Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
  34
  35/*
  36 * backref_node, mapping_node and tree_block start with this
  37 */
  38struct tree_entry {
  39	struct rb_node rb_node;
  40	u64 bytenr;
  41};
  42
  43/*
  44 * present a tree block in the backref cache
  45 */
  46struct backref_node {
  47	struct rb_node rb_node;
  48	u64 bytenr;
  49
  50	u64 new_bytenr;
  51	/* objectid of tree block owner, can be not uptodate */
  52	u64 owner;
  53	/* link to pending, changed or detached list */
  54	struct list_head list;
  55	/* list of upper level blocks reference this block */
  56	struct list_head upper;
  57	/* list of child blocks in the cache */
  58	struct list_head lower;
  59	/* NULL if this node is not tree root */
  60	struct btrfs_root *root;
  61	/* extent buffer got by COW the block */
  62	struct extent_buffer *eb;
  63	/* level of tree block */
  64	unsigned int level:8;
  65	/* is the block in non-reference counted tree */
  66	unsigned int cowonly:1;
  67	/* 1 if no child node in the cache */
  68	unsigned int lowest:1;
  69	/* is the extent buffer locked */
  70	unsigned int locked:1;
  71	/* has the block been processed */
  72	unsigned int processed:1;
  73	/* have backrefs of this block been checked */
  74	unsigned int checked:1;
  75	/*
  76	 * 1 if corresponding block has been cowed but some upper
  77	 * level block pointers may not point to the new location
  78	 */
  79	unsigned int pending:1;
  80	/*
  81	 * 1 if the backref node isn't connected to any other
  82	 * backref node.
  83	 */
  84	unsigned int detached:1;
  85};
  86
  87/*
  88 * present a block pointer in the backref cache
  89 */
  90struct backref_edge {
  91	struct list_head list[2];
  92	struct backref_node *node[2];
  93};
  94
  95#define LOWER	0
  96#define UPPER	1
 
  97
  98struct backref_cache {
  99	/* red black tree of all backref nodes in the cache */
 100	struct rb_root rb_root;
 101	/* for passing backref nodes to btrfs_reloc_cow_block */
 102	struct backref_node *path[BTRFS_MAX_LEVEL];
 103	/*
 104	 * list of blocks that have been cowed but some block
 105	 * pointers in upper level blocks may not reflect the
 106	 * new location
 107	 */
 108	struct list_head pending[BTRFS_MAX_LEVEL];
 109	/* list of backref nodes with no child node */
 110	struct list_head leaves;
 111	/* list of blocks that have been cowed in current transaction */
 112	struct list_head changed;
 113	/* list of detached backref node. */
 114	struct list_head detached;
 115
 116	u64 last_trans;
 117
 118	int nr_nodes;
 119	int nr_edges;
 120};
 121
 122/*
 123 * map address of tree root to tree
 124 */
 125struct mapping_node {
 126	struct rb_node rb_node;
 127	u64 bytenr;
 128	void *data;
 129};
 130
 131struct mapping_tree {
 132	struct rb_root rb_root;
 133	spinlock_t lock;
 134};
 135
 136/*
 137 * present a tree block to process
 138 */
 139struct tree_block {
 140	struct rb_node rb_node;
 141	u64 bytenr;
 142	struct btrfs_key key;
 143	unsigned int level:8;
 144	unsigned int key_ready:1;
 145};
 146
 147#define MAX_EXTENTS 128
 148
 149struct file_extent_cluster {
 150	u64 start;
 151	u64 end;
 152	u64 boundary[MAX_EXTENTS];
 153	unsigned int nr;
 154};
 155
 156struct reloc_control {
 157	/* block group to relocate */
 158	struct btrfs_block_group_cache *block_group;
 159	/* extent tree */
 160	struct btrfs_root *extent_root;
 161	/* inode for moving data */
 162	struct inode *data_inode;
 163
 164	struct btrfs_block_rsv *block_rsv;
 165
 166	struct backref_cache backref_cache;
 167
 168	struct file_extent_cluster cluster;
 169	/* tree blocks have been processed */
 170	struct extent_io_tree processed_blocks;
 171	/* map start of tree root to corresponding reloc tree */
 172	struct mapping_tree reloc_root_tree;
 173	/* list of reloc trees */
 174	struct list_head reloc_roots;
 175	/* size of metadata reservation for merging reloc trees */
 176	u64 merging_rsv_size;
 177	/* size of relocated tree nodes */
 178	u64 nodes_relocated;
 
 
 179
 180	u64 search_start;
 181	u64 extents_found;
 182
 183	unsigned int stage:8;
 184	unsigned int create_reloc_tree:1;
 185	unsigned int merge_reloc_tree:1;
 186	unsigned int found_file_extent:1;
 187	unsigned int commit_transaction:1;
 188};
 189
 190/* stages of data relocation */
 191#define MOVE_DATA_EXTENTS	0
 192#define UPDATE_DATA_PTRS	1
 193
 194static void remove_backref_node(struct backref_cache *cache,
 195				struct backref_node *node);
 196static void __mark_block_processed(struct reloc_control *rc,
 197				   struct backref_node *node);
 198
 199static void mapping_tree_init(struct mapping_tree *tree)
 200{
 201	tree->rb_root = RB_ROOT;
 202	spin_lock_init(&tree->lock);
 203}
 204
 205static void backref_cache_init(struct backref_cache *cache)
 206{
 207	int i;
 208	cache->rb_root = RB_ROOT;
 209	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 210		INIT_LIST_HEAD(&cache->pending[i]);
 211	INIT_LIST_HEAD(&cache->changed);
 212	INIT_LIST_HEAD(&cache->detached);
 213	INIT_LIST_HEAD(&cache->leaves);
 214}
 215
 216static void backref_cache_cleanup(struct backref_cache *cache)
 217{
 218	struct backref_node *node;
 219	int i;
 220
 221	while (!list_empty(&cache->detached)) {
 222		node = list_entry(cache->detached.next,
 223				  struct backref_node, list);
 224		remove_backref_node(cache, node);
 225	}
 226
 227	while (!list_empty(&cache->leaves)) {
 228		node = list_entry(cache->leaves.next,
 229				  struct backref_node, lower);
 230		remove_backref_node(cache, node);
 231	}
 232
 233	cache->last_trans = 0;
 234
 235	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 236		BUG_ON(!list_empty(&cache->pending[i]));
 237	BUG_ON(!list_empty(&cache->changed));
 238	BUG_ON(!list_empty(&cache->detached));
 239	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
 240	BUG_ON(cache->nr_nodes);
 241	BUG_ON(cache->nr_edges);
 242}
 243
 244static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 245{
 246	struct backref_node *node;
 247
 248	node = kzalloc(sizeof(*node), GFP_NOFS);
 249	if (node) {
 250		INIT_LIST_HEAD(&node->list);
 251		INIT_LIST_HEAD(&node->upper);
 252		INIT_LIST_HEAD(&node->lower);
 253		RB_CLEAR_NODE(&node->rb_node);
 254		cache->nr_nodes++;
 255	}
 256	return node;
 257}
 258
 259static void free_backref_node(struct backref_cache *cache,
 260			      struct backref_node *node)
 261{
 262	if (node) {
 263		cache->nr_nodes--;
 264		kfree(node);
 265	}
 266}
 267
 268static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 269{
 270	struct backref_edge *edge;
 271
 272	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 273	if (edge)
 274		cache->nr_edges++;
 275	return edge;
 276}
 277
 278static void free_backref_edge(struct backref_cache *cache,
 279			      struct backref_edge *edge)
 280{
 281	if (edge) {
 282		cache->nr_edges--;
 283		kfree(edge);
 284	}
 285}
 286
 287static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 288				   struct rb_node *node)
 289{
 290	struct rb_node **p = &root->rb_node;
 291	struct rb_node *parent = NULL;
 292	struct tree_entry *entry;
 293
 294	while (*p) {
 295		parent = *p;
 296		entry = rb_entry(parent, struct tree_entry, rb_node);
 297
 298		if (bytenr < entry->bytenr)
 299			p = &(*p)->rb_left;
 300		else if (bytenr > entry->bytenr)
 301			p = &(*p)->rb_right;
 302		else
 303			return parent;
 304	}
 305
 306	rb_link_node(node, parent, p);
 307	rb_insert_color(node, root);
 308	return NULL;
 309}
 310
 311static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 312{
 313	struct rb_node *n = root->rb_node;
 314	struct tree_entry *entry;
 315
 316	while (n) {
 317		entry = rb_entry(n, struct tree_entry, rb_node);
 318
 319		if (bytenr < entry->bytenr)
 320			n = n->rb_left;
 321		else if (bytenr > entry->bytenr)
 322			n = n->rb_right;
 323		else
 324			return n;
 325	}
 326	return NULL;
 327}
 328
 329void backref_tree_panic(struct rb_node *rb_node, int errno,
 330					  u64 bytenr)
 331{
 332
 333	struct btrfs_fs_info *fs_info = NULL;
 334	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 335					      rb_node);
 336	if (bnode->root)
 337		fs_info = bnode->root->fs_info;
 338	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
 339		    "found at offset %llu\n", (unsigned long long)bytenr);
 340}
 341
 342/*
 343 * walk up backref nodes until reach node presents tree root
 344 */
 345static struct backref_node *walk_up_backref(struct backref_node *node,
 346					    struct backref_edge *edges[],
 347					    int *index)
 348{
 349	struct backref_edge *edge;
 350	int idx = *index;
 351
 352	while (!list_empty(&node->upper)) {
 353		edge = list_entry(node->upper.next,
 354				  struct backref_edge, list[LOWER]);
 355		edges[idx++] = edge;
 356		node = edge->node[UPPER];
 357	}
 358	BUG_ON(node->detached);
 359	*index = idx;
 360	return node;
 361}
 362
 363/*
 364 * walk down backref nodes to find start of next reference path
 365 */
 366static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 367					      int *index)
 368{
 369	struct backref_edge *edge;
 370	struct backref_node *lower;
 371	int idx = *index;
 372
 373	while (idx > 0) {
 374		edge = edges[idx - 1];
 375		lower = edge->node[LOWER];
 376		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 377			idx--;
 378			continue;
 379		}
 380		edge = list_entry(edge->list[LOWER].next,
 381				  struct backref_edge, list[LOWER]);
 382		edges[idx - 1] = edge;
 383		*index = idx;
 384		return edge->node[UPPER];
 385	}
 386	*index = 0;
 387	return NULL;
 388}
 389
 390static void unlock_node_buffer(struct backref_node *node)
 391{
 392	if (node->locked) {
 393		btrfs_tree_unlock(node->eb);
 394		node->locked = 0;
 395	}
 396}
 397
 398static void drop_node_buffer(struct backref_node *node)
 399{
 400	if (node->eb) {
 401		unlock_node_buffer(node);
 402		free_extent_buffer(node->eb);
 403		node->eb = NULL;
 404	}
 405}
 406
 407static void drop_backref_node(struct backref_cache *tree,
 408			      struct backref_node *node)
 409{
 410	BUG_ON(!list_empty(&node->upper));
 411
 412	drop_node_buffer(node);
 413	list_del(&node->list);
 414	list_del(&node->lower);
 415	if (!RB_EMPTY_NODE(&node->rb_node))
 416		rb_erase(&node->rb_node, &tree->rb_root);
 417	free_backref_node(tree, node);
 418}
 419
 420/*
 421 * remove a backref node from the backref cache
 422 */
 423static void remove_backref_node(struct backref_cache *cache,
 424				struct backref_node *node)
 425{
 426	struct backref_node *upper;
 427	struct backref_edge *edge;
 428
 429	if (!node)
 430		return;
 431
 432	BUG_ON(!node->lowest && !node->detached);
 433	while (!list_empty(&node->upper)) {
 434		edge = list_entry(node->upper.next, struct backref_edge,
 435				  list[LOWER]);
 436		upper = edge->node[UPPER];
 437		list_del(&edge->list[LOWER]);
 438		list_del(&edge->list[UPPER]);
 439		free_backref_edge(cache, edge);
 440
 441		if (RB_EMPTY_NODE(&upper->rb_node)) {
 442			BUG_ON(!list_empty(&node->upper));
 443			drop_backref_node(cache, node);
 444			node = upper;
 445			node->lowest = 1;
 446			continue;
 447		}
 448		/*
 449		 * add the node to leaf node list if no other
 450		 * child block cached.
 451		 */
 452		if (list_empty(&upper->lower)) {
 453			list_add_tail(&upper->lower, &cache->leaves);
 454			upper->lowest = 1;
 455		}
 456	}
 457
 458	drop_backref_node(cache, node);
 459}
 460
 461static void update_backref_node(struct backref_cache *cache,
 462				struct backref_node *node, u64 bytenr)
 463{
 464	struct rb_node *rb_node;
 465	rb_erase(&node->rb_node, &cache->rb_root);
 466	node->bytenr = bytenr;
 467	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 468	if (rb_node)
 469		backref_tree_panic(rb_node, -EEXIST, bytenr);
 470}
 471
 472/*
 473 * update backref cache after a transaction commit
 474 */
 475static int update_backref_cache(struct btrfs_trans_handle *trans,
 476				struct backref_cache *cache)
 477{
 478	struct backref_node *node;
 479	int level = 0;
 480
 481	if (cache->last_trans == 0) {
 482		cache->last_trans = trans->transid;
 483		return 0;
 484	}
 485
 486	if (cache->last_trans == trans->transid)
 487		return 0;
 488
 489	/*
 490	 * detached nodes are used to avoid unnecessary backref
 491	 * lookup. transaction commit changes the extent tree.
 492	 * so the detached nodes are no longer useful.
 493	 */
 494	while (!list_empty(&cache->detached)) {
 495		node = list_entry(cache->detached.next,
 496				  struct backref_node, list);
 497		remove_backref_node(cache, node);
 498	}
 499
 500	while (!list_empty(&cache->changed)) {
 501		node = list_entry(cache->changed.next,
 502				  struct backref_node, list);
 503		list_del_init(&node->list);
 504		BUG_ON(node->pending);
 505		update_backref_node(cache, node, node->new_bytenr);
 506	}
 507
 508	/*
 509	 * some nodes can be left in the pending list if there were
 510	 * errors during processing the pending nodes.
 511	 */
 512	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 513		list_for_each_entry(node, &cache->pending[level], list) {
 514			BUG_ON(!node->pending);
 515			if (node->bytenr == node->new_bytenr)
 516				continue;
 517			update_backref_node(cache, node, node->new_bytenr);
 518		}
 519	}
 520
 521	cache->last_trans = 0;
 522	return 1;
 523}
 524
 525
 526static int should_ignore_root(struct btrfs_root *root)
 527{
 528	struct btrfs_root *reloc_root;
 529
 530	if (!root->ref_cows)
 531		return 0;
 532
 533	reloc_root = root->reloc_root;
 534	if (!reloc_root)
 535		return 0;
 536
 537	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 538	    root->fs_info->running_transaction->transid - 1)
 539		return 0;
 540	/*
 541	 * if there is reloc tree and it was created in previous
 542	 * transaction backref lookup can find the reloc tree,
 543	 * so backref node for the fs tree root is useless for
 544	 * relocation.
 545	 */
 546	return 1;
 547}
 548/*
 549 * find reloc tree by address of tree root
 550 */
 551static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 552					  u64 bytenr)
 553{
 554	struct rb_node *rb_node;
 555	struct mapping_node *node;
 556	struct btrfs_root *root = NULL;
 557
 558	spin_lock(&rc->reloc_root_tree.lock);
 559	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 560	if (rb_node) {
 561		node = rb_entry(rb_node, struct mapping_node, rb_node);
 562		root = (struct btrfs_root *)node->data;
 563	}
 564	spin_unlock(&rc->reloc_root_tree.lock);
 565	return root;
 566}
 567
 568static int is_cowonly_root(u64 root_objectid)
 569{
 570	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 571	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 572	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 573	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 574	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 575	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
 
 
 576		return 1;
 577	return 0;
 578}
 579
 580static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 581					u64 root_objectid)
 582{
 583	struct btrfs_key key;
 584
 585	key.objectid = root_objectid;
 586	key.type = BTRFS_ROOT_ITEM_KEY;
 587	if (is_cowonly_root(root_objectid))
 588		key.offset = 0;
 589	else
 590		key.offset = (u64)-1;
 591
 592	return btrfs_read_fs_root_no_name(fs_info, &key);
 593}
 594
 595#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 596static noinline_for_stack
 597struct btrfs_root *find_tree_root(struct reloc_control *rc,
 598				  struct extent_buffer *leaf,
 599				  struct btrfs_extent_ref_v0 *ref0)
 600{
 601	struct btrfs_root *root;
 602	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 603	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 604
 605	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 606
 607	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 608	BUG_ON(IS_ERR(root));
 609
 610	if (root->ref_cows &&
 611	    generation != btrfs_root_generation(&root->root_item))
 612		return NULL;
 613
 614	return root;
 615}
 616#endif
 617
 618static noinline_for_stack
 619int find_inline_backref(struct extent_buffer *leaf, int slot,
 620			unsigned long *ptr, unsigned long *end)
 621{
 
 622	struct btrfs_extent_item *ei;
 623	struct btrfs_tree_block_info *bi;
 624	u32 item_size;
 625
 
 
 626	item_size = btrfs_item_size_nr(leaf, slot);
 627#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 628	if (item_size < sizeof(*ei)) {
 629		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 630		return 1;
 631	}
 632#endif
 633	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 634	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 635		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 636
 637	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
 
 638		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 639		return 1;
 640	}
 
 
 
 
 
 641
 642	bi = (struct btrfs_tree_block_info *)(ei + 1);
 643	*ptr = (unsigned long)(bi + 1);
 
 
 
 
 644	*end = (unsigned long)ei + item_size;
 645	return 0;
 646}
 647
 648/*
 649 * build backref tree for a given tree block. root of the backref tree
 650 * corresponds the tree block, leaves of the backref tree correspond
 651 * roots of b-trees that reference the tree block.
 652 *
 653 * the basic idea of this function is check backrefs of a given block
 654 * to find upper level blocks that refernece the block, and then check
 655 * bakcrefs of these upper level blocks recursively. the recursion stop
 656 * when tree root is reached or backrefs for the block is cached.
 657 *
 658 * NOTE: if we find backrefs for a block are cached, we know backrefs
 659 * for all upper level blocks that directly/indirectly reference the
 660 * block are also cached.
 661 */
 662static noinline_for_stack
 663struct backref_node *build_backref_tree(struct reloc_control *rc,
 664					struct btrfs_key *node_key,
 665					int level, u64 bytenr)
 666{
 667	struct backref_cache *cache = &rc->backref_cache;
 668	struct btrfs_path *path1;
 669	struct btrfs_path *path2;
 670	struct extent_buffer *eb;
 671	struct btrfs_root *root;
 672	struct backref_node *cur;
 673	struct backref_node *upper;
 674	struct backref_node *lower;
 675	struct backref_node *node = NULL;
 676	struct backref_node *exist = NULL;
 677	struct backref_edge *edge;
 678	struct rb_node *rb_node;
 679	struct btrfs_key key;
 680	unsigned long end;
 681	unsigned long ptr;
 682	LIST_HEAD(list);
 683	LIST_HEAD(useless);
 684	int cowonly;
 685	int ret;
 686	int err = 0;
 
 687
 688	path1 = btrfs_alloc_path();
 689	path2 = btrfs_alloc_path();
 690	if (!path1 || !path2) {
 691		err = -ENOMEM;
 692		goto out;
 693	}
 694	path1->reada = 1;
 695	path2->reada = 2;
 696
 697	node = alloc_backref_node(cache);
 698	if (!node) {
 699		err = -ENOMEM;
 700		goto out;
 701	}
 702
 703	node->bytenr = bytenr;
 704	node->level = level;
 705	node->lowest = 1;
 706	cur = node;
 707again:
 708	end = 0;
 709	ptr = 0;
 710	key.objectid = cur->bytenr;
 711	key.type = BTRFS_EXTENT_ITEM_KEY;
 712	key.offset = (u64)-1;
 713
 714	path1->search_commit_root = 1;
 715	path1->skip_locking = 1;
 716	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 717				0, 0);
 718	if (ret < 0) {
 719		err = ret;
 720		goto out;
 721	}
 722	BUG_ON(!ret || !path1->slots[0]);
 723
 724	path1->slots[0]--;
 725
 726	WARN_ON(cur->checked);
 727	if (!list_empty(&cur->upper)) {
 728		/*
 729		 * the backref was added previously when processing
 730		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 731		 */
 732		BUG_ON(!list_is_singular(&cur->upper));
 733		edge = list_entry(cur->upper.next, struct backref_edge,
 734				  list[LOWER]);
 735		BUG_ON(!list_empty(&edge->list[UPPER]));
 736		exist = edge->node[UPPER];
 737		/*
 738		 * add the upper level block to pending list if we need
 739		 * check its backrefs
 740		 */
 741		if (!exist->checked)
 742			list_add_tail(&edge->list[UPPER], &list);
 743	} else {
 744		exist = NULL;
 745	}
 746
 747	while (1) {
 748		cond_resched();
 749		eb = path1->nodes[0];
 750
 751		if (ptr >= end) {
 752			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 753				ret = btrfs_next_leaf(rc->extent_root, path1);
 754				if (ret < 0) {
 755					err = ret;
 756					goto out;
 757				}
 758				if (ret > 0)
 759					break;
 760				eb = path1->nodes[0];
 761			}
 762
 763			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 764			if (key.objectid != cur->bytenr) {
 765				WARN_ON(exist);
 766				break;
 767			}
 768
 769			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 
 770				ret = find_inline_backref(eb, path1->slots[0],
 771							  &ptr, &end);
 772				if (ret)
 773					goto next;
 774			}
 775		}
 776
 777		if (ptr < end) {
 778			/* update key for inline back ref */
 779			struct btrfs_extent_inline_ref *iref;
 780			iref = (struct btrfs_extent_inline_ref *)ptr;
 781			key.type = btrfs_extent_inline_ref_type(eb, iref);
 782			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 783			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 784				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 785		}
 786
 787		if (exist &&
 788		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 789		      exist->owner == key.offset) ||
 790		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 791		      exist->bytenr == key.offset))) {
 792			exist = NULL;
 793			goto next;
 794		}
 795
 796#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 797		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 798		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 799			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 800				struct btrfs_extent_ref_v0 *ref0;
 801				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 802						struct btrfs_extent_ref_v0);
 803				if (key.objectid == key.offset) {
 804					root = find_tree_root(rc, eb, ref0);
 805					if (root && !should_ignore_root(root))
 806						cur->root = root;
 807					else
 808						list_add(&cur->list, &useless);
 809					break;
 810				}
 811				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 812								      ref0)))
 813					cur->cowonly = 1;
 814			}
 815#else
 816		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 817		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 818#endif
 819			if (key.objectid == key.offset) {
 820				/*
 821				 * only root blocks of reloc trees use
 822				 * backref of this type.
 823				 */
 824				root = find_reloc_root(rc, cur->bytenr);
 825				BUG_ON(!root);
 826				cur->root = root;
 827				break;
 828			}
 829
 830			edge = alloc_backref_edge(cache);
 831			if (!edge) {
 832				err = -ENOMEM;
 833				goto out;
 834			}
 835			rb_node = tree_search(&cache->rb_root, key.offset);
 836			if (!rb_node) {
 837				upper = alloc_backref_node(cache);
 838				if (!upper) {
 839					free_backref_edge(cache, edge);
 840					err = -ENOMEM;
 841					goto out;
 842				}
 843				upper->bytenr = key.offset;
 844				upper->level = cur->level + 1;
 845				/*
 846				 *  backrefs for the upper level block isn't
 847				 *  cached, add the block to pending list
 848				 */
 849				list_add_tail(&edge->list[UPPER], &list);
 850			} else {
 851				upper = rb_entry(rb_node, struct backref_node,
 852						 rb_node);
 853				BUG_ON(!upper->checked);
 854				INIT_LIST_HEAD(&edge->list[UPPER]);
 855			}
 856			list_add_tail(&edge->list[LOWER], &cur->upper);
 857			edge->node[LOWER] = cur;
 858			edge->node[UPPER] = upper;
 859
 860			goto next;
 861		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 862			goto next;
 863		}
 864
 865		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 866		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 867		if (IS_ERR(root)) {
 868			err = PTR_ERR(root);
 869			goto out;
 870		}
 871
 872		if (!root->ref_cows)
 873			cur->cowonly = 1;
 874
 875		if (btrfs_root_level(&root->root_item) == cur->level) {
 876			/* tree root */
 877			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 878			       cur->bytenr);
 879			if (should_ignore_root(root))
 880				list_add(&cur->list, &useless);
 881			else
 882				cur->root = root;
 883			break;
 884		}
 885
 886		level = cur->level + 1;
 887
 888		/*
 889		 * searching the tree to find upper level blocks
 890		 * reference the block.
 891		 */
 892		path2->search_commit_root = 1;
 893		path2->skip_locking = 1;
 894		path2->lowest_level = level;
 895		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 896		path2->lowest_level = 0;
 897		if (ret < 0) {
 898			err = ret;
 899			goto out;
 900		}
 901		if (ret > 0 && path2->slots[level] > 0)
 902			path2->slots[level]--;
 903
 904		eb = path2->nodes[level];
 905		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
 906			cur->bytenr);
 907
 908		lower = cur;
 
 909		for (; level < BTRFS_MAX_LEVEL; level++) {
 910			if (!path2->nodes[level]) {
 911				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 912				       lower->bytenr);
 913				if (should_ignore_root(root))
 914					list_add(&lower->list, &useless);
 915				else
 916					lower->root = root;
 917				break;
 918			}
 919
 920			edge = alloc_backref_edge(cache);
 921			if (!edge) {
 922				err = -ENOMEM;
 923				goto out;
 924			}
 925
 926			eb = path2->nodes[level];
 927			rb_node = tree_search(&cache->rb_root, eb->start);
 928			if (!rb_node) {
 929				upper = alloc_backref_node(cache);
 930				if (!upper) {
 931					free_backref_edge(cache, edge);
 932					err = -ENOMEM;
 933					goto out;
 934				}
 935				upper->bytenr = eb->start;
 936				upper->owner = btrfs_header_owner(eb);
 937				upper->level = lower->level + 1;
 938				if (!root->ref_cows)
 939					upper->cowonly = 1;
 940
 941				/*
 942				 * if we know the block isn't shared
 943				 * we can void checking its backrefs.
 944				 */
 945				if (btrfs_block_can_be_shared(root, eb))
 946					upper->checked = 0;
 947				else
 948					upper->checked = 1;
 949
 950				/*
 951				 * add the block to pending list if we
 952				 * need check its backrefs. only block
 953				 * at 'cur->level + 1' is added to the
 954				 * tail of pending list. this guarantees
 955				 * we check backrefs from lower level
 956				 * blocks to upper level blocks.
 957				 */
 958				if (!upper->checked &&
 959				    level == cur->level + 1) {
 960					list_add_tail(&edge->list[UPPER],
 961						      &list);
 962				} else
 963					INIT_LIST_HEAD(&edge->list[UPPER]);
 964			} else {
 965				upper = rb_entry(rb_node, struct backref_node,
 966						 rb_node);
 967				BUG_ON(!upper->checked);
 968				INIT_LIST_HEAD(&edge->list[UPPER]);
 969				if (!upper->owner)
 970					upper->owner = btrfs_header_owner(eb);
 971			}
 972			list_add_tail(&edge->list[LOWER], &lower->upper);
 973			edge->node[LOWER] = lower;
 974			edge->node[UPPER] = upper;
 975
 976			if (rb_node)
 977				break;
 978			lower = upper;
 979			upper = NULL;
 980		}
 981		btrfs_release_path(path2);
 982next:
 983		if (ptr < end) {
 984			ptr += btrfs_extent_inline_ref_size(key.type);
 985			if (ptr >= end) {
 986				WARN_ON(ptr > end);
 987				ptr = 0;
 988				end = 0;
 989			}
 990		}
 991		if (ptr >= end)
 992			path1->slots[0]++;
 993	}
 994	btrfs_release_path(path1);
 995
 996	cur->checked = 1;
 997	WARN_ON(exist);
 998
 999	/* the pending list isn't empty, take the first block to process */
1000	if (!list_empty(&list)) {
1001		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1002		list_del_init(&edge->list[UPPER]);
1003		cur = edge->node[UPPER];
1004		goto again;
1005	}
1006
1007	/*
1008	 * everything goes well, connect backref nodes and insert backref nodes
1009	 * into the cache.
1010	 */
1011	BUG_ON(!node->checked);
1012	cowonly = node->cowonly;
1013	if (!cowonly) {
1014		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1015				      &node->rb_node);
1016		if (rb_node)
1017			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1018		list_add_tail(&node->lower, &cache->leaves);
1019	}
1020
1021	list_for_each_entry(edge, &node->upper, list[LOWER])
1022		list_add_tail(&edge->list[UPPER], &list);
1023
1024	while (!list_empty(&list)) {
1025		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1026		list_del_init(&edge->list[UPPER]);
1027		upper = edge->node[UPPER];
1028		if (upper->detached) {
1029			list_del(&edge->list[LOWER]);
1030			lower = edge->node[LOWER];
1031			free_backref_edge(cache, edge);
1032			if (list_empty(&lower->upper))
1033				list_add(&lower->list, &useless);
1034			continue;
1035		}
1036
1037		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1038			if (upper->lowest) {
1039				list_del_init(&upper->lower);
1040				upper->lowest = 0;
1041			}
1042
1043			list_add_tail(&edge->list[UPPER], &upper->lower);
1044			continue;
1045		}
1046
1047		BUG_ON(!upper->checked);
1048		BUG_ON(cowonly != upper->cowonly);
1049		if (!cowonly) {
1050			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1051					      &upper->rb_node);
1052			if (rb_node)
1053				backref_tree_panic(rb_node, -EEXIST,
1054						   upper->bytenr);
1055		}
1056
1057		list_add_tail(&edge->list[UPPER], &upper->lower);
1058
1059		list_for_each_entry(edge, &upper->upper, list[LOWER])
1060			list_add_tail(&edge->list[UPPER], &list);
1061	}
1062	/*
1063	 * process useless backref nodes. backref nodes for tree leaves
1064	 * are deleted from the cache. backref nodes for upper level
1065	 * tree blocks are left in the cache to avoid unnecessary backref
1066	 * lookup.
1067	 */
1068	while (!list_empty(&useless)) {
1069		upper = list_entry(useless.next, struct backref_node, list);
1070		list_del_init(&upper->list);
1071		BUG_ON(!list_empty(&upper->upper));
1072		if (upper == node)
1073			node = NULL;
1074		if (upper->lowest) {
1075			list_del_init(&upper->lower);
1076			upper->lowest = 0;
1077		}
1078		while (!list_empty(&upper->lower)) {
1079			edge = list_entry(upper->lower.next,
1080					  struct backref_edge, list[UPPER]);
1081			list_del(&edge->list[UPPER]);
1082			list_del(&edge->list[LOWER]);
1083			lower = edge->node[LOWER];
1084			free_backref_edge(cache, edge);
1085
1086			if (list_empty(&lower->upper))
1087				list_add(&lower->list, &useless);
1088		}
1089		__mark_block_processed(rc, upper);
1090		if (upper->level > 0) {
1091			list_add(&upper->list, &cache->detached);
1092			upper->detached = 1;
1093		} else {
1094			rb_erase(&upper->rb_node, &cache->rb_root);
1095			free_backref_node(cache, upper);
1096		}
1097	}
1098out:
1099	btrfs_free_path(path1);
1100	btrfs_free_path(path2);
1101	if (err) {
1102		while (!list_empty(&useless)) {
1103			lower = list_entry(useless.next,
1104					   struct backref_node, upper);
1105			list_del_init(&lower->upper);
1106		}
1107		upper = node;
1108		INIT_LIST_HEAD(&list);
1109		while (upper) {
1110			if (RB_EMPTY_NODE(&upper->rb_node)) {
1111				list_splice_tail(&upper->upper, &list);
1112				free_backref_node(cache, upper);
1113			}
1114
1115			if (list_empty(&list))
1116				break;
1117
1118			edge = list_entry(list.next, struct backref_edge,
1119					  list[LOWER]);
1120			list_del(&edge->list[LOWER]);
1121			upper = edge->node[UPPER];
1122			free_backref_edge(cache, edge);
1123		}
1124		return ERR_PTR(err);
1125	}
1126	BUG_ON(node && node->detached);
1127	return node;
1128}
1129
1130/*
1131 * helper to add backref node for the newly created snapshot.
1132 * the backref node is created by cloning backref node that
1133 * corresponds to root of source tree
1134 */
1135static int clone_backref_node(struct btrfs_trans_handle *trans,
1136			      struct reloc_control *rc,
1137			      struct btrfs_root *src,
1138			      struct btrfs_root *dest)
1139{
1140	struct btrfs_root *reloc_root = src->reloc_root;
1141	struct backref_cache *cache = &rc->backref_cache;
1142	struct backref_node *node = NULL;
1143	struct backref_node *new_node;
1144	struct backref_edge *edge;
1145	struct backref_edge *new_edge;
1146	struct rb_node *rb_node;
1147
1148	if (cache->last_trans > 0)
1149		update_backref_cache(trans, cache);
1150
1151	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1152	if (rb_node) {
1153		node = rb_entry(rb_node, struct backref_node, rb_node);
1154		if (node->detached)
1155			node = NULL;
1156		else
1157			BUG_ON(node->new_bytenr != reloc_root->node->start);
1158	}
1159
1160	if (!node) {
1161		rb_node = tree_search(&cache->rb_root,
1162				      reloc_root->commit_root->start);
1163		if (rb_node) {
1164			node = rb_entry(rb_node, struct backref_node,
1165					rb_node);
1166			BUG_ON(node->detached);
1167		}
1168	}
1169
1170	if (!node)
1171		return 0;
1172
1173	new_node = alloc_backref_node(cache);
1174	if (!new_node)
1175		return -ENOMEM;
1176
1177	new_node->bytenr = dest->node->start;
1178	new_node->level = node->level;
1179	new_node->lowest = node->lowest;
1180	new_node->checked = 1;
1181	new_node->root = dest;
1182
1183	if (!node->lowest) {
1184		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1185			new_edge = alloc_backref_edge(cache);
1186			if (!new_edge)
1187				goto fail;
1188
1189			new_edge->node[UPPER] = new_node;
1190			new_edge->node[LOWER] = edge->node[LOWER];
1191			list_add_tail(&new_edge->list[UPPER],
1192				      &new_node->lower);
1193		}
1194	} else {
1195		list_add_tail(&new_node->lower, &cache->leaves);
1196	}
1197
1198	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1199			      &new_node->rb_node);
1200	if (rb_node)
1201		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1202
1203	if (!new_node->lowest) {
1204		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1205			list_add_tail(&new_edge->list[LOWER],
1206				      &new_edge->node[LOWER]->upper);
1207		}
1208	}
1209	return 0;
1210fail:
1211	while (!list_empty(&new_node->lower)) {
1212		new_edge = list_entry(new_node->lower.next,
1213				      struct backref_edge, list[UPPER]);
1214		list_del(&new_edge->list[UPPER]);
1215		free_backref_edge(cache, new_edge);
1216	}
1217	free_backref_node(cache, new_node);
1218	return -ENOMEM;
1219}
1220
1221/*
1222 * helper to add 'address of tree root -> reloc tree' mapping
1223 */
1224static int __must_check __add_reloc_root(struct btrfs_root *root)
1225{
1226	struct rb_node *rb_node;
1227	struct mapping_node *node;
1228	struct reloc_control *rc = root->fs_info->reloc_ctl;
1229
1230	node = kmalloc(sizeof(*node), GFP_NOFS);
1231	if (!node)
1232		return -ENOMEM;
1233
1234	node->bytenr = root->node->start;
1235	node->data = root;
1236
1237	spin_lock(&rc->reloc_root_tree.lock);
1238	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1239			      node->bytenr, &node->rb_node);
1240	spin_unlock(&rc->reloc_root_tree.lock);
1241	if (rb_node) {
1242		kfree(node);
1243		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1244			    "for start=%llu while inserting into relocation "
1245			    "tree\n");
 
