Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1992 Ross Biro
7 * Copyright (C) Linus Torvalds
8 * Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle
9 * Copyright (C) 1996 David S. Miller
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 1999 MIPS Technologies, Inc.
12 * Copyright (C) 2000 Ulf Carlsson
13 *
14 * At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit
15 * binaries.
16 */
17#include <linux/compiler.h>
18#include <linux/kernel.h>
19#include <linux/sched.h>
20#include <linux/mm.h>
21#include <linux/errno.h>
22#include <linux/ptrace.h>
23#include <linux/smp.h>
24#include <linux/user.h>
25#include <linux/security.h>
26#include <linux/audit.h>
27#include <linux/seccomp.h>
28
29#include <asm/byteorder.h>
30#include <asm/cpu.h>
31#include <asm/dsp.h>
32#include <asm/fpu.h>
33#include <asm/mipsregs.h>
34#include <asm/mipsmtregs.h>
35#include <asm/pgtable.h>
36#include <asm/page.h>
37#include <asm/uaccess.h>
38#include <asm/bootinfo.h>
39#include <asm/reg.h>
40
41/*
42 * Called by kernel/ptrace.c when detaching..
43 *
44 * Make sure single step bits etc are not set.
45 */
46void ptrace_disable(struct task_struct *child)
47{
48 /* Don't load the watchpoint registers for the ex-child. */
49 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
50}
51
52/*
53 * Read a general register set. We always use the 64-bit format, even
54 * for 32-bit kernels and for 32-bit processes on a 64-bit kernel.
55 * Registers are sign extended to fill the available space.
56 */
57int ptrace_getregs(struct task_struct *child, __s64 __user *data)
58{
59 struct pt_regs *regs;
60 int i;
61
62 if (!access_ok(VERIFY_WRITE, data, 38 * 8))
63 return -EIO;
64
65 regs = task_pt_regs(child);
66
67 for (i = 0; i < 32; i++)
68 __put_user((long)regs->regs[i], data + i);
69 __put_user((long)regs->lo, data + EF_LO - EF_R0);
70 __put_user((long)regs->hi, data + EF_HI - EF_R0);
71 __put_user((long)regs->cp0_epc, data + EF_CP0_EPC - EF_R0);
72 __put_user((long)regs->cp0_badvaddr, data + EF_CP0_BADVADDR - EF_R0);
73 __put_user((long)regs->cp0_status, data + EF_CP0_STATUS - EF_R0);
74 __put_user((long)regs->cp0_cause, data + EF_CP0_CAUSE - EF_R0);
75
76 return 0;
77}
78
79/*
80 * Write a general register set. As for PTRACE_GETREGS, we always use
81 * the 64-bit format. On a 32-bit kernel only the lower order half
82 * (according to endianness) will be used.
83 */
84int ptrace_setregs(struct task_struct *child, __s64 __user *data)
85{
86 struct pt_regs *regs;
87 int i;
88
89 if (!access_ok(VERIFY_READ, data, 38 * 8))
90 return -EIO;
91
92 regs = task_pt_regs(child);
93
94 for (i = 0; i < 32; i++)
95 __get_user(regs->regs[i], data + i);
96 __get_user(regs->lo, data + EF_LO - EF_R0);
97 __get_user(regs->hi, data + EF_HI - EF_R0);
98 __get_user(regs->cp0_epc, data + EF_CP0_EPC - EF_R0);
99
100 /* badvaddr, status, and cause may not be written. */
101
102 return 0;
103}
104
105int ptrace_getfpregs(struct task_struct *child, __u32 __user *data)
106{
107 int i;
108 unsigned int tmp;
109
110 if (!access_ok(VERIFY_WRITE, data, 33 * 8))
111 return -EIO;
112
113 if (tsk_used_math(child)) {
114 fpureg_t *fregs = get_fpu_regs(child);
115 for (i = 0; i < 32; i++)
116 __put_user(fregs[i], i + (__u64 __user *) data);
117 } else {
118 for (i = 0; i < 32; i++)
119 __put_user((__u64) -1, i + (__u64 __user *) data);
120 }
121
122 __put_user(child->thread.fpu.fcr31, data + 64);
123
124 preempt_disable();
125 if (cpu_has_fpu) {
126 unsigned int flags;
127
128 if (cpu_has_mipsmt) {
129 unsigned int vpflags = dvpe();
130 flags = read_c0_status();
131 __enable_fpu();
132 __asm__ __volatile__("cfc1\t%0,$0" : "=r" (tmp));
133 write_c0_status(flags);
134 evpe(vpflags);
135 } else {
136 flags = read_c0_status();
137 __enable_fpu();
138 __asm__ __volatile__("cfc1\t%0,$0" : "=r" (tmp));
139 write_c0_status(flags);
140 }
141 } else {
142 tmp = 0;
143 }
144 preempt_enable();
145 __put_user(tmp, data + 65);
146
147 return 0;
148}
149
150int ptrace_setfpregs(struct task_struct *child, __u32 __user *data)
151{
152 fpureg_t *fregs;
153 int i;
154
155 if (!access_ok(VERIFY_READ, data, 33 * 8))
156 return -EIO;
157
158 fregs = get_fpu_regs(child);
159
160 for (i = 0; i < 32; i++)
161 __get_user(fregs[i], i + (__u64 __user *) data);
162
163 __get_user(child->thread.fpu.fcr31, data + 64);
164
165 /* FIR may not be written. */
166
167 return 0;
168}
169
170int ptrace_get_watch_regs(struct task_struct *child,
171 struct pt_watch_regs __user *addr)
172{
173 enum pt_watch_style style;
174 int i;
175
176 if (!cpu_has_watch || current_cpu_data.watch_reg_use_cnt == 0)
177 return -EIO;
178 if (!access_ok(VERIFY_WRITE, addr, sizeof(struct pt_watch_regs)))
179 return -EIO;
180
181#ifdef CONFIG_32BIT
182 style = pt_watch_style_mips32;
183#define WATCH_STYLE mips32
184#else
185 style = pt_watch_style_mips64;
186#define WATCH_STYLE mips64
187#endif
188
189 __put_user(style, &addr->style);
190 __put_user(current_cpu_data.watch_reg_use_cnt,
191 &addr->WATCH_STYLE.num_valid);
192 for (i = 0; i < current_cpu_data.watch_reg_use_cnt; i++) {
193 __put_user(child->thread.watch.mips3264.watchlo[i],
194 &addr->WATCH_STYLE.watchlo[i]);
195 __put_user(child->thread.watch.mips3264.watchhi[i] & 0xfff,
196 &addr->WATCH_STYLE.watchhi[i]);
197 __put_user(current_cpu_data.watch_reg_masks[i],
198 &addr->WATCH_STYLE.watch_masks[i]);
199 }
200 for (; i < 8; i++) {
201 __put_user(0, &addr->WATCH_STYLE.watchlo[i]);
202 __put_user(0, &addr->WATCH_STYLE.watchhi[i]);
203 __put_user(0, &addr->WATCH_STYLE.watch_masks[i]);
204 }
205
206 return 0;
207}
208
209int ptrace_set_watch_regs(struct task_struct *child,
210 struct pt_watch_regs __user *addr)
211{
212 int i;
213 int watch_active = 0;
214 unsigned long lt[NUM_WATCH_REGS];
215 u16 ht[NUM_WATCH_REGS];
216
217 if (!cpu_has_watch || current_cpu_data.watch_reg_use_cnt == 0)
218 return -EIO;
219 if (!access_ok(VERIFY_READ, addr, sizeof(struct pt_watch_regs)))
220 return -EIO;
221 /* Check the values. */
222 for (i = 0; i < current_cpu_data.watch_reg_use_cnt; i++) {
223 __get_user(lt[i], &addr->WATCH_STYLE.watchlo[i]);
224#ifdef CONFIG_32BIT
225 if (lt[i] & __UA_LIMIT)
226 return -EINVAL;
227#else
228 if (test_tsk_thread_flag(child, TIF_32BIT_ADDR)) {
229 if (lt[i] & 0xffffffff80000000UL)
230 return -EINVAL;
231 } else {
232 if (lt[i] & __UA_LIMIT)
233 return -EINVAL;
234 }
235#endif
236 __get_user(ht[i], &addr->WATCH_STYLE.watchhi[i]);
237 if (ht[i] & ~0xff8)
238 return -EINVAL;
239 }
240 /* Install them. */
241 for (i = 0; i < current_cpu_data.watch_reg_use_cnt; i++) {
242 if (lt[i] & 7)
243 watch_active = 1;
244 child->thread.watch.mips3264.watchlo[i] = lt[i];
245 /* Set the G bit. */
246 child->thread.watch.mips3264.watchhi[i] = ht[i];
247 }
248
249 if (watch_active)
250 set_tsk_thread_flag(child, TIF_LOAD_WATCH);
251 else
252 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
253
254 return 0;
255}
256
257long arch_ptrace(struct task_struct *child, long request,
258 unsigned long addr, unsigned long data)
259{
260 int ret;
261 void __user *addrp = (void __user *) addr;
262 void __user *datavp = (void __user *) data;
263 unsigned long __user *datalp = (void __user *) data;
264
265 switch (request) {
266 /* when I and D space are separate, these will need to be fixed. */
267 case PTRACE_PEEKTEXT: /* read word at location addr. */
268 case PTRACE_PEEKDATA:
269 ret = generic_ptrace_peekdata(child, addr, data);
270 break;
271
272 /* Read the word at location addr in the USER area. */
273 case PTRACE_PEEKUSR: {
274 struct pt_regs *regs;
275 unsigned long tmp = 0;
276
277 regs = task_pt_regs(child);
278 ret = 0; /* Default return value. */
279
280 switch (addr) {
281 case 0 ... 31:
282 tmp = regs->regs[addr];
283 break;
284 case FPR_BASE ... FPR_BASE + 31:
285 if (tsk_used_math(child)) {
286 fpureg_t *fregs = get_fpu_regs(child);
287
288#ifdef CONFIG_32BIT
289 /*
290 * The odd registers are actually the high
291 * order bits of the values stored in the even
292 * registers - unless we're using r2k_switch.S.
