Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v3.5.6
 
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
 
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
 
 
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75
  76static DEFINE_RWLOCK(policy_rwlock);
  77
  78static struct sidtab sidtab;
  79struct policydb policydb;
  80int ss_initialized;
  81
  82/*
  83 * The largest sequence number that has been used when
  84 * providing an access decision to the access vector cache.
  85 * The sequence number only changes when a policy change
  86 * occurs.
  87 */
  88static u32 latest_granting;
  89
  90/* Forward declaration. */
  91static int context_struct_to_string(struct context *context, char **scontext,
 
 
  92				    u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct context *scontext,
 
 
 
 
 
 
 
  95				      struct context *tcontext,
  96				      u16 tclass,
  97				      struct av_decision *avd);
  98
  99struct selinux_mapping {
 100	u16 value; /* policy value */
 101	unsigned num_perms;
 102	u32 perms[sizeof(u32) * 8];
 103};
 104
 105static struct selinux_mapping *current_mapping;
 106static u16 current_mapping_size;
 107
 108static int selinux_set_mapping(struct policydb *pol,
 109			       struct security_class_mapping *map,
 110			       struct selinux_mapping **out_map_p,
 111			       u16 *out_map_size)
 112{
 113	struct selinux_mapping *out_map = NULL;
 114	size_t size = sizeof(struct selinux_mapping);
 115	u16 i, j;
 116	unsigned k;
 117	bool print_unknown_handle = false;
 118
 119	/* Find number of classes in the input mapping */
 120	if (!map)
 121		return -EINVAL;
 122	i = 0;
 123	while (map[i].name)
 124		i++;
 125
 126	/* Allocate space for the class records, plus one for class zero */
 127	out_map = kcalloc(++i, size, GFP_ATOMIC);
 128	if (!out_map)
 129		return -ENOMEM;
 130
 131	/* Store the raw class and permission values */
 132	j = 0;
 133	while (map[j].name) {
 134		struct security_class_mapping *p_in = map + (j++);
 135		struct selinux_mapping *p_out = out_map + j;
 136
 137		/* An empty class string skips ahead */
 138		if (!strcmp(p_in->name, "")) {
 139			p_out->num_perms = 0;
 140			continue;
 141		}
 142
 143		p_out->value = string_to_security_class(pol, p_in->name);
 144		if (!p_out->value) {
 145			printk(KERN_INFO
 146			       "SELinux:  Class %s not defined in policy.\n",
 147			       p_in->name);
 148			if (pol->reject_unknown)
 149				goto err;
 150			p_out->num_perms = 0;
 151			print_unknown_handle = true;
 152			continue;
 153		}
 154
 155		k = 0;
 156		while (p_in->perms && p_in->perms[k]) {
 157			/* An empty permission string skips ahead */
 158			if (!*p_in->perms[k]) {
 159				k++;
 160				continue;
 161			}
 162			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 163							    p_in->perms[k]);
 164			if (!p_out->perms[k]) {
 165				printk(KERN_INFO
 166				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 167				       p_in->perms[k], p_in->name);
 168				if (pol->reject_unknown)
 169					goto err;
 170				print_unknown_handle = true;
 171			}
 172
 173			k++;
 174		}
 175		p_out->num_perms = k;
 176	}
 177
 178	if (print_unknown_handle)
 179		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 180		       pol->allow_unknown ? "allowed" : "denied");
 181
 182	*out_map_p = out_map;
 183	*out_map_size = i;
 184	return 0;
 185err:
 186	kfree(out_map);
 
 187	return -EINVAL;
 188}
 189
 190/*
 191 * Get real, policy values from mapped values
 192 */
 193
 194static u16 unmap_class(u16 tclass)
 195{
 196	if (tclass < current_mapping_size)
 197		return current_mapping[tclass].value;
 198
 199	return tclass;
 200}
 201
 202/*
 203 * Get kernel value for class from its policy value
 204 */
 205static u16 map_class(u16 pol_value)
 206{
 207	u16 i;
 208
 209	for (i = 1; i < current_mapping_size; i++) {
 210		if (current_mapping[i].value == pol_value)
 211			return i;
 212	}
 213
 214	return SECCLASS_NULL;
 215}
 216
 217static void map_decision(u16 tclass, struct av_decision *avd,
 
 218			 int allow_unknown)
 219{
 220	if (tclass < current_mapping_size) {
 221		unsigned i, n = current_mapping[tclass].num_perms;
 
 222		u32 result;
 223
 224		for (i = 0, result = 0; i < n; i++) {
 225			if (avd->allowed & current_mapping[tclass].perms[i])
 226				result |= 1<<i;
 227			if (allow_unknown && !current_mapping[tclass].perms[i])
 228				result |= 1<<i;
 229		}
 230		avd->allowed = result;
 231
 232		for (i = 0, result = 0; i < n; i++)
 233			if (avd->auditallow & current_mapping[tclass].perms[i])
 234				result |= 1<<i;
 235		avd->auditallow = result;
 236
 237		for (i = 0, result = 0; i < n; i++) {
 238			if (avd->auditdeny & current_mapping[tclass].perms[i])
 239				result |= 1<<i;
 240			if (!allow_unknown && !current_mapping[tclass].perms[i])
 241				result |= 1<<i;
 242		}
 243		/*
 244		 * In case the kernel has a bug and requests a permission
 245		 * between num_perms and the maximum permission number, we
 246		 * should audit that denial
 247		 */
 248		for (; i < (sizeof(u32)*8); i++)
 249			result |= 1<<i;
 250		avd->auditdeny = result;
 251	}
 252}
 253
 254int security_mls_enabled(void)
 255{
 256	return policydb.mls_enabled;
 
 
 
 
 
 
 
 
 
 
 257}
 258
 259/*
 260 * Return the boolean value of a constraint expression
 261 * when it is applied to the specified source and target
 262 * security contexts.
 263 *
 264 * xcontext is a special beast...  It is used by the validatetrans rules
 265 * only.  For these rules, scontext is the context before the transition,
 266 * tcontext is the context after the transition, and xcontext is the context
 267 * of the process performing the transition.  All other callers of
 268 * constraint_expr_eval should pass in NULL for xcontext.
 269 */
 270static int constraint_expr_eval(struct context *scontext,
 
 271				struct context *tcontext,
 272				struct context *xcontext,
 273				struct constraint_expr *cexpr)
 274{
 275	u32 val1, val2;
 276	struct context *c;
 277	struct role_datum *r1, *r2;
 278	struct mls_level *l1, *l2;
 279	struct constraint_expr *e;
 280	int s[CEXPR_MAXDEPTH];
 281	int sp = -1;
 282
 283	for (e = cexpr; e; e = e->next) {
 284		switch (e->expr_type) {
 285		case CEXPR_NOT:
 286			BUG_ON(sp < 0);
 287			s[sp] = !s[sp];
 288			break;
 289		case CEXPR_AND:
 290			BUG_ON(sp < 1);
 291			sp--;
 292			s[sp] &= s[sp + 1];
 293			break;
 294		case CEXPR_OR:
 295			BUG_ON(sp < 1);
 296			sp--;
 297			s[sp] |= s[sp + 1];
 298			break;
 299		case CEXPR_ATTR:
 300			if (sp == (CEXPR_MAXDEPTH - 1))
 301				return 0;
 302			switch (e->attr) {
 303			case CEXPR_USER:
 304				val1 = scontext->user;
 305				val2 = tcontext->user;
 306				break;
 307			case CEXPR_TYPE:
 308				val1 = scontext->type;
 309				val2 = tcontext->type;
 310				break;
 311			case CEXPR_ROLE:
 312				val1 = scontext->role;
 313				val2 = tcontext->role;
 314				r1 = policydb.role_val_to_struct[val1 - 1];
 315				r2 = policydb.role_val_to_struct[val2 - 1];
 316				switch (e->op) {
 317				case CEXPR_DOM:
 318					s[++sp] = ebitmap_get_bit(&r1->dominates,
 319								  val2 - 1);
 320					continue;
 321				case CEXPR_DOMBY:
 322					s[++sp] = ebitmap_get_bit(&r2->dominates,
 323								  val1 - 1);
 324					continue;
 325				case CEXPR_INCOMP:
 326					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 327								    val2 - 1) &&
 328						   !ebitmap_get_bit(&r2->dominates,
 329								    val1 - 1));
 330					continue;
 331				default:
 332					break;
 333				}
 334				break;
 335			case CEXPR_L1L2:
 336				l1 = &(scontext->range.level[0]);
 337				l2 = &(tcontext->range.level[0]);
 338				goto mls_ops;
 339			case CEXPR_L1H2:
 340				l1 = &(scontext->range.level[0]);
 341				l2 = &(tcontext->range.level[1]);
 342				goto mls_ops;
 343			case CEXPR_H1L2:
 344				l1 = &(scontext->range.level[1]);
 345				l2 = &(tcontext->range.level[0]);
 346				goto mls_ops;
 347			case CEXPR_H1H2:
 348				l1 = &(scontext->range.level[1]);
 349				l2 = &(tcontext->range.level[1]);
 350				goto mls_ops;
 351			case CEXPR_L1H1:
 352				l1 = &(scontext->range.level[0]);
 353				l2 = &(scontext->range.level[1]);
 354				goto mls_ops;
 355			case CEXPR_L2H2:
 356				l1 = &(tcontext->range.level[0]);
 357				l2 = &(tcontext->range.level[1]);
 358				goto mls_ops;
 359mls_ops:
 360			switch (e->op) {
 361			case CEXPR_EQ:
 362				s[++sp] = mls_level_eq(l1, l2);
 363				continue;
 364			case CEXPR_NEQ:
 365				s[++sp] = !mls_level_eq(l1, l2);
 366				continue;
 367			case CEXPR_DOM:
 368				s[++sp] = mls_level_dom(l1, l2);
 369				continue;
 370			case CEXPR_DOMBY:
 371				s[++sp] = mls_level_dom(l2, l1);
 372				continue;
 373			case CEXPR_INCOMP:
 374				s[++sp] = mls_level_incomp(l2, l1);
 375				continue;
 376			default:
 377				BUG();
 378				return 0;
 379			}
 380			break;
 381			default:
 382				BUG();
 383				return 0;
 384			}
 385
 386			switch (e->op) {
 387			case CEXPR_EQ:
 388				s[++sp] = (val1 == val2);
 389				break;
 390			case CEXPR_NEQ:
 391				s[++sp] = (val1 != val2);
 392				break;
 393			default:
 394				BUG();
 395				return 0;
 396			}
 397			break;
 398		case CEXPR_NAMES:
 399			if (sp == (CEXPR_MAXDEPTH-1))
 400				return 0;
 401			c = scontext;
 402			if (e->attr & CEXPR_TARGET)
 403				c = tcontext;
 404			else if (e->attr & CEXPR_XTARGET) {
 405				c = xcontext;
 406				if (!c) {
 407					BUG();
 408					return 0;
 409				}
 410			}
 411			if (e->attr & CEXPR_USER)
 412				val1 = c->user;
 413			else if (e->attr & CEXPR_ROLE)
 414				val1 = c->role;
 415			else if (e->attr & CEXPR_TYPE)
 416				val1 = c->type;
 417			else {
 418				BUG();
 419				return 0;
 420			}
 421
 422			switch (e->op) {
 423			case CEXPR_EQ:
 424				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 425				break;
 426			case CEXPR_NEQ:
 427				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 428				break;
 429			default:
 430				BUG();
 431				return 0;
 432			}
 433			break;
 434		default:
 435			BUG();
 436			return 0;
 437		}
 438	}
 439
 440	BUG_ON(sp != 0);
 441	return s[0];
 442}
 443
 444/*
 445 * security_dump_masked_av - dumps masked permissions during
 446 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 447 */
 448static int dump_masked_av_helper(void *k, void *d, void *args)
 449{
 450	struct perm_datum *pdatum = d;
 451	char **permission_names = args;
 452
 453	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 454
 455	permission_names[pdatum->value - 1] = (char *)k;
 456
 457	return 0;
 458}
 459
 460static void security_dump_masked_av(struct context *scontext,
 
 461				    struct context *tcontext,
 462				    u16 tclass,
 463				    u32 permissions,
 464				    const char *reason)
 465{
 466	struct common_datum *common_dat;
 467	struct class_datum *tclass_dat;
 468	struct audit_buffer *ab;
 469	char *tclass_name;
 470	char *scontext_name = NULL;
 471	char *tcontext_name = NULL;
 472	char *permission_names[32];
 473	int index;
 474	u32 length;
 475	bool need_comma = false;
 476
 477	if (!permissions)
 478		return;
 479
 480	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 481	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 482	common_dat = tclass_dat->comdatum;
 483
 484	/* init permission_names */
 485	if (common_dat &&
 486	    hashtab_map(common_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	if (hashtab_map(tclass_dat->permissions.table,
 491			dump_masked_av_helper, permission_names) < 0)
 492		goto out;
 493
 494	/* get scontext/tcontext in text form */
 495	if (context_struct_to_string(scontext,
 496				     &scontext_name, &length) < 0)
 497		goto out;
 498
 499	if (context_struct_to_string(tcontext,
 500				     &tcontext_name, &length) < 0)
 501		goto out;
 502
 503	/* audit a message */
 504	ab = audit_log_start(current->audit_context,
 505			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 506	if (!ab)
 507		goto out;
 508
 509	audit_log_format(ab, "op=security_compute_av reason=%s "
 510			 "scontext=%s tcontext=%s tclass=%s perms=",
 511			 reason, scontext_name, tcontext_name, tclass_name);
 512
 513	for (index = 0; index < 32; index++) {
 514		u32 mask = (1 << index);
 515
 516		if ((mask & permissions) == 0)
 517			continue;
 518
 519		audit_log_format(ab, "%s%s",
 520				 need_comma ? "," : "",
 521				 permission_names[index]
 522				 ? permission_names[index] : "????");
 523		need_comma = true;
 524	}
 525	audit_log_end(ab);
 526out:
 527	/* release scontext/tcontext */
 528	kfree(tcontext_name);
 529	kfree(scontext_name);
 530
 531	return;
 532}
 533
 534/*
 535 * security_boundary_permission - drops violated permissions
 536 * on boundary constraint.
 537 */
 538static void type_attribute_bounds_av(struct context *scontext,
 
 539				     struct context *tcontext,
 540				     u16 tclass,
 541				     struct av_decision *avd)
 542{
 543	struct context lo_scontext;
 544	struct context lo_tcontext;
 545	struct av_decision lo_avd;
 546	struct type_datum *source;
 547	struct type_datum *target;
 548	u32 masked = 0;
 549
 550	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 551				    scontext->type - 1);
 552	BUG_ON(!source);
 553
 554	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 555				    tcontext->type - 1);
 556	BUG_ON(!target);
 557
 558	if (source->bounds) {
 559		memset(&lo_avd, 0, sizeof(lo_avd));
 560
 561		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 562		lo_scontext.type = source->bounds;
 563
 564		context_struct_compute_av(&lo_scontext,
 565					  tcontext,
 566					  tclass,
 567					  &lo_avd);
 568		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 569			return;		/* no masked permission */
 570		masked = ~lo_avd.allowed & avd->allowed;
 571	}
 572
 573	if (target->bounds) {
 574		memset(&lo_avd, 0, sizeof(lo_avd));
 575
 576		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 577		lo_tcontext.type = target->bounds;
 578
 579		context_struct_compute_av(scontext,
 580					  &lo_tcontext,
 581					  tclass,
 582					  &lo_avd);
 583		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 584			return;		/* no masked permission */
 585		masked = ~lo_avd.allowed & avd->allowed;
 586	}
 587
 588	if (source->bounds && target->bounds) {
 589		memset(&lo_avd, 0, sizeof(lo_avd));
 590		/*
 591		 * lo_scontext and lo_tcontext are already
 592		 * set up.
 593		 */
 
 
 
 
 
 
 
 594
 595		context_struct_compute_av(&lo_scontext,
 596					  &lo_tcontext,
 597					  tclass,
 598					  &lo_avd);
 599		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 600			return;		/* no masked permission */
 601		masked = ~lo_avd.allowed & avd->allowed;
 602	}
 603
 604	if (masked) {
 605		/* mask violated permissions */
 606		avd->allowed &= ~masked;
 607
 608		/* audit masked permissions */
 609		security_dump_masked_av(scontext, tcontext,
 610					tclass, masked, "bounds");
 
 
 
 
 
 
 
 611	}
 
 
 612}
 613
 614/*
 615 * Compute access vectors based on a context structure pair for
 616 * the permissions in a particular class.
 617 */
 618static void context_struct_compute_av(struct context *scontext,
 
 619				      struct context *tcontext,
 620				      u16 tclass,
 621				      struct av_decision *avd)
 
 622{
 623	struct constraint_node *constraint;
 624	struct role_allow *ra;
 625	struct avtab_key avkey;
 626	struct avtab_node *node;
 627	struct class_datum *tclass_datum;
 628	struct ebitmap *sattr, *tattr;
 629	struct ebitmap_node *snode, *tnode;
 630	unsigned int i, j;
 631
 632	avd->allowed = 0;
 633	avd->auditallow = 0;
 634	avd->auditdeny = 0xffffffff;
 
 
 
 
 635
 636	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 637		if (printk_ratelimit())
 638			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 639		return;
 640	}
 641
 642	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 643
 644	/*
 645	 * If a specific type enforcement rule was defined for
 646	 * this permission check, then use it.
 647	 */
 648	avkey.target_class = tclass;
 649	avkey.specified = AVTAB_AV;
 650	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 651	BUG_ON(!sattr);
 652	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 653	BUG_ON(!tattr);
 654	ebitmap_for_each_positive_bit(sattr, snode, i) {
 655		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 656			avkey.source_type = i + 1;
 657			avkey.target_type = j + 1;
 658			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
 659			     node;
 660			     node = avtab_search_node_next(node, avkey.specified)) {
 661				if (node->key.specified == AVTAB_ALLOWED)
 662					avd->allowed |= node->datum.data;
 663				else if (node->key.specified == AVTAB_AUDITALLOW)
 664					avd->auditallow |= node->datum.data;
 665				else if (node->key.specified == AVTAB_AUDITDENY)
 666					avd->auditdeny &= node->datum.data;
 
 
 667			}
 668
 669			/* Check conditional av table for additional permissions */
 670			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
 
 671
 672		}
 673	}
 674
 675	/*
 676	 * Remove any permissions prohibited by a constraint (this includes
 677	 * the MLS policy).
 678	 */
 679	constraint = tclass_datum->constraints;
 680	while (constraint) {
 681		if ((constraint->permissions & (avd->allowed)) &&
 682		    !constraint_expr_eval(scontext, tcontext, NULL,
 683					  constraint->expr)) {
 684			avd->allowed &= ~(constraint->permissions);
 685		}
 686		constraint = constraint->next;
 687	}
 688
 689	/*
 690	 * If checking process transition permission and the
 691	 * role is changing, then check the (current_role, new_role)
 692	 * pair.
 693	 */
 694	if (tclass == policydb.process_class &&
 695	    (avd->allowed & policydb.process_trans_perms) &&
 696	    scontext->role != tcontext->role) {
 697		for (ra = policydb.role_allow; ra; ra = ra->next) {
 698			if (scontext->role == ra->role &&
 699			    tcontext->role == ra->new_role)
 700				break;
 701		}
 702		if (!ra)
 703			avd->allowed &= ~policydb.process_trans_perms;
 704	}
 705
 706	/*
 707	 * If the given source and target types have boundary
 708	 * constraint, lazy checks have to mask any violated
 709	 * permission and notice it to userspace via audit.
 710	 */
 711	type_attribute_bounds_av(scontext, tcontext,
 712				 tclass, avd);
 713}
 714
 715static int security_validtrans_handle_fail(struct context *ocontext,
 716					   struct context *ncontext,
 717					   struct context *tcontext,
 718					   u16 tclass)
 
 
 719{
 
 
 720	char *o = NULL, *n = NULL, *t = NULL;
 721	u32 olen, nlen, tlen;
 722
 723	if (context_struct_to_string(ocontext, &o, &olen))
 724		goto out;
 725	if (context_struct_to_string(ncontext, &n, &nlen))
 726		goto out;
 727	if (context_struct_to_string(tcontext, &t, &tlen))
 728		goto out;
 729	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 730		  "security_validate_transition:  denied for"
 731		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 732		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 733out:
 734	kfree(o);
 735	kfree(n);
 736	kfree(t);
 737
 738	if (!selinux_enforcing)
 739		return 0;
 740	return -EPERM;
 741}
 742
 743int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 744				 u16 orig_tclass)
 745{
 746	struct context *ocontext;
 747	struct context *ncontext;
 748	struct context *tcontext;
 
 
 
 
 749	struct class_datum *tclass_datum;
 750	struct constraint_node *constraint;
 751	u16 tclass;
 752	int rc = 0;
 753
 754	if (!ss_initialized)
 
 755		return 0;
 756
 757	read_lock(&policy_rwlock);
 758
 759	tclass = unmap_class(orig_tclass);
 
 
 760
 761	if (!tclass || tclass > policydb.p_classes.nprim) {
 762		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
 763			__func__, tclass);
 
 
 
 764		rc = -EINVAL;
 765		goto out;
 766	}
 767	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 768
 769	ocontext = sidtab_search(&sidtab, oldsid);
 770	if (!ocontext) {
 771		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 772			__func__, oldsid);
 773		rc = -EINVAL;
 774		goto out;
 775	}
 776
 777	ncontext = sidtab_search(&sidtab, newsid);
 778	if (!ncontext) {
 779		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 780			__func__, newsid);
 781		rc = -EINVAL;
 782		goto out;
 783	}
 784
 785	tcontext = sidtab_search(&sidtab, tasksid);
 786	if (!tcontext) {
 787		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 788			__func__, tasksid);
 789		rc = -EINVAL;
 790		goto out;
 791	}
 792
 793	constraint = tclass_datum->validatetrans;
 794	while (constraint) {
 795		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 
 796					  constraint->expr)) {
 797			rc = security_validtrans_handle_fail(ocontext, ncontext,
 798							     tcontext, tclass);
 
 
 
 
 
 
 
 799			goto out;
 800		}
 801		constraint = constraint->next;
 802	}
 803
 804out:
 805	read_unlock(&policy_rwlock);
 806	return rc;
 807}
 808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809/*
 810 * security_bounded_transition - check whether the given
 811 * transition is directed to bounded, or not.
 812 * It returns 0, if @newsid is bounded by @oldsid.
 813 * Otherwise, it returns error code.
 814 *
 
 815 * @oldsid : current security identifier
 816 * @newsid : destinated security identifier
 817 */
 818int security_bounded_transition(u32 old_sid, u32 new_sid)
 
 819{
 820	struct context *old_context, *new_context;
 
 
 
 821	struct type_datum *type;
 822	int index;
 823	int rc;
 824
 825	read_lock(&policy_rwlock);
 
 
 
 
 
 
 826
 827	rc = -EINVAL;
 828	old_context = sidtab_search(&sidtab, old_sid);
 829	if (!old_context) {
 830		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 831		       __func__, old_sid);
 832		goto out;
 833	}
 834
 835	rc = -EINVAL;
 836	new_context = sidtab_search(&sidtab, new_sid);
 837	if (!new_context) {
 838		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 839		       __func__, new_sid);
 840		goto out;
 841	}
 842
 843	rc = 0;
 844	/* type/domain unchanged */
 845	if (old_context->type == new_context->type)
 846		goto out;
 847
 848	index = new_context->type;
 849	while (true) {
 850		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 851					  index - 1);
 852		BUG_ON(!type);
 853
 854		/* not bounded anymore */
 855		rc = -EPERM;
 856		if (!type->bounds)
 857			break;
 858
 859		/* @newsid is bounded by @oldsid */
 860		rc = 0;
 861		if (type->bounds == old_context->type)
 862			break;
 863
 864		index = type->bounds;
 865	}
 866
 867	if (rc) {
 868		char *old_name = NULL;
 869		char *new_name = NULL;
 870		u32 length;
 871
 872		if (!context_struct_to_string(old_context,
 873					      &old_name, &length) &&
 874		    !context_struct_to_string(new_context,
 875					      &new_name, &length)) {
 876			audit_log(current->audit_context,
 877				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 878				  "op=security_bounded_transition "
 879				  "result=denied "
 880				  "oldcontext=%s newcontext=%s",
 881				  old_name, new_name);
 882		}
 883		kfree(new_name);
 884		kfree(old_name);
 885	}
 886out:
 887	read_unlock(&policy_rwlock);
 888
 889	return rc;
 890}
 891
 892static void avd_init(struct av_decision *avd)
 893{
 894	avd->allowed = 0;
 895	avd->auditallow = 0;
 896	avd->auditdeny = 0xffffffff;
 897	avd->seqno = latest_granting;
 
 
 
 898	avd->flags = 0;
 899}
 900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901
 902/**
 903 * security_compute_av - Compute access vector decisions.
 