 
1246	}
1247
1248	list_add_tail(&root->root_list, &rc->reloc_roots);
1249	return 0;
1250}
1251
1252/*
1253 * helper to update/delete the 'address of tree root -> reloc tree'
1254 * mapping
1255 */
1256static int __update_reloc_root(struct btrfs_root *root, int del)
1257{
1258	struct rb_node *rb_node;
1259	struct mapping_node *node = NULL;
1260	struct reloc_control *rc = root->fs_info->reloc_ctl;
1261
1262	spin_lock(&rc->reloc_root_tree.lock);
1263	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1264			      root->commit_root->start);
1265	if (rb_node) {
1266		node = rb_entry(rb_node, struct mapping_node, rb_node);
1267		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1268	}
1269	spin_unlock(&rc->reloc_root_tree.lock);
1270
 
 
1271	BUG_ON((struct btrfs_root *)node->data != root);
1272
1273	if (!del) {
1274		spin_lock(&rc->reloc_root_tree.lock);
1275		node->bytenr = root->node->start;
1276		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1277				      node->bytenr, &node->rb_node);
1278		spin_unlock(&rc->reloc_root_tree.lock);
1279		if (rb_node)
1280			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1281	} else {
1282		spin_lock(&root->fs_info->trans_lock);
1283		list_del_init(&root->root_list);
1284		spin_unlock(&root->fs_info->trans_lock);
1285		kfree(node);
 
 
 
 
 
 
 
 
 
1286	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1287	return 0;
1288}
1289
1290static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1291					struct btrfs_root *root, u64 objectid)
1292{
1293	struct btrfs_root *reloc_root;
1294	struct extent_buffer *eb;
1295	struct btrfs_root_item *root_item;
1296	struct btrfs_key root_key;
 
1297	int ret;
1298
1299	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1300	BUG_ON(!root_item);
1301
1302	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1303	root_key.type = BTRFS_ROOT_ITEM_KEY;
1304	root_key.offset = objectid;
1305
1306	if (root->root_key.objectid == objectid) {
1307		/* called by btrfs_init_reloc_root */
1308		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1309				      BTRFS_TREE_RELOC_OBJECTID);
1310		BUG_ON(ret);
1311
 
1312		btrfs_set_root_last_snapshot(&root->root_item,
1313					     trans->transid - 1);
1314	} else {
1315		/*
1316		 * called by btrfs_reloc_post_snapshot_hook.
1317		 * the source tree is a reloc tree, all tree blocks
1318		 * modified after it was created have RELOC flag
1319		 * set in their headers. so it's OK to not update
1320		 * the 'last_snapshot'.
1321		 */
1322		ret = btrfs_copy_root(trans, root, root->node, &eb,
1323				      BTRFS_TREE_RELOC_OBJECTID);
1324		BUG_ON(ret);
1325	}
1326
1327	memcpy(root_item, &root->root_item, sizeof(*root_item));
1328	btrfs_set_root_bytenr(root_item, eb->start);
1329	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1330	btrfs_set_root_generation(root_item, trans->transid);
1331
1332	if (root->root_key.objectid == objectid) {
1333		btrfs_set_root_refs(root_item, 0);
1334		memset(&root_item->drop_progress, 0,
1335		       sizeof(struct btrfs_disk_key));
1336		root_item->drop_level = 0;
 
 
 
 
 
 
1337	}
1338
1339	btrfs_tree_unlock(eb);
1340	free_extent_buffer(eb);
1341
1342	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1343				&root_key, root_item);
1344	BUG_ON(ret);
1345	kfree(root_item);
1346
1347	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1348						 &root_key);
1349	BUG_ON(IS_ERR(reloc_root));
1350	reloc_root->last_trans = trans->transid;
1351	return reloc_root;
1352}
1353
1354/*
1355 * create reloc tree for a given fs tree. reloc tree is just a
1356 * snapshot of the fs tree with special root objectid.
1357 */
1358int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1359			  struct btrfs_root *root)
1360{
1361	struct btrfs_root *reloc_root;
1362	struct reloc_control *rc = root->fs_info->reloc_ctl;
 
1363	int clear_rsv = 0;
1364	int ret;
1365
1366	if (root->reloc_root) {
1367		reloc_root = root->reloc_root;
1368		reloc_root->last_trans = trans->transid;
1369		return 0;
1370	}
1371
1372	if (!rc || !rc->create_reloc_tree ||
1373	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1374		return 0;
1375
1376	if (!trans->block_rsv) {
 
1377		trans->block_rsv = rc->block_rsv;
1378		clear_rsv = 1;
1379	}
1380	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1381	if (clear_rsv)
1382		trans->block_rsv = NULL;
1383
1384	ret = __add_reloc_root(reloc_root);
1385	BUG_ON(ret < 0);
1386	root->reloc_root = reloc_root;
1387	return 0;
1388}
1389
1390/*
1391 * update root item of reloc tree
1392 */
1393int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1394			    struct btrfs_root *root)
1395{
1396	struct btrfs_root *reloc_root;
1397	struct btrfs_root_item *root_item;
1398	int del = 0;
1399	int ret;
1400
1401	if (!root->reloc_root)
1402		goto out;
1403
1404	reloc_root = root->reloc_root;
1405	root_item = &reloc_root->root_item;
1406
1407	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1408	    btrfs_root_refs(root_item) == 0) {
1409		root->reloc_root = NULL;
1410		del = 1;
1411	}
1412
1413	__update_reloc_root(reloc_root, del);
1414
1415	if (reloc_root->commit_root != reloc_root->node) {
1416		btrfs_set_root_node(root_item, reloc_root->node);
1417		free_extent_buffer(reloc_root->commit_root);
1418		reloc_root->commit_root = btrfs_root_node(reloc_root);
1419	}
1420
1421	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1422				&reloc_root->root_key, root_item);
1423	BUG_ON(ret);
1424
1425out:
1426	return 0;
1427}
1428
1429/*
1430 * helper to find first cached inode with inode number >= objectid
1431 * in a subvolume
1432 */
1433static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1434{
1435	struct rb_node *node;
1436	struct rb_node *prev;
1437	struct btrfs_inode *entry;
1438	struct inode *inode;
1439
1440	spin_lock(&root->inode_lock);
1441again:
1442	node = root->inode_tree.rb_node;
1443	prev = NULL;
1444	while (node) {
1445		prev = node;
1446		entry = rb_entry(node, struct btrfs_inode, rb_node);
1447
1448		if (objectid < btrfs_ino(&entry->vfs_inode))
1449			node = node->rb_left;
1450		else if (objectid > btrfs_ino(&entry->vfs_inode))
1451			node = node->rb_right;
1452		else
1453			break;
1454	}
1455	if (!node) {
1456		while (prev) {
1457			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1458			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1459				node = prev;
1460				break;
1461			}
1462			prev = rb_next(prev);
1463		}
1464	}
1465	while (node) {
1466		entry = rb_entry(node, struct btrfs_inode, rb_node);
1467		inode = igrab(&entry->vfs_inode);
1468		if (inode) {
1469			spin_unlock(&root->inode_lock);
1470			return inode;
1471		}
1472
1473		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1474		if (cond_resched_lock(&root->inode_lock))
1475			goto again;
1476
1477		node = rb_next(node);
1478	}
1479	spin_unlock(&root->inode_lock);
1480	return NULL;
1481}
1482
1483static int in_block_group(u64 bytenr,
1484			  struct btrfs_block_group_cache *block_group)
1485{
1486	if (bytenr >= block_group->key.objectid &&
1487	    bytenr < block_group->key.objectid + block_group->key.offset)
1488		return 1;
1489	return 0;
1490}
1491
1492/*
1493 * get new location of data
1494 */
1495static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1496			    u64 bytenr, u64 num_bytes)
1497{
1498	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1499	struct btrfs_path *path;
1500	struct btrfs_file_extent_item *fi;
1501	struct extent_buffer *leaf;
1502	int ret;
1503
1504	path = btrfs_alloc_path();
1505	if (!path)
1506		return -ENOMEM;
1507
1508	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1509	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1510				       bytenr, 0);
1511	if (ret < 0)
1512		goto out;
1513	if (ret > 0) {
1514		ret = -ENOENT;
1515		goto out;
1516	}
1517
1518	leaf = path->nodes[0];
1519	fi = btrfs_item_ptr(leaf, path->slots[0],
1520			    struct btrfs_file_extent_item);
1521
1522	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1523	       btrfs_file_extent_compression(leaf, fi) ||
1524	       btrfs_file_extent_encryption(leaf, fi) ||
1525	       btrfs_file_extent_other_encoding(leaf, fi));
1526
1527	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1528		ret = 1;
1529		goto out;
1530	}
1531
1532	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1533	ret = 0;
1534out:
1535	btrfs_free_path(path);
1536	return ret;
1537}
1538
1539/*
1540 * update file extent items in the tree leaf to point to
1541 * the new locations.
1542 */
1543static noinline_for_stack
1544int replace_file_extents(struct btrfs_trans_handle *trans,
1545			 struct reloc_control *rc,
1546			 struct btrfs_root *root,
1547			 struct extent_buffer *leaf)
1548{
1549	struct btrfs_key key;
1550	struct btrfs_file_extent_item *fi;
1551	struct inode *inode = NULL;
1552	u64 parent;
1553	u64 bytenr;
1554	u64 new_bytenr = 0;
1555	u64 num_bytes;
1556	u64 end;
1557	u32 nritems;
1558	u32 i;
1559	int ret;
1560	int first = 1;
1561	int dirty = 0;
1562
1563	if (rc->stage != UPDATE_DATA_PTRS)
1564		return 0;
1565
1566	/* reloc trees always use full backref */
1567	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1568		parent = leaf->start;
1569	else
1570		parent = 0;
1571
1572	nritems = btrfs_header_nritems(leaf);
1573	for (i = 0; i < nritems; i++) {
1574		cond_resched();
1575		btrfs_item_key_to_cpu(leaf, &key, i);
1576		if (key.type != BTRFS_EXTENT_DATA_KEY)
1577			continue;
1578		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1579		if (btrfs_file_extent_type(leaf, fi) ==
1580		    BTRFS_FILE_EXTENT_INLINE)
1581			continue;
1582		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1583		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1584		if (bytenr == 0)
1585			continue;
1586		if (!in_block_group(bytenr, rc->block_group))
1587			continue;
1588
1589		/*
1590		 * if we are modifying block in fs tree, wait for readpage
1591		 * to complete and drop the extent cache
1592		 */
1593		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1594			if (first) {
1595				inode = find_next_inode(root, key.objectid);
1596				first = 0;
1597			} else if (inode && btrfs_ino(inode) < key.objectid) {
1598				btrfs_add_delayed_iput(inode);
1599				inode = find_next_inode(root, key.objectid);
1600			}
1601			if (inode && btrfs_ino(inode) == key.objectid) {
1602				end = key.offset +
1603				      btrfs_file_extent_num_bytes(leaf, fi);
1604				WARN_ON(!IS_ALIGNED(key.offset,
1605						    root->sectorsize));
1606				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1607				end--;
1608				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1609						      key.offset, end);
1610				if (!ret)
1611					continue;
1612
1613				btrfs_drop_extent_cache(inode, key.offset, end,
1614							1);
1615				unlock_extent(&BTRFS_I(inode)->io_tree,
1616					      key.offset, end);
1617			}
1618		}
1619
1620		ret = get_new_location(rc->data_inode, &new_bytenr,
1621				       bytenr, num_bytes);
1622		if (ret > 0) {
1623			WARN_ON(1);
1624			continue;
 
 
 
1625		}
1626		BUG_ON(ret < 0);
1627
1628		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1629		dirty = 1;
1630
1631		key.offset -= btrfs_file_extent_offset(leaf, fi);
1632		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1633					   num_bytes, parent,
1634					   btrfs_header_owner(leaf),
1635					   key.objectid, key.offset, 1);
1636		BUG_ON(ret);
 
 
 
1637
1638		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1639					parent, btrfs_header_owner(leaf),
1640					key.objectid, key.offset, 1);
1641		BUG_ON(ret);
 
 
 
1642	}
1643	if (dirty)
1644		btrfs_mark_buffer_dirty(leaf);
1645	if (inode)
1646		btrfs_add_delayed_iput(inode);
1647	return 0;
1648}
1649
1650static noinline_for_stack
1651int memcmp_node_keys(struct extent_buffer *eb, int slot,
1652		     struct btrfs_path *path, int level)
1653{
1654	struct btrfs_disk_key key1;
1655	struct btrfs_disk_key key2;
1656	btrfs_node_key(eb, &key1, slot);
1657	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1658	return memcmp(&key1, &key2, sizeof(key1));
1659}
1660
1661/*
1662 * try to replace tree blocks in fs tree with the new blocks
1663 * in reloc tree. tree blocks haven't been modified since the
1664 * reloc tree was create can be replaced.
1665 *
1666 * if a block was replaced, level of the block + 1 is returned.
1667 * if no block got replaced, 0 is returned. if there are other
1668 * errors, a negative error number is returned.
1669 */
1670static noinline_for_stack
1671int replace_path(struct btrfs_trans_handle *trans,
1672		 struct btrfs_root *dest, struct btrfs_root *src,
1673		 struct btrfs_path *path, struct btrfs_key *next_key,
1674		 int lowest_level, int max_level)
1675{
1676	struct extent_buffer *eb;
1677	struct extent_buffer *parent;
1678	struct btrfs_key key;
1679	u64 old_bytenr;
1680	u64 new_bytenr;
1681	u64 old_ptr_gen;
1682	u64 new_ptr_gen;
1683	u64 last_snapshot;
1684	u32 blocksize;
1685	int cow = 0;
1686	int level;
1687	int ret;
1688	int slot;
1689
1690	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1691	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1692
1693	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1694again:
1695	slot = path->slots[lowest_level];
1696	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1697
1698	eb = btrfs_lock_root_node(dest);
1699	btrfs_set_lock_blocking(eb);
1700	level = btrfs_header_level(eb);
1701
1702	if (level < lowest_level) {
1703		btrfs_tree_unlock(eb);
1704		free_extent_buffer(eb);
1705		return 0;
1706	}
1707
1708	if (cow) {
1709		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1710		BUG_ON(ret);
1711	}
1712	btrfs_set_lock_blocking(eb);
1713
1714	if (next_key) {
1715		next_key->objectid = (u64)-1;
1716		next_key->type = (u8)-1;
1717		next_key->offset = (u64)-1;
1718	}
1719
1720	parent = eb;
1721	while (1) {
1722		level = btrfs_header_level(parent);
1723		BUG_ON(level < lowest_level);
1724
1725		ret = btrfs_bin_search(parent, &key, level, &slot);
1726		if (ret && slot > 0)
1727			slot--;
1728
1729		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1730			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1731
1732		old_bytenr = btrfs_node_blockptr(parent, slot);
1733		blocksize = btrfs_level_size(dest, level - 1);
1734		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1735
1736		if (level <= max_level) {
1737			eb = path->nodes[level];
1738			new_bytenr = btrfs_node_blockptr(eb,
1739							path->slots[level]);
1740			new_ptr_gen = btrfs_node_ptr_generation(eb,
1741							path->slots[level]);
1742		} else {
1743			new_bytenr = 0;
1744			new_ptr_gen = 0;
1745		}
1746
1747		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1748			WARN_ON(1);
1749			ret = level;
1750			break;
1751		}
1752
1753		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1754		    memcmp_node_keys(parent, slot, path, level)) {
1755			if (level <= lowest_level) {
1756				ret = 0;
1757				break;
1758			}
1759
1760			eb = read_tree_block(dest, old_bytenr, blocksize,
1761					     old_ptr_gen);
1762			BUG_ON(!eb);
 
 
 
 
1763			btrfs_tree_lock(eb);
1764			if (cow) {
1765				ret = btrfs_cow_block(trans, dest, eb, parent,
1766						      slot, &eb);
1767				BUG_ON(ret);
1768			}
1769			btrfs_set_lock_blocking(eb);
1770
1771			btrfs_tree_unlock(parent);
1772			free_extent_buffer(parent);
1773
1774			parent = eb;
1775			continue;
1776		}
1777
1778		if (!cow) {
1779			btrfs_tree_unlock(parent);
1780			free_extent_buffer(parent);
1781			cow = 1;
1782			goto again;
1783		}
1784
1785		btrfs_node_key_to_cpu(path->nodes[level], &key,
1786				      path->slots[level]);
1787		btrfs_release_path(path);
1788
1789		path->lowest_level = level;
1790		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1791		path->lowest_level = 0;
1792		BUG_ON(ret);
1793
1794		/*
1795		 * swap blocks in fs tree and reloc tree.
1796		 */
1797		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1798		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1799		btrfs_mark_buffer_dirty(parent);
1800
1801		btrfs_set_node_blockptr(path->nodes[level],
1802					path->slots[level], old_bytenr);
1803		btrfs_set_node_ptr_generation(path->nodes[level],
1804					      path->slots[level], old_ptr_gen);
1805		btrfs_mark_buffer_dirty(path->nodes[level]);
1806
1807		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1808					path->nodes[level]->start,
1809					src->root_key.objectid, level - 1, 0,
1810					1);
1811		BUG_ON(ret);
1812		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1813					0, dest->root_key.objectid, level - 1,
1814					0, 1);
1815		BUG_ON(ret);
1816
1817		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1818					path->nodes[level]->start,
1819					src->root_key.objectid, level - 1, 0,
1820					1);
1821		BUG_ON(ret);
1822
1823		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1824					0, dest->root_key.objectid, level - 1,
1825					0, 1);
1826		BUG_ON(ret);
1827
1828		btrfs_unlock_up_safe(path, 0);
1829
1830		ret = level;
1831		break;
1832	}
1833	btrfs_tree_unlock(parent);
1834	free_extent_buffer(parent);
1835	return ret;
1836}
1837
1838/*
1839 * helper to find next relocated block in reloc tree
1840 */
1841static noinline_for_stack
1842int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1843		       int *level)
1844{
1845	struct extent_buffer *eb;
1846	int i;
1847	u64 last_snapshot;
1848	u32 nritems;
1849
1850	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1851
1852	for (i = 0; i < *level; i++) {
1853		free_extent_buffer(path->nodes[i]);
1854		path->nodes[i] = NULL;
1855	}
1856
1857	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1858		eb = path->nodes[i];
1859		nritems = btrfs_header_nritems(eb);
1860		while (path->slots[i] + 1 < nritems) {
1861			path->slots[i]++;
1862			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1863			    last_snapshot)
1864				continue;
1865
1866			*level = i;
1867			return 0;
1868		}
1869		free_extent_buffer(path->nodes[i]);
1870		path->nodes[i] = NULL;
1871	}
1872	return 1;
1873}
1874
1875/*
1876 * walk down reloc tree to find relocated block of lowest level
1877 */
1878static noinline_for_stack
1879int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1880			 int *level)
1881{
1882	struct extent_buffer *eb = NULL;
1883	int i;
1884	u64 bytenr;
1885	u64 ptr_gen = 0;
1886	u64 last_snapshot;
1887	u32 blocksize;
1888	u32 nritems;
1889
1890	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1891
1892	for (i = *level; i > 0; i--) {
1893		eb = path->nodes[i];
1894		nritems = btrfs_header_nritems(eb);
1895		while (path->slots[i] < nritems) {
1896			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1897			if (ptr_gen > last_snapshot)
1898				break;
1899			path->slots[i]++;
1900		}
1901		if (path->slots[i] >= nritems) {
1902			if (i == *level)
1903				break;
1904			*level = i + 1;
1905			return 0;
1906		}
1907		if (i == 1) {
1908			*level = i;
1909			return 0;
1910		}
1911
1912		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1913		blocksize = btrfs_level_size(root, i - 1);
1914		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
 
 
 
 
1915		BUG_ON(btrfs_header_level(eb) != i - 1);
1916		path->nodes[i - 1] = eb;
1917		path->slots[i - 1] = 0;
1918	}
1919	return 1;
1920}
1921
1922/*
1923 * invalidate extent cache for file extents whose key in range of
1924 * [min_key, max_key)
1925 */
1926static int invalidate_extent_cache(struct btrfs_root *root,
1927				   struct btrfs_key *min_key,
1928				   struct btrfs_key *max_key)
1929{
1930	struct inode *inode = NULL;
1931	u64 objectid;
1932	u64 start, end;
1933	u64 ino;
1934
1935	objectid = min_key->objectid;
1936	while (1) {
1937		cond_resched();
1938		iput(inode);
1939
1940		if (objectid > max_key->objectid)
1941			break;
1942
1943		inode = find_next_inode(root, objectid);
1944		if (!inode)
1945			break;
1946		ino = btrfs_ino(inode);
1947
1948		if (ino > max_key->objectid) {
1949			iput(inode);
1950			break;
1951		}
1952
1953		objectid = ino + 1;
1954		if (!S_ISREG(inode->i_mode))
1955			continue;
1956
1957		if (unlikely(min_key->objectid == ino)) {
1958			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1959				continue;
1960			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1961				start = 0;
1962			else {
1963				start = min_key->offset;
1964				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1965			}
1966		} else {
1967			start = 0;
1968		}
1969
1970		if (unlikely(max_key->objectid == ino)) {
1971			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1972				continue;
1973			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1974				end = (u64)-1;
1975			} else {
1976				if (max_key->offset == 0)
1977					continue;
1978				end = max_key->offset;
1979				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1980				end--;
1981			}
1982		} else {
1983			end = (u64)-1;
1984		}
1985
1986		/* the lock_extent waits for readpage to complete */
1987		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1988		btrfs_drop_extent_cache(inode, start, end, 1);
1989		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1990	}
1991	return 0;
1992}
1993
1994static int find_next_key(struct btrfs_path *path, int level,
1995			 struct btrfs_key *key)
1996
1997{
1998	while (level < BTRFS_MAX_LEVEL) {
1999		if (!path->nodes[level])
2000			break;
2001		if (path->slots[level] + 1 <
2002		    btrfs_header_nritems(path->nodes[level])) {
2003			btrfs_node_key_to_cpu(path->nodes[level], key,
2004					      path->slots[level] + 1);
2005			return 0;
2006		}
2007		level++;
2008	}
2009	return 1;
2010}
2011
2012/*
2013 * merge the relocated tree blocks in reloc tree with corresponding
2014 * fs tree.
2015 */
2016static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2017					       struct btrfs_root *root)
2018{
2019	LIST_HEAD(inode_list);
2020	struct btrfs_key key;
2021	struct btrfs_key next_key;
2022	struct btrfs_trans_handle *trans;
2023	struct btrfs_root *reloc_root;
2024	struct btrfs_root_item *root_item;
2025	struct btrfs_path *path;
2026	struct extent_buffer *leaf;
2027	unsigned long nr;
2028	int level;
2029	int max_level;
2030	int replaced = 0;
2031	int ret;
2032	int err = 0;
2033	u32 min_reserved;
2034
2035	path = btrfs_alloc_path();
2036	if (!path)
2037		return -ENOMEM;
2038	path->reada = 1;
2039
2040	reloc_root = root->reloc_root;
2041	root_item = &reloc_root->root_item;
2042
2043	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2044		level = btrfs_root_level(root_item);
2045		extent_buffer_get(reloc_root->node);
2046		path->nodes[level] = reloc_root->node;
2047		path->slots[level] = 0;
2048	} else {
2049		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2050
2051		level = root_item->drop_level;
2052		BUG_ON(level == 0);
2053		path->lowest_level = level;
2054		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2055		path->lowest_level = 0;
2056		if (ret < 0) {
2057			btrfs_free_path(path);
2058			return ret;
2059		}
2060
2061		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2062				      path->slots[level]);
2063		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2064
2065		btrfs_unlock_up_safe(path, 0);
2066	}
2067
2068	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2069	memset(&next_key, 0, sizeof(next_key));
2070
2071	while (1) {
2072		trans = btrfs_start_transaction(root, 0);
2073		BUG_ON(IS_ERR(trans));
2074		trans->block_rsv = rc->block_rsv;
2075
2076		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved);
2077		if (ret) {
2078			BUG_ON(ret != -EAGAIN);
2079			ret = btrfs_commit_transaction(trans, root);
2080			BUG_ON(ret);
2081			continue;
 
 
 
 
2082		}
 
2083
2084		replaced = 0;
2085		max_level = level;
2086
2087		ret = walk_down_reloc_tree(reloc_root, path, &level);
2088		if (ret < 0) {
2089			err = ret;
2090			goto out;
2091		}
2092		if (ret > 0)
2093			break;
2094
2095		if (!find_next_key(path, level, &key) &&
2096		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2097			ret = 0;
2098		} else {
2099			ret = replace_path(trans, root, reloc_root, path,
2100					   &next_key, level, max_level);
2101		}
2102		if (ret < 0) {
2103			err = ret;
2104			goto out;
2105		}
2106
2107		if (ret > 0) {
2108			level = ret;
2109			btrfs_node_key_to_cpu(path->nodes[level], &key,
2110					      path->slots[level]);
2111			replaced = 1;
2112		}
2113
2114		ret = walk_up_reloc_tree(reloc_root, path, &level);
2115		if (ret > 0)
2116			break;
2117
2118		BUG_ON(level == 0);
2119		/*
2120		 * save the merging progress in the drop_progress.
2121		 * this is OK since root refs == 1 in this case.
2122		 */
2123		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2124			       path->slots[level]);
2125		root_item->drop_level = level;
2126
2127		nr = trans->blocks_used;
2128		btrfs_end_transaction_throttle(trans, root);
 
2129
2130		btrfs_btree_balance_dirty(root, nr);
2131
2132		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2133			invalidate_extent_cache(root, &key, &next_key);
2134	}
2135
2136	/*
2137	 * handle the case only one block in the fs tree need to be
2138	 * relocated and the block is tree root.
2139	 */
2140	leaf = btrfs_lock_root_node(root);
2141	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2142	btrfs_tree_unlock(leaf);
2143	free_extent_buffer(leaf);
2144	if (ret < 0)
2145		err = ret;
2146out:
2147	btrfs_free_path(path);
2148
2149	if (err == 0) {
2150		memset(&root_item->drop_progress, 0,
2151		       sizeof(root_item->drop_progress));
2152		root_item->drop_level = 0;
2153		btrfs_set_root_refs(root_item, 0);
2154		btrfs_update_reloc_root(trans, root);
2155	}
2156
2157	nr = trans->blocks_used;
2158	btrfs_end_transaction_throttle(trans, root);
2159
2160	btrfs_btree_balance_dirty(root, nr);
2161
2162	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2163		invalidate_extent_cache(root, &key, &next_key);
2164
2165	return err;
2166}
2167
2168static noinline_for_stack
2169int prepare_to_merge(struct reloc_control *rc, int err)
2170{
2171	struct btrfs_root *root = rc->extent_root;
2172	struct btrfs_root *reloc_root;
2173	struct btrfs_trans_handle *trans;
2174	LIST_HEAD(reloc_roots);
2175	u64 num_bytes = 0;
2176	int ret;
2177
2178	mutex_lock(&root->fs_info->reloc_mutex);
2179	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2180	rc->merging_rsv_size += rc->nodes_relocated * 2;
2181	mutex_unlock(&root->fs_info->reloc_mutex);
2182
2183again:
2184	if (!err) {
2185		num_bytes = rc->merging_rsv_size;
2186		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes);
 
2187		if (ret)
2188			err = ret;
2189	}
2190
2191	trans = btrfs_join_transaction(rc->extent_root);
2192	if (IS_ERR(trans)) {
2193		if (!err)
2194			btrfs_block_rsv_release(rc->extent_root,
2195						rc->block_rsv, num_bytes);
2196		return PTR_ERR(trans);
2197	}
2198
2199	if (!err) {
2200		if (num_bytes != rc->merging_rsv_size) {
2201			btrfs_end_transaction(trans, rc->extent_root);
2202			btrfs_block_rsv_release(rc->extent_root,
2203						rc->block_rsv, num_bytes);
2204			goto again;
2205		}
2206	}
2207
2208	rc->merge_reloc_tree = 1;
2209
2210	while (!list_empty(&rc->reloc_roots)) {
2211		reloc_root = list_entry(rc->reloc_roots.next,
2212					struct btrfs_root, root_list);
2213		list_del_init(&reloc_root->root_list);
2214
2215		root = read_fs_root(reloc_root->fs_info,
2216				    reloc_root->root_key.offset);
2217		BUG_ON(IS_ERR(root));
2218		BUG_ON(root->reloc_root != reloc_root);
2219
2220		/*
2221		 * set reference count to 1, so btrfs_recover_relocation
2222		 * knows it should resumes merging
2223		 */
2224		if (!err)
2225			btrfs_set_root_refs(&reloc_root->root_item, 1);
2226		btrfs_update_reloc_root(trans, root);
2227
2228		list_add(&reloc_root->root_list, &reloc_roots);
2229	}
2230
2231	list_splice(&reloc_roots, &rc->reloc_roots);
2232
2233	if (!err)
2234		btrfs_commit_transaction(trans, rc->extent_root);
2235	else
2236		btrfs_end_transaction(trans, rc->extent_root);
2237	return err;
2238}
2239
2240static noinline_for_stack
 
 
 
 
 
 
 
 
 
 
 
 
2241int merge_reloc_roots(struct reloc_control *rc)
2242{
2243	struct btrfs_root *root;
2244	struct btrfs_root *reloc_root;
 
 
 
2245	LIST_HEAD(reloc_roots);
2246	int found = 0;
2247	int ret;
2248again:
2249	root = rc->extent_root;
2250
2251	/*
2252	 * this serializes us with btrfs_record_root_in_transaction,
2253	 * we have to make sure nobody is in the middle of
2254	 * adding their roots to the list while we are
2255	 * doing this splice
2256	 */
2257	mutex_lock(&root->fs_info->reloc_mutex);
2258	list_splice_init(&rc->reloc_roots, &reloc_roots);
2259	mutex_unlock(&root->fs_info->reloc_mutex);
2260
2261	while (!list_empty(&reloc_roots)) {
2262		found = 1;
2263		reloc_root = list_entry(reloc_roots.next,
2264					struct btrfs_root, root_list);
2265
2266		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2267			root = read_fs_root(reloc_root->fs_info,
2268					    reloc_root->root_key.offset);
2269			BUG_ON(IS_ERR(root));
2270			BUG_ON(root->reloc_root != reloc_root);
2271
2272			ret = merge_reloc_root(rc, root);
2273			BUG_ON(ret);
 