293 */
294 if (addr & 1)
295 tmp = (unsigned long) (fregs[((addr & ~1) - 32)] >> 32);
296 else
297 tmp = (unsigned long) (fregs[(addr - 32)] & 0xffffffff);
298#endif
299#ifdef CONFIG_64BIT
300 tmp = fregs[addr - FPR_BASE];
301#endif
302 } else {
303 tmp = -1; /* FP not yet used */
304 }
305 break;
306 case PC:
307 tmp = regs->cp0_epc;
308 break;
309 case CAUSE:
310 tmp = regs->cp0_cause;
311 break;
312 case BADVADDR:
313 tmp = regs->cp0_badvaddr;
314 break;
315 case MMHI:
316 tmp = regs->hi;
317 break;
318 case MMLO:
319 tmp = regs->lo;
320 break;
321#ifdef CONFIG_CPU_HAS_SMARTMIPS
322 case ACX:
323 tmp = regs->acx;
324 break;
325#endif
326 case FPC_CSR:
327 tmp = child->thread.fpu.fcr31;
328 break;
329 case FPC_EIR: { /* implementation / version register */
330 unsigned int flags;
331#ifdef CONFIG_MIPS_MT_SMTC
332 unsigned long irqflags;
333 unsigned int mtflags;
334#endif /* CONFIG_MIPS_MT_SMTC */
335
336 preempt_disable();
337 if (!cpu_has_fpu) {
338 preempt_enable();
339 break;
340 }
341
342#ifdef CONFIG_MIPS_MT_SMTC
343 /* Read-modify-write of Status must be atomic */
344 local_irq_save(irqflags);
345 mtflags = dmt();
346#endif /* CONFIG_MIPS_MT_SMTC */
347 if (cpu_has_mipsmt) {
348 unsigned int vpflags = dvpe();
349 flags = read_c0_status();
350 __enable_fpu();
351 __asm__ __volatile__("cfc1\t%0,$0": "=r" (tmp));
352 write_c0_status(flags);
353 evpe(vpflags);
354 } else {
355 flags = read_c0_status();
356 __enable_fpu();
357 __asm__ __volatile__("cfc1\t%0,$0": "=r" (tmp));
358 write_c0_status(flags);
359 }
360#ifdef CONFIG_MIPS_MT_SMTC
361 emt(mtflags);
362 local_irq_restore(irqflags);
363#endif /* CONFIG_MIPS_MT_SMTC */
364 preempt_enable();
365 break;
366 }
367 case DSP_BASE ... DSP_BASE + 5: {
368 dspreg_t *dregs;
369
370 if (!cpu_has_dsp) {
371 tmp = 0;
372 ret = -EIO;
373 goto out;
374 }
375 dregs = __get_dsp_regs(child);
376 tmp = (unsigned long) (dregs[addr - DSP_BASE]);
377 break;
378 }
379 case DSP_CONTROL:
380 if (!cpu_has_dsp) {
381 tmp = 0;
382 ret = -EIO;
383 goto out;
384 }
385 tmp = child->thread.dsp.dspcontrol;
386 break;
387 default:
388 tmp = 0;
389 ret = -EIO;
390 goto out;
391 }
392 ret = put_user(tmp, datalp);
393 break;
394 }
395
396 /* when I and D space are separate, this will have to be fixed. */
397 case PTRACE_POKETEXT: /* write the word at location addr. */
398 case PTRACE_POKEDATA:
399 ret = generic_ptrace_pokedata(child, addr, data);
400 break;
401
402 case PTRACE_POKEUSR: {
403 struct pt_regs *regs;
404 ret = 0;
405 regs = task_pt_regs(child);
406
407 switch (addr) {
408 case 0 ... 31:
409 regs->regs[addr] = data;
410 break;
411 case FPR_BASE ... FPR_BASE + 31: {
412 fpureg_t *fregs = get_fpu_regs(child);
413
414 if (!tsk_used_math(child)) {
415 /* FP not yet used */
416 memset(&child->thread.fpu, ~0,
417 sizeof(child->thread.fpu));
418 child->thread.fpu.fcr31 = 0;
419 }
420#ifdef CONFIG_32BIT
421 /*
422 * The odd registers are actually the high order bits
423 * of the values stored in the even registers - unless
424 * we're using r2k_switch.S.
425 */
426 if (addr & 1) {
427 fregs[(addr & ~1) - FPR_BASE] &= 0xffffffff;
428 fregs[(addr & ~1) - FPR_BASE] |= ((unsigned long long) data) << 32;
429 } else {
430 fregs[addr - FPR_BASE] &= ~0xffffffffLL;
431 fregs[addr - FPR_BASE] |= data;
432 }
433#endif
434#ifdef CONFIG_64BIT
435 fregs[addr - FPR_BASE] = data;
436#endif
437 break;
438 }
439 case PC:
440 regs->cp0_epc = data;
441 break;
442 case MMHI:
443 regs->hi = data;
444 break;
445 case MMLO:
446 regs->lo = data;
447 break;
448#ifdef CONFIG_CPU_HAS_SMARTMIPS
449 case ACX:
450 regs->acx = data;
451 break;
452#endif
453 case FPC_CSR:
454 child->thread.fpu.fcr31 = data;
455 break;
456 case DSP_BASE ... DSP_BASE + 5: {
457 dspreg_t *dregs;
458
459 if (!cpu_has_dsp) {
460 ret = -EIO;
461 break;
462 }
463
464 dregs = __get_dsp_regs(child);
465 dregs[addr - DSP_BASE] = data;
466 break;
467 }
468 case DSP_CONTROL:
469 if (!cpu_has_dsp) {
470 ret = -EIO;
471 break;
472 }
473 child->thread.dsp.dspcontrol = data;
474 break;
475 default:
476 /* The rest are not allowed. */
477 ret = -EIO;
478 break;
479 }
480 break;
481 }
482
483 case PTRACE_GETREGS:
484 ret = ptrace_getregs(child, datavp);
485 break;
486
487 case PTRACE_SETREGS:
488 ret = ptrace_setregs(child, datavp);
489 break;
490
491 case PTRACE_GETFPREGS:
492 ret = ptrace_getfpregs(child, datavp);
493 break;
494
495 case PTRACE_SETFPREGS:
496 ret = ptrace_setfpregs(child, datavp);
497 break;
498
499 case PTRACE_GET_THREAD_AREA:
500 ret = put_user(task_thread_info(child)->tp_value, datalp);
501 break;
502
503 case PTRACE_GET_WATCH_REGS:
504 ret = ptrace_get_watch_regs(child, addrp);
505 break;
506
507 case PTRACE_SET_WATCH_REGS:
508 ret = ptrace_set_watch_regs(child, addrp);
509 break;
510
511 default:
512 ret = ptrace_request(child, request, addr, data);
513 break;
514 }
515 out:
516 return ret;
517}
518
519static inline int audit_arch(void)
520{
521 int arch = EM_MIPS;
522#ifdef CONFIG_64BIT
523 arch |= __AUDIT_ARCH_64BIT;
524#endif
525#if defined(__LITTLE_ENDIAN)
526 arch |= __AUDIT_ARCH_LE;
527#endif
528 return arch;
529}
530
531/*
532 * Notification of system call entry/exit
533 * - triggered by current->work.syscall_trace
534 */
535asmlinkage void syscall_trace_enter(struct pt_regs *regs)
536{
537 /* do the secure computing check first */
538 secure_computing_strict(regs->regs[2]);
539
540 if (!(current->ptrace & PT_PTRACED))
541 goto out;
542
543 if (!test_thread_flag(TIF_SYSCALL_TRACE))
544 goto out;
545
546 /* The 0x80 provides a way for the tracing parent to distinguish
547 between a syscall stop and SIGTRAP delivery */
548 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) ?