 904 * @ssid: source security identifier
 905 * @tsid: target security identifier
 906 * @tclass: target security class
 907 * @avd: access vector decisions
 
 908 *
 909 * Compute a set of access vector decisions based on the
 910 * SID pair (@ssid, @tsid) for the permissions in @tclass.
 911 */
 912void security_compute_av(u32 ssid,
 
 913			 u32 tsid,
 914			 u16 orig_tclass,
 915			 struct av_decision *avd)
 
 916{
 
 
 
 917	u16 tclass;
 918	struct context *scontext = NULL, *tcontext = NULL;
 919
 920	read_lock(&policy_rwlock);
 921	avd_init(avd);
 922	if (!ss_initialized)
 
 
 923		goto allow;
 924
 925	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 926	if (!scontext) {
 927		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 928		       __func__, ssid);
 929		goto out;
 930	}
 931
 932	/* permissive domain? */
 933	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 934		avd->flags |= AVD_FLAGS_PERMISSIVE;
 935
 936	tcontext = sidtab_search(&sidtab, tsid);
 937	if (!tcontext) {
 938		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 939		       __func__, tsid);
 940		goto out;
 941	}
 942
 943	tclass = unmap_class(orig_tclass);
 944	if (unlikely(orig_tclass && !tclass)) {
 945		if (policydb.allow_unknown)
 946			goto allow;
 947		goto out;
 948	}
 949	context_struct_compute_av(scontext, tcontext, tclass, avd);
 950	map_decision(orig_tclass, avd, policydb.allow_unknown);
 
 
 951out:
 952	read_unlock(&policy_rwlock);
 953	return;
 954allow:
 955	avd->allowed = 0xffffffff;
 956	goto out;
 957}
 958
 959void security_compute_av_user(u32 ssid,
 
 960			      u32 tsid,
 961			      u16 tclass,
 962			      struct av_decision *avd)
 963{
 
 
 
 964	struct context *scontext = NULL, *tcontext = NULL;
 965
 966	read_lock(&policy_rwlock);
 967	avd_init(avd);
 968	if (!ss_initialized)
 
 969		goto allow;
 970
 971	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 972	if (!scontext) {
 973		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 974		       __func__, ssid);
 975		goto out;
 976	}
 977
 978	/* permissive domain? */
 979	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 980		avd->flags |= AVD_FLAGS_PERMISSIVE;
 981
 982	tcontext = sidtab_search(&sidtab, tsid);
 983	if (!tcontext) {
 984		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 985		       __func__, tsid);
 986		goto out;
 987	}
 988
 989	if (unlikely(!tclass)) {
 990		if (policydb.allow_unknown)
 991			goto allow;
 992		goto out;
 993	}
 994
 995	context_struct_compute_av(scontext, tcontext, tclass, avd);
 
 996 out:
 997	read_unlock(&policy_rwlock);
 998	return;
 999allow:
1000	avd->allowed = 0xffffffff;
1001	goto out;
1002}
1003
1004/*
1005 * Write the security context string representation of
1006 * the context structure `context' into a dynamically
1007 * allocated string of the correct size.  Set `*scontext'
1008 * to point to this string and set `*scontext_len' to
1009 * the length of the string.
1010 */
1011static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
 
 
1012{
1013	char *scontextp;
1014
1015	if (scontext)
1016		*scontext = NULL;
1017	*scontext_len = 0;
1018
1019	if (context->len) {
1020		*scontext_len = context->len;
1021		if (scontext) {
1022			*scontext = kstrdup(context->str, GFP_ATOMIC);
1023			if (!(*scontext))
1024				return -ENOMEM;
1025		}
1026		return 0;
1027	}
1028
1029	/* Compute the size of the context. */
1030	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033	*scontext_len += mls_compute_context_len(context);
1034
1035	if (!scontext)
1036		return 0;
1037
1038	/* Allocate space for the context; caller must free this space. */
1039	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040	if (!scontextp)
1041		return -ENOMEM;
1042	*scontext = scontextp;
1043
1044	/*
1045	 * Copy the user name, role name and type name into the context.
1046	 */
1047	sprintf(scontextp, "%s:%s:%s",
1048		sym_name(&policydb, SYM_USERS, context->user - 1),
1049		sym_name(&policydb, SYM_ROLES, context->role - 1),
1050		sym_name(&policydb, SYM_TYPES, context->type - 1));
1051	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054
1055	mls_sid_to_context(context, &scontextp);
1056
1057	*scontextp = 0;
1058
1059	return 0;
1060}
1061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062#include "initial_sid_to_string.h"
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064const char *security_get_initial_sid_context(u32 sid)
1065{
1066	if (unlikely(sid > SECINITSID_NUM))
1067		return NULL;
1068	return initial_sid_to_string[sid];
1069}
1070
1071static int security_sid_to_context_core(u32 sid, char **scontext,
1072					u32 *scontext_len, int force)
1073{
1074	struct context *context;
 
 
 
 
 
1075	int rc = 0;
1076
1077	if (scontext)
1078		*scontext = NULL;
1079	*scontext_len  = 0;
1080
1081	if (!ss_initialized) {
1082		if (sid <= SECINITSID_NUM) {
1083			char *scontextp;
 
1084
1085			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
 
 
1086			if (!scontext)
1087				goto out;
1088			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089			if (!scontextp) {
1090				rc = -ENOMEM;
1091				goto out;
1092			}
1093			strcpy(scontextp, initial_sid_to_string[sid]);
1094			*scontext = scontextp;
1095			goto out;
1096		}
1097		printk(KERN_ERR "SELinux: %s:  called before initial "
1098		       "load_policy on unknown SID %d\n", __func__, sid);
1099		rc = -EINVAL;
1100		goto out;
1101	}
1102	read_lock(&policy_rwlock);
 
 
 
 
1103	if (force)
1104		context = sidtab_search_force(&sidtab, sid);
1105	else
1106		context = sidtab_search(&sidtab, sid);
1107	if (!context) {
1108		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109			__func__, sid);
1110		rc = -EINVAL;
1111		goto out_unlock;
1112	}
1113	rc = context_struct_to_string(context, scontext, scontext_len);
 
 
 
 
 
1114out_unlock:
1115	read_unlock(&policy_rwlock);
1116out:
1117	return rc;
1118
1119}
1120
1121/**
1122 * security_sid_to_context - Obtain a context for a given SID.
 
1123 * @sid: security identifier, SID
1124 * @scontext: security context
1125 * @scontext_len: length in bytes
1126 *
1127 * Write the string representation of the context associated with @sid
1128 * into a dynamically allocated string of the correct size.  Set @scontext
1129 * to point to this string and set @scontext_len to the length of the string.
1130 */
1131int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
 
1132{
1133	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
 
1134}
1135
1136int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137{
1138	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
 
1139}
1140
1141/*
1142 * Caveat:  Mutates scontext.
1143 */
1144static int string_to_context_struct(struct policydb *pol,
1145				    struct sidtab *sidtabp,
1146				    char *scontext,
1147				    u32 scontext_len,
1148				    struct context *ctx,
1149				    u32 def_sid)
1150{
1151	struct role_datum *role;
1152	struct type_datum *typdatum;
1153	struct user_datum *usrdatum;
1154	char *scontextp, *p, oldc;
1155	int rc = 0;
1156
1157	context_init(ctx);
1158
1159	/* Parse the security context. */
1160
1161	rc = -EINVAL;
1162	scontextp = (char *) scontext;
1163
1164	/* Extract the user. */
1165	p = scontextp;
1166	while (*p && *p != ':')
1167		p++;
1168
1169	if (*p == 0)
1170		goto out;
1171
1172	*p++ = 0;
1173
1174	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175	if (!usrdatum)
1176		goto out;
1177
1178	ctx->user = usrdatum->value;
1179
1180	/* Extract role. */
1181	scontextp = p;
1182	while (*p && *p != ':')
1183		p++;
1184
1185	if (*p == 0)
1186		goto out;
1187
1188	*p++ = 0;
1189
1190	role = hashtab_search(pol->p_roles.table, scontextp);
1191	if (!role)
1192		goto out;
1193	ctx->role = role->value;
1194
1195	/* Extract type. */
1196	scontextp = p;
1197	while (*p && *p != ':')
1198		p++;
1199	oldc = *p;
1200	*p++ = 0;
1201
1202	typdatum = hashtab_search(pol->p_types.table, scontextp);
1203	if (!typdatum || typdatum->attribute)
1204		goto out;
1205
1206	ctx->type = typdatum->value;
1207
1208	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209	if (rc)
1210		goto out;
1211
1212	rc = -EINVAL;
1213	if ((p - scontext) < scontext_len)
1214		goto out;
1215
1216	/* Check the validity of the new context. */
 
1217	if (!policydb_context_isvalid(pol, ctx))
1218		goto out;
1219	rc = 0;
1220out:
1221	if (rc)
1222		context_destroy(ctx);
1223	return rc;
1224}
1225
1226static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
 
1227					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228					int force)
1229{
 
 
 
1230	char *scontext2, *str = NULL;
1231	struct context context;
1232	int rc = 0;
1233
1234	if (!ss_initialized) {
 
 
 
 
 
 
 
 
 
1235		int i;
1236
1237		for (i = 1; i < SECINITSID_NUM; i++) {
1238			if (!strcmp(initial_sid_to_string[i], scontext)) {
 
 
1239				*sid = i;
1240				return 0;
1241			}
1242		}
1243		*sid = SECINITSID_KERNEL;
1244		return 0;
1245	}
1246	*sid = SECSID_NULL;
1247
1248	/* Copy the string so that we can modify the copy as we parse it. */
1249	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250	if (!scontext2)
1251		return -ENOMEM;
1252	memcpy(scontext2, scontext, scontext_len);
1253	scontext2[scontext_len] = 0;
1254
1255	if (force) {
1256		/* Save another copy for storing in uninterpreted form */
1257		rc = -ENOMEM;
1258		str = kstrdup(scontext2, gfp_flags);
1259		if (!str)
1260			goto out;
1261	}
1262
1263	read_lock(&policy_rwlock);
1264	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265				      scontext_len, &context, def_sid);
 
 
 
1266	if (rc == -EINVAL && force) {
1267		context.str = str;
1268		context.len = scontext_len;
1269		str = NULL;
1270	} else if (rc)
1271		goto out_unlock;
1272	rc = sidtab_context_to_sid(&sidtab, &context, sid);
 
 
 
 
 
 
 
 
 
1273	context_destroy(&context);
1274out_unlock:
1275	read_unlock(&policy_rwlock);
1276out:
1277	kfree(scontext2);
1278	kfree(str);
1279	return rc;
1280}
1281
1282/**
1283 * security_context_to_sid - Obtain a SID for a given security context.
 
1284 * @scontext: security context
1285 * @scontext_len: length in bytes
1286 * @sid: security identifier, SID
 
1287 *
1288 * Obtains a SID associated with the security context that
1289 * has the string representation specified by @scontext.
1290 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291 * memory is available, or 0 on success.
1292 */
1293int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
 
 
 
 
 
 
 
 
 
1294{
1295	return security_context_to_sid_core(scontext, scontext_len,
1296					    sid, SECSID_NULL, GFP_KERNEL, 0);
1297}
1298
1299/**
1300 * security_context_to_sid_default - Obtain a SID for a given security context,
1301 * falling back to specified default if needed.
1302 *
 
1303 * @scontext: security context
1304 * @scontext_len: length in bytes
1305 * @sid: security identifier, SID
1306 * @def_sid: default SID to assign on error
1307 *
1308 * Obtains a SID associated with the security context that
1309 * has the string representation specified by @scontext.
1310 * The default SID is passed to the MLS layer to be used to allow
1311 * kernel labeling of the MLS field if the MLS field is not present
1312 * (for upgrading to MLS without full relabel).
1313 * Implicitly forces adding of the context even if it cannot be mapped yet.
1314 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315 * memory is available, or 0 on success.
1316 */
1317int security_context_to_sid_default(const char *scontext, u32 scontext_len,
 
1318				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319{
1320	return security_context_to_sid_core(scontext, scontext_len,
1321					    sid, def_sid, gfp_flags, 1);
1322}
1323
1324int security_context_to_sid_force(const char *scontext, u32 scontext_len,
 
1325				  u32 *sid)
1326{
1327	return security_context_to_sid_core(scontext, scontext_len,
1328					    sid, SECSID_NULL, GFP_KERNEL, 1);
1329}
1330
1331static int compute_sid_handle_invalid_context(
1332	struct context *scontext,
1333	struct context *tcontext,
 
 
1334	u16 tclass,
1335	struct context *newcontext)
1336{
 
 
1337	char *s = NULL, *t = NULL, *n = NULL;
1338	u32 slen, tlen, nlen;
 
1339
1340	if (context_struct_to_string(scontext, &s, &slen))
1341		goto out;
1342	if (context_struct_to_string(tcontext, &t, &tlen))
1343		goto out;
1344	if (context_struct_to_string(newcontext, &n, &nlen))
1345		goto out;
1346	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347		  "security_compute_sid:  invalid context %s"
1348		  " for scontext=%s"
1349		  " tcontext=%s"
1350		  " tclass=%s",
1351		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 
 
1352out:
1353	kfree(s);
1354	kfree(t);
1355	kfree(n);
1356	if (!selinux_enforcing)
1357		return 0;
1358	return -EACCES;
1359}
1360
1361static void filename_compute_type(struct policydb *p, struct context *newcontext,
 
1362				  u32 stype, u32 ttype, u16 tclass,
1363				  const char *objname)
1364{
1365	struct filename_trans ft;
1366	struct filename_trans_datum *otype;
1367
1368	/*
1369	 * Most filename trans rules are going to live in specific directories
1370	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1371	 * if the ttype does not contain any rules.
1372	 */
1373	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1374		return;
1375
1376	ft.stype = stype;
1377	ft.ttype = ttype;
1378	ft.tclass = tclass;
1379	ft.name = objname;
1380
1381	otype = hashtab_search(p->filename_trans, &ft);
1382	if (otype)
1383		newcontext->type = otype->otype;
 
 
 
 
 
1384}
1385
1386static int security_compute_sid(u32 ssid,
 
1387				u32 tsid,
1388				u16 orig_tclass,
1389				u32 specified,
1390				const char *objname,
1391				u32 *out_sid,
1392				bool kern)
1393{
1394	struct class_datum *cladatum = NULL;
1395	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1396	struct role_trans *roletr = NULL;
 
 
 
1397	struct avtab_key avkey;
1398	struct avtab_datum *avdatum;
1399	struct avtab_node *node;
1400	u16 tclass;
1401	int rc = 0;
1402	bool sock;
1403
1404	if (!ss_initialized) {
1405		switch (orig_tclass) {
1406		case SECCLASS_PROCESS: /* kernel value */
1407			*out_sid = ssid;
1408			break;
1409		default:
1410			*out_sid = tsid;
1411			break;
1412		}
1413		goto out;
1414	}
1415
 
 
1416	context_init(&newcontext);
1417
1418	read_lock(&policy_rwlock);
 
 
1419
1420	if (kern) {
1421		tclass = unmap_class(orig_tclass);
1422		sock = security_is_socket_class(orig_tclass);
1423	} else {
1424		tclass = orig_tclass;
1425		sock = security_is_socket_class(map_class(tclass));
 
1426	}
1427
1428	scontext = sidtab_search(&sidtab, ssid);
1429	if (!scontext) {
1430		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 
 
 
1431		       __func__, ssid);
1432		rc = -EINVAL;
1433		goto out_unlock;
1434	}
1435	tcontext = sidtab_search(&sidtab, tsid);
1436	if (!tcontext) {
1437		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1438		       __func__, tsid);
1439		rc = -EINVAL;
1440		goto out_unlock;
1441	}
1442
1443	if (tclass && tclass <= policydb.p_classes.nprim)
1444		cladatum = policydb.class_val_to_struct[tclass - 1];
 
 
 
1445
1446	/* Set the user identity. */
1447	switch (specified) {
1448	case AVTAB_TRANSITION:
1449	case AVTAB_CHANGE:
1450		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1451			newcontext.user = tcontext->user;
1452		} else {
1453			/* notice this gets both DEFAULT_SOURCE and unset */
1454			/* Use the process user identity. */
1455			newcontext.user = scontext->user;
1456		}
1457		break;
1458	case AVTAB_MEMBER:
1459		/* Use the related object owner. */
1460		newcontext.user = tcontext->user;
1461		break;
1462	}
1463
1464	/* Set the role to default values. */
1465	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1466		newcontext.role = scontext->role;
1467	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1468		newcontext.role = tcontext->role;
1469	} else {
1470		if ((tclass == policydb.process_class) || (sock == true))
1471			newcontext.role = scontext->role;
1472		else
1473			newcontext.role = OBJECT_R_VAL;
1474	}
1475
1476	/* Set the type to default values. */
1477	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1478		newcontext.type = scontext->type;
1479	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1480		newcontext.type = tcontext->type;
1481	} else {
1482		if ((tclass == policydb.process_class) || (sock == true)) {
1483			/* Use the type of process. */
1484			newcontext.type = scontext->type;
1485		} else {
1486			/* Use the type of the related object. */
1487			newcontext.type = tcontext->type;
1488		}
1489	}
1490
1491	/* Look for a type transition/member/change rule. */
1492	avkey.source_type = scontext->type;
1493	avkey.target_type = tcontext->type;
1494	avkey.target_class = tclass;
1495	avkey.specified = specified;
1496	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1497
1498	/* If no permanent rule, also check for enabled conditional rules */
1499	if (!avdatum) {
1500		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1501		for (; node; node = avtab_search_node_next(node, specified)) {
1502			if (node->key.specified & AVTAB_ENABLED) {
1503				avdatum = &node->datum;
1504				break;
1505			}
1506		}
1507	}
1508
1509	if (avdatum) {
1510		/* Use the type from the type transition/member/change rule. */
1511		newcontext.type = avdatum->data;
1512	}
1513
1514	/* if we have a objname this is a file trans check so check those rules */
1515	if (objname)
1516		filename_compute_type(&policydb, &newcontext, scontext->type,
1517				      tcontext->type, tclass, objname);
1518
1519	/* Check for class-specific changes. */
1520	if (specified & AVTAB_TRANSITION) {
1521		/* Look for a role transition rule. */
1522		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1523			if ((roletr->role == scontext->role) &&
1524			    (roletr->type == tcontext->type) &&
1525			    (roletr->tclass == tclass)) {
1526				/* Use the role transition rule. */
1527				newcontext.role = roletr->new_role;
1528				break;
1529			}
1530		}
 
1531	}
1532
1533	/* Set the MLS attributes.
1534	   This is done last because it may allocate memory. */
1535	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1536			     &newcontext, sock);
1537	if (rc)
1538		goto out_unlock;
1539
1540	/* Check the validity of the context. */
1541	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1542		rc = compute_sid_handle_invalid_context(scontext,
1543							tcontext,
1544							tclass,
1545							&newcontext);
1546		if (rc)
1547			goto out_unlock;
1548	}
1549	/* Obtain the sid for the context. */
1550	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
 
 
 
 
 
1551out_unlock:
1552	read_unlock(&policy_rwlock);
1553	context_destroy(&newcontext);
1554out:
1555	return rc;
1556}
1557
1558/**
1559 * security_transition_sid - Compute the SID for a new subject/object.
 
1560 * @ssid: source security identifier
1561 * @tsid: target security identifier
1562 * @tclass: target security class
1563 * @out_sid: security identifier for new subject/object
1564 *
1565 * Compute a SID to use for labeling a new subject or object in the
1566 * class @tclass based on a SID pair (@ssid, @tsid).
1567 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1568 * if insufficient memory is available, or %0 if the new SID was
1569 * computed successfully.
1570 */
1571int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
 
1572			    const struct qstr *qstr, u32 *out_sid)
1573{
1574	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1575				    qstr ? qstr->name : NULL, out_sid, true);
1576}
1577
1578int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
 
1579				 const char *objname, u32 *out_sid)
1580{
1581	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1582				    objname, out_sid, false);
1583}
1584
1585/**
1586 * security_member_sid - Compute the SID for member selection.
1587 * @ssid: source security identifier
1588 * @tsid: target security identifier
1589 * @tclass: target security class
1590 * @out_sid: security identifier for selected member
1591 *
1592 * Compute a SID to use when selecting a member of a polyinstantiated
1593 * object of class @tclass based on a SID pair (@ssid, @tsid).
1594 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1595 * if insufficient memory is available, or %0 if the SID was
1596 * computed successfully.
1597 */
1598int security_member_sid(u32 ssid,
 
1599			u32 tsid,
1600			u16 tclass,
1601			u32 *out_sid)
1602{
1603	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
 
1604				    out_sid, false);
1605}
1606
1607/**
1608 * security_change_sid - Compute the SID for object relabeling.
 
1609 * @ssid: source security identifier
1610 * @tsid: target security identifier
1611 * @tclass: target security class
1612 * @out_sid: security identifier for selected member
1613 *
1614 * Compute a SID to use for relabeling an object of class @tclass
1615 * based on a SID pair (@ssid, @tsid).
1616 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1617 * if insufficient memory is available, or %0 if the SID was
1618 * computed successfully.
1619 */
1620int security_change_sid(u32 ssid,
 
1621			u32 tsid,
1622			u16 tclass,
1623			u32 *out_sid)
1624{
1625	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
 
1626				    out_sid, false);
1627}
1628
1629/* Clone the SID into the new SID table. */
1630static int clone_sid(u32 sid,
1631		     struct context *context,
1632		     void *arg)
1633{
1634	struct sidtab *s = arg;
1635
1636	if (sid > SECINITSID_NUM)
1637		return sidtab_insert(s, sid, context);
1638	else
1639		return 0;
1640}
1641
1642static inline int convert_context_handle_invalid_context(struct context *context)
1643{
1644	char *s;
1645	u32 len;
1646
1647	if (selinux_enforcing)
1648		return -EINVAL;
1649
1650	if (!context_struct_to_string(context, &s, &len)) {
1651		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
 
1652		kfree(s);
1653	}
1654	return 0;
1655}
1656
1657struct convert_context_args {
1658	struct policydb *oldp;
1659	struct policydb *newp;
1660};
1661
1662/*
1663 * Convert the values in the security context
1664 * structure `c' from the values specified
1665 * in the policy `p->oldp' to the values specified
1666 * in the policy `p->newp'.  Verify that the
1667 * context is valid under the new policy.
 
1668 */
1669static int convert_context(u32 key,
1670			   struct context *c,
1671			   void *p)
1672{
1673	struct convert_context_args *args;
1674	struct context oldc;
1675	struct ocontext *oc;
1676	struct mls_range *range;
1677	struct role_datum *role;
1678	struct type_datum *typdatum;
1679	struct user_datum *usrdatum;
1680	char *s;
1681	u32 len;
1682	int rc = 0;
1683
1684	if (key <= SECINITSID_NUM)
1685		goto out;
1686
1687	args = p;
1688
1689	if (c->str) {
1690		struct context ctx;
1691
1692		rc = -ENOMEM;
1693		s = kstrdup(c->str, GFP_KERNEL);
1694		if (!s)
1695			goto out;
1696
1697		rc = string_to_context_struct(args->newp, NULL, s,
1698					      c->len, &ctx, SECSID_NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699		kfree(s);
1700		if (!rc) {
1701			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1702			       c->str);
1703			/* Replace string with mapped representation. */
1704			kfree(c->str);
1705			memcpy(c, &ctx, sizeof(*c));
1706			goto out;
1707		} else if (rc == -EINVAL) {
1708			/* Retain string representation for later mapping. */
1709			rc = 0;
1710			goto out;
1711		} else {
1712			/* Other error condition, e.g. ENOMEM. */
1713			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1714			       c->str, -rc);
1715			goto out;
1716		}
 
 
 
1717	}
1718
1719	rc = context_cpy(&oldc, c);
1720	if (rc)
1721		goto out;
1722
1723	/* Convert the user. */
1724	rc = -EINVAL;
1725	usrdatum = hashtab_search(args->newp->p_users.table,
1726				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1727	if (!usrdatum)
1728		goto bad;
1729	c->user = usrdatum->value;
1730
1731	/* Convert the role. */
1732	rc = -EINVAL;
1733	role = hashtab_search(args->newp->p_roles.table,
1734			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1735	if (!role)
1736		goto bad;
1737	c->role = role->value;
1738
1739	/* Convert the type. */
1740	rc = -EINVAL;
1741	typdatum = hashtab_search(args->newp->p_types.table,
1742				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1743	if (!typdatum)
1744		goto bad;
1745	c->type = typdatum->value;
1746
1747	/* Convert the MLS fields if dealing with MLS policies */
1748	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1749		rc = mls_convert_context(args->oldp, args->newp, c);
1750		if (rc)
1751			goto bad;
1752	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1753		/*
1754		 * Switching between MLS and non-MLS policy:
1755		 * free any storage used by the MLS fields in the
1756		 * context for all existing entries in the sidtab.
1757		 */
1758		mls_context_destroy(c);
1759	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1760		/*
1761		 * Switching between non-MLS and MLS policy:
1762		 * ensure that the MLS fields of the context for all
1763		 * existing entries in the sidtab are filled in with a
1764		 * suitable default value, likely taken from one of the
1765		 * initial SIDs.
1766		 */
1767		oc = args->newp->ocontexts[OCON_ISID];
1768		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1769			oc = oc->next;
1770		rc = -EINVAL;
1771		if (!oc) {
1772			printk(KERN_ERR "SELinux:  unable to look up"
1773				" the initial SIDs list\n");
1774			goto bad;
1775		}
1776		range = &oc->context[0].range;
1777		rc = mls_range_set(c, range);
1778		if (rc)
1779			goto bad;
1780	}
1781
1782	/* Check the validity of the new context. */
1783	if (!policydb_context_isvalid(args->newp, c)) {
1784		rc = convert_context_handle_invalid_context(&oldc);
 
 
1785		if (rc)
1786			goto bad;
1787	}
1788
1789	context_destroy(&oldc);
1790
1791	rc = 0;
1792out:
1793	return rc;
1794bad:
1795	/* Map old representation to string and save it. */
1796	rc = context_struct_to_string(&oldc, &s, &len);
1797	if (rc)
1798		return rc;
1799	context_destroy(&oldc);
1800	context_destroy(c);
1801	c->str = s;
1802	c->len = len;
1803	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1804	       c->str);
1805	rc = 0;
1806	goto out;
1807}
1808
1809static void security_load_policycaps(void)
 
1810{
1811	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1812						  POLICYDB_CAPABILITY_NETPEER);
1813	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1814						  POLICYDB_CAPABILITY_OPENPERM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815}
1816
1817static int security_preserve_bools(struct policydb *p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818
1819/**
1820 * security_load_policy - Load a security policy configuration.
 
