return ret;
3133}
3134
3135static noinline_for_stack
3136int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3137			 u64 block_start)
3138{
3139	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3140	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3141	struct extent_map *em;
3142	int ret = 0;
3143
3144	em = alloc_extent_map();
3145	if (!em)
3146		return -ENOMEM;
3147
3148	em->start = start;
3149	em->len = end + 1 - start;
3150	em->block_len = em->len;
3151	em->block_start = block_start;
3152	em->bdev = fs_info->fs_devices->latest_bdev;
3153	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3154
3155	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3156	while (1) {
3157		write_lock(&em_tree->lock);
3158		ret = add_extent_mapping(em_tree, em, 0);
3159		write_unlock(&em_tree->lock);
3160		if (ret != -EEXIST) {
3161			free_extent_map(em);
3162			break;
3163		}
3164		btrfs_drop_extent_cache(inode, start, end, 0);
3165	}
3166	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3167	return ret;
3168}
3169
3170static int relocate_file_extent_cluster(struct inode *inode,
3171					struct file_extent_cluster *cluster)
3172{
3173	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3174	u64 page_start;
3175	u64 page_end;
3176	u64 offset = BTRFS_I(inode)->index_cnt;
3177	unsigned long index;
3178	unsigned long last_index;
3179	struct page *page;
3180	struct file_ra_state *ra;
3181	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3182	int nr = 0;
3183	int ret = 0;
3184
3185	if (!cluster->nr)
3186		return 0;
3187
3188	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3189	if (!ra)
3190		return -ENOMEM;
3191
3192	ret = prealloc_file_extent_cluster(inode, cluster);
3193	if (ret)
3194		goto out;
3195
3196	file_ra_state_init(ra, inode->i_mapping);
3197
3198	ret = setup_extent_mapping(inode, cluster->start - offset,
3199				   cluster->end - offset, cluster->start);
3200	if (ret)
3201		goto out;
3202
3203	index = (cluster->start - offset) >> PAGE_SHIFT;
3204	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3205	while (index <= last_index) {
3206		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
3207		if (ret)
3208			goto out;
3209
3210		page = find_lock_page(inode->i_mapping, index);
3211		if (!page) {
3212			page_cache_sync_readahead(inode->i_mapping,
3213						  ra, NULL, index,
3214						  last_index + 1 - index);
3215			page = find_or_create_page(inode->i_mapping, index,
3216						   mask);
3217			if (!page) {
3218				btrfs_delalloc_release_metadata(inode,
3219							PAGE_SIZE);
3220				ret = -ENOMEM;
3221				goto out;
3222			}
3223		}
3224
3225		if (PageReadahead(page)) {
3226			page_cache_async_readahead(inode->i_mapping,
3227						   ra, NULL, page, index,
3228						   last_index + 1 - index);
3229		}
3230
3231		if (!PageUptodate(page)) {
3232			btrfs_readpage(NULL, page);
3233			lock_page(page);
3234			if (!PageUptodate(page)) {
3235				unlock_page(page);
3236				put_page(page);
3237				btrfs_delalloc_release_metadata(inode,
3238							PAGE_SIZE);
3239				ret = -EIO;
3240				goto out;
3241			}
3242		}
3243
3244		page_start = page_offset(page);
3245		page_end = page_start + PAGE_SIZE - 1;
3246
3247		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3248
3249		set_page_extent_mapped(page);
3250
3251		if (nr < cluster->nr &&
3252		    page_start + offset == cluster->boundary[nr]) {
3253			set_extent_bits(&BTRFS_I(inode)->io_tree,
3254					page_start, page_end,
3255					EXTENT_BOUNDARY);
3256			nr++;
3257		}
3258
3259		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0);
3260		set_page_dirty(page);
3261
3262		unlock_extent(&BTRFS_I(inode)->io_tree,
3263			      page_start, page_end);
3264		unlock_page(page);
3265		put_page(page);
3266
3267		index++;
3268		balance_dirty_pages_ratelimited(inode->i_mapping);
3269		btrfs_throttle(fs_info);
3270	}
3271	WARN_ON(nr != cluster->nr);
3272out:
3273	kfree(ra);
3274	return ret;
3275}
3276
3277static noinline_for_stack
3278int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3279			 struct file_extent_cluster *cluster)
3280{
3281	int ret;
3282
3283	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3284		ret = relocate_file_extent_cluster(inode, cluster);
3285		if (ret)
3286			return ret;
3287		cluster->nr = 0;
3288	}
3289
3290	if (!cluster->nr)
3291		cluster->start = extent_key->objectid;
3292	else
3293		BUG_ON(cluster->nr >= MAX_EXTENTS);
3294	cluster->end = extent_key->objectid + extent_key->offset - 1;
3295	cluster->boundary[cluster->nr] = extent_key->objectid;
3296	cluster->nr++;
3297
3298	if (cluster->nr >= MAX_EXTENTS) {
3299		ret = relocate_file_extent_cluster(inode, cluster);
3300		if (ret)
3301			return ret;
3302		cluster->nr = 0;
3303	}
3304	return 0;
3305}
3306
3307#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3308static int get_ref_objectid_v0(struct reloc_control *rc,
3309			       struct btrfs_path *path,
3310			       struct btrfs_key *extent_key,
3311			       u64 *ref_objectid, int *path_change)
3312{
3313	struct btrfs_key key;
3314	struct extent_buffer *leaf;
3315	struct btrfs_extent_ref_v0 *ref0;
3316	int ret;
3317	int slot;
3318
3319	leaf = path->nodes[0];
3320	slot = path->slots[0];
3321	while (1) {
3322		if (slot >= btrfs_header_nritems(leaf)) {
3323			ret = btrfs_next_leaf(rc->extent_root, path);
3324			if (ret < 0)
3325				return ret;
3326			BUG_ON(ret > 0);
3327			leaf = path->nodes[0];
3328			slot = path->slots[0];
3329			if (path_change)
3330				*path_change = 1;
3331		}
3332		btrfs_item_key_to_cpu(leaf, &key, slot);
3333		if (key.objectid != extent_key->objectid)
3334			return -ENOENT;
3335
3336		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3337			slot++;
3338			continue;
3339		}
3340		ref0 = btrfs_item_ptr(leaf, slot,
3341				struct btrfs_extent_ref_v0);
3342		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3343		break;
3344	}
3345	return 0;
3346}
3347#endif
3348
3349/*
3350 * helper to add a tree block to the list.
3351 * the major work is getting the generation and level of the block
3352 */
3353static int add_tree_block(struct reloc_control *rc,
3354			  struct btrfs_key *extent_key,
3355			  struct btrfs_path *path,
3356			  struct rb_root *blocks)
3357{
3358	struct extent_buffer *eb;
3359	struct btrfs_extent_item *ei;
3360	struct btrfs_tree_block_info *bi;
3361	struct tree_block *block;
3362	struct rb_node *rb_node;
3363	u32 item_size;
3364	int level = -1;
3365	u64 generation;
3366
3367	eb =  path->nodes[0];
3368	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3369
3370	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3371	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3372		ei = btrfs_item_ptr(eb, path->slots[0],
3373				struct btrfs_extent_item);
3374		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3375			bi = (struct btrfs_tree_block_info *)(ei + 1);
3376			level = btrfs_tree_block_level(eb, bi);
3377		} else {
3378			level = (int)extent_key->offset;
3379		}
3380		generation = btrfs_extent_generation(eb, ei);
 
