Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1992 Ross Biro
7 * Copyright (C) Linus Torvalds
8 * Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle
9 * Copyright (C) 1996 David S. Miller
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 1999 MIPS Technologies, Inc.
12 * Copyright (C) 2000 Ulf Carlsson
13 *
14 * At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit
15 * binaries.
16 */
17#include <linux/compiler.h>
18#include <linux/kernel.h>
19#include <linux/sched.h>
20#include <linux/mm.h>
21#include <linux/errno.h>
22#include <linux/ptrace.h>
23#include <linux/smp.h>
24#include <linux/user.h>
25#include <linux/security.h>
26#include <linux/audit.h>
27#include <linux/seccomp.h>
28
29#include <asm/byteorder.h>
30#include <asm/cpu.h>
31#include <asm/dsp.h>
32#include <asm/fpu.h>
33#include <asm/mipsregs.h>
34#include <asm/mipsmtregs.h>
35#include <asm/pgtable.h>
36#include <asm/page.h>
37#include <asm/uaccess.h>
38#include <asm/bootinfo.h>
39#include <asm/reg.h>
40
41/*
42 * Called by kernel/ptrace.c when detaching..
43 *
44 * Make sure single step bits etc are not set.
45 */
46void ptrace_disable(struct task_struct *child)
47{
48 /* Don't load the watchpoint registers for the ex-child. */
49 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
50}
51
52/*
53 * Read a general register set. We always use the 64-bit format, even
54 * for 32-bit kernels and for 32-bit processes on a 64-bit kernel.
55 * Registers are sign extended to fill the available space.
56 */
57int ptrace_getregs(struct task_struct *child, __s64 __user *data)
58{
59 struct pt_regs *regs;
60 int i;
61
62 if (!access_ok(VERIFY_WRITE, data, 38 * 8))
63 return -EIO;
64
65 regs = task_pt_regs(child);
66
67 for (i = 0; i < 32; i++)
68 __put_user((long)regs->regs[i], data + i);
69 __put_user((long)regs->lo, data + EF_LO - EF_R0);
70 __put_user((long)regs->hi, data + EF_HI - EF_R0);
71 __put_user((long)regs->cp0_epc, data + EF_CP0_EPC - EF_R0);
72 __put_user((long)regs->cp0_badvaddr, data + EF_CP0_BADVADDR - EF_R0);
73 __put_user((long)regs->cp0_status, data + EF_CP0_STATUS - EF_R0);
74 __put_user((long)regs->cp0_cause, data + EF_CP0_CAUSE - EF_R0);
75
76 return 0;
77}
78
79/*
80 * Write a general register set. As for PTRACE_GETREGS, we always use
81 * the 64-bit format. On a 32-bit kernel only the lower order half
82 * (according to endianness) will be used.
83 */
84int ptrace_setregs(struct task_struct *child, __s64 __user *data)
85{
86 struct pt_regs *regs;
87 int i;
88
89 if (!access_ok(VERIFY_READ, data, 38 * 8))
90 return -EIO;
91
92 regs = task_pt_regs(child);
93
94 for (i = 0; i < 32; i++)
95 __get_user(regs->regs[i], data + i);
96 __get_user(regs->lo, data + EF_LO - EF_R0);
97 __get_user(regs->hi, data + EF_HI - EF_R0);
98 __get_user(regs->cp0_epc, data + EF_CP0_EPC - EF_R0);
99
100 /* badvaddr, status, and cause may not be written. */
101
102 return 0;
103}
104
105int ptrace_getfpregs(struct task_struct *child, __u32 __user *data)
106{
107 int i;
108 unsigned int tmp;
109
110 if (!access_ok(VERIFY_WRITE, data, 33 * 8))
111 return -EIO;
112
113 if (tsk_used_math(child)) {
114 fpureg_t *fregs = get_fpu_regs(child);
115 for (i = 0; i < 32; i++)
116 __put_user(fregs[i], i + (__u64 __user *) data);
117 } else {
118 for (i = 0; i < 32; i++)
119 __put_user((__u64) -1, i + (__u64 __user *) data);
120 }
121
122 __put_user(child->thread.fpu.fcr31, data + 64);
123
124 preempt_disable();
125 if (cpu_has_fpu) {
126 unsigned int flags;
127
128 if (cpu_has_mipsmt) {
129 unsigned int vpflags = dvpe();
130 flags = read_c0_status();
131 __enable_fpu();
132 __asm__ __volatile__("cfc1\t%0,$0" : "=r" (tmp));
133 write_c0_status(flags);
134 evpe(vpflags);
135 } else {
136 flags = read_c0_status();
137 __enable_fpu();
138 __asm__ __volatile__("cfc1\t%0,$0" : "=r" (tmp));
139 write_c0_status(flags);
140 }
141 } else {
142 tmp = 0;
143 }
144 preempt_enable();
145 __put_user(tmp, data + 65);
146
147 return 0;
148}
149
150int ptrace_setfpregs(struct task_struct *child, __u32 __user *data)
151{
152 fpureg_t *fregs;
153 int i;
154
155 if (!access_ok(VERIFY_READ, data, 33 * 8))
156 return -EIO;
157
158 fregs = get_fpu_regs(child);
159
160 for (i = 0; i < 32; i++)
161 __get_user(fregs[i], i + (__u64 __user *) data);
162
163 __get_user(child->thread.fpu.fcr31, data + 64);
164
165 /* FIR may not be written. */
166
167 return 0;
168}
169
170int ptrace_get_watch_regs(struct task_struct *child,
171 struct pt_watch_regs __user *addr)
172{
173 enum pt_watch_style style;
174 int i;
175
176 if (!cpu_has_watch || current_cpu_data.watch_reg_use_cnt == 0)