 
 
 
 
2274		} else {
2275			list_del_init(&reloc_root->root_list);
2276		}
 
 
 
 
 
 
 
 
 
2277		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2278		BUG_ON(ret < 0);
 
 
 
 
 
2279	}
2280
2281	if (found) {
2282		found = 0;
2283		goto again;
2284	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2285	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2286	return 0;
2287}
2288
2289static void free_block_list(struct rb_root *blocks)
2290{
2291	struct tree_block *block;
2292	struct rb_node *rb_node;
2293	while ((rb_node = rb_first(blocks))) {
2294		block = rb_entry(rb_node, struct tree_block, rb_node);
2295		rb_erase(rb_node, blocks);
2296		kfree(block);
2297	}
2298}
2299
2300static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2301				      struct btrfs_root *reloc_root)
2302{
2303	struct btrfs_root *root;
2304
2305	if (reloc_root->last_trans == trans->transid)
2306		return 0;
2307
2308	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2309	BUG_ON(IS_ERR(root));
2310	BUG_ON(root->reloc_root != reloc_root);
2311
2312	return btrfs_record_root_in_trans(trans, root);
2313}
2314
2315static noinline_for_stack
2316struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2317				     struct reloc_control *rc,
2318				     struct backref_node *node,
2319				     struct backref_edge *edges[], int *nr)
2320{
2321	struct backref_node *next;
2322	struct btrfs_root *root;
2323	int index = 0;
2324
2325	next = node;
2326	while (1) {
2327		cond_resched();
2328		next = walk_up_backref(next, edges, &index);
2329		root = next->root;
2330		BUG_ON(!root);
2331		BUG_ON(!root->ref_cows);
2332
2333		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2334			record_reloc_root_in_trans(trans, root);
2335			break;
2336		}
2337
2338		btrfs_record_root_in_trans(trans, root);
2339		root = root->reloc_root;
2340
2341		if (next->new_bytenr != root->node->start) {
2342			BUG_ON(next->new_bytenr);
2343			BUG_ON(!list_empty(&next->list));
2344			next->new_bytenr = root->node->start;
2345			next->root = root;
2346			list_add_tail(&next->list,
2347				      &rc->backref_cache.changed);
2348			__mark_block_processed(rc, next);
2349			break;
2350		}
2351
2352		WARN_ON(1);
2353		root = NULL;
2354		next = walk_down_backref(edges, &index);
2355		if (!next || next->level <= node->level)
2356			break;
2357	}
2358	if (!root)
2359		return NULL;
2360
2361	*nr = index;
2362	next = node;
2363	/* setup backref node path for btrfs_reloc_cow_block */
2364	while (1) {
2365		rc->backref_cache.path[next->level] = next;
2366		if (--index < 0)
2367			break;
2368		next = edges[index]->node[UPPER];
2369	}
2370	return root;
2371}
2372
2373/*
2374 * select a tree root for relocation. return NULL if the block
2375 * is reference counted. we should use do_relocation() in this
2376 * case. return a tree root pointer if the block isn't reference
2377 * counted. return -ENOENT if the block is root of reloc tree.
2378 */
2379static noinline_for_stack
2380struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2381				   struct backref_node *node)
2382{
2383	struct backref_node *next;
2384	struct btrfs_root *root;
2385	struct btrfs_root *fs_root = NULL;
2386	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2387	int index = 0;
2388
2389	next = node;
2390	while (1) {
2391		cond_resched();
2392		next = walk_up_backref(next, edges, &index);
2393		root = next->root;
2394		BUG_ON(!root);
2395
2396		/* no other choice for non-references counted tree */
2397		if (!root->ref_cows)
2398			return root;
2399
2400		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2401			fs_root = root;
2402
2403		if (next != node)
2404			return NULL;
2405
2406		next = walk_down_backref(edges, &index);
2407		if (!next || next->level <= node->level)
2408			break;
2409	}
2410
2411	if (!fs_root)
2412		return ERR_PTR(-ENOENT);
2413	return fs_root;
2414}
2415
2416static noinline_for_stack
2417u64 calcu_metadata_size(struct reloc_control *rc,
2418			struct backref_node *node, int reserve)
2419{
2420	struct backref_node *next = node;
2421	struct backref_edge *edge;
2422	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2423	u64 num_bytes = 0;
2424	int index = 0;
2425
2426	BUG_ON(reserve && node->processed);
2427
2428	while (next) {
2429		cond_resched();
2430		while (1) {
2431			if (next->processed && (reserve || next != node))
2432				break;
2433
2434			num_bytes += btrfs_level_size(rc->extent_root,
2435						      next->level);
2436
2437			if (list_empty(&next->upper))
2438				break;
2439
2440			edge = list_entry(next->upper.next,
2441					  struct backref_edge, list[LOWER]);
2442			edges[index++] = edge;
2443			next = edge->node[UPPER];
2444		}
2445		next = walk_down_backref(edges, &index);
2446	}
2447	return num_bytes;
2448}
2449
2450static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2451				  struct reloc_control *rc,
2452				  struct backref_node *node)
2453{
2454	struct btrfs_root *root = rc->extent_root;
2455	u64 num_bytes;
2456	int ret;
 
2457
2458	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2459
2460	trans->block_rsv = rc->block_rsv;
2461	ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes);
 
 
2462	if (ret) {
2463		if (ret == -EAGAIN)
2464			rc->commit_transaction = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
2465		return ret;
2466	}
2467
2468	return 0;
2469}
2470
2471static void release_metadata_space(struct reloc_control *rc,
2472				   struct backref_node *node)
2473{
2474	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2475	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2476}
2477
2478/*
2479 * relocate a block tree, and then update pointers in upper level
2480 * blocks that reference the block to point to the new location.
2481 *
2482 * if called by link_to_upper, the block has already been relocated.
2483 * in that case this function just updates pointers.
2484 */
2485static int do_relocation(struct btrfs_trans_handle *trans,
2486			 struct reloc_control *rc,
2487			 struct backref_node *node,
2488			 struct btrfs_key *key,
2489			 struct btrfs_path *path, int lowest)
2490{
2491	struct backref_node *upper;
2492	struct backref_edge *edge;
2493	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2494	struct btrfs_root *root;
2495	struct extent_buffer *eb;
2496	u32 blocksize;
2497	u64 bytenr;
2498	u64 generation;
2499	int nr;
2500	int slot;
2501	int ret;
2502	int err = 0;
2503
2504	BUG_ON(lowest && node->eb);
2505
2506	path->lowest_level = node->level + 1;
2507	rc->backref_cache.path[node->level] = node;
2508	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2509		cond_resched();
2510
2511		upper = edge->node[UPPER];
2512		root = select_reloc_root(trans, rc, upper, edges, &nr);
2513		BUG_ON(!root);
2514
2515		if (upper->eb && !upper->locked) {
2516			if (!lowest) {
2517				ret = btrfs_bin_search(upper->eb, key,
2518						       upper->level, &slot);
2519				BUG_ON(ret);
2520				bytenr = btrfs_node_blockptr(upper->eb, slot);
2521				if (node->eb->start == bytenr)
2522					goto next;
2523			}
2524			drop_node_buffer(upper);
2525		}
2526
2527		if (!upper->eb) {
2528			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2529			if (ret < 0) {
2530				err = ret;
2531				break;
2532			}
2533			BUG_ON(ret > 0);
2534
2535			if (!upper->eb) {
2536				upper->eb = path->nodes[upper->level];
2537				path->nodes[upper->level] = NULL;
2538			} else {
2539				BUG_ON(upper->eb != path->nodes[upper->level]);
2540			}
2541
2542			upper->locked = 1;
2543			path->locks[upper->level] = 0;
2544
2545			slot = path->slots[upper->level];
2546			btrfs_release_path(path);
2547		} else {
2548			ret = btrfs_bin_search(upper->eb, key, upper->level,
2549					       &slot);
2550			BUG_ON(ret);
2551		}
2552
2553		bytenr = btrfs_node_blockptr(upper->eb, slot);
2554		if (lowest) {
2555			BUG_ON(bytenr != node->bytenr);
2556		} else {
2557			if (node->eb->start == bytenr)
2558				goto next;
2559		}
2560
2561		blocksize = btrfs_level_size(root, node->level);
2562		generation = btrfs_node_ptr_generation(upper->eb, slot);
2563		eb = read_tree_block(root, bytenr, blocksize, generation);
2564		if (!eb) {
 
2565			err = -EIO;
2566			goto next;
2567		}
2568		btrfs_tree_lock(eb);
2569		btrfs_set_lock_blocking(eb);
2570
2571		if (!node->eb) {
2572			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2573					      slot, &eb);
2574			btrfs_tree_unlock(eb);
2575			free_extent_buffer(eb);
2576			if (ret < 0) {
2577				err = ret;
2578				goto next;
2579			}
2580			BUG_ON(node->eb != eb);
2581		} else {
2582			btrfs_set_node_blockptr(upper->eb, slot,
2583						node->eb->start);
2584			btrfs_set_node_ptr_generation(upper->eb, slot,
2585						      trans->transid);
2586			btrfs_mark_buffer_dirty(upper->eb);
2587
2588			ret = btrfs_inc_extent_ref(trans, root,
2589						node->eb->start, blocksize,
2590						upper->eb->start,
2591						btrfs_header_owner(upper->eb),
2592						node->level, 0, 1);
2593			BUG_ON(ret);
2594
2595			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2596			BUG_ON(ret);
2597		}
2598next:
2599		if (!upper->pending)
2600			drop_node_buffer(upper);
2601		else
2602			unlock_node_buffer(upper);
2603		if (err)
2604			break;
2605	}
2606
2607	if (!err && node->pending) {
2608		drop_node_buffer(node);
2609		list_move_tail(&node->list, &rc->backref_cache.changed);
2610		node->pending = 0;
2611	}
2612
2613	path->lowest_level = 0;
2614	BUG_ON(err == -ENOSPC);
2615	return err;
2616}
2617
2618static int link_to_upper(struct btrfs_trans_handle *trans,
2619			 struct reloc_control *rc,
2620			 struct backref_node *node,
2621			 struct btrfs_path *path)
2622{
2623	struct btrfs_key key;
2624
2625	btrfs_node_key_to_cpu(node->eb, &key, 0);
2626	return do_relocation(trans, rc, node, &key, path, 0);
2627}
2628
2629static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2630				struct reloc_control *rc,
2631				struct btrfs_path *path, int err)
2632{
2633	LIST_HEAD(list);
2634	struct backref_cache *cache = &rc->backref_cache;
2635	struct backref_node *node;
2636	int level;
2637	int ret;
2638
2639	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2640		while (!list_empty(&cache->pending[level])) {
2641			node = list_entry(cache->pending[level].next,
2642					  struct backref_node, list);
2643			list_move_tail(&node->list, &list);
2644			BUG_ON(!node->pending);
2645
2646			if (!err) {
2647				ret = link_to_upper(trans, rc, node, path);
2648				if (ret < 0)
2649					err = ret;
2650			}
2651		}
2652		list_splice_init(&list, &cache->pending[level]);
2653	}
2654	return err;
2655}
2656
2657static void mark_block_processed(struct reloc_control *rc,
2658				 u64 bytenr, u32 blocksize)
2659{
2660	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2661			EXTENT_DIRTY, GFP_NOFS);
2662}
2663
2664static void __mark_block_processed(struct reloc_control *rc,
2665				   struct backref_node *node)
2666{
2667	u32 blocksize;
2668	if (node->level == 0 ||
2669	    in_block_group(node->bytenr, rc->block_group)) {
2670		blocksize = btrfs_level_size(rc->extent_root, node->level);
2671		mark_block_processed(rc, node->bytenr, blocksize);
2672	}
2673	node->processed = 1;
2674}
2675
2676/*
2677 * mark a block and all blocks directly/indirectly reference the block
2678 * as processed.
2679 */
2680static void update_processed_blocks(struct reloc_control *rc,
2681				    struct backref_node *node)
2682{
2683	struct backref_node *next = node;
2684	struct backref_edge *edge;
2685	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2686	int index = 0;
2687
2688	while (next) {
2689		cond_resched();
2690		while (1) {
2691			if (next->processed)
2692				break;
2693
2694			__mark_block_processed(rc, next);
2695
2696			if (list_empty(&next->upper))
2697				break;
2698
2699			edge = list_entry(next->upper.next,
2700					  struct backref_edge, list[LOWER]);
2701			edges[index++] = edge;
2702			next = edge->node[UPPER];
2703		}
2704		next = walk_down_backref(edges, &index);
2705	}
2706}
2707
2708static int tree_block_processed(u64 bytenr, u32 blocksize,
2709				struct reloc_control *rc)
2710{
2711	if (test_range_bit(&rc->processed_blocks, bytenr,
2712			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2713		return 1;
2714	return 0;
2715}
2716
2717static int get_tree_block_key(struct reloc_control *rc,
2718			      struct tree_block *block)
2719{
2720	struct extent_buffer *eb;
2721
2722	BUG_ON(block->key_ready);
2723	eb = read_tree_block(rc->extent_root, block->bytenr,
2724			     block->key.objectid, block->key.offset);
2725	BUG_ON(!eb);
 
 
 
2726	WARN_ON(btrfs_header_level(eb) != block->level);
2727	if (block->level == 0)
2728		btrfs_item_key_to_cpu(eb, &block->key, 0);
2729	else
2730		btrfs_node_key_to_cpu(eb, &block->key, 0);
2731	free_extent_buffer(eb);
2732	block->key_ready = 1;
2733	return 0;
2734}
2735
2736static int reada_tree_block(struct reloc_control *rc,
2737			    struct tree_block *block)
2738{
2739	BUG_ON(block->key_ready);
2740	readahead_tree_block(rc->extent_root, block->bytenr,
2741			     block->key.objectid, block->key.offset);
 
 
 
 
 
2742	return 0;
2743}
2744
2745/*
2746 * helper function to relocate a tree block
2747 */
2748static int relocate_tree_block(struct btrfs_trans_handle *trans,
2749				struct reloc_control *rc,
2750				struct backref_node *node,
2751				struct btrfs_key *key,
2752				struct btrfs_path *path)
2753{
2754	struct btrfs_root *root;
2755	int release = 0;
2756	int ret = 0;
2757
2758	if (!node)
2759		return 0;
2760
2761	BUG_ON(node->processed);
2762	root = select_one_root(trans, node);
2763	if (root == ERR_PTR(-ENOENT)) {
2764		update_processed_blocks(rc, node);
2765		goto out;
2766	}
2767
2768	if (!root || root->ref_cows) {
2769		ret = reserve_metadata_space(trans, rc, node);
2770		if (ret)
2771			goto out;
2772		release = 1;
2773	}
2774
2775	if (root) {
2776		if (root->ref_cows) {
2777			BUG_ON(node->new_bytenr);
2778			BUG_ON(!list_empty(&node->list));
2779			btrfs_record_root_in_trans(trans, root);
2780			root = root->reloc_root;
2781			node->new_bytenr = root->node->start;
2782			node->root = root;
2783			list_add_tail(&node->list, &rc->backref_cache.changed);
2784		} else {
2785			path->lowest_level = node->level;
2786			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2787			btrfs_release_path(path);
2788			if (ret > 0)
2789				ret = 0;
2790		}
2791		if (!ret)
2792			update_processed_blocks(rc, node);
2793	} else {
2794		ret = do_relocation(trans, rc, node, key, path, 1);
2795	}
2796out:
2797	if (ret || node->level == 0 || node->cowonly) {
2798		if (release)
2799			release_metadata_space(rc, node);
2800		remove_backref_node(&rc->backref_cache, node);
2801	}
2802	return ret;
2803}
2804
2805/*
2806 * relocate a list of blocks
2807 */
2808static noinline_for_stack
2809int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2810			 struct reloc_control *rc, struct rb_root *blocks)
2811{
2812	struct backref_node *node;
2813	struct btrfs_path *path;
2814	struct tree_block *block;
2815	struct rb_node *rb_node;
2816	int ret;
2817	int err = 0;
2818
2819	path = btrfs_alloc_path();
2820	if (!path)
2821		return -ENOMEM;
 
 
2822
2823	rb_node = rb_first(blocks);
2824	while (rb_node) {
2825		block = rb_entry(rb_node, struct tree_block, rb_node);
2826		if (!block->key_ready)
2827			reada_tree_block(rc, block);
2828		rb_node = rb_next(rb_node);
2829	}
2830
2831	rb_node = rb_first(blocks);
2832	while (rb_node) {
2833		block = rb_entry(rb_node, struct tree_block, rb_node);
2834		if (!block->key_ready)
2835			get_tree_block_key(rc, block);
 
 
 
2836		rb_node = rb_next(rb_node);
2837	}
2838
2839	rb_node = rb_first(blocks);
2840	while (rb_node) {
2841		block = rb_entry(rb_node, struct tree_block, rb_node);
2842
2843		node = build_backref_tree(rc, &block->key,
2844					  block->level, block->bytenr);
2845		if (IS_ERR(node)) {
2846			err = PTR_ERR(node);
2847			goto out;
2848		}
2849
2850		ret = relocate_tree_block(trans, rc, node, &block->key,
2851					  path);
2852		if (ret < 0) {
2853			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2854				err = ret;
2855			goto out;
2856		}
2857		rb_node = rb_next(rb_node);
2858	}
2859out:
2860	free_block_list(blocks);
2861	err = finish_pending_nodes(trans, rc, path, err);
2862
 
2863	btrfs_free_path(path);
 
 
2864	return err;
2865}
2866
2867static noinline_for_stack
2868int prealloc_file_extent_cluster(struct inode *inode,
2869				 struct file_extent_cluster *cluster)
2870{
2871	u64 alloc_hint = 0;
2872	u64 start;
2873	u64 end;
2874	u64 offset = BTRFS_I(inode)->index_cnt;
2875	u64 num_bytes;
2876	int nr = 0;
2877	int ret = 0;
2878
2879	BUG_ON(cluster->start != cluster->boundary[0]);
2880	mutex_lock(&inode->i_mutex);
2881
2882	ret = btrfs_check_data_free_space(inode, cluster->end +
2883					  1 - cluster->start);
2884	if (ret)
2885		goto out;
2886
2887	while (nr < cluster->nr) {
2888		start = cluster->boundary[nr] - offset;
2889		if (nr + 1 < cluster->nr)
2890			end = cluster->boundary[nr + 1] - 1 - offset;
2891		else
2892			end = cluster->end - offset;
2893
2894		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2895		num_bytes = end + 1 - start;
2896		ret = btrfs_prealloc_file_range(inode, 0, start,
2897						num_bytes, num_bytes,
2898						end + 1, &alloc_hint);
2899		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2900		if (ret)
2901			break;
2902		nr++;
2903	}
2904	btrfs_free_reserved_data_space(inode, cluster->end +
2905				       1 - cluster->start);
2906out:
2907	mutex_unlock(&inode->i_mutex);
2908	return ret;
2909}
2910
2911static noinline_for_stack
2912int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2913			 u64 block_start)
2914{
2915	struct btrfs_root *root = BTRFS_I(inode)->root;
2916	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2917	struct extent_map *em;
2918	int ret = 0;
2919
2920	em = alloc_extent_map();
2921	if (!em)
2922		return -ENOMEM;
2923
2924	em->start = start;
2925	em->len = end + 1 - start;
2926	em->block_len = em->len;
2927	em->block_start = block_start;
2928	em->bdev = root->fs_info->fs_devices->latest_bdev;
2929	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2930
2931	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2932	while (1) {
2933		write_lock(&em_tree->lock);
2934		ret = add_extent_mapping(em_tree, em);
2935		write_unlock(&em_tree->lock);
2936		if (ret != -EEXIST) {
2937			free_extent_map(em);
2938			break;
2939		}
2940		btrfs_drop_extent_cache(inode, start, end, 0);
2941	}
2942	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2943	return ret;
2944}
2945
2946static int relocate_file_extent_cluster(struct inode *inode,
2947					struct file_extent_cluster *cluster)
2948{
2949	u64 page_start;
2950	u64 page_end;
2951	u64 offset = BTRFS_I(inode)->index_cnt;
2952	unsigned long index;
2953	unsigned long last_index;
2954	struct page *page;
2955	struct file_ra_state *ra;
2956	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2957	int nr = 0;
2958	int ret = 0;
2959
2960	if (!cluster->nr)
2961		return 0;
2962
2963	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2964	if (!ra)
2965		return -ENOMEM;
2966
2967	ret = prealloc_file_extent_cluster(inode, cluster);
2968	if (ret)
2969		goto out;
2970
2971	file_ra_state_init(ra, inode->i_mapping);
2972
2973	ret = setup_extent_mapping(inode, cluster->start - offset,
2974				   cluster->end - offset, cluster->start);
2975	if (ret)
2976		goto out;
2977
2978	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
2979	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
2980	while (index <= last_index) {
2981		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
2982		if (ret)
2983			goto out;
2984
2985		page = find_lock_page(inode->i_mapping, index);
2986		if (!page) {
2987			page_cache_sync_readahead(inode->i_mapping,
2988						  ra, NULL, index,
2989						  last_index + 1 - index);
2990			page = find_or_create_page(inode->i_mapping, index,
2991						   mask);
2992			if (!page) {
2993				btrfs_delalloc_release_metadata(inode,
2994							PAGE_CACHE_SIZE);
2995				ret = -ENOMEM;
2996				goto out;
2997			}
2998		}
2999
3000		if (PageReadahead(page)) {
3001			page_cache_async_readahead(inode->i_mapping,
3002						   ra, NULL, page, index,
3003						   last_index + 1 - index);
3004		}
3005
3006		if (!PageUptodate(page)) {
3007			btrfs_readpage(NULL, page);
3008			lock_page(page);
3009			if (!PageUptodate(page)) {
3010				unlock_page(page);
3011				page_cache_release(page);
3012				btrfs_delalloc_release_metadata(inode,
3013							PAGE_CACHE_SIZE);
3014				ret = -EIO;
3015				goto out;
3016			}
3017		}
3018
3019		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
3020		page_end = page_start + PAGE_CACHE_SIZE - 1;
3021
3022		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3023
3024		set_page_extent_mapped(page);
3025
3026		if (nr < cluster->nr &&
3027		    page_start + offset == cluster->boundary[nr]) {
3028			set_extent_bits(&BTRFS_I(inode)->io_tree,
3029					page_start, page_end,
3030					EXTENT_BOUNDARY, GFP_NOFS);
3031			nr++;
3032		}
3033
3034		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3035		set_page_dirty(page);
3036
3037		unlock_extent(&BTRFS_I(inode)->io_tree,
3038			      page_start, page_end);
3039		unlock_page(page);
3040		page_cache_release(page);
3041
3042		index++;
3043		balance_dirty_pages_ratelimited(inode->i_mapping);
3044		btrfs_throttle(BTRFS_I(inode)->root);
3045	}
3046	WARN_ON(nr != cluster->nr);
3047out:
3048	kfree(ra);
3049	return ret;
3050}
3051
3052static noinline_for_stack
3053int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3054			 struct file_extent_cluster *cluster)
3055{
3056	int ret;
3057
3058	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3059		ret = relocate_file_extent_cluster(inode, cluster);
3060		if (ret)
3061			return ret;
3062		cluster->nr = 0;
3063	}
3064
3065	if (!cluster->nr)
3066		cluster->start = extent_key->objectid;
3067	else
3068		BUG_ON(cluster->nr >= MAX_EXTENTS);
3069	cluster->end = extent_key->objectid + extent_key->offset - 1;
3070	cluster->boundary[cluster->nr] = extent_key->objectid;
3071	cluster->nr++;
3072
3073	if (cluster->nr >= MAX_EXTENTS) {
3074		ret = relocate_file_extent_cluster(inode, cluster);
3075		if (ret)
3076			return ret;
3077		cluster->nr = 0;
3078	}
3079	return 0;
3080}
3081
3082#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3083static int get_ref_objectid_v0(struct reloc_control *rc,
3084			       struct btrfs_path *path,
3085			       struct btrfs_key *extent_key,
3086			       u64 *ref_objectid, int *path_change)
3087{
3088	struct btrfs_key key;
3089	struct extent_buffer *leaf;
3090	struct btrfs_extent_ref_v0 *ref0;
3091	int ret;
3092	int slot;
3093
3094	leaf = path->nodes[0];
3095	slot = path->slots[0];
3096	while (1) {
3097		if (slot >= btrfs_header_nritems(leaf)) {
3098			ret = btrfs_next_leaf(rc->extent_root, path);
3099			if (ret < 0)
3100				return ret;
3101			BUG_ON(ret > 0);
3102			leaf = path->nodes[0];
3103			slot = path->slots[0];
3104			if (path_change)
3105				*path_change = 1;
3106		}
3107		btrfs_item_key_to_cpu(leaf, &key, slot);
3108		if (key.objectid != extent_key->objectid)
3109			return -ENOENT;
3110
3111		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3112			slot++;
3113			continue;
3114		}
3115		ref0 = btrfs_item_ptr(leaf, slot,
3116				struct btrfs_extent_ref_v0);
3117		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3118		break;
3119	}
3120	return 0;
3121}
3122#endif
3123
3124/*
3125 * helper to add a tree block to the list.
3126 * the major work is getting the generation and level of the block
3127 */
3128static int add_tree_block(struct reloc_control *rc,
3129			  struct btrfs_key *extent_key,
3130			  struct btrfs_path *path,
3131			  struct rb_root *blocks)
3132{
3133	struct extent_buffer *eb;
3134	struct btrfs_extent_item *ei;
3135	struct btrfs_tree_block_info *bi;
3136	struct tree_block *block;
3137	struct rb_node *rb_node;
3138	u32 item_size;
3139	int level = -1;
3140	int generation;
3141
3142	eb =  path->nodes[0];
3143	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3144
3145	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
 
3146		ei = btrfs_item_ptr(eb, path->slots[0],
3147				struct btrfs_extent_item);
3148		bi = (struct btrfs_tree_block_info *)(ei + 1);
 
 
 
 
 
3149		generation = btrfs_extent_generation(eb, ei);
3150		level = btrfs_tree_block_level(eb, bi);
3151	} else {
3152#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3153		u64 ref_owner;
3154		int ret;
3155
3156		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3157		ret = get_ref_objectid_v0(rc, path, extent_key,
3158					  &ref_owner, NULL);
3159		if (ret < 0)
3160			return ret;
3161		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3162		level = (int)ref_owner;
3163		/* FIXME: get real generation */
3164		generation = 0;
3165#else
3166		BUG();
3167#endif
3168	}
3169
3170	btrfs_release_path(path);
3171
3172	BUG_ON(level == -1);
3173
3174	block = kmalloc(sizeof(*block), GFP_NOFS);
3175	if (!block)
3176		return -ENOMEM;
3177
3178	block->bytenr = extent_key->objectid;
3179	block->key.objectid = extent_key->offset;
3180	block->key.offset = generation;
3181	block->level = level;
3182	block->key_ready = 0;
3183
3184	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3185	if (rb_node)
3186		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3187
3188	return 0;
3189}
3190
3191/*
3192 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3193 */
3194static int __add_tree_block(struct reloc_control *rc,
3195			    u64 bytenr, u32 blocksize,
3196			    struct rb_root *blocks)
3197{
3198	struct btrfs_path *path;
3199	struct btrfs_key key;
3200	int ret;
 
 
3201
3202	if (tree_block_processed(bytenr, blocksize, rc))
3203		return 0;
3204
3205	if (tree_search(blocks, bytenr))
3206		return 0;
3207
3208	path = btrfs_alloc_path();
3209	if (!path)
3210		return -ENOMEM;
3211
3212	key.objectid = bytenr;
3213	key.type = BTRFS_EXTENT_ITEM_KEY;
3214	key.offset = blocksize;
 
 
 
 
 
3215
3216	path->search_commit_root = 1;
3217	path->skip_locking = 1;
3218	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3219	if (ret < 0)
3220		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3221	BUG_ON(ret);
3222
3223	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3224	ret = add_tree_block(rc, &key, path, blocks);
3225out:
3226	btrfs_free_path(path);
3227	return ret;
3228}
3229
3230/*
3231 * helper to check if the block use full backrefs for pointers in it
3232 */
3233static int block_use_full_backref(struct reloc_control *rc,
3234				  struct extent_buffer *eb)
3235{
3236	u64 flags;
3237	int ret;
3238
3239	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3240	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3241		return 1;
3242
3243	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3244				       eb->start, eb->len, NULL, &flags);
 
3245	BUG_ON(ret);
3246
3247	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3248		ret = 1;
3249	else
3250		ret = 0;
3251	return ret;
3252}
3253
3254static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3255				    struct inode *inode, u64 ino)
3256{
3257	struct btrfs_key key;
3258	struct btrfs_path *path;
3259	struct btrfs_root *root = fs_info->tree_root;
3260	struct btrfs_trans_handle *trans;
3261	unsigned long nr;
3262	int ret = 0;
3263
3264	if (inode)
3265		goto truncate;
3266
3267	key.objectid = ino;
3268	key.type = BTRFS_INODE_ITEM_KEY;
3269	key.offset = 0;
3270
3271	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3272	if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) {
3273		if (inode && !IS_ERR(inode))
3274			iput(inode);
3275		return -ENOENT;
3276	}
3277
3278truncate:
3279	path = btrfs_alloc_path();
3280	if (!path) {
3281		ret = -ENOMEM;
3282		goto out;
3283	}
3284
3285	trans = btrfs_join_transaction(root);
3286	if (IS_ERR(trans)) {
3287		btrfs_free_path(path);
3288		ret = PTR_ERR(trans);
3289		goto out;
3290	}
3291
3292	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3293
3294	btrfs_free_path(path);
3295	nr = trans->blocks_used;
3296	btrfs_end_transaction(trans, root);
3297	btrfs_btree_balance_dirty(root, nr);
3298out:
3299	iput(inode);
3300	return ret;
3301}
3302
3303/*
3304 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3305 * this function scans fs tree to find blocks reference the data extent
3306 */
3307static int find_data_references(struct reloc_control *rc,
3308				struct btrfs_key *extent_key,
3309				struct extent_buffer *leaf,
3310				struct btrfs_extent_data_ref *ref,
3311				struct rb_root *blocks)
3312{
3313	struct btrfs_path *path;
3314	struct tree_block *block;
3315	struct btrfs_root *root;
3316	struct btrfs_file_extent_item *fi;
3317	struct rb_node *rb_node;
3318	struct btrfs_key key;
3319	u64 ref_root;
3320	u64 ref_objectid;
3321	u64 ref_offset;
3322	u32 ref_count;
3323	u32 nritems;
3324	int err = 0;
3325	int added = 0;
3326	int counted;
3327	int ret;
3328
3329	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3330	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3331	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3332	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3333
3334	/*
3335	 * This is an extent belonging to the free space cache, lets just delete
3336	 * it and redo the search.
3337	 */
3338	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3339		ret = delete_block_group_cache(rc->extent_root->fs_info,
3340					       NULL, ref_objectid);
3341		if (ret != -ENOENT)
3342			return ret;
3343		ret = 0;
3344	}
3345
3346	path = btrfs_alloc_path();
3347	if (!path)
3348		return -ENOMEM;
3349	path->reada = 1;
3350
3351	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3352	if (IS_ERR(root)) {
3353		err = PTR_ERR(root);
3354		goto out;
3355	}
3356
3357	key.objectid = ref_objectid;
3358	key.type = BTRFS_EXTENT_DATA_KEY;
3359	if (ref_offset > ((u64)-1 << 32))
3360		key.offset = 0;
3361	else
3362		key.offset = ref_offset;
3363
3364	path->search_commit_root = 1;
3365	path->skip_locking = 1;
3366	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3367	if (ret < 0) {
3368		err = ret;
3369		goto out;
3370	}
3371
3372	leaf = path->nodes[0];
3373	nritems = btrfs_header_nritems(leaf);
3374	/*
3375	 * the references in tree blocks that use full backrefs
3376	 * are not counted in
3377	 */
3378	if (block_use_full_backref(rc, leaf))
3379		counted = 0;
3380	else
3381		counted = 1;
3382	rb_node = tree_search(blocks, leaf->start);
3383	if (rb_node) {
3384		if (counted)
3385			added = 1;
3386		else
3387			path->slots[0] = nritems;
3388	}
3389
3390	while (ref_count > 0) {
3391		while (path->slots[0] >= nritems) {
3392			ret = btrfs_next_leaf(root, path);
3393			if (ret < 0) {
3394				err = ret;
3395				goto out;
3396			}
3397			if (ret > 0) {
3398				WARN_ON(1);
3399				goto out;
3400			}
3401
3402			leaf = path->nodes[0];
3403			nritems = btrfs_header_nritems(leaf);
3404			added = 0;
3405
3406			if (block_use_full_backref(rc, leaf))
3407				counted = 0;
3408			else
3409				counted = 1;
3410			rb_node = tree_search(blocks, leaf->start);
3411			if (rb_node) {
3412				if (counted)
3413					added = 1;
3414				else
3415					path->slots[0] = nritems;
3416			}
3417		}
3418
3419		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3420		if (key.objectid != ref_objectid ||
3421		    key.type != BTRFS_EXTENT_DATA_KEY) {
3422			WARN_ON(1);
3423			break;
3424		}
3425
3426		fi = btrfs_item_ptr(leaf, path->slots[0],
3427				    struct btrfs_file_extent_item);
3428
3429		if (btrfs_file_extent_type(leaf, fi) ==
3430		    BTRFS_FILE_EXTENT_INLINE)
3431			goto next;
3432
3433		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3434		    extent_key->objectid)
3435			goto next;
3436
3437		key.offset -= btrfs_file_extent_offset(leaf, fi);
3438		if (key.offset != ref_offset)
3439			goto next;
3440
3441		if (counted)
3442			ref_count--;
3443		if (added)
3444			goto next;
3445
3446		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3447			block = kmalloc(sizeof(*block), GFP_NOFS);
3448			if (!block) {
3449				err = -ENOMEM;
3450				break;
3451			}
3452			block->bytenr = leaf->start;
3453			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3454			block->level = 0;
3455			block->key_ready = 1;
3456			rb_node = tree_insert(blocks, block->bytenr,
3457					      &block->rb_node);
3458			if (rb_node)
3459				backref_tree_panic(rb_node, -EEXIST,
3460						   block->bytenr);
3461		}
3462		if (counted)
3463			added = 1;
3464		else
3465			path->slots[0] = nritems;
3466next:
3467		path->slots[0]++;
3468
3469	}
3470out:
3471	btrfs_free_path(path);
3472	return err;
3473}
3474
3475/*
3476 * hepler to find all tree blocks that reference a given data extent
3477 */
3478static noinline_for_stack
3479int add_data_references(struct reloc_control *rc,
3480			struct btrfs_key *extent_key,
3481			struct btrfs_path *path,
3482			struct rb_root *blocks)
3483{
3484	struct btrfs_key key;
3485	struct extent_buffer *eb;
3486	struct btrfs_extent_data_ref *dref;
3487	struct btrfs_extent_inline_ref *iref;
3488	unsigned long ptr;
3489	unsigned long end;
3490	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3491	int ret;
3492	int err = 0;
3493
3494	eb = path->nodes[0];
3495	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3496	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3497#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3498	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3499		ptr = end;
3500	else
3501#endif
3502		ptr += sizeof(struct btrfs_extent_item);
3503
3504	while (ptr < end) {
3505		iref = (struct btrfs_extent_inline_ref *)ptr;
3506		key.type = btrfs_extent_inline_ref_type(eb, iref);
3507		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3508			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3509			ret = __add_tree_block(rc, key.offset, blocksize,
3510					       blocks);
3511		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3512			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3513			ret = find_data_references(rc, extent_key,
3514						   eb, dref, blocks);
3515		} else {
3516			BUG();
3517		}
 