1821 * @data: binary policy data
1822 * @len: length of data in bytes
1823 *
1824 * Load a new set of security policy configuration data,
1825 * validate it and convert the SID table as necessary.
1826 * This function will flush the access vector cache after
1827 * loading the new policy.
1828 */
1829int security_load_policy(void *data, size_t len)
 
1830{
1831	struct policydb oldpolicydb, newpolicydb;
1832	struct sidtab oldsidtab, newsidtab;
1833	struct selinux_mapping *oldmap, *map = NULL;
1834	struct convert_context_args args;
1835	u32 seqno;
1836	u16 map_size;
1837	int rc = 0;
1838	struct policy_file file = { data, len }, *fp = &file;
1839
1840	if (!ss_initialized) {
1841		avtab_cache_init();
1842		rc = policydb_read(&policydb, fp);
1843		if (rc) {
1844			avtab_cache_destroy();
1845			return rc;
1846		}
1847
1848		policydb.len = len;
1849		rc = selinux_set_mapping(&policydb, secclass_map,
1850					 &current_mapping,
1851					 &current_mapping_size);
1852		if (rc) {
1853			policydb_destroy(&policydb);
1854			avtab_cache_destroy();
1855			return rc;
1856		}
1857
1858		rc = policydb_load_isids(&policydb, &sidtab);
1859		if (rc) {
1860			policydb_destroy(&policydb);
1861			avtab_cache_destroy();
1862			return rc;
1863		}
1864
1865		security_load_policycaps();
1866		ss_initialized = 1;
1867		seqno = ++latest_granting;
1868		selinux_complete_init();
1869		avc_ss_reset(seqno);
1870		selnl_notify_policyload(seqno);
1871		selinux_status_update_policyload(seqno);
1872		selinux_netlbl_cache_invalidate();
1873		selinux_xfrm_notify_policyload();
1874		return 0;
1875	}
1876
1877#if 0
1878	sidtab_hash_eval(&sidtab, "sids");
1879#endif
1880
1881	rc = policydb_read(&newpolicydb, fp);
1882	if (rc)
1883		return rc;
1884
1885	newpolicydb.len = len;
1886	/* If switching between different policy types, log MLS status */
1887	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1888		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1889	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1890		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1891
1892	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1893	if (rc) {
1894		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1895		policydb_destroy(&newpolicydb);
1896		return rc;
1897	}
1898
1899	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1900	if (rc)
1901		goto err;
 
 
 
1902
1903	rc = security_preserve_bools(&newpolicydb);
 
 
 
 
1904	if (rc) {
1905		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1906		goto err;
1907	}
1908
1909	/* Clone the SID table. */
1910	sidtab_shutdown(&sidtab);
1911
1912	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1913	if (rc)
1914		goto err;
1915
1916	/*
1917	 * Convert the internal representations of contexts
1918	 * in the new SID table.
1919	 */
1920	args.oldp = &policydb;
1921	args.newp = &newpolicydb;
1922	rc = sidtab_map(&newsidtab, convert_context, &args);
 
 
 
 
 
 
1923	if (rc) {
1924		printk(KERN_ERR "SELinux:  unable to convert the internal"
1925			" representation of contexts in the new SID"
1926			" table\n");
1927		goto err;
1928	}
1929
1930	/* Save the old policydb and SID table to free later. */
1931	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1932	sidtab_set(&oldsidtab, &sidtab);
1933
1934	/* Install the new policydb and SID table. */
1935	write_lock_irq(&policy_rwlock);
1936	memcpy(&policydb, &newpolicydb, sizeof policydb);
1937	sidtab_set(&sidtab, &newsidtab);
1938	security_load_policycaps();
1939	oldmap = current_mapping;
1940	current_mapping = map;
1941	current_mapping_size = map_size;
1942	seqno = ++latest_granting;
1943	write_unlock_irq(&policy_rwlock);
1944
1945	/* Free the old policydb and SID table. */
1946	policydb_destroy(&oldpolicydb);
1947	sidtab_destroy(&oldsidtab);
1948	kfree(oldmap);
1949
1950	avc_ss_reset(seqno);
1951	selnl_notify_policyload(seqno);
1952	selinux_status_update_policyload(seqno);
1953	selinux_netlbl_cache_invalidate();
1954	selinux_xfrm_notify_policyload();
1955
1956	return 0;
1957
1958err:
1959	kfree(map);
1960	sidtab_destroy(&newsidtab);
1961	policydb_destroy(&newpolicydb);
1962	return rc;
1963
1964}
1965
1966size_t security_policydb_len(void)
1967{
1968	size_t len;
1969
1970	read_lock(&policy_rwlock);
1971	len = policydb.len;
1972	read_unlock(&policy_rwlock);
1973
1974	return len;
1975}
1976
1977/**
1978 * security_port_sid - Obtain the SID for a port.
 
1979 * @protocol: protocol number
1980 * @port: port number
1981 * @out_sid: security identifier
1982 */
1983int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
 
1984{
 
 
 
1985	struct ocontext *c;
1986	int rc = 0;
 
 
 
 
 
1987
1988	read_lock(&policy_rwlock);
 
 
 
 
 
1989
1990	c = policydb.ocontexts[OCON_PORT];
1991	while (c) {
1992		if (c->u.port.protocol == protocol &&
1993		    c->u.port.low_port <= port &&
1994		    c->u.port.high_port >= port)
1995			break;
1996		c = c->next;
1997	}
1998
1999	if (c) {
2000		if (!c->sid[0]) {
2001			rc = sidtab_context_to_sid(&sidtab,
2002						   &c->context[0],
2003						   &c->sid[0]);
 
 
 
 
2004			if (rc)
2005				goto out;
2006		}
2007		*out_sid = c->sid[0];
2008	} else {
2009		*out_sid = SECINITSID_PORT;
2010	}
2011
2012out:
2013	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014	return rc;
2015}
2016
2017/**
2018 * security_netif_sid - Obtain the SID for a network interface.
 
2019 * @name: interface name
2020 * @if_sid: interface SID
2021 */
2022int security_netif_sid(char *name, u32 *if_sid)
 
2023{
2024	int rc = 0;
 
 
 
2025	struct ocontext *c;
2026
2027	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
2028
2029	c = policydb.ocontexts[OCON_NETIF];
2030	while (c) {
2031		if (strcmp(name, c->u.name) == 0)
2032			break;
2033		c = c->next;
2034	}
2035
2036	if (c) {
2037		if (!c->sid[0] || !c->sid[1]) {
2038			rc = sidtab_context_to_sid(&sidtab,
2039						  &c->context[0],
2040						  &c->sid[0]);
 
 
 
2041			if (rc)
2042				goto out;
2043			rc = sidtab_context_to_sid(&sidtab,
2044						   &c->context[1],
2045						   &c->sid[1]);
 
 
 
 
2046			if (rc)
2047				goto out;
2048		}
2049		*if_sid = c->sid[0];
2050	} else
2051		*if_sid = SECINITSID_NETIF;
2052
2053out:
2054	read_unlock(&policy_rwlock);
2055	return rc;
2056}
2057
2058static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2059{
2060	int i, fail = 0;
2061
2062	for (i = 0; i < 4; i++)
2063		if (addr[i] != (input[i] & mask[i])) {
2064			fail = 1;
2065			break;
2066		}
2067
2068	return !fail;
2069}
2070
2071/**
2072 * security_node_sid - Obtain the SID for a node (host).
 
2073 * @domain: communication domain aka address family
2074 * @addrp: address
2075 * @addrlen: address length in bytes
2076 * @out_sid: security identifier
2077 */
2078int security_node_sid(u16 domain,
 
2079		      void *addrp,
2080		      u32 addrlen,
2081		      u32 *out_sid)
2082{
 
 
 
2083	int rc;
2084	struct ocontext *c;
2085
2086	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
2087
2088	switch (domain) {
2089	case AF_INET: {
2090		u32 addr;
2091
2092		rc = -EINVAL;
2093		if (addrlen != sizeof(u32))
2094			goto out;
2095
2096		addr = *((u32 *)addrp);
2097
2098		c = policydb.ocontexts[OCON_NODE];
2099		while (c) {
2100			if (c->u.node.addr == (addr & c->u.node.mask))
2101				break;
2102			c = c->next;
2103		}
2104		break;
2105	}
2106
2107	case AF_INET6:
2108		rc = -EINVAL;
2109		if (addrlen != sizeof(u64) * 2)
2110			goto out;
2111		c = policydb.ocontexts[OCON_NODE6];
2112		while (c) {
2113			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2114						c->u.node6.mask))
2115				break;
2116			c = c->next;
2117		}
2118		break;
2119
2120	default:
2121		rc = 0;
2122		*out_sid = SECINITSID_NODE;
2123		goto out;
2124	}
2125
2126	if (c) {
2127		if (!c->sid[0]) {
2128			rc = sidtab_context_to_sid(&sidtab,
2129						   &c->context[0],
2130						   &c->sid[0]);
 
 
 
 
2131			if (rc)
2132				goto out;
2133		}
2134		*out_sid = c->sid[0];
2135	} else {
2136		*out_sid = SECINITSID_NODE;
2137	}
2138
2139	rc = 0;
2140out:
2141	read_unlock(&policy_rwlock);
2142	return rc;
2143}
2144
2145#define SIDS_NEL 25
2146
2147/**
2148 * security_get_user_sids - Obtain reachable SIDs for a user.
 
2149 * @fromsid: starting SID
2150 * @username: username
2151 * @sids: array of reachable SIDs for user
2152 * @nel: number of elements in @sids
2153 *
2154 * Generate the set of SIDs for legal security contexts
2155 * for a given user that can be reached by @fromsid.
2156 * Set *@sids to point to a dynamically allocated
2157 * array containing the set of SIDs.  Set *@nel to the
2158 * number of elements in the array.
2159 */
2160
2161int security_get_user_sids(u32 fromsid,
 
2162			   char *username,
2163			   u32 **sids,
2164			   u32 *nel)
2165{
 
 
 
2166	struct context *fromcon, usercon;
2167	u32 *mysids = NULL, *mysids2, sid;
2168	u32 mynel = 0, maxnel = SIDS_NEL;
2169	struct user_datum *user;
2170	struct role_datum *role;
2171	struct ebitmap_node *rnode, *tnode;
2172	int rc = 0, i, j;
2173
2174	*sids = NULL;
2175	*nel = 0;
2176
2177	if (!ss_initialized)
2178		goto out;
2179
2180	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
2181
2182	context_init(&usercon);
2183
2184	rc = -EINVAL;
2185	fromcon = sidtab_search(&sidtab, fromsid);
2186	if (!fromcon)
2187		goto out_unlock;
2188
2189	rc = -EINVAL;
2190	user = hashtab_search(policydb.p_users.table, username);
2191	if (!user)
2192		goto out_unlock;
2193
2194	usercon.user = user->value;
2195
2196	rc = -ENOMEM;
2197	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2198	if (!mysids)
2199		goto out_unlock;
2200
2201	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2202		role = policydb.role_val_to_struct[i];
2203		usercon.role = i + 1;
2204		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2205			usercon.type = j + 1;
2206
2207			if (mls_setup_user_range(fromcon, user, &usercon))
 
2208				continue;
2209
2210			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
 
 
 
 
2211			if (rc)
2212				goto out_unlock;
2213			if (mynel < maxnel) {
2214				mysids[mynel++] = sid;
2215			} else {
2216				rc = -ENOMEM;
2217				maxnel += SIDS_NEL;
2218				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2219				if (!mysids2)
2220					goto out_unlock;
2221				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2222				kfree(mysids);
2223				mysids = mysids2;
2224				mysids[mynel++] = sid;
2225			}
2226		}
2227	}
2228	rc = 0;
2229out_unlock:
2230	read_unlock(&policy_rwlock);
2231	if (rc || !mynel) {
2232		kfree(mysids);
2233		goto out;
2234	}
2235
2236	rc = -ENOMEM;
2237	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2238	if (!mysids2) {
2239		kfree(mysids);
2240		goto out;
2241	}
2242	for (i = 0, j = 0; i < mynel; i++) {
2243		struct av_decision dummy_avd;
2244		rc = avc_has_perm_noaudit(fromsid, mysids[i],
 
2245					  SECCLASS_PROCESS, /* kernel value */
2246					  PROCESS__TRANSITION, AVC_STRICT,
2247					  &dummy_avd);
2248		if (!rc)
2249			mysids2[j++] = mysids[i];
2250		cond_resched();
2251	}
2252	rc = 0;
2253	kfree(mysids);
2254	*sids = mysids2;
2255	*nel = j;
2256out:
2257	return rc;
2258}
2259
2260/**
2261 * security_genfs_sid - Obtain a SID for a file in a filesystem
2262 * @fstype: filesystem type
2263 * @path: path from root of mount
2264 * @sclass: file security class
2265 * @sid: SID for path
2266 *
2267 * Obtain a SID to use for a file in a filesystem that
2268 * cannot support xattr or use a fixed labeling behavior like
2269 * transition SIDs or task SIDs.
 
 
 
2270 */
2271int security_genfs_sid(const char *fstype,
2272		       char *path,
2273		       u16 orig_sclass,
2274		       u32 *sid)
 
2275{
 
 
2276	int len;
2277	u16 sclass;
2278	struct genfs *genfs;
2279	struct ocontext *c;
2280	int rc, cmp = 0;
2281
2282	while (path[0] == '/' && path[1] == '/')
2283		path++;
2284
2285	read_lock(&policy_rwlock);
2286
2287	sclass = unmap_class(orig_sclass);
2288	*sid = SECINITSID_UNLABELED;
2289
2290	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2291		cmp = strcmp(fstype, genfs->fstype);
2292		if (cmp <= 0)
2293			break;
2294	}
2295
2296	rc = -ENOENT;
2297	if (!genfs || cmp)
2298		goto out;
2299
2300	for (c = genfs->head; c; c = c->next) {
2301		len = strlen(c->u.name);
2302		if ((!c->v.sclass || sclass == c->v.sclass) &&
2303		    (strncmp(c->u.name, path, len) == 0))
2304			break;
2305	}
2306
2307	rc = -ENOENT;
2308	if (!c)
2309		goto out;
2310
2311	if (!c->sid[0]) {
2312		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2313		if (rc)
2314			goto out;
2315	}
2316
2317	*sid = c->sid[0];
2318	rc = 0;
2319out:
2320	read_unlock(&policy_rwlock);
2321	return rc;
2322}
2323
2324/**
2325 * security_fs_use - Determine how to handle labeling for a filesystem.
 
2326 * @fstype: filesystem type
2327 * @behavior: labeling behavior
2328 * @sid: SID for filesystem (superblock)
 
 
 
 
2329 */
2330int security_fs_use(
2331	const char *fstype,
2332	unsigned int *behavior,
2333	u32 *sid)
 
2334{
2335	int rc = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2336	struct ocontext *c;
 
 
2337
2338	read_lock(&policy_rwlock);
 
 
 
 
2339
2340	c = policydb.ocontexts[OCON_FSUSE];
 
 
 
 
 
 
 
2341	while (c) {
2342		if (strcmp(fstype, c->u.name) == 0)
2343			break;
2344		c = c->next;
2345	}
2346
2347	if (c) {
2348		*behavior = c->v.behavior;
2349		if (!c->sid[0]) {
2350			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2351						   &c->sid[0]);
 
 
 
 
2352			if (rc)
2353				goto out;
2354		}
2355		*sid = c->sid[0];
2356	} else {
2357		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
 
 
 
 
 
2358		if (rc) {
2359			*behavior = SECURITY_FS_USE_NONE;
2360			rc = 0;
2361		} else {
2362			*behavior = SECURITY_FS_USE_GENFS;
2363		}
2364	}
2365
2366out:
2367	read_unlock(&policy_rwlock);
2368	return rc;
2369}
2370
2371int security_get_bools(int *len, char ***names, int **values)
 
2372{
2373	int i, rc;
 
 
 
 
2374
2375	read_lock(&policy_rwlock);
2376	*names = NULL;
2377	*values = NULL;
2378
2379	rc = 0;
2380	*len = policydb.p_bools.nprim;
2381	if (!*len)
2382		goto out;
2383
2384	rc = -ENOMEM;
2385	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2386	if (!*names)
2387		goto err;
2388
2389	rc = -ENOMEM;
2390	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2391	if (!*values)
2392		goto err;
2393
2394	for (i = 0; i < *len; i++) {
2395		size_t name_len;
2396
2397		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2398		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2399
2400		rc = -ENOMEM;
2401		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
 
2402		if (!(*names)[i])
2403			goto err;
2404
2405		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2406		(*names)[i][name_len - 1] = 0;
2407	}
2408	rc = 0;
2409out:
2410	read_unlock(&policy_rwlock);
2411	return rc;
2412err:
2413	if (*names) {
2414		for (i = 0; i < *len; i++)
2415			kfree((*names)[i]);
 
2416	}
2417	kfree(*values);
 
 
 
2418	goto out;
2419}
2420
2421
2422int security_set_bools(int len, int *values)
2423{
2424	int i, rc;
2425	int lenp, seqno = 0;
2426	struct cond_node *cur;
2427
2428	write_lock_irq(&policy_rwlock);
 
2429
2430	rc = -EFAULT;
2431	lenp = policydb.p_bools.nprim;
2432	if (len != lenp)
2433		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2434
 
2435	for (i = 0; i < len; i++) {
2436		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2437			audit_log(current->audit_context, GFP_ATOMIC,
 
 
 
2438				AUDIT_MAC_CONFIG_CHANGE,
2439				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2440				sym_name(&policydb, SYM_BOOLS, i),
2441				!!values[i],
2442				policydb.bool_val_to_struct[i]->state,
2443				audit_get_loginuid(current),
2444				audit_get_sessionid(current));
 
2445		}
2446		if (values[i])
2447			policydb.bool_val_to_struct[i]->state = 1;
2448		else
2449			policydb.bool_val_to_struct[i]->state = 0;
2450	}
2451
2452	for (cur = policydb.cond_list; cur; cur = cur->next) {
2453		rc = evaluate_cond_node(&policydb, cur);
2454		if (rc)
2455			goto out;
2456	}
2457
2458	seqno = ++latest_granting;
2459	rc = 0;
2460out:
2461	write_unlock_irq(&policy_rwlock);
2462	if (!rc) {
2463		avc_ss_reset(seqno);
2464		selnl_notify_policyload(seqno);
2465		selinux_status_update_policyload(seqno);
2466		selinux_xfrm_notify_policyload();
2467	}
2468	return rc;
 
 
 
 
 
 
 
2469}
2470
2471int security_get_bool_value(int bool)
 
2472{
 
 
2473	int rc;
2474	int len;
 
 
 
2475
2476	read_lock(&policy_rwlock);
 
 
2477
2478	rc = -EFAULT;
2479	len = policydb.p_bools.nprim;
2480	if (bool >= len)
2481		goto out;
2482
2483	rc = policydb.bool_val_to_struct[bool]->state;
2484out:
2485	read_unlock(&policy_rwlock);
2486	return rc;
2487}
2488
2489static int security_preserve_bools(struct policydb *p)
 
2490{
2491	int rc, nbools = 0, *bvalues = NULL, i;
2492	char **bnames = NULL;
2493	struct cond_bool_datum *booldatum;
2494	struct cond_node *cur;
2495
2496	rc = security_get_bools(&nbools, &bnames, &bvalues);
2497	if (rc)
2498		goto out;
2499	for (i = 0; i < nbools; i++) {
2500		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
 
2501		if (booldatum)
2502			booldatum->state = bvalues[i];
2503	}
2504	for (cur = p->cond_list; cur; cur = cur->next) {
2505		rc = evaluate_cond_node(p, cur);
2506		if (rc)
2507			goto out;
2508	}
2509
2510out:
2511	if (bnames) {
2512		for (i = 0; i < nbools; i++)
2513			kfree(bnames[i]);
2514	}
2515	kfree(bnames);
2516	kfree(bvalues);
2517	return rc;
2518}
2519
2520/*
2521 * security_sid_mls_copy() - computes a new sid based on the given
2522 * sid and the mls portion of mls_sid.
2523 */
2524int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
 
2525{
 
 
 
2526	struct context *context1;
2527	struct context *context2;
2528	struct context newcon;
2529	char *s;
2530	u32 len;
2531	int rc;
2532
2533	rc = 0;
2534	if (!ss_initialized || !policydb.mls_enabled) {
2535		*new_sid = sid;
2536		goto out;
2537	}
2538
 
 
2539	context_init(&newcon);
2540
2541	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
2542
2543	rc = -EINVAL;
2544	context1 = sidtab_search(&sidtab, sid);
2545	if (!context1) {
2546		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2547			__func__, sid);
2548		goto out_unlock;
2549	}
2550
2551	rc = -EINVAL;
2552	context2 = sidtab_search(&sidtab, mls_sid);
2553	if (!context2) {
2554		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2555			__func__, mls_sid);
2556		goto out_unlock;
2557	}
2558
2559	newcon.user = context1->user;
2560	newcon.role = context1->role;
2561	newcon.type = context1->type;
2562	rc = mls_context_cpy(&newcon, context2);
2563	if (rc)
2564		goto out_unlock;
2565
2566	/* Check the validity of the new context. */
2567	if (!policydb_context_isvalid(&policydb, &newcon)) {
2568		rc = convert_context_handle_invalid_context(&newcon);
 
2569		if (rc) {
2570			if (!context_struct_to_string(&newcon, &s, &len)) {
2571				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2572					  "security_sid_mls_copy: invalid context %s", s);
 
 
 
 
 
 
 
 
 
2573				kfree(s);
2574			}
2575			goto out_unlock;
2576		}
2577	}
2578
2579	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
 
 
 
 
2580out_unlock:
2581	read_unlock(&policy_rwlock);
2582	context_destroy(&newcon);
2583out:
2584	return rc;
2585}
2586
2587/**
2588 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
 
2589 * @nlbl_sid: NetLabel SID
2590 * @nlbl_type: NetLabel labeling protocol type
2591 * @xfrm_sid: XFRM SID
2592 *
2593 * Description:
2594 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2595 * resolved into a single SID it is returned via @peer_sid and the function
2596 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2597 * returns a negative value.  A table summarizing the behavior is below:
2598 *
2599 *                                 | function return |      @sid
2600 *   ------------------------------+-----------------+-----------------
2601 *   no peer labels                |        0        |    SECSID_NULL
2602 *   single peer label             |        0        |    <peer_label>
2603 *   multiple, consistent labels   |        0        |    <peer_label>
2604 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2605 *
2606 */
2607int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
 
2608				 u32 xfrm_sid,
2609				 u32 *peer_sid)
2610{
 
 
 
2611	int rc;
2612	struct context *nlbl_ctx;
2613	struct context *xfrm_ctx;
2614
2615	*peer_sid = SECSID_NULL;
2616
2617	/* handle the common (which also happens to be the set of easy) cases
2618	 * right away, these two if statements catch everything involving a
2619	 * single or absent peer SID/label */
2620	if (xfrm_sid == SECSID_NULL) {
2621		*peer_sid = nlbl_sid;
2622		return 0;
2623	}
2624	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2625	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2626	 * is present */
2627	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2628		*peer_sid = xfrm_sid;
2629		return 0;
2630	}
2631
2632	/* we don't need to check ss_initialized here since the only way both
2633	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2634	 * security server was initialized and ss_initialized was true */
2635	if (!policydb.mls_enabled)
2636		return 0;
2637
2638	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
2639
2640	rc = -EINVAL;
2641	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2642	if (!nlbl_ctx) {
2643		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2644		       __func__, nlbl_sid);
2645		goto out;
2646	}
2647	rc = -EINVAL;
2648	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2649	if (!xfrm_ctx) {
2650		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2651		       __func__, xfrm_sid);
2652		goto out;
2653	}
2654	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2655	if (rc)
2656		goto out;
2657
2658	/* at present NetLabel SIDs/labels really only carry MLS
2659	 * information so if the MLS portion of the NetLabel SID
2660	 * matches the MLS portion of the labeled XFRM SID/label
2661	 * then pass along the XFRM SID as it is the most
2662	 * expressive */
2663	*peer_sid = xfrm_sid;
2664out:
2665	read_unlock(&policy_rwlock);
2666	return rc;
2667}
2668
2669static int get_classes_callback(void *k, void *d, void *args)
2670{
2671	struct class_datum *datum = d;
2672	char *name = k, **classes = args;
2673	int value = datum->value - 1;
2674
2675	classes[value] = kstrdup(name, GFP_ATOMIC);
2676	if (!classes[value])
2677		return -ENOMEM;
2678
2679	return 0;
2680}
2681
2682int security_get_classes(char ***classes, int *nclasses)
 
2683{
 
2684	int rc;
2685
2686	read_lock(&policy_rwlock);
2687
2688	rc = -ENOMEM;
2689	*nclasses = policydb.p_classes.nprim;
2690	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2691	if (!*classes)
2692		goto out;
2693
2694	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2695			*classes);
2696	if (rc) {
2697		int i;
2698		for (i = 0; i < *nclasses; i++)
2699			kfree((*classes)[i]);
2700		kfree(*classes);
2701	}
2702
2703out:
2704	read_unlock(&policy_rwlock);
2705	return rc;
2706}
2707
2708static int get_permissions_callback(void *k, void *d, void *args)
2709{
2710	struct perm_datum *datum = d;
2711	char *name = k, **perms = args;
2712	int value = datum->value - 1;
2713
2714	perms[value] = kstrdup(name, GFP_ATOMIC);
2715	if (!perms[value])
2716		return -ENOMEM;
2717
2718	return 0;
2719}
2720
2721int security_get_permissions(char *class, char ***perms, int *nperms)
 
2722{
 
2723	int rc, i;
2724	struct class_datum *match;
2725
2726	read_lock(&policy_rwlock);
2727
2728	rc = -EINVAL;
2729	match = hashtab_search(policydb.p_classes.table, class);
2730	if (!match) {
2731		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2732			__func__, class);
2733		goto out;
2734	}
2735
2736	rc = -ENOMEM;
2737	*nperms = match->permissions.nprim;
2738	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2739	if (!*perms)
2740		goto out;
2741
2742	if (match->comdatum) {
2743		rc = hashtab_map(match->comdatum->permissions.table,
2744				get_permissions_callback, *perms);
2745		if (rc)
2746			goto err;
2747	}
2748
2749	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2750			*perms);
2751	if (rc)
2752		goto err;
2753
2754out:
2755	read_unlock(&policy_rwlock);
2756	return rc;
2757
2758err:
2759	read_unlock(&policy_rwlock);
2760	for (i = 0; i < *nperms; i++)
2761		kfree((*perms)[i]);
2762	kfree(*perms);
2763	return rc;
2764}
2765
2766int security_get_reject_unknown(void)
2767{
2768	return policydb.reject_unknown;
 