177 return -EIO;
178 if (!access_ok(VERIFY_WRITE, addr, sizeof(struct pt_watch_regs)))
179 return -EIO;
180
181#ifdef CONFIG_32BIT
182 style = pt_watch_style_mips32;
183#define WATCH_STYLE mips32
184#else
185 style = pt_watch_style_mips64;
186#define WATCH_STYLE mips64
187#endif
188
189 __put_user(style, &addr->style);
190 __put_user(current_cpu_data.watch_reg_use_cnt,
191 &addr->WATCH_STYLE.num_valid);
192 for (i = 0; i < current_cpu_data.watch_reg_use_cnt; i++) {
193 __put_user(child->thread.watch.mips3264.watchlo[i],
194 &addr->WATCH_STYLE.watchlo[i]);
195 __put_user(child->thread.watch.mips3264.watchhi[i] & 0xfff,
196 &addr->WATCH_STYLE.watchhi[i]);
197 __put_user(current_cpu_data.watch_reg_masks[i],
198 &addr->WATCH_STYLE.watch_masks[i]);
199 }
200 for (; i < 8; i++) {
201 __put_user(0, &addr->WATCH_STYLE.watchlo[i]);
202 __put_user(0, &addr->WATCH_STYLE.watchhi[i]);
203 __put_user(0, &addr->WATCH_STYLE.watch_masks[i]);
204 }
205
206 return 0;
207}
208
209int ptrace_set_watch_regs(struct task_struct *child,
210 struct pt_watch_regs __user *addr)
211{
212 int i;
213 int watch_active = 0;
214 unsigned long lt[NUM_WATCH_REGS];
215 u16 ht[NUM_WATCH_REGS];
216
217 if (!cpu_has_watch || current_cpu_data.watch_reg_use_cnt == 0)
218 return -EIO;
219 if (!access_ok(VERIFY_READ, addr, sizeof(struct pt_watch_regs)))
220 return -EIO;
221 /* Check the values. */
222 for (i = 0; i < current_cpu_data.watch_reg_use_cnt; i++) {
223 __get_user(lt[i], &addr->WATCH_STYLE.watchlo[i]);
224#ifdef CONFIG_32BIT
225 if (lt[i] & __UA_LIMIT)
226 return -EINVAL;
227#else
228 if (test_tsk_thread_flag(child, TIF_32BIT_ADDR)) {
229 if (lt[i] & 0xffffffff80000000UL)
230 return -EINVAL;
231 } else {
232 if (lt[i] & __UA_LIMIT)
233 return -EINVAL;
234 }
235#endif
236 __get_user(ht[i], &addr->WATCH_STYLE.watchhi[i]);
237 if (ht[i] & ~0xff8)
238 return -EINVAL;
239 }
240 /* Install them. */
241 for (i = 0; i < current_cpu_data.watch_reg_use_cnt; i++) {
242 if (lt[i] & 7)
243 watch_active = 1;
244 child->thread.watch.mips3264.watchlo[i] = lt[i];
245 /* Set the G bit. */
246 child->thread.watch.mips3264.watchhi[i] = ht[i];
247 }
248
249 if (watch_active)
250 set_tsk_thread_flag(child, TIF_LOAD_WATCH);
251 else
252 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
253
254 return 0;
255}
256
257long arch_ptrace(struct task_struct *child, long request,
258 unsigned long addr, unsigned long data)
259{
260 int ret;
261 void __user *addrp = (void __user *) addr;
262 void __user *datavp = (void __user *) data;
263 unsigned long __user *datalp = (void __user *) data;
264
265 switch (request) {
266 /* when I and D space are separate, these will need to be fixed. */
267 case PTRACE_PEEKTEXT: /* read word at location addr. */
268 case PTRACE_PEEKDATA:
269 ret = generic_ptrace_peekdata(child, addr, data);
270 break;
271
272 /* Read the word at location addr in the USER area. */
273 case PTRACE_PEEKUSR: {
274 struct pt_regs *regs;
275 unsigned long tmp = 0;
276
277 regs = task_pt_regs(child);
278 ret = 0; /* Default return value. */
279
280 switch (addr) {
281 case 0 ... 31:
282 tmp = regs->regs[addr];
283 break;
284 case FPR_BASE ... FPR_BASE + 31:
285 if (tsk_used_math(child)) {
286 fpureg_t *fregs = get_fpu_regs(child);
287
288#ifdef CONFIG_32BIT
289 /*
290 * The odd registers are actually the high
291 * order bits of the values stored in the even
292 * registers - unless we're using r2k_switch.S.
293 */
294 if (addr & 1)
295 tmp = (unsigned long) (fregs[((addr & ~1) - 32)] >> 32);
296 else
297 tmp = (unsigned long) (fregs[(addr - 32)] & 0xffffffff);
298#endif
299#ifdef CONFIG_64BIT
300 tmp = fregs[addr - FPR_BASE];
301#endif
302 } else {
303 tmp = -1; /* FP not yet used */
304 }
305 break;
306 case PC:
307 tmp = regs->cp0_epc;
308 break;
309 case CAUSE:
310 tmp = regs->cp0_cause;
311 break;
312 case BADVADDR:
313 tmp = regs->cp0_badvaddr;
314 break;
315 case MMHI:
316 tmp = regs->hi;
317 break;
318 case MMLO:
319 tmp = regs->lo;
320 break;
321#ifdef CONFIG_CPU_HAS_SMARTMIPS
322 case ACX:
323 tmp = regs->acx;
324 break;
325#endif
326 case FPC_CSR:
327 tmp = child->thread.fpu.fcr31;
328 break;
329 case FPC_EIR: { /* implementation / version register */
330 unsigned int flags;
331#ifdef CONFIG_MIPS_MT_SMTC
332 unsigned long irqflags;
333 unsigned int mtflags;
334#endif /* CONFIG_MIPS_MT_SMTC */
335
336 preempt_disable();
337 if (!cpu_has_fpu) {
338 preempt_enable();
339 break;
340 }
341
342#ifdef CONFIG_MIPS_MT_SMTC
343 /* Read-modify-write of Status must be atomic */
344 local_irq_save(irqflags);