 
 
 
3518		ptr += btrfs_extent_inline_ref_size(key.type);
3519	}
3520	WARN_ON(ptr > end);
3521
3522	while (1) {
3523		cond_resched();
3524		eb = path->nodes[0];
3525		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3526			ret = btrfs_next_leaf(rc->extent_root, path);
3527			if (ret < 0) {
3528				err = ret;
3529				break;
3530			}
3531			if (ret > 0)
3532				break;
3533			eb = path->nodes[0];
3534		}
3535
3536		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3537		if (key.objectid != extent_key->objectid)
3538			break;
3539
3540#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3541		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3542		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3543#else
3544		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3545		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3546#endif
3547			ret = __add_tree_block(rc, key.offset, blocksize,
3548					       blocks);
3549		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3550			dref = btrfs_item_ptr(eb, path->slots[0],
3551					      struct btrfs_extent_data_ref);
3552			ret = find_data_references(rc, extent_key,
3553						   eb, dref, blocks);
3554		} else {
3555			ret = 0;
3556		}
3557		if (ret) {
3558			err = ret;
3559			break;
3560		}
3561		path->slots[0]++;
3562	}
 
3563	btrfs_release_path(path);
3564	if (err)
3565		free_block_list(blocks);
3566	return err;
3567}
3568
3569/*
3570 * hepler to find next unprocessed extent
3571 */
3572static noinline_for_stack
3573int find_next_extent(struct btrfs_trans_handle *trans,
3574		     struct reloc_control *rc, struct btrfs_path *path,
3575		     struct btrfs_key *extent_key)
3576{
3577	struct btrfs_key key;
3578	struct extent_buffer *leaf;
3579	u64 start, end, last;
3580	int ret;
3581
3582	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3583	while (1) {
3584		cond_resched();
3585		if (rc->search_start >= last) {
3586			ret = 1;
3587			break;
3588		}
3589
3590		key.objectid = rc->search_start;
3591		key.type = BTRFS_EXTENT_ITEM_KEY;
3592		key.offset = 0;
3593
3594		path->search_commit_root = 1;
3595		path->skip_locking = 1;
3596		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3597					0, 0);
3598		if (ret < 0)
3599			break;
3600next:
3601		leaf = path->nodes[0];
3602		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3603			ret = btrfs_next_leaf(rc->extent_root, path);
3604			if (ret != 0)
3605				break;
3606			leaf = path->nodes[0];
3607		}
3608
3609		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3610		if (key.objectid >= last) {
3611			ret = 1;
3612			break;
3613		}
3614
3615		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
 
 
 
 
 
 
3616		    key.objectid + key.offset <= rc->search_start) {
3617			path->slots[0]++;
3618			goto next;
3619		}
3620
 
 
 
 
 
 
 
3621		ret = find_first_extent_bit(&rc->processed_blocks,
3622					    key.objectid, &start, &end,
3623					    EXTENT_DIRTY);
3624
3625		if (ret == 0 && start <= key.objectid) {
3626			btrfs_release_path(path);
3627			rc->search_start = end + 1;
3628		} else {
3629			rc->search_start = key.objectid + key.offset;
 
 
 
 
3630			memcpy(extent_key, &key, sizeof(key));
3631			return 0;
3632		}
3633	}
3634	btrfs_release_path(path);
3635	return ret;
3636}
3637
3638static void set_reloc_control(struct reloc_control *rc)
3639{
3640	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3641
3642	mutex_lock(&fs_info->reloc_mutex);
3643	fs_info->reloc_ctl = rc;
3644	mutex_unlock(&fs_info->reloc_mutex);
3645}
3646
3647static void unset_reloc_control(struct reloc_control *rc)
3648{
3649	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3650
3651	mutex_lock(&fs_info->reloc_mutex);
3652	fs_info->reloc_ctl = NULL;
3653	mutex_unlock(&fs_info->reloc_mutex);
3654}
3655
3656static int check_extent_flags(u64 flags)
3657{
3658	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3659	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3660		return 1;
3661	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3662	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3663		return 1;
3664	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3665	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3666		return 1;
3667	return 0;
3668}
3669
3670static noinline_for_stack
3671int prepare_to_relocate(struct reloc_control *rc)
3672{
3673	struct btrfs_trans_handle *trans;
3674	int ret;
3675
3676	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root);
 
3677	if (!rc->block_rsv)
3678		return -ENOMEM;
3679
3680	/*
3681	 * reserve some space for creating reloc trees.
3682	 * btrfs_init_reloc_root will use them when there
3683	 * is no reservation in transaction handle.
3684	 */
3685	ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv,
3686				  rc->extent_root->nodesize * 256);
3687	if (ret)
3688		return ret;
3689
3690	memset(&rc->cluster, 0, sizeof(rc->cluster));
3691	rc->search_start = rc->block_group->key.objectid;
3692	rc->extents_found = 0;
3693	rc->nodes_relocated = 0;
3694	rc->merging_rsv_size = 0;
 
 
 
3695
3696	rc->create_reloc_tree = 1;
3697	set_reloc_control(rc);
3698
3699	trans = btrfs_join_transaction(rc->extent_root);
3700	BUG_ON(IS_ERR(trans));
 
 
 
 
 
 
 
 
3701	btrfs_commit_transaction(trans, rc->extent_root);
3702	return 0;
3703}
3704
3705static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3706{
3707	struct rb_root blocks = RB_ROOT;
3708	struct btrfs_key key;
3709	struct btrfs_trans_handle *trans = NULL;
3710	struct btrfs_path *path;
3711	struct btrfs_extent_item *ei;
3712	unsigned long nr;
3713	u64 flags;
3714	u32 item_size;
3715	int ret;
3716	int err = 0;
3717	int progress = 0;
3718
3719	path = btrfs_alloc_path();
3720	if (!path)
3721		return -ENOMEM;
3722	path->reada = 1;
3723
3724	ret = prepare_to_relocate(rc);
3725	if (ret) {
3726		err = ret;
3727		goto out_free;
3728	}
3729
3730	while (1) {
 
 
 
 
 
 
 
 
3731		progress++;
3732		trans = btrfs_start_transaction(rc->extent_root, 0);
3733		BUG_ON(IS_ERR(trans));
 
 
 
 
3734restart:
3735		if (update_backref_cache(trans, &rc->backref_cache)) {
3736			btrfs_end_transaction(trans, rc->extent_root);
3737			continue;
3738		}
3739
3740		ret = find_next_extent(trans, rc, path, &key);
3741		if (ret < 0)
3742			err = ret;
3743		if (ret != 0)
3744			break;
3745
3746		rc->extents_found++;
3747
3748		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3749				    struct btrfs_extent_item);
3750		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3751		if (item_size >= sizeof(*ei)) {
3752			flags = btrfs_extent_flags(path->nodes[0], ei);
3753			ret = check_extent_flags(flags);
3754			BUG_ON(ret);
3755
3756		} else {
3757#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3758			u64 ref_owner;
3759			int path_change = 0;
3760
3761			BUG_ON(item_size !=
3762			       sizeof(struct btrfs_extent_item_v0));
3763			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3764						  &path_change);
3765			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3766				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3767			else
3768				flags = BTRFS_EXTENT_FLAG_DATA;
3769
3770			if (path_change) {
3771				btrfs_release_path(path);
3772
3773				path->search_commit_root = 1;
3774				path->skip_locking = 1;
3775				ret = btrfs_search_slot(NULL, rc->extent_root,
3776							&key, path, 0, 0);
3777				if (ret < 0) {
3778					err = ret;
3779					break;
3780				}
3781				BUG_ON(ret > 0);
3782			}
3783#else
3784			BUG();
3785#endif
3786		}
3787
3788		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3789			ret = add_tree_block(rc, &key, path, &blocks);
3790		} else if (rc->stage == UPDATE_DATA_PTRS &&
3791			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3792			ret = add_data_references(rc, &key, path, &blocks);
3793		} else {
3794			btrfs_release_path(path);
3795			ret = 0;
3796		}
3797		if (ret < 0) {
3798			err = ret;
3799			break;
3800		}
3801
3802		if (!RB_EMPTY_ROOT(&blocks)) {
3803			ret = relocate_tree_blocks(trans, rc, &blocks);
3804			if (ret < 0) {
 
 
 
 
 
 
3805				if (ret != -EAGAIN) {
3806					err = ret;
3807					break;
3808				}
3809				rc->extents_found--;
3810				rc->search_start = key.objectid;
3811			}
3812		}
3813
3814		ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5);
3815		if (ret < 0) {
3816			if (ret != -ENOSPC) {
3817				err = ret;
3818				WARN_ON(1);
3819				break;
3820			}
3821			rc->commit_transaction = 1;
3822		}
3823
3824		if (rc->commit_transaction) {
3825			rc->commit_transaction = 0;
3826			ret = btrfs_commit_transaction(trans, rc->extent_root);
3827			BUG_ON(ret);
3828		} else {
3829			nr = trans->blocks_used;
3830			btrfs_end_transaction_throttle(trans, rc->extent_root);
3831			btrfs_btree_balance_dirty(rc->extent_root, nr);
3832		}
3833		trans = NULL;
3834
3835		if (rc->stage == MOVE_DATA_EXTENTS &&
3836		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3837			rc->found_file_extent = 1;
3838			ret = relocate_data_extent(rc->data_inode,
3839						   &key, &rc->cluster);
3840			if (ret < 0) {
3841				err = ret;
3842				break;
3843			}
3844		}
3845	}
3846	if (trans && progress && err == -ENOSPC) {
3847		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
3848					      rc->block_group->flags);
3849		if (ret == 0) {
3850			err = 0;
3851			progress = 0;
3852			goto restart;
3853		}
3854	}
3855
3856	btrfs_release_path(path);
3857	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3858			  GFP_NOFS);
3859
3860	if (trans) {
3861		nr = trans->blocks_used;
3862		btrfs_end_transaction_throttle(trans, rc->extent_root);
3863		btrfs_btree_balance_dirty(rc->extent_root, nr);
3864	}
3865
3866	if (!err) {
3867		ret = relocate_file_extent_cluster(rc->data_inode,
3868						   &rc->cluster);
3869		if (ret < 0)
3870			err = ret;
3871	}
3872
3873	rc->create_reloc_tree = 0;
3874	set_reloc_control(rc);
3875
3876	backref_cache_cleanup(&rc->backref_cache);
3877	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3878
3879	err = prepare_to_merge(rc, err);
3880
3881	merge_reloc_roots(rc);
3882
3883	rc->merge_reloc_tree = 0;
3884	unset_reloc_control(rc);
3885	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3886
3887	/* get rid of pinned extents */
3888	trans = btrfs_join_transaction(rc->extent_root);
3889	if (IS_ERR(trans))
3890		err = PTR_ERR(trans);
3891	else
3892		btrfs_commit_transaction(trans, rc->extent_root);
3893out_free:
3894	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
3895	btrfs_free_path(path);
3896	return err;
3897}
3898
3899static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3900				 struct btrfs_root *root, u64 objectid)
3901{
3902	struct btrfs_path *path;
3903	struct btrfs_inode_item *item;
3904	struct extent_buffer *leaf;
3905	int ret;
3906
3907	path = btrfs_alloc_path();
3908	if (!path)
3909		return -ENOMEM;
3910
3911	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3912	if (ret)
3913		goto out;
3914
3915	leaf = path->nodes[0];
3916	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3917	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3918	btrfs_set_inode_generation(leaf, item, 1);
3919	btrfs_set_inode_size(leaf, item, 0);
3920	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3921	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3922					  BTRFS_INODE_PREALLOC);
3923	btrfs_mark_buffer_dirty(leaf);
3924	btrfs_release_path(path);
3925out:
3926	btrfs_free_path(path);
3927	return ret;
3928}
3929
3930/*
3931 * helper to create inode for data relocation.
3932 * the inode is in data relocation tree and its link count is 0
3933 */
3934static noinline_for_stack
3935struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3936				 struct btrfs_block_group_cache *group)
3937{
3938	struct inode *inode = NULL;
3939	struct btrfs_trans_handle *trans;
3940	struct btrfs_root *root;
3941	struct btrfs_key key;
3942	unsigned long nr;
3943	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3944	int err = 0;
3945
3946	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3947	if (IS_ERR(root))
3948		return ERR_CAST(root);
3949
3950	trans = btrfs_start_transaction(root, 6);
3951	if (IS_ERR(trans))
3952		return ERR_CAST(trans);
3953
3954	err = btrfs_find_free_objectid(root, &objectid);
3955	if (err)
3956		goto out;
3957
3958	err = __insert_orphan_inode(trans, root, objectid);
3959	BUG_ON(err);
3960
3961	key.objectid = objectid;
3962	key.type = BTRFS_INODE_ITEM_KEY;
3963	key.offset = 0;
3964	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
3965	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3966	BTRFS_I(inode)->index_cnt = group->key.objectid;
3967
3968	err = btrfs_orphan_add(trans, inode);
3969out:
3970	nr = trans->blocks_used;
3971	btrfs_end_transaction(trans, root);
3972	btrfs_btree_balance_dirty(root, nr);
3973	if (err) {
3974		if (inode)
3975			iput(inode);
3976		inode = ERR_PTR(err);
3977	}
3978	return inode;
3979}
3980
3981static struct reloc_control *alloc_reloc_control(void)
3982{
3983	struct reloc_control *rc;
3984
3985	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3986	if (!rc)
3987		return NULL;
3988
3989	INIT_LIST_HEAD(&rc->reloc_roots);
3990	backref_cache_init(&rc->backref_cache);
3991	mapping_tree_init(&rc->reloc_root_tree);
3992	extent_io_tree_init(&rc->processed_blocks, NULL);
 
3993	return rc;
3994}
3995
3996/*
3997 * function to relocate all extents in a block group.
3998 */
3999int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4000{
4001	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4002	struct reloc_control *rc;
4003	struct inode *inode;
4004	struct btrfs_path *path;
4005	int ret;
4006	int rw = 0;
4007	int err = 0;
4008
4009	rc = alloc_reloc_control();
4010	if (!rc)
4011		return -ENOMEM;
4012
4013	rc->extent_root = extent_root;
4014
4015	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4016	BUG_ON(!rc->block_group);
4017
4018	if (!rc->block_group->ro) {
4019		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4020		if (ret) {
4021			err = ret;
4022			goto out;
4023		}
4024		rw = 1;
4025	}
4026
4027	path = btrfs_alloc_path();
4028	if (!path) {
4029		err = -ENOMEM;
4030		goto out;
4031	}
4032
4033	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4034					path);
4035	btrfs_free_path(path);
4036
4037	if (!IS_ERR(inode))
4038		ret = delete_block_group_cache(fs_info, inode, 0);
4039	else
4040		ret = PTR_ERR(inode);
4041
4042	if (ret && ret != -ENOENT) {
4043		err = ret;
4044		goto out;
4045	}
4046
4047	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4048	if (IS_ERR(rc->data_inode)) {
4049		err = PTR_ERR(rc->data_inode);
4050		rc->data_inode = NULL;
4051		goto out;
4052	}
4053
4054	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4055	       (unsigned long long)rc->block_group->key.objectid,
4056	       (unsigned long long)rc->block_group->flags);
4057
4058	btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
4059	btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
 
 
 
 
4060
4061	while (1) {
4062		mutex_lock(&fs_info->cleaner_mutex);
4063
4064		btrfs_clean_old_snapshots(fs_info->tree_root);
4065		ret = relocate_block_group(rc);
4066
4067		mutex_unlock(&fs_info->cleaner_mutex);
4068		if (ret < 0) {
4069			err = ret;
4070			goto out;
4071		}
4072
4073		if (rc->extents_found == 0)
4074			break;
4075
4076		printk(KERN_INFO "btrfs: found %llu extents\n",
4077			(unsigned long long)rc->extents_found);
4078
4079		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4080			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
 
 
 
 
 
4081			invalidate_mapping_pages(rc->data_inode->i_mapping,
4082						 0, -1);
4083			rc->stage = UPDATE_DATA_PTRS;
4084		}
4085	}
4086
4087	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4088				     rc->block_group->key.objectid,
4089				     rc->block_group->key.objectid +
4090				     rc->block_group->key.offset - 1);
4091
4092	WARN_ON(rc->block_group->pinned > 0);
4093	WARN_ON(rc->block_group->reserved > 0);
4094	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4095out:
4096	if (err && rw)
4097		btrfs_set_block_group_rw(extent_root, rc->block_group);
4098	iput(rc->data_inode);
4099	btrfs_put_block_group(rc->block_group);
4100	kfree(rc);
4101	return err;
4102}
4103
4104static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4105{
4106	struct btrfs_trans_handle *trans;
4107	int ret, err;
4108
4109	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4110	if (IS_ERR(trans))
4111		return PTR_ERR(trans);
4112
4113	memset(&root->root_item.drop_progress, 0,
4114		sizeof(root->root_item.drop_progress));
4115	root->root_item.drop_level = 0;
4116	btrfs_set_root_refs(&root->root_item, 0);
4117	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4118				&root->root_key, &root->root_item);
4119
4120	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4121	if (err)
4122		return err;
4123	return ret;
4124}
4125
4126/*
4127 * recover relocation interrupted by system crash.
4128 *
4129 * this function resumes merging reloc trees with corresponding fs trees.
4130 * this is important for keeping the sharing of tree blocks
4131 */
4132int btrfs_recover_relocation(struct btrfs_root *root)
4133{
4134	LIST_HEAD(reloc_roots);
4135	struct btrfs_key key;
4136	struct btrfs_root *fs_root;
4137	struct btrfs_root *reloc_root;
4138	struct btrfs_path *path;
4139	struct extent_buffer *leaf;
4140	struct reloc_control *rc = NULL;
4141	struct btrfs_trans_handle *trans;
4142	int ret;
4143	int err = 0;
4144
4145	path = btrfs_alloc_path();
4146	if (!path)
4147		return -ENOMEM;
4148	path->reada = -1;
4149
4150	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4151	key.type = BTRFS_ROOT_ITEM_KEY;
4152	key.offset = (u64)-1;
4153
4154	while (1) {
4155		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4156					path, 0, 0);
4157		if (ret < 0) {
4158			err = ret;
4159			goto out;
4160		}
4161		if (ret > 0) {
4162			if (path->slots[0] == 0)
4163				break;
4164			path->slots[0]--;
4165		}
4166		leaf = path->nodes[0];
4167		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4168		btrfs_release_path(path);
4169
4170		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4171		    key.type != BTRFS_ROOT_ITEM_KEY)
4172			break;
4173
4174		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4175		if (IS_ERR(reloc_root)) {
4176			err = PTR_ERR(reloc_root);
4177			goto out;
4178		}
4179
4180		list_add(&reloc_root->root_list, &reloc_roots);
4181
4182		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4183			fs_root = read_fs_root(root->fs_info,
4184					       reloc_root->root_key.offset);
4185			if (IS_ERR(fs_root)) {
4186				ret = PTR_ERR(fs_root);
4187				if (ret != -ENOENT) {
4188					err = ret;
4189					goto out;
4190				}
4191				ret = mark_garbage_root(reloc_root);
4192				if (ret < 0) {
4193					err = ret;
4194					goto out;
4195				}
4196			}
4197		}
4198
4199		if (key.offset == 0)
4200			break;
4201
4202		key.offset--;
4203	}
4204	btrfs_release_path(path);
4205
4206	if (list_empty(&reloc_roots))
4207		goto out;
4208
4209	rc = alloc_reloc_control();
4210	if (!rc) {
4211		err = -ENOMEM;
4212		goto out;
4213	}
4214
4215	rc->extent_root = root->fs_info->extent_root;
4216
4217	set_reloc_control(rc);
4218
4219	trans = btrfs_join_transaction(rc->extent_root);
4220	if (IS_ERR(trans)) {
4221		unset_reloc_control(rc);
4222		err = PTR_ERR(trans);
4223		goto out_free;
4224	}
4225
4226	rc->merge_reloc_tree = 1;
4227
4228	while (!list_empty(&reloc_roots)) {
4229		reloc_root = list_entry(reloc_roots.next,
4230					struct btrfs_root, root_list);
4231		list_del(&reloc_root->root_list);
4232
4233		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4234			list_add_tail(&reloc_root->root_list,
4235				      &rc->reloc_roots);
4236			continue;
4237		}
4238
4239		fs_root = read_fs_root(root->fs_info,
4240				       reloc_root->root_key.offset);
4241		if (IS_ERR(fs_root)) {
4242			err = PTR_ERR(fs_root);
4243			goto out_free;
4244		}
4245
4246		err = __add_reloc_root(reloc_root);
4247		BUG_ON(err < 0); /* -ENOMEM or logic error */
4248		fs_root->reloc_root = reloc_root;
4249	}
4250
4251	err = btrfs_commit_transaction(trans, rc->extent_root);
4252	if (err)
4253		goto out_free;
4254
4255	merge_reloc_roots(rc);
4256
4257	unset_reloc_control(rc);
4258
4259	trans = btrfs_join_transaction(rc->extent_root);
4260	if (IS_ERR(trans))
4261		err = PTR_ERR(trans);
4262	else
4263		err = btrfs_commit_transaction(trans, rc->extent_root);
4264out_free:
4265	kfree(rc);
4266out:
4267	while (!list_empty(&reloc_roots)) {
4268		reloc_root = list_entry(reloc_roots.next,
4269					struct btrfs_root, root_list);
4270		list_del(&reloc_root->root_list);
4271		free_extent_buffer(reloc_root->node);
4272		free_extent_buffer(reloc_root->commit_root);
4273		kfree(reloc_root);
4274	}
4275	btrfs_free_path(path);
4276
4277	if (err == 0) {
4278		/* cleanup orphan inode in data relocation tree */
4279		fs_root = read_fs_root(root->fs_info,
4280				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4281		if (IS_ERR(fs_root))
4282			err = PTR_ERR(fs_root);
4283		else
4284			err = btrfs_orphan_cleanup(fs_root);
4285	}
4286	return err;
4287}
4288
4289/*
4290 * helper to add ordered checksum for data relocation.
4291 *
4292 * cloning checksum properly handles the nodatasum extents.
4293 * it also saves CPU time to re-calculate the checksum.
4294 */
4295int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4296{
4297	struct btrfs_ordered_sum *sums;
4298	struct btrfs_sector_sum *sector_sum;
4299	struct btrfs_ordered_extent *ordered;
4300	struct btrfs_root *root = BTRFS_I(inode)->root;
4301	size_t offset;
4302	int ret;
4303	u64 disk_bytenr;
 
4304	LIST_HEAD(list);
4305
4306	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4307	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4308
4309	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4310	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4311				       disk_bytenr + len - 1, &list, 0);
4312	if (ret)
4313		goto out;
4314
4315	while (!list_empty(&list)) {
4316		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4317		list_del_init(&sums->list);
4318
4319		sector_sum = sums->sums;
4320		sums->bytenr = ordered->start;
4321
4322		offset = 0;
4323		while (offset < sums->len) {
4324			sector_sum->bytenr += ordered->start - disk_bytenr;
4325			sector_sum++;
4326			offset += root->sectorsize;
4327		}
 
 
 
 
 
4328
4329		btrfs_add_ordered_sum(inode, ordered, sums);
4330	}
4331out:
4332	btrfs_put_ordered_extent(ordered);
4333	return ret;
4334}
4335
4336void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4337			   struct btrfs_root *root, struct extent_buffer *buf,
4338			   struct extent_buffer *cow)
4339{
4340	struct reloc_control *rc;
4341	struct backref_node *node;
4342	int first_cow = 0;
4343	int level;
4344	int ret;
4345
4346	rc = root->fs_info->reloc_ctl;
4347	if (!rc)
4348		return;
4349
4350	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4351	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4352
 
 
 
 
 
4353	level = btrfs_header_level(buf);
4354	if (btrfs_header_generation(buf) <=
4355	    btrfs_root_last_snapshot(&root->root_item))
4356		first_cow = 1;
4357
4358	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4359	    rc->create_reloc_tree) {
4360		WARN_ON(!first_cow && level == 0);
4361
4362		node = rc->backref_cache.path[level];
4363		BUG_ON(node->bytenr != buf->start &&
4364		       node->new_bytenr != buf->start);
4365
4366		drop_node_buffer(node);
4367		extent_buffer_get(cow);
4368		node->eb = cow;
4369		node->new_bytenr = cow->start;
4370
4371		if (!node->pending) {
4372			list_move_tail(&node->list,
4373				       &rc->backref_cache.pending[level]);
4374			node->pending = 1;
4375		}
4376
4377		if (first_cow)
4378			__mark_block_processed(rc, node);
4379
4380		if (first_cow && level > 0)
4381			rc->nodes_relocated += buf->len;
4382	}
4383
4384	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4385		ret = replace_file_extents(trans, rc, root, cow);
4386		BUG_ON(ret);
4387	}
4388}
4389
4390/*
4391 * called before creating snapshot. it calculates metadata reservation
4392 * requried for relocating tree blocks in the snapshot
4393 */
4394void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4395			      struct btrfs_pending_snapshot *pending,
4396			      u64 *bytes_to_reserve)
4397{
4398	struct btrfs_root *root;
4399	struct reloc_control *rc;
4400
4401	root = pending->root;
4402	if (!root->reloc_root)
4403		return;
4404
4405	rc = root->fs_info->reloc_ctl;
4406	if (!rc->merge_reloc_tree)
4407		return;
4408
4409	root = root->reloc_root;
4410	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4411	/*
4412	 * relocation is in the stage of merging trees. the space
4413	 * used by merging a reloc tree is twice the size of
4414	 * relocated tree nodes in the worst case. half for cowing
4415	 * the reloc tree, half for cowing the fs tree. the space
4416	 * used by cowing the reloc tree will be freed after the
4417	 * tree is dropped. if we create snapshot, cowing the fs
4418	 * tree may use more space than it frees. so we need
4419	 * reserve extra space.
4420	 */
4421	*bytes_to_reserve += rc->nodes_relocated;
4422}
4423
4424/*
4425 * called after snapshot is created. migrate block reservation
4426 * and create reloc root for the newly created snapshot
4427 */
4428int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4429			       struct btrfs_pending_snapshot *pending)
4430{
4431	struct btrfs_root *root = pending->root;
4432	struct btrfs_root *reloc_root;
4433	struct btrfs_root *new_root;
4434	struct reloc_control *rc;
4435	int ret;
4436
4437	if (!root->reloc_root)
4438		return 0;
4439
4440	rc = root->fs_info->reloc_ctl;
4441	rc->merging_rsv_size += rc->nodes_relocated;
4442
4443	if (rc->merge_reloc_tree) {
4444		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4445					      rc->block_rsv,
4446					      rc->nodes_relocated);
4447		if (ret)
4448			return ret;
4449	}
4450
4451	new_root = pending->snap;
4452	reloc_root = create_reloc_root(trans, root->reloc_root,
4453				       new_root->root_key.objectid);
4454	if (IS_ERR(reloc_root))
4455		return PTR_ERR(reloc_root);
4456
4457	ret = __add_reloc_root(reloc_root);
4458	BUG_ON(ret < 0);
4459	new_root->reloc_root = reloc_root;
4460
4461	if (rc->create_reloc_tree)
4462		ret = clone_backref_node(trans, rc, root, reloc_root);
4463	return ret;
4464}
v3.15
   1/*
   2 * Copyright (C) 2009 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
  25#include "ctree.h"
  26#include "disk-io.h"
  27#include "transaction.h"
  28#include "volumes.h"
  29#include "locking.h"
  30#include "btrfs_inode.h"
  31#include "async-thread.h"
  32#include "free-space-cache.h"
  33#include "inode-map.h"
  34
  35/*
  36 * backref_node, mapping_node and tree_block start with this
  37 */
  38struct tree_entry {
  39	struct rb_node rb_node;
  40	u64 bytenr;
  41};
  42
  43/*
  44 * present a tree block in the backref cache
  45 */
  46struct backref_node {
  47	struct rb_node rb_node;
  48	u64 bytenr;
  49
  50	u64 new_bytenr;
  51	/* objectid of tree block owner, can be not uptodate */
  52	u64 owner;
  53	/* link to pending, changed or detached list */
  54	struct list_head list;
  55	/* list of upper level blocks reference this block */
  56	struct list_head upper;
  57	/* list of child blocks in the cache */
  58	struct list_head lower;
  59	/* NULL if this node is not tree root */
  60	struct btrfs_root *root;
  61	/* extent buffer got by COW the block */
  62	struct extent_buffer *eb;
  63	/* level of tree block */
  64	unsigned int level:8;
  65	/* is the block in non-reference counted tree */
  66	unsigned int cowonly:1;
  67	/* 1 if no child node in the cache */
  68	unsigned int lowest:1;
  69	/* is the extent buffer locked */
  70	unsigned int locked:1;
  71	/* has the block been processed */
  72	unsigned int processed:1;
  73	/* have backrefs of this block been checked */
  74	unsigned int checked:1;
  75	/*
  76	 * 1 if corresponding block has been cowed but some upper
  77	 * level block pointers may not point to the new location
  78	 */
  79	unsigned int pending:1;
  80	/*
  81	 * 1 if the backref node isn't connected to any other
  82	 * backref node.
  83	 */
  84	unsigned int detached:1;
  85};
  86
  87/*
  88 * present a block pointer in the backref cache
  89 */
  90struct backref_edge {
  91	struct list_head list[2];
  92	struct backref_node *node[2];
  93};
  94
  95#define LOWER	0
  96#define UPPER	1
  97#define RELOCATION_RESERVED_NODES	256
  98
  99struct backref_cache {
 100	/* red black tree of all backref nodes in the cache */
 101	struct rb_root rb_root;
 102	/* for passing backref nodes to btrfs_reloc_cow_block */
 103	struct backref_node *path[BTRFS_MAX_LEVEL];
 104	/*
 105	 * list of blocks that have been cowed but some block
 106	 * pointers in upper level blocks may not reflect the
 107	 * new location
 108	 */
 109	struct list_head pending[BTRFS_MAX_LEVEL];
 110	/* list of backref nodes with no child node */
 111	struct list_head leaves;
 112	/* list of blocks that have been cowed in current transaction */
 113	struct list_head changed;
 114	/* list of detached backref node. */
 115	struct list_head detached;
 116
 117	u64 last_trans;
 118
 119	int nr_nodes;
 120	int nr_edges;
 121};
 122
 123/*
 124 * map address of tree root to tree
 125 */
 126struct mapping_node {
 127	struct rb_node rb_node;
 128	u64 bytenr;
 129	void *data;
 130};
 131
 132struct mapping_tree {
 133	struct rb_root rb_root;
 134	spinlock_t lock;
 135};
 136
 137/*
 138 * present a tree block to process
 139 */
 140struct tree_block {
 141	struct rb_node rb_node;
 142	u64 bytenr;
 143	struct btrfs_key key;
 144	unsigned int level:8;
 145	unsigned int key_ready:1;
 146};
 147
 148#define MAX_EXTENTS 128
 149
 150struct file_extent_cluster {
 151	u64 start;
 152	u64 end;
 153	u64 boundary[MAX_EXTENTS];
 154	unsigned int nr;
 155};
 156
 157struct reloc_control {
 158	/* block group to relocate */
 159	struct btrfs_block_group_cache *block_group;
 160	/* extent tree */
 161	struct btrfs_root *extent_root;
 162	/* inode for moving data */
 163	struct inode *data_inode;
 164
 165	struct btrfs_block_rsv *block_rsv;
 166
 167	struct backref_cache backref_cache;
 168
 169	struct file_extent_cluster cluster;
 170	/* tree blocks have been processed */
 171	struct extent_io_tree processed_blocks;
 172	/* map start of tree root to corresponding reloc tree */
 173	struct mapping_tree reloc_root_tree;
 174	/* list of reloc trees */
 175	struct list_head reloc_roots;
 176	/* size of metadata reservation for merging reloc trees */
 177	u64 merging_rsv_size;
 178	/* size of relocated tree nodes */
 179	u64 nodes_relocated;
 180	/* reserved size for block group relocation*/
 181	u64 reserved_bytes;
 182
 183	u64 search_start;
 184	u64 extents_found;
 185
 186	unsigned int stage:8;
 187	unsigned int create_reloc_tree:1;
 188	unsigned int merge_reloc_tree:1;
 189	unsigned int found_file_extent:1;
 