3381	} else {
3382#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3383		u64 ref_owner;
3384		int ret;
3385
3386		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3387		ret = get_ref_objectid_v0(rc, path, extent_key,
3388					  &ref_owner, NULL);
3389		if (ret < 0)
3390			return ret;
3391		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3392		level = (int)ref_owner;
3393		/* FIXME: get real generation */
3394		generation = 0;
3395#else
3396		BUG();
3397#endif
3398	}
3399
3400	btrfs_release_path(path);
3401
3402	BUG_ON(level == -1);
3403
3404	block = kmalloc(sizeof(*block), GFP_NOFS);
3405	if (!block)
3406		return -ENOMEM;
3407
3408	block->bytenr = extent_key->objectid;
3409	block->key.objectid = rc->extent_root->fs_info->nodesize;
3410	block->key.offset = generation;
3411	block->level = level;
3412	block->key_ready = 0;
3413
3414	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3415	if (rb_node)
3416		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3417
3418	return 0;
3419}
3420
3421/*
3422 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3423 */
3424static int __add_tree_block(struct reloc_control *rc,
3425			    u64 bytenr, u32 blocksize,
3426			    struct rb_root *blocks)
3427{
3428	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3429	struct btrfs_path *path;
3430	struct btrfs_key key;
3431	int ret;
3432	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3433
3434	if (tree_block_processed(bytenr, rc))
3435		return 0;
3436
3437	if (tree_search(blocks, bytenr))
3438		return 0;
3439
3440	path = btrfs_alloc_path();
3441	if (!path)
3442		return -ENOMEM;
3443again:
3444	key.objectid = bytenr;
3445	if (skinny) {
3446		key.type = BTRFS_METADATA_ITEM_KEY;
3447		key.offset = (u64)-1;
3448	} else {
3449		key.type = BTRFS_EXTENT_ITEM_KEY;
3450		key.offset = blocksize;
3451	}
3452
3453	path->search_commit_root = 1;
3454	path->skip_locking = 1;
3455	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3456	if (ret < 0)
3457		goto out;
3458
3459	if (ret > 0 && skinny) {
3460		if (path->slots[0]) {
3461			path->slots[0]--;
3462			btrfs_item_key_to_cpu(path->nodes[0], &key,
3463					      path->slots[0]);
3464			if (key.objectid == bytenr &&
3465			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3466			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3467			      key.offset == blocksize)))
3468				ret = 0;
3469		}
3470
3471		if (ret) {
3472			skinny = false;
3473			btrfs_release_path(path);
3474			goto again;
3475		}
3476	}
3477	BUG_ON(ret);
3478
 
3479	ret = add_tree_block(rc, &key, path, blocks);
3480out:
3481	btrfs_free_path(path);
3482	return ret;
3483}
3484
3485/*
3486 * helper to check if the block use full backrefs for pointers in it
3487 */
3488static int block_use_full_backref(struct reloc_control *rc,
3489				  struct extent_buffer *eb)
3490{
3491	u64 flags;
3492	int ret;
3493
3494	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3495	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3496		return 1;
3497
3498	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3499				       eb->start, btrfs_header_level(eb), 1,
3500				       NULL, &flags);
3501	BUG_ON(ret);
3502
3503	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3504		ret = 1;
3505	else
3506		ret = 0;
3507	return ret;
3508}
3509
3510static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3511				    struct btrfs_block_group_cache *block_group,
3512				    struct inode *inode,
3513				    u64 ino)
3514{
3515	struct btrfs_key key;
 
3516	struct btrfs_root *root = fs_info->tree_root;
3517	struct btrfs_trans_handle *trans;
 
3518	int ret = 0;
3519
3520	if (inode)
3521		goto truncate;
3522
3523	key.objectid = ino;
3524	key.type = BTRFS_INODE_ITEM_KEY;
3525	key.offset = 0;
3526
3527	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3528	if (IS_ERR(inode) || is_bad_inode(inode)) {
3529		if (!IS_ERR(inode))
3530			iput(inode);
3531		return -ENOENT;
3532	}
3533
3534truncate:
3535	ret = btrfs_check_trunc_cache_free_space(fs_info,
3536						 &fs_info->global_block_rsv);
3537	if (ret)
3538		goto out;
 
3539
3540	trans = btrfs_join_transaction(root);
3541	if (IS_ERR(trans)) {
 
3542		ret = PTR_ERR(trans);
3543		goto out;
3544	}
3545
3546	ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3547
3548	btrfs_end_transaction(trans);
3549	btrfs_btree_balance_dirty(fs_info);
 