345 mtflags = dmt();
346#endif /* CONFIG_MIPS_MT_SMTC */
347 if (cpu_has_mipsmt) {
348 unsigned int vpflags = dvpe();
349 flags = read_c0_status();
350 __enable_fpu();
351 __asm__ __volatile__("cfc1\t%0,$0": "=r" (tmp));
352 write_c0_status(flags);
353 evpe(vpflags);
354 } else {
355 flags = read_c0_status();
356 __enable_fpu();
357 __asm__ __volatile__("cfc1\t%0,$0": "=r" (tmp));
358 write_c0_status(flags);
359 }
360#ifdef CONFIG_MIPS_MT_SMTC
361 emt(mtflags);
362 local_irq_restore(irqflags);
363#endif /* CONFIG_MIPS_MT_SMTC */
364 preempt_enable();
365 break;
366 }
367 case DSP_BASE ... DSP_BASE + 5: {
368 dspreg_t *dregs;
369
370 if (!cpu_has_dsp) {
371 tmp = 0;
372 ret = -EIO;
373 goto out;
374 }
375 dregs = __get_dsp_regs(child);
376 tmp = (unsigned long) (dregs[addr - DSP_BASE]);
377 break;
378 }
379 case DSP_CONTROL:
380 if (!cpu_has_dsp) {
381 tmp = 0;
382 ret = -EIO;
383 goto out;
384 }
385 tmp = child->thread.dsp.dspcontrol;
386 break;
387 default:
388 tmp = 0;
389 ret = -EIO;
390 goto out;
391 }
392 ret = put_user(tmp, datalp);
393 break;
394 }
395
396 /* when I and D space are separate, this will have to be fixed. */
397 case PTRACE_POKETEXT: /* write the word at location addr. */
398 case PTRACE_POKEDATA:
399 ret = generic_ptrace_pokedata(child, addr, data);
400 break;
401
402 case PTRACE_POKEUSR: {
403 struct pt_regs *regs;
404 ret = 0;
405 regs = task_pt_regs(child);
406
407 switch (addr) {
408 case 0 ... 31:
409 regs->regs[addr] = data;
410 break;
411 case FPR_BASE ... FPR_BASE + 31: {
412 fpureg_t *fregs = get_fpu_regs(child);
413
414 if (!tsk_used_math(child)) {
415 /* FP not yet used */
416 memset(&child->thread.fpu, ~0,
417 sizeof(child->thread.fpu));
418 child->thread.fpu.fcr31 = 0;
419 }
420#ifdef CONFIG_32BIT
421 /*
422 * The odd registers are actually the high order bits
423 * of the values stored in the even registers - unless
424 * we're using r2k_switch.S.
425 */
426 if (addr & 1) {
427 fregs[(addr & ~1) - FPR_BASE] &= 0xffffffff;
428 fregs[(addr & ~1) - FPR_BASE] |= ((unsigned long long) data) << 32;
429 } else {
430 fregs[addr - FPR_BASE] &= ~0xffffffffLL;
431 fregs[addr - FPR_BASE] |= data;
432 }
433#endif
434#ifdef CONFIG_64BIT
435 fregs[addr - FPR_BASE] = data;
436#endif
437 break;
438 }
439 case PC:
440 regs->cp0_epc = data;
441 break;
442 case MMHI:
443 regs->hi = data;
444 break;
445 case MMLO:
446 regs->lo = data;
447 break;
448#ifdef CONFIG_CPU_HAS_SMARTMIPS
449 case ACX:
450 regs->acx = data;
451 break;
452#endif
453 case FPC_CSR:
454 child->thread.fpu.fcr31 = data;
455 break;
456 case DSP_BASE ... DSP_BASE + 5: {
457 dspreg_t *dregs;
458
459 if (!cpu_has_dsp) {
460 ret = -EIO;
461 break;
462 }
463
464 dregs = __get_dsp_regs(child);
465 dregs[addr - DSP_BASE] = data;
466 break;
467 }
468 case DSP_CONTROL:
469 if (!cpu_has_dsp) {
470 ret = -EIO;
471 break;
472 }
473 child->thread.dsp.dspcontrol = data;
474 break;
475 default:
476 /* The rest are not allowed. */
477 ret = -EIO;
478 break;
479 }
480 break;
481 }
482
483 case PTRACE_GETREGS:
484 ret = ptrace_getregs(child, datavp);
485 break;
486
487 case PTRACE_SETREGS:
488 ret = ptrace_setregs(child, datavp);
489 break;
490
491 case PTRACE_GETFPREGS:
492 ret = ptrace_getfpregs(child, datavp);
493 break;
494
495 case PTRACE_SETFPREGS:
496 ret = ptrace_setfpregs(child, datavp);
497 break;
498
499 case PTRACE_GET_THREAD_AREA:
500 ret = put_user(task_thread_info(child)->tp_value, datalp);
501 break;
502
503 case PTRACE_GET_WATCH_REGS:
504 ret = ptrace_get_watch_regs(child, addrp);
505 break;
506
507 case PTRACE_SET_WATCH_REGS:
508 ret = ptrace_set_watch_regs(child, addrp);
509 break;
510
511 default:
512 ret = ptrace_request(child, request, addr, data);
513 break;
514 }
515 out:
516 return ret;
517}
518
519static inline int audit_arch(void)
520{
521 int arch = EM_MIPS;
522#ifdef CONFIG_64BIT
523 arch |= __AUDIT_ARCH_64BIT;
524#endif
525#if defined(__LITTLE_ENDIAN)
526 arch |= __AUDIT_ARCH_LE;
527#endif
528 return arch;
529}
530
531/*
532 * Notification of system call entry/exit
533 * - triggered by current->work.syscall_trace
534 */
535asmlinkage void syscall_trace_enter(struct pt_regs *regs)
536{
537 /* do the secure computing check first */
538 secure_computing_strict(regs->regs[2]);
539
540 if (!(current->ptrace & PT_PTRACED))
541 goto out;
542
543 if (!test_thread_flag(TIF_SYSCALL_TRACE))
544 goto out;
545
546 /* The 0x80 provides a way for the tracing parent to distinguish
547 between a syscall stop and SIGTRAP delivery */
548 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) ?