549 0x80 : 0));
550
551 /*
552 * this isn't the same as continuing with a signal, but it will do
553 * for normal use. strace only continues with a signal if the
554 * stopping signal is not SIGTRAP. -brl
555 */
556 if (current->exit_code) {
557 send_sig(current->exit_code, current, 1);
558 current->exit_code = 0;
559 }
560
561out:
562 audit_syscall_entry(audit_arch(), regs->regs[2],
563 regs->regs[4], regs->regs[5],
564 regs->regs[6], regs->regs[7]);
565}
566
567/*
568 * Notification of system call entry/exit
569 * - triggered by current->work.syscall_trace
570 */
571asmlinkage void syscall_trace_leave(struct pt_regs *regs)
572{
573 audit_syscall_exit(regs);
574
575 if (!(current->ptrace & PT_PTRACED))
576 return;
577
578 if (!test_thread_flag(TIF_SYSCALL_TRACE))
579 return;
580
581 /* The 0x80 provides a way for the tracing parent to distinguish
582 between a syscall stop and SIGTRAP delivery */
583 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) ?
584 0x80 : 0));
585
586 /*
587 * this isn't the same as continuing with a signal, but it will do
588 * for normal use. strace only continues with a signal if the
589 * stopping signal is not SIGTRAP. -brl
590 */
591 if (current->exit_code) {
592 send_sig(current->exit_code, current, 1);
593 current->exit_code = 0;
594 }
595}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1992 Ross Biro
7 * Copyright (C) Linus Torvalds
8 * Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle
9 * Copyright (C) 1996 David S. Miller
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 1999 MIPS Technologies, Inc.
12 * Copyright (C) 2000 Ulf Carlsson
13 *
14 * At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit
15 * binaries.
16 */
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/elf.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/sched/task_stack.h>
23#include <linux/mm.h>
24#include <linux/errno.h>
25#include <linux/ptrace.h>
26#include <linux/regset.h>
27#include <linux/smp.h>
28#include <linux/security.h>
29#include <linux/stddef.h>
30#include <linux/tracehook.h>
31#include <linux/audit.h>
32#include <linux/seccomp.h>
33#include <linux/ftrace.h>
34
35#include <asm/byteorder.h>
36#include <asm/cpu.h>
37#include <asm/cpu-info.h>
38#include <asm/dsp.h>
39#include <asm/fpu.h>
40#include <asm/mipsregs.h>
41#include <asm/mipsmtregs.h>
42#include <asm/pgtable.h>
43#include <asm/page.h>
44#include <asm/processor.h>
45#include <asm/syscall.h>
46#include <linux/uaccess.h>
47#include <asm/bootinfo.h>
48#include <asm/reg.h>
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/syscalls.h>
52
53/*
54 * Called by kernel/ptrace.c when detaching..
55 *
56 * Make sure single step bits etc are not set.
57 */
58void ptrace_disable(struct task_struct *child)
59{
60 /* Don't load the watchpoint registers for the ex-child. */
61 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
62}
63
64/*
65 * Read a general register set. We always use the 64-bit format, even
66 * for 32-bit kernels and for 32-bit processes on a 64-bit kernel.
67 * Registers are sign extended to fill the available space.
68 */
69int ptrace_getregs(struct task_struct *child, struct user_pt_regs __user *data)
70{
71 struct pt_regs *regs;
72 int i;
73
74 if (!access_ok(data, 38 * 8))
75 return -EIO;
76
77 regs = task_pt_regs(child);
78
79 for (i = 0; i < 32; i++)
80 __put_user((long)regs->regs[i], (__s64 __user *)&data->regs[i]);
81 __put_user((long)regs->lo, (__s64 __user *)&data->lo);
82 __put_user((long)regs->hi, (__s64 __user *)&data->hi);
83 __put_user((long)regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
84 __put_user((long)regs->cp0_badvaddr, (__s64 __user *)&data->cp0_badvaddr);
85 __put_user((long)regs->cp0_status, (__s64 __user *)&data->cp0_status);
86 __put_user((long)regs->cp0_cause, (__s64 __user *)&data->cp0_cause);
87
88 return 0;
89}
90
91/*
92 * Write a general register set. As for PTRACE_GETREGS, we always use
93 * the 64-bit format. On a 32-bit kernel only the lower order half
94 * (according to endianness) will be used.
95 */
96int ptrace_setregs(struct task_struct *child, struct user_pt_regs __user *data)
97{
98 struct pt_regs *regs;
99 int i;
100
101 if (!access_ok(data, 38 * 8))
102 return -EIO;
103
104 regs = task_pt_regs(child);
105
106 for (i = 0; i < 32; i++)
107 __get_user(regs->regs[i], (__s64 __user *)&data->regs[i]);
108 __get_user(regs->lo, (__s64 __user *)&data->lo);
109 __get_user(regs->hi, (__s64 __user *)&data->hi);
110 __get_user(regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
111
112 /* badvaddr, status, and cause may not be written. */
113
114 /* System call number may have been changed */
115 mips_syscall_update_nr(child, regs);
116
117 return 0;
118}
119
120int ptrace_get_watch_regs(struct task_struct *child,
121 struct pt_watch_regs __user *addr)
122{
123 enum pt_watch_style style;
124 int i;
125
126 if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
127 return -EIO;
128 if (!access_ok(addr, sizeof(struct pt_watch_regs)))
129 return -EIO;
130
131#ifdef CONFIG_32BIT
132 style = pt_watch_style_mips32;
133#define WATCH_STYLE mips32
134#else
135 style = pt_watch_style_mips64;
136#define WATCH_STYLE mips64
137#endif
138
139 __put_user(style, &addr->style);
140 __put_user(boot_cpu_data.watch_reg_use_cnt,
141 &addr->WATCH_STYLE.num_valid);
142 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
143 __put_user(child->thread.watch.mips3264.watchlo[i],
144 &addr->WATCH_STYLE.watchlo[i]);
145 __put_user(child->thread.watch.mips3264.watchhi[i] &
146 (MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW),
147 &addr->WATCH_STYLE.watchhi[i]);
148 __put_user(boot_cpu_data.watch_reg_masks[i],
149 &addr->WATCH_STYLE.watch_masks[i]);
150 }
151 for (; i < 8; i++) {
152 __put_user(0, &addr->WATCH_STYLE.watchlo[i]);
153 __put_user(0, &addr->WATCH_STYLE.watchhi[i]);
154 __put_user(0, &addr->WATCH_STYLE.watch_masks[i]);
155 }
156
157 return 0;
158}
159
160int ptrace_set_watch_regs(struct task_struct *child,
161 struct pt_watch_regs __user *addr)
162{
163 int i;
164 int watch_active = 0;
165 unsigned long lt[NUM_WATCH_REGS];
166 u16 ht[NUM_WATCH_REGS];
167
168 if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
169 return -EIO;
170 if (!access_ok(addr, sizeof(struct pt_watch_regs)))
171 return -EIO;
172 /* Check the values. */
173 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
174 __get_user(lt[i], &addr->WATCH_STYLE.watchlo[i]);
175#ifdef CONFIG_32BIT
176 if (lt[i] & __UA_LIMIT)
177 return -EINVAL;
178#else
179 if (test_tsk_thread_flag(child, TIF_32BIT_ADDR)) {
180 if (lt[i] & 0xffffffff80000000UL)
181 return -EINVAL;
182 } else {
183 if (lt[i] & __UA_LIMIT)
184 return -EINVAL;
185 }
186#endif
187 __get_user(ht[i], &addr->WATCH_STYLE.watchhi[i]);
188 if (ht[i] & ~MIPS_WATCHHI_MASK)
189 return -EINVAL;
190 }
191 /* Install them. */
192 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
193 if (lt[i] & MIPS_WATCHLO_IRW)
194 watch_active = 1;
195 child->thread.watch.mips3264.watchlo[i] = lt[i];
196 /* Set the G bit. */
197 child->thread.watch.mips3264.watchhi[i] = ht[i];
198 }
199
200 if (watch_active)
201 set_tsk_thread_flag(child, TIF_LOAD_WATCH);
202 else
203 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
204
205 return 0;
206}
207
208/* regset get/set implementations */
209
210#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
211
212static int gpr32_get(struct task_struct *target,
213 const struct user_regset *regset,
214 unsigned int pos, unsigned int count,
215 void *kbuf, void __user *ubuf)
216{
217 struct pt_regs *regs = task_pt_regs(target);
218 u32 uregs[ELF_NGREG] = {};
219
220 mips_dump_regs32(uregs, regs);
221 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0,
222 sizeof(uregs));
223}
224
225static int gpr32_set(struct task_struct *target,
226 const struct user_regset *regset,
227 unsigned int pos, unsigned int count,
228 const void *kbuf, const void __user *ubuf)
229{
230 struct pt_regs *regs = task_pt_regs(target);
231 u32 uregs[ELF_NGREG];
232 unsigned start, num_regs, i;
233 int err;
234
235 start = pos / sizeof(u32);
236 num_regs = count / sizeof(u32);
237
238 if (start + num_regs > ELF_NGREG)
239 return -EIO;
240
241 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
242 sizeof(uregs));
243 if (err)
244 return err;
245
246 for (i = start; i < num_regs; i++) {
247 /*
248 * Cast all values to signed here so that if this is a 64-bit
249 * kernel, the supplied 32-bit values will be sign extended.