 
3550out:
3551	iput(inode);
3552	return ret;
3553}
3554
3555/*
3556 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3557 * this function scans fs tree to find blocks reference the data extent
3558 */
3559static int find_data_references(struct reloc_control *rc,
3560				struct btrfs_key *extent_key,
3561				struct extent_buffer *leaf,
3562				struct btrfs_extent_data_ref *ref,
3563				struct rb_root *blocks)
3564{
3565	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3566	struct btrfs_path *path;
3567	struct tree_block *block;
3568	struct btrfs_root *root;
3569	struct btrfs_file_extent_item *fi;
3570	struct rb_node *rb_node;
3571	struct btrfs_key key;
3572	u64 ref_root;
3573	u64 ref_objectid;
3574	u64 ref_offset;
3575	u32 ref_count;
3576	u32 nritems;
3577	int err = 0;
3578	int added = 0;
3579	int counted;
3580	int ret;
3581
3582	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3583	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3584	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3585	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3586
3587	/*
3588	 * This is an extent belonging to the free space cache, lets just delete
3589	 * it and redo the search.
3590	 */
3591	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3592		ret = delete_block_group_cache(fs_info, rc->block_group,
3593					       NULL, ref_objectid);
3594		if (ret != -ENOENT)
3595			return ret;
3596		ret = 0;
3597	}
3598
3599	path = btrfs_alloc_path();
3600	if (!path)
3601		return -ENOMEM;
3602	path->reada = READA_FORWARD;
3603
3604	root = read_fs_root(fs_info, ref_root);
3605	if (IS_ERR(root)) {
3606		err = PTR_ERR(root);
3607		goto out;
3608	}
3609
3610	key.objectid = ref_objectid;
3611	key.type = BTRFS_EXTENT_DATA_KEY;
3612	if (ref_offset > ((u64)-1 << 32))
3613		key.offset = 0;
3614	else
3615		key.offset = ref_offset;
3616
3617	path->search_commit_root = 1;
3618	path->skip_locking = 1;
3619	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3620	if (ret < 0) {
3621		err = ret;
3622		goto out;
3623	}
3624
3625	leaf = path->nodes[0];
3626	nritems = btrfs_header_nritems(leaf);
3627	/*
3628	 * the references in tree blocks that use full backrefs
3629	 * are not counted in
3630	 */
3631	if (block_use_full_backref(rc, leaf))
3632		counted = 0;
3633	else
3634		counted = 1;
3635	rb_node = tree_search(blocks, leaf->start);
3636	if (rb_node) {
3637		if (counted)
3638			added = 1;
3639		else
3640			path->slots[0] = nritems;
3641	}
3642
3643	while (ref_count > 0) {
3644		while (path->slots[0] >= nritems) {
3645			ret = btrfs_next_leaf(root, path);
3646			if (ret < 0) {
3647				err = ret;
3648				goto out;
3649			}
3650			if (WARN_ON(ret > 0))
 
3651				goto out;
 
3652
3653			leaf = path->nodes[0];
3654			nritems = btrfs_header_nritems(leaf);
3655			added = 0;
3656
3657			if (block_use_full_backref(rc, leaf))
3658				counted = 0;
3659			else
3660				counted = 1;
3661			rb_node = tree_search(blocks, leaf->start);
3662			if (rb_node) {
3663				if (counted)
3664					added = 1;
3665				else
3666					path->slots[0] = nritems;
3667			}
3668		}
3669
3670		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3671		if (WARN_ON(key.objectid != ref_objectid ||
3672		    key.type != BTRFS_EXTENT_DATA_KEY))
 
3673			break;
 
3674
3675		fi = btrfs_item_ptr(leaf, path->slots[0],
3676				    struct btrfs_file_extent_item);
3677
3678		if (btrfs_file_extent_type(leaf, fi) ==
3679		    BTRFS_FILE_EXTENT_INLINE)
3680			goto next;
3681
3682		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3683		    extent_key->objectid)
3684			goto next;
3685
3686		key.offset -= btrfs_file_extent_offset(leaf, fi);
3687		if (key.offset != ref_offset)
3688			goto next;
3689
3690		if (counted)
3691			ref_count--;
3692		if (added)
3693			goto next;
3694
3695		if (!tree_block_processed(leaf->start, rc)) {
3696			block = kmalloc(sizeof(*block), GFP_NOFS);
3697			if (!block) {
3698				err = -ENOMEM;
3699				break;
3700			}
3701			block->bytenr = leaf->start;
3702			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3703			block->level = 0;
3704			block->key_ready = 1;
3705			rb_node = tree_insert(blocks, block->bytenr,
3706					      &block->rb_node);
3707			if (rb_node)
3708				backref_tree_panic(rb_node, -EEXIST,
3709						   block->bytenr);
3710		}
3711		if (counted)
3712			added = 1;
3713		else
3714			path->slots[0] = nritems;
3715next:
3716		path->slots[0]++;
3717
3718	}
3719out:
3720	btrfs_free_path(path);
3721	return err;
3722}
3723
3724/*
3725 * helper to find all tree blocks that reference a given data extent
3726 */
3727static noinline_for_stack
3728int add_data_references(struct reloc_control *rc,
3729			struct btrfs_key *extent_key,
3730			struct btrfs_path *path,
3731			struct rb_root *blocks)
3732{
3733	struct btrfs_key key;
3734	struct extent_buffer *eb;
3735	struct btrfs_extent_data_ref *dref;
3736	struct btrfs_extent_inline_ref *iref;
3737	unsigned long ptr;
3738	unsigned long end;
3739	u32 blocksize = rc->extent_root->fs_info->nodesize;
3740	int ret = 0;
3741	int err = 0;
3742
3743	eb = path->nodes[0];
3744	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3745	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3746#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3747	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3748		ptr = end;
3749	else
3750#endif
3751		ptr += sizeof(struct btrfs_extent_item);
3752
3753	while (ptr < end) {
3754		iref = (struct btrfs_extent_inline_ref *)ptr;
3755		key.type = btrfs_extent_inline_ref_type(eb, iref);
3756		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3757			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3758			ret = __add_tree_block(rc, key.offset, blocksize,
3759					       blocks);
3760		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3761			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3762			ret = find_data_references(rc, extent_key,
3763						   eb, dref, blocks);
3764		} else {
3765			BUG();
3766		}
3767		if (ret) {
3768			err = ret;
3769			goto out;
3770		}
3771		ptr += btrfs_extent_inline_ref_size(key.type);
3772	}
3773	WARN_ON(ptr > end);
3774
3775	while (1) {
3776		cond_resched();
3777		eb = path->nodes[0];
3778		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3779			ret = btrfs_next_leaf(rc->extent_root, path);
3780			if (ret < 0) {
3781				err = ret;
3782				break;
3783			}
3784			if (ret > 0)
3785				break;
3786			eb = path->nodes[0];
3787		}
3788
3789		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3790		if (key.objectid != extent_key->objectid)
3791			break;
3792
3793#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3794		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3795		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3796#else
3797		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3798		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3799#endif
3800			ret = __add_tree_block(rc, key.offset, blocksize,
3801					       blocks);
3802		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3803			dref = btrfs_item_ptr(eb, path->slots[0],
3804					      struct btrfs_extent_data_ref);
3805			ret = find_data_references(rc, extent_key,
3806						   eb, dref, blocks);
3807		} else {
3808			ret = 0;
3809		}
3810		if (ret) {
3811			err = ret;
3812			break;
3813		}
3814		path->slots[0]++;
3815	}
3816out:
3817	btrfs_release_path(path);
3818	if (err)
3819		free_block_list(blocks);
3820	return err;
3821}
3822
3823/*
3824 * helper to find next unprocessed extent
3825 */
3826static noinline_for_stack
3827int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
 