549 0x80 : 0));
550
551 /*
552 * this isn't the same as continuing with a signal, but it will do
553 * for normal use. strace only continues with a signal if the
554 * stopping signal is not SIGTRAP. -brl
555 */
556 if (current->exit_code) {
557 send_sig(current->exit_code, current, 1);
558 current->exit_code = 0;
559 }
560
561out:
562 audit_syscall_entry(audit_arch(), regs->regs[2],
563 regs->regs[4], regs->regs[5],
564 regs->regs[6], regs->regs[7]);
565}
566
567/*
568 * Notification of system call entry/exit
569 * - triggered by current->work.syscall_trace
570 */
571asmlinkage void syscall_trace_leave(struct pt_regs *regs)
572{
573 audit_syscall_exit(regs);
574
575 if (!(current->ptrace & PT_PTRACED))
576 return;
577
578 if (!test_thread_flag(TIF_SYSCALL_TRACE))
579 return;
580
581 /* The 0x80 provides a way for the tracing parent to distinguish
582 between a syscall stop and SIGTRAP delivery */
583 ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) ?
584 0x80 : 0));
585
586 /*
587 * this isn't the same as continuing with a signal, but it will do
588 * for normal use. strace only continues with a signal if the
589 * stopping signal is not SIGTRAP. -brl
590 */
591 if (current->exit_code) {
592 send_sig(current->exit_code, current, 1);
593 current->exit_code = 0;
594 }
595}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1992 Ross Biro
7 * Copyright (C) Linus Torvalds
8 * Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle
9 * Copyright (C) 1996 David S. Miller
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 1999 MIPS Technologies, Inc.
12 * Copyright (C) 2000 Ulf Carlsson
13 *
14 * At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit
15 * binaries.
16 */
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/elf.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/mm.h>
23#include <linux/errno.h>
24#include <linux/ptrace.h>
25#include <linux/regset.h>
26#include <linux/smp.h>
27#include <linux/security.h>
28#include <linux/stddef.h>
29#include <linux/tracehook.h>
30#include <linux/audit.h>
31#include <linux/seccomp.h>
32#include <linux/ftrace.h>
33
34#include <asm/byteorder.h>
35#include <asm/cpu.h>
36#include <asm/cpu-info.h>
37#include <asm/dsp.h>
38#include <asm/fpu.h>
39#include <asm/mipsregs.h>
40#include <asm/mipsmtregs.h>
41#include <asm/pgtable.h>
42#include <asm/page.h>
43#include <asm/syscall.h>
44#include <asm/uaccess.h>
45#include <asm/bootinfo.h>
46#include <asm/reg.h>
47
48#define CREATE_TRACE_POINTS
49#include <trace/events/syscalls.h>
50
51static void init_fp_ctx(struct task_struct *target)
52{
53 /* If FP has been used then the target already has context */
54 if (tsk_used_math(target))
55 return;
56
57 /* Begin with data registers set to all 1s... */
58 memset(&target->thread.fpu.fpr, ~0, sizeof(target->thread.fpu.fpr));
59
60 /* ...and FCSR zeroed */
61 target->thread.fpu.fcr31 = 0;
62
63 /*
64 * Record that the target has "used" math, such that the context
65 * just initialised, and any modifications made by the caller,
66 * aren't discarded.
67 */
68 set_stopped_child_used_math(target);
69}
70
71/*
72 * Called by kernel/ptrace.c when detaching..
73 *
74 * Make sure single step bits etc are not set.
75 */
76void ptrace_disable(struct task_struct *child)
77{
78 /* Don't load the watchpoint registers for the ex-child. */
79 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
80}
81
82/*
83 * Read a general register set. We always use the 64-bit format, even
84 * for 32-bit kernels and for 32-bit processes on a 64-bit kernel.
85 * Registers are sign extended to fill the available space.
86 */
87int ptrace_getregs(struct task_struct *child, struct user_pt_regs __user *data)
88{
89 struct pt_regs *regs;
90 int i;
91
92 if (!access_ok(VERIFY_WRITE, data, 38 * 8))
93 return -EIO;
94
95 regs = task_pt_regs(child);
96
97 for (i = 0; i < 32; i++)
98 __put_user((long)regs->regs[i], (__s64 __user *)&data->regs[i]);
99 __put_user((long)regs->lo, (__s64 __user *)&data->lo);
100 __put_user((long)regs->hi, (__s64 __user *)&data->hi);
101 __put_user((long)regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
102 __put_user((long)regs->cp0_badvaddr, (__s64 __user *)&data->cp0_badvaddr);
103 __put_user((long)regs->cp0_status, (__s64 __user *)&data->cp0_status);
104 __put_user((long)regs->cp0_cause, (__s64 __user *)&data->cp0_cause);
105
106 return 0;
107}
108
109/*
110 * Write a general register set. As for PTRACE_GETREGS, we always use
111 * the 64-bit format. On a 32-bit kernel only the lower order half
112 * (according to endianness) will be used.