 190};
 191
 192/* stages of data relocation */
 193#define MOVE_DATA_EXTENTS	0
 194#define UPDATE_DATA_PTRS	1
 195
 196static void remove_backref_node(struct backref_cache *cache,
 197				struct backref_node *node);
 198static void __mark_block_processed(struct reloc_control *rc,
 199				   struct backref_node *node);
 200
 201static void mapping_tree_init(struct mapping_tree *tree)
 202{
 203	tree->rb_root = RB_ROOT;
 204	spin_lock_init(&tree->lock);
 205}
 206
 207static void backref_cache_init(struct backref_cache *cache)
 208{
 209	int i;
 210	cache->rb_root = RB_ROOT;
 211	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 212		INIT_LIST_HEAD(&cache->pending[i]);
 213	INIT_LIST_HEAD(&cache->changed);
 214	INIT_LIST_HEAD(&cache->detached);
 215	INIT_LIST_HEAD(&cache->leaves);
 216}
 217
 218static void backref_cache_cleanup(struct backref_cache *cache)
 219{
 220	struct backref_node *node;
 221	int i;
 222
 223	while (!list_empty(&cache->detached)) {
 224		node = list_entry(cache->detached.next,
 225				  struct backref_node, list);
 226		remove_backref_node(cache, node);
 227	}
 228
 229	while (!list_empty(&cache->leaves)) {
 230		node = list_entry(cache->leaves.next,
 231				  struct backref_node, lower);
 232		remove_backref_node(cache, node);
 233	}
 234
 235	cache->last_trans = 0;
 236
 237	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
 238		BUG_ON(!list_empty(&cache->pending[i]));
 239	BUG_ON(!list_empty(&cache->changed));
 240	BUG_ON(!list_empty(&cache->detached));
 241	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
 242	BUG_ON(cache->nr_nodes);
 243	BUG_ON(cache->nr_edges);
 244}
 245
 246static struct backref_node *alloc_backref_node(struct backref_cache *cache)
 247{
 248	struct backref_node *node;
 249
 250	node = kzalloc(sizeof(*node), GFP_NOFS);
 251	if (node) {
 252		INIT_LIST_HEAD(&node->list);
 253		INIT_LIST_HEAD(&node->upper);
 254		INIT_LIST_HEAD(&node->lower);
 255		RB_CLEAR_NODE(&node->rb_node);
 256		cache->nr_nodes++;
 257	}
 258	return node;
 259}
 260
 261static void free_backref_node(struct backref_cache *cache,
 262			      struct backref_node *node)
 263{
 264	if (node) {
 265		cache->nr_nodes--;
 266		kfree(node);
 267	}
 268}
 269
 270static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
 271{
 272	struct backref_edge *edge;
 273
 274	edge = kzalloc(sizeof(*edge), GFP_NOFS);
 275	if (edge)
 276		cache->nr_edges++;
 277	return edge;
 278}
 279
 280static void free_backref_edge(struct backref_cache *cache,
 281			      struct backref_edge *edge)
 282{
 283	if (edge) {
 284		cache->nr_edges--;
 285		kfree(edge);
 286	}
 287}
 288
 289static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
 290				   struct rb_node *node)
 291{
 292	struct rb_node **p = &root->rb_node;
 293	struct rb_node *parent = NULL;
 294	struct tree_entry *entry;
 295
 296	while (*p) {
 297		parent = *p;
 298		entry = rb_entry(parent, struct tree_entry, rb_node);
 299
 300		if (bytenr < entry->bytenr)
 301			p = &(*p)->rb_left;
 302		else if (bytenr > entry->bytenr)
 303			p = &(*p)->rb_right;
 304		else
 305			return parent;
 306	}
 307
 308	rb_link_node(node, parent, p);
 309	rb_insert_color(node, root);
 310	return NULL;
 311}
 312
 313static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
 314{
 315	struct rb_node *n = root->rb_node;
 316	struct tree_entry *entry;
 317
 318	while (n) {
 319		entry = rb_entry(n, struct tree_entry, rb_node);
 320
 321		if (bytenr < entry->bytenr)
 322			n = n->rb_left;
 323		else if (bytenr > entry->bytenr)
 324			n = n->rb_right;
 325		else
 326			return n;
 327	}
 328	return NULL;
 329}
 330
 331static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
 
 332{
 333
 334	struct btrfs_fs_info *fs_info = NULL;
 335	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
 336					      rb_node);
 337	if (bnode->root)
 338		fs_info = bnode->root->fs_info;
 339	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
 340		    "found at offset %llu\n", bytenr);
 341}
 342
 343/*
 344 * walk up backref nodes until reach node presents tree root
 345 */
 346static struct backref_node *walk_up_backref(struct backref_node *node,
 347					    struct backref_edge *edges[],
 348					    int *index)
 349{
 350	struct backref_edge *edge;
 351	int idx = *index;
 352
 353	while (!list_empty(&node->upper)) {
 354		edge = list_entry(node->upper.next,
 355				  struct backref_edge, list[LOWER]);
 356		edges[idx++] = edge;
 357		node = edge->node[UPPER];
 358	}
 359	BUG_ON(node->detached);
 360	*index = idx;
 361	return node;
 362}
 363
 364/*
 365 * walk down backref nodes to find start of next reference path
 366 */
 367static struct backref_node *walk_down_backref(struct backref_edge *edges[],
 368					      int *index)
 369{
 370	struct backref_edge *edge;
 371	struct backref_node *lower;
 372	int idx = *index;
 373
 374	while (idx > 0) {
 375		edge = edges[idx - 1];
 376		lower = edge->node[LOWER];
 377		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
 378			idx--;
 379			continue;
 380		}
 381		edge = list_entry(edge->list[LOWER].next,
 382				  struct backref_edge, list[LOWER]);
 383		edges[idx - 1] = edge;
 384		*index = idx;
 385		return edge->node[UPPER];
 386	}
 387	*index = 0;
 388	return NULL;
 389}
 390
 391static void unlock_node_buffer(struct backref_node *node)
 392{
 393	if (node->locked) {
 394		btrfs_tree_unlock(node->eb);
 395		node->locked = 0;
 396	}
 397}
 398
 399static void drop_node_buffer(struct backref_node *node)
 400{
 401	if (node->eb) {
 402		unlock_node_buffer(node);
 403		free_extent_buffer(node->eb);
 404		node->eb = NULL;
 405	}
 406}
 407
 408static void drop_backref_node(struct backref_cache *tree,
 409			      struct backref_node *node)
 410{
 411	BUG_ON(!list_empty(&node->upper));
 412
 413	drop_node_buffer(node);
 414	list_del(&node->list);
 415	list_del(&node->lower);
 416	if (!RB_EMPTY_NODE(&node->rb_node))
 417		rb_erase(&node->rb_node, &tree->rb_root);
 418	free_backref_node(tree, node);
 419}
 420
 421/*
 422 * remove a backref node from the backref cache
 423 */
 424static void remove_backref_node(struct backref_cache *cache,
 425				struct backref_node *node)
 426{
 427	struct backref_node *upper;
 428	struct backref_edge *edge;
 429
 430	if (!node)
 431		return;
 432
 433	BUG_ON(!node->lowest && !node->detached);
 434	while (!list_empty(&node->upper)) {
 435		edge = list_entry(node->upper.next, struct backref_edge,
 436				  list[LOWER]);
 437		upper = edge->node[UPPER];
 438		list_del(&edge->list[LOWER]);
 439		list_del(&edge->list[UPPER]);
 440		free_backref_edge(cache, edge);
 441
 442		if (RB_EMPTY_NODE(&upper->rb_node)) {
 443			BUG_ON(!list_empty(&node->upper));
 444			drop_backref_node(cache, node);
 445			node = upper;
 446			node->lowest = 1;
 447			continue;
 448		}
 449		/*
 450		 * add the node to leaf node list if no other
 451		 * child block cached.
 452		 */
 453		if (list_empty(&upper->lower)) {
 454			list_add_tail(&upper->lower, &cache->leaves);
 455			upper->lowest = 1;
 456		}
 457	}
 458
 459	drop_backref_node(cache, node);
 460}
 461
 462static void update_backref_node(struct backref_cache *cache,
 463				struct backref_node *node, u64 bytenr)
 464{
 465	struct rb_node *rb_node;
 466	rb_erase(&node->rb_node, &cache->rb_root);
 467	node->bytenr = bytenr;
 468	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
 469	if (rb_node)
 470		backref_tree_panic(rb_node, -EEXIST, bytenr);
 471}
 472
 473/*
 474 * update backref cache after a transaction commit
 475 */
 476static int update_backref_cache(struct btrfs_trans_handle *trans,
 477				struct backref_cache *cache)
 478{
 479	struct backref_node *node;
 480	int level = 0;
 481
 482	if (cache->last_trans == 0) {
 483		cache->last_trans = trans->transid;
 484		return 0;
 485	}
 486
 487	if (cache->last_trans == trans->transid)
 488		return 0;
 489
 490	/*
 491	 * detached nodes are used to avoid unnecessary backref
 492	 * lookup. transaction commit changes the extent tree.
 493	 * so the detached nodes are no longer useful.
 494	 */
 495	while (!list_empty(&cache->detached)) {
 496		node = list_entry(cache->detached.next,
 497				  struct backref_node, list);
 498		remove_backref_node(cache, node);
 499	}
 500
 501	while (!list_empty(&cache->changed)) {
 502		node = list_entry(cache->changed.next,
 503				  struct backref_node, list);
 504		list_del_init(&node->list);
 505		BUG_ON(node->pending);
 506		update_backref_node(cache, node, node->new_bytenr);
 507	}
 508
 509	/*
 510	 * some nodes can be left in the pending list if there were
 511	 * errors during processing the pending nodes.
 512	 */
 513	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
 514		list_for_each_entry(node, &cache->pending[level], list) {
 515			BUG_ON(!node->pending);
 516			if (node->bytenr == node->new_bytenr)
 517				continue;
 518			update_backref_node(cache, node, node->new_bytenr);
 519		}
 520	}
 521
 522	cache->last_trans = 0;
 523	return 1;
 524}
 525
 526
 527static int should_ignore_root(struct btrfs_root *root)
 528{
 529	struct btrfs_root *reloc_root;
 530
 531	if (!root->ref_cows)
 532		return 0;
 533
 534	reloc_root = root->reloc_root;
 535	if (!reloc_root)
 536		return 0;
 537
 538	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
 539	    root->fs_info->running_transaction->transid - 1)
 540		return 0;
 541	/*
 542	 * if there is reloc tree and it was created in previous
 543	 * transaction backref lookup can find the reloc tree,
 544	 * so backref node for the fs tree root is useless for
 545	 * relocation.
 546	 */
 547	return 1;
 548}
 549/*
 550 * find reloc tree by address of tree root
 551 */
 552static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
 553					  u64 bytenr)
 554{
 555	struct rb_node *rb_node;
 556	struct mapping_node *node;
 557	struct btrfs_root *root = NULL;
 558
 559	spin_lock(&rc->reloc_root_tree.lock);
 560	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
 561	if (rb_node) {
 562		node = rb_entry(rb_node, struct mapping_node, rb_node);
 563		root = (struct btrfs_root *)node->data;
 564	}
 565	spin_unlock(&rc->reloc_root_tree.lock);
 566	return root;
 567}
 568
 569static int is_cowonly_root(u64 root_objectid)
 570{
 571	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
 572	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
 573	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
 574	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
 575	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
 576	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
 577	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
 578	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID)
 579		return 1;
 580	return 0;
 581}
 582
 583static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
 584					u64 root_objectid)
 585{
 586	struct btrfs_key key;
 587
 588	key.objectid = root_objectid;
 589	key.type = BTRFS_ROOT_ITEM_KEY;
 590	if (is_cowonly_root(root_objectid))
 591		key.offset = 0;
 592	else
 593		key.offset = (u64)-1;
 594
 595	return btrfs_get_fs_root(fs_info, &key, false);
 596}
 597
 598#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 599static noinline_for_stack
 600struct btrfs_root *find_tree_root(struct reloc_control *rc,
 601				  struct extent_buffer *leaf,
 602				  struct btrfs_extent_ref_v0 *ref0)
 603{
 604	struct btrfs_root *root;
 605	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
 606	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
 607
 608	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
 609
 610	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
 611	BUG_ON(IS_ERR(root));
 612
 613	if (root->ref_cows &&
 614	    generation != btrfs_root_generation(&root->root_item))
 615		return NULL;
 616
 617	return root;
 618}
 619#endif
 620
 621static noinline_for_stack
 622int find_inline_backref(struct extent_buffer *leaf, int slot,
 623			unsigned long *ptr, unsigned long *end)
 624{
 625	struct btrfs_key key;
 626	struct btrfs_extent_item *ei;
 627	struct btrfs_tree_block_info *bi;
 628	u32 item_size;
 629
 630	btrfs_item_key_to_cpu(leaf, &key, slot);
 631
 632	item_size = btrfs_item_size_nr(leaf, slot);
 633#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 634	if (item_size < sizeof(*ei)) {
 635		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
 636		return 1;
 637	}
 638#endif
 639	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 640	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
 641		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
 642
 643	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
 644	    item_size <= sizeof(*ei) + sizeof(*bi)) {
 645		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
 646		return 1;
 647	}
 648	if (key.type == BTRFS_METADATA_ITEM_KEY &&
 649	    item_size <= sizeof(*ei)) {
 650		WARN_ON(item_size < sizeof(*ei));
 651		return 1;
 652	}
 653
 654	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
 655		bi = (struct btrfs_tree_block_info *)(ei + 1);
 656		*ptr = (unsigned long)(bi + 1);
 657	} else {
 658		*ptr = (unsigned long)(ei + 1);
 659	}
 660	*end = (unsigned long)ei + item_size;
 661	return 0;
 662}
 663
 664/*
 665 * build backref tree for a given tree block. root of the backref tree
 666 * corresponds the tree block, leaves of the backref tree correspond
 667 * roots of b-trees that reference the tree block.
 668 *
 669 * the basic idea of this function is check backrefs of a given block
 670 * to find upper level blocks that refernece the block, and then check
 671 * bakcrefs of these upper level blocks recursively. the recursion stop
 672 * when tree root is reached or backrefs for the block is cached.
 673 *
 674 * NOTE: if we find backrefs for a block are cached, we know backrefs
 675 * for all upper level blocks that directly/indirectly reference the
 676 * block are also cached.
 677 */
 678static noinline_for_stack
 679struct backref_node *build_backref_tree(struct reloc_control *rc,
 680					struct btrfs_key *node_key,
 681					int level, u64 bytenr)
 682{
 683	struct backref_cache *cache = &rc->backref_cache;
 684	struct btrfs_path *path1;
 685	struct btrfs_path *path2;
 686	struct extent_buffer *eb;
 687	struct btrfs_root *root;
 688	struct backref_node *cur;
 689	struct backref_node *upper;
 690	struct backref_node *lower;
 691	struct backref_node *node = NULL;
 692	struct backref_node *exist = NULL;
 693	struct backref_edge *edge;
 694	struct rb_node *rb_node;
 695	struct btrfs_key key;
 696	unsigned long end;
 697	unsigned long ptr;
 698	LIST_HEAD(list);
 699	LIST_HEAD(useless);
 700	int cowonly;
 701	int ret;
 702	int err = 0;
 703	bool need_check = true;
 704
 705	path1 = btrfs_alloc_path();
 706	path2 = btrfs_alloc_path();
 707	if (!path1 || !path2) {
 708		err = -ENOMEM;
 709		goto out;
 710	}
 711	path1->reada = 1;
 712	path2->reada = 2;
 713
 714	node = alloc_backref_node(cache);
 715	if (!node) {
 716		err = -ENOMEM;
 717		goto out;
 718	}
 719
 720	node->bytenr = bytenr;
 721	node->level = level;
 722	node->lowest = 1;
 723	cur = node;
 724again:
 725	end = 0;
 726	ptr = 0;
 727	key.objectid = cur->bytenr;
 728	key.type = BTRFS_METADATA_ITEM_KEY;
 729	key.offset = (u64)-1;
 730
 731	path1->search_commit_root = 1;
 732	path1->skip_locking = 1;
 733	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
 734				0, 0);
 735	if (ret < 0) {
 736		err = ret;
 737		goto out;
 738	}
 739	BUG_ON(!ret || !path1->slots[0]);
 740
 741	path1->slots[0]--;
 742
 743	WARN_ON(cur->checked);
 744	if (!list_empty(&cur->upper)) {
 745		/*
 746		 * the backref was added previously when processing
 747		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
 748		 */
 749		BUG_ON(!list_is_singular(&cur->upper));
 750		edge = list_entry(cur->upper.next, struct backref_edge,
 751				  list[LOWER]);
 752		BUG_ON(!list_empty(&edge->list[UPPER]));
 753		exist = edge->node[UPPER];
 754		/*
 755		 * add the upper level block to pending list if we need
 756		 * check its backrefs
 757		 */
 758		if (!exist->checked)
 759			list_add_tail(&edge->list[UPPER], &list);
 760	} else {
 761		exist = NULL;
 762	}
 763
 764	while (1) {
 765		cond_resched();
 766		eb = path1->nodes[0];
 767
 768		if (ptr >= end) {
 769			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
 770				ret = btrfs_next_leaf(rc->extent_root, path1);
 771				if (ret < 0) {
 772					err = ret;
 773					goto out;
 774				}
 775				if (ret > 0)
 776					break;
 777				eb = path1->nodes[0];
 778			}
 779
 780			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
 781			if (key.objectid != cur->bytenr) {
 782				WARN_ON(exist);
 783				break;
 784			}
 785
 786			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 787			    key.type == BTRFS_METADATA_ITEM_KEY) {
 788				ret = find_inline_backref(eb, path1->slots[0],
 789							  &ptr, &end);
 790				if (ret)
 791					goto next;
 792			}
 793		}
 794
 795		if (ptr < end) {
 796			/* update key for inline back ref */
 797			struct btrfs_extent_inline_ref *iref;
 798			iref = (struct btrfs_extent_inline_ref *)ptr;
 799			key.type = btrfs_extent_inline_ref_type(eb, iref);
 800			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
 801			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
 802				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
 803		}
 804
 805		if (exist &&
 806		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
 807		      exist->owner == key.offset) ||
 808		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
 809		      exist->bytenr == key.offset))) {
 810			exist = NULL;
 811			goto next;
 812		}
 813
 814#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 815		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
 816		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
 817			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
 818				struct btrfs_extent_ref_v0 *ref0;
 819				ref0 = btrfs_item_ptr(eb, path1->slots[0],
 820						struct btrfs_extent_ref_v0);
 821				if (key.objectid == key.offset) {
 822					root = find_tree_root(rc, eb, ref0);
 823					if (root && !should_ignore_root(root))
 824						cur->root = root;
 825					else
 826						list_add(&cur->list, &useless);
 827					break;
 828				}
 829				if (is_cowonly_root(btrfs_ref_root_v0(eb,
 830								      ref0)))
 831					cur->cowonly = 1;
 832			}
 833#else
 834		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
 835		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
 836#endif
 837			if (key.objectid == key.offset) {
 838				/*
 839				 * only root blocks of reloc trees use
 840				 * backref of this type.
 841				 */
 842				root = find_reloc_root(rc, cur->bytenr);
 843				BUG_ON(!root);
 844				cur->root = root;
 845				break;
 846			}
 847
 848			edge = alloc_backref_edge(cache);
 849			if (!edge) {
 850				err = -ENOMEM;
 851				goto out;
 852			}
 853			rb_node = tree_search(&cache->rb_root, key.offset);
 854			if (!rb_node) {
 855				upper = alloc_backref_node(cache);
 856				if (!upper) {
 857					free_backref_edge(cache, edge);
 858					err = -ENOMEM;
 859					goto out;
 860				}
 861				upper->bytenr = key.offset;
 862				upper->level = cur->level + 1;
 863				/*
 864				 *  backrefs for the upper level block isn't
 865				 *  cached, add the block to pending list
 866				 */
 867				list_add_tail(&edge->list[UPPER], &list);
 868			} else {
 869				upper = rb_entry(rb_node, struct backref_node,
 870						 rb_node);
 871				BUG_ON(!upper->checked);
 872				INIT_LIST_HEAD(&edge->list[UPPER]);
 873			}
 874			list_add_tail(&edge->list[LOWER], &cur->upper);
 875			edge->node[LOWER] = cur;
 876			edge->node[UPPER] = upper;
 877
 878			goto next;
 879		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
 880			goto next;
 881		}
 882
 883		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
 884		root = read_fs_root(rc->extent_root->fs_info, key.offset);
 885		if (IS_ERR(root)) {
 886			err = PTR_ERR(root);
 887			goto out;
 888		}
 889
 890		if (!root->ref_cows)
 891			cur->cowonly = 1;
 892
 893		if (btrfs_root_level(&root->root_item) == cur->level) {
 894			/* tree root */
 895			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 896			       cur->bytenr);
 897			if (should_ignore_root(root))
 898				list_add(&cur->list, &useless);
 899			else
 900				cur->root = root;
 901			break;
 902		}
 903
 904		level = cur->level + 1;
 905
 906		/*
 907		 * searching the tree to find upper level blocks
 908		 * reference the block.
 909		 */
 910		path2->search_commit_root = 1;
 911		path2->skip_locking = 1;
 912		path2->lowest_level = level;
 913		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
 914		path2->lowest_level = 0;
 915		if (ret < 0) {
 916			err = ret;
 917			goto out;
 918		}
 919		if (ret > 0 && path2->slots[level] > 0)
 920			path2->slots[level]--;
 921
 922		eb = path2->nodes[level];
 923		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
 924			cur->bytenr);
 925
 926		lower = cur;
 927		need_check = true;
 928		for (; level < BTRFS_MAX_LEVEL; level++) {
 929			if (!path2->nodes[level]) {
 930				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
 931				       lower->bytenr);
 932				if (should_ignore_root(root))
 933					list_add(&lower->list, &useless);
 934				else
 935					lower->root = root;
 936				break;
 937			}
 938
 939			edge = alloc_backref_edge(cache);
 940			if (!edge) {
 941				err = -ENOMEM;
 942				goto out;
 943			}
 944
 945			eb = path2->nodes[level];
 946			rb_node = tree_search(&cache->rb_root, eb->start);
 947			if (!rb_node) {
 948				upper = alloc_backref_node(cache);
 949				if (!upper) {
 950					free_backref_edge(cache, edge);
 951					err = -ENOMEM;
 952					goto out;
 953				}
 954				upper->bytenr = eb->start;
 955				upper->owner = btrfs_header_owner(eb);
 956				upper->level = lower->level + 1;
 957				if (!root->ref_cows)
 958					upper->cowonly = 1;
 959
 960				/*
 961				 * if we know the block isn't shared
 962				 * we can void checking its backrefs.
 963				 */
 964				if (btrfs_block_can_be_shared(root, eb))
 965					upper->checked = 0;
 966				else
 967					upper->checked = 1;
 968
 969				/*
 970				 * add the block to pending list if we
 971				 * need check its backrefs, we only do this once
 972				 * while walking up a tree as we will catch
 973				 * anything else later on.
 
 
 974				 */
 975				if (!upper->checked && need_check) {
 976					need_check = false;
 977					list_add_tail(&edge->list[UPPER],
 978						      &list);
 979				} else
 980					INIT_LIST_HEAD(&edge->list[UPPER]);
 981			} else {
 982				upper = rb_entry(rb_node, struct backref_node,
 983						 rb_node);
 984				BUG_ON(!upper->checked);
 985				INIT_LIST_HEAD(&edge->list[UPPER]);
 986				if (!upper->owner)
 987					upper->owner = btrfs_header_owner(eb);
 988			}
 989			list_add_tail(&edge->list[LOWER], &lower->upper);
 990			edge->node[LOWER] = lower;
 991			edge->node[UPPER] = upper;
 992
 993			if (rb_node)
 994				break;
 995			lower = upper;
 996			upper = NULL;
 997		}
 998		btrfs_release_path(path2);
 999next:
1000		if (ptr < end) {
1001			ptr += btrfs_extent_inline_ref_size(key.type);
1002			if (ptr >= end) {
1003				WARN_ON(ptr > end);
1004				ptr = 0;
1005				end = 0;
1006			}
1007		}
1008		if (ptr >= end)
1009			path1->slots[0]++;
1010	}
1011	btrfs_release_path(path1);
1012
1013	cur->checked = 1;
1014	WARN_ON(exist);
1015
1016	/* the pending list isn't empty, take the first block to process */
1017	if (!list_empty(&list)) {
1018		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1019		list_del_init(&edge->list[UPPER]);
1020		cur = edge->node[UPPER];
1021		goto again;
1022	}
1023
1024	/*
1025	 * everything goes well, connect backref nodes and insert backref nodes
1026	 * into the cache.
1027	 */
1028	BUG_ON(!node->checked);
1029	cowonly = node->cowonly;
1030	if (!cowonly) {
1031		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1032				      &node->rb_node);
1033		if (rb_node)
1034			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1035		list_add_tail(&node->lower, &cache->leaves);
1036	}
1037
1038	list_for_each_entry(edge, &node->upper, list[LOWER])
1039		list_add_tail(&edge->list[UPPER], &list);
1040
1041	while (!list_empty(&list)) {
1042		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1043		list_del_init(&edge->list[UPPER]);
1044		upper = edge->node[UPPER];
1045		if (upper->detached) {
1046			list_del(&edge->list[LOWER]);
1047			lower = edge->node[LOWER];
1048			free_backref_edge(cache, edge);
1049			if (list_empty(&lower->upper))
1050				list_add(&lower->list, &useless);
1051			continue;
1052		}
1053
1054		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1055			if (upper->lowest) {
1056				list_del_init(&upper->lower);
1057				upper->lowest = 0;
1058			}
1059
1060			list_add_tail(&edge->list[UPPER], &upper->lower);
1061			continue;
1062		}
1063
1064		BUG_ON(!upper->checked);
1065		BUG_ON(cowonly != upper->cowonly);
1066		if (!cowonly) {
1067			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1068					      &upper->rb_node);
1069			if (rb_node)
1070				backref_tree_panic(rb_node, -EEXIST,
1071						   upper->bytenr);
1072		}
1073
1074		list_add_tail(&edge->list[UPPER], &upper->lower);
1075
1076		list_for_each_entry(edge, &upper->upper, list[LOWER])
1077			list_add_tail(&edge->list[UPPER], &list);
1078	}
1079	/*
1080	 * process useless backref nodes. backref nodes for tree leaves
1081	 * are deleted from the cache. backref nodes for upper level
1082	 * tree blocks are left in the cache to avoid unnecessary backref
1083	 * lookup.
1084	 */
1085	while (!list_empty(&useless)) {
1086		upper = list_entry(useless.next, struct backref_node, list);
1087		list_del_init(&upper->list);
1088		BUG_ON(!list_empty(&upper->upper));
1089		if (upper == node)
1090			node = NULL;
1091		if (upper->lowest) {
1092			list_del_init(&upper->lower);
1093			upper->lowest = 0;
1094		}
1095		while (!list_empty(&upper->lower)) {
1096			edge = list_entry(upper->lower.next,
1097					  struct backref_edge, list[UPPER]);
1098			list_del(&edge->list[UPPER]);
1099			list_del(&edge->list[LOWER]);
1100			lower = edge->node[LOWER];
1101			free_backref_edge(cache, edge);
1102
1103			if (list_empty(&lower->upper))
1104				list_add(&lower->list, &useless);
1105		}
1106		__mark_block_processed(rc, upper);
1107		if (upper->level > 0) {
1108			list_add(&upper->list, &cache->detached);
1109			upper->detached = 1;
1110		} else {
1111			rb_erase(&upper->rb_node, &cache->rb_root);
1112			free_backref_node(cache, upper);
1113		}
1114	}
1115out:
1116	btrfs_free_path(path1);
1117	btrfs_free_path(path2);
1118	if (err) {
1119		while (!list_empty(&useless)) {
1120			lower = list_entry(useless.next,
1121					   struct backref_node, upper);
1122			list_del_init(&lower->upper);
1123		}
1124		upper = node;
1125		INIT_LIST_HEAD(&list);
1126		while (upper) {
1127			if (RB_EMPTY_NODE(&upper->rb_node)) {
1128				list_splice_tail(&upper->upper, &list);
1129				free_backref_node(cache, upper);
1130			}
1131
1132			if (list_empty(&list))
1133				break;
1134
1135			edge = list_entry(list.next, struct backref_edge,
1136					  list[LOWER]);
1137			list_del(&edge->list[LOWER]);
1138			upper = edge->node[UPPER];
1139			free_backref_edge(cache, edge);
1140		}
1141		return ERR_PTR(err);
1142	}
1143	BUG_ON(node && node->detached);
1144	return node;
1145}
1146
1147/*
1148 * helper to add backref node for the newly created snapshot.
1149 * the backref node is created by cloning backref node that
1150 * corresponds to root of source tree
1151 */
1152static int clone_backref_node(struct btrfs_trans_handle *trans,
1153			      struct reloc_control *rc,
1154			      struct btrfs_root *src,
1155			      struct btrfs_root *dest)
1156{
1157	struct btrfs_root *reloc_root = src->reloc_root;
1158	struct backref_cache *cache = &rc->backref_cache;
1159	struct backref_node *node = NULL;
1160	struct backref_node *new_node;
1161	struct backref_edge *edge;
1162	struct backref_edge *new_edge;
1163	struct rb_node *rb_node;
1164
1165	if (cache->last_trans > 0)
1166		update_backref_cache(trans, cache);
1167
1168	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1169	if (rb_node) {
1170		node = rb_entry(rb_node, struct backref_node, rb_node);
1171		if (node->detached)
1172			node = NULL;
1173		else
1174			BUG_ON(node->new_bytenr != reloc_root->node->start);
1175	}
1176
1177	if (!node) {
1178		rb_node = tree_search(&cache->rb_root,
1179				      reloc_root->commit_root->start);
1180		if (rb_node) {
1181			node = rb_entry(rb_node, struct backref_node,
1182					rb_node);
1183			BUG_ON(node->detached);
1184		}
1185	}
1186
1187	if (!node)
1188		return 0;
1189
1190	new_node = alloc_backref_node(cache);
1191	if (!new_node)
1192		return -ENOMEM;
1193
1194	new_node->bytenr = dest->node->start;
1195	new_node->level = node->level;
1196	new_node->lowest = node->lowest;
1197	new_node->checked = 1;
1198	new_node->root = dest;
1199
1200	if (!node->lowest) {
1201		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1202			new_edge = alloc_backref_edge(cache);
1203			if (!new_edge)
1204				goto fail;
1205
1206			new_edge->node[UPPER] = new_node;
1207			new_edge->node[LOWER] = edge->node[LOWER];
1208			list_add_tail(&new_edge->list[UPPER],
1209				      &new_node->lower);
1210		}
1211	} else {
1212		list_add_tail(&new_node->lower, &cache->leaves);
1213	}
1214
1215	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1216			      &new_node->rb_node);
1217	if (rb_node)
1218		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1219
1220	if (!new_node->lowest) {
1221		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1222			list_add_tail(&new_edge->list[LOWER],
1223				      &new_edge->node[LOWER]->upper);
1224		}
1225	}
1226	return 0;
1227fail:
1228	while (!list_empty(&new_node->lower)) {
1229		new_edge = list_entry(new_node->lower.next,
1230				      struct backref_edge, list[UPPER]);
1231		list_del(&new_edge->list[UPPER]);
1232		free_backref_edge(cache, new_edge);
1233	}
1234	free_backref_node(cache, new_node);
1235	return -ENOMEM;
1236}
1237
1238/*
1239 * helper to add 'address of tree root -> reloc tree' mapping
1240 */
1241static int __must_check __add_reloc_root(struct btrfs_root *root)
1242{
1243	struct rb_node *rb_node;
1244	struct mapping_node *node;
1245	struct reloc_control *rc = root->fs_info->reloc_ctl;
1246
1247	node = kmalloc(sizeof(*node), GFP_NOFS);
1248	if (!node)
1249		return -ENOMEM;
1250
1251	node->bytenr = root->node->start;
1252	node->data = root;
1253
1254	spin_lock(&rc->reloc_root_tree.lock);
1255	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1256			      node->bytenr, &node->rb_node);
1257	spin_unlock(&rc->reloc_root_tree.lock);
1258	if (rb_node) {
 