250 */
251 switch (i) {
252 case MIPS32_EF_R1 ... MIPS32_EF_R25:
253 /* k0/k1 are ignored. */
254 case MIPS32_EF_R28 ... MIPS32_EF_R31:
255 regs->regs[i - MIPS32_EF_R0] = (s32)uregs[i];
256 break;
257 case MIPS32_EF_LO:
258 regs->lo = (s32)uregs[i];
259 break;
260 case MIPS32_EF_HI:
261 regs->hi = (s32)uregs[i];
262 break;
263 case MIPS32_EF_CP0_EPC:
264 regs->cp0_epc = (s32)uregs[i];
265 break;
266 }
267 }
268
269 /* System call number may have been changed */
270 mips_syscall_update_nr(target, regs);
271
272 return 0;
273}
274
275#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
276
277#ifdef CONFIG_64BIT
278
279static int gpr64_get(struct task_struct *target,
280 const struct user_regset *regset,
281 unsigned int pos, unsigned int count,
282 void *kbuf, void __user *ubuf)
283{
284 struct pt_regs *regs = task_pt_regs(target);
285 u64 uregs[ELF_NGREG] = {};
286
287 mips_dump_regs64(uregs, regs);
288 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0,
289 sizeof(uregs));
290}
291
292static int gpr64_set(struct task_struct *target,
293 const struct user_regset *regset,
294 unsigned int pos, unsigned int count,
295 const void *kbuf, const void __user *ubuf)
296{
297 struct pt_regs *regs = task_pt_regs(target);
298 u64 uregs[ELF_NGREG];
299 unsigned start, num_regs, i;
300 int err;
301
302 start = pos / sizeof(u64);
303 num_regs = count / sizeof(u64);
304
305 if (start + num_regs > ELF_NGREG)
306 return -EIO;
307
308 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
309 sizeof(uregs));
310 if (err)
311 return err;
312
313 for (i = start; i < num_regs; i++) {
314 switch (i) {
315 case MIPS64_EF_R1 ... MIPS64_EF_R25:
316 /* k0/k1 are ignored. */
317 case MIPS64_EF_R28 ... MIPS64_EF_R31:
318 regs->regs[i - MIPS64_EF_R0] = uregs[i];
319 break;
320 case MIPS64_EF_LO:
321 regs->lo = uregs[i];
322 break;
323 case MIPS64_EF_HI:
324 regs->hi = uregs[i];
325 break;
326 case MIPS64_EF_CP0_EPC:
327 regs->cp0_epc = uregs[i];
328 break;
329 }
330 }
331
332 /* System call number may have been changed */
333 mips_syscall_update_nr(target, regs);
334
335 return 0;
336}
337
338#endif /* CONFIG_64BIT */
339
340
341#ifdef CONFIG_MIPS_FP_SUPPORT
342
343/*
344 * Poke at FCSR according to its mask. Set the Cause bits even
345 * if a corresponding Enable bit is set. This will be noticed at
346 * the time the thread is switched to and SIGFPE thrown accordingly.
347 */
348static void ptrace_setfcr31(struct task_struct *child, u32 value)
349{
350 u32 fcr31;
351 u32 mask;
352
353 fcr31 = child->thread.fpu.fcr31;
354 mask = boot_cpu_data.fpu_msk31;
355 child->thread.fpu.fcr31 = (value & ~mask) | (fcr31 & mask);
356}
357
358int ptrace_getfpregs(struct task_struct *child, __u32 __user *data)
359{
360 int i;
361
362 if (!access_ok(data, 33 * 8))
363 return -EIO;
364
365 if (tsk_used_math(child)) {
366 union fpureg *fregs = get_fpu_regs(child);
367 for (i = 0; i < 32; i++)
368 __put_user(get_fpr64(&fregs[i], 0),
369 i + (__u64 __user *)data);
370 } else {
371 for (i = 0; i < 32; i++)
372 __put_user((__u64) -1, i + (__u64 __user *) data);
373 }
374
375 __put_user(child->thread.fpu.fcr31, data + 64);
376 __put_user(boot_cpu_data.fpu_id, data + 65);
377
378 return 0;
379}
380
381int ptrace_setfpregs(struct task_struct *child, __u32 __user *data)
382{
383 union fpureg *fregs;
384 u64 fpr_val;
385 u32 value;
386 int i;
387
388 if (!access_ok(data, 33 * 8))
389 return -EIO;
390
391 init_fp_ctx(child);
392 fregs = get_fpu_regs(child);
393
394 for (i = 0; i < 32; i++) {
395 __get_user(fpr_val, i + (__u64 __user *)data);
396 set_fpr64(&fregs[i], 0, fpr_val);
397 }
398
399 __get_user(value, data + 64);
400 ptrace_setfcr31(child, value);
401
402 /* FIR may not be written. */
403
404 return 0;
405}
406
407/*
408 * Copy the floating-point context to the supplied NT_PRFPREG buffer,
409 * !CONFIG_CPU_HAS_MSA variant. FP context's general register slots
410 * correspond 1:1 to buffer slots. Only general registers are copied.
411 */
412static int fpr_get_fpa(struct task_struct *target,
413 unsigned int *pos, unsigned int *count,
414 void **kbuf, void __user **ubuf)
415{
416 return user_regset_copyout(pos, count, kbuf, ubuf,
417 &target->thread.fpu,
418 0, NUM_FPU_REGS * sizeof(elf_fpreg_t));
419}
420
421/*
422 * Copy the floating-point context to the supplied NT_PRFPREG buffer,
423 * CONFIG_CPU_HAS_MSA variant. Only lower 64 bits of FP context's
424 * general register slots are copied to buffer slots. Only general
425 * registers are copied.
426 */
427static int fpr_get_msa(struct task_struct *target,
428 unsigned int *pos, unsigned int *count,
429 void **kbuf, void __user **ubuf)
430{
431 unsigned int i;
432 u64 fpr_val;
433 int err;
434
435 BUILD_BUG_ON(sizeof(fpr_val) != sizeof(elf_fpreg_t));
436 for (i = 0; i < NUM_FPU_REGS; i++) {
437 fpr_val = get_fpr64(&target->thread.fpu.fpr[i], 0);
438 err = user_regset_copyout(pos, count, kbuf, ubuf,
439 &fpr_val, i * sizeof(elf_fpreg_t),
440 (i + 1) * sizeof(elf_fpreg_t));
441 if (err)
442 return err;
443 }
444
445 return 0;
446}
447
448/*
449 * Copy the floating-point context to the supplied NT_PRFPREG buffer.
450 * Choose the appropriate helper for general registers, and then copy
451 * the FCSR and FIR registers separately.
452 */
453static int fpr_get(struct task_struct *target,
454 const struct user_regset *regset,
455 unsigned int pos, unsigned int count,
456 void *kbuf, void __user *ubuf)
457{
458 const int fcr31_pos = NUM_FPU_REGS * sizeof(elf_fpreg_t);
459 const int fir_pos = fcr31_pos + sizeof(u32);
460 int err;
461
462 if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
463 err = fpr_get_fpa(target, &pos, &count, &kbuf, &ubuf);
464 else
465 err = fpr_get_msa(target, &pos, &count, &kbuf, &ubuf);
466 if (err)
467 return err;
468
469 err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
470 &target->thread.fpu.fcr31,
471 fcr31_pos, fcr31_pos + sizeof(u32));
472 if (err)
473 return err;
474
475 err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
476 &boot_cpu_data.fpu_id,
477 fir_pos, fir_pos + sizeof(u32));
478
479 return err;
480}
481
482/*
483 * Copy the supplied NT_PRFPREG buffer to the floating-point context,
484 * !CONFIG_CPU_HAS_MSA variant. Buffer slots correspond 1:1 to FP
485 * context's general register slots. Only general registers are copied.