113 */
114int ptrace_setregs(struct task_struct *child, struct user_pt_regs __user *data)
115{
116 struct pt_regs *regs;
117 int i;
118
119 if (!access_ok(VERIFY_READ, data, 38 * 8))
120 return -EIO;
121
122 regs = task_pt_regs(child);
123
124 for (i = 0; i < 32; i++)
125 __get_user(regs->regs[i], (__s64 __user *)&data->regs[i]);
126 __get_user(regs->lo, (__s64 __user *)&data->lo);
127 __get_user(regs->hi, (__s64 __user *)&data->hi);
128 __get_user(regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
129
130 /* badvaddr, status, and cause may not be written. */
131
132 return 0;
133}
134
135int ptrace_getfpregs(struct task_struct *child, __u32 __user *data)
136{
137 int i;
138
139 if (!access_ok(VERIFY_WRITE, data, 33 * 8))
140 return -EIO;
141
142 if (tsk_used_math(child)) {
143 union fpureg *fregs = get_fpu_regs(child);
144 for (i = 0; i < 32; i++)
145 __put_user(get_fpr64(&fregs[i], 0),
146 i + (__u64 __user *)data);
147 } else {
148 for (i = 0; i < 32; i++)
149 __put_user((__u64) -1, i + (__u64 __user *) data);
150 }
151
152 __put_user(child->thread.fpu.fcr31, data + 64);
153 __put_user(boot_cpu_data.fpu_id, data + 65);
154
155 return 0;
156}
157
158int ptrace_setfpregs(struct task_struct *child, __u32 __user *data)
159{
160 union fpureg *fregs;
161 u64 fpr_val;
162 u32 fcr31;
163 u32 value;
164 u32 mask;
165 int i;
166
167 if (!access_ok(VERIFY_READ, data, 33 * 8))
168 return -EIO;
169
170 init_fp_ctx(child);
171 fregs = get_fpu_regs(child);
172
173 for (i = 0; i < 32; i++) {
174 __get_user(fpr_val, i + (__u64 __user *)data);
175 set_fpr64(&fregs[i], 0, fpr_val);
176 }
177
178 __get_user(value, data + 64);
179 fcr31 = child->thread.fpu.fcr31;
180 mask = boot_cpu_data.fpu_msk31;
181 child->thread.fpu.fcr31 = (value & ~mask) | (fcr31 & mask);
182
183 /* FIR may not be written. */
184
185 return 0;
186}
187
188int ptrace_get_watch_regs(struct task_struct *child,
189 struct pt_watch_regs __user *addr)
190{
191 enum pt_watch_style style;
192 int i;
193
194 if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
195 return -EIO;
196 if (!access_ok(VERIFY_WRITE, addr, sizeof(struct pt_watch_regs)))
197 return -EIO;
198
199#ifdef CONFIG_32BIT
200 style = pt_watch_style_mips32;
201#define WATCH_STYLE mips32
202#else
203 style = pt_watch_style_mips64;
204#define WATCH_STYLE mips64
205#endif
206
207 __put_user(style, &addr->style);
208 __put_user(boot_cpu_data.watch_reg_use_cnt,
209 &addr->WATCH_STYLE.num_valid);
210 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
211 __put_user(child->thread.watch.mips3264.watchlo[i],
212 &addr->WATCH_STYLE.watchlo[i]);
213 __put_user(child->thread.watch.mips3264.watchhi[i] & 0xfff,
214 &addr->WATCH_STYLE.watchhi[i]);
215 __put_user(boot_cpu_data.watch_reg_masks[i],
216 &addr->WATCH_STYLE.watch_masks[i]);
217 }
218 for (; i < 8; i++) {
219 __put_user(0, &addr->WATCH_STYLE.watchlo[i]);
220 __put_user(0, &addr->WATCH_STYLE.watchhi[i]);
221 __put_user(0, &addr->WATCH_STYLE.watch_masks[i]);
222 }
223
224 return 0;
225}
226
227int ptrace_set_watch_regs(struct task_struct *child,
228 struct pt_watch_regs __user *addr)
229{
230 int i;
231 int watch_active = 0;
232 unsigned long lt[NUM_WATCH_REGS];
233 u16 ht[NUM_WATCH_REGS];
234
235 if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
236 return -EIO;
237 if (!access_ok(VERIFY_READ, addr, sizeof(struct pt_watch_regs)))
238 return -EIO;
239 /* Check the values. */
240 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
241 __get_user(lt[i], &addr->WATCH_STYLE.watchlo[i]);
242#ifdef CONFIG_32BIT
243 if (lt[i] & __UA_LIMIT)
244 return -EINVAL;
245#else
246 if (test_tsk_thread_flag(child, TIF_32BIT_ADDR)) {
247 if (lt[i] & 0xffffffff80000000UL)
248 return -EINVAL;
249 } else {
250 if (lt[i] & __UA_LIMIT)
251 return -EINVAL;
252 }
253#endif
254 __get_user(ht[i], &addr->WATCH_STYLE.watchhi[i]);
255 if (ht[i] & ~0xff8)
256 return -EINVAL;
257 }
258 /* Install them. */
259 for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
260 if (lt[i] & 7)
261 watch_active = 1;
262 child->thread.watch.mips3264.watchlo[i] = lt[i];
263 /* Set the G bit. */
264 child->thread.watch.mips3264.watchhi[i] = ht[i];
265 }
266
267 if (watch_active)
268 set_tsk_thread_flag(child, TIF_LOAD_WATCH);
269 else
270 clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
271
272 return 0;
273}
274
275/* regset get/set implementations */
276
277#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
278
279static int gpr32_get(struct task_struct *target,
280 const struct user_regset *regset,
281 unsigned int pos, unsigned int count,
282 void *kbuf, void __user *ubuf)
283{
284 struct pt_regs *regs = task_pt_regs(target);
285 u32 uregs[ELF_NGREG] = {};
286 unsigned i;
287
288 for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
289 /* k0/k1 are copied as zero. */
290 if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
291 continue;
292
293 uregs[i] = regs->regs[i - MIPS32_EF_R0];
294 }
295
296 uregs[MIPS32_EF_LO] = regs->lo;
297 uregs[MIPS32_EF_HI] = regs->hi;
298 uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
299 uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
300 uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
301 uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
302
303 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0,
304 sizeof(uregs));
305}
306
307static int gpr32_set(struct task_struct *target,
308 const struct user_regset *regset,
309 unsigned int pos, unsigned int count,
310 const void *kbuf, const void __user *ubuf)
311{
312 struct pt_regs *regs = task_pt_regs(target);
313 u32 uregs[ELF_NGREG];
314 unsigned start, num_regs, i;
315 int err;
316
317 start = pos / sizeof(u32);
318 num_regs = count / sizeof(u32);
319
320 if (start + num_regs > ELF_NGREG)
321 return -EIO;
322
323 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
324 sizeof(uregs));
325 if (err)
326 return err;
327
328 for (i = start; i < num_regs; i++) {
329 /*
330 * Cast all values to signed here so that if this is a 64-bit
331 * kernel, the supplied 32-bit values will be sign extended.