 
 
 
 
 
 
 
 
 
2769}
2770
2771int security_get_allow_unknown(void)
2772{
2773	return policydb.allow_unknown;
 
 
 
 
 
 
 
 
 
 
2774}
2775
2776/**
2777 * security_policycap_supported - Check for a specific policy capability
 
2778 * @req_cap: capability
2779 *
2780 * Description:
2781 * This function queries the currently loaded policy to see if it supports the
2782 * capability specified by @req_cap.  Returns true (1) if the capability is
2783 * supported, false (0) if it isn't supported.
2784 *
2785 */
2786int security_policycap_supported(unsigned int req_cap)
 
2787{
 
2788	int rc;
2789
2790	read_lock(&policy_rwlock);
2791	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2792	read_unlock(&policy_rwlock);
 
 
 
 
2793
2794	return rc;
2795}
2796
2797struct selinux_audit_rule {
2798	u32 au_seqno;
2799	struct context au_ctxt;
2800};
2801
2802void selinux_audit_rule_free(void *vrule)
2803{
2804	struct selinux_audit_rule *rule = vrule;
2805
2806	if (rule) {
2807		context_destroy(&rule->au_ctxt);
2808		kfree(rule);
2809	}
2810}
2811
2812int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2813{
 
 
 
2814	struct selinux_audit_rule *tmprule;
2815	struct role_datum *roledatum;
2816	struct type_datum *typedatum;
2817	struct user_datum *userdatum;
2818	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2819	int rc = 0;
2820
2821	*rule = NULL;
2822
2823	if (!ss_initialized)
2824		return -EOPNOTSUPP;
2825
2826	switch (field) {
2827	case AUDIT_SUBJ_USER:
2828	case AUDIT_SUBJ_ROLE:
2829	case AUDIT_SUBJ_TYPE:
2830	case AUDIT_OBJ_USER:
2831	case AUDIT_OBJ_ROLE:
2832	case AUDIT_OBJ_TYPE:
2833		/* only 'equals' and 'not equals' fit user, role, and type */
2834		if (op != Audit_equal && op != Audit_not_equal)
2835			return -EINVAL;
2836		break;
2837	case AUDIT_SUBJ_SEN:
2838	case AUDIT_SUBJ_CLR:
2839	case AUDIT_OBJ_LEV_LOW:
2840	case AUDIT_OBJ_LEV_HIGH:
2841		/* we do not allow a range, indicated by the presence of '-' */
2842		if (strchr(rulestr, '-'))
2843			return -EINVAL;
2844		break;
2845	default:
2846		/* only the above fields are valid */
2847		return -EINVAL;
2848	}
2849
2850	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2851	if (!tmprule)
2852		return -ENOMEM;
2853
2854	context_init(&tmprule->au_ctxt);
2855
2856	read_lock(&policy_rwlock);
 
 
2857
2858	tmprule->au_seqno = latest_granting;
2859
2860	switch (field) {
2861	case AUDIT_SUBJ_USER:
2862	case AUDIT_OBJ_USER:
2863		rc = -EINVAL;
2864		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2865		if (!userdatum)
2866			goto out;
2867		tmprule->au_ctxt.user = userdatum->value;
2868		break;
2869	case AUDIT_SUBJ_ROLE:
2870	case AUDIT_OBJ_ROLE:
2871		rc = -EINVAL;
2872		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2873		if (!roledatum)
2874			goto out;
2875		tmprule->au_ctxt.role = roledatum->value;
2876		break;
2877	case AUDIT_SUBJ_TYPE:
2878	case AUDIT_OBJ_TYPE:
2879		rc = -EINVAL;
2880		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2881		if (!typedatum)
2882			goto out;
2883		tmprule->au_ctxt.type = typedatum->value;
2884		break;
2885	case AUDIT_SUBJ_SEN:
2886	case AUDIT_SUBJ_CLR:
2887	case AUDIT_OBJ_LEV_LOW:
2888	case AUDIT_OBJ_LEV_HIGH:
2889		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
 
2890		if (rc)
2891			goto out;
2892		break;
2893	}
2894	rc = 0;
2895out:
2896	read_unlock(&policy_rwlock);
2897
2898	if (rc) {
2899		selinux_audit_rule_free(tmprule);
2900		tmprule = NULL;
2901	}
2902
2903	*rule = tmprule;
2904
2905	return rc;
2906}
2907
2908/* Check to see if the rule contains any selinux fields */
2909int selinux_audit_rule_known(struct audit_krule *rule)
2910{
2911	int i;
2912
2913	for (i = 0; i < rule->field_count; i++) {
2914		struct audit_field *f = &rule->fields[i];
2915		switch (f->type) {
2916		case AUDIT_SUBJ_USER:
2917		case AUDIT_SUBJ_ROLE:
2918		case AUDIT_SUBJ_TYPE:
2919		case AUDIT_SUBJ_SEN:
2920		case AUDIT_SUBJ_CLR:
2921		case AUDIT_OBJ_USER:
2922		case AUDIT_OBJ_ROLE:
2923		case AUDIT_OBJ_TYPE:
2924		case AUDIT_OBJ_LEV_LOW:
2925		case AUDIT_OBJ_LEV_HIGH:
2926			return 1;
2927		}
2928	}
2929
2930	return 0;
2931}
2932
2933int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2934			     struct audit_context *actx)
2935{
 
 
2936	struct context *ctxt;
2937	struct mls_level *level;
2938	struct selinux_audit_rule *rule = vrule;
2939	int match = 0;
2940
2941	if (!rule) {
2942		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2943			  "selinux_audit_rule_match: missing rule\n");
2944		return -ENOENT;
2945	}
2946
2947	read_lock(&policy_rwlock);
 
 
 
2948
2949	if (rule->au_seqno < latest_granting) {
2950		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2951			  "selinux_audit_rule_match: stale rule\n");
2952		match = -ESTALE;
2953		goto out;
2954	}
2955
2956	ctxt = sidtab_search(&sidtab, sid);
2957	if (!ctxt) {
2958		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2959			  "selinux_audit_rule_match: unrecognized SID %d\n",
2960			  sid);
2961		match = -ENOENT;
2962		goto out;
2963	}
2964
2965	/* a field/op pair that is not caught here will simply fall through
2966	   without a match */
2967	switch (field) {
2968	case AUDIT_SUBJ_USER:
2969	case AUDIT_OBJ_USER:
2970		switch (op) {
2971		case Audit_equal:
2972			match = (ctxt->user == rule->au_ctxt.user);
2973			break;
2974		case Audit_not_equal:
2975			match = (ctxt->user != rule->au_ctxt.user);
2976			break;
2977		}
2978		break;
2979	case AUDIT_SUBJ_ROLE:
2980	case AUDIT_OBJ_ROLE:
2981		switch (op) {
2982		case Audit_equal:
2983			match = (ctxt->role == rule->au_ctxt.role);
2984			break;
2985		case Audit_not_equal:
2986			match = (ctxt->role != rule->au_ctxt.role);
2987			break;
2988		}
2989		break;
2990	case AUDIT_SUBJ_TYPE:
2991	case AUDIT_OBJ_TYPE:
2992		switch (op) {
2993		case Audit_equal:
2994			match = (ctxt->type == rule->au_ctxt.type);
2995			break;
2996		case Audit_not_equal:
2997			match = (ctxt->type != rule->au_ctxt.type);
2998			break;
2999		}
3000		break;
3001	case AUDIT_SUBJ_SEN:
3002	case AUDIT_SUBJ_CLR:
3003	case AUDIT_OBJ_LEV_LOW:
3004	case AUDIT_OBJ_LEV_HIGH:
3005		level = ((field == AUDIT_SUBJ_SEN ||
3006			  field == AUDIT_OBJ_LEV_LOW) ?
3007			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3008		switch (op) {
3009		case Audit_equal:
3010			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3011					     level);
3012			break;
3013		case Audit_not_equal:
3014			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3015					      level);
3016			break;
3017		case Audit_lt:
3018			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3019					       level) &&
3020				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3021					       level));
3022			break;
3023		case Audit_le:
3024			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3025					      level);
3026			break;
3027		case Audit_gt:
3028			match = (mls_level_dom(level,
3029					      &rule->au_ctxt.range.level[0]) &&
3030				 !mls_level_eq(level,
3031					       &rule->au_ctxt.range.level[0]));
3032			break;
3033		case Audit_ge:
3034			match = mls_level_dom(level,
3035					      &rule->au_ctxt.range.level[0]);
3036			break;
3037		}
3038	}
3039
3040out:
3041	read_unlock(&policy_rwlock);
3042	return match;
3043}
3044
3045static int (*aurule_callback)(void) = audit_update_lsm_rules;
3046
3047static int aurule_avc_callback(u32 event)
3048{
3049	int err = 0;
3050
3051	if (event == AVC_CALLBACK_RESET && aurule_callback)
3052		err = aurule_callback();
3053	return err;
3054}
3055
3056static int __init aurule_init(void)
3057{
3058	int err;
3059
3060	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3061	if (err)
3062		panic("avc_add_callback() failed, error %d\n", err);
3063
3064	return err;
3065}
3066__initcall(aurule_init);
3067
3068#ifdef CONFIG_NETLABEL
3069/**
3070 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3071 * @secattr: the NetLabel packet security attributes
3072 * @sid: the SELinux SID
3073 *
3074 * Description:
3075 * Attempt to cache the context in @ctx, which was derived from the packet in
3076 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3077 * already been initialized.
3078 *
3079 */
3080static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3081				      u32 sid)
3082{
3083	u32 *sid_cache;
3084
3085	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3086	if (sid_cache == NULL)
3087		return;
3088	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3089	if (secattr->cache == NULL) {
3090		kfree(sid_cache);
3091		return;
3092	}
3093
3094	*sid_cache = sid;
3095	secattr->cache->free = kfree;
3096	secattr->cache->data = sid_cache;
3097	secattr->flags |= NETLBL_SECATTR_CACHE;
3098}
3099
3100/**
3101 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
 
3102 * @secattr: the NetLabel packet security attributes
3103 * @sid: the SELinux SID
3104 *
3105 * Description:
3106 * Convert the given NetLabel security attributes in @secattr into a
3107 * SELinux SID.  If the @secattr field does not contain a full SELinux
3108 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3109 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3110 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3111 * conversion for future lookups.  Returns zero on success, negative values on
3112 * failure.
3113 *
3114 */
3115int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
 
3116				   u32 *sid)
3117{
 
 
 
3118	int rc;
3119	struct context *ctx;
3120	struct context ctx_new;
3121
3122	if (!ss_initialized) {
3123		*sid = SECSID_NULL;
3124		return 0;
3125	}
3126
3127	read_lock(&policy_rwlock);
 
 
 
 
 
3128
3129	if (secattr->flags & NETLBL_SECATTR_CACHE)
3130		*sid = *(u32 *)secattr->cache->data;
3131	else if (secattr->flags & NETLBL_SECATTR_SECID)
3132		*sid = secattr->attr.secid;
3133	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3134		rc = -EIDRM;
3135		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3136		if (ctx == NULL)
3137			goto out;
3138
3139		context_init(&ctx_new);
3140		ctx_new.user = ctx->user;
3141		ctx_new.role = ctx->role;
3142		ctx_new.type = ctx->type;
3143		mls_import_netlbl_lvl(&ctx_new, secattr);
3144		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3145			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3146						   secattr->attr.mls.cat);
3147			if (rc)
3148				goto out;
3149			memcpy(&ctx_new.range.level[1].cat,
3150			       &ctx_new.range.level[0].cat,
3151			       sizeof(ctx_new.range.level[0].cat));
3152		}
3153		rc = -EIDRM;
3154		if (!mls_context_isvalid(&policydb, &ctx_new))
3155			goto out_free;
 
 
3156
3157		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
 
 
 
 
 
3158		if (rc)
3159			goto out_free;
3160
3161		security_netlbl_cache_add(secattr, *sid);
3162
3163		ebitmap_destroy(&ctx_new.range.level[0].cat);
3164	} else
3165		*sid = SECSID_NULL;
3166
3167	read_unlock(&policy_rwlock);
3168	return 0;
3169out_free:
3170	ebitmap_destroy(&ctx_new.range.level[0].cat);
3171out:
3172	read_unlock(&policy_rwlock);
3173	return rc;
3174}
3175
3176/**
3177 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
 
3178 * @sid: the SELinux SID
3179 * @secattr: the NetLabel packet security attributes
3180 *
3181 * Description:
3182 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3183 * Returns zero on success, negative values on failure.
3184 *
3185 */
3186int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
 
3187{
 
 
3188	int rc;
3189	struct context *ctx;
3190
3191	if (!ss_initialized)
3192		return 0;
3193
3194	read_lock(&policy_rwlock);
 
 
3195
3196	rc = -ENOENT;
3197	ctx = sidtab_search(&sidtab, sid);
3198	if (ctx == NULL)
3199		goto out;
3200
3201	rc = -ENOMEM;
3202	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3203				  GFP_ATOMIC);
3204	if (secattr->domain == NULL)
3205		goto out;
3206
3207	secattr->attr.secid = sid;
3208	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3209	mls_export_netlbl_lvl(ctx, secattr);
3210	rc = mls_export_netlbl_cat(ctx, secattr);
3211out:
3212	read_unlock(&policy_rwlock);
3213	return rc;
3214}
3215#endif /* CONFIG_NETLABEL */
3216
3217/**
3218 * security_read_policy - read the policy.
 
3219 * @data: binary policy data
3220 * @len: length of data in bytes
3221 *
3222 */
3223int security_read_policy(void **data, size_t *len)
 
3224{
3225	int rc;
3226	struct policy_file fp;
3227
3228	if (!ss_initialized)
3229		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3230
3231	*len = security_policydb_len();
 
 
 
3232
 
3233	*data = vmalloc_user(*len);
3234	if (!*data)
3235		return -ENOMEM;
3236
3237	fp.data = *data;
3238	fp.len = *len;
3239
3240	read_lock(&policy_rwlock);
3241	rc = policydb_write(&policydb, &fp);
3242	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
3243
3244	if (rc)
3245		return rc;
 
 
3246
3247	*len = (unsigned long)fp.data - (unsigned long)*data;
3248	return 0;
 
 
3249
 
3250}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
 
 
 
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
  71struct convert_context_args {
  72	struct selinux_state *state;
  73	struct policydb *oldp;
  74	struct policydb *newp;
  75};
 
 
 
  76
  77struct selinux_policy_convert_data {
  78	struct convert_context_args args;
  79	struct sidtab_convert_params sidtab_params;
  80};
 
 
 
  81
  82/* Forward declaration. */
  83static int context_struct_to_string(struct policydb *policydb,
  84				    struct context *context,
  85				    char **scontext,
  86				    u32 *scontext_len);
  87
  88static int sidtab_entry_to_string(struct policydb *policydb,
  89				  struct sidtab *sidtab,
  90				  struct sidtab_entry *entry,
  91				  char **scontext,
  92				  u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct policydb *policydb,
  95				      struct context *scontext,
  96				      struct context *tcontext,
  97				      u16 tclass,
  98				      struct av_decision *avd,
  99				      struct extended_perms *xperms);
 
 
 
 
 
 
 
 
 100
 101static int selinux_set_mapping(struct policydb *pol,
 102			       struct security_class_mapping *map,
 103			       struct selinux_map *out_map)
 
 104{
 
 
 105	u16 i, j;
 106	unsigned k;
 107	bool print_unknown_handle = false;
 108
 109	/* Find number of classes in the input mapping */
 110	if (!map)
 111		return -EINVAL;
 112	i = 0;
 113	while (map[i].name)
 114		i++;
 115
 116	/* Allocate space for the class records, plus one for class zero */
 117	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 118	if (!out_map->mapping)
 119		return -ENOMEM;
 120
 121	/* Store the raw class and permission values */
 122	j = 0;
 123	while (map[j].name) {
 124		struct security_class_mapping *p_in = map + (j++);
 125		struct selinux_mapping *p_out = out_map->mapping + j;
 126
 127		/* An empty class string skips ahead */
 128		if (!strcmp(p_in->name, "")) {
 129			p_out->num_perms = 0;
 130			continue;
 131		}
 132
 133		p_out->value = string_to_security_class(pol, p_in->name);
 134		if (!p_out->value) {
 135			pr_info("SELinux:  Class %s not defined in policy.\n",
 
 136			       p_in->name);
 137			if (pol->reject_unknown)
 138				goto err;
 139			p_out->num_perms = 0;
 140			print_unknown_handle = true;
 141			continue;
 142		}
 143
 144		k = 0;
 145		while (p_in->perms[k]) {
 146			/* An empty permission string skips ahead */
 147			if (!*p_in->perms[k]) {
 148				k++;
 149				continue;
 150			}
 151			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 152							    p_in->perms[k]);
 153			if (!p_out->perms[k]) {
 154				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 
 155				       p_in->perms[k], p_in->name);
 156				if (pol->reject_unknown)
 157					goto err;
 158				print_unknown_handle = true;
 159			}
 160
 161			k++;
 162		}
 163		p_out->num_perms = k;
 164	}
 165
 166	if (print_unknown_handle)
 167		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 168		       pol->allow_unknown ? "allowed" : "denied");
 169
 170	out_map->size = i;
 
 171	return 0;
 172err:
 173	kfree(out_map->mapping);
 174	out_map->mapping = NULL;
 175	return -EINVAL;
 176}
 177
 178/*
 179 * Get real, policy values from mapped values
 180 */
 181
 182static u16 unmap_class(struct selinux_map *map, u16 tclass)
 183{
 184	if (tclass < map->size)
 185		return map->mapping[tclass].value;
 186
 187	return tclass;
 188}
 189
 190/*
 191 * Get kernel value for class from its policy value
 192 */
 193static u16 map_class(struct selinux_map *map, u16 pol_value)
 194{
 195	u16 i;
 196
 197	for (i = 1; i < map->size; i++) {
 198		if (map->mapping[i].value == pol_value)
 199			return i;
 200	}
 201
 202	return SECCLASS_NULL;
 203}
 204
 205static void map_decision(struct selinux_map *map,
 206			 u16 tclass, struct av_decision *avd,
 207			 int allow_unknown)
 208{
 209	if (tclass < map->size) {
 210		struct selinux_mapping *mapping = &map->mapping[tclass];
 211		unsigned int i, n = mapping->num_perms;
 212		u32 result;
 213
 214		for (i = 0, result = 0; i < n; i++) {
 215			if (avd->allowed & mapping->perms[i])
 216				result |= 1<<i;
 217			if (allow_unknown && !mapping->perms[i])
 218				result |= 1<<i;
 219		}
 220		avd->allowed = result;
 221
 222		for (i = 0, result = 0; i < n; i++)
 223			if (avd->auditallow & mapping->perms[i])
 224				result |= 1<<i;
 225		avd->auditallow = result;
 226
 227		for (i = 0, result = 0; i < n; i++) {
 228			if (avd->auditdeny & mapping->perms[i])
 229				result |= 1<<i;
 230			if (!allow_unknown && !mapping->perms[i])
 231				result |= 1<<i;
 232		}
 233		/*
 234		 * In case the kernel has a bug and requests a permission
 235		 * between num_perms and the maximum permission number, we
 236		 * should audit that denial
 237		 */
 238		for (; i < (sizeof(u32)*8); i++)
 239			result |= 1<<i;
 240		avd->auditdeny = result;
 241	}
 242}
 243
 244int security_mls_enabled(struct selinux_state *state)
 245{
 246	int mls_enabled;
 247	struct selinux_policy *policy;
 248
 249	if (!selinux_initialized(state))
 250		return 0;
 251
 252	rcu_read_lock();
 253	policy = rcu_dereference(state->policy);
 254	mls_enabled = policy->policydb.mls_enabled;
 255	rcu_read_unlock();
 256	return mls_enabled;
 257}
 258
 259/*
 260 * Return the boolean value of a constraint expression
 261 * when it is applied to the specified source and target
 262 * security contexts.
 263 *
 264 * xcontext is a special beast...  It is used by the validatetrans rules
 265 * only.  For these rules, scontext is the context before the transition,
 266 * tcontext is the context after the transition, and xcontext is the context
 267 * of the process performing the transition.  All other callers of
 268 * constraint_expr_eval should pass in NULL for xcontext.
 269 */
 270static int constraint_expr_eval(struct policydb *policydb,
 271				struct context *scontext,
 272				struct context *tcontext,
 273				struct context *xcontext,
 274				struct constraint_expr *cexpr)
 275{
 276	u32 val1, val2;
 277	struct context *c;
 278	struct role_datum *r1, *r2;
 279	struct mls_level *l1, *l2;
 280	struct constraint_expr *e;
 281	int s[CEXPR_MAXDEPTH];
 282	int sp = -1;
 283
 284	for (e = cexpr; e; e = e->next) {
 285		switch (e->expr_type) {
 286		case CEXPR_NOT:
 287			BUG_ON(sp < 0);
 288			s[sp] = !s[sp];
 289			break;
 290		case CEXPR_AND:
 291			BUG_ON(sp < 1);
 292			sp--;
 293			s[sp] &= s[sp + 1];
 294			break;
 295		case CEXPR_OR:
 296			BUG_ON(sp < 1);
 297			sp--;
 298			s[sp] |= s[sp + 1];
 299			break;
 300		case CEXPR_ATTR:
 301			if (sp == (CEXPR_MAXDEPTH - 1))
 302				return 0;
 303			switch (e->attr) {
 304			case CEXPR_USER:
 305				val1 = scontext->user;
 306				val2 = tcontext->user;
 307				break;
 308			case CEXPR_TYPE:
 309				val1 = scontext->type;
 310				val2 = tcontext->type;
 311				break;
 312			case CEXPR_ROLE:
 313				val1 = scontext->role;
 314				val2 = tcontext->role;
 315				r1 = policydb->role_val_to_struct[val1 - 1];
 316				r2 = policydb->role_val_to_struct[val2 - 1];
 317				switch (e->op) {
 318				case CEXPR_DOM:
 319					s[++sp] = ebitmap_get_bit(&r1->dominates,
 320								  val2 - 1);
 321					continue;
 322				case CEXPR_DOMBY:
 323					s[++sp] = ebitmap_get_bit(&r2->dominates,
 324								  val1 - 1);
 325					continue;
 326				case CEXPR_INCOMP:
 327					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 328								    val2 - 1) &&
 329						   !ebitmap_get_bit(&r2->dominates,
 330								    val1 - 1));
 331					continue;
 332				default:
 333					break;
 334				}
 335				break;
 336			case CEXPR_L1L2:
 337				l1 = &(scontext->range.level[0]);
 338				l2 = &(tcontext->range.level[0]);
 339				goto mls_ops;
 340			case CEXPR_L1H2:
 341				l1 = &(scontext->range.level[0]);
 342				l2 = &(tcontext->range.level[1]);
 343				goto mls_ops;
 344			case CEXPR_H1L2:
 345				l1 = &(scontext->range.level[1]);
 346				l2 = &(tcontext->range.level[0]);
 347				goto mls_ops;
 348			case CEXPR_H1H2:
 349				l1 = &(scontext->range.level[1]);
 350				l2 = &(tcontext->range.level[1]);
 351				goto mls_ops;
 352			case CEXPR_L1H1:
 353				l1 = &(scontext->range.level[0]);
 354				l2 = &(scontext->range.level[1]);
 355				goto mls_ops;
 356			case CEXPR_L2H2:
 357				l1 = &(tcontext->range.level[0]);
 358				l2 = &(tcontext->range.level[1]);
 359				goto mls_ops;
 360mls_ops:
 361			switch (e->op) {
 362			case CEXPR_EQ:
 363				s[++sp] = mls_level_eq(l1, l2);
 364				continue;
 365			case CEXPR_NEQ:
 366				s[++sp] = !mls_level_eq(l1, l2);
 367				continue;
 368			case CEXPR_DOM:
 369				s[++sp] = mls_level_dom(l1, l2);
 370				continue;
 371			case CEXPR_DOMBY:
 372				s[++sp] = mls_level_dom(l2, l1);
 373				continue;
 374			case CEXPR_INCOMP:
 375				s[++sp] = mls_level_incomp(l2, l1);
 376				continue;
 377			default:
 378				BUG();
 379				return 0;
 380			}
 381			break;
 382			default:
 383				BUG();
 384				return 0;
 385			}
 386
 387			switch (e->op) {
 388			case CEXPR_EQ:
 389				s[++sp] = (val1 == val2);
 390				break;
 391			case CEXPR_NEQ:
 392				s[++sp] = (val1 != val2);
 393				break;
 394			default:
 395				BUG();
 396				return 0;
 397			}
 398			break;
 399		case CEXPR_NAMES:
 400			if (sp == (CEXPR_MAXDEPTH-1))
 401				return 0;
 402			c = scontext;
 403			if (e->attr & CEXPR_TARGET)
 404				c = tcontext;
 405			else if (e->attr & CEXPR_XTARGET) {
 406				c = xcontext;
 407				if (!c) {
 408					BUG();
 409					return 0;
 410				}
 411			}
 412			if (e->attr & CEXPR_USER)
 413				val1 = c->user;
 414			else if (e->attr & CEXPR_ROLE)
 415				val1 = c->role;
 416			else if (e->attr & CEXPR_TYPE)
 417				val1 = c->type;
 418			else {
 419				BUG();
 420				return 0;
 421			}
 422
 423			switch (e->op) {
 424			case CEXPR_EQ:
 425				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 426				break;
 427			case CEXPR_NEQ:
 428				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 429				break;
 430			default:
 431				BUG();
 432				return 0;
 433			}
 434			break;
 435		default:
 436			BUG();
 437			return 0;
 438		}
 439	}
 440
 441	BUG_ON(sp != 0);
 442	return s[0];
 443}
 444
 445/*
 446 * security_dump_masked_av - dumps masked permissions during
 447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 448 */
 449static int dump_masked_av_helper(void *k, void *d, void *args)
 450{
 451	struct perm_datum *pdatum = d;
 452	char **permission_names = args;
 453
 454	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 455
 456	permission_names[pdatum->value - 1] = (char *)k;
 457
 458	return 0;
 459}
 460
 461static void security_dump_masked_av(struct policydb *policydb,
 462				    struct context *scontext,
 463				    struct context *tcontext,
 464				    u16 tclass,
 465				    u32 permissions,
 466				    const char *reason)
 467{
 468	struct common_datum *common_dat;
 469	struct class_datum *tclass_dat;
 470	struct audit_buffer *ab;
 471	char *tclass_name;
 472	char *scontext_name = NULL;
 473	char *tcontext_name = NULL;
 474	char *permission_names[32];
 475	int index;
 476	u32 length;
 477	bool need_comma = false;
 478
 479	if (!permissions)
 480		return;
 481
 482	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 483	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 484	common_dat = tclass_dat->comdatum;
 485
 486	/* init permission_names */
 487	if (common_dat &&
 488	    hashtab_map(&common_dat->permissions.table,
 489			dump_masked_av_helper, permission_names) < 0)
 490		goto out;
 491
 492	if (hashtab_map(&tclass_dat->permissions.table,
 493			dump_masked_av_helper, permission_names) < 0)
 494		goto out;
 495
 496	/* get scontext/tcontext in text form */
 497	if (context_struct_to_string(policydb, scontext,
 498				     &scontext_name, &length) < 0)
 499		goto out;
 500
 501	if (context_struct_to_string(policydb, tcontext,
 502				     &tcontext_name, &length) < 0)
 503		goto out;
 504
 505	/* audit a message */
 506	ab = audit_log_start(audit_context(),
 507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508	if (!ab)
 509		goto out;
 510
 511	audit_log_format(ab, "op=security_compute_av reason=%s "
 512			 "scontext=%s tcontext=%s tclass=%s perms=",
 513			 reason, scontext_name, tcontext_name, tclass_name);
 514
 515	for (index = 0; index < 32; index++) {
 516		u32 mask = (1 << index);
 517
 518		if ((mask & permissions) == 0)
 519			continue;
 520
 521		audit_log_format(ab, "%s%s",
 522				 need_comma ? "," : "",
 523				 permission_names[index]
 524				 ? permission_names[index] : "????");
 525		need_comma = true;
 526	}
 527	audit_log_end(ab);
 528out:
 529	/* release scontext/tcontext */
 530	kfree(tcontext_name);
 531	kfree(scontext_name);
 532
 533	return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct policydb *policydb,
 541				     struct context *scontext,
 542				     struct context *tcontext,
 543				     u16 tclass,
 544				     struct av_decision *avd)
 545{
 546	struct context lo_scontext;
 547	struct context lo_tcontext, *tcontextp = tcontext;
 548	struct av_decision lo_avd;
 549	struct type_datum *source;
 550	struct type_datum *target;
 551	u32 masked = 0;
 552
 553	source = policydb->type_val_to_struct[scontext->type - 1];
 