486 */
487static int fpr_set_fpa(struct task_struct *target,
488 unsigned int *pos, unsigned int *count,
489 const void **kbuf, const void __user **ubuf)
490{
491 return user_regset_copyin(pos, count, kbuf, ubuf,
492 &target->thread.fpu,
493 0, NUM_FPU_REGS * sizeof(elf_fpreg_t));
494}
495
496/*
497 * Copy the supplied NT_PRFPREG buffer to the floating-point context,
498 * CONFIG_CPU_HAS_MSA variant. Buffer slots are copied to lower 64
499 * bits only of FP context's general register slots. Only general
500 * registers are copied.
501 */
502static int fpr_set_msa(struct task_struct *target,
503 unsigned int *pos, unsigned int *count,
504 const void **kbuf, const void __user **ubuf)
505{
506 unsigned int i;
507 u64 fpr_val;
508 int err;
509
510 BUILD_BUG_ON(sizeof(fpr_val) != sizeof(elf_fpreg_t));
511 for (i = 0; i < NUM_FPU_REGS && *count > 0; i++) {
512 err = user_regset_copyin(pos, count, kbuf, ubuf,
513 &fpr_val, i * sizeof(elf_fpreg_t),
514 (i + 1) * sizeof(elf_fpreg_t));
515 if (err)
516 return err;
517 set_fpr64(&target->thread.fpu.fpr[i], 0, fpr_val);
518 }
519
520 return 0;
521}
522
523/*
524 * Copy the supplied NT_PRFPREG buffer to the floating-point context.
525 * Choose the appropriate helper for general registers, and then copy
526 * the FCSR register separately. Ignore the incoming FIR register
527 * contents though, as the register is read-only.
528 *
529 * We optimize for the case where `count % sizeof(elf_fpreg_t) == 0',
530 * which is supposed to have been guaranteed by the kernel before
531 * calling us, e.g. in `ptrace_regset'. We enforce that requirement,
532 * so that we can safely avoid preinitializing temporaries for
533 * partial register writes.
534 */
535static int fpr_set(struct task_struct *target,
536 const struct user_regset *regset,
537 unsigned int pos, unsigned int count,
538 const void *kbuf, const void __user *ubuf)
539{
540 const int fcr31_pos = NUM_FPU_REGS * sizeof(elf_fpreg_t);
541 const int fir_pos = fcr31_pos + sizeof(u32);
542 u32 fcr31;
543 int err;
544
545 BUG_ON(count % sizeof(elf_fpreg_t));
546
547 if (pos + count > sizeof(elf_fpregset_t))
548 return -EIO;
549
550 init_fp_ctx(target);
551
552 if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
553 err = fpr_set_fpa(target, &pos, &count, &kbuf, &ubuf);
554 else
555 err = fpr_set_msa(target, &pos, &count, &kbuf, &ubuf);
556 if (err)
557 return err;
558
559 if (count > 0) {
560 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
561 &fcr31,
562 fcr31_pos, fcr31_pos + sizeof(u32));
563 if (err)
564 return err;
565
566 ptrace_setfcr31(target, fcr31);
567 }
568
569 if (count > 0)
570 err = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
571 fir_pos,
572 fir_pos + sizeof(u32));
573
574 return err;
575}
576
577/* Copy the FP mode setting to the supplied NT_MIPS_FP_MODE buffer. */
578static int fp_mode_get(struct task_struct *target,
579 const struct user_regset *regset,
580 unsigned int pos, unsigned int count,
581 void *kbuf, void __user *ubuf)
582{
583 int fp_mode;
584
585 fp_mode = mips_get_process_fp_mode(target);
586 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &fp_mode, 0,
587 sizeof(fp_mode));
588}
589
590/*
591 * Copy the supplied NT_MIPS_FP_MODE buffer to the FP mode setting.
592 *
593 * We optimize for the case where `count % sizeof(int) == 0', which
594 * is supposed to have been guaranteed by the kernel before calling
595 * us, e.g. in `ptrace_regset'. We enforce that requirement, so
596 * that we can safely avoid preinitializing temporaries for partial
597 * mode writes.
598 */
599static int fp_mode_set(struct task_struct *target,
600 const struct user_regset *regset,
601 unsigned int pos, unsigned int count,
602 const void *kbuf, const void __user *ubuf)
603{
604 int fp_mode;
605 int err;
606
607 BUG_ON(count % sizeof(int));
608
609 if (pos + count > sizeof(fp_mode))
610 return -EIO;
611
612 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fp_mode, 0,
613 sizeof(fp_mode));
614 if (err)
615 return err;
616
617 if (count > 0)
618 err = mips_set_process_fp_mode(target, fp_mode);
619
620 return err;
621}
622
623#endif /* CONFIG_MIPS_FP_SUPPORT */
624
625#ifdef CONFIG_CPU_HAS_MSA
626
627struct msa_control_regs {
628 unsigned int fir;
629 unsigned int fcsr;
630 unsigned int msair;
631 unsigned int msacsr;
632};
633
634static int copy_pad_fprs(struct task_struct *target,
635 const struct user_regset *regset,
636 unsigned int *ppos, unsigned int *pcount,
637 void **pkbuf, void __user **pubuf,
638 unsigned int live_sz)
639{
640 int i, j, start, start_pad, err;
641 unsigned long long fill = ~0ull;
642 unsigned int cp_sz, pad_sz;
643
644 cp_sz = min(regset->size, live_sz);
645 pad_sz = regset->size - cp_sz;
646 WARN_ON(pad_sz % sizeof(fill));
647
648 i = start = err = 0;
649 for (; i < NUM_FPU_REGS; i++, start += regset->size) {
650 err |= user_regset_copyout(ppos, pcount, pkbuf, pubuf,
651 &target->thread.fpu.fpr[i],
652 start, start + cp_sz);
653
654 start_pad = start + cp_sz;
655 for (j = 0; j < (pad_sz / sizeof(fill)); j++) {
656 err |= user_regset_copyout(ppos, pcount, pkbuf, pubuf,
657 &fill, start_pad,
658 start_pad + sizeof(fill));
659 start_pad += sizeof(fill);
660 }
661 }
662
663 return err;
664}
665
666static int msa_get(struct task_struct *target,
667 const struct user_regset *regset,
668 unsigned int pos, unsigned int count,
669 void *kbuf, void __user *ubuf)
670{
671 const unsigned int wr_size = NUM_FPU_REGS * regset->size;
672 const struct msa_control_regs ctrl_regs = {
673 .fir = boot_cpu_data.fpu_id,
674 .fcsr = target->thread.fpu.fcr31,
675 .msair = boot_cpu_data.msa_id,
676 .msacsr = target->thread.fpu.msacsr,
677 };
678 int err;
679
680 if (!tsk_used_math(target)) {
681 /* The task hasn't used FP or MSA, fill with 0xff */
682 err = copy_pad_fprs(target, regset, &pos, &count,
683 &kbuf, &ubuf, 0);
684 } else if (!test_tsk_thread_flag(target, TIF_MSA_CTX_LIVE)) {
685 /* Copy scalar FP context, fill the rest with 0xff */
686 err = copy_pad_fprs(target, regset, &pos, &count,
687 &kbuf, &ubuf, 8);
688 } else if (sizeof(target->thread.fpu.fpr[0]) == regset->size) {
689 /* Trivially copy the vector registers */
690 err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
691 &target->thread.fpu.fpr,
692 0, wr_size);
693 } else {
694 /* Copy as much context as possible, fill the rest with 0xff */
695 err = copy_pad_fprs(target, regset, &pos, &count,
696 &kbuf, &ubuf,
697 sizeof(target->thread.fpu.fpr[0]));
698 }
699
700 err |= user_regset_copyout(&pos, &count, &kbuf, &ubuf,
701 &ctrl_regs, wr_size,
702 wr_size + sizeof(ctrl_regs));
703 return err;
704}
705
706static int msa_set(struct task_struct *target,
707 const struct user_regset *regset,
708 unsigned int pos, unsigned int count,
709 const void *kbuf, const void __user *ubuf)
710{
711 const unsigned int wr_size = NUM_FPU_REGS * regset->size;
712 struct msa_control_regs ctrl_regs;
713 unsigned int cp_sz;
714 int i, err, start;
715
716 init_fp_ctx(target);
717
718 if (sizeof(target->thread.fpu.fpr[0]) == regset->size) {
719 /* Trivially copy the vector registers */
720 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
721 &target->thread.fpu.fpr,
722 0, wr_size);
723 } else {
724 /* Copy as much context as possible */
725 cp_sz = min_t(unsigned int, regset->size,
726 sizeof(target->thread.fpu.fpr[0]));
727
728 i = start = err = 0;
729 for (; i < NUM_FPU_REGS; i++, start += regset->size) {
730 err |= user_regset_copyin(&pos, &count, &kbuf, &ubuf,
731 &target->thread.fpu.fpr[i],
732 start, start + cp_sz);
733 }
734 }
735
736 if (!err)
737 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl_regs,
738 wr_size, wr_size + sizeof(ctrl_regs));
739 if (!err) {
740 target->thread.fpu.fcr31 = ctrl_regs.fcsr & ~FPU_CSR_ALL_X;
741 target->thread.fpu.msacsr = ctrl_regs.msacsr & ~MSA_CSR_CAUSEF;
742 }
743
744 return err;
745}
746
747#endif /* CONFIG_CPU_HAS_MSA */
748
749#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
750
751/*
752 * Copy the DSP context to the supplied 32-bit NT_MIPS_DSP buffer.