332 */
333 switch (i) {
334 case MIPS32_EF_R1 ... MIPS32_EF_R25:
335 /* k0/k1 are ignored. */
336 case MIPS32_EF_R28 ... MIPS32_EF_R31:
337 regs->regs[i - MIPS32_EF_R0] = (s32)uregs[i];
338 break;
339 case MIPS32_EF_LO:
340 regs->lo = (s32)uregs[i];
341 break;
342 case MIPS32_EF_HI:
343 regs->hi = (s32)uregs[i];
344 break;
345 case MIPS32_EF_CP0_EPC:
346 regs->cp0_epc = (s32)uregs[i];
347 break;
348 }
349 }
350
351 return 0;
352}
353
354#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
355
356#ifdef CONFIG_64BIT
357
358static int gpr64_get(struct task_struct *target,
359 const struct user_regset *regset,
360 unsigned int pos, unsigned int count,
361 void *kbuf, void __user *ubuf)
362{
363 struct pt_regs *regs = task_pt_regs(target);
364 u64 uregs[ELF_NGREG] = {};
365 unsigned i;
366
367 for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
368 /* k0/k1 are copied as zero. */
369 if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
370 continue;
371
372 uregs[i] = regs->regs[i - MIPS64_EF_R0];
373 }
374
375 uregs[MIPS64_EF_LO] = regs->lo;
376 uregs[MIPS64_EF_HI] = regs->hi;
377 uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
378 uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
379 uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
380 uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
381
382 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0,
383 sizeof(uregs));
384}
385
386static int gpr64_set(struct task_struct *target,
387 const struct user_regset *regset,
388 unsigned int pos, unsigned int count,
389 const void *kbuf, const void __user *ubuf)
390{
391 struct pt_regs *regs = task_pt_regs(target);
392 u64 uregs[ELF_NGREG];
393 unsigned start, num_regs, i;
394 int err;
395
396 start = pos / sizeof(u64);
397 num_regs = count / sizeof(u64);
398
399 if (start + num_regs > ELF_NGREG)
400 return -EIO;
401
402 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
403 sizeof(uregs));
404 if (err)
405 return err;
406
407 for (i = start; i < num_regs; i++) {
408 switch (i) {
409 case MIPS64_EF_R1 ... MIPS64_EF_R25:
410 /* k0/k1 are ignored. */
411 case MIPS64_EF_R28 ... MIPS64_EF_R31:
412 regs->regs[i - MIPS64_EF_R0] = uregs[i];
413 break;
414 case MIPS64_EF_LO:
415 regs->lo = uregs[i];
416 break;
417 case MIPS64_EF_HI:
418 regs->hi = uregs[i];
419 break;
420 case MIPS64_EF_CP0_EPC:
421 regs->cp0_epc = uregs[i];
422 break;
423 }
424 }
425
426 return 0;
427}
428
429#endif /* CONFIG_64BIT */
430
431static int fpr_get(struct task_struct *target,
432 const struct user_regset *regset,
433 unsigned int pos, unsigned int count,
434 void *kbuf, void __user *ubuf)
435{
436 unsigned i;
437 int err;
438 u64 fpr_val;
439
440 /* XXX fcr31 */
441
442 if (sizeof(target->thread.fpu.fpr[i]) == sizeof(elf_fpreg_t))
443 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
444 &target->thread.fpu,
445 0, sizeof(elf_fpregset_t));
446
447 for (i = 0; i < NUM_FPU_REGS; i++) {
448 fpr_val = get_fpr64(&target->thread.fpu.fpr[i], 0);
449 err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
450 &fpr_val, i * sizeof(elf_fpreg_t),
451 (i + 1) * sizeof(elf_fpreg_t));
452 if (err)
453 return err;
454 }
455
456 return 0;
457}
458
459static int fpr_set(struct task_struct *target,
460 const struct user_regset *regset,
461 unsigned int pos, unsigned int count,
462 const void *kbuf, const void __user *ubuf)
463{
464 unsigned i;
465 int err;
466 u64 fpr_val;
467
468 /* XXX fcr31 */
469
470 init_fp_ctx(target);
471
472 if (sizeof(target->thread.fpu.fpr[i]) == sizeof(elf_fpreg_t))
473 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
474 &target->thread.fpu,
475 0, sizeof(elf_fpregset_t));
476
477 for (i = 0; i < NUM_FPU_REGS; i++) {
478 err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
479 &fpr_val, i * sizeof(elf_fpreg_t),
480 (i + 1) * sizeof(elf_fpreg_t));
481 if (err)
482 return err;
483 set_fpr64(&target->thread.fpu.fpr[i], 0, fpr_val);
484 }
485
486 return 0;
487}
488
489enum mips_regset {
490 REGSET_GPR,
491 REGSET_FPR,
492};
493
494struct pt_regs_offset {
495 const char *name;
496 int offset;
497};
498
499#define REG_OFFSET_NAME(reg, r) { \
500 .name = #reg, \
501 .offset = offsetof(struct pt_regs, r) \
502}
503
504#define REG_OFFSET_END { \
505 .name = NULL, \
506 .offset = 0 \
507}
508
509static const struct pt_regs_offset regoffset_table[] = {
510 REG_OFFSET_NAME(r0, regs[0]),
511 REG_OFFSET_NAME(r1, regs[1]),
512 REG_OFFSET_NAME(r2, regs[2]),
513 REG_OFFSET_NAME(r3, regs[3]),
514 REG_OFFSET_NAME(r4, regs[4]),
515 REG_OFFSET_NAME(r5, regs[5]),
516 REG_OFFSET_NAME(r6, regs[6]),
517 REG_OFFSET_NAME(r7, regs[7]),
518 REG_OFFSET_NAME(r8, regs[8]),
519 REG_OFFSET_NAME(r9, regs[9]),
520 REG_OFFSET_NAME(r10, regs[10]),
521 REG_OFFSET_NAME(r11, regs[11]),
522 REG_OFFSET_NAME(r12, regs[12]),
523 REG_OFFSET_NAME(r13, regs[13]),