 554	BUG_ON(!source);
 555
 556	if (!source->bounds)
 557		return;
 
 558
 559	target = policydb->type_val_to_struct[tcontext->type - 1];
 560	BUG_ON(!target);
 561
 562	memset(&lo_avd, 0, sizeof(lo_avd));
 
 563
 564	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 565	lo_scontext.type = source->bounds;
 
 
 
 
 
 
 566
 567	if (target->bounds) {
 
 
 568		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 569		lo_tcontext.type = target->bounds;
 570		tcontextp = &lo_tcontext;
 
 
 
 
 
 
 
 571	}
 572
 573	context_struct_compute_av(policydb, &lo_scontext,
 574				  tcontextp,
 575				  tclass,
 576				  &lo_avd,
 577				  NULL);
 578
 579	masked = ~lo_avd.allowed & avd->allowed;
 580
 581	if (likely(!masked))
 582		return;		/* no masked permission */
 583
 584	/* mask violated permissions */
 585	avd->allowed &= ~masked;
 586
 587	/* audit masked permissions */
 588	security_dump_masked_av(policydb, scontext, tcontext,
 589				tclass, masked, "bounds");
 590}
 591
 592/*
 593 * flag which drivers have permissions
 594 * only looking for ioctl based extended permssions
 595 */
 596void services_compute_xperms_drivers(
 597		struct extended_perms *xperms,
 598		struct avtab_node *node)
 599{
 600	unsigned int i;
 601
 602	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 603		/* if one or more driver has all permissions allowed */
 604		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 605			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 606	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 607		/* if allowing permissions within a driver */
 608		security_xperm_set(xperms->drivers.p,
 609					node->datum.u.xperms->driver);
 610	}
 611
 612	xperms->len = 1;
 613}
 614
 615/*
 616 * Compute access vectors and extended permissions based on a context
 617 * structure pair for the permissions in a particular class.
 618 */
 619static void context_struct_compute_av(struct policydb *policydb,
 620				      struct context *scontext,
 621				      struct context *tcontext,
 622				      u16 tclass,
 623				      struct av_decision *avd,
 624				      struct extended_perms *xperms)
 625{
 626	struct constraint_node *constraint;
 627	struct role_allow *ra;
 628	struct avtab_key avkey;
 629	struct avtab_node *node;
 630	struct class_datum *tclass_datum;
 631	struct ebitmap *sattr, *tattr;
 632	struct ebitmap_node *snode, *tnode;
 633	unsigned int i, j;
 634
 635	avd->allowed = 0;
 636	avd->auditallow = 0;
 637	avd->auditdeny = 0xffffffff;
 638	if (xperms) {
 639		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 640		xperms->len = 0;
 641	}
 642
 643	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 644		if (printk_ratelimit())
 645			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 646		return;
 647	}
 648
 649	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 650
 651	/*
 652	 * If a specific type enforcement rule was defined for
 653	 * this permission check, then use it.
 654	 */
 655	avkey.target_class = tclass;
 656	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 657	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 658	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 659	ebitmap_for_each_positive_bit(sattr, snode, i) {
 660		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 661			avkey.source_type = i + 1;
 662			avkey.target_type = j + 1;
 663			for (node = avtab_search_node(&policydb->te_avtab,
 664						      &avkey);
 665			     node;
 666			     node = avtab_search_node_next(node, avkey.specified)) {
 667				if (node->key.specified == AVTAB_ALLOWED)
 668					avd->allowed |= node->datum.u.data;
 669				else if (node->key.specified == AVTAB_AUDITALLOW)
 670					avd->auditallow |= node->datum.u.data;
 671				else if (node->key.specified == AVTAB_AUDITDENY)
 672					avd->auditdeny &= node->datum.u.data;
 673				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 674					services_compute_xperms_drivers(xperms, node);
 675			}
 676
 677			/* Check conditional av table for additional permissions */
 678			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 679					avd, xperms);
 680
 681		}
 682	}
 683
 684	/*
 685	 * Remove any permissions prohibited by a constraint (this includes
 686	 * the MLS policy).
 687	 */
 688	constraint = tclass_datum->constraints;
 689	while (constraint) {
 690		if ((constraint->permissions & (avd->allowed)) &&
 691		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 692					  constraint->expr)) {
 693			avd->allowed &= ~(constraint->permissions);
 694		}
 695		constraint = constraint->next;
 696	}
 697
 698	/*
 699	 * If checking process transition permission and the
 700	 * role is changing, then check the (current_role, new_role)
 701	 * pair.
 702	 */
 703	if (tclass == policydb->process_class &&
 704	    (avd->allowed & policydb->process_trans_perms) &&
 705	    scontext->role != tcontext->role) {
 706		for (ra = policydb->role_allow; ra; ra = ra->next) {
 707			if (scontext->role == ra->role &&
 708			    tcontext->role == ra->new_role)
 709				break;
 710		}
 711		if (!ra)
 712			avd->allowed &= ~policydb->process_trans_perms;
 713	}
 714
 715	/*
 716	 * If the given source and target types have boundary
 717	 * constraint, lazy checks have to mask any violated
 718	 * permission and notice it to userspace via audit.
 719	 */
 720	type_attribute_bounds_av(policydb, scontext, tcontext,
 721				 tclass, avd);
 722}
 723
 724static int security_validtrans_handle_fail(struct selinux_state *state,
 725					struct selinux_policy *policy,
 726					struct sidtab_entry *oentry,
 727					struct sidtab_entry *nentry,
 728					struct sidtab_entry *tentry,
 729					u16 tclass)
 730{
 731	struct policydb *p = &policy->policydb;
 732	struct sidtab *sidtab = policy->sidtab;
 733	char *o = NULL, *n = NULL, *t = NULL;
 734	u32 olen, nlen, tlen;
 735
 736	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 737		goto out;
 738	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 739		goto out;
 740	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 741		goto out;
 742	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 743		  "op=security_validate_transition seresult=denied"
 744		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 745		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 746out:
 747	kfree(o);
 748	kfree(n);
 749	kfree(t);
 750
 751	if (!enforcing_enabled(state))
 752		return 0;
 753	return -EPERM;
 754}
 755
 756static int security_compute_validatetrans(struct selinux_state *state,
 757					  u32 oldsid, u32 newsid, u32 tasksid,
 758					  u16 orig_tclass, bool user)
 759{
 760	struct selinux_policy *policy;
 761	struct policydb *policydb;
 762	struct sidtab *sidtab;
 763	struct sidtab_entry *oentry;
 764	struct sidtab_entry *nentry;
 765	struct sidtab_entry *tentry;
 766	struct class_datum *tclass_datum;
 767	struct constraint_node *constraint;
 768	u16 tclass;
 769	int rc = 0;
 770
 771
 772	if (!selinux_initialized(state))
 773		return 0;
 774
 775	rcu_read_lock();
 776
 777	policy = rcu_dereference(state->policy);
 778	policydb = &policy->policydb;
 779	sidtab = policy->sidtab;
 780
 781	if (!user)
 782		tclass = unmap_class(&policy->map, orig_tclass);
 783	else
 784		tclass = orig_tclass;
 785
 786	if (!tclass || tclass > policydb->p_classes.nprim) {
 787		rc = -EINVAL;
 788		goto out;
 789	}
 790	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 791
 792	oentry = sidtab_search_entry(sidtab, oldsid);
 793	if (!oentry) {
 794		pr_err("SELinux: %s:  unrecognized SID %d\n",
 795			__func__, oldsid);
 796		rc = -EINVAL;
 797		goto out;
 798	}
 799
 800	nentry = sidtab_search_entry(sidtab, newsid);
 801	if (!nentry) {
 802		pr_err("SELinux: %s:  unrecognized SID %d\n",
 803			__func__, newsid);
 804		rc = -EINVAL;
 805		goto out;
 806	}
 807
 808	tentry = sidtab_search_entry(sidtab, tasksid);
 809	if (!tentry) {
 810		pr_err("SELinux: %s:  unrecognized SID %d\n",
 811			__func__, tasksid);
 812		rc = -EINVAL;
 813		goto out;
 814	}
 815
 816	constraint = tclass_datum->validatetrans;
 817	while (constraint) {
 818		if (!constraint_expr_eval(policydb, &oentry->context,
 819					  &nentry->context, &tentry->context,
 820					  constraint->expr)) {
 821			if (user)
 822				rc = -EPERM;
 823			else
 824				rc = security_validtrans_handle_fail(state,
 825								policy,
 826								oentry,
 827								nentry,
 828								tentry,
 829								tclass);
 830			goto out;
 831		}
 832		constraint = constraint->next;
 833	}
 834
 835out:
 836	rcu_read_unlock();
 837	return rc;
 838}
 839
 840int security_validate_transition_user(struct selinux_state *state,
 841				      u32 oldsid, u32 newsid, u32 tasksid,
 842				      u16 tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      tclass, true);
 846}
 847
 848int security_validate_transition(struct selinux_state *state,
 849				 u32 oldsid, u32 newsid, u32 tasksid,
 850				 u16 orig_tclass)
 851{
 852	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 853					      orig_tclass, false);
 854}
 855
 856/*
 857 * security_bounded_transition - check whether the given
 858 * transition is directed to bounded, or not.
 859 * It returns 0, if @newsid is bounded by @oldsid.
 860 * Otherwise, it returns error code.
 861 *
 862 * @state: SELinux state
 863 * @oldsid : current security identifier
 864 * @newsid : destinated security identifier
 865 */
 866int security_bounded_transition(struct selinux_state *state,
 867				u32 old_sid, u32 new_sid)
 868{
 869	struct selinux_policy *policy;
 870	struct policydb *policydb;
 871	struct sidtab *sidtab;
 872	struct sidtab_entry *old_entry, *new_entry;
 873	struct type_datum *type;
 874	int index;
 875	int rc;
 876
 877	if (!selinux_initialized(state))
 878		return 0;
 879
 880	rcu_read_lock();
 881	policy = rcu_dereference(state->policy);
 882	policydb = &policy->policydb;
 883	sidtab = policy->sidtab;
 884
 885	rc = -EINVAL;
 886	old_entry = sidtab_search_entry(sidtab, old_sid);
 887	if (!old_entry) {
 888		pr_err("SELinux: %s: unrecognized SID %u\n",
 889		       __func__, old_sid);
 890		goto out;
 891	}
 892
 893	rc = -EINVAL;
 894	new_entry = sidtab_search_entry(sidtab, new_sid);
 895	if (!new_entry) {
 896		pr_err("SELinux: %s: unrecognized SID %u\n",
 897		       __func__, new_sid);
 898		goto out;
 899	}
 900
 901	rc = 0;
 902	/* type/domain unchanged */
 903	if (old_entry->context.type == new_entry->context.type)
 904		goto out;
 905
 906	index = new_entry->context.type;
 907	while (true) {
 908		type = policydb->type_val_to_struct[index - 1];
 
 909		BUG_ON(!type);
 910
 911		/* not bounded anymore */
 912		rc = -EPERM;
 913		if (!type->bounds)
 914			break;
 915
 916		/* @newsid is bounded by @oldsid */
 917		rc = 0;
 918		if (type->bounds == old_entry->context.type)
 919			break;
 920
 921		index = type->bounds;
 922	}
 923
 924	if (rc) {
 925		char *old_name = NULL;
 926		char *new_name = NULL;
 927		u32 length;
 928
 929		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 930					    &old_name, &length) &&
 931		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 932					    &new_name, &length)) {
 933			audit_log(audit_context(),
 934				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 935				  "op=security_bounded_transition "
 936				  "seresult=denied "
 937				  "oldcontext=%s newcontext=%s",
 938				  old_name, new_name);
 939		}
 940		kfree(new_name);
 941		kfree(old_name);
 942	}
 943out:
 944	rcu_read_unlock();
 945
 946	return rc;
 947}
 948
 949static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 950{
 951	avd->allowed = 0;
 952	avd->auditallow = 0;
 953	avd->auditdeny = 0xffffffff;
 954	if (policy)
 955		avd->seqno = policy->latest_granting;
 956	else
 957		avd->seqno = 0;
 958	avd->flags = 0;
 959}
 960
 961void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 962					struct avtab_node *node)
 963{
 964	unsigned int i;
 965
 966	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 967		if (xpermd->driver != node->datum.u.xperms->driver)
 968			return;
 969	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 970		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 971					xpermd->driver))
 972			return;
 973	} else {
 974		BUG();
 975	}
 976
 977	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 978		xpermd->used |= XPERMS_ALLOWED;
 979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 980			memset(xpermd->allowed->p, 0xff,
 981					sizeof(xpermd->allowed->p));
 982		}
 983		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 984			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 985				xpermd->allowed->p[i] |=
 986					node->datum.u.xperms->perms.p[i];
 987		}
 988	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 989		xpermd->used |= XPERMS_AUDITALLOW;
 990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 991			memset(xpermd->auditallow->p, 0xff,
 992					sizeof(xpermd->auditallow->p));
 993		}
 994		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 995			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 996				xpermd->auditallow->p[i] |=
 997					node->datum.u.xperms->perms.p[i];
 998		}
 999	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1000		xpermd->used |= XPERMS_DONTAUDIT;
1001		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1002			memset(xpermd->dontaudit->p, 0xff,
1003					sizeof(xpermd->dontaudit->p));
1004		}
1005		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1006			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1007				xpermd->dontaudit->p[i] |=
1008					node->datum.u.xperms->perms.p[i];
1009		}
1010	} else {
1011		BUG();
1012	}
1013}
1014
1015void security_compute_xperms_decision(struct selinux_state *state,
1016				      u32 ssid,
1017				      u32 tsid,
1018				      u16 orig_tclass,
1019				      u8 driver,
1020				      struct extended_perms_decision *xpermd)
1021{
1022	struct selinux_policy *policy;
1023	struct policydb *policydb;
1024	struct sidtab *sidtab;
1025	u16 tclass;
1026	struct context *scontext, *tcontext;
1027	struct avtab_key avkey;
1028	struct avtab_node *node;
1029	struct ebitmap *sattr, *tattr;
1030	struct ebitmap_node *snode, *tnode;
1031	unsigned int i, j;
1032
1033	xpermd->driver = driver;
1034	xpermd->used = 0;
1035	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1036	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1037	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1038
1039	rcu_read_lock();
1040	if (!selinux_initialized(state))
1041		goto allow;
1042
1043	policy = rcu_dereference(state->policy);
1044	policydb = &policy->policydb;
1045	sidtab = policy->sidtab;
1046
1047	scontext = sidtab_search(sidtab, ssid);
1048	if (!scontext) {
1049		pr_err("SELinux: %s:  unrecognized SID %d\n",
1050		       __func__, ssid);
1051		goto out;
1052	}
1053
1054	tcontext = sidtab_search(sidtab, tsid);
1055	if (!tcontext) {
1056		pr_err("SELinux: %s:  unrecognized SID %d\n",
1057		       __func__, tsid);
1058		goto out;
1059	}
1060
1061	tclass = unmap_class(&policy->map, orig_tclass);
1062	if (unlikely(orig_tclass && !tclass)) {
1063		if (policydb->allow_unknown)
1064			goto allow;
1065		goto out;
1066	}
1067
1068
1069	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1070		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1071		goto out;
1072	}
1073
1074	avkey.target_class = tclass;
1075	avkey.specified = AVTAB_XPERMS;
1076	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1077	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1078	ebitmap_for_each_positive_bit(sattr, snode, i) {
1079		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1080			avkey.source_type = i + 1;
1081			avkey.target_type = j + 1;
1082			for (node = avtab_search_node(&policydb->te_avtab,
1083						      &avkey);
1084			     node;
1085			     node = avtab_search_node_next(node, avkey.specified))
1086				services_compute_xperms_decision(xpermd, node);
1087
1088			cond_compute_xperms(&policydb->te_cond_avtab,
1089						&avkey, xpermd);
1090		}
1091	}
1092out:
1093	rcu_read_unlock();
1094	return;
1095allow:
1096	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1097	goto out;
1098}
1099
1100/**
1101 * security_compute_av - Compute access vector decisions.
1102 * @state: SELinux state
1103 * @ssid: source security identifier
1104 * @tsid: target security identifier
1105 * @tclass: target security class
1106 * @avd: access vector decisions
1107 * @xperms: extended permissions
1108 *
1109 * Compute a set of access vector decisions based on the
1110 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1111 */
1112void security_compute_av(struct selinux_state *state,
1113			 u32 ssid,
1114			 u32 tsid,
1115			 u16 orig_tclass,
1116			 struct av_decision *avd,
1117			 struct extended_perms *xperms)
1118{
1119	struct selinux_policy *policy;
1120	struct policydb *policydb;
1121	struct sidtab *sidtab;
1122	u16 tclass;
1123	struct context *scontext = NULL, *tcontext = NULL;
1124
1125	rcu_read_lock();
1126	policy = rcu_dereference(state->policy);
1127	avd_init(policy, avd);
1128	xperms->len = 0;
1129	if (!selinux_initialized(state))
1130		goto allow;
1131
1132	policydb = &policy->policydb;
1133	sidtab = policy->sidtab;
1134
1135	scontext = sidtab_search(sidtab, ssid);
1136	if (!scontext) {
1137		pr_err("SELinux: %s:  unrecognized SID %d\n",
1138		       __func__, ssid);
1139		goto out;
1140	}
1141
1142	/* permissive domain? */
1143	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1144		avd->flags |= AVD_FLAGS_PERMISSIVE;
1145
1146	tcontext = sidtab_search(sidtab, tsid);
1147	if (!tcontext) {
1148		pr_err("SELinux: %s:  unrecognized SID %d\n",
1149		       __func__, tsid);
1150		goto out;
1151	}
1152
1153	tclass = unmap_class(&policy->map, orig_tclass);
1154	if (unlikely(orig_tclass && !tclass)) {
1155		if (policydb->allow_unknown)
1156			goto allow;
1157		goto out;
1158	}
1159	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1160				  xperms);
1161	map_decision(&policy->map, orig_tclass, avd,
1162		     policydb->allow_unknown);
1163out:
1164	rcu_read_unlock();
1165	return;
1166allow:
1167	avd->allowed = 0xffffffff;
1168	goto out;
1169}
1170
1171void security_compute_av_user(struct selinux_state *state,
1172			      u32 ssid,
1173			      u32 tsid,
1174			      u16 tclass,
1175			      struct av_decision *avd)
1176{
1177	struct selinux_policy *policy;
1178	struct policydb *policydb;
1179	struct sidtab *sidtab;
1180	struct context *scontext = NULL, *tcontext = NULL;
1181
1182	rcu_read_lock();
1183	policy = rcu_dereference(state->policy);
1184	avd_init(policy, avd);
1185	if (!selinux_initialized(state))
1186		goto allow;
1187
1188	policydb = &policy->policydb;
1189	sidtab = policy->sidtab;
1190
1191	scontext = sidtab_search(sidtab, ssid);
1192	if (!scontext) {
1193		pr_err("SELinux: %s:  unrecognized SID %d\n",
1194		       __func__, ssid);
1195		goto out;
1196	}
1197
1198	/* permissive domain? */
1199	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1200		avd->flags |= AVD_FLAGS_PERMISSIVE;
1201
1202	tcontext = sidtab_search(sidtab, tsid);
1203	if (!tcontext) {
1204		pr_err("SELinux: %s:  unrecognized SID %d\n",
1205		       __func__, tsid);
1206		goto out;
1207	}
1208
1209	if (unlikely(!tclass)) {
1210		if (policydb->allow_unknown)
1211			goto allow;
1212		goto out;
1213	}
1214
1215	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1216				  NULL);
1217 out:
1218	rcu_read_unlock();
1219	return;
1220allow:
1221	avd->allowed = 0xffffffff;
1222	goto out;
1223}
1224
1225/*
1226 * Write the security context string representation of
1227 * the context structure `context' into a dynamically
1228 * allocated string of the correct size.  Set `*scontext'
1229 * to point to this string and set `*scontext_len' to
1230 * the length of the string.
1231 */
1232static int context_struct_to_string(struct policydb *p,
1233				    struct context *context,
1234				    char **scontext, u32 *scontext_len)
1235{
1236	char *scontextp;
1237
1238	if (scontext)
1239		*scontext = NULL;
1240	*scontext_len = 0;
1241
1242	if (context->len) {
1243		*scontext_len = context->len;
1244		if (scontext) {
1245			*scontext = kstrdup(context->str, GFP_ATOMIC);
1246			if (!(*scontext))
1247				return -ENOMEM;
1248		}
1249		return 0;
1250	}
1251
1252	/* Compute the size of the context. */
1253	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1254	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1255	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1256	*scontext_len += mls_compute_context_len(p, context);
1257
1258	if (!scontext)
1259		return 0;
1260
1261	/* Allocate space for the context; caller must free this space. */
1262	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1263	if (!scontextp)
1264		return -ENOMEM;
1265	*scontext = scontextp;
1266
1267	/*
1268	 * Copy the user name, role name and type name into the context.
1269	 */
1270	scontextp += sprintf(scontextp, "%s:%s:%s",
1271		sym_name(p, SYM_USERS, context->user - 1),
1272		sym_name(p, SYM_ROLES, context->role - 1),
1273		sym_name(p, SYM_TYPES, context->type - 1));
 
 
 
1274
1275	mls_sid_to_context(p, context, &scontextp);
1276
1277	*scontextp = 0;
1278
1279	return 0;
1280}
1281
1282static int sidtab_entry_to_string(struct policydb *p,
1283				  struct sidtab *sidtab,
1284				  struct sidtab_entry *entry,
1285				  char **scontext, u32 *scontext_len)
1286{
1287	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1288
1289	if (rc != -ENOENT)
1290		return rc;
1291
1292	rc = context_struct_to_string(p, &entry->context, scontext,
1293				      scontext_len);
1294	if (!rc && scontext)
1295		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1296	return rc;
1297}
1298
1299#include "initial_sid_to_string.h"
1300
1301int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1302{
1303	struct selinux_policy *policy;
1304	int rc;
1305
1306	if (!selinux_initialized(state)) {
1307		pr_err("SELinux: %s:  called before initial load_policy\n",
1308		       __func__);
1309		return -EINVAL;
1310	}
1311
1312	rcu_read_lock();
1313	policy = rcu_dereference(state->policy);
1314	rc = sidtab_hash_stats(policy->sidtab, page);
1315	rcu_read_unlock();
1316
1317	return rc;
1318}
1319
1320const char *security_get_initial_sid_context(u32 sid)
1321{
1322	if (unlikely(sid > SECINITSID_NUM))
1323		return NULL;
1324	return initial_sid_to_string[sid];
1325}
1326
1327static int security_sid_to_context_core(struct selinux_state *state,
1328					u32 sid, char **scontext,
1329					u32 *scontext_len, int force,
1330					int only_invalid)
1331{
1332	struct selinux_policy *policy;
1333	struct policydb *policydb;
1334	struct sidtab *sidtab;
1335	struct sidtab_entry *entry;
1336	int rc = 0;
1337
1338	if (scontext)
1339		*scontext = NULL;
1340	*scontext_len  = 0;
1341
1342	if (!selinux_initialized(state)) {
1343		if (sid <= SECINITSID_NUM) {
1344			char *scontextp;
1345			const char *s = initial_sid_to_string[sid];
1346
1347			if (!s)
1348				return -EINVAL;
1349			*scontext_len = strlen(s) + 1;
1350			if (!scontext)
1351				return 0;
1352			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1353			if (!scontextp)
1354				return -ENOMEM;
 
 
 