753 */
754static int dsp32_get(struct task_struct *target,
755 const struct user_regset *regset,
756 unsigned int pos, unsigned int count,
757 void *kbuf, void __user *ubuf)
758{
759 unsigned int start, num_regs, i;
760 u32 dspregs[NUM_DSP_REGS + 1];
761
762 BUG_ON(count % sizeof(u32));
763
764 if (!cpu_has_dsp)
765 return -EIO;
766
767 start = pos / sizeof(u32);
768 num_regs = count / sizeof(u32);
769
770 if (start + num_regs > NUM_DSP_REGS + 1)
771 return -EIO;
772
773 for (i = start; i < num_regs; i++)
774 switch (i) {
775 case 0 ... NUM_DSP_REGS - 1:
776 dspregs[i] = target->thread.dsp.dspr[i];
777 break;
778 case NUM_DSP_REGS:
779 dspregs[i] = target->thread.dsp.dspcontrol;
780 break;
781 }
782 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, dspregs, 0,
783 sizeof(dspregs));
784}
785
786/*
787 * Copy the supplied 32-bit NT_MIPS_DSP buffer to the DSP context.
788 */
789static int dsp32_set(struct task_struct *target,
790 const struct user_regset *regset,
791 unsigned int pos, unsigned int count,
792 const void *kbuf, const void __user *ubuf)
793{
794 unsigned int start, num_regs, i;
795 u32 dspregs[NUM_DSP_REGS + 1];
796 int err;
797
798 BUG_ON(count % sizeof(u32));
799
800 if (!cpu_has_dsp)
801 return -EIO;
802
803 start = pos / sizeof(u32);
804 num_regs = count / sizeof(u32);
805
806 if (start + num_regs > NUM_DSP_REGS + 1)
807 return -EIO;
808
809 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, dspregs, 0,
810 sizeof(dspregs));
811 if (err)
812 return err;
813
814 for (i = start; i < num_regs; i++)
815 switch (i) {
816 case 0 ... NUM_DSP_REGS - 1:
817 target->thread.dsp.dspr[i] = (s32)dspregs[i];
818 break;
819 case NUM_DSP_REGS:
820 target->thread.dsp.dspcontrol = (s32)dspregs[i];
821 break;
822 }
823
824 return 0;
825}
826
827#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
828
829#ifdef CONFIG_64BIT
830
831/*
832 * Copy the DSP context to the supplied 64-bit NT_MIPS_DSP buffer.
833 */
834static int dsp64_get(struct task_struct *target,
835 const struct user_regset *regset,
836 unsigned int pos, unsigned int count,
837 void *kbuf, void __user *ubuf)
838{
839 unsigned int start, num_regs, i;
840 u64 dspregs[NUM_DSP_REGS + 1];
841
842 BUG_ON(count % sizeof(u64));
843
844 if (!cpu_has_dsp)
845 return -EIO;
846
847 start = pos / sizeof(u64);
848 num_regs = count / sizeof(u64);
849
850 if (start + num_regs > NUM_DSP_REGS + 1)
851 return -EIO;
852
853 for (i = start; i < num_regs; i++)
854 switch (i) {
855 case 0 ... NUM_DSP_REGS - 1:
856 dspregs[i] = target->thread.dsp.dspr[i];
857 break;
858 case NUM_DSP_REGS:
859 dspregs[i] = target->thread.dsp.dspcontrol;
860 break;
861 }
862 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, dspregs, 0,
863 sizeof(dspregs));
864}
865
866/*
867 * Copy the supplied 64-bit NT_MIPS_DSP buffer to the DSP context.
868 */
869static int dsp64_set(struct task_struct *target,
870 const struct user_regset *regset,
871 unsigned int pos, unsigned int count,
872 const void *kbuf, const void __user *ubuf)
873{
874 unsigned int start, num_regs, i;
875 u64 dspregs[NUM_DSP_REGS + 1];
876 int err;
877
878 BUG_ON(count % sizeof(u64));
879
880 if (!cpu_has_dsp)
881 return -EIO;
882
883 start = pos / sizeof(u64);
884 num_regs = count / sizeof(u64);
885
886 if (start + num_regs > NUM_DSP_REGS + 1)
887 return -EIO;
888
889 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, dspregs, 0,
890 sizeof(dspregs));
891 if (err)
892 return err;
893
894 for (i = start; i < num_regs; i++)
895 switch (i) {
896 case 0 ... NUM_DSP_REGS - 1:
897 target->thread.dsp.dspr[i] = dspregs[i];
898 break;
899 case NUM_DSP_REGS:
900 target->thread.dsp.dspcontrol = dspregs[i];
901 break;
902 }
903
904 return 0;
905}
906
907#endif /* CONFIG_64BIT */
908
909/*
910 * Determine whether the DSP context is present.