3828		     struct btrfs_key *extent_key)
3829{
3830	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3831	struct btrfs_key key;
3832	struct extent_buffer *leaf;
3833	u64 start, end, last;
3834	int ret;
3835
3836	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3837	while (1) {
3838		cond_resched();
3839		if (rc->search_start >= last) {
3840			ret = 1;
3841			break;
3842		}
3843
3844		key.objectid = rc->search_start;
3845		key.type = BTRFS_EXTENT_ITEM_KEY;
3846		key.offset = 0;
3847
3848		path->search_commit_root = 1;
3849		path->skip_locking = 1;
3850		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3851					0, 0);
3852		if (ret < 0)
3853			break;
3854next:
3855		leaf = path->nodes[0];
3856		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3857			ret = btrfs_next_leaf(rc->extent_root, path);
3858			if (ret != 0)
3859				break;
3860			leaf = path->nodes[0];
3861		}
3862
3863		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3864		if (key.objectid >= last) {
3865			ret = 1;
3866			break;
3867		}
3868
3869		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3870		    key.type != BTRFS_METADATA_ITEM_KEY) {
3871			path->slots[0]++;
3872			goto next;
3873		}
3874
3875		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3876		    key.objectid + key.offset <= rc->search_start) {
3877			path->slots[0]++;
3878			goto next;
3879		}
3880
3881		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3882		    key.objectid + fs_info->nodesize <=
3883		    rc->search_start) {
3884			path->slots[0]++;
3885			goto next;
3886		}
3887
3888		ret = find_first_extent_bit(&rc->processed_blocks,
3889					    key.objectid, &start, &end,
3890					    EXTENT_DIRTY, NULL);
3891
3892		if (ret == 0 && start <= key.objectid) {
3893			btrfs_release_path(path);
3894			rc->search_start = end + 1;
3895		} else {
3896			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3897				rc->search_start = key.objectid + key.offset;
3898			else
3899				rc->search_start = key.objectid +
3900					fs_info->nodesize;
3901			memcpy(extent_key, &key, sizeof(key));
3902			return 0;
3903		}
3904	}
3905	btrfs_release_path(path);
3906	return ret;
3907}
3908
3909static void set_reloc_control(struct reloc_control *rc)
3910{
3911	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3912
3913	mutex_lock(&fs_info->reloc_mutex);
3914	fs_info->reloc_ctl = rc;
3915	mutex_unlock(&fs_info->reloc_mutex);
3916}
3917
3918static void unset_reloc_control(struct reloc_control *rc)
3919{
3920	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3921
3922	mutex_lock(&fs_info->reloc_mutex);
3923	fs_info->reloc_ctl = NULL;
3924	mutex_unlock(&fs_info->reloc_mutex);
3925}
3926
3927static int check_extent_flags(u64 flags)
3928{
3929	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3930	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3931		return 1;
3932	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3933	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3934		return 1;
3935	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3936	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3937		return 1;
3938	return 0;
3939}
3940
3941static noinline_for_stack
3942int prepare_to_relocate(struct reloc_control *rc)
3943{
3944	struct btrfs_trans_handle *trans;
3945	int ret;
3946
3947	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3948					      BTRFS_BLOCK_RSV_TEMP);
3949	if (!rc->block_rsv)
3950		return -ENOMEM;
3951
 
 
 
 
 
 
 
 
 
 
3952	memset(&rc->cluster, 0, sizeof(rc->cluster));
3953	rc->search_start = rc->block_group->key.objectid;
3954	rc->extents_found = 0;
3955	rc->nodes_relocated = 0;
3956	rc->merging_rsv_size = 0;
3957	rc->reserved_bytes = 0;
3958	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3959			      RELOCATION_RESERVED_NODES;
3960	ret = btrfs_block_rsv_refill(rc->extent_root,
3961				     rc->block_rsv, rc->block_rsv->size,
3962				     BTRFS_RESERVE_FLUSH_ALL);
3963	if (ret)
3964		return ret;
3965
3966	rc->create_reloc_tree = 1;
3967	set_reloc_control(rc);
3968
3969	trans = btrfs_join_transaction(rc->extent_root);
3970	if (IS_ERR(trans)) {
3971		unset_reloc_control(rc);
3972		/*
3973		 * extent tree is not a ref_cow tree and has no reloc_root to
3974		 * cleanup.  And callers are responsible to free the above
3975		 * block rsv.
3976		 */
3977		return PTR_ERR(trans);
3978	}
3979	btrfs_commit_transaction(trans);
3980	return 0;
3981}
3982
3983static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3984{
3985	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3986	struct rb_root blocks = RB_ROOT;
3987	struct btrfs_key key;
3988	struct btrfs_trans_handle *trans = NULL;
3989	struct btrfs_path *path;
3990	struct btrfs_extent_item *ei;
 