1355			*scontext = scontextp;
1356			return 0;
1357		}
1358		pr_err("SELinux: %s:  called before initial "
1359		       "load_policy on unknown SID %d\n", __func__, sid);
1360		return -EINVAL;
 
1361	}
1362	rcu_read_lock();
1363	policy = rcu_dereference(state->policy);
1364	policydb = &policy->policydb;
1365	sidtab = policy->sidtab;
1366
1367	if (force)
1368		entry = sidtab_search_entry_force(sidtab, sid);
1369	else
1370		entry = sidtab_search_entry(sidtab, sid);
1371	if (!entry) {
1372		pr_err("SELinux: %s:  unrecognized SID %d\n",
1373			__func__, sid);
1374		rc = -EINVAL;
1375		goto out_unlock;
1376	}
1377	if (only_invalid && !entry->context.len)
1378		goto out_unlock;
1379
1380	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1381				    scontext_len);
1382
1383out_unlock:
1384	rcu_read_unlock();
 
1385	return rc;
1386
1387}
1388
1389/**
1390 * security_sid_to_context - Obtain a context for a given SID.
1391 * @state: SELinux state
1392 * @sid: security identifier, SID
1393 * @scontext: security context
1394 * @scontext_len: length in bytes
1395 *
1396 * Write the string representation of the context associated with @sid
1397 * into a dynamically allocated string of the correct size.  Set @scontext
1398 * to point to this string and set @scontext_len to the length of the string.
1399 */
1400int security_sid_to_context(struct selinux_state *state,
1401			    u32 sid, char **scontext, u32 *scontext_len)
1402{
1403	return security_sid_to_context_core(state, sid, scontext,
1404					    scontext_len, 0, 0);
1405}
1406
1407int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1408				  char **scontext, u32 *scontext_len)
1409{
1410	return security_sid_to_context_core(state, sid, scontext,
1411					    scontext_len, 1, 0);
1412}
1413
1414/**
1415 * security_sid_to_context_inval - Obtain a context for a given SID if it
1416 *                                 is invalid.
1417 * @state: SELinux state
1418 * @sid: security identifier, SID
1419 * @scontext: security context
1420 * @scontext_len: length in bytes
1421 *
1422 * Write the string representation of the context associated with @sid
1423 * into a dynamically allocated string of the correct size, but only if the
1424 * context is invalid in the current policy.  Set @scontext to point to
1425 * this string (or NULL if the context is valid) and set @scontext_len to
1426 * the length of the string (or 0 if the context is valid).
1427 */
1428int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1429				  char **scontext, u32 *scontext_len)
1430{
1431	return security_sid_to_context_core(state, sid, scontext,
1432					    scontext_len, 1, 1);
1433}
1434
1435/*
1436 * Caveat:  Mutates scontext.
1437 */
1438static int string_to_context_struct(struct policydb *pol,
1439				    struct sidtab *sidtabp,
1440				    char *scontext,
 
1441				    struct context *ctx,
1442				    u32 def_sid)
1443{
1444	struct role_datum *role;
1445	struct type_datum *typdatum;
1446	struct user_datum *usrdatum;
1447	char *scontextp, *p, oldc;
1448	int rc = 0;
1449
1450	context_init(ctx);
1451
1452	/* Parse the security context. */
1453
1454	rc = -EINVAL;
1455	scontextp = (char *) scontext;
1456
1457	/* Extract the user. */
1458	p = scontextp;
1459	while (*p && *p != ':')
1460		p++;
1461
1462	if (*p == 0)
1463		goto out;
1464
1465	*p++ = 0;
1466
1467	usrdatum = symtab_search(&pol->p_users, scontextp);
1468	if (!usrdatum)
1469		goto out;
1470
1471	ctx->user = usrdatum->value;
1472
1473	/* Extract role. */
1474	scontextp = p;
1475	while (*p && *p != ':')
1476		p++;
1477
1478	if (*p == 0)
1479		goto out;
1480
1481	*p++ = 0;
1482
1483	role = symtab_search(&pol->p_roles, scontextp);
1484	if (!role)
1485		goto out;
1486	ctx->role = role->value;
1487
1488	/* Extract type. */
1489	scontextp = p;
1490	while (*p && *p != ':')
1491		p++;
1492	oldc = *p;
1493	*p++ = 0;
1494
1495	typdatum = symtab_search(&pol->p_types, scontextp);
1496	if (!typdatum || typdatum->attribute)
1497		goto out;
1498
1499	ctx->type = typdatum->value;
1500
1501	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1502	if (rc)
1503		goto out;
1504
 
 
 
 
1505	/* Check the validity of the new context. */
1506	rc = -EINVAL;
1507	if (!policydb_context_isvalid(pol, ctx))
1508		goto out;
1509	rc = 0;
1510out:
1511	if (rc)
1512		context_destroy(ctx);
1513	return rc;
1514}
1515
1516static int security_context_to_sid_core(struct selinux_state *state,
1517					const char *scontext, u32 scontext_len,
1518					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1519					int force)
1520{
1521	struct selinux_policy *policy;
1522	struct policydb *policydb;
1523	struct sidtab *sidtab;
1524	char *scontext2, *str = NULL;
1525	struct context context;
1526	int rc = 0;
1527
1528	/* An empty security context is never valid. */
1529	if (!scontext_len)
1530		return -EINVAL;
1531
1532	/* Copy the string to allow changes and ensure a NUL terminator */
1533	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1534	if (!scontext2)
1535		return -ENOMEM;
1536
1537	if (!selinux_initialized(state)) {
1538		int i;
1539
1540		for (i = 1; i < SECINITSID_NUM; i++) {
1541			const char *s = initial_sid_to_string[i];
1542
1543			if (s && !strcmp(s, scontext2)) {
1544				*sid = i;
1545				goto out;
1546			}
1547		}
1548		*sid = SECINITSID_KERNEL;
1549		goto out;
1550	}
1551	*sid = SECSID_NULL;
1552
 
 
 
 
 
 
 
1553	if (force) {
1554		/* Save another copy for storing in uninterpreted form */
1555		rc = -ENOMEM;
1556		str = kstrdup(scontext2, gfp_flags);
1557		if (!str)
1558			goto out;
1559	}
1560retry:
1561	rcu_read_lock();
1562	policy = rcu_dereference(state->policy);
1563	policydb = &policy->policydb;
1564	sidtab = policy->sidtab;
1565	rc = string_to_context_struct(policydb, sidtab, scontext2,
1566				      &context, def_sid);
1567	if (rc == -EINVAL && force) {
1568		context.str = str;
1569		context.len = strlen(str) + 1;
1570		str = NULL;
1571	} else if (rc)
1572		goto out_unlock;
1573	rc = sidtab_context_to_sid(sidtab, &context, sid);
1574	if (rc == -ESTALE) {
1575		rcu_read_unlock();
1576		if (context.str) {
1577			str = context.str;
1578			context.str = NULL;
1579		}
1580		context_destroy(&context);
1581		goto retry;
1582	}
1583	context_destroy(&context);
1584out_unlock:
1585	rcu_read_unlock();
1586out:
1587	kfree(scontext2);
1588	kfree(str);
1589	return rc;
1590}
1591
1592/**
1593 * security_context_to_sid - Obtain a SID for a given security context.
1594 * @state: SELinux state
1595 * @scontext: security context
1596 * @scontext_len: length in bytes
1597 * @sid: security identifier, SID
1598 * @gfp: context for the allocation
1599 *
1600 * Obtains a SID associated with the security context that
1601 * has the string representation specified by @scontext.
1602 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1603 * memory is available, or 0 on success.
1604 */
1605int security_context_to_sid(struct selinux_state *state,
1606			    const char *scontext, u32 scontext_len, u32 *sid,
1607			    gfp_t gfp)
1608{
1609	return security_context_to_sid_core(state, scontext, scontext_len,
1610					    sid, SECSID_NULL, gfp, 0);
1611}
1612
1613int security_context_str_to_sid(struct selinux_state *state,
1614				const char *scontext, u32 *sid, gfp_t gfp)
1615{
1616	return security_context_to_sid(state, scontext, strlen(scontext),
1617				       sid, gfp);
1618}
1619
1620/**
1621 * security_context_to_sid_default - Obtain a SID for a given security context,
1622 * falling back to specified default if needed.
1623 *
1624 * @state: SELinux state
1625 * @scontext: security context
1626 * @scontext_len: length in bytes
1627 * @sid: security identifier, SID
1628 * @def_sid: default SID to assign on error
1629 *
1630 * Obtains a SID associated with the security context that
1631 * has the string representation specified by @scontext.
1632 * The default SID is passed to the MLS layer to be used to allow
1633 * kernel labeling of the MLS field if the MLS field is not present
1634 * (for upgrading to MLS without full relabel).
1635 * Implicitly forces adding of the context even if it cannot be mapped yet.
1636 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1637 * memory is available, or 0 on success.
1638 */
1639int security_context_to_sid_default(struct selinux_state *state,
1640				    const char *scontext, u32 scontext_len,
1641				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1642{
1643	return security_context_to_sid_core(state, scontext, scontext_len,
1644					    sid, def_sid, gfp_flags, 1);
1645}
1646
1647int security_context_to_sid_force(struct selinux_state *state,
1648				  const char *scontext, u32 scontext_len,
1649				  u32 *sid)
1650{
1651	return security_context_to_sid_core(state, scontext, scontext_len,
1652					    sid, SECSID_NULL, GFP_KERNEL, 1);
1653}
1654
1655static int compute_sid_handle_invalid_context(
1656	struct selinux_state *state,
1657	struct selinux_policy *policy,
1658	struct sidtab_entry *sentry,
1659	struct sidtab_entry *tentry,
1660	u16 tclass,
1661	struct context *newcontext)
1662{
1663	struct policydb *policydb = &policy->policydb;
1664	struct sidtab *sidtab = policy->sidtab;
1665	char *s = NULL, *t = NULL, *n = NULL;
1666	u32 slen, tlen, nlen;
1667	struct audit_buffer *ab;
1668
1669	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1670		goto out;
1671	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1672		goto out;
1673	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1674		goto out;
1675	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1676	audit_log_format(ab,
1677			 "op=security_compute_sid invalid_context=");
1678	/* no need to record the NUL with untrusted strings */
1679	audit_log_n_untrustedstring(ab, n, nlen - 1);
1680	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1681			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1682	audit_log_end(ab);
1683out:
1684	kfree(s);
1685	kfree(t);
1686	kfree(n);
1687	if (!enforcing_enabled(state))
1688		return 0;
1689	return -EACCES;
1690}
1691
1692static void filename_compute_type(struct policydb *policydb,
1693				  struct context *newcontext,
1694				  u32 stype, u32 ttype, u16 tclass,
1695				  const char *objname)
1696{
1697	struct filename_trans_key ft;
1698	struct filename_trans_datum *datum;
1699
1700	/*
1701	 * Most filename trans rules are going to live in specific directories
1702	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1703	 * if the ttype does not contain any rules.
1704	 */
1705	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1706		return;
1707
 
1708	ft.ttype = ttype;
1709	ft.tclass = tclass;
1710	ft.name = objname;
1711
1712	datum = policydb_filenametr_search(policydb, &ft);
1713	while (datum) {
1714		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1715			newcontext->type = datum->otype;
1716			return;
1717		}
1718		datum = datum->next;
1719	}
1720}
1721
1722static int security_compute_sid(struct selinux_state *state,
1723				u32 ssid,
1724				u32 tsid,
1725				u16 orig_tclass,
1726				u32 specified,
1727				const char *objname,
1728				u32 *out_sid,
1729				bool kern)
1730{
1731	struct selinux_policy *policy;
1732	struct policydb *policydb;
1733	struct sidtab *sidtab;
1734	struct class_datum *cladatum;
1735	struct context *scontext, *tcontext, newcontext;
1736	struct sidtab_entry *sentry, *tentry;
1737	struct avtab_key avkey;
1738	struct avtab_datum *avdatum;
1739	struct avtab_node *node;
1740	u16 tclass;
1741	int rc = 0;
1742	bool sock;
1743
1744	if (!selinux_initialized(state)) {
1745		switch (orig_tclass) {
1746		case SECCLASS_PROCESS: /* kernel value */
1747			*out_sid = ssid;
1748			break;
1749		default:
1750			*out_sid = tsid;
1751			break;
1752		}
1753		goto out;
1754	}
1755
1756retry:
1757	cladatum = NULL;
1758	context_init(&newcontext);
1759
1760	rcu_read_lock();
1761
1762	policy = rcu_dereference(state->policy);
1763
1764	if (kern) {
1765		tclass = unmap_class(&policy->map, orig_tclass);
1766		sock = security_is_socket_class(orig_tclass);
1767	} else {
1768		tclass = orig_tclass;
1769		sock = security_is_socket_class(map_class(&policy->map,
1770							  tclass));
1771	}
1772
1773	policydb = &policy->policydb;
1774	sidtab = policy->sidtab;
1775
1776	sentry = sidtab_search_entry(sidtab, ssid);
1777	if (!sentry) {
1778		pr_err("SELinux: %s:  unrecognized SID %d\n",
1779		       __func__, ssid);
1780		rc = -EINVAL;
1781		goto out_unlock;
1782	}
1783	tentry = sidtab_search_entry(sidtab, tsid);
1784	if (!tentry) {
1785		pr_err("SELinux: %s:  unrecognized SID %d\n",
1786		       __func__, tsid);
1787		rc = -EINVAL;
1788		goto out_unlock;
1789	}
1790
1791	scontext = &sentry->context;
1792	tcontext = &tentry->context;
1793
1794	if (tclass && tclass <= policydb->p_classes.nprim)
1795		cladatum = policydb->class_val_to_struct[tclass - 1];
1796
1797	/* Set the user identity. */
1798	switch (specified) {
1799	case AVTAB_TRANSITION:
1800	case AVTAB_CHANGE:
1801		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1802			newcontext.user = tcontext->user;
1803		} else {
1804			/* notice this gets both DEFAULT_SOURCE and unset */
1805			/* Use the process user identity. */
1806			newcontext.user = scontext->user;
1807		}
1808		break;
1809	case AVTAB_MEMBER:
1810		/* Use the related object owner. */
1811		newcontext.user = tcontext->user;
1812		break;
1813	}
1814
1815	/* Set the role to default values. */
1816	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1817		newcontext.role = scontext->role;
1818	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1819		newcontext.role = tcontext->role;
1820	} else {
1821		if ((tclass == policydb->process_class) || sock)
1822			newcontext.role = scontext->role;
1823		else
1824			newcontext.role = OBJECT_R_VAL;
1825	}
1826
1827	/* Set the type to default values. */
1828	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1829		newcontext.type = scontext->type;
1830	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1831		newcontext.type = tcontext->type;
1832	} else {
1833		if ((tclass == policydb->process_class) || sock) {
1834			/* Use the type of process. */
1835			newcontext.type = scontext->type;
1836		} else {
1837			/* Use the type of the related object. */
1838			newcontext.type = tcontext->type;
1839		}
1840	}
1841
1842	/* Look for a type transition/member/change rule. */
1843	avkey.source_type = scontext->type;
1844	avkey.target_type = tcontext->type;
1845	avkey.target_class = tclass;
1846	avkey.specified = specified;
1847	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1848
1849	/* If no permanent rule, also check for enabled conditional rules */
1850	if (!avdatum) {
1851		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1852		for (; node; node = avtab_search_node_next(node, specified)) {
1853			if (node->key.specified & AVTAB_ENABLED) {
1854				avdatum = &node->datum;
1855				break;
1856			}
1857		}
1858	}
1859
1860	if (avdatum) {
1861		/* Use the type from the type transition/member/change rule. */
1862		newcontext.type = avdatum->u.data;
1863	}
1864
1865	/* if we have a objname this is a file trans check so check those rules */
1866	if (objname)
1867		filename_compute_type(policydb, &newcontext, scontext->type,
1868				      tcontext->type, tclass, objname);
1869
1870	/* Check for class-specific changes. */
1871	if (specified & AVTAB_TRANSITION) {
1872		/* Look for a role transition rule. */
1873		struct role_trans_datum *rtd;
1874		struct role_trans_key rtk = {
1875			.role = scontext->role,
1876			.type = tcontext->type,
1877			.tclass = tclass,
1878		};
1879
1880		rtd = policydb_roletr_search(policydb, &rtk);
1881		if (rtd)
1882			newcontext.role = rtd->new_role;
1883	}
1884
1885	/* Set the MLS attributes.
1886	   This is done last because it may allocate memory. */
1887	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1888			     &newcontext, sock);
1889	if (rc)
1890		goto out_unlock;
1891
1892	/* Check the validity of the context. */
1893	if (!policydb_context_isvalid(policydb, &newcontext)) {
1894		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1895							tentry, tclass,
 
1896							&newcontext);
1897		if (rc)
1898			goto out_unlock;
1899	}
1900	/* Obtain the sid for the context. */
1901	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1902	if (rc == -ESTALE) {
1903		rcu_read_unlock();
1904		context_destroy(&newcontext);
1905		goto retry;
1906	}
1907out_unlock:
1908	rcu_read_unlock();
1909	context_destroy(&newcontext);
1910out:
1911	return rc;
1912}
1913
1914/**
1915 * security_transition_sid - Compute the SID for a new subject/object.
1916 * @state: SELinux state
1917 * @ssid: source security identifier
1918 * @tsid: target security identifier
1919 * @tclass: target security class
1920 * @out_sid: security identifier for new subject/object
1921 *
1922 * Compute a SID to use for labeling a new subject or object in the
1923 * class @tclass based on a SID pair (@ssid, @tsid).
1924 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1925 * if insufficient memory is available, or %0 if the new SID was
1926 * computed successfully.
1927 */
1928int security_transition_sid(struct selinux_state *state,
1929			    u32 ssid, u32 tsid, u16 tclass,
1930			    const struct qstr *qstr, u32 *out_sid)
1931{
1932	return security_compute_sid(state, ssid, tsid, tclass,
1933				    AVTAB_TRANSITION,
1934				    qstr ? qstr->name : NULL, out_sid, true);
1935}
1936
1937int security_transition_sid_user(struct selinux_state *state,
1938				 u32 ssid, u32 tsid, u16 tclass,
1939				 const char *objname, u32 *out_sid)
1940{
1941	return security_compute_sid(state, ssid, tsid, tclass,
1942				    AVTAB_TRANSITION,
1943				    objname, out_sid, false);
1944}
1945
1946/**
1947 * security_member_sid - Compute the SID for member selection.
1948 * @ssid: source security identifier
1949 * @tsid: target security identifier
1950 * @tclass: target security class
1951 * @out_sid: security identifier for selected member
1952 *
1953 * Compute a SID to use when selecting a member of a polyinstantiated
1954 * object of class @tclass based on a SID pair (@ssid, @tsid).
1955 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1956 * if insufficient memory is available, or %0 if the SID was
1957 * computed successfully.
1958 */
1959int security_member_sid(struct selinux_state *state,
1960			u32 ssid,
1961			u32 tsid,
1962			u16 tclass,
1963			u32 *out_sid)
1964{
1965	return security_compute_sid(state, ssid, tsid, tclass,
1966				    AVTAB_MEMBER, NULL,
1967				    out_sid, false);
1968}
1969
1970/**
1971 * security_change_sid - Compute the SID for object relabeling.
1972 * @state: SELinux state
1973 * @ssid: source security identifier
1974 * @tsid: target security identifier
1975 * @tclass: target security class
1976 * @out_sid: security identifier for selected member
1977 *
1978 * Compute a SID to use for relabeling an object of class @tclass
1979 * based on a SID pair (@ssid, @tsid).
1980 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1981 * if insufficient memory is available, or %0 if the SID was
1982 * computed successfully.
1983 */
1984int security_change_sid(struct selinux_state *state,
1985			u32 ssid,
1986			u32 tsid,
1987			u16 tclass,
1988			u32 *out_sid)
1989{
1990	return security_compute_sid(state,
1991				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1992				    out_sid, false);
1993}
1994
1995static inline int convert_context_handle_invalid_context(
1996	struct selinux_state *state,
1997	struct policydb *policydb,
1998	struct context *context)
 
 
 
 
 
 
 
 
 
 
1999{
2000	char *s;
2001	u32 len;
2002
2003	if (enforcing_enabled(state))
2004		return -EINVAL;
2005
2006	if (!context_struct_to_string(policydb, context, &s, &len)) {
2007		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2008			s);
2009		kfree(s);
2010	}
2011	return 0;
2012}
2013
 
 
 
 
 
2014/*
2015 * Convert the values in the security context
2016 * structure `oldc' from the values specified
2017 * in the policy `p->oldp' to the values specified
2018 * in the policy `p->newp', storing the new context
2019 * in `newc'.  Verify that the context is valid
2020 * under the new policy.
2021 */
2022static int convert_context(struct context *oldc, struct context *newc, void *p)
 
 
2023{
2024	struct convert_context_args *args;
 
2025	struct ocontext *oc;
 
2026	struct role_datum *role;
2027	struct type_datum *typdatum;
2028	struct user_datum *usrdatum;
2029	char *s;
2030	u32 len;
2031	int rc;
 
 
 
2032
2033	args = p;
2034
2035	if (oldc->str) {
2036		s = kstrdup(oldc->str, GFP_KERNEL);
 
 
 
2037		if (!s)
2038			return -ENOMEM;
2039
2040		rc = string_to_context_struct(args->newp, NULL, s,
2041					      newc, SECSID_NULL);
2042		if (rc == -EINVAL) {
2043			/*
2044			 * Retain string representation for later mapping.
2045			 *
2046			 * IMPORTANT: We need to copy the contents of oldc->str
2047			 * back into s again because string_to_context_struct()
2048			 * may have garbled it.
2049			 */
2050			memcpy(s, oldc->str, oldc->len);
2051			context_init(newc);
2052			newc->str = s;
2053			newc->len = oldc->len;
2054			return 0;
2055		}
2056		kfree(s);
2057		if (rc) {
 
 
 
 
 
 
 
 
 
 
 
2058			/* Other error condition, e.g. ENOMEM. */
2059			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2060			       oldc->str, -rc);
2061			return rc;
2062		}
2063		pr_info("SELinux:  Context %s became valid (mapped).\n",
2064			oldc->str);
2065		return 0;
2066	}
2067
2068	context_init(newc);
 
 
2069
2070	/* Convert the user. */
2071	usrdatum = symtab_search(&args->newp->p_users,
2072				 sym_name(args->oldp,
2073					  SYM_USERS, oldc->user - 1));
2074	if (!usrdatum)
2075		goto bad;
2076	newc->user = usrdatum->value;
2077
2078	/* Convert the role. */
2079	role = symtab_search(&args->newp->p_roles,
2080			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
 
2081	if (!role)
2082		goto bad;
2083	newc->role = role->value;
2084
2085	/* Convert the type. */
2086	typdatum = symtab_search(&args->newp->p_types,
2087				 sym_name(args->oldp,
2088					  SYM_TYPES, oldc->type - 1));
2089	if (!typdatum)
2090		goto bad;
2091	newc->type = typdatum->value;
2092
2093	/* Convert the MLS fields if dealing with MLS policies */
2094	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2095		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2096		if (rc)
2097			goto bad;
 
 
 
 
 
 
 
2098	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2099		/*
2100		 * Switching between non-MLS and MLS policy:
2101		 * ensure that the MLS fields of the context for all
2102		 * existing entries in the sidtab are filled in with a
2103		 * suitable default value, likely taken from one of the
2104		 * initial SIDs.
2105		 */
2106		oc = args->newp->ocontexts[OCON_ISID];
2107		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2108			oc = oc->next;
 
2109		if (!oc) {
2110			pr_err("SELinux:  unable to look up"
2111				" the initial SIDs list\n");
2112			goto bad;
2113		}
2114		rc = mls_range_set(newc, &oc->context[0].range);
 
2115		if (rc)
2116			goto bad;
2117	}
2118
2119	/* Check the validity of the new context. */
2120	if (!policydb_context_isvalid(args->newp, newc)) {
2121		rc = convert_context_handle_invalid_context(args->state,
2122							args->oldp,
2123							oldc);
2124		if (rc)
2125			goto bad;
2126	}
2127
2128	return 0;
 
 
 
 
2129bad:
2130	/* Map old representation to string and save it. */
2131	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2132	if (rc)
2133		return rc;
2134	context_destroy(newc);
2135	newc->str = s;
2136	newc->len = len;
2137	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2138		newc->str);
2139	return 0;
 