1259		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1260			    "for start=%llu while inserting into relocation "
1261			    "tree\n", node->bytenr);
1262		kfree(node);
1263		return -EEXIST;
1264	}
1265
1266	list_add_tail(&root->root_list, &rc->reloc_roots);
1267	return 0;
1268}
1269
1270/*
1271 * helper to delete the 'address of tree root -> reloc tree'
1272 * mapping
1273 */
1274static void __del_reloc_root(struct btrfs_root *root)
1275{
1276	struct rb_node *rb_node;
1277	struct mapping_node *node = NULL;
1278	struct reloc_control *rc = root->fs_info->reloc_ctl;
1279
1280	spin_lock(&rc->reloc_root_tree.lock);
1281	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1282			      root->node->start);
1283	if (rb_node) {
1284		node = rb_entry(rb_node, struct mapping_node, rb_node);
1285		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1286	}
1287	spin_unlock(&rc->reloc_root_tree.lock);
1288
1289	if (!node)
1290		return;
1291	BUG_ON((struct btrfs_root *)node->data != root);
1292
1293	spin_lock(&root->fs_info->trans_lock);
1294	list_del_init(&root->root_list);
1295	spin_unlock(&root->fs_info->trans_lock);
1296	kfree(node);
1297}
1298
1299/*
1300 * helper to update the 'address of tree root -> reloc tree'
1301 * mapping
1302 */
1303static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1304{
1305	struct rb_node *rb_node;
1306	struct mapping_node *node = NULL;
1307	struct reloc_control *rc = root->fs_info->reloc_ctl;
1308
1309	spin_lock(&rc->reloc_root_tree.lock);
1310	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1311			      root->node->start);
1312	if (rb_node) {
1313		node = rb_entry(rb_node, struct mapping_node, rb_node);
1314		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1315	}
1316	spin_unlock(&rc->reloc_root_tree.lock);
1317
1318	if (!node)
1319		return 0;
1320	BUG_ON((struct btrfs_root *)node->data != root);
1321
1322	spin_lock(&rc->reloc_root_tree.lock);
1323	node->bytenr = new_bytenr;
1324	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1325			      node->bytenr, &node->rb_node);
1326	spin_unlock(&rc->reloc_root_tree.lock);
1327	if (rb_node)
1328		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1329	return 0;
1330}
1331
1332static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1333					struct btrfs_root *root, u64 objectid)
1334{
1335	struct btrfs_root *reloc_root;
1336	struct extent_buffer *eb;
1337	struct btrfs_root_item *root_item;
1338	struct btrfs_key root_key;
1339	u64 last_snap = 0;
1340	int ret;
1341
1342	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1343	BUG_ON(!root_item);
1344
1345	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1346	root_key.type = BTRFS_ROOT_ITEM_KEY;
1347	root_key.offset = objectid;
1348
1349	if (root->root_key.objectid == objectid) {
1350		/* called by btrfs_init_reloc_root */
1351		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1352				      BTRFS_TREE_RELOC_OBJECTID);
1353		BUG_ON(ret);
1354
1355		last_snap = btrfs_root_last_snapshot(&root->root_item);
1356		btrfs_set_root_last_snapshot(&root->root_item,
1357					     trans->transid - 1);
1358	} else {
1359		/*
1360		 * called by btrfs_reloc_post_snapshot_hook.
1361		 * the source tree is a reloc tree, all tree blocks
1362		 * modified after it was created have RELOC flag
1363		 * set in their headers. so it's OK to not update
1364		 * the 'last_snapshot'.
1365		 */
1366		ret = btrfs_copy_root(trans, root, root->node, &eb,
1367				      BTRFS_TREE_RELOC_OBJECTID);
1368		BUG_ON(ret);
1369	}
1370
1371	memcpy(root_item, &root->root_item, sizeof(*root_item));
1372	btrfs_set_root_bytenr(root_item, eb->start);
1373	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1374	btrfs_set_root_generation(root_item, trans->transid);
1375
1376	if (root->root_key.objectid == objectid) {
1377		btrfs_set_root_refs(root_item, 0);
1378		memset(&root_item->drop_progress, 0,
1379		       sizeof(struct btrfs_disk_key));
1380		root_item->drop_level = 0;
1381		/*
1382		 * abuse rtransid, it is safe because it is impossible to
1383		 * receive data into a relocation tree.
1384		 */
1385		btrfs_set_root_rtransid(root_item, last_snap);
1386		btrfs_set_root_otransid(root_item, trans->transid);
1387	}
1388
1389	btrfs_tree_unlock(eb);
1390	free_extent_buffer(eb);
1391
1392	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1393				&root_key, root_item);
1394	BUG_ON(ret);
1395	kfree(root_item);
1396
1397	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
 
1398	BUG_ON(IS_ERR(reloc_root));
1399	reloc_root->last_trans = trans->transid;
1400	return reloc_root;
1401}
1402
1403/*
1404 * create reloc tree for a given fs tree. reloc tree is just a
1405 * snapshot of the fs tree with special root objectid.
1406 */
1407int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1408			  struct btrfs_root *root)
1409{
1410	struct btrfs_root *reloc_root;
1411	struct reloc_control *rc = root->fs_info->reloc_ctl;
1412	struct btrfs_block_rsv *rsv;
1413	int clear_rsv = 0;
1414	int ret;
1415
1416	if (root->reloc_root) {
1417		reloc_root = root->reloc_root;
1418		reloc_root->last_trans = trans->transid;
1419		return 0;
1420	}
1421
1422	if (!rc || !rc->create_reloc_tree ||
1423	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1424		return 0;
1425
1426	if (!trans->reloc_reserved) {
1427		rsv = trans->block_rsv;
1428		trans->block_rsv = rc->block_rsv;
1429		clear_rsv = 1;
1430	}
1431	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1432	if (clear_rsv)
1433		trans->block_rsv = rsv;
1434
1435	ret = __add_reloc_root(reloc_root);
1436	BUG_ON(ret < 0);
1437	root->reloc_root = reloc_root;
1438	return 0;
1439}
1440
1441/*
1442 * update root item of reloc tree
1443 */
1444int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1445			    struct btrfs_root *root)
1446{
1447	struct btrfs_root *reloc_root;
1448	struct btrfs_root_item *root_item;
 
1449	int ret;
1450
1451	if (!root->reloc_root)
1452		goto out;
1453
1454	reloc_root = root->reloc_root;
1455	root_item = &reloc_root->root_item;
1456
1457	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1458	    btrfs_root_refs(root_item) == 0) {
1459		root->reloc_root = NULL;
1460		__del_reloc_root(reloc_root);
1461	}
1462
 
 
1463	if (reloc_root->commit_root != reloc_root->node) {
1464		btrfs_set_root_node(root_item, reloc_root->node);
1465		free_extent_buffer(reloc_root->commit_root);
1466		reloc_root->commit_root = btrfs_root_node(reloc_root);
1467	}
1468
1469	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1470				&reloc_root->root_key, root_item);
1471	BUG_ON(ret);
1472
1473out:
1474	return 0;
1475}
1476
1477/*
1478 * helper to find first cached inode with inode number >= objectid
1479 * in a subvolume
1480 */
1481static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1482{
1483	struct rb_node *node;
1484	struct rb_node *prev;
1485	struct btrfs_inode *entry;
1486	struct inode *inode;
1487
1488	spin_lock(&root->inode_lock);
1489again:
1490	node = root->inode_tree.rb_node;
1491	prev = NULL;
1492	while (node) {
1493		prev = node;
1494		entry = rb_entry(node, struct btrfs_inode, rb_node);
1495
1496		if (objectid < btrfs_ino(&entry->vfs_inode))
1497			node = node->rb_left;
1498		else if (objectid > btrfs_ino(&entry->vfs_inode))
1499			node = node->rb_right;
1500		else
1501			break;
1502	}
1503	if (!node) {
1504		while (prev) {
1505			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1506			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1507				node = prev;
1508				break;
1509			}
1510			prev = rb_next(prev);
1511		}
1512	}
1513	while (node) {
1514		entry = rb_entry(node, struct btrfs_inode, rb_node);
1515		inode = igrab(&entry->vfs_inode);
1516		if (inode) {
1517			spin_unlock(&root->inode_lock);
1518			return inode;
1519		}
1520
1521		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1522		if (cond_resched_lock(&root->inode_lock))
1523			goto again;
1524
1525		node = rb_next(node);
1526	}
1527	spin_unlock(&root->inode_lock);
1528	return NULL;
1529}
1530
1531static int in_block_group(u64 bytenr,
1532			  struct btrfs_block_group_cache *block_group)
1533{
1534	if (bytenr >= block_group->key.objectid &&
1535	    bytenr < block_group->key.objectid + block_group->key.offset)
1536		return 1;
1537	return 0;
1538}
1539
1540/*
1541 * get new location of data
1542 */
1543static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1544			    u64 bytenr, u64 num_bytes)
1545{
1546	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1547	struct btrfs_path *path;
1548	struct btrfs_file_extent_item *fi;
1549	struct extent_buffer *leaf;
1550	int ret;
1551
1552	path = btrfs_alloc_path();
1553	if (!path)
1554		return -ENOMEM;
1555
1556	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1557	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1558				       bytenr, 0);
1559	if (ret < 0)
1560		goto out;
1561	if (ret > 0) {
1562		ret = -ENOENT;
1563		goto out;
1564	}
1565
1566	leaf = path->nodes[0];
1567	fi = btrfs_item_ptr(leaf, path->slots[0],
1568			    struct btrfs_file_extent_item);
1569
1570	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1571	       btrfs_file_extent_compression(leaf, fi) ||
1572	       btrfs_file_extent_encryption(leaf, fi) ||
1573	       btrfs_file_extent_other_encoding(leaf, fi));
1574
1575	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1576		ret = -EINVAL;
1577		goto out;
1578	}
1579
1580	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1581	ret = 0;
1582out:
1583	btrfs_free_path(path);
1584	return ret;
1585}
1586
1587/*
1588 * update file extent items in the tree leaf to point to
1589 * the new locations.
1590 */
1591static noinline_for_stack
1592int replace_file_extents(struct btrfs_trans_handle *trans,
1593			 struct reloc_control *rc,
1594			 struct btrfs_root *root,
1595			 struct extent_buffer *leaf)
1596{
1597	struct btrfs_key key;
1598	struct btrfs_file_extent_item *fi;
1599	struct inode *inode = NULL;
1600	u64 parent;
1601	u64 bytenr;
1602	u64 new_bytenr = 0;
1603	u64 num_bytes;
1604	u64 end;
1605	u32 nritems;
1606	u32 i;
1607	int ret = 0;
1608	int first = 1;
1609	int dirty = 0;
1610
1611	if (rc->stage != UPDATE_DATA_PTRS)
1612		return 0;
1613
1614	/* reloc trees always use full backref */
1615	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1616		parent = leaf->start;
1617	else
1618		parent = 0;
1619
1620	nritems = btrfs_header_nritems(leaf);
1621	for (i = 0; i < nritems; i++) {
1622		cond_resched();
1623		btrfs_item_key_to_cpu(leaf, &key, i);
1624		if (key.type != BTRFS_EXTENT_DATA_KEY)
1625			continue;
1626		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1627		if (btrfs_file_extent_type(leaf, fi) ==
1628		    BTRFS_FILE_EXTENT_INLINE)
1629			continue;
1630		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1631		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1632		if (bytenr == 0)
1633			continue;
1634		if (!in_block_group(bytenr, rc->block_group))
1635			continue;
1636
1637		/*
1638		 * if we are modifying block in fs tree, wait for readpage
1639		 * to complete and drop the extent cache
1640		 */
1641		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1642			if (first) {
1643				inode = find_next_inode(root, key.objectid);
1644				first = 0;
1645			} else if (inode && btrfs_ino(inode) < key.objectid) {
1646				btrfs_add_delayed_iput(inode);
1647				inode = find_next_inode(root, key.objectid);
1648			}
1649			if (inode && btrfs_ino(inode) == key.objectid) {
1650				end = key.offset +
1651				      btrfs_file_extent_num_bytes(leaf, fi);
1652				WARN_ON(!IS_ALIGNED(key.offset,
1653						    root->sectorsize));
1654				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1655				end--;
1656				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1657						      key.offset, end);
1658				if (!ret)
1659					continue;
1660
1661				btrfs_drop_extent_cache(inode, key.offset, end,
1662							1);
1663				unlock_extent(&BTRFS_I(inode)->io_tree,
1664					      key.offset, end);
1665			}
1666		}
1667
1668		ret = get_new_location(rc->data_inode, &new_bytenr,
1669				       bytenr, num_bytes);
1670		if (ret) {
1671			/*
1672			 * Don't have to abort since we've not changed anything
1673			 * in the file extent yet.
1674			 */
1675			break;
1676		}
 
1677
1678		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1679		dirty = 1;
1680
1681		key.offset -= btrfs_file_extent_offset(leaf, fi);
1682		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1683					   num_bytes, parent,
1684					   btrfs_header_owner(leaf),
1685					   key.objectid, key.offset, 1);
1686		if (ret) {
1687			btrfs_abort_transaction(trans, root, ret);
1688			break;
1689		}
1690
1691		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1692					parent, btrfs_header_owner(leaf),
1693					key.objectid, key.offset, 1);
1694		if (ret) {
1695			btrfs_abort_transaction(trans, root, ret);
1696			break;
1697		}
1698	}
1699	if (dirty)
1700		btrfs_mark_buffer_dirty(leaf);
1701	if (inode)
1702		btrfs_add_delayed_iput(inode);
1703	return ret;
1704}
1705
1706static noinline_for_stack
1707int memcmp_node_keys(struct extent_buffer *eb, int slot,
1708		     struct btrfs_path *path, int level)
1709{
1710	struct btrfs_disk_key key1;
1711	struct btrfs_disk_key key2;
1712	btrfs_node_key(eb, &key1, slot);
1713	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1714	return memcmp(&key1, &key2, sizeof(key1));
1715}
1716
1717/*
1718 * try to replace tree blocks in fs tree with the new blocks
1719 * in reloc tree. tree blocks haven't been modified since the
1720 * reloc tree was create can be replaced.
1721 *
1722 * if a block was replaced, level of the block + 1 is returned.
1723 * if no block got replaced, 0 is returned. if there are other
1724 * errors, a negative error number is returned.
1725 */
1726static noinline_for_stack
1727int replace_path(struct btrfs_trans_handle *trans,
1728		 struct btrfs_root *dest, struct btrfs_root *src,
1729		 struct btrfs_path *path, struct btrfs_key *next_key,
1730		 int lowest_level, int max_level)
1731{
1732	struct extent_buffer *eb;
1733	struct extent_buffer *parent;
1734	struct btrfs_key key;
1735	u64 old_bytenr;
1736	u64 new_bytenr;
1737	u64 old_ptr_gen;
1738	u64 new_ptr_gen;
1739	u64 last_snapshot;
1740	u32 blocksize;
1741	int cow = 0;
1742	int level;
1743	int ret;
1744	int slot;
1745
1746	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1747	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1748
1749	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1750again:
1751	slot = path->slots[lowest_level];
1752	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1753
1754	eb = btrfs_lock_root_node(dest);
1755	btrfs_set_lock_blocking(eb);
1756	level = btrfs_header_level(eb);
1757
1758	if (level < lowest_level) {
1759		btrfs_tree_unlock(eb);
1760		free_extent_buffer(eb);
1761		return 0;
1762	}
1763
1764	if (cow) {
1765		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1766		BUG_ON(ret);
1767	}
1768	btrfs_set_lock_blocking(eb);
1769
1770	if (next_key) {
1771		next_key->objectid = (u64)-1;
1772		next_key->type = (u8)-1;
1773		next_key->offset = (u64)-1;
1774	}
1775
1776	parent = eb;
1777	while (1) {
1778		level = btrfs_header_level(parent);
1779		BUG_ON(level < lowest_level);
1780
1781		ret = btrfs_bin_search(parent, &key, level, &slot);
1782		if (ret && slot > 0)
1783			slot--;
1784
1785		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1786			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1787
1788		old_bytenr = btrfs_node_blockptr(parent, slot);
1789		blocksize = btrfs_level_size(dest, level - 1);
1790		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1791
1792		if (level <= max_level) {
1793			eb = path->nodes[level];
1794			new_bytenr = btrfs_node_blockptr(eb,
1795							path->slots[level]);
1796			new_ptr_gen = btrfs_node_ptr_generation(eb,
1797							path->slots[level]);
1798		} else {
1799			new_bytenr = 0;
1800			new_ptr_gen = 0;
1801		}
1802
1803		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
 
1804			ret = level;
1805			break;
1806		}
1807
1808		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1809		    memcmp_node_keys(parent, slot, path, level)) {
1810			if (level <= lowest_level) {
1811				ret = 0;
1812				break;
1813			}
1814
1815			eb = read_tree_block(dest, old_bytenr, blocksize,
1816					     old_ptr_gen);
1817			if (!eb || !extent_buffer_uptodate(eb)) {
1818				ret = (!eb) ? -ENOMEM : -EIO;
1819				free_extent_buffer(eb);
1820				break;
1821			}
1822			btrfs_tree_lock(eb);
1823			if (cow) {
1824				ret = btrfs_cow_block(trans, dest, eb, parent,
1825						      slot, &eb);
1826				BUG_ON(ret);
1827			}
1828			btrfs_set_lock_blocking(eb);
1829
1830			btrfs_tree_unlock(parent);
1831			free_extent_buffer(parent);
1832
1833			parent = eb;
1834			continue;
1835		}
1836
1837		if (!cow) {
1838			btrfs_tree_unlock(parent);
1839			free_extent_buffer(parent);
1840			cow = 1;
1841			goto again;
1842		}
1843
1844		btrfs_node_key_to_cpu(path->nodes[level], &key,
1845				      path->slots[level]);
1846		btrfs_release_path(path);
1847
1848		path->lowest_level = level;
1849		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1850		path->lowest_level = 0;
1851		BUG_ON(ret);
1852
1853		/*
1854		 * swap blocks in fs tree and reloc tree.
1855		 */
1856		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1857		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1858		btrfs_mark_buffer_dirty(parent);
1859
1860		btrfs_set_node_blockptr(path->nodes[level],
1861					path->slots[level], old_bytenr);
1862		btrfs_set_node_ptr_generation(path->nodes[level],
1863					      path->slots[level], old_ptr_gen);
1864		btrfs_mark_buffer_dirty(path->nodes[level]);
1865
1866		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1867					path->nodes[level]->start,
1868					src->root_key.objectid, level - 1, 0,
1869					1);
1870		BUG_ON(ret);
1871		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1872					0, dest->root_key.objectid, level - 1,
1873					0, 1);
1874		BUG_ON(ret);
1875
1876		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1877					path->nodes[level]->start,
1878					src->root_key.objectid, level - 1, 0,
1879					1);
1880		BUG_ON(ret);
1881
1882		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1883					0, dest->root_key.objectid, level - 1,
1884					0, 1);
1885		BUG_ON(ret);
1886
1887		btrfs_unlock_up_safe(path, 0);
1888
1889		ret = level;
1890		break;
1891	}
1892	btrfs_tree_unlock(parent);
1893	free_extent_buffer(parent);
1894	return ret;
1895}
1896
1897/*
1898 * helper to find next relocated block in reloc tree
1899 */
1900static noinline_for_stack
1901int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1902		       int *level)
1903{
1904	struct extent_buffer *eb;
1905	int i;
1906	u64 last_snapshot;
1907	u32 nritems;
1908
1909	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1910
1911	for (i = 0; i < *level; i++) {
1912		free_extent_buffer(path->nodes[i]);
1913		path->nodes[i] = NULL;
1914	}
1915
1916	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1917		eb = path->nodes[i];
1918		nritems = btrfs_header_nritems(eb);
1919		while (path->slots[i] + 1 < nritems) {
1920			path->slots[i]++;
1921			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1922			    last_snapshot)
1923				continue;
1924
1925			*level = i;
1926			return 0;
1927		}
1928		free_extent_buffer(path->nodes[i]);
1929		path->nodes[i] = NULL;
1930	}
1931	return 1;
1932}
1933
1934/*
1935 * walk down reloc tree to find relocated block of lowest level
1936 */
1937static noinline_for_stack
1938int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1939			 int *level)
1940{
1941	struct extent_buffer *eb = NULL;
1942	int i;
1943	u64 bytenr;
1944	u64 ptr_gen = 0;
1945	u64 last_snapshot;
1946	u32 blocksize;
1947	u32 nritems;
1948
1949	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1950
1951	for (i = *level; i > 0; i--) {
1952		eb = path->nodes[i];
1953		nritems = btrfs_header_nritems(eb);
1954		while (path->slots[i] < nritems) {
1955			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1956			if (ptr_gen > last_snapshot)
1957				break;
1958			path->slots[i]++;
1959		}
1960		if (path->slots[i] >= nritems) {
1961			if (i == *level)
1962				break;
1963			*level = i + 1;
1964			return 0;
1965		}
1966		if (i == 1) {
1967			*level = i;
1968			return 0;
1969		}
1970
1971		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1972		blocksize = btrfs_level_size(root, i - 1);
1973		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1974		if (!eb || !extent_buffer_uptodate(eb)) {
1975			free_extent_buffer(eb);
1976			return -EIO;
1977		}
1978		BUG_ON(btrfs_header_level(eb) != i - 1);
1979		path->nodes[i - 1] = eb;
1980		path->slots[i - 1] = 0;
1981	}
1982	return 1;
1983}
1984
1985/*
1986 * invalidate extent cache for file extents whose key in range of
1987 * [min_key, max_key)
1988 */
1989static int invalidate_extent_cache(struct btrfs_root *root,
1990				   struct btrfs_key *min_key,
1991				   struct btrfs_key *max_key)
1992{
1993	struct inode *inode = NULL;
1994	u64 objectid;
1995	u64 start, end;
1996	u64 ino;
1997
1998	objectid = min_key->objectid;
1999	while (1) {
2000		cond_resched();
2001		iput(inode);
2002
2003		if (objectid > max_key->objectid)
2004			break;
2005
2006		inode = find_next_inode(root, objectid);
2007		if (!inode)
2008			break;
2009		ino = btrfs_ino(inode);
2010
2011		if (ino > max_key->objectid) {
2012			iput(inode);
2013			break;
2014		}
2015
2016		objectid = ino + 1;
2017		if (!S_ISREG(inode->i_mode))
2018			continue;
2019
2020		if (unlikely(min_key->objectid == ino)) {
2021			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2022				continue;
2023			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2024				start = 0;
2025			else {
2026				start = min_key->offset;
2027				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2028			}
2029		} else {
2030			start = 0;
2031		}
2032
2033		if (unlikely(max_key->objectid == ino)) {
2034			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2035				continue;
2036			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2037				end = (u64)-1;
2038			} else {
2039				if (max_key->offset == 0)
2040					continue;
2041				end = max_key->offset;
2042				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2043				end--;
2044			}
2045		} else {
2046			end = (u64)-1;
2047		}
2048
2049		/* the lock_extent waits for readpage to complete */
2050		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2051		btrfs_drop_extent_cache(inode, start, end, 1);
2052		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2053	}
2054	return 0;
2055}
2056
2057static int find_next_key(struct btrfs_path *path, int level,
2058			 struct btrfs_key *key)
2059
2060{
2061	while (level < BTRFS_MAX_LEVEL) {
2062		if (!path->nodes[level])
2063			break;
2064		if (path->slots[level] + 1 <
2065		    btrfs_header_nritems(path->nodes[level])) {
2066			btrfs_node_key_to_cpu(path->nodes[level], key,
2067					      path->slots[level] + 1);
2068			return 0;
2069		}
2070		level++;
2071	}
2072	return 1;
2073}
2074
2075/*
2076 * merge the relocated tree blocks in reloc tree with corresponding
2077 * fs tree.
2078 */
2079static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2080					       struct btrfs_root *root)
2081{
2082	LIST_HEAD(inode_list);
2083	struct btrfs_key key;
2084	struct btrfs_key next_key;
2085	struct btrfs_trans_handle *trans = NULL;
2086	struct btrfs_root *reloc_root;
2087	struct btrfs_root_item *root_item;
2088	struct btrfs_path *path;
2089	struct extent_buffer *leaf;
 
2090	int level;
2091	int max_level;
2092	int replaced = 0;
2093	int ret;
2094	int err = 0;
2095	u32 min_reserved;
2096
2097	path = btrfs_alloc_path();
2098	if (!path)
2099		return -ENOMEM;
2100	path->reada = 1;
2101
2102	reloc_root = root->reloc_root;
2103	root_item = &reloc_root->root_item;
2104
2105	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2106		level = btrfs_root_level(root_item);
2107		extent_buffer_get(reloc_root->node);
2108		path->nodes[level] = reloc_root->node;
2109		path->slots[level] = 0;
2110	} else {
2111		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2112
2113		level = root_item->drop_level;
2114		BUG_ON(level == 0);
2115		path->lowest_level = level;
2116		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2117		path->lowest_level = 0;
2118		if (ret < 0) {
2119			btrfs_free_path(path);
2120			return ret;
2121		}
2122
2123		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2124				      path->slots[level]);
2125		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2126
2127		btrfs_unlock_up_safe(path, 0);
2128	}
2129
2130	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2131	memset(&next_key, 0, sizeof(next_key));
2132
2133	while (1) {
2134		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2135					     BTRFS_RESERVE_FLUSH_ALL);
 
 
 
2136		if (ret) {
2137			err = ret;
2138			goto out;
2139		}
2140		trans = btrfs_start_transaction(root, 0);
2141		if (IS_ERR(trans)) {
2142			err = PTR_ERR(trans);
2143			trans = NULL;
2144			goto out;
2145		}
2146		trans->block_rsv = rc->block_rsv;
2147
2148		replaced = 0;
2149		max_level = level;
2150
2151		ret = walk_down_reloc_tree(reloc_root, path, &level);
2152		if (ret < 0) {
2153			err = ret;
2154			goto out;
2155		}
2156		if (ret > 0)
2157			break;
2158
2159		if (!find_next_key(path, level, &key) &&
2160		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2161			ret = 0;
2162		} else {
2163			ret = replace_path(trans, root, reloc_root, path,
2164					   &next_key, level, max_level);
2165		}
2166		if (ret < 0) {
2167			err = ret;
2168			goto out;
2169		}
2170
2171		if (ret > 0) {
2172			level = ret;
2173			btrfs_node_key_to_cpu(path->nodes[level], &key,
2174					      path->slots[level]);
2175			replaced = 1;
2176		}
2177
2178		ret = walk_up_reloc_tree(reloc_root, path, &level);
2179		if (ret > 0)
2180			break;
2181
2182		BUG_ON(level == 0);
2183		/*
2184		 * save the merging progress in the drop_progress.
2185		 * this is OK since root refs == 1 in this case.
2186		 */
2187		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2188			       path->slots[level]);
2189		root_item->drop_level = level;
2190
 
2191		btrfs_end_transaction_throttle(trans, root);
2192		trans = NULL;
2193
2194		btrfs_btree_balance_dirty(root);
2195
2196		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2197			invalidate_extent_cache(root, &key, &next_key);
2198	}
2199
2200	/*
2201	 * handle the case only one block in the fs tree need to be
2202	 * relocated and the block is tree root.
2203	 */
2204	leaf = btrfs_lock_root_node(root);
2205	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2206	btrfs_tree_unlock(leaf);
2207	free_extent_buffer(leaf);
2208	if (ret < 0)
2209		err = ret;
2210out:
2211	btrfs_free_path(path);
2212
2213	if (err == 0) {
2214		memset(&root_item->drop_progress, 0,
2215		       sizeof(root_item->drop_progress));
2216		root_item->drop_level = 0;
2217		btrfs_set_root_refs(root_item, 0);
2218		btrfs_update_reloc_root(trans, root);
2219	}
2220
2221	if (trans)
2222		btrfs_end_transaction_throttle(trans, root);
2223
2224	btrfs_btree_balance_dirty(root);
2225
2226	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2227		invalidate_extent_cache(root, &key, &next_key);
2228
2229	return err;
2230}
2231
2232static noinline_for_stack
2233int prepare_to_merge(struct reloc_control *rc, int err)
2234{
2235	struct btrfs_root *root = rc->extent_root;
2236	struct btrfs_root *reloc_root;
2237	struct btrfs_trans_handle *trans;
2238	LIST_HEAD(reloc_roots);
2239	u64 num_bytes = 0;
2240	int ret;
2241
2242	mutex_lock(&root->fs_info->reloc_mutex);
2243	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2244	rc->merging_rsv_size += rc->nodes_relocated * 2;
2245	mutex_unlock(&root->fs_info->reloc_mutex);
2246
2247again:
2248	if (!err) {
2249		num_bytes = rc->merging_rsv_size;
2250		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2251					  BTRFS_RESERVE_FLUSH_ALL);
2252		if (ret)
2253			err = ret;
2254	}
2255
2256	trans = btrfs_join_transaction(rc->extent_root);
2257	if (IS_ERR(trans)) {
2258		if (!err)
2259			btrfs_block_rsv_release(rc->extent_root,
2260						rc->block_rsv, num_bytes);
2261		return PTR_ERR(trans);
2262	}
2263
2264	if (!err) {
2265		if (num_bytes != rc->merging_rsv_size) {
2266			btrfs_end_transaction(trans, rc->extent_root);
2267			btrfs_block_rsv_release(rc->extent_root,
2268						rc->block_rsv, num_bytes);
2269			goto again;
2270		}
2271	}
2272
2273	rc->merge_reloc_tree = 1;
2274
2275	while (!list_empty(&rc->reloc_roots)) {
2276		reloc_root = list_entry(rc->reloc_roots.next,
2277					struct btrfs_root, root_list);
2278		list_del_init(&reloc_root->root_list);
2279
2280		root = read_fs_root(reloc_root->fs_info,
2281				    reloc_root->root_key.offset);
2282		BUG_ON(IS_ERR(root));
2283		BUG_ON(root->reloc_root != reloc_root);
2284
2285		/*
2286		 * set reference count to 1, so btrfs_recover_relocation
2287		 * knows it should resumes merging
2288		 */
2289		if (!err)
2290			btrfs_set_root_refs(&reloc_root->root_item, 1);
2291		btrfs_update_reloc_root(trans, root);
2292
2293		list_add(&reloc_root->root_list, &reloc_roots);
2294	}
2295
2296	list_splice(&reloc_roots, &rc->reloc_roots);
2297
2298	if (!err)
2299		btrfs_commit_transaction(trans, rc->extent_root);
2300	else
2301		btrfs_end_transaction(trans, rc->extent_root);
2302	return err;
2303}
2304
2305static noinline_for_stack
2306void free_reloc_roots(struct list_head *list)
2307{
2308	struct btrfs_root *reloc_root;
2309
2310	while (!list_empty(list)) {
2311		reloc_root = list_entry(list->next, struct btrfs_root,
2312					root_list);
2313		__del_reloc_root(reloc_root);
2314	}
2315}
2316
2317static noinline_for_stack
2318int merge_reloc_roots(struct reloc_control *rc)
2319{
2320	struct btrfs_root *root;
2321	struct btrfs_root *reloc_root;
2322	u64 last_snap;
2323	u64 otransid;
2324	u64 objectid;
2325	LIST_HEAD(reloc_roots);
2326	int found = 0;
2327	int ret = 0;
2328again:
2329	root = rc->extent_root;
2330
2331	/*
2332	 * this serializes us with btrfs_record_root_in_transaction,
2333	 * we have to make sure nobody is in the middle of
2334	 * adding their roots to the list while we are
2335	 * doing this splice
2336	 */
2337	mutex_lock(&root->fs_info->reloc_mutex);
2338	list_splice_init(&rc->reloc_roots, &reloc_roots);
2339	mutex_unlock(&root->fs_info->reloc_mutex);
2340
2341	while (!list_empty(&reloc_roots)) {
2342		found = 1;
2343		reloc_root = list_entry(reloc_roots.next,
2344					struct btrfs_root, root_list);
2345
2346		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2347			root = read_fs_root(reloc_root->fs_info,
2348					    reloc_root->root_key.offset);
2349			BUG_ON(IS_ERR(root));
2350			BUG_ON(root->reloc_root != reloc_root);
2351
2352			ret = merge_reloc_root(rc, root);
2353			if (ret) {
2354				if (list_empty(&reloc_root->root_list))
2355					list_add_tail(&reloc_root->root_list,
2356						      &reloc_roots);
2357				goto out;
2358			}
2359		} else {
2360			list_del_init(&reloc_root->root_list);
2361		}
2362
2363		/*
2364		 * we keep the old last snapshod transid in rtranid when we
2365		 * created the relocation tree.
2366		 */
2367		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2368		otransid = btrfs_root_otransid(&reloc_root->root_item);
2369		objectid = reloc_root->root_key.offset;
2370
2371		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2372		if (ret < 0) {
2373			if (list_empty(&reloc_root->root_list))
2374				list_add_tail(&reloc_root->root_list,
2375					      &reloc_roots);
2376			goto out;
2377		}
2378	}
2379
2380	if (found) {
2381		found = 0;
2382		goto again;
2383	}
2384out:
2385	if (ret) {
2386		btrfs_std_error(root->fs_info, ret);
2387		if (!list_empty(&reloc_roots))
2388			free_reloc_roots(&reloc_roots);
2389
2390		/* new reloc root may be added */
2391		mutex_lock(&root->fs_info->reloc_mutex);
2392		list_splice_init(&rc->reloc_roots, &reloc_roots);
2393		mutex_unlock(&root->fs_info->reloc_mutex);
2394		if (!list_empty(&reloc_roots))
2395			free_reloc_roots(&reloc_roots);
2396	}
2397
2398	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2399	return ret;
2400}
2401
2402static void free_block_list(struct rb_root *blocks)
2403{
2404	struct tree_block *block;
2405	struct rb_node *rb_node;
2406	while ((rb_node = rb_first(blocks))) {
2407		block = rb_entry(rb_node, struct tree_block, rb_node);
2408		rb_erase(rb_node, blocks);
2409		kfree(block);
2410	}
2411}
2412
2413static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2414				      struct btrfs_root *reloc_root)
2415{
2416	struct btrfs_root *root;
2417
2418	if (reloc_root->last_trans == trans->transid)
2419		return 0;
2420
2421	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2422	BUG_ON(IS_ERR(root));
2423	BUG_ON(root->reloc_root != reloc_root);
2424
2425	return btrfs_record_root_in_trans(trans, root);
2426}
2427
2428static noinline_for_stack
2429struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2430				     struct reloc_control *rc,
2431				     struct backref_node *node,
2432				     struct backref_edge *edges[])
2433{
2434	struct backref_node *next;
2435	struct btrfs_root *root;
2436	int index = 0;
2437
2438	next = node;
2439	while (1) {
2440		cond_resched();
2441		next = walk_up_backref(next, edges, &index);
2442		root = next->root;
2443		BUG_ON(!root);
2444		BUG_ON(!root->ref_cows);
2445
2446		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2447			record_reloc_root_in_trans(trans, root);
2448			break;
2449		}
2450
2451		btrfs_record_root_in_trans(trans, root);
2452		root = root->reloc_root;
2453
2454		if (next->new_bytenr != root->node->start) {
2455			BUG_ON(next->new_bytenr);
2456			BUG_ON(!list_empty(&next->list));
2457			next->new_bytenr = root->node->start;
2458			next->root = root;
2459			list_add_tail(&next->list,
2460				      &rc->backref_cache.changed);
2461			__mark_block_processed(rc, next);
2462			break;
2463		}
2464
2465		WARN_ON(1);
2466		root = NULL;
2467		next = walk_down_backref(edges, &index);
2468		if (!next || next->level <= node->level)
2469			break;
2470	}
2471	if (!root)
2472		return NULL;
2473
 