3991	u64 flags;
3992	u32 item_size;
3993	int ret;
3994	int err = 0;
3995	int progress = 0;
3996
3997	path = btrfs_alloc_path();
3998	if (!path)
3999		return -ENOMEM;
4000	path->reada = READA_FORWARD;
4001
4002	ret = prepare_to_relocate(rc);
4003	if (ret) {
4004		err = ret;
4005		goto out_free;
4006	}
4007
4008	while (1) {
4009		rc->reserved_bytes = 0;
4010		ret = btrfs_block_rsv_refill(rc->extent_root,
4011					rc->block_rsv, rc->block_rsv->size,
4012					BTRFS_RESERVE_FLUSH_ALL);
4013		if (ret) {
4014			err = ret;
4015			break;
4016		}
4017		progress++;
4018		trans = btrfs_start_transaction(rc->extent_root, 0);
4019		if (IS_ERR(trans)) {
4020			err = PTR_ERR(trans);
4021			trans = NULL;
4022			break;
4023		}
4024restart:
4025		if (update_backref_cache(trans, &rc->backref_cache)) {
4026			btrfs_end_transaction(trans);
4027			continue;
4028		}
4029
4030		ret = find_next_extent(rc, path, &key);
4031		if (ret < 0)
4032			err = ret;
4033		if (ret != 0)
4034			break;
4035
4036		rc->extents_found++;
4037
4038		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4039				    struct btrfs_extent_item);
4040		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4041		if (item_size >= sizeof(*ei)) {
4042			flags = btrfs_extent_flags(path->nodes[0], ei);
4043			ret = check_extent_flags(flags);
4044			BUG_ON(ret);
4045
4046		} else {
4047#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4048			u64 ref_owner;
4049			int path_change = 0;
4050
4051			BUG_ON(item_size !=
4052			       sizeof(struct btrfs_extent_item_v0));
4053			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
4054						  &path_change);
4055			if (ret < 0) {
4056				err = ret;
4057				break;
4058			}
4059			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
4060				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
4061			else
4062				flags = BTRFS_EXTENT_FLAG_DATA;
4063
4064			if (path_change) {
4065				btrfs_release_path(path);
4066
4067				path->search_commit_root = 1;
4068				path->skip_locking = 1;
4069				ret = btrfs_search_slot(NULL, rc->extent_root,
4070							&key, path, 0, 0);
4071				if (ret < 0) {
4072					err = ret;
4073					break;
4074				}
4075				BUG_ON(ret > 0);
4076			}
4077#else
4078			BUG();
4079#endif
4080		}
4081
4082		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4083			ret = add_tree_block(rc, &key, path, &blocks);
4084		} else if (rc->stage == UPDATE_DATA_PTRS &&
4085			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4086			ret = add_data_references(rc, &key, path, &blocks);
4087		} else {
4088			btrfs_release_path(path);
4089			ret = 0;
4090		}
4091		if (ret < 0) {
4092			err = ret;
4093			break;
4094		}
4095
4096		if (!RB_EMPTY_ROOT(&blocks)) {
4097			ret = relocate_tree_blocks(trans, rc, &blocks);
4098			if (ret < 0) {
4099				/*
4100				 * if we fail to relocate tree blocks, force to update
4101				 * backref cache when committing transaction.
4102				 */
4103				rc->backref_cache.last_trans = trans->transid - 1;
4104
4105				if (ret != -EAGAIN) {
4106					err = ret;
4107					break;
4108				}
4109				rc->extents_found--;
4110				rc->search_start = key.objectid;
4111			}
4112		}
4113
4114		btrfs_end_transaction_throttle(trans);
4115		btrfs_btree_balance_dirty(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4116		trans = NULL;
4117
4118		if (rc->stage == MOVE_DATA_EXTENTS &&
4119		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4120			rc->found_file_extent = 1;
4121			ret = relocate_data_extent(rc->data_inode,
4122						   &key, &rc->cluster);
4123			if (ret < 0) {
4124				err = ret;
4125				break;
4126			}
4127		}
4128	}
4129	if (trans && progress && err == -ENOSPC) {
4130		ret = btrfs_force_chunk_alloc(trans, fs_info,
4131					      rc->block_group->flags);
4132		if (ret == 1) {
4133			err = 0;
4134			progress = 0;
4135			goto restart;
4136		}
4137	}
4138
4139	btrfs_release_path(path);
4140	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
 
4141
4142	if (trans) {
4143		btrfs_end_transaction_throttle(trans);
4144		btrfs_btree_balance_dirty(fs_info);
 
4145	}
4146
4147	if (!err) {
4148		ret = relocate_file_extent_cluster(rc->data_inode,
4149						   &rc->cluster);
4150		if (ret < 0)
4151			err = ret;
4152	}
4153
4154	rc->create_reloc_tree = 0;
4155	set_reloc_control(rc);
4156
4157	backref_cache_cleanup(&rc->backref_cache);
4158	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4159
4160	err = prepare_to_merge(rc, err);
4161
4162	merge_reloc_roots(rc);
4163
4164	rc->merge_reloc_tree = 0;
4165	unset_reloc_control(rc);
4166	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4167
4168	/* get rid of pinned extents */
4169	trans = btrfs_join_transaction(rc->extent_root);
4170	if (IS_ERR(trans)) {
4171		err = PTR_ERR(trans);
4172		goto out_free;
4173	}
4174	btrfs_commit_transaction(trans);
4175out_free:
4176	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4177	btrfs_free_path(path);
4178	return err;
4179}
4180
4181static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4182				 struct btrfs_root *root, u64 objectid)
4183{
4184	struct btrfs_path *path;
4185	struct btrfs_inode_item *item;
4186	struct extent_buffer *leaf;
4187	int ret;
4188
4189	path = btrfs_alloc_path();
4190	if (!path)
4191		return -ENOMEM;
4192
4193	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4194	if (ret)
4195		goto out;
4196
4197	leaf = path->nodes[0];
4198	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4199	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4200	btrfs_set_inode_generation(leaf, item, 1);
4201	btrfs_set_inode_size(leaf, item, 0);
4202	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4203	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4204					  BTRFS_INODE_PREALLOC);
4205	btrfs_mark_buffer_dirty(leaf);
 