 
2140}
2141
2142static void security_load_policycaps(struct selinux_state *state,
2143				struct selinux_policy *policy)
2144{
2145	struct policydb *p;
2146	unsigned int i;
2147	struct ebitmap_node *node;
2148
2149	p = &policy->policydb;
2150
2151	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2152		WRITE_ONCE(state->policycap[i],
2153			ebitmap_get_bit(&p->policycaps, i));
2154
2155	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2156		pr_info("SELinux:  policy capability %s=%d\n",
2157			selinux_policycap_names[i],
2158			ebitmap_get_bit(&p->policycaps, i));
2159
2160	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2161		if (i >= ARRAY_SIZE(selinux_policycap_names))
2162			pr_info("SELinux:  unknown policy capability %u\n",
2163				i);
2164	}
2165}
2166
2167static int security_preserve_bools(struct selinux_policy *oldpolicy,
2168				struct selinux_policy *newpolicy);
2169
2170static void selinux_policy_free(struct selinux_policy *policy)
2171{
2172	if (!policy)
2173		return;
2174
2175	sidtab_destroy(policy->sidtab);
2176	kfree(policy->map.mapping);
2177	policydb_destroy(&policy->policydb);
2178	kfree(policy->sidtab);
2179	kfree(policy);
2180}
2181
2182static void selinux_policy_cond_free(struct selinux_policy *policy)
2183{
2184	cond_policydb_destroy_dup(&policy->policydb);
2185	kfree(policy);
2186}
2187
2188void selinux_policy_cancel(struct selinux_state *state,
2189			   struct selinux_load_state *load_state)
2190{
2191	struct selinux_policy *oldpolicy;
2192
2193	oldpolicy = rcu_dereference_protected(state->policy,
2194					lockdep_is_held(&state->policy_mutex));
2195
2196	sidtab_cancel_convert(oldpolicy->sidtab);
2197	selinux_policy_free(load_state->policy);
2198	kfree(load_state->convert_data);
2199}
2200
2201static void selinux_notify_policy_change(struct selinux_state *state,
2202					u32 seqno)
2203{
2204	/* Flush external caches and notify userspace of policy load */
2205	avc_ss_reset(state->avc, seqno);
2206	selnl_notify_policyload(seqno);
2207	selinux_status_update_policyload(state, seqno);
2208	selinux_netlbl_cache_invalidate();
2209	selinux_xfrm_notify_policyload();
2210	selinux_ima_measure_state_locked(state);
2211}
2212
2213void selinux_policy_commit(struct selinux_state *state,
2214			   struct selinux_load_state *load_state)
2215{
2216	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2217	unsigned long flags;
2218	u32 seqno;
2219
2220	oldpolicy = rcu_dereference_protected(state->policy,
2221					lockdep_is_held(&state->policy_mutex));
2222
2223	/* If switching between different policy types, log MLS status */
2224	if (oldpolicy) {
2225		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2226			pr_info("SELinux: Disabling MLS support...\n");
2227		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2228			pr_info("SELinux: Enabling MLS support...\n");
2229	}
2230
2231	/* Set latest granting seqno for new policy. */
2232	if (oldpolicy)
2233		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2234	else
2235		newpolicy->latest_granting = 1;
2236	seqno = newpolicy->latest_granting;
2237
2238	/* Install the new policy. */
2239	if (oldpolicy) {
2240		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2241		rcu_assign_pointer(state->policy, newpolicy);
2242		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2243	} else {
2244		rcu_assign_pointer(state->policy, newpolicy);
2245	}
2246
2247	/* Load the policycaps from the new policy */
2248	security_load_policycaps(state, newpolicy);
2249
2250	if (!selinux_initialized(state)) {
2251		/*
2252		 * After first policy load, the security server is
2253		 * marked as initialized and ready to handle requests and
2254		 * any objects created prior to policy load are then labeled.
2255		 */
2256		selinux_mark_initialized(state);
2257		selinux_complete_init();
2258	}
2259
2260	/* Free the old policy */
2261	synchronize_rcu();
2262	selinux_policy_free(oldpolicy);
2263	kfree(load_state->convert_data);
2264
2265	/* Notify others of the policy change */
2266	selinux_notify_policy_change(state, seqno);
2267}
2268
2269/**
2270 * security_load_policy - Load a security policy configuration.
2271 * @state: SELinux state
2272 * @data: binary policy data
2273 * @len: length of data in bytes
2274 *
2275 * Load a new set of security policy configuration data,
2276 * validate it and convert the SID table as necessary.
2277 * This function will flush the access vector cache after
2278 * loading the new policy.
2279 */
2280int security_load_policy(struct selinux_state *state, void *data, size_t len,
2281			 struct selinux_load_state *load_state)
2282{
2283	struct selinux_policy *newpolicy, *oldpolicy;
2284	struct selinux_policy_convert_data *convert_data;
 
 
 
 
2285	int rc = 0;
2286	struct policy_file file = { data, len }, *fp = &file;
2287
2288	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2289	if (!newpolicy)
2290		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2291
2292	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2293	if (!newpolicy->sidtab) {
2294		rc = -ENOMEM;
2295		goto err_policy;
 
 
 
 
 
 
2296	}
2297
2298	rc = policydb_read(&newpolicy->policydb, fp);
 
 
 
 
2299	if (rc)
2300		goto err_sidtab;
2301
2302	newpolicy->policydb.len = len;
2303	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2304				&newpolicy->map);
2305	if (rc)
2306		goto err_policydb;
 
2307
2308	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2309	if (rc) {
2310		pr_err("SELinux:  unable to load the initial SIDs\n");
2311		goto err_mapping;
 
2312	}
2313
2314	if (!selinux_initialized(state)) {
2315		/* First policy load, so no need to preserve state from old policy */
2316		load_state->policy = newpolicy;
2317		load_state->convert_data = NULL;
2318		return 0;
2319	}
2320
2321	oldpolicy = rcu_dereference_protected(state->policy,
2322					lockdep_is_held(&state->policy_mutex));
2323
2324	/* Preserve active boolean values from the old policy */
2325	rc = security_preserve_bools(oldpolicy, newpolicy);
2326	if (rc) {
2327		pr_err("SELinux:  unable to preserve booleans\n");
2328		goto err_free_isids;
2329	}
2330
2331	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2332	if (!convert_data) {
2333		rc = -ENOMEM;
2334		goto err_free_isids;
2335	}
 
2336
2337	/*
2338	 * Convert the internal representations of contexts
2339	 * in the new SID table.
2340	 */
2341	convert_data->args.state = state;
2342	convert_data->args.oldp = &oldpolicy->policydb;
2343	convert_data->args.newp = &newpolicy->policydb;
2344
2345	convert_data->sidtab_params.func = convert_context;
2346	convert_data->sidtab_params.args = &convert_data->args;
2347	convert_data->sidtab_params.target = newpolicy->sidtab;
2348
2349	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2350	if (rc) {
2351		pr_err("SELinux:  unable to convert the internal"
2352			" representation of contexts in the new SID"
2353			" table\n");
2354		goto err_free_convert_data;
2355	}
2356
2357	load_state->policy = newpolicy;
2358	load_state->convert_data = convert_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2359	return 0;
2360
2361err_free_convert_data:
2362	kfree(convert_data);
2363err_free_isids:
2364	sidtab_destroy(newpolicy->sidtab);
2365err_mapping:
2366	kfree(newpolicy->map.mapping);
2367err_policydb:
2368	policydb_destroy(&newpolicy->policydb);
2369err_sidtab:
2370	kfree(newpolicy->sidtab);
2371err_policy:
2372	kfree(newpolicy);
 
 
 
2373
2374	return rc;
2375}
2376
2377/**
2378 * security_port_sid - Obtain the SID for a port.
2379 * @state: SELinux state
2380 * @protocol: protocol number
2381 * @port: port number
2382 * @out_sid: security identifier
2383 */
2384int security_port_sid(struct selinux_state *state,
2385		      u8 protocol, u16 port, u32 *out_sid)
2386{
2387	struct selinux_policy *policy;
2388	struct policydb *policydb;
2389	struct sidtab *sidtab;
2390	struct ocontext *c;
2391	int rc;
2392
2393	if (!selinux_initialized(state)) {
2394		*out_sid = SECINITSID_PORT;
2395		return 0;
2396	}
2397
2398retry:
2399	rc = 0;
2400	rcu_read_lock();
2401	policy = rcu_dereference(state->policy);
2402	policydb = &policy->policydb;
2403	sidtab = policy->sidtab;
2404
2405	c = policydb->ocontexts[OCON_PORT];
2406	while (c) {
2407		if (c->u.port.protocol == protocol &&
2408		    c->u.port.low_port <= port &&
2409		    c->u.port.high_port >= port)
2410			break;
2411		c = c->next;
2412	}
2413
2414	if (c) {
2415		if (!c->sid[0]) {
2416			rc = sidtab_context_to_sid(sidtab, &c->context[0],
 
2417						   &c->sid[0]);
2418			if (rc == -ESTALE) {
2419				rcu_read_unlock();
2420				goto retry;
2421			}
2422			if (rc)
2423				goto out;
2424		}
2425		*out_sid = c->sid[0];
2426	} else {
2427		*out_sid = SECINITSID_PORT;
2428	}
2429
2430out:
2431	rcu_read_unlock();
2432	return rc;
2433}
2434
2435/**
2436 * security_ib_pkey_sid - Obtain the SID for a pkey.
2437 * @state: SELinux state
2438 * @subnet_prefix: Subnet Prefix
2439 * @pkey_num: pkey number
2440 * @out_sid: security identifier
2441 */
2442int security_ib_pkey_sid(struct selinux_state *state,
2443			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2444{
2445	struct selinux_policy *policy;
2446	struct policydb *policydb;
2447	struct sidtab *sidtab;
2448	struct ocontext *c;
2449	int rc;
2450
2451	if (!selinux_initialized(state)) {
2452		*out_sid = SECINITSID_UNLABELED;
2453		return 0;
2454	}
2455
2456retry:
2457	rc = 0;
2458	rcu_read_lock();
2459	policy = rcu_dereference(state->policy);
2460	policydb = &policy->policydb;
2461	sidtab = policy->sidtab;
2462
2463	c = policydb->ocontexts[OCON_IBPKEY];
2464	while (c) {
2465		if (c->u.ibpkey.low_pkey <= pkey_num &&
2466		    c->u.ibpkey.high_pkey >= pkey_num &&
2467		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2468			break;
2469
2470		c = c->next;
2471	}
2472
2473	if (c) {
2474		if (!c->sid[0]) {
2475			rc = sidtab_context_to_sid(sidtab,
2476						   &c->context[0],
2477						   &c->sid[0]);
2478			if (rc == -ESTALE) {
2479				rcu_read_unlock();
2480				goto retry;
2481			}
2482			if (rc)
2483				goto out;
2484		}
2485		*out_sid = c->sid[0];
2486	} else
2487		*out_sid = SECINITSID_UNLABELED;
2488
2489out:
2490	rcu_read_unlock();
2491	return rc;
2492}
2493
2494/**
2495 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2496 * @state: SELinux state
2497 * @dev_name: device name
2498 * @port: port number
2499 * @out_sid: security identifier
2500 */
2501int security_ib_endport_sid(struct selinux_state *state,
2502			    const char *dev_name, u8 port_num, u32 *out_sid)
2503{
2504	struct selinux_policy *policy;
2505	struct policydb *policydb;
2506	struct sidtab *sidtab;
2507	struct ocontext *c;
2508	int rc;
2509
2510	if (!selinux_initialized(state)) {
2511		*out_sid = SECINITSID_UNLABELED;
2512		return 0;
2513	}
2514
2515retry:
2516	rc = 0;
2517	rcu_read_lock();
2518	policy = rcu_dereference(state->policy);
2519	policydb = &policy->policydb;
2520	sidtab = policy->sidtab;
2521
2522	c = policydb->ocontexts[OCON_IBENDPORT];
2523	while (c) {
2524		if (c->u.ibendport.port == port_num &&
2525		    !strncmp(c->u.ibendport.dev_name,
2526			     dev_name,
2527			     IB_DEVICE_NAME_MAX))
2528			break;
2529
2530		c = c->next;
2531	}
2532
2533	if (c) {
2534		if (!c->sid[0]) {
2535			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2536						   &c->sid[0]);
2537			if (rc == -ESTALE) {
2538				rcu_read_unlock();
2539				goto retry;
2540			}
2541			if (rc)
2542				goto out;
2543		}
2544		*out_sid = c->sid[0];
2545	} else
2546		*out_sid = SECINITSID_UNLABELED;
2547
2548out:
2549	rcu_read_unlock();
2550	return rc;
2551}
2552
2553/**
2554 * security_netif_sid - Obtain the SID for a network interface.
2555 * @state: SELinux state
2556 * @name: interface name
2557 * @if_sid: interface SID
2558 */
2559int security_netif_sid(struct selinux_state *state,
2560		       char *name, u32 *if_sid)
2561{
2562	struct selinux_policy *policy;
2563	struct policydb *policydb;
2564	struct sidtab *sidtab;
2565	int rc;
2566	struct ocontext *c;
2567
2568	if (!selinux_initialized(state)) {
2569		*if_sid = SECINITSID_NETIF;
2570		return 0;
2571	}
2572
2573retry:
2574	rc = 0;
2575	rcu_read_lock();
2576	policy = rcu_dereference(state->policy);
2577	policydb = &policy->policydb;
2578	sidtab = policy->sidtab;
2579
2580	c = policydb->ocontexts[OCON_NETIF];
2581	while (c) {
2582		if (strcmp(name, c->u.name) == 0)
2583			break;
2584		c = c->next;
2585	}
2586
2587	if (c) {
2588		if (!c->sid[0] || !c->sid[1]) {
2589			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2590						   &c->sid[0]);
2591			if (rc == -ESTALE) {
2592				rcu_read_unlock();
2593				goto retry;
2594			}
2595			if (rc)
2596				goto out;
2597			rc = sidtab_context_to_sid(sidtab, &c->context[1],
 
2598						   &c->sid[1]);
2599			if (rc == -ESTALE) {
2600				rcu_read_unlock();
2601				goto retry;
2602			}
2603			if (rc)
2604				goto out;
2605		}
2606		*if_sid = c->sid[0];
2607	} else
2608		*if_sid = SECINITSID_NETIF;
2609
2610out:
2611	rcu_read_unlock();
2612	return rc;
2613}
2614
2615static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2616{
2617	int i, fail = 0;
2618
2619	for (i = 0; i < 4; i++)
2620		if (addr[i] != (input[i] & mask[i])) {
2621			fail = 1;
2622			break;
2623		}
2624
2625	return !fail;
2626}
2627
2628/**
2629 * security_node_sid - Obtain the SID for a node (host).
2630 * @state: SELinux state
2631 * @domain: communication domain aka address family
2632 * @addrp: address
2633 * @addrlen: address length in bytes
2634 * @out_sid: security identifier
2635 */
2636int security_node_sid(struct selinux_state *state,
2637		      u16 domain,
2638		      void *addrp,
2639		      u32 addrlen,
2640		      u32 *out_sid)
2641{
2642	struct selinux_policy *policy;
2643	struct policydb *policydb;
2644	struct sidtab *sidtab;
2645	int rc;
2646	struct ocontext *c;
2647
2648	if (!selinux_initialized(state)) {
2649		*out_sid = SECINITSID_NODE;
2650		return 0;
2651	}
2652
2653retry:
2654	rcu_read_lock();
2655	policy = rcu_dereference(state->policy);
2656	policydb = &policy->policydb;
2657	sidtab = policy->sidtab;
2658
2659	switch (domain) {
2660	case AF_INET: {
2661		u32 addr;
2662
2663		rc = -EINVAL;
2664		if (addrlen != sizeof(u32))
2665			goto out;
2666
2667		addr = *((u32 *)addrp);
2668
2669		c = policydb->ocontexts[OCON_NODE];
2670		while (c) {
2671			if (c->u.node.addr == (addr & c->u.node.mask))
2672				break;
2673			c = c->next;
2674		}
2675		break;
2676	}
2677
2678	case AF_INET6:
2679		rc = -EINVAL;
2680		if (addrlen != sizeof(u64) * 2)
2681			goto out;
2682		c = policydb->ocontexts[OCON_NODE6];
2683		while (c) {
2684			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2685						c->u.node6.mask))
2686				break;
2687			c = c->next;
2688		}
2689		break;
2690
2691	default:
2692		rc = 0;
2693		*out_sid = SECINITSID_NODE;
2694		goto out;
2695	}
2696
2697	if (c) {
2698		if (!c->sid[0]) {
2699			rc = sidtab_context_to_sid(sidtab,
2700						   &c->context[0],
2701						   &c->sid[0]);
2702			if (rc == -ESTALE) {
2703				rcu_read_unlock();
2704				goto retry;
2705			}
2706			if (rc)
2707				goto out;
2708		}
2709		*out_sid = c->sid[0];
2710	} else {
2711		*out_sid = SECINITSID_NODE;
2712	}
2713
2714	rc = 0;
2715out:
2716	rcu_read_unlock();
2717	return rc;
2718}
2719
2720#define SIDS_NEL 25
2721
2722/**
2723 * security_get_user_sids - Obtain reachable SIDs for a user.
2724 * @state: SELinux state
2725 * @fromsid: starting SID
2726 * @username: username
2727 * @sids: array of reachable SIDs for user
2728 * @nel: number of elements in @sids
2729 *
2730 * Generate the set of SIDs for legal security contexts
2731 * for a given user that can be reached by @fromsid.
2732 * Set *@sids to point to a dynamically allocated
2733 * array containing the set of SIDs.  Set *@nel to the
2734 * number of elements in the array.
2735 */
2736
2737int security_get_user_sids(struct selinux_state *state,
2738			   u32 fromsid,
2739			   char *username,
2740			   u32 **sids,
2741			   u32 *nel)
2742{
2743	struct selinux_policy *policy;
2744	struct policydb *policydb;
2745	struct sidtab *sidtab;
2746	struct context *fromcon, usercon;
2747	u32 *mysids = NULL, *mysids2, sid;
2748	u32 i, j, mynel, maxnel = SIDS_NEL;
2749	struct user_datum *user;
2750	struct role_datum *role;
2751	struct ebitmap_node *rnode, *tnode;
2752	int rc;
2753
2754	*sids = NULL;
2755	*nel = 0;
2756
2757	if (!selinux_initialized(state))
2758		return 0;
2759
2760	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2761	if (!mysids)
2762		return -ENOMEM;
2763
2764retry:
2765	mynel = 0;
2766	rcu_read_lock();
2767	policy = rcu_dereference(state->policy);
2768	policydb = &policy->policydb;
2769	sidtab = policy->sidtab;
2770
2771	context_init(&usercon);
2772
2773	rc = -EINVAL;
2774	fromcon = sidtab_search(sidtab, fromsid);
2775	if (!fromcon)
2776		goto out_unlock;
2777
2778	rc = -EINVAL;
2779	user = symtab_search(&policydb->p_users, username);
2780	if (!user)
2781		goto out_unlock;
2782
2783	usercon.user = user->value;
2784
 
 
 
 
 
2785	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2786		role = policydb->role_val_to_struct[i];
2787		usercon.role = i + 1;
2788		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2789			usercon.type = j + 1;
2790
2791			if (mls_setup_user_range(policydb, fromcon, user,
2792						 &usercon))
2793				continue;
2794
2795			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2796			if (rc == -ESTALE) {
2797				rcu_read_unlock();
2798				goto retry;
2799			}
2800			if (rc)
2801				goto out_unlock;
2802			if (mynel < maxnel) {
2803				mysids[mynel++] = sid;
2804			} else {
2805				rc = -ENOMEM;
2806				maxnel += SIDS_NEL;
2807				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2808				if (!mysids2)
2809					goto out_unlock;
2810				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2811				kfree(mysids);
2812				mysids = mysids2;
2813				mysids[mynel++] = sid;
2814			}
2815		}
2816	}
2817	rc = 0;
2818out_unlock:
2819	rcu_read_unlock();
2820	if (rc || !mynel) {
2821		kfree(mysids);
2822		return rc;
2823	}
2824
2825	rc = -ENOMEM;
2826	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2827	if (!mysids2) {
2828		kfree(mysids);
2829		return rc;
2830	}
2831	for (i = 0, j = 0; i < mynel; i++) {
2832		struct av_decision dummy_avd;
2833		rc = avc_has_perm_noaudit(state,
2834					  fromsid, mysids[i],
2835					  SECCLASS_PROCESS, /* kernel value */
2836					  PROCESS__TRANSITION, AVC_STRICT,
2837					  &dummy_avd);
2838		if (!rc)
2839			mysids2[j++] = mysids[i];
2840		cond_resched();
2841	}
 
2842	kfree(mysids);
2843	*sids = mysids2;
2844	*nel = j;
2845	return 0;
 
2846}
2847
2848/**
2849 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2850 * @fstype: filesystem type
2851 * @path: path from root of mount
2852 * @sclass: file security class
2853 * @sid: SID for path
2854 *
2855 * Obtain a SID to use for a file in a filesystem that
2856 * cannot support xattr or use a fixed labeling behavior like
2857 * transition SIDs or task SIDs.
2858 *
2859 * WARNING: This function may return -ESTALE, indicating that the caller
2860 * must retry the operation after re-acquiring the policy pointer!
2861 */
2862static inline int __security_genfs_sid(struct selinux_policy *policy,
2863				       const char *fstype,
2864				       char *path,
2865				       u16 orig_sclass,
2866				       u32 *sid)
2867{
2868	struct policydb *policydb = &policy->policydb;
2869	struct sidtab *sidtab = policy->sidtab;
2870	int len;
2871	u16 sclass;
2872	struct genfs *genfs;
2873	struct ocontext *c;
2874	int rc, cmp = 0;
2875
2876	while (path[0] == '/' && path[1] == '/')
2877		path++;
2878
2879	sclass = unmap_class(&policy->map, orig_sclass);
 
 
2880	*sid = SECINITSID_UNLABELED;
2881
2882	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2883		cmp = strcmp(fstype, genfs->fstype);
2884		if (cmp <= 0)
2885			break;
2886	}
2887
2888	rc = -ENOENT;
2889	if (!genfs || cmp)
2890		goto out;
2891
2892	for (c = genfs->head; c; c = c->next) {
2893		len = strlen(c->u.name);
2894		if ((!c->v.sclass || sclass == c->v.sclass) &&
2895		    (strncmp(c->u.name, path, len) == 0))
2896			break;
2897	}
2898
2899	rc = -ENOENT;
2900	if (!c)
2901		goto out;
2902
2903	if (!c->sid[0]) {
2904		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2905		if (rc)
2906			goto out;
2907	}
2908
2909	*sid = c->sid[0];
2910	rc = 0;
2911out:
 
2912	return rc;
2913}
2914
2915/**
2916 * security_genfs_sid - Obtain a SID for a file in a filesystem
2917 * @state: SELinux state
2918 * @fstype: filesystem type
2919 * @path: path from root of mount
2920 * @sclass: file security class
2921 * @sid: SID for path
2922 *
2923 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2924 * it afterward.
2925 */
2926int security_genfs_sid(struct selinux_state *state,
2927		       const char *fstype,
2928		       char *path,
2929		       u16 orig_sclass,
2930		       u32 *sid)
2931{
2932	struct selinux_policy *policy;
2933	int retval;
2934
2935	if (!selinux_initialized(state)) {
2936		*sid = SECINITSID_UNLABELED;
2937		return 0;
2938	}
2939
2940	do {
2941		rcu_read_lock();
2942		policy = rcu_dereference(state->policy);
2943		retval = __security_genfs_sid(policy, fstype, path,
2944					      orig_sclass, sid);
2945		rcu_read_unlock();
2946	} while (retval == -ESTALE);
2947	return retval;
2948}
2949
2950int selinux_policy_genfs_sid(struct selinux_policy *policy,
2951			const char *fstype,
2952			char *path,
2953			u16 orig_sclass,
2954			u32 *sid)
2955{
2956	/* no lock required, policy is not yet accessible by other threads */
2957	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2958}
2959
2960/**
2961 * security_fs_use - Determine how to handle labeling for a filesystem.
2962 * @state: SELinux state
2963 * @sb: superblock in question
2964 */
2965int security_fs_use(struct selinux_state *state, struct super_block *sb)
2966{
2967	struct selinux_policy *policy;
2968	struct policydb *policydb;
2969	struct sidtab *sidtab;
2970	int rc;
2971	struct ocontext *c;
2972	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2973	const char *fstype = sb->s_type->name;
2974
2975	if (!selinux_initialized(state)) {
2976		sbsec->behavior = SECURITY_FS_USE_NONE;
2977		sbsec->sid = SECINITSID_UNLABELED;
2978		return 0;
2979	}
2980
2981retry:
2982	rc = 0;
2983	rcu_read_lock();
2984	policy = rcu_dereference(state->policy);
2985	policydb = &policy->policydb;
2986	sidtab = policy->sidtab;
2987
2988	c = policydb->ocontexts[OCON_FSUSE];
2989	while (c) {
2990		if (strcmp(fstype, c->u.name) == 0)
2991			break;
2992		c = c->next;
2993	}
2994
2995	if (c) {
2996		sbsec->behavior = c->v.behavior;
2997		if (!c->sid[0]) {
2998			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2999						   &c->sid[0]);
3000			if (rc == -ESTALE) {
3001				rcu_read_unlock();
3002				goto retry;
3003			}
3004			if (rc)
3005				goto out;
3006		}
3007		sbsec->sid = c->sid[0];
3008	} else {
3009		rc = __security_genfs_sid(policy, fstype, "/",
3010					SECCLASS_DIR, &sbsec->sid);
3011		if (rc == -ESTALE) {
3012			rcu_read_unlock();
3013			goto retry;
3014		}
3015		if (rc) {
3016			sbsec->behavior = SECURITY_FS_USE_NONE;
3017			rc = 0;
3018		} else {
3019			sbsec->behavior = SECURITY_FS_USE_GENFS;
3020		}
3021	}
3022
3023out:
3024	rcu_read_unlock();
3025	return rc;
3026}
3027
3028int security_get_bools(struct selinux_policy *policy,
3029		       u32 *len, char ***names, int **values)
3030{
3031	struct policydb *policydb;
3032	u32 i;
3033	int rc;
3034
3035	policydb = &policy->policydb;
3036
 
3037	*names = NULL;
3038	*values = NULL;
3039
3040	rc = 0;
3041	*len = policydb->p_bools.nprim;
3042	if (!*len)
3043		goto out;
3044
3045	rc = -ENOMEM;
3046	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3047	if (!*names)
3048		goto err;
3049
3050	rc = -ENOMEM;
3051	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3052	if (!*values)
3053		goto err;
3054
3055	for (i = 0; i < *len; i++) {
3056		(*values)[i] = policydb->bool_val_to_struct[i]->state;
 
 
 
3057
3058		rc = -ENOMEM;
3059		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3060				      GFP_ATOMIC);
3061		if (!(*names)[i])
3062			goto err;
 
 
 
3063	}
3064	rc = 0;
3065out:
 