524 REG_OFFSET_NAME(r14, regs[14]),
525 REG_OFFSET_NAME(r15, regs[15]),
526 REG_OFFSET_NAME(r16, regs[16]),
527 REG_OFFSET_NAME(r17, regs[17]),
528 REG_OFFSET_NAME(r18, regs[18]),
529 REG_OFFSET_NAME(r19, regs[19]),
530 REG_OFFSET_NAME(r20, regs[20]),
531 REG_OFFSET_NAME(r21, regs[21]),
532 REG_OFFSET_NAME(r22, regs[22]),
533 REG_OFFSET_NAME(r23, regs[23]),
534 REG_OFFSET_NAME(r24, regs[24]),
535 REG_OFFSET_NAME(r25, regs[25]),
536 REG_OFFSET_NAME(r26, regs[26]),
537 REG_OFFSET_NAME(r27, regs[27]),
538 REG_OFFSET_NAME(r28, regs[28]),
539 REG_OFFSET_NAME(r29, regs[29]),
540 REG_OFFSET_NAME(r30, regs[30]),
541 REG_OFFSET_NAME(r31, regs[31]),
542 REG_OFFSET_NAME(c0_status, cp0_status),
543 REG_OFFSET_NAME(hi, hi),
544 REG_OFFSET_NAME(lo, lo),
545#ifdef CONFIG_CPU_HAS_SMARTMIPS
546 REG_OFFSET_NAME(acx, acx),
547#endif
548 REG_OFFSET_NAME(c0_badvaddr, cp0_badvaddr),
549 REG_OFFSET_NAME(c0_cause, cp0_cause),
550 REG_OFFSET_NAME(c0_epc, cp0_epc),
551#ifdef CONFIG_CPU_CAVIUM_OCTEON
552 REG_OFFSET_NAME(mpl0, mpl[0]),
553 REG_OFFSET_NAME(mpl1, mpl[1]),
554 REG_OFFSET_NAME(mpl2, mpl[2]),
555 REG_OFFSET_NAME(mtp0, mtp[0]),
556 REG_OFFSET_NAME(mtp1, mtp[1]),
557 REG_OFFSET_NAME(mtp2, mtp[2]),
558#endif
559 REG_OFFSET_END,
560};
561
562/**
563 * regs_query_register_offset() - query register offset from its name
564 * @name: the name of a register
565 *
566 * regs_query_register_offset() returns the offset of a register in struct
567 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
568 */
569int regs_query_register_offset(const char *name)
570{
571 const struct pt_regs_offset *roff;
572 for (roff = regoffset_table; roff->name != NULL; roff++)
573 if (!strcmp(roff->name, name))
574 return roff->offset;
575 return -EINVAL;
576}
577
578#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
579
580static const struct user_regset mips_regsets[] = {
581 [REGSET_GPR] = {
582 .core_note_type = NT_PRSTATUS,
583 .n = ELF_NGREG,
584 .size = sizeof(unsigned int),
585 .align = sizeof(unsigned int),
586 .get = gpr32_get,
587 .set = gpr32_set,
588 },
589 [REGSET_FPR] = {
590 .core_note_type = NT_PRFPREG,
591 .n = ELF_NFPREG,
592 .size = sizeof(elf_fpreg_t),
593 .align = sizeof(elf_fpreg_t),
594 .get = fpr_get,
595 .set = fpr_set,
596 },
597};
598
599static const struct user_regset_view user_mips_view = {
600 .name = "mips",
601 .e_machine = ELF_ARCH,
602 .ei_osabi = ELF_OSABI,
603 .regsets = mips_regsets,
604 .n = ARRAY_SIZE(mips_regsets),
605};
606
607#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
608
609#ifdef CONFIG_64BIT
610
611static const struct user_regset mips64_regsets[] = {
612 [REGSET_GPR] = {
613 .core_note_type = NT_PRSTATUS,
614 .n = ELF_NGREG,
615 .size = sizeof(unsigned long),
616 .align = sizeof(unsigned long),
617 .get = gpr64_get,
618 .set = gpr64_set,
619 },
620 [REGSET_FPR] = {
621 .core_note_type = NT_PRFPREG,
622 .n = ELF_NFPREG,
623 .size = sizeof(elf_fpreg_t),
624 .align = sizeof(elf_fpreg_t),
625 .get = fpr_get,
626 .set = fpr_set,
627 },
628};
629
630static const struct user_regset_view user_mips64_view = {
631 .name = "mips64",
632 .e_machine = ELF_ARCH,
633 .ei_osabi = ELF_OSABI,
634 .regsets = mips64_regsets,
635 .n = ARRAY_SIZE(mips64_regsets),
636};
637
638#endif /* CONFIG_64BIT */
639
640const struct user_regset_view *task_user_regset_view(struct task_struct *task)
641{
642#ifdef CONFIG_32BIT
643 return &user_mips_view;
644#else
645#ifdef CONFIG_MIPS32_O32
646 if (test_tsk_thread_flag(task, TIF_32BIT_REGS))
647 return &user_mips_view;
648#endif
649 return &user_mips64_view;
650#endif
651}
652
653long arch_ptrace(struct task_struct *child, long request,
654 unsigned long addr, unsigned long data)
655{
656 int ret;
657 void __user *addrp = (void __user *) addr;
658 void __user *datavp = (void __user *) data;
659 unsigned long __user *datalp = (void __user *) data;
660
661 switch (request) {
662 /* when I and D space are separate, these will need to be fixed. */
663 case PTRACE_PEEKTEXT: /* read word at location addr. */
664 case PTRACE_PEEKDATA:
665 ret = generic_ptrace_peekdata(child, addr, data);
666 break;
667
668 /* Read the word at location addr in the USER area. */
669 case PTRACE_PEEKUSR: {
670 struct pt_regs *regs;
671 union fpureg *fregs;
672 unsigned long tmp = 0;
673
674 regs = task_pt_regs(child);
675 ret = 0; /* Default return value. */
676
677 switch (addr) {
678 case 0 ... 31:
679 tmp = regs->regs[addr];
680 break;
681 case FPR_BASE ... FPR_BASE + 31:
682 if (!tsk_used_math(child)) {
683 /* FP not yet used */
684 tmp = -1;
685 break;
686 }
687 fregs = get_fpu_regs(child);
688
689#ifdef CONFIG_32BIT
690 if (test_thread_flag(TIF_32BIT_FPREGS)) {
691 /*
692 * The odd registers are actually the high
693 * order bits of the values stored in the even
694 * registers - unless we're using r2k_switch.S.