911 */
912static int dsp_active(struct task_struct *target,
913 const struct user_regset *regset)
914{
915 return cpu_has_dsp ? NUM_DSP_REGS + 1 : -ENODEV;
916}
917
918enum mips_regset {
919 REGSET_GPR,
920 REGSET_DSP,
921#ifdef CONFIG_MIPS_FP_SUPPORT
922 REGSET_FPR,
923 REGSET_FP_MODE,
924#endif
925#ifdef CONFIG_CPU_HAS_MSA
926 REGSET_MSA,
927#endif
928};
929
930struct pt_regs_offset {
931 const char *name;
932 int offset;
933};
934
935#define REG_OFFSET_NAME(reg, r) { \
936 .name = #reg, \
937 .offset = offsetof(struct pt_regs, r) \
938}
939
940#define REG_OFFSET_END { \
941 .name = NULL, \
942 .offset = 0 \
943}
944
945static const struct pt_regs_offset regoffset_table[] = {
946 REG_OFFSET_NAME(r0, regs[0]),
947 REG_OFFSET_NAME(r1, regs[1]),
948 REG_OFFSET_NAME(r2, regs[2]),
949 REG_OFFSET_NAME(r3, regs[3]),
950 REG_OFFSET_NAME(r4, regs[4]),
951 REG_OFFSET_NAME(r5, regs[5]),
952 REG_OFFSET_NAME(r6, regs[6]),
953 REG_OFFSET_NAME(r7, regs[7]),
954 REG_OFFSET_NAME(r8, regs[8]),
955 REG_OFFSET_NAME(r9, regs[9]),
956 REG_OFFSET_NAME(r10, regs[10]),
957 REG_OFFSET_NAME(r11, regs[11]),
958 REG_OFFSET_NAME(r12, regs[12]),
959 REG_OFFSET_NAME(r13, regs[13]),
960 REG_OFFSET_NAME(r14, regs[14]),
961 REG_OFFSET_NAME(r15, regs[15]),
962 REG_OFFSET_NAME(r16, regs[16]),
963 REG_OFFSET_NAME(r17, regs[17]),
964 REG_OFFSET_NAME(r18, regs[18]),
965 REG_OFFSET_NAME(r19, regs[19]),
966 REG_OFFSET_NAME(r20, regs[20]),
967 REG_OFFSET_NAME(r21, regs[21]),
968 REG_OFFSET_NAME(r22, regs[22]),
969 REG_OFFSET_NAME(r23, regs[23]),
970 REG_OFFSET_NAME(r24, regs[24]),
971 REG_OFFSET_NAME(r25, regs[25]),
972 REG_OFFSET_NAME(r26, regs[26]),
973 REG_OFFSET_NAME(r27, regs[27]),
974 REG_OFFSET_NAME(r28, regs[28]),
975 REG_OFFSET_NAME(r29, regs[29]),
976 REG_OFFSET_NAME(r30, regs[30]),
977 REG_OFFSET_NAME(r31, regs[31]),
978 REG_OFFSET_NAME(c0_status, cp0_status),
979 REG_OFFSET_NAME(hi, hi),
980 REG_OFFSET_NAME(lo, lo),
981#ifdef CONFIG_CPU_HAS_SMARTMIPS
982 REG_OFFSET_NAME(acx, acx),
983#endif
984 REG_OFFSET_NAME(c0_badvaddr, cp0_badvaddr),
985 REG_OFFSET_NAME(c0_cause, cp0_cause),
986 REG_OFFSET_NAME(c0_epc, cp0_epc),
987#ifdef CONFIG_CPU_CAVIUM_OCTEON
988 REG_OFFSET_NAME(mpl0, mpl[0]),
989 REG_OFFSET_NAME(mpl1, mpl[1]),
990 REG_OFFSET_NAME(mpl2, mpl[2]),
991 REG_OFFSET_NAME(mtp0, mtp[0]),
992 REG_OFFSET_NAME(mtp1, mtp[1]),
993 REG_OFFSET_NAME(mtp2, mtp[2]),
994#endif
995 REG_OFFSET_END,
996};
997
998/**
999 * regs_query_register_offset() - query register offset from its name
1000 * @name: the name of a register
1001 *
1002 * regs_query_register_offset() returns the offset of a register in struct
1003 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
1004 */
1005int regs_query_register_offset(const char *name)
1006{
1007 const struct pt_regs_offset *roff;
1008 for (roff = regoffset_table; roff->name != NULL; roff++)
1009 if (!strcmp(roff->name, name))
1010 return roff->offset;
1011 return -EINVAL;
1012}
1013
1014#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
1015
1016static const struct user_regset mips_regsets[] = {
1017 [REGSET_GPR] = {
1018 .core_note_type = NT_PRSTATUS,
1019 .n = ELF_NGREG,
1020 .size = sizeof(unsigned int),
1021 .align = sizeof(unsigned int),
1022 .get = gpr32_get,
1023 .set = gpr32_set,
1024 },
1025 [REGSET_DSP] = {
1026 .core_note_type = NT_MIPS_DSP,
1027 .n = NUM_DSP_REGS + 1,
1028 .size = sizeof(u32),
1029 .align = sizeof(u32),
1030 .get = dsp32_get,
1031 .set = dsp32_set,
1032 .active = dsp_active,
1033 },
1034#ifdef CONFIG_MIPS_FP_SUPPORT
1035 [REGSET_FPR] = {
1036 .core_note_type = NT_PRFPREG,
1037 .n = ELF_NFPREG,
1038 .size = sizeof(elf_fpreg_t),
1039 .align = sizeof(elf_fpreg_t),
1040 .get = fpr_get,
1041 .set = fpr_set,
1042 },
1043 [REGSET_FP_MODE] = {
1044 .core_note_type = NT_MIPS_FP_MODE,
1045 .n = 1,
1046 .size = sizeof(int),
1047 .align = sizeof(int),
1048 .get = fp_mode_get,
1049 .set = fp_mode_set,
1050 },
1051#endif
1052#ifdef CONFIG_CPU_HAS_MSA
1053 [REGSET_MSA] = {
1054 .core_note_type = NT_MIPS_MSA,
1055 .n = NUM_FPU_REGS + 1,
1056 .size = 16,
1057 .align = 16,
1058 .get = msa_get,
1059 .set = msa_set,
1060 },
1061#endif
1062};
1063
1064static const struct user_regset_view user_mips_view = {
1065 .name = "mips",
1066 .e_machine = ELF_ARCH,
1067 .ei_osabi = ELF_OSABI,
1068 .regsets = mips_regsets,
1069 .n = ARRAY_SIZE(mips_regsets),
1070};
1071
1072#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
1073
1074#ifdef CONFIG_64BIT
1075
1076static const struct user_regset mips64_regsets[] = {
1077 [REGSET_GPR] = {
1078 .core_note_type = NT_PRSTATUS,
1079 .n = ELF_NGREG,
1080 .size = sizeof(unsigned long),
1081 .align = sizeof(unsigned long),
1082 .get = gpr64_get,
1083 .set = gpr64_set,
1084 },
1085 [REGSET_DSP] = {
1086 .core_note_type = NT_MIPS_DSP,
1087 .n = NUM_DSP_REGS + 1,
1088 .size = sizeof(u64),
1089 .align = sizeof(u64),
1090 .get = dsp64_get,
1091 .set = dsp64_set,
1092 .active = dsp_active,
1093 },
1094#ifdef CONFIG_MIPS_FP_SUPPORT
1095 [REGSET_FP_MODE] = {
1096 .core_note_type = NT_MIPS_FP_MODE,
1097 .n = 1,
1098 .size = sizeof(int),
1099 .align = sizeof(int),
1100 .get = fp_mode_get,
1101 .set = fp_mode_set,
1102 },
1103 [REGSET_FPR] = {
1104 .core_note_type = NT_PRFPREG,
1105 .n = ELF_NFPREG,
1106 .size = sizeof(elf_fpreg_t),
1107 .align = sizeof(elf_fpreg_t),
1108 .get = fpr_get,
1109 .set = fpr_set,
1110 },
1111#endif
1112#ifdef CONFIG_CPU_HAS_MSA
1113 [REGSET_MSA] = {
1114 .core_note_type = NT_MIPS_MSA,
1115 .n = NUM_FPU_REGS + 1,
1116 .size = 16,
1117 .align = 16,
1118 .get = msa_get,
1119 .set = msa_set,
1120 },
1121#endif
1122};
1123
1124static const struct user_regset_view user_mips64_view = {
1125 .name = "mips64",
1126 .e_machine = ELF_ARCH,
1127 .ei_osabi = ELF_OSABI,
1128 .regsets = mips64_regsets,
1129 .n = ARRAY_SIZE(mips64_regsets),
1130};
1131
1132#ifdef CONFIG_MIPS32_N32
1133
1134static const struct user_regset_view user_mipsn32_view = {
1135 .name = "mipsn32",
1136 .e_flags = EF_MIPS_ABI2,
1137 .e_machine = ELF_ARCH,
1138 .ei_osabi = ELF_OSABI,
1139 .regsets = mips64_regsets,
1140 .n = ARRAY_SIZE(mips64_regsets),
1141};
1142
1143#endif /* CONFIG_MIPS32_N32 */
1144
1145#endif /* CONFIG_64BIT */
1146
1147const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1148{
1149#ifdef CONFIG_32BIT
1150 return &user_mips_view;
1151#else
1152#ifdef CONFIG_MIPS32_O32
1153 if (test_tsk_thread_flag(task, TIF_32BIT_REGS))
1154 return &user_mips_view;
1155#endif
1156#ifdef CONFIG_MIPS32_N32
1157 if (test_tsk_thread_flag(task, TIF_32BIT_ADDR))
1158 return &user_mipsn32_view;
1159#endif
1160 return &user_mips64_view;
1161#endif
1162}
1163
1164long arch_ptrace(struct task_struct *child, long request,
1165 unsigned long addr, unsigned long data)
1166{
1167 int ret;
1168 void __user *addrp = (void __user *) addr;
1169 void __user *datavp = (void __user *) data;
1170 unsigned long __user *datalp = (void __user *) data;
1171
1172 switch (request) {
1173 /* when I and D space are separate, these will need to be fixed. */
1174 case PTRACE_PEEKTEXT: /* read word at location addr. */
1175 case PTRACE_PEEKDATA:
1176 ret = generic_ptrace_peekdata(child, addr, data);
1177 break;
1178
1179 /* Read the word at location addr in the USER area. */
1180 case PTRACE_PEEKUSR: {
1181 struct pt_regs *regs;
1182 unsigned long tmp = 0;
1183
1184 regs = task_pt_regs(child);
1185 ret = 0; /* Default return value. */
1186
1187 switch (addr) {
1188 case 0 ... 31:
1189 tmp = regs->regs[addr];
1190 break;
1191#ifdef CONFIG_MIPS_FP_SUPPORT
1192 case FPR_BASE ... FPR_BASE + 31: {
1193 union fpureg *fregs;
1194
1195 if (!tsk_used_math(child)) {
1196 /* FP not yet used */
1197 tmp = -1;
1198 break;
1199 }
1200 fregs = get_fpu_regs(child);
1201
1202#ifdef CONFIG_32BIT
1203 if (test_tsk_thread_flag(child, TIF_32BIT_FPREGS)) {
1204 /*
1205 * The odd registers are actually the high
1206 * order bits of the values stored in the even
1207 * registers.