4206out:
4207	btrfs_free_path(path);
4208	return ret;
4209}
4210
4211/*
4212 * helper to create inode for data relocation.
4213 * the inode is in data relocation tree and its link count is 0
4214 */
4215static noinline_for_stack
4216struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4217				 struct btrfs_block_group_cache *group)
4218{
4219	struct inode *inode = NULL;
4220	struct btrfs_trans_handle *trans;
4221	struct btrfs_root *root;
4222	struct btrfs_key key;
4223	u64 objectid;
 
4224	int err = 0;
4225
4226	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4227	if (IS_ERR(root))
4228		return ERR_CAST(root);
4229
4230	trans = btrfs_start_transaction(root, 6);
4231	if (IS_ERR(trans))
4232		return ERR_CAST(trans);
4233
4234	err = btrfs_find_free_objectid(root, &objectid);
4235	if (err)
4236		goto out;
4237
4238	err = __insert_orphan_inode(trans, root, objectid);
4239	BUG_ON(err);
4240
4241	key.objectid = objectid;
4242	key.type = BTRFS_INODE_ITEM_KEY;
4243	key.offset = 0;
4244	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4245	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4246	BTRFS_I(inode)->index_cnt = group->key.objectid;
4247
4248	err = btrfs_orphan_add(trans, inode);
4249out:
4250	btrfs_end_transaction(trans);
4251	btrfs_btree_balance_dirty(fs_info);
 
4252	if (err) {
4253		if (inode)
4254			iput(inode);
4255		inode = ERR_PTR(err);
4256	}
4257	return inode;
4258}
4259
4260static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4261{
4262	struct reloc_control *rc;
4263
4264	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4265	if (!rc)
4266		return NULL;
4267
4268	INIT_LIST_HEAD(&rc->reloc_roots);
4269	backref_cache_init(&rc->backref_cache);
4270	mapping_tree_init(&rc->reloc_root_tree);
4271	extent_io_tree_init(&rc->processed_blocks,
4272			    fs_info->btree_inode->i_mapping);
4273	return rc;
4274}
4275
4276/*
4277 * Print the block group being relocated
4278 */
4279static void describe_relocation(struct btrfs_fs_info *fs_info,
4280				struct btrfs_block_group_cache *block_group)
4281{
4282	char buf[128];		/* prefixed by a '|' that'll be dropped */
4283	u64 flags = block_group->flags;
4284
4285	/* Shouldn't happen */
4286	if (!flags) {
4287		strcpy(buf, "|NONE");
4288	} else {
4289		char *bp = buf;
4290
4291#define DESCRIBE_FLAG(f, d) \
4292		if (flags & BTRFS_BLOCK_GROUP_##f) { \
4293			bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4294			flags &= ~BTRFS_BLOCK_GROUP_##f; \
4295		}
4296		DESCRIBE_FLAG(DATA,     "data");
4297		DESCRIBE_FLAG(SYSTEM,   "system");
4298		DESCRIBE_FLAG(METADATA, "metadata");
4299		DESCRIBE_FLAG(RAID0,    "raid0");
4300		DESCRIBE_FLAG(RAID1,    "raid1");
4301		DESCRIBE_FLAG(DUP,      "dup");
4302		DESCRIBE_FLAG(RAID10,   "raid10");
4303		DESCRIBE_FLAG(RAID5,    "raid5");
4304		DESCRIBE_FLAG(RAID6,    "raid6");
4305		if (flags)
4306			snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags);
4307#undef DESCRIBE_FLAG
4308	}
4309
4310	btrfs_info(fs_info,
4311		   "relocating block group %llu flags %s",
4312		   block_group->key.objectid, buf + 1);
4313}
4314
4315/*
4316 * function to relocate all extents in a block group.
4317 */
4318int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4319{
4320	struct btrfs_root *extent_root = fs_info->extent_root;
4321	struct reloc_control *rc;
4322	struct inode *inode;
4323	struct btrfs_path *path;
4324	int ret;
4325	int rw = 0;
4326	int err = 0;
4327
4328	rc = alloc_reloc_control(fs_info);
4329	if (!rc)
4330		return -ENOMEM;
4331
4332	rc->extent_root = extent_root;
4333
4334	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4335	BUG_ON(!rc->block_group);
4336
4337	ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4338	if (ret) {
4339		err = ret;
4340		goto out;
 
 
 
4341	}
4342	rw = 1;
4343
4344	path = btrfs_alloc_path();
4345	if (!path) {
4346		err = -ENOMEM;
4347		goto out;
4348	}
4349
4350	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4351					path);
4352	btrfs_free_path(path);
4353
4354	if (!IS_ERR(inode))
4355		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4356	else
4357		ret = PTR_ERR(inode);
4358
4359	if (ret && ret != -ENOENT) {
4360		err = ret;
4361		goto out;
4362	}
4363
4364	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4365	if (IS_ERR(rc->data_inode)) {
4366		err = PTR_ERR(rc->data_inode);
4367		rc->data_inode = NULL;
4368		goto out;
4369	}
4370
4371	describe_relocation(fs_info, rc->block_group);
 
 
4372
4373	btrfs_wait_block_group_reservations(rc->block_group);
4374	btrfs_wait_nocow_writers(rc->block_group);
4375	btrfs_wait_ordered_roots(fs_info, -1,
4376				 rc->block_group->key.objectid,
4377				 rc->block_group->key.offset);
4378
4379	while (1) {
4380		mutex_lock(&fs_info->cleaner_mutex);
 
 
4381		ret = relocate_block_group(rc);
 