695 */
696 tmp = get_fpr32(&fregs[(addr & ~1) - FPR_BASE],
697 addr & 1);
698 break;
699 }
700#endif
701 tmp = get_fpr32(&fregs[addr - FPR_BASE], 0);
702 break;
703 case PC:
704 tmp = regs->cp0_epc;
705 break;
706 case CAUSE:
707 tmp = regs->cp0_cause;
708 break;
709 case BADVADDR:
710 tmp = regs->cp0_badvaddr;
711 break;
712 case MMHI:
713 tmp = regs->hi;
714 break;
715 case MMLO:
716 tmp = regs->lo;
717 break;
718#ifdef CONFIG_CPU_HAS_SMARTMIPS
719 case ACX:
720 tmp = regs->acx;
721 break;
722#endif
723 case FPC_CSR:
724 tmp = child->thread.fpu.fcr31;
725 break;
726 case FPC_EIR:
727 /* implementation / version register */
728 tmp = boot_cpu_data.fpu_id;
729 break;
730 case DSP_BASE ... DSP_BASE + 5: {
731 dspreg_t *dregs;
732
733 if (!cpu_has_dsp) {
734 tmp = 0;
735 ret = -EIO;
736 goto out;
737 }
738 dregs = __get_dsp_regs(child);
739 tmp = (unsigned long) (dregs[addr - DSP_BASE]);
740 break;
741 }
742 case DSP_CONTROL:
743 if (!cpu_has_dsp) {
744 tmp = 0;
745 ret = -EIO;
746 goto out;
747 }
748 tmp = child->thread.dsp.dspcontrol;
749 break;
750 default:
751 tmp = 0;
752 ret = -EIO;
753 goto out;
754 }
755 ret = put_user(tmp, datalp);
756 break;
757 }
758
759 /* when I and D space are separate, this will have to be fixed. */
760 case PTRACE_POKETEXT: /* write the word at location addr. */
761 case PTRACE_POKEDATA:
762 ret = generic_ptrace_pokedata(child, addr, data);
763 break;
764
765 case PTRACE_POKEUSR: {
766 struct pt_regs *regs;
767 ret = 0;
768 regs = task_pt_regs(child);
769
770 switch (addr) {
771 case 0 ... 31:
772 regs->regs[addr] = data;
773 break;
774 case FPR_BASE ... FPR_BASE + 31: {
775 union fpureg *fregs = get_fpu_regs(child);
776
777 init_fp_ctx(child);
778#ifdef CONFIG_32BIT
779 if (test_thread_flag(TIF_32BIT_FPREGS)) {
780 /*
781 * The odd registers are actually the high
782 * order bits of the values stored in the even
783 * registers - unless we're using r2k_switch.S.
784 */
785 set_fpr32(&fregs[(addr & ~1) - FPR_BASE],
786 addr & 1, data);
787 break;
788 }
789#endif
790 set_fpr64(&fregs[addr - FPR_BASE], 0, data);
791 break;
792 }
793 case PC:
794 regs->cp0_epc = data;
795 break;
796 case MMHI:
797 regs->hi = data;
798 break;
799 case MMLO:
800 regs->lo = data;
801 break;
802#ifdef CONFIG_CPU_HAS_SMARTMIPS
803 case ACX:
804 regs->acx = data;
805 break;
806#endif
807 case FPC_CSR:
808 child->thread.fpu.fcr31 = data & ~FPU_CSR_ALL_X;
809 break;
810 case DSP_BASE ... DSP_BASE + 5: {
811 dspreg_t *dregs;
812
813 if (!cpu_has_dsp) {
814 ret = -EIO;
815 break;
816 }
817
818 dregs = __get_dsp_regs(child);
819 dregs[addr - DSP_BASE] = data;
820 break;
821 }
822 case DSP_CONTROL:
823 if (!cpu_has_dsp) {
824 ret = -EIO;
825 break;
826 }
827 child->thread.dsp.dspcontrol = data;
828 break;
829 default:
830 /* The rest are not allowed. */
831 ret = -EIO;
832 break;
833 }
834 break;
835 }
836
837 case PTRACE_GETREGS:
838 ret = ptrace_getregs(child, datavp);
839 break;
840
841 case PTRACE_SETREGS:
842 ret = ptrace_setregs(child, datavp);
843 break;
844
845 case PTRACE_GETFPREGS:
846 ret = ptrace_getfpregs(child, datavp);
847 break;
848
849 case PTRACE_SETFPREGS:
850 ret = ptrace_setfpregs(child, datavp);
851 break;
852
853 case PTRACE_GET_THREAD_AREA:
854 ret = put_user(task_thread_info(child)->tp_value, datalp);
855 break;
856
857 case PTRACE_GET_WATCH_REGS:
858 ret = ptrace_get_watch_regs(child, addrp);
859 break;
860
861 case PTRACE_SET_WATCH_REGS:
862 ret = ptrace_set_watch_regs(child, addrp);
863 break;
864
865 default:
866 ret = ptrace_request(child, request, addr, data);
867 break;
868 }
869 out:
870 return ret;
871}
872
873/*
874 * Notification of system call entry/exit
875 * - triggered by current->work.syscall_trace
876 */
877asmlinkage long syscall_trace_enter(struct pt_regs *regs, long syscall)
878{
879 long ret = 0;
880 user_exit();
881
882 current_thread_info()->syscall = syscall;
883
884 if (secure_computing() == -1)
885 return -1;
886
887 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
888 tracehook_report_syscall_entry(regs))
889 ret = -1;
890
891 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
892 trace_sys_enter(regs, regs->regs[2]);
893
894 audit_syscall_entry(syscall, regs->regs[4], regs->regs[5],
895 regs->regs[6], regs->regs[7]);
896 return syscall;
897}
898
899/*
900 * Notification of system call entry/exit
901 * - triggered by current->work.syscall_trace
902 */
903asmlinkage void syscall_trace_leave(struct pt_regs *regs)
904{
905 /*
906 * We may come here right after calling schedule_user()
907 * or do_notify_resume(), in which case we can be in RCU
908 * user mode.
909 */
910 user_exit();
911
912 audit_syscall_exit(regs);
913
914 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
915 trace_sys_exit(regs, regs->regs[2]);
916
917 if (test_thread_flag(TIF_SYSCALL_TRACE))
918 tracehook_report_syscall_exit(regs, 0);
919
920 user_enter();
921}