2474	next = node;
2475	/* setup backref node path for btrfs_reloc_cow_block */
2476	while (1) {
2477		rc->backref_cache.path[next->level] = next;
2478		if (--index < 0)
2479			break;
2480		next = edges[index]->node[UPPER];
2481	}
2482	return root;
2483}
2484
2485/*
2486 * select a tree root for relocation. return NULL if the block
2487 * is reference counted. we should use do_relocation() in this
2488 * case. return a tree root pointer if the block isn't reference
2489 * counted. return -ENOENT if the block is root of reloc tree.
2490 */
2491static noinline_for_stack
2492struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2493				   struct backref_node *node)
2494{
2495	struct backref_node *next;
2496	struct btrfs_root *root;
2497	struct btrfs_root *fs_root = NULL;
2498	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2499	int index = 0;
2500
2501	next = node;
2502	while (1) {
2503		cond_resched();
2504		next = walk_up_backref(next, edges, &index);
2505		root = next->root;
2506		BUG_ON(!root);
2507
2508		/* no other choice for non-references counted tree */
2509		if (!root->ref_cows)
2510			return root;
2511
2512		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2513			fs_root = root;
2514
2515		if (next != node)
2516			return NULL;
2517
2518		next = walk_down_backref(edges, &index);
2519		if (!next || next->level <= node->level)
2520			break;
2521	}
2522
2523	if (!fs_root)
2524		return ERR_PTR(-ENOENT);
2525	return fs_root;
2526}
2527
2528static noinline_for_stack
2529u64 calcu_metadata_size(struct reloc_control *rc,
2530			struct backref_node *node, int reserve)
2531{
2532	struct backref_node *next = node;
2533	struct backref_edge *edge;
2534	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2535	u64 num_bytes = 0;
2536	int index = 0;
2537
2538	BUG_ON(reserve && node->processed);
2539
2540	while (next) {
2541		cond_resched();
2542		while (1) {
2543			if (next->processed && (reserve || next != node))
2544				break;
2545
2546			num_bytes += btrfs_level_size(rc->extent_root,
2547						      next->level);
2548
2549			if (list_empty(&next->upper))
2550				break;
2551
2552			edge = list_entry(next->upper.next,
2553					  struct backref_edge, list[LOWER]);
2554			edges[index++] = edge;
2555			next = edge->node[UPPER];
2556		}
2557		next = walk_down_backref(edges, &index);
2558	}
2559	return num_bytes;
2560}
2561
2562static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2563				  struct reloc_control *rc,
2564				  struct backref_node *node)
2565{
2566	struct btrfs_root *root = rc->extent_root;
2567	u64 num_bytes;
2568	int ret;
2569	u64 tmp;
2570
2571	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2572
2573	trans->block_rsv = rc->block_rsv;
2574	rc->reserved_bytes += num_bytes;
2575	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2576				BTRFS_RESERVE_FLUSH_ALL);
2577	if (ret) {
2578		if (ret == -EAGAIN) {
2579			tmp = rc->extent_root->nodesize *
2580				RELOCATION_RESERVED_NODES;
2581			while (tmp <= rc->reserved_bytes)
2582				tmp <<= 1;
2583			/*
2584			 * only one thread can access block_rsv at this point,
2585			 * so we don't need hold lock to protect block_rsv.
2586			 * we expand more reservation size here to allow enough
2587			 * space for relocation and we will return eailer in
2588			 * enospc case.
2589			 */
2590			rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2591					      RELOCATION_RESERVED_NODES;
2592		}
2593		return ret;
2594	}
2595
2596	return 0;
2597}
2598
 
 
 
 
 
 
 
2599/*
2600 * relocate a block tree, and then update pointers in upper level
2601 * blocks that reference the block to point to the new location.
2602 *
2603 * if called by link_to_upper, the block has already been relocated.
2604 * in that case this function just updates pointers.
2605 */
2606static int do_relocation(struct btrfs_trans_handle *trans,
2607			 struct reloc_control *rc,
2608			 struct backref_node *node,
2609			 struct btrfs_key *key,
2610			 struct btrfs_path *path, int lowest)
2611{
2612	struct backref_node *upper;
2613	struct backref_edge *edge;
2614	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2615	struct btrfs_root *root;
2616	struct extent_buffer *eb;
2617	u32 blocksize;
2618	u64 bytenr;
2619	u64 generation;
 
2620	int slot;
2621	int ret;
2622	int err = 0;
2623
2624	BUG_ON(lowest && node->eb);
2625
2626	path->lowest_level = node->level + 1;
2627	rc->backref_cache.path[node->level] = node;
2628	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2629		cond_resched();
2630
2631		upper = edge->node[UPPER];
2632		root = select_reloc_root(trans, rc, upper, edges);
2633		BUG_ON(!root);
2634
2635		if (upper->eb && !upper->locked) {
2636			if (!lowest) {
2637				ret = btrfs_bin_search(upper->eb, key,
2638						       upper->level, &slot);
2639				BUG_ON(ret);
2640				bytenr = btrfs_node_blockptr(upper->eb, slot);
2641				if (node->eb->start == bytenr)
2642					goto next;
2643			}
2644			drop_node_buffer(upper);
2645		}
2646
2647		if (!upper->eb) {
2648			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2649			if (ret < 0) {
2650				err = ret;
2651				break;
2652			}
2653			BUG_ON(ret > 0);
2654
2655			if (!upper->eb) {
2656				upper->eb = path->nodes[upper->level];
2657				path->nodes[upper->level] = NULL;
2658			} else {
2659				BUG_ON(upper->eb != path->nodes[upper->level]);
2660			}
2661
2662			upper->locked = 1;
2663			path->locks[upper->level] = 0;
2664
2665			slot = path->slots[upper->level];
2666			btrfs_release_path(path);
2667		} else {
2668			ret = btrfs_bin_search(upper->eb, key, upper->level,
2669					       &slot);
2670			BUG_ON(ret);
2671		}
2672
2673		bytenr = btrfs_node_blockptr(upper->eb, slot);
2674		if (lowest) {
2675			BUG_ON(bytenr != node->bytenr);
2676		} else {
2677			if (node->eb->start == bytenr)
2678				goto next;
2679		}
2680
2681		blocksize = btrfs_level_size(root, node->level);
2682		generation = btrfs_node_ptr_generation(upper->eb, slot);
2683		eb = read_tree_block(root, bytenr, blocksize, generation);
2684		if (!eb || !extent_buffer_uptodate(eb)) {
2685			free_extent_buffer(eb);
2686			err = -EIO;
2687			goto next;
2688		}
2689		btrfs_tree_lock(eb);
2690		btrfs_set_lock_blocking(eb);
2691
2692		if (!node->eb) {
2693			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2694					      slot, &eb);
2695			btrfs_tree_unlock(eb);
2696			free_extent_buffer(eb);
2697			if (ret < 0) {
2698				err = ret;
2699				goto next;
2700			}
2701			BUG_ON(node->eb != eb);
2702		} else {
2703			btrfs_set_node_blockptr(upper->eb, slot,
2704						node->eb->start);
2705			btrfs_set_node_ptr_generation(upper->eb, slot,
2706						      trans->transid);
2707			btrfs_mark_buffer_dirty(upper->eb);
2708
2709			ret = btrfs_inc_extent_ref(trans, root,
2710						node->eb->start, blocksize,
2711						upper->eb->start,
2712						btrfs_header_owner(upper->eb),
2713						node->level, 0, 1);
2714			BUG_ON(ret);
2715
2716			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2717			BUG_ON(ret);
2718		}
2719next:
2720		if (!upper->pending)
2721			drop_node_buffer(upper);
2722		else
2723			unlock_node_buffer(upper);
2724		if (err)
2725			break;
2726	}
2727
2728	if (!err && node->pending) {
2729		drop_node_buffer(node);
2730		list_move_tail(&node->list, &rc->backref_cache.changed);
2731		node->pending = 0;
2732	}
2733
2734	path->lowest_level = 0;
2735	BUG_ON(err == -ENOSPC);
2736	return err;
2737}
2738
2739static int link_to_upper(struct btrfs_trans_handle *trans,
2740			 struct reloc_control *rc,
2741			 struct backref_node *node,
2742			 struct btrfs_path *path)
2743{
2744	struct btrfs_key key;
2745
2746	btrfs_node_key_to_cpu(node->eb, &key, 0);
2747	return do_relocation(trans, rc, node, &key, path, 0);
2748}
2749
2750static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2751				struct reloc_control *rc,
2752				struct btrfs_path *path, int err)
2753{
2754	LIST_HEAD(list);
2755	struct backref_cache *cache = &rc->backref_cache;
2756	struct backref_node *node;
2757	int level;
2758	int ret;
2759
2760	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2761		while (!list_empty(&cache->pending[level])) {
2762			node = list_entry(cache->pending[level].next,
2763					  struct backref_node, list);
2764			list_move_tail(&node->list, &list);
2765			BUG_ON(!node->pending);
2766
2767			if (!err) {
2768				ret = link_to_upper(trans, rc, node, path);
2769				if (ret < 0)
2770					err = ret;
2771			}
2772		}
2773		list_splice_init(&list, &cache->pending[level]);
2774	}
2775	return err;
2776}
2777
2778static void mark_block_processed(struct reloc_control *rc,
2779				 u64 bytenr, u32 blocksize)
2780{
2781	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2782			EXTENT_DIRTY, GFP_NOFS);
2783}
2784
2785static void __mark_block_processed(struct reloc_control *rc,
2786				   struct backref_node *node)
2787{
2788	u32 blocksize;
2789	if (node->level == 0 ||
2790	    in_block_group(node->bytenr, rc->block_group)) {
2791		blocksize = btrfs_level_size(rc->extent_root, node->level);
2792		mark_block_processed(rc, node->bytenr, blocksize);
2793	}
2794	node->processed = 1;
2795}
2796
2797/*
2798 * mark a block and all blocks directly/indirectly reference the block
2799 * as processed.
2800 */
2801static void update_processed_blocks(struct reloc_control *rc,
2802				    struct backref_node *node)
2803{
2804	struct backref_node *next = node;
2805	struct backref_edge *edge;
2806	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2807	int index = 0;
2808
2809	while (next) {
2810		cond_resched();
2811		while (1) {
2812			if (next->processed)
2813				break;
2814
2815			__mark_block_processed(rc, next);
2816
2817			if (list_empty(&next->upper))
2818				break;
2819
2820			edge = list_entry(next->upper.next,
2821					  struct backref_edge, list[LOWER]);
2822			edges[index++] = edge;
2823			next = edge->node[UPPER];
2824		}
2825		next = walk_down_backref(edges, &index);
2826	}
2827}
2828
2829static int tree_block_processed(u64 bytenr, u32 blocksize,
2830				struct reloc_control *rc)
2831{
2832	if (test_range_bit(&rc->processed_blocks, bytenr,
2833			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2834		return 1;
2835	return 0;
2836}
2837
2838static int get_tree_block_key(struct reloc_control *rc,
2839			      struct tree_block *block)
2840{
2841	struct extent_buffer *eb;
2842
2843	BUG_ON(block->key_ready);
2844	eb = read_tree_block(rc->extent_root, block->bytenr,
2845			     block->key.objectid, block->key.offset);
2846	if (!eb || !extent_buffer_uptodate(eb)) {
2847		free_extent_buffer(eb);
2848		return -EIO;
2849	}
2850	WARN_ON(btrfs_header_level(eb) != block->level);
2851	if (block->level == 0)
2852		btrfs_item_key_to_cpu(eb, &block->key, 0);
2853	else
2854		btrfs_node_key_to_cpu(eb, &block->key, 0);
2855	free_extent_buffer(eb);
2856	block->key_ready = 1;
2857	return 0;
2858}
2859
2860static int reada_tree_block(struct reloc_control *rc,
2861			    struct tree_block *block)
2862{
2863	BUG_ON(block->key_ready);
2864	if (block->key.type == BTRFS_METADATA_ITEM_KEY)
2865		readahead_tree_block(rc->extent_root, block->bytenr,
2866				     block->key.objectid,
2867				     rc->extent_root->leafsize);
2868	else
2869		readahead_tree_block(rc->extent_root, block->bytenr,
2870				     block->key.objectid, block->key.offset);
2871	return 0;
2872}
2873
2874/*
2875 * helper function to relocate a tree block
2876 */
2877static int relocate_tree_block(struct btrfs_trans_handle *trans,
2878				struct reloc_control *rc,
2879				struct backref_node *node,
2880				struct btrfs_key *key,
2881				struct btrfs_path *path)
2882{
2883	struct btrfs_root *root;
 
2884	int ret = 0;
2885
2886	if (!node)
2887		return 0;
2888
2889	BUG_ON(node->processed);
2890	root = select_one_root(trans, node);
2891	if (root == ERR_PTR(-ENOENT)) {
2892		update_processed_blocks(rc, node);
2893		goto out;
2894	}
2895
2896	if (!root || root->ref_cows) {
2897		ret = reserve_metadata_space(trans, rc, node);
2898		if (ret)
2899			goto out;
 
2900	}
2901
2902	if (root) {
2903		if (root->ref_cows) {
2904			BUG_ON(node->new_bytenr);
2905			BUG_ON(!list_empty(&node->list));
2906			btrfs_record_root_in_trans(trans, root);
2907			root = root->reloc_root;
2908			node->new_bytenr = root->node->start;
2909			node->root = root;
2910			list_add_tail(&node->list, &rc->backref_cache.changed);
2911		} else {
2912			path->lowest_level = node->level;
2913			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2914			btrfs_release_path(path);
2915			if (ret > 0)
2916				ret = 0;
2917		}
2918		if (!ret)
2919			update_processed_blocks(rc, node);
2920	} else {
2921		ret = do_relocation(trans, rc, node, key, path, 1);
2922	}
2923out:
2924	if (ret || node->level == 0 || node->cowonly)
 
 
2925		remove_backref_node(&rc->backref_cache, node);
 
2926	return ret;
2927}
2928
2929/*
2930 * relocate a list of blocks
2931 */
2932static noinline_for_stack
2933int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2934			 struct reloc_control *rc, struct rb_root *blocks)
2935{
2936	struct backref_node *node;
2937	struct btrfs_path *path;
2938	struct tree_block *block;
2939	struct rb_node *rb_node;
2940	int ret;
2941	int err = 0;
2942
2943	path = btrfs_alloc_path();
2944	if (!path) {
2945		err = -ENOMEM;
2946		goto out_free_blocks;
2947	}
2948
2949	rb_node = rb_first(blocks);
2950	while (rb_node) {
2951		block = rb_entry(rb_node, struct tree_block, rb_node);
2952		if (!block->key_ready)
2953			reada_tree_block(rc, block);
2954		rb_node = rb_next(rb_node);
2955	}
2956
2957	rb_node = rb_first(blocks);
2958	while (rb_node) {
2959		block = rb_entry(rb_node, struct tree_block, rb_node);
2960		if (!block->key_ready) {
2961			err = get_tree_block_key(rc, block);
2962			if (err)
2963				goto out_free_path;
2964		}
2965		rb_node = rb_next(rb_node);
2966	}
2967
2968	rb_node = rb_first(blocks);
2969	while (rb_node) {
2970		block = rb_entry(rb_node, struct tree_block, rb_node);
2971
2972		node = build_backref_tree(rc, &block->key,
2973					  block->level, block->bytenr);
2974		if (IS_ERR(node)) {
2975			err = PTR_ERR(node);
2976			goto out;
2977		}
2978
2979		ret = relocate_tree_block(trans, rc, node, &block->key,
2980					  path);
2981		if (ret < 0) {
2982			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2983				err = ret;
2984			goto out;
2985		}
2986		rb_node = rb_next(rb_node);
2987	}
2988out:
 
2989	err = finish_pending_nodes(trans, rc, path, err);
2990
2991out_free_path:
2992	btrfs_free_path(path);
2993out_free_blocks:
2994	free_block_list(blocks);
2995	return err;
2996}
2997
2998static noinline_for_stack
2999int prealloc_file_extent_cluster(struct inode *inode,
3000				 struct file_extent_cluster *cluster)
3001{
3002	u64 alloc_hint = 0;
3003	u64 start;
3004	u64 end;
3005	u64 offset = BTRFS_I(inode)->index_cnt;
3006	u64 num_bytes;
3007	int nr = 0;
3008	int ret = 0;
3009
3010	BUG_ON(cluster->start != cluster->boundary[0]);
3011	mutex_lock(&inode->i_mutex);
3012
3013	ret = btrfs_check_data_free_space(inode, cluster->end +
3014					  1 - cluster->start);
3015	if (ret)
3016		goto out;
3017
3018	while (nr < cluster->nr) {
3019		start = cluster->boundary[nr] - offset;
3020		if (nr + 1 < cluster->nr)
3021			end = cluster->boundary[nr + 1] - 1 - offset;
3022		else
3023			end = cluster->end - offset;
3024
3025		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3026		num_bytes = end + 1 - start;
3027		ret = btrfs_prealloc_file_range(inode, 0, start,
3028						num_bytes, num_bytes,
3029						end + 1, &alloc_hint);
3030		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3031		if (ret)
3032			break;
3033		nr++;
3034	}
3035	btrfs_free_reserved_data_space(inode, cluster->end +
3036				       1 - cluster->start);
3037out:
3038	mutex_unlock(&inode->i_mutex);
3039	return ret;
3040}
3041
3042static noinline_for_stack
3043int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3044			 u64 block_start)
3045{
3046	struct btrfs_root *root = BTRFS_I(inode)->root;
3047	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3048	struct extent_map *em;
3049	int ret = 0;
3050
3051	em = alloc_extent_map();
3052	if (!em)
3053		return -ENOMEM;
3054
3055	em->start = start;
3056	em->len = end + 1 - start;
3057	em->block_len = em->len;
3058	em->block_start = block_start;
3059	em->bdev = root->fs_info->fs_devices->latest_bdev;
3060	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3061
3062	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3063	while (1) {
3064		write_lock(&em_tree->lock);
3065		ret = add_extent_mapping(em_tree, em, 0);
3066		write_unlock(&em_tree->lock);
3067		if (ret != -EEXIST) {
3068			free_extent_map(em);
3069			break;
3070		}
3071		btrfs_drop_extent_cache(inode, start, end, 0);
3072	}
3073	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3074	return ret;
3075}
3076
3077static int relocate_file_extent_cluster(struct inode *inode,
3078					struct file_extent_cluster *cluster)
3079{
3080	u64 page_start;
3081	u64 page_end;
3082	u64 offset = BTRFS_I(inode)->index_cnt;
3083	unsigned long index;
3084	unsigned long last_index;
3085	struct page *page;
3086	struct file_ra_state *ra;
3087	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3088	int nr = 0;
3089	int ret = 0;
3090
3091	if (!cluster->nr)
3092		return 0;
3093
3094	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3095	if (!ra)
3096		return -ENOMEM;
3097
3098	ret = prealloc_file_extent_cluster(inode, cluster);
3099	if (ret)
3100		goto out;
3101
3102	file_ra_state_init(ra, inode->i_mapping);
3103
3104	ret = setup_extent_mapping(inode, cluster->start - offset,
3105				   cluster->end - offset, cluster->start);
3106	if (ret)
3107		goto out;
3108
3109	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
3110	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
3111	while (index <= last_index) {
3112		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
3113		if (ret)
3114			goto out;
3115
3116		page = find_lock_page(inode->i_mapping, index);
3117		if (!page) {
3118			page_cache_sync_readahead(inode->i_mapping,
3119						  ra, NULL, index,
3120						  last_index + 1 - index);
3121			page = find_or_create_page(inode->i_mapping, index,
3122						   mask);
3123			if (!page) {
3124				btrfs_delalloc_release_metadata(inode,
3125							PAGE_CACHE_SIZE);
3126				ret = -ENOMEM;
3127				goto out;
3128			}
3129		}
3130
3131		if (PageReadahead(page)) {
3132			page_cache_async_readahead(inode->i_mapping,
3133						   ra, NULL, page, index,
3134						   last_index + 1 - index);
3135		}
3136
3137		if (!PageUptodate(page)) {
3138			btrfs_readpage(NULL, page);
3139			lock_page(page);
3140			if (!PageUptodate(page)) {
3141				unlock_page(page);
3142				page_cache_release(page);
3143				btrfs_delalloc_release_metadata(inode,
3144							PAGE_CACHE_SIZE);
3145				ret = -EIO;
3146				goto out;
3147			}
3148		}
3149
3150		page_start = page_offset(page);
3151		page_end = page_start + PAGE_CACHE_SIZE - 1;
3152
3153		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3154
3155		set_page_extent_mapped(page);
3156
3157		if (nr < cluster->nr &&
3158		    page_start + offset == cluster->boundary[nr]) {
3159			set_extent_bits(&BTRFS_I(inode)->io_tree,
3160					page_start, page_end,
3161					EXTENT_BOUNDARY, GFP_NOFS);
3162			nr++;
3163		}
3164
3165		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3166		set_page_dirty(page);
3167
3168		unlock_extent(&BTRFS_I(inode)->io_tree,
3169			      page_start, page_end);
3170		unlock_page(page);
3171		page_cache_release(page);
3172
3173		index++;
3174		balance_dirty_pages_ratelimited(inode->i_mapping);
3175		btrfs_throttle(BTRFS_I(inode)->root);
3176	}
3177	WARN_ON(nr != cluster->nr);
3178out:
3179	kfree(ra);
3180	return ret;
3181}
3182
3183static noinline_for_stack
3184int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3185			 struct file_extent_cluster *cluster)
3186{
3187	int ret;
3188
3189	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3190		ret = relocate_file_extent_cluster(inode, cluster);
3191		if (ret)
3192			return ret;
3193		cluster->nr = 0;
3194	}
3195
3196	if (!cluster->nr)
3197		cluster->start = extent_key->objectid;
3198	else
3199		BUG_ON(cluster->nr >= MAX_EXTENTS);
3200	cluster->end = extent_key->objectid + extent_key->offset - 1;
3201	cluster->boundary[cluster->nr] = extent_key->objectid;
3202	cluster->nr++;
3203
3204	if (cluster->nr >= MAX_EXTENTS) {
3205		ret = relocate_file_extent_cluster(inode, cluster);
3206		if (ret)
3207			return ret;
3208		cluster->nr = 0;
3209	}
3210	return 0;
3211}
3212
3213#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3214static int get_ref_objectid_v0(struct reloc_control *rc,
3215			       struct btrfs_path *path,
3216			       struct btrfs_key *extent_key,
3217			       u64 *ref_objectid, int *path_change)
3218{
3219	struct btrfs_key key;
3220	struct extent_buffer *leaf;
3221	struct btrfs_extent_ref_v0 *ref0;
3222	int ret;
3223	int slot;
3224
3225	leaf = path->nodes[0];
3226	slot = path->slots[0];
3227	while (1) {
3228		if (slot >= btrfs_header_nritems(leaf)) {
3229			ret = btrfs_next_leaf(rc->extent_root, path);
3230			if (ret < 0)
3231				return ret;
3232			BUG_ON(ret > 0);
3233			leaf = path->nodes[0];
3234			slot = path->slots[0];
3235			if (path_change)
3236				*path_change = 1;
3237		}
3238		btrfs_item_key_to_cpu(leaf, &key, slot);
3239		if (key.objectid != extent_key->objectid)
3240			return -ENOENT;
3241
3242		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3243			slot++;
3244			continue;
3245		}
3246		ref0 = btrfs_item_ptr(leaf, slot,
3247				struct btrfs_extent_ref_v0);
3248		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3249		break;
3250	}
3251	return 0;
3252}
3253#endif
3254
3255/*
3256 * helper to add a tree block to the list.
3257 * the major work is getting the generation and level of the block
3258 */
3259static int add_tree_block(struct reloc_control *rc,
3260			  struct btrfs_key *extent_key,
3261			  struct btrfs_path *path,
3262			  struct rb_root *blocks)
3263{
3264	struct extent_buffer *eb;
3265	struct btrfs_extent_item *ei;
3266	struct btrfs_tree_block_info *bi;
3267	struct tree_block *block;
3268	struct rb_node *rb_node;
3269	u32 item_size;
3270	int level = -1;
3271	u64 generation;
3272
3273	eb =  path->nodes[0];
3274	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3275
3276	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3277	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3278		ei = btrfs_item_ptr(eb, path->slots[0],
3279				struct btrfs_extent_item);
3280		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3281			bi = (struct btrfs_tree_block_info *)(ei + 1);
3282			level = btrfs_tree_block_level(eb, bi);
3283		} else {
3284			level = (int)extent_key->offset;
3285		}
3286		generation = btrfs_extent_generation(eb, ei);
 
3287	} else {
3288#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3289		u64 ref_owner;
3290		int ret;
3291
3292		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3293		ret = get_ref_objectid_v0(rc, path, extent_key,
3294					  &ref_owner, NULL);
3295		if (ret < 0)
3296			return ret;
3297		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3298		level = (int)ref_owner;
3299		/* FIXME: get real generation */
3300		generation = 0;
3301#else
3302		BUG();
3303#endif
3304	}
3305
3306	btrfs_release_path(path);
3307
3308	BUG_ON(level == -1);
3309
3310	block = kmalloc(sizeof(*block), GFP_NOFS);
3311	if (!block)
3312		return -ENOMEM;
3313
3314	block->bytenr = extent_key->objectid;
3315	block->key.objectid = rc->extent_root->leafsize;
3316	block->key.offset = generation;
3317	block->level = level;
3318	block->key_ready = 0;
3319
3320	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3321	if (rb_node)
3322		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3323
3324	return 0;
3325}
3326
3327/*
3328 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3329 */
3330static int __add_tree_block(struct reloc_control *rc,
3331			    u64 bytenr, u32 blocksize,
3332			    struct rb_root *blocks)
3333{
3334	struct btrfs_path *path;
3335	struct btrfs_key key;
3336	int ret;
3337	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3338					SKINNY_METADATA);
3339
3340	if (tree_block_processed(bytenr, blocksize, rc))
3341		return 0;
3342
3343	if (tree_search(blocks, bytenr))
3344		return 0;
3345
3346	path = btrfs_alloc_path();
3347	if (!path)
3348		return -ENOMEM;
3349again:
3350	key.objectid = bytenr;
3351	if (skinny) {
3352		key.type = BTRFS_METADATA_ITEM_KEY;
3353		key.offset = (u64)-1;
3354	} else {
3355		key.type = BTRFS_EXTENT_ITEM_KEY;
3356		key.offset = blocksize;
3357	}
3358
3359	path->search_commit_root = 1;
3360	path->skip_locking = 1;
3361	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3362	if (ret < 0)
3363		goto out;
3364
3365	if (ret > 0 && skinny) {
3366		if (path->slots[0]) {
3367			path->slots[0]--;
3368			btrfs_item_key_to_cpu(path->nodes[0], &key,
3369					      path->slots[0]);
3370			if (key.objectid == bytenr &&
3371			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3372			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3373			      key.offset == blocksize)))
3374				ret = 0;
3375		}
3376
3377		if (ret) {
3378			skinny = false;
3379			btrfs_release_path(path);
3380			goto again;
3381		}
3382	}
3383	BUG_ON(ret);
3384
 
3385	ret = add_tree_block(rc, &key, path, blocks);
3386out:
3387	btrfs_free_path(path);
3388	return ret;
3389}
3390
3391/*
3392 * helper to check if the block use full backrefs for pointers in it
3393 */
3394static int block_use_full_backref(struct reloc_control *rc,
3395				  struct extent_buffer *eb)
3396{
3397	u64 flags;
3398	int ret;
3399
3400	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3401	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3402		return 1;
3403
3404	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3405				       eb->start, btrfs_header_level(eb), 1,
3406				       NULL, &flags);
3407	BUG_ON(ret);
3408
3409	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3410		ret = 1;
3411	else
3412		ret = 0;
3413	return ret;
3414}
3415
3416static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3417				    struct inode *inode, u64 ino)
3418{
3419	struct btrfs_key key;
 
3420	struct btrfs_root *root = fs_info->tree_root;
3421	struct btrfs_trans_handle *trans;
 
3422	int ret = 0;
3423
3424	if (inode)
3425		goto truncate;
3426
3427	key.objectid = ino;
3428	key.type = BTRFS_INODE_ITEM_KEY;
3429	key.offset = 0;
3430
3431	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3432	if (IS_ERR(inode) || is_bad_inode(inode)) {
3433		if (!IS_ERR(inode))
3434			iput(inode);
3435		return -ENOENT;
3436	}
3437
3438truncate:
3439	ret = btrfs_check_trunc_cache_free_space(root,
3440						 &fs_info->global_block_rsv);
3441	if (ret)
3442		goto out;
 
3443
3444	trans = btrfs_join_transaction(root);
3445	if (IS_ERR(trans)) {
 
3446		ret = PTR_ERR(trans);
3447		goto out;
3448	}
3449
3450	ret = btrfs_truncate_free_space_cache(root, trans, inode);
3451
 