4382		mutex_unlock(&fs_info->cleaner_mutex);
4383		if (ret < 0) {
4384			err = ret;
4385			goto out;
4386		}
4387
4388		if (rc->extents_found == 0)
4389			break;
4390
4391		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
 
4392
4393		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4394			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4395						       (u64)-1);
4396			if (ret) {
4397				err = ret;
4398				goto out;
4399			}
4400			invalidate_mapping_pages(rc->data_inode->i_mapping,
4401						 0, -1);
4402			rc->stage = UPDATE_DATA_PTRS;
4403		}
4404	}
4405
 
 
 
 
 
4406	WARN_ON(rc->block_group->pinned > 0);
4407	WARN_ON(rc->block_group->reserved > 0);
4408	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4409out:
4410	if (err && rw)
4411		btrfs_dec_block_group_ro(rc->block_group);
4412	iput(rc->data_inode);
4413	btrfs_put_block_group(rc->block_group);
4414	kfree(rc);
4415	return err;
4416}
4417
4418static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4419{
4420	struct btrfs_fs_info *fs_info = root->fs_info;
4421	struct btrfs_trans_handle *trans;
4422	int ret, err;
4423
4424	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4425	if (IS_ERR(trans))
4426		return PTR_ERR(trans);
4427
4428	memset(&root->root_item.drop_progress, 0,
4429		sizeof(root->root_item.drop_progress));
4430	root->root_item.drop_level = 0;
4431	btrfs_set_root_refs(&root->root_item, 0);
4432	ret = btrfs_update_root(trans, fs_info->tree_root,
4433				&root->root_key, &root->root_item);
4434
4435	err = btrfs_end_transaction(trans);
4436	if (err)
4437		return err;
4438	return ret;
4439}
4440
4441/*
4442 * recover relocation interrupted by system crash.
4443 *
4444 * this function resumes merging reloc trees with corresponding fs trees.
4445 * this is important for keeping the sharing of tree blocks
4446 */
4447int btrfs_recover_relocation(struct btrfs_root *root)
4448{
4449	struct btrfs_fs_info *fs_info = root->fs_info;
4450	LIST_HEAD(reloc_roots);
4451	struct btrfs_key key;
4452	struct btrfs_root *fs_root;
4453	struct btrfs_root *reloc_root;
4454	struct btrfs_path *path;
4455	struct extent_buffer *leaf;
4456	struct reloc_control *rc = NULL;
4457	struct btrfs_trans_handle *trans;
4458	int ret;
4459	int err = 0;
4460
4461	path = btrfs_alloc_path();
4462	if (!path)
4463		return -ENOMEM;
4464	path->reada = READA_BACK;
4465
4466	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4467	key.type = BTRFS_ROOT_ITEM_KEY;
4468	key.offset = (u64)-1;
4469
4470	while (1) {
4471		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4472					path, 0, 0);
4473		if (ret < 0) {
4474			err = ret;
4475			goto out;
4476		}
4477		if (ret > 0) {
4478			if (path->slots[0] == 0)
4479				break;
4480			path->slots[0]--;
4481		}
4482		leaf = path->nodes[0];
4483		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4484		btrfs_release_path(path);
4485
4486		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4487		    key.type != BTRFS_ROOT_ITEM_KEY)
4488			break;
4489
4490		reloc_root = btrfs_read_fs_root(root, &key);
4491		if (IS_ERR(reloc_root)) {
4492			err = PTR_ERR(reloc_root);
4493			goto out;
4494		}
4495
4496		list_add(&reloc_root->root_list, &reloc_roots);
4497
4498		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4499			fs_root = read_fs_root(fs_info,
4500					       reloc_root->root_key.offset);
4501			if (IS_ERR(fs_root)) {
4502				ret = PTR_ERR(fs_root);
4503				if (ret != -ENOENT) {
4504					err = ret;
4505					goto out;
4506				}
4507				ret = mark_garbage_root(reloc_root);
4508				if (ret < 0) {
4509					err = ret;
4510					goto out;
4511				}
4512			}
4513		}
4514
4515		if (key.offset == 0)
4516			break;
4517
4518		key.offset--;
4519	}
4520	btrfs_release_path(path);
4521
4522	if (list_empty(&reloc_roots))
4523		goto out;
4524
4525	rc = alloc_reloc_control(fs_info);
4526	if (!rc) {
4527		err = -ENOMEM;
4528		goto out;
4529	}
4530
4531	rc->extent_root = fs_info->extent_root;
4532
4533	set_reloc_control(rc);
4534
4535	trans = btrfs_join_transaction(rc->extent_root);
4536	if (IS_ERR(trans)) {
4537		unset_reloc_control(rc);
4538		err = PTR_ERR(trans);
4539		goto out_free;
4540	}
4541
4542	rc->merge_reloc_tree = 1;
4543
4544	while (!list_empty(&reloc_roots)) {
4545		reloc_root = list_entry(reloc_roots.next,
4546					struct btrfs_root, root_list);
4547		list_del(&reloc_root->root_list);
4548
4549		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4550			list_add_tail(&reloc_root->root_list,
4551				      &rc->reloc_roots);
4552			continue;
4553		}
4554
4555		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
 
4556		if (IS_ERR(fs_root)) {
4557			err = PTR_ERR(fs_root);
4558			goto out_free;
4559		}
4560
4561		err = __add_reloc_root(reloc_root);
4562		BUG_ON(err < 0); /* -ENOMEM or logic error */
4563		fs_root->reloc_root = reloc_root;
4564	}
4565
4566	err = btrfs_commit_transaction(trans);
4567	if (err)
4568		goto out_free;
4569
4570	merge_reloc_roots(rc);
4571
4572	unset_reloc_control(rc);
4573
4574	trans = btrfs_join_transaction(rc->extent_root);
4575	if (IS_ERR(trans)) {
4576		err = PTR_ERR(trans);
4577		goto out_free;
4578	}
4579	err = btrfs_commit_transaction(trans);
4580out_free:
4581	kfree(rc);
4582out:
4583	if (!list_empty(&reloc_roots))
4584		free_reloc_roots(&reloc_roots);
4585
 
 
 
 
 