1208 */
1209 tmp = get_fpr32(&fregs[(addr & ~1) - FPR_BASE],
1210 addr & 1);
1211 break;
1212 }
1213#endif
1214 tmp = get_fpr64(&fregs[addr - FPR_BASE], 0);
1215 break;
1216 }
1217 case FPC_CSR:
1218 tmp = child->thread.fpu.fcr31;
1219 break;
1220 case FPC_EIR:
1221 /* implementation / version register */
1222 tmp = boot_cpu_data.fpu_id;
1223 break;
1224#endif
1225 case PC:
1226 tmp = regs->cp0_epc;
1227 break;
1228 case CAUSE:
1229 tmp = regs->cp0_cause;
1230 break;
1231 case BADVADDR:
1232 tmp = regs->cp0_badvaddr;
1233 break;
1234 case MMHI:
1235 tmp = regs->hi;
1236 break;
1237 case MMLO:
1238 tmp = regs->lo;
1239 break;
1240#ifdef CONFIG_CPU_HAS_SMARTMIPS
1241 case ACX:
1242 tmp = regs->acx;
1243 break;
1244#endif
1245 case DSP_BASE ... DSP_BASE + 5: {
1246 dspreg_t *dregs;
1247
1248 if (!cpu_has_dsp) {
1249 tmp = 0;
1250 ret = -EIO;
1251 goto out;
1252 }
1253 dregs = __get_dsp_regs(child);
1254 tmp = dregs[addr - DSP_BASE];
1255 break;
1256 }
1257 case DSP_CONTROL:
1258 if (!cpu_has_dsp) {
1259 tmp = 0;
1260 ret = -EIO;
1261 goto out;
1262 }
1263 tmp = child->thread.dsp.dspcontrol;
1264 break;
1265 default:
1266 tmp = 0;
1267 ret = -EIO;
1268 goto out;
1269 }
1270 ret = put_user(tmp, datalp);
1271 break;
1272 }
1273
1274 /* when I and D space are separate, this will have to be fixed. */
1275 case PTRACE_POKETEXT: /* write the word at location addr. */
1276 case PTRACE_POKEDATA:
1277 ret = generic_ptrace_pokedata(child, addr, data);
1278 break;
1279
1280 case PTRACE_POKEUSR: {
1281 struct pt_regs *regs;
1282 ret = 0;
1283 regs = task_pt_regs(child);
1284
1285 switch (addr) {
1286 case 0 ... 31:
1287 regs->regs[addr] = data;
1288 /* System call number may have been changed */
1289 if (addr == 2)
1290 mips_syscall_update_nr(child, regs);
1291 else if (addr == 4 &&
1292 mips_syscall_is_indirect(child, regs))
1293 mips_syscall_update_nr(child, regs);
1294 break;
1295#ifdef CONFIG_MIPS_FP_SUPPORT
1296 case FPR_BASE ... FPR_BASE + 31: {
1297 union fpureg *fregs = get_fpu_regs(child);
1298
1299 init_fp_ctx(child);
1300#ifdef CONFIG_32BIT
1301 if (test_tsk_thread_flag(child, TIF_32BIT_FPREGS)) {
1302 /*
1303 * The odd registers are actually the high
1304 * order bits of the values stored in the even
1305 * registers.
1306 */
1307 set_fpr32(&fregs[(addr & ~1) - FPR_BASE],
1308 addr & 1, data);
1309 break;
1310 }
1311#endif
1312 set_fpr64(&fregs[addr - FPR_BASE], 0, data);
1313 break;
1314 }
1315 case FPC_CSR:
1316 init_fp_ctx(child);
1317 ptrace_setfcr31(child, data);
1318 break;
1319#endif
1320 case PC:
1321 regs->cp0_epc = data;
1322 break;
1323 case MMHI:
1324 regs->hi = data;
1325 break;
1326 case MMLO:
1327 regs->lo = data;
1328 break;
1329#ifdef CONFIG_CPU_HAS_SMARTMIPS
1330 case ACX:
1331 regs->acx = data;
1332 break;
1333#endif
1334 case DSP_BASE ... DSP_BASE + 5: {
1335 dspreg_t *dregs;
1336
1337 if (!cpu_has_dsp) {
1338 ret = -EIO;
1339 break;
1340 }
1341
1342 dregs = __get_dsp_regs(child);
1343 dregs[addr - DSP_BASE] = data;
1344 break;
1345 }
1346 case DSP_CONTROL:
1347 if (!cpu_has_dsp) {
1348 ret = -EIO;
1349 break;
1350 }
1351 child->thread.dsp.dspcontrol = data;
1352 break;
1353 default:
1354 /* The rest are not allowed. */
1355 ret = -EIO;
1356 break;
1357 }
1358 break;
1359 }
1360
1361 case PTRACE_GETREGS:
1362 ret = ptrace_getregs(child, datavp);
1363 break;
1364
1365 case PTRACE_SETREGS:
1366 ret = ptrace_setregs(child, datavp);
1367 break;
1368
1369#ifdef CONFIG_MIPS_FP_SUPPORT
1370 case PTRACE_GETFPREGS:
1371 ret = ptrace_getfpregs(child, datavp);
1372 break;
1373
1374 case PTRACE_SETFPREGS:
1375 ret = ptrace_setfpregs(child, datavp);
1376 break;
1377#endif
1378 case PTRACE_GET_THREAD_AREA:
1379 ret = put_user(task_thread_info(child)->tp_value, datalp);
1380 break;
1381
1382 case PTRACE_GET_WATCH_REGS:
1383 ret = ptrace_get_watch_regs(child, addrp);
1384 break;
1385
1386 case PTRACE_SET_WATCH_REGS:
1387 ret = ptrace_set_watch_regs(child, addrp);
1388 break;
1389
1390 default:
1391 ret = ptrace_request(child, request, addr, data);
1392 break;
1393 }
1394 out:
1395 return ret;
1396}
1397
1398/*
1399 * Notification of system call entry/exit
1400 * - triggered by current->work.syscall_trace
1401 */
1402asmlinkage long syscall_trace_enter(struct pt_regs *regs, long syscall)
1403{
1404 user_exit();
1405
1406 current_thread_info()->syscall = syscall;
1407
1408 if (test_thread_flag(TIF_SYSCALL_TRACE)) {
1409 if (tracehook_report_syscall_entry(regs))
1410 return -1;
1411 syscall = current_thread_info()->syscall;
1412 }
1413
1414#ifdef CONFIG_SECCOMP
1415 if (unlikely(test_thread_flag(TIF_SECCOMP))) {
1416 int ret, i;
1417 struct seccomp_data sd;
1418 unsigned long args[6];
1419
1420 sd.nr = syscall;
1421 sd.arch = syscall_get_arch(current);
1422 syscall_get_arguments(current, regs, args);
1423 for (i = 0; i < 6; i++)
1424 sd.args[i] = args[i];
1425 sd.instruction_pointer = KSTK_EIP(current);
1426
1427 ret = __secure_computing(&sd);
1428 if (ret == -1)
1429 return ret;
1430 syscall = current_thread_info()->syscall;
1431 }
1432#endif
1433
1434 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
1435 trace_sys_enter(regs, regs->regs[2]);
1436
1437 audit_syscall_entry(syscall, regs->regs[4], regs->regs[5],
1438 regs->regs[6], regs->regs[7]);
1439
1440 /*
1441 * Negative syscall numbers are mistaken for rejected syscalls, but
1442 * won't have had the return value set appropriately, so we do so now.
1443 */
1444 if (syscall < 0)
1445 syscall_set_return_value(current, regs, -ENOSYS, 0);
1446 return syscall;
1447}
1448
1449/*
1450 * Notification of system call entry/exit
1451 * - triggered by current->work.syscall_trace
1452 */
1453asmlinkage void syscall_trace_leave(struct pt_regs *regs)
1454{
1455 /*
1456 * We may come here right after calling schedule_user()
1457 * or do_notify_resume(), in which case we can be in RCU
1458 * user mode.
1459 */
1460 user_exit();
1461
1462 audit_syscall_exit(regs);
1463
1464 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
1465 trace_sys_exit(regs, regs_return_value(regs));
1466
1467 if (test_thread_flag(TIF_SYSCALL_TRACE))
1468 tracehook_report_syscall_exit(regs, 0);
1469
1470 user_enter();
1471}