 
3452	btrfs_end_transaction(trans, root);
3453	btrfs_btree_balance_dirty(root);
3454out:
3455	iput(inode);
3456	return ret;
3457}
3458
3459/*
3460 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3461 * this function scans fs tree to find blocks reference the data extent
3462 */
3463static int find_data_references(struct reloc_control *rc,
3464				struct btrfs_key *extent_key,
3465				struct extent_buffer *leaf,
3466				struct btrfs_extent_data_ref *ref,
3467				struct rb_root *blocks)
3468{
3469	struct btrfs_path *path;
3470	struct tree_block *block;
3471	struct btrfs_root *root;
3472	struct btrfs_file_extent_item *fi;
3473	struct rb_node *rb_node;
3474	struct btrfs_key key;
3475	u64 ref_root;
3476	u64 ref_objectid;
3477	u64 ref_offset;
3478	u32 ref_count;
3479	u32 nritems;
3480	int err = 0;
3481	int added = 0;
3482	int counted;
3483	int ret;
3484
3485	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3486	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3487	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3488	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3489
3490	/*
3491	 * This is an extent belonging to the free space cache, lets just delete
3492	 * it and redo the search.
3493	 */
3494	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3495		ret = delete_block_group_cache(rc->extent_root->fs_info,
3496					       NULL, ref_objectid);
3497		if (ret != -ENOENT)
3498			return ret;
3499		ret = 0;
3500	}
3501
3502	path = btrfs_alloc_path();
3503	if (!path)
3504		return -ENOMEM;
3505	path->reada = 1;
3506
3507	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3508	if (IS_ERR(root)) {
3509		err = PTR_ERR(root);
3510		goto out;
3511	}
3512
3513	key.objectid = ref_objectid;
3514	key.type = BTRFS_EXTENT_DATA_KEY;
3515	if (ref_offset > ((u64)-1 << 32))
3516		key.offset = 0;
3517	else
3518		key.offset = ref_offset;
3519
3520	path->search_commit_root = 1;
3521	path->skip_locking = 1;
3522	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3523	if (ret < 0) {
3524		err = ret;
3525		goto out;
3526	}
3527
3528	leaf = path->nodes[0];
3529	nritems = btrfs_header_nritems(leaf);
3530	/*
3531	 * the references in tree blocks that use full backrefs
3532	 * are not counted in
3533	 */
3534	if (block_use_full_backref(rc, leaf))
3535		counted = 0;
3536	else
3537		counted = 1;
3538	rb_node = tree_search(blocks, leaf->start);
3539	if (rb_node) {
3540		if (counted)
3541			added = 1;
3542		else
3543			path->slots[0] = nritems;
3544	}
3545
3546	while (ref_count > 0) {
3547		while (path->slots[0] >= nritems) {
3548			ret = btrfs_next_leaf(root, path);
3549			if (ret < 0) {
3550				err = ret;
3551				goto out;
3552			}
3553			if (WARN_ON(ret > 0))
 
3554				goto out;
 
3555
3556			leaf = path->nodes[0];
3557			nritems = btrfs_header_nritems(leaf);
3558			added = 0;
3559
3560			if (block_use_full_backref(rc, leaf))
3561				counted = 0;
3562			else
3563				counted = 1;
3564			rb_node = tree_search(blocks, leaf->start);
3565			if (rb_node) {
3566				if (counted)
3567					added = 1;
3568				else
3569					path->slots[0] = nritems;
3570			}
3571		}
3572
3573		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3574		if (WARN_ON(key.objectid != ref_objectid ||
3575		    key.type != BTRFS_EXTENT_DATA_KEY))
 
3576			break;
 
3577
3578		fi = btrfs_item_ptr(leaf, path->slots[0],
3579				    struct btrfs_file_extent_item);
3580
3581		if (btrfs_file_extent_type(leaf, fi) ==
3582		    BTRFS_FILE_EXTENT_INLINE)
3583			goto next;
3584
3585		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3586		    extent_key->objectid)
3587			goto next;
3588
3589		key.offset -= btrfs_file_extent_offset(leaf, fi);
3590		if (key.offset != ref_offset)
3591			goto next;
3592
3593		if (counted)
3594			ref_count--;
3595		if (added)
3596			goto next;
3597
3598		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3599			block = kmalloc(sizeof(*block), GFP_NOFS);
3600			if (!block) {
3601				err = -ENOMEM;
3602				break;
3603			}
3604			block->bytenr = leaf->start;
3605			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3606			block->level = 0;
3607			block->key_ready = 1;
3608			rb_node = tree_insert(blocks, block->bytenr,
3609					      &block->rb_node);
3610			if (rb_node)
3611				backref_tree_panic(rb_node, -EEXIST,
3612						   block->bytenr);
3613		}
3614		if (counted)
3615			added = 1;
3616		else
3617			path->slots[0] = nritems;
3618next:
3619		path->slots[0]++;
3620
3621	}
3622out:
3623	btrfs_free_path(path);
3624	return err;
3625}
3626
3627/*
3628 * helper to find all tree blocks that reference a given data extent
3629 */
3630static noinline_for_stack
3631int add_data_references(struct reloc_control *rc,
3632			struct btrfs_key *extent_key,
3633			struct btrfs_path *path,
3634			struct rb_root *blocks)
3635{
3636	struct btrfs_key key;
3637	struct extent_buffer *eb;
3638	struct btrfs_extent_data_ref *dref;
3639	struct btrfs_extent_inline_ref *iref;
3640	unsigned long ptr;
3641	unsigned long end;
3642	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3643	int ret = 0;
3644	int err = 0;
3645
3646	eb = path->nodes[0];
3647	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3648	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3649#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3650	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3651		ptr = end;
3652	else
3653#endif
3654		ptr += sizeof(struct btrfs_extent_item);
3655
3656	while (ptr < end) {
3657		iref = (struct btrfs_extent_inline_ref *)ptr;
3658		key.type = btrfs_extent_inline_ref_type(eb, iref);
3659		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3660			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3661			ret = __add_tree_block(rc, key.offset, blocksize,
3662					       blocks);
3663		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3664			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3665			ret = find_data_references(rc, extent_key,
3666						   eb, dref, blocks);
3667		} else {
3668			BUG();
3669		}
3670		if (ret) {
3671			err = ret;
3672			goto out;
3673		}
3674		ptr += btrfs_extent_inline_ref_size(key.type);
3675	}
3676	WARN_ON(ptr > end);
3677
3678	while (1) {
3679		cond_resched();
3680		eb = path->nodes[0];
3681		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3682			ret = btrfs_next_leaf(rc->extent_root, path);
3683			if (ret < 0) {
3684				err = ret;
3685				break;
3686			}
3687			if (ret > 0)
3688				break;
3689			eb = path->nodes[0];
3690		}
3691
3692		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3693		if (key.objectid != extent_key->objectid)
3694			break;
3695
3696#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3697		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3698		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3699#else
3700		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3701		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3702#endif
3703			ret = __add_tree_block(rc, key.offset, blocksize,
3704					       blocks);
3705		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3706			dref = btrfs_item_ptr(eb, path->slots[0],
3707					      struct btrfs_extent_data_ref);
3708			ret = find_data_references(rc, extent_key,
3709						   eb, dref, blocks);
3710		} else {
3711			ret = 0;
3712		}
3713		if (ret) {
3714			err = ret;
3715			break;
3716		}
3717		path->slots[0]++;
3718	}
3719out:
3720	btrfs_release_path(path);
3721	if (err)
3722		free_block_list(blocks);
3723	return err;
3724}
3725
3726/*
3727 * helper to find next unprocessed extent
3728 */
3729static noinline_for_stack
3730int find_next_extent(struct btrfs_trans_handle *trans,
3731		     struct reloc_control *rc, struct btrfs_path *path,
3732		     struct btrfs_key *extent_key)
3733{
3734	struct btrfs_key key;
3735	struct extent_buffer *leaf;
3736	u64 start, end, last;
3737	int ret;
3738
3739	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3740	while (1) {
3741		cond_resched();
3742		if (rc->search_start >= last) {
3743			ret = 1;
3744			break;
3745		}
3746
3747		key.objectid = rc->search_start;
3748		key.type = BTRFS_EXTENT_ITEM_KEY;
3749		key.offset = 0;
3750
3751		path->search_commit_root = 1;
3752		path->skip_locking = 1;
3753		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3754					0, 0);
3755		if (ret < 0)
3756			break;
3757next:
3758		leaf = path->nodes[0];
3759		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3760			ret = btrfs_next_leaf(rc->extent_root, path);
3761			if (ret != 0)
3762				break;
3763			leaf = path->nodes[0];
3764		}
3765
3766		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3767		if (key.objectid >= last) {
3768			ret = 1;
3769			break;
3770		}
3771
3772		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3773		    key.type != BTRFS_METADATA_ITEM_KEY) {
3774			path->slots[0]++;
3775			goto next;
3776		}
3777
3778		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3779		    key.objectid + key.offset <= rc->search_start) {
3780			path->slots[0]++;
3781			goto next;
3782		}
3783
3784		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3785		    key.objectid + rc->extent_root->leafsize <=
3786		    rc->search_start) {
3787			path->slots[0]++;
3788			goto next;
3789		}
3790
3791		ret = find_first_extent_bit(&rc->processed_blocks,
3792					    key.objectid, &start, &end,
3793					    EXTENT_DIRTY, NULL);
3794
3795		if (ret == 0 && start <= key.objectid) {
3796			btrfs_release_path(path);
3797			rc->search_start = end + 1;
3798		} else {
3799			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3800				rc->search_start = key.objectid + key.offset;
3801			else
3802				rc->search_start = key.objectid +
3803					rc->extent_root->leafsize;
3804			memcpy(extent_key, &key, sizeof(key));
3805			return 0;
3806		}
3807	}
3808	btrfs_release_path(path);
3809	return ret;
3810}
3811
3812static void set_reloc_control(struct reloc_control *rc)
3813{
3814	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3815
3816	mutex_lock(&fs_info->reloc_mutex);
3817	fs_info->reloc_ctl = rc;
3818	mutex_unlock(&fs_info->reloc_mutex);
3819}
3820
3821static void unset_reloc_control(struct reloc_control *rc)
3822{
3823	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3824
3825	mutex_lock(&fs_info->reloc_mutex);
3826	fs_info->reloc_ctl = NULL;
3827	mutex_unlock(&fs_info->reloc_mutex);
3828}
3829
3830static int check_extent_flags(u64 flags)
3831{
3832	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3833	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3834		return 1;
3835	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3836	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3837		return 1;
3838	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3839	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3840		return 1;
3841	return 0;
3842}
3843
3844static noinline_for_stack
3845int prepare_to_relocate(struct reloc_control *rc)
3846{
3847	struct btrfs_trans_handle *trans;
 
3848
3849	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3850					      BTRFS_BLOCK_RSV_TEMP);
3851	if (!rc->block_rsv)
3852		return -ENOMEM;
3853
 
 
 
 
 
 
 
 
 
 
3854	memset(&rc->cluster, 0, sizeof(rc->cluster));
3855	rc->search_start = rc->block_group->key.objectid;
3856	rc->extents_found = 0;
3857	rc->nodes_relocated = 0;
3858	rc->merging_rsv_size = 0;
3859	rc->reserved_bytes = 0;
3860	rc->block_rsv->size = rc->extent_root->nodesize *
3861			      RELOCATION_RESERVED_NODES;
3862
3863	rc->create_reloc_tree = 1;
3864	set_reloc_control(rc);
3865
3866	trans = btrfs_join_transaction(rc->extent_root);
3867	if (IS_ERR(trans)) {
3868		unset_reloc_control(rc);
3869		/*
3870		 * extent tree is not a ref_cow tree and has no reloc_root to
3871		 * cleanup.  And callers are responsible to free the above
3872		 * block rsv.
3873		 */
3874		return PTR_ERR(trans);
3875	}
3876	btrfs_commit_transaction(trans, rc->extent_root);
3877	return 0;
3878}
3879
3880static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3881{
3882	struct rb_root blocks = RB_ROOT;
3883	struct btrfs_key key;
3884	struct btrfs_trans_handle *trans = NULL;
3885	struct btrfs_path *path;
3886	struct btrfs_extent_item *ei;
 
3887	u64 flags;
3888	u32 item_size;
3889	int ret;
3890	int err = 0;
3891	int progress = 0;
3892
3893	path = btrfs_alloc_path();
3894	if (!path)
3895		return -ENOMEM;
3896	path->reada = 1;
3897
3898	ret = prepare_to_relocate(rc);
3899	if (ret) {
3900		err = ret;
3901		goto out_free;
3902	}
3903
3904	while (1) {
3905		rc->reserved_bytes = 0;
3906		ret = btrfs_block_rsv_refill(rc->extent_root,
3907					rc->block_rsv, rc->block_rsv->size,
3908					BTRFS_RESERVE_FLUSH_ALL);
3909		if (ret) {
3910			err = ret;
3911			break;
3912		}
3913		progress++;
3914		trans = btrfs_start_transaction(rc->extent_root, 0);
3915		if (IS_ERR(trans)) {
3916			err = PTR_ERR(trans);
3917			trans = NULL;
3918			break;
3919		}
3920restart:
3921		if (update_backref_cache(trans, &rc->backref_cache)) {
3922			btrfs_end_transaction(trans, rc->extent_root);
3923			continue;
3924		}
3925
3926		ret = find_next_extent(trans, rc, path, &key);
3927		if (ret < 0)
3928			err = ret;
3929		if (ret != 0)
3930			break;
3931
3932		rc->extents_found++;
3933
3934		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3935				    struct btrfs_extent_item);
3936		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3937		if (item_size >= sizeof(*ei)) {
3938			flags = btrfs_extent_flags(path->nodes[0], ei);
3939			ret = check_extent_flags(flags);
3940			BUG_ON(ret);
3941
3942		} else {
3943#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3944			u64 ref_owner;
3945			int path_change = 0;
3946
3947			BUG_ON(item_size !=
3948			       sizeof(struct btrfs_extent_item_v0));
3949			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3950						  &path_change);
3951			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3952				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3953			else
3954				flags = BTRFS_EXTENT_FLAG_DATA;
3955
3956			if (path_change) {
3957				btrfs_release_path(path);
3958
3959				path->search_commit_root = 1;
3960				path->skip_locking = 1;
3961				ret = btrfs_search_slot(NULL, rc->extent_root,
3962							&key, path, 0, 0);
3963				if (ret < 0) {
3964					err = ret;
3965					break;
3966				}
3967				BUG_ON(ret > 0);
3968			}
3969#else
3970			BUG();
3971#endif
3972		}
3973
3974		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3975			ret = add_tree_block(rc, &key, path, &blocks);
3976		} else if (rc->stage == UPDATE_DATA_PTRS &&
3977			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3978			ret = add_data_references(rc, &key, path, &blocks);
3979		} else {
3980			btrfs_release_path(path);
3981			ret = 0;
3982		}
3983		if (ret < 0) {
3984			err = ret;
3985			break;
3986		}
3987
3988		if (!RB_EMPTY_ROOT(&blocks)) {
3989			ret = relocate_tree_blocks(trans, rc, &blocks);
3990			if (ret < 0) {
3991				/*
3992				 * if we fail to relocate tree blocks, force to update
3993				 * backref cache when committing transaction.
3994				 */
3995				rc->backref_cache.last_trans = trans->transid - 1;
3996
3997				if (ret != -EAGAIN) {
3998					err = ret;
3999					break;
4000				}
4001				rc->extents_found--;
4002				rc->search_start = key.objectid;
4003			}
4004		}
4005
4006		btrfs_end_transaction_throttle(trans, rc->extent_root);
4007		btrfs_btree_balance_dirty(rc->extent_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4008		trans = NULL;
4009
4010		if (rc->stage == MOVE_DATA_EXTENTS &&
4011		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4012			rc->found_file_extent = 1;
4013			ret = relocate_data_extent(rc->data_inode,
4014						   &key, &rc->cluster);
4015			if (ret < 0) {
4016				err = ret;
4017				break;
4018			}
4019		}
4020	}
4021	if (trans && progress && err == -ENOSPC) {
4022		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4023					      rc->block_group->flags);
4024		if (ret == 0) {
4025			err = 0;
4026			progress = 0;
4027			goto restart;
4028		}
4029	}
4030
4031	btrfs_release_path(path);
4032	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4033			  GFP_NOFS);
4034
4035	if (trans) {
 
4036		btrfs_end_transaction_throttle(trans, rc->extent_root);
4037		btrfs_btree_balance_dirty(rc->extent_root);
4038	}
4039
4040	if (!err) {
4041		ret = relocate_file_extent_cluster(rc->data_inode,
4042						   &rc->cluster);
4043		if (ret < 0)
4044			err = ret;
4045	}
4046
4047	rc->create_reloc_tree = 0;
4048	set_reloc_control(rc);
4049
4050	backref_cache_cleanup(&rc->backref_cache);
4051	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4052
4053	err = prepare_to_merge(rc, err);
4054
4055	merge_reloc_roots(rc);
4056
4057	rc->merge_reloc_tree = 0;
4058	unset_reloc_control(rc);
4059	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4060
4061	/* get rid of pinned extents */
4062	trans = btrfs_join_transaction(rc->extent_root);
4063	if (IS_ERR(trans))
4064		err = PTR_ERR(trans);
4065	else
4066		btrfs_commit_transaction(trans, rc->extent_root);
4067out_free:
4068	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4069	btrfs_free_path(path);
4070	return err;
4071}
4072
4073static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4074				 struct btrfs_root *root, u64 objectid)
4075{
4076	struct btrfs_path *path;
4077	struct btrfs_inode_item *item;
4078	struct extent_buffer *leaf;
4079	int ret;
4080
4081	path = btrfs_alloc_path();
4082	if (!path)
4083		return -ENOMEM;
4084
4085	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4086	if (ret)
4087		goto out;
4088
4089	leaf = path->nodes[0];
4090	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4091	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4092	btrfs_set_inode_generation(leaf, item, 1);
4093	btrfs_set_inode_size(leaf, item, 0);
4094	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4095	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4096					  BTRFS_INODE_PREALLOC);
4097	btrfs_mark_buffer_dirty(leaf);
4098	btrfs_release_path(path);
4099out:
4100	btrfs_free_path(path);
4101	return ret;
4102}
4103
4104/*
4105 * helper to create inode for data relocation.
4106 * the inode is in data relocation tree and its link count is 0
4107 */
4108static noinline_for_stack
4109struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4110				 struct btrfs_block_group_cache *group)
4111{
4112	struct inode *inode = NULL;
4113	struct btrfs_trans_handle *trans;
4114	struct btrfs_root *root;
4115	struct btrfs_key key;
 
4116	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
4117	int err = 0;
4118
4119	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4120	if (IS_ERR(root))
4121		return ERR_CAST(root);
4122
4123	trans = btrfs_start_transaction(root, 6);
4124	if (IS_ERR(trans))
4125		return ERR_CAST(trans);
4126
4127	err = btrfs_find_free_objectid(root, &objectid);
4128	if (err)
4129		goto out;
4130
4131	err = __insert_orphan_inode(trans, root, objectid);
4132	BUG_ON(err);
4133
4134	key.objectid = objectid;
4135	key.type = BTRFS_INODE_ITEM_KEY;
4136	key.offset = 0;
4137	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4138	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4139	BTRFS_I(inode)->index_cnt = group->key.objectid;
4140
4141	err = btrfs_orphan_add(trans, inode);
4142out:
 
4143	btrfs_end_transaction(trans, root);
4144	btrfs_btree_balance_dirty(root);
4145	if (err) {
4146		if (inode)
4147			iput(inode);
4148		inode = ERR_PTR(err);
4149	}
4150	return inode;
4151}
4152
4153static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4154{
4155	struct reloc_control *rc;
4156
4157	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4158	if (!rc)
4159		return NULL;
4160
4161	INIT_LIST_HEAD(&rc->reloc_roots);
4162	backref_cache_init(&rc->backref_cache);
4163	mapping_tree_init(&rc->reloc_root_tree);
4164	extent_io_tree_init(&rc->processed_blocks,
4165			    fs_info->btree_inode->i_mapping);
4166	return rc;
4167}
4168
4169/*
4170 * function to relocate all extents in a block group.
4171 */
4172int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4173{
4174	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4175	struct reloc_control *rc;
4176	struct inode *inode;
4177	struct btrfs_path *path;
4178	int ret;
4179	int rw = 0;
4180	int err = 0;
4181
4182	rc = alloc_reloc_control(fs_info);
4183	if (!rc)
4184		return -ENOMEM;
4185
4186	rc->extent_root = extent_root;
4187
4188	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4189	BUG_ON(!rc->block_group);
4190
4191	if (!rc->block_group->ro) {
4192		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4193		if (ret) {
4194			err = ret;
4195			goto out;
4196		}
4197		rw = 1;
4198	}
4199
4200	path = btrfs_alloc_path();
4201	if (!path) {
4202		err = -ENOMEM;
4203		goto out;
4204	}
4205
4206	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4207					path);
4208	btrfs_free_path(path);
4209
4210	if (!IS_ERR(inode))
4211		ret = delete_block_group_cache(fs_info, inode, 0);
4212	else
4213		ret = PTR_ERR(inode);
4214
4215	if (ret && ret != -ENOENT) {
4216		err = ret;
4217		goto out;
4218	}
4219
4220	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4221	if (IS_ERR(rc->data_inode)) {
4222		err = PTR_ERR(rc->data_inode);
4223		rc->data_inode = NULL;
4224		goto out;
4225	}
4226
4227	btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4228	       rc->block_group->key.objectid, rc->block_group->flags);
 
4229
4230	ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
4231	if (ret < 0) {
4232		err = ret;
4233		goto out;
4234	}
4235	btrfs_wait_ordered_roots(fs_info, -1);
4236
4237	while (1) {
4238		mutex_lock(&fs_info->cleaner_mutex);
 
 
4239		ret = relocate_block_group(rc);
 
4240		mutex_unlock(&fs_info->cleaner_mutex);
4241		if (ret < 0) {
4242			err = ret;
4243			goto out;
4244		}
4245
4246		if (rc->extents_found == 0)
4247			break;
4248
4249		btrfs_info(extent_root->fs_info, "found %llu extents",
4250			rc->extents_found);
4251
4252		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4253			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4254						       (u64)-1);
4255			if (ret) {
4256				err = ret;
4257				goto out;
4258			}
4259			invalidate_mapping_pages(rc->data_inode->i_mapping,
4260						 0, -1);
4261			rc->stage = UPDATE_DATA_PTRS;
4262		}
4263	}
4264
 
 
 
 
 
4265	WARN_ON(rc->block_group->pinned > 0);
4266	WARN_ON(rc->block_group->reserved > 0);
4267	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4268out:
4269	if (err && rw)
4270		btrfs_set_block_group_rw(extent_root, rc->block_group);
4271	iput(rc->data_inode);
4272	btrfs_put_block_group(rc->block_group);
4273	kfree(rc);
4274	return err;
4275}
4276
4277static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4278{
4279	struct btrfs_trans_handle *trans;
4280	int ret, err;
4281
4282	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4283	if (IS_ERR(trans))
4284		return PTR_ERR(trans);
4285
4286	memset(&root->root_item.drop_progress, 0,
4287		sizeof(root->root_item.drop_progress));
4288	root->root_item.drop_level = 0;
4289	btrfs_set_root_refs(&root->root_item, 0);
4290	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4291				&root->root_key, &root->root_item);
4292
4293	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4294	if (err)
4295		return err;
4296	return ret;
4297}
4298
4299/*
4300 * recover relocation interrupted by system crash.
4301 *
4302 * this function resumes merging reloc trees with corresponding fs trees.
4303 * this is important for keeping the sharing of tree blocks
4304 */
4305int btrfs_recover_relocation(struct btrfs_root *root)
4306{
4307	LIST_HEAD(reloc_roots);
4308	struct btrfs_key key;
4309	struct btrfs_root *fs_root;
4310	struct btrfs_root *reloc_root;
4311	struct btrfs_path *path;
4312	struct extent_buffer *leaf;
4313	struct reloc_control *rc = NULL;
4314	struct btrfs_trans_handle *trans;
4315	int ret;
4316	int err = 0;
4317
4318	path = btrfs_alloc_path();
4319	if (!path)
4320		return -ENOMEM;
4321	path->reada = -1;
4322
4323	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4324	key.type = BTRFS_ROOT_ITEM_KEY;
4325	key.offset = (u64)-1;
4326
4327	while (1) {
4328		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4329					path, 0, 0);
4330		if (ret < 0) {
4331			err = ret;
4332			goto out;
4333		}
4334		if (ret > 0) {
4335			if (path->slots[0] == 0)
4336				break;
4337			path->slots[0]--;
4338		}
4339		leaf = path->nodes[0];
4340		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4341		btrfs_release_path(path);
4342
4343		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4344		    key.type != BTRFS_ROOT_ITEM_KEY)
4345			break;
4346
4347		reloc_root = btrfs_read_fs_root(root, &key);
4348		if (IS_ERR(reloc_root)) {
4349			err = PTR_ERR(reloc_root);
4350			goto out;
4351		}
4352
4353		list_add(&reloc_root->root_list, &reloc_roots);
4354
4355		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4356			fs_root = read_fs_root(root->fs_info,
4357					       reloc_root->root_key.offset);
4358			if (IS_ERR(fs_root)) {
4359				ret = PTR_ERR(fs_root);
4360				if (ret != -ENOENT) {
4361					err = ret;
4362					goto out;
4363				}
4364				ret = mark_garbage_root(reloc_root);
4365				if (ret < 0) {
4366					err = ret;
4367					goto out;
4368				}
4369			}
4370		}
4371
4372		if (key.offset == 0)
4373			break;
4374
4375		key.offset--;
4376	}
4377	btrfs_release_path(path);
4378
4379	if (list_empty(&reloc_roots))
4380		goto out;
4381
4382	rc = alloc_reloc_control(root->fs_info);
4383	if (!rc) {
4384		err = -ENOMEM;
4385		goto out;
4386	}
4387
4388	rc->extent_root = root->fs_info->extent_root;
4389
4390	set_reloc_control(rc);
4391
4392	trans = btrfs_join_transaction(rc->extent_root);
4393	if (IS_ERR(trans)) {
4394		unset_reloc_control(rc);
4395		err = PTR_ERR(trans);
4396		goto out_free;
4397	}
4398
4399	rc->merge_reloc_tree = 1;
4400
4401	while (!list_empty(&reloc_roots)) {
4402		reloc_root = list_entry(reloc_roots.next,
4403					struct btrfs_root, root_list);
4404		list_del(&reloc_root->root_list);
4405
4406		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4407			list_add_tail(&reloc_root->root_list,
4408				      &rc->reloc_roots);
4409			continue;
4410		}
4411
4412		fs_root = read_fs_root(root->fs_info,
4413				       reloc_root->root_key.offset);
4414		if (IS_ERR(fs_root)) {
4415			err = PTR_ERR(fs_root);
4416			goto out_free;
4417		}
4418
4419		err = __add_reloc_root(reloc_root);
4420		BUG_ON(err < 0); /* -ENOMEM or logic error */
4421		fs_root->reloc_root = reloc_root;
4422	}
4423
4424	err = btrfs_commit_transaction(trans, rc->extent_root);
4425	if (err)
4426		goto out_free;
4427
4428	merge_reloc_roots(rc);
4429
4430	unset_reloc_control(rc);
4431
4432	trans = btrfs_join_transaction(rc->extent_root);
4433	if (IS_ERR(trans))
4434		err = PTR_ERR(trans);
4435	else
4436		err = btrfs_commit_transaction(trans, rc->extent_root);
4437out_free:
4438	kfree(rc);
4439out:
4440	if (!list_empty(&reloc_roots))
4441		free_reloc_roots(&reloc_roots);
4442
 
 
 
 
 
4443	btrfs_free_path(path);
4444
4445	if (err == 0) {
4446		/* cleanup orphan inode in data relocation tree */
4447		fs_root = read_fs_root(root->fs_info,
4448				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4449		if (IS_ERR(fs_root))
4450			err = PTR_ERR(fs_root);
4451		else
4452			err = btrfs_orphan_cleanup(fs_root);
4453	}
4454	return err;
4455}
4456
4457/*
4458 * helper to add ordered checksum for data relocation.
4459 *
4460 * cloning checksum properly handles the nodatasum extents.
4461 * it also saves CPU time to re-calculate the checksum.
4462 */
4463int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4464{
4465	struct btrfs_ordered_sum *sums;
 
4466	struct btrfs_ordered_extent *ordered;
4467	struct btrfs_root *root = BTRFS_I(inode)->root;
 
4468	int ret;
4469	u64 disk_bytenr;
4470	u64 new_bytenr;
4471	LIST_HEAD(list);
4472
4473	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4474	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4475
4476	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4477	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4478				       disk_bytenr + len - 1, &list, 0);
4479	if (ret)
4480		goto out;
4481
4482	while (!list_empty(&list)) {
4483		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4484		list_del_init(&sums->list);
4485
4486		/*
4487		 * We need to offset the new_bytenr based on where the csum is.
4488		 * We need to do this because we will read in entire prealloc
4489		 * extents but we may have written to say the middle of the
4490		 * prealloc extent, so we need to make sure the csum goes with
4491		 * the right disk offset.
4492		 *
4493		 * We can do this because the data reloc inode refers strictly
4494		 * to the on disk bytes, so we don't have to worry about
4495		 * disk_len vs real len like with real inodes since it's all
4496		 * disk length.
4497		 */
4498		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4499		sums->bytenr = new_bytenr;
4500
4501		btrfs_add_ordered_sum(inode, ordered, sums);
4502	}
4503out:
4504	btrfs_put_ordered_extent(ordered);
4505	return ret;
4506}
4507
4508int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4509			  struct btrfs_root *root, struct extent_buffer *buf,
4510			  struct extent_buffer *cow)
4511{
4512	struct reloc_control *rc;
4513	struct backref_node *node;
4514	int first_cow = 0;
4515	int level;
4516	int ret = 0;
4517
4518	rc = root->fs_info->reloc_ctl;
4519	if (!rc)
4520		return 0;
4521
4522	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4523	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4524
4525	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4526		if (buf == root->node)
4527			__update_reloc_root(root, cow->start);
4528	}
4529
4530	level = btrfs_header_level(buf);
4531	if (btrfs_header_generation(buf) <=
4532	    btrfs_root_last_snapshot(&root->root_item))
4533		first_cow = 1;
4534
4535	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4536	    rc->create_reloc_tree) {
4537		WARN_ON(!first_cow && level == 0);
4538
4539		node = rc->backref_cache.path[level];
4540		BUG_ON(node->bytenr != buf->start &&
4541		       node->new_bytenr != buf->start);
4542
4543		drop_node_buffer(node);
4544		extent_buffer_get(cow);
4545		node->eb = cow;
4546		node->new_bytenr = cow->start;
4547
4548		if (!node->pending) {
4549			list_move_tail(&node->list,
4550				       &rc->backref_cache.pending[level]);
4551			node->pending = 1;
4552		}
4553
4554		if (first_cow)
4555			__mark_block_processed(rc, node);
4556
4557		if (first_cow && level > 0)
4558			rc->nodes_relocated += buf->len;
4559	}
4560
4561	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4562		ret = replace_file_extents(trans, rc, root, cow);
4563	return ret;
 
4564}
4565
4566/*
4567 * called before creating snapshot. it calculates metadata reservation
4568 * requried for relocating tree blocks in the snapshot
4569 */
4570void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4571			      struct btrfs_pending_snapshot *pending,
4572			      u64 *bytes_to_reserve)
4573{
4574	struct btrfs_root *root;
4575	struct reloc_control *rc;
4576
4577	root = pending->root;
4578	if (!root->reloc_root)
4579		return;
4580
4581	rc = root->fs_info->reloc_ctl;
4582	if (!rc->merge_reloc_tree)
4583		return;
4584
4585	root = root->reloc_root;
4586	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4587	/*
4588	 * relocation is in the stage of merging trees. the space
4589	 * used by merging a reloc tree is twice the size of
4590	 * relocated tree nodes in the worst case. half for cowing
4591	 * the reloc tree, half for cowing the fs tree. the space
4592	 * used by cowing the reloc tree will be freed after the
4593	 * tree is dropped. if we create snapshot, cowing the fs
4594	 * tree may use more space than it frees. so we need
4595	 * reserve extra space.
4596	 */
4597	*bytes_to_reserve += rc->nodes_relocated;
4598}
4599
4600/*
4601 * called after snapshot is created. migrate block reservation
4602 * and create reloc root for the newly created snapshot
4603 */
4604int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4605			       struct btrfs_pending_snapshot *pending)
4606{
4607	struct btrfs_root *root = pending->root;
4608	struct btrfs_root *reloc_root;
4609	struct btrfs_root *new_root;
4610	struct reloc_control *rc;
4611	int ret;
4612
4613	if (!root->reloc_root)
4614		return 0;
4615
4616	rc = root->fs_info->reloc_ctl;
4617	rc->merging_rsv_size += rc->nodes_relocated;
4618
4619	if (rc->merge_reloc_tree) {
4620		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4621					      rc->block_rsv,
4622					      rc->nodes_relocated);
4623		if (ret)
4624			return ret;
4625	}
4626
4627	new_root = pending->snap;
4628	reloc_root = create_reloc_root(trans, root->reloc_root,
4629				       new_root->root_key.objectid);
4630	if (IS_ERR(reloc_root))
4631		return PTR_ERR(reloc_root);
4632
4633	ret = __add_reloc_root(reloc_root);
4634	BUG_ON(ret < 0);
4635	new_root->reloc_root = reloc_root;
4636
4637	if (rc->create_reloc_tree)
4638		ret = clone_backref_node(trans, rc, root, reloc_root);
4639	return ret;
4640}