4586	btrfs_free_path(path);
4587
4588	if (err == 0) {
4589		/* cleanup orphan inode in data relocation tree */
4590		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
 
4591		if (IS_ERR(fs_root))
4592			err = PTR_ERR(fs_root);
4593		else
4594			err = btrfs_orphan_cleanup(fs_root);
4595	}
4596	return err;
4597}
4598
4599/*
4600 * helper to add ordered checksum for data relocation.
4601 *
4602 * cloning checksum properly handles the nodatasum extents.
4603 * it also saves CPU time to re-calculate the checksum.
4604 */
4605int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4606{
4607	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4608	struct btrfs_ordered_sum *sums;
 
4609	struct btrfs_ordered_extent *ordered;
 
 
4610	int ret;
4611	u64 disk_bytenr;
4612	u64 new_bytenr;
4613	LIST_HEAD(list);
4614
4615	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4616	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4617
4618	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4619	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4620				       disk_bytenr + len - 1, &list, 0);
4621	if (ret)
4622		goto out;
4623
4624	while (!list_empty(&list)) {
4625		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4626		list_del_init(&sums->list);
4627
4628		/*
4629		 * We need to offset the new_bytenr based on where the csum is.
4630		 * We need to do this because we will read in entire prealloc
4631		 * extents but we may have written to say the middle of the
4632		 * prealloc extent, so we need to make sure the csum goes with
4633		 * the right disk offset.
4634		 *
4635		 * We can do this because the data reloc inode refers strictly
4636		 * to the on disk bytes, so we don't have to worry about
4637		 * disk_len vs real len like with real inodes since it's all
4638		 * disk length.
4639		 */
4640		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4641		sums->bytenr = new_bytenr;
4642
4643		btrfs_add_ordered_sum(inode, ordered, sums);
4644	}
4645out:
4646	btrfs_put_ordered_extent(ordered);
4647	return ret;
4648}
4649
4650int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4651			  struct btrfs_root *root, struct extent_buffer *buf,
4652			  struct extent_buffer *cow)
4653{
4654	struct btrfs_fs_info *fs_info = root->fs_info;
4655	struct reloc_control *rc;
4656	struct backref_node *node;
4657	int first_cow = 0;
4658	int level;
4659	int ret = 0;
4660
4661	rc = fs_info->reloc_ctl;
4662	if (!rc)
4663		return 0;
4664
4665	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4666	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4667
4668	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4669		if (buf == root->node)
4670			__update_reloc_root(root, cow->start);
4671	}
4672
4673	level = btrfs_header_level(buf);
4674	if (btrfs_header_generation(buf) <=
4675	    btrfs_root_last_snapshot(&root->root_item))
4676		first_cow = 1;
4677
4678	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4679	    rc->create_reloc_tree) {
4680		WARN_ON(!first_cow && level == 0);
4681
4682		node = rc->backref_cache.path[level];
4683		BUG_ON(node->bytenr != buf->start &&
4684		       node->new_bytenr != buf->start);
4685
4686		drop_node_buffer(node);
4687		extent_buffer_get(cow);
4688		node->eb = cow;
4689		node->new_bytenr = cow->start;
4690
4691		if (!node->pending) {
4692			list_move_tail(&node->list,
4693				       &rc->backref_cache.pending[level]);
4694			node->pending = 1;
4695		}
4696
4697		if (first_cow)
4698			__mark_block_processed(rc, node);
4699
4700		if (first_cow && level > 0)
4701			rc->nodes_relocated += buf->len;
4702	}
4703
4704	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4705		ret = replace_file_extents(trans, rc, root, cow);
4706	return ret;
 
4707}
4708
4709/*
4710 * called before creating snapshot. it calculates metadata reservation
4711 * required for relocating tree blocks in the snapshot
4712 */
4713void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
 
4714			      u64 *bytes_to_reserve)
4715{
4716	struct btrfs_root *root;
4717	struct reloc_control *rc;
4718
4719	root = pending->root;
4720	if (!root->reloc_root)
4721		return;
4722
4723	rc = root->fs_info->reloc_ctl;
4724	if (!rc->merge_reloc_tree)
4725		return;
4726
4727	root = root->reloc_root;
4728	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4729	/*
4730	 * relocation is in the stage of merging trees. the space
4731	 * used by merging a reloc tree is twice the size of
4732	 * relocated tree nodes in the worst case. half for cowing
4733	 * the reloc tree, half for cowing the fs tree. the space
4734	 * used by cowing the reloc tree will be freed after the
4735	 * tree is dropped. if we create snapshot, cowing the fs
4736	 * tree may use more space than it frees. so we need
4737	 * reserve extra space.
4738	 */
4739	*bytes_to_reserve += rc->nodes_relocated;
4740}
4741
4742/*
4743 * called after snapshot is created. migrate block reservation
4744 * and create reloc root for the newly created snapshot
4745 */
4746int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4747			       struct btrfs_pending_snapshot *pending)
4748{
4749	struct btrfs_root *root = pending->root;
4750	struct btrfs_root *reloc_root;
4751	struct btrfs_root *new_root;
4752	struct reloc_control *rc;
4753	int ret;
4754
4755	if (!root->reloc_root)
4756		return 0;
4757
4758	rc = root->fs_info->reloc_ctl;
4759	rc->merging_rsv_size += rc->nodes_relocated;
4760
4761	if (rc->merge_reloc_tree) {
4762		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4763					      rc->block_rsv,
4764					      rc->nodes_relocated, 1);
4765		if (ret)
4766			return ret;
4767	}
4768
4769	new_root = pending->snap;
4770	reloc_root = create_reloc_root(trans, root->reloc_root,
4771				       new_root->root_key.objectid);
4772	if (IS_ERR(reloc_root))
4773		return PTR_ERR(reloc_root);
4774
4775	ret = __add_reloc_root(reloc_root);
4776	BUG_ON(ret < 0);
4777	new_root->reloc_root = reloc_root;
4778
4779	if (rc->create_reloc_tree)
4780		ret = clone_backref_node(trans, rc, root, reloc_root);
4781	return ret;
4782}