3066	return rc;
3067err:
3068	if (*names) {
3069		for (i = 0; i < *len; i++)
3070			kfree((*names)[i]);
3071		kfree(*names);
3072	}
3073	kfree(*values);
3074	*len = 0;
3075	*names = NULL;
3076	*values = NULL;
3077	goto out;
3078}
3079
3080
3081int security_set_bools(struct selinux_state *state, u32 len, int *values)
3082{
3083	struct selinux_policy *newpolicy, *oldpolicy;
3084	int rc;
3085	u32 i, seqno = 0;
3086
3087	if (!selinux_initialized(state))
3088		return -EINVAL;
3089
3090	oldpolicy = rcu_dereference_protected(state->policy,
3091					lockdep_is_held(&state->policy_mutex));
3092
3093	/* Consistency check on number of booleans, should never fail */
3094	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3095		return -EINVAL;
3096
3097	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3098	if (!newpolicy)
3099		return -ENOMEM;
3100
3101	/*
3102	 * Deep copy only the parts of the policydb that might be
3103	 * modified as a result of changing booleans.
3104	 */
3105	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3106	if (rc) {
3107		kfree(newpolicy);
3108		return -ENOMEM;
3109	}
3110
3111	/* Update the boolean states in the copy */
3112	for (i = 0; i < len; i++) {
3113		int new_state = !!values[i];
3114		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3115
3116		if (new_state != old_state) {
3117			audit_log(audit_context(), GFP_ATOMIC,
3118				AUDIT_MAC_CONFIG_CHANGE,
3119				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3120				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3121				new_state,
3122				old_state,
3123				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3124				audit_get_sessionid(current));
3125			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3126		}
 
 
 
 
3127	}
3128
3129	/* Re-evaluate the conditional rules in the copy */
3130	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
3131
3132	/* Set latest granting seqno for new policy */
3133	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3134	seqno = newpolicy->latest_granting;
3135
3136	/* Install the new policy */
3137	rcu_assign_pointer(state->policy, newpolicy);
3138
3139	/*
3140	 * Free the conditional portions of the old policydb
3141	 * that were copied for the new policy, and the oldpolicy
3142	 * structure itself but not what it references.
3143	 */
3144	synchronize_rcu();
3145	selinux_policy_cond_free(oldpolicy);
3146
3147	/* Notify others of the policy change */
3148	selinux_notify_policy_change(state, seqno);
3149	return 0;
3150}
3151
3152int security_get_bool_value(struct selinux_state *state,
3153			    u32 index)
3154{
3155	struct selinux_policy *policy;
3156	struct policydb *policydb;
3157	int rc;
3158	u32 len;
3159
3160	if (!selinux_initialized(state))
3161		return 0;
3162
3163	rcu_read_lock();
3164	policy = rcu_dereference(state->policy);
3165	policydb = &policy->policydb;
3166
3167	rc = -EFAULT;
3168	len = policydb->p_bools.nprim;
3169	if (index >= len)
3170		goto out;
3171
3172	rc = policydb->bool_val_to_struct[index]->state;
3173out:
3174	rcu_read_unlock();
3175	return rc;
3176}
3177
3178static int security_preserve_bools(struct selinux_policy *oldpolicy,
3179				struct selinux_policy *newpolicy)
3180{
3181	int rc, *bvalues = NULL;
3182	char **bnames = NULL;
3183	struct cond_bool_datum *booldatum;
3184	u32 i, nbools = 0;
3185
3186	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3187	if (rc)
3188		goto out;
3189	for (i = 0; i < nbools; i++) {
3190		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3191					bnames[i]);
3192		if (booldatum)
3193			booldatum->state = bvalues[i];
3194	}
3195	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
 
3196
3197out:
3198	if (bnames) {
3199		for (i = 0; i < nbools; i++)
3200			kfree(bnames[i]);
3201	}
3202	kfree(bnames);
3203	kfree(bvalues);
3204	return rc;
3205}
3206
3207/*
3208 * security_sid_mls_copy() - computes a new sid based on the given
3209 * sid and the mls portion of mls_sid.
3210 */
3211int security_sid_mls_copy(struct selinux_state *state,
3212			  u32 sid, u32 mls_sid, u32 *new_sid)
3213{
3214	struct selinux_policy *policy;
3215	struct policydb *policydb;
3216	struct sidtab *sidtab;
3217	struct context *context1;
3218	struct context *context2;
3219	struct context newcon;
3220	char *s;
3221	u32 len;
3222	int rc;
3223
3224	if (!selinux_initialized(state)) {
 
3225		*new_sid = sid;
3226		return 0;
3227	}
3228
3229retry:
3230	rc = 0;
3231	context_init(&newcon);
3232
3233	rcu_read_lock();
3234	policy = rcu_dereference(state->policy);
3235	policydb = &policy->policydb;
3236	sidtab = policy->sidtab;
3237
3238	if (!policydb->mls_enabled) {
3239		*new_sid = sid;
3240		goto out_unlock;
3241	}
3242
3243	rc = -EINVAL;
3244	context1 = sidtab_search(sidtab, sid);
3245	if (!context1) {
3246		pr_err("SELinux: %s:  unrecognized SID %d\n",
3247			__func__, sid);
3248		goto out_unlock;
3249	}
3250
3251	rc = -EINVAL;
3252	context2 = sidtab_search(sidtab, mls_sid);
3253	if (!context2) {
3254		pr_err("SELinux: %s:  unrecognized SID %d\n",
3255			__func__, mls_sid);
3256		goto out_unlock;
3257	}
3258
3259	newcon.user = context1->user;
3260	newcon.role = context1->role;
3261	newcon.type = context1->type;
3262	rc = mls_context_cpy(&newcon, context2);
3263	if (rc)
3264		goto out_unlock;
3265
3266	/* Check the validity of the new context. */
3267	if (!policydb_context_isvalid(policydb, &newcon)) {
3268		rc = convert_context_handle_invalid_context(state, policydb,
3269							&newcon);
3270		if (rc) {
3271			if (!context_struct_to_string(policydb, &newcon, &s,
3272						      &len)) {
3273				struct audit_buffer *ab;
3274
3275				ab = audit_log_start(audit_context(),
3276						     GFP_ATOMIC,
3277						     AUDIT_SELINUX_ERR);
3278				audit_log_format(ab,
3279						 "op=security_sid_mls_copy invalid_context=");
3280				/* don't record NUL with untrusted strings */
3281				audit_log_n_untrustedstring(ab, s, len - 1);
3282				audit_log_end(ab);
3283				kfree(s);
3284			}
3285			goto out_unlock;
3286		}
3287	}
3288	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3289	if (rc == -ESTALE) {
3290		rcu_read_unlock();
3291		context_destroy(&newcon);
3292		goto retry;
3293	}
3294out_unlock:
3295	rcu_read_unlock();
3296	context_destroy(&newcon);
 
3297	return rc;
3298}
3299
3300/**
3301 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3302 * @state: SELinux state
3303 * @nlbl_sid: NetLabel SID
3304 * @nlbl_type: NetLabel labeling protocol type
3305 * @xfrm_sid: XFRM SID
3306 *
3307 * Description:
3308 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3309 * resolved into a single SID it is returned via @peer_sid and the function
3310 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3311 * returns a negative value.  A table summarizing the behavior is below:
3312 *
3313 *                                 | function return |      @sid
3314 *   ------------------------------+-----------------+-----------------
3315 *   no peer labels                |        0        |    SECSID_NULL
3316 *   single peer label             |        0        |    <peer_label>
3317 *   multiple, consistent labels   |        0        |    <peer_label>
3318 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3319 *
3320 */
3321int security_net_peersid_resolve(struct selinux_state *state,
3322				 u32 nlbl_sid, u32 nlbl_type,
3323				 u32 xfrm_sid,
3324				 u32 *peer_sid)
3325{
3326	struct selinux_policy *policy;
3327	struct policydb *policydb;
3328	struct sidtab *sidtab;
3329	int rc;
3330	struct context *nlbl_ctx;
3331	struct context *xfrm_ctx;
3332
3333	*peer_sid = SECSID_NULL;
3334
3335	/* handle the common (which also happens to be the set of easy) cases
3336	 * right away, these two if statements catch everything involving a
3337	 * single or absent peer SID/label */
3338	if (xfrm_sid == SECSID_NULL) {
3339		*peer_sid = nlbl_sid;
3340		return 0;
3341	}
3342	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3343	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3344	 * is present */
3345	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3346		*peer_sid = xfrm_sid;
3347		return 0;
3348	}
3349
3350	if (!selinux_initialized(state))
 
 
 
3351		return 0;
3352
3353	rcu_read_lock();
3354	policy = rcu_dereference(state->policy);
3355	policydb = &policy->policydb;
3356	sidtab = policy->sidtab;
3357
3358	/*
3359	 * We don't need to check initialized here since the only way both
3360	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3361	 * security server was initialized and state->initialized was true.
3362	 */
3363	if (!policydb->mls_enabled) {
3364		rc = 0;
3365		goto out;
3366	}
3367
3368	rc = -EINVAL;
3369	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3370	if (!nlbl_ctx) {
3371		pr_err("SELinux: %s:  unrecognized SID %d\n",
3372		       __func__, nlbl_sid);
3373		goto out;
3374	}
3375	rc = -EINVAL;
3376	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3377	if (!xfrm_ctx) {
3378		pr_err("SELinux: %s:  unrecognized SID %d\n",
3379		       __func__, xfrm_sid);
3380		goto out;
3381	}
3382	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3383	if (rc)
3384		goto out;
3385
3386	/* at present NetLabel SIDs/labels really only carry MLS
3387	 * information so if the MLS portion of the NetLabel SID
3388	 * matches the MLS portion of the labeled XFRM SID/label
3389	 * then pass along the XFRM SID as it is the most
3390	 * expressive */
3391	*peer_sid = xfrm_sid;
3392out:
3393	rcu_read_unlock();
3394	return rc;
3395}
3396
3397static int get_classes_callback(void *k, void *d, void *args)
3398{
3399	struct class_datum *datum = d;
3400	char *name = k, **classes = args;
3401	int value = datum->value - 1;
3402
3403	classes[value] = kstrdup(name, GFP_ATOMIC);
3404	if (!classes[value])
3405		return -ENOMEM;
3406
3407	return 0;
3408}
3409
3410int security_get_classes(struct selinux_policy *policy,
3411			 char ***classes, int *nclasses)
3412{
3413	struct policydb *policydb;
3414	int rc;
3415
3416	policydb = &policy->policydb;
3417
3418	rc = -ENOMEM;
3419	*nclasses = policydb->p_classes.nprim;
3420	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3421	if (!*classes)
3422		goto out;
3423
3424	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3425			 *classes);
3426	if (rc) {
3427		int i;
3428		for (i = 0; i < *nclasses; i++)
3429			kfree((*classes)[i]);
3430		kfree(*classes);
3431	}
3432
3433out:
 
3434	return rc;
3435}
3436
3437static int get_permissions_callback(void *k, void *d, void *args)
3438{
3439	struct perm_datum *datum = d;
3440	char *name = k, **perms = args;
3441	int value = datum->value - 1;
3442
3443	perms[value] = kstrdup(name, GFP_ATOMIC);
3444	if (!perms[value])
3445		return -ENOMEM;
3446
3447	return 0;
3448}
3449
3450int security_get_permissions(struct selinux_policy *policy,
3451			     char *class, char ***perms, int *nperms)
3452{
3453	struct policydb *policydb;
3454	int rc, i;
3455	struct class_datum *match;
3456
3457	policydb = &policy->policydb;
3458
3459	rc = -EINVAL;
3460	match = symtab_search(&policydb->p_classes, class);
3461	if (!match) {
3462		pr_err("SELinux: %s:  unrecognized class %s\n",
3463			__func__, class);
3464		goto out;
3465	}
3466
3467	rc = -ENOMEM;
3468	*nperms = match->permissions.nprim;
3469	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3470	if (!*perms)
3471		goto out;
3472
3473	if (match->comdatum) {
3474		rc = hashtab_map(&match->comdatum->permissions.table,
3475				 get_permissions_callback, *perms);
3476		if (rc)
3477			goto err;
3478	}
3479
3480	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3481			 *perms);
3482	if (rc)
3483		goto err;
3484
3485out:
 
3486	return rc;
3487
3488err:
 
3489	for (i = 0; i < *nperms; i++)
3490		kfree((*perms)[i]);
3491	kfree(*perms);
3492	return rc;
3493}
3494
3495int security_get_reject_unknown(struct selinux_state *state)
3496{
3497	struct selinux_policy *policy;
3498	int value;
3499
3500	if (!selinux_initialized(state))
3501		return 0;
3502
3503	rcu_read_lock();
3504	policy = rcu_dereference(state->policy);
3505	value = policy->policydb.reject_unknown;
3506	rcu_read_unlock();
3507	return value;
3508}
3509
3510int security_get_allow_unknown(struct selinux_state *state)
3511{
3512	struct selinux_policy *policy;
3513	int value;
3514
3515	if (!selinux_initialized(state))
3516		return 0;
3517
3518	rcu_read_lock();
3519	policy = rcu_dereference(state->policy);
3520	value = policy->policydb.allow_unknown;
3521	rcu_read_unlock();
3522	return value;
3523}
3524
3525/**
3526 * security_policycap_supported - Check for a specific policy capability
3527 * @state: SELinux state
3528 * @req_cap: capability
3529 *
3530 * Description:
3531 * This function queries the currently loaded policy to see if it supports the
3532 * capability specified by @req_cap.  Returns true (1) if the capability is
3533 * supported, false (0) if it isn't supported.
3534 *
3535 */
3536int security_policycap_supported(struct selinux_state *state,
3537				 unsigned int req_cap)
3538{
3539	struct selinux_policy *policy;
3540	int rc;
3541
3542	if (!selinux_initialized(state))
3543		return 0;
3544
3545	rcu_read_lock();
3546	policy = rcu_dereference(state->policy);
3547	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3548	rcu_read_unlock();
3549
3550	return rc;
3551}
3552
3553struct selinux_audit_rule {
3554	u32 au_seqno;
3555	struct context au_ctxt;
3556};
3557
3558void selinux_audit_rule_free(void *vrule)
3559{
3560	struct selinux_audit_rule *rule = vrule;
3561
3562	if (rule) {
3563		context_destroy(&rule->au_ctxt);
3564		kfree(rule);
3565	}
3566}
3567
3568int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3569{
3570	struct selinux_state *state = &selinux_state;
3571	struct selinux_policy *policy;
3572	struct policydb *policydb;
3573	struct selinux_audit_rule *tmprule;
3574	struct role_datum *roledatum;
3575	struct type_datum *typedatum;
3576	struct user_datum *userdatum;
3577	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3578	int rc = 0;
3579
3580	*rule = NULL;
3581
3582	if (!selinux_initialized(state))
3583		return -EOPNOTSUPP;
3584
3585	switch (field) {
3586	case AUDIT_SUBJ_USER:
3587	case AUDIT_SUBJ_ROLE:
3588	case AUDIT_SUBJ_TYPE:
3589	case AUDIT_OBJ_USER:
3590	case AUDIT_OBJ_ROLE:
3591	case AUDIT_OBJ_TYPE:
3592		/* only 'equals' and 'not equals' fit user, role, and type */
3593		if (op != Audit_equal && op != Audit_not_equal)
3594			return -EINVAL;
3595		break;
3596	case AUDIT_SUBJ_SEN:
3597	case AUDIT_SUBJ_CLR:
3598	case AUDIT_OBJ_LEV_LOW:
3599	case AUDIT_OBJ_LEV_HIGH:
3600		/* we do not allow a range, indicated by the presence of '-' */
3601		if (strchr(rulestr, '-'))
3602			return -EINVAL;
3603		break;
3604	default:
3605		/* only the above fields are valid */
3606		return -EINVAL;
3607	}
3608
3609	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3610	if (!tmprule)
3611		return -ENOMEM;
3612
3613	context_init(&tmprule->au_ctxt);
3614
3615	rcu_read_lock();
3616	policy = rcu_dereference(state->policy);
3617	policydb = &policy->policydb;
3618
3619	tmprule->au_seqno = policy->latest_granting;
3620
3621	switch (field) {
3622	case AUDIT_SUBJ_USER:
3623	case AUDIT_OBJ_USER:
3624		rc = -EINVAL;
3625		userdatum = symtab_search(&policydb->p_users, rulestr);
3626		if (!userdatum)
3627			goto out;
3628		tmprule->au_ctxt.user = userdatum->value;
3629		break;
3630	case AUDIT_SUBJ_ROLE:
3631	case AUDIT_OBJ_ROLE:
3632		rc = -EINVAL;
3633		roledatum = symtab_search(&policydb->p_roles, rulestr);
3634		if (!roledatum)
3635			goto out;
3636		tmprule->au_ctxt.role = roledatum->value;
3637		break;
3638	case AUDIT_SUBJ_TYPE:
3639	case AUDIT_OBJ_TYPE:
3640		rc = -EINVAL;
3641		typedatum = symtab_search(&policydb->p_types, rulestr);
3642		if (!typedatum)
3643			goto out;
3644		tmprule->au_ctxt.type = typedatum->value;
3645		break;
3646	case AUDIT_SUBJ_SEN:
3647	case AUDIT_SUBJ_CLR:
3648	case AUDIT_OBJ_LEV_LOW:
3649	case AUDIT_OBJ_LEV_HIGH:
3650		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3651				     GFP_ATOMIC);
3652		if (rc)
3653			goto out;
3654		break;
3655	}
3656	rc = 0;
3657out:
3658	rcu_read_unlock();
3659
3660	if (rc) {
3661		selinux_audit_rule_free(tmprule);
3662		tmprule = NULL;
3663	}
3664
3665	*rule = tmprule;
3666
3667	return rc;
3668}
3669
3670/* Check to see if the rule contains any selinux fields */
3671int selinux_audit_rule_known(struct audit_krule *rule)
3672{
3673	int i;
3674
3675	for (i = 0; i < rule->field_count; i++) {
3676		struct audit_field *f = &rule->fields[i];
3677		switch (f->type) {
3678		case AUDIT_SUBJ_USER:
3679		case AUDIT_SUBJ_ROLE:
3680		case AUDIT_SUBJ_TYPE:
3681		case AUDIT_SUBJ_SEN:
3682		case AUDIT_SUBJ_CLR:
3683		case AUDIT_OBJ_USER:
3684		case AUDIT_OBJ_ROLE:
3685		case AUDIT_OBJ_TYPE:
3686		case AUDIT_OBJ_LEV_LOW:
3687		case AUDIT_OBJ_LEV_HIGH:
3688			return 1;
3689		}
3690	}
3691
3692	return 0;
3693}
3694
3695int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
 
3696{
3697	struct selinux_state *state = &selinux_state;
3698	struct selinux_policy *policy;
3699	struct context *ctxt;
3700	struct mls_level *level;
3701	struct selinux_audit_rule *rule = vrule;
3702	int match = 0;
3703
3704	if (unlikely(!rule)) {
3705		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
 
3706		return -ENOENT;
3707	}
3708
3709	if (!selinux_initialized(state))
3710		return 0;
3711
3712	rcu_read_lock();
3713
3714	policy = rcu_dereference(state->policy);
3715
3716	if (rule->au_seqno < policy->latest_granting) {
3717		match = -ESTALE;
3718		goto out;
3719	}
3720
3721	ctxt = sidtab_search(policy->sidtab, sid);
3722	if (unlikely(!ctxt)) {
3723		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
 
3724			  sid);
3725		match = -ENOENT;
3726		goto out;
3727	}
3728
3729	/* a field/op pair that is not caught here will simply fall through
3730	   without a match */
3731	switch (field) {
3732	case AUDIT_SUBJ_USER:
3733	case AUDIT_OBJ_USER:
3734		switch (op) {
3735		case Audit_equal:
3736			match = (ctxt->user == rule->au_ctxt.user);
3737			break;
3738		case Audit_not_equal:
3739			match = (ctxt->user != rule->au_ctxt.user);
3740			break;
3741		}
3742		break;
3743	case AUDIT_SUBJ_ROLE:
3744	case AUDIT_OBJ_ROLE:
3745		switch (op) {
3746		case Audit_equal:
3747			match = (ctxt->role == rule->au_ctxt.role);
3748			break;
3749		case Audit_not_equal:
3750			match = (ctxt->role != rule->au_ctxt.role);
3751			break;
3752		}
3753		break;
3754	case AUDIT_SUBJ_TYPE:
3755	case AUDIT_OBJ_TYPE:
3756		switch (op) {
3757		case Audit_equal:
3758			match = (ctxt->type == rule->au_ctxt.type);
3759			break;
3760		case Audit_not_equal:
3761			match = (ctxt->type != rule->au_ctxt.type);
3762			break;
3763		}
3764		break;
3765	case AUDIT_SUBJ_SEN:
3766	case AUDIT_SUBJ_CLR:
3767	case AUDIT_OBJ_LEV_LOW:
3768	case AUDIT_OBJ_LEV_HIGH:
3769		level = ((field == AUDIT_SUBJ_SEN ||
3770			  field == AUDIT_OBJ_LEV_LOW) ?
3771			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3772		switch (op) {
3773		case Audit_equal:
3774			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3775					     level);
3776			break;
3777		case Audit_not_equal:
3778			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3779					      level);
3780			break;
3781		case Audit_lt:
3782			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3783					       level) &&
3784				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3785					       level));
3786			break;
3787		case Audit_le:
3788			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3789					      level);
3790			break;
3791		case Audit_gt:
3792			match = (mls_level_dom(level,
3793					      &rule->au_ctxt.range.level[0]) &&
3794				 !mls_level_eq(level,
3795					       &rule->au_ctxt.range.level[0]));
3796			break;
3797		case Audit_ge:
3798			match = mls_level_dom(level,
3799					      &rule->au_ctxt.range.level[0]);
3800			break;
3801		}
3802	}
3803
3804out:
3805	rcu_read_unlock();
3806	return match;
3807}
3808
 
 
3809static int aurule_avc_callback(u32 event)
3810{
3811	if (event == AVC_CALLBACK_RESET)
3812		return audit_update_lsm_rules();
3813	return 0;
 
 
3814}
3815
3816static int __init aurule_init(void)
3817{
3818	int err;
3819
3820	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3821	if (err)
3822		panic("avc_add_callback() failed, error %d\n", err);
3823
3824	return err;
3825}
3826__initcall(aurule_init);
3827
3828#ifdef CONFIG_NETLABEL
3829/**
3830 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3831 * @secattr: the NetLabel packet security attributes
3832 * @sid: the SELinux SID
3833 *
3834 * Description:
3835 * Attempt to cache the context in @ctx, which was derived from the packet in
3836 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3837 * already been initialized.
3838 *
3839 */
3840static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3841				      u32 sid)
3842{
3843	u32 *sid_cache;
3844
3845	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3846	if (sid_cache == NULL)
3847		return;
3848	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3849	if (secattr->cache == NULL) {
3850		kfree(sid_cache);
3851		return;
3852	}
3853
3854	*sid_cache = sid;
3855	secattr->cache->free = kfree;
3856	secattr->cache->data = sid_cache;
3857	secattr->flags |= NETLBL_SECATTR_CACHE;
3858}
3859
3860/**
3861 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3862 * @state: SELinux state
3863 * @secattr: the NetLabel packet security attributes
3864 * @sid: the SELinux SID
3865 *
3866 * Description:
3867 * Convert the given NetLabel security attributes in @secattr into a
3868 * SELinux SID.  If the @secattr field does not contain a full SELinux
3869 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3870 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3871 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3872 * conversion for future lookups.  Returns zero on success, negative values on
3873 * failure.
3874 *
3875 */
3876int security_netlbl_secattr_to_sid(struct selinux_state *state,
3877				   struct netlbl_lsm_secattr *secattr,
3878				   u32 *sid)
3879{
3880	struct selinux_policy *policy;
3881	struct policydb *policydb;
3882	struct sidtab *sidtab;
3883	int rc;
3884	struct context *ctx;
3885	struct context ctx_new;
3886
3887	if (!selinux_initialized(state)) {
3888		*sid = SECSID_NULL;
3889		return 0;
3890	}
3891
3892retry:
3893	rc = 0;
3894	rcu_read_lock();
3895	policy = rcu_dereference(state->policy);
3896	policydb = &policy->policydb;
3897	sidtab = policy->sidtab;
3898
3899	if (secattr->flags & NETLBL_SECATTR_CACHE)
3900		*sid = *(u32 *)secattr->cache->data;
3901	else if (secattr->flags & NETLBL_SECATTR_SECID)
3902		*sid = secattr->attr.secid;
3903	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3904		rc = -EIDRM;
3905		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3906		if (ctx == NULL)
3907			goto out;
3908
3909		context_init(&ctx_new);
3910		ctx_new.user = ctx->user;
3911		ctx_new.role = ctx->role;
3912		ctx_new.type = ctx->type;
3913		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3914		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3915			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
 
3916			if (rc)
3917				goto out;
 
 
 
3918		}
3919		rc = -EIDRM;
3920		if (!mls_context_isvalid(policydb, &ctx_new)) {
3921			ebitmap_destroy(&ctx_new.range.level[0].cat);
3922			goto out;
3923		}
3924
3925		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3926		ebitmap_destroy(&ctx_new.range.level[0].cat);
3927		if (rc == -ESTALE) {
3928			rcu_read_unlock();
3929			goto retry;
3930		}
3931		if (rc)
3932			goto out;
3933
3934		security_netlbl_cache_add(secattr, *sid);
 
 
3935	} else
3936		*sid = SECSID_NULL;
3937
 
 
 
 
3938out:
3939	rcu_read_unlock();
3940	return rc;
3941}
3942
3943/**
3944 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3945 * @state: SELinux state
3946 * @sid: the SELinux SID
3947 * @secattr: the NetLabel packet security attributes
3948 *
3949 * Description:
3950 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3951 * Returns zero on success, negative values on failure.
3952 *
3953 */
3954int security_netlbl_sid_to_secattr(struct selinux_state *state,
3955				   u32 sid, struct netlbl_lsm_secattr *secattr)
3956{
3957	struct selinux_policy *policy;
3958	struct policydb *policydb;
3959	int rc;
3960	struct context *ctx;
3961
3962	if (!selinux_initialized(state))
3963		return 0;
3964
3965	rcu_read_lock();
3966	policy = rcu_dereference(state->policy);
3967	policydb = &policy->policydb;
3968
3969	rc = -ENOENT;
3970	ctx = sidtab_search(policy->sidtab, sid);
3971	if (ctx == NULL)
3972		goto out;
3973
3974	rc = -ENOMEM;
3975	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3976				  GFP_ATOMIC);
3977	if (secattr->domain == NULL)
3978		goto out;
3979
3980	secattr->attr.secid = sid;
3981	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3982	mls_export_netlbl_lvl(policydb, ctx, secattr);
3983	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3984out:
3985	rcu_read_unlock();
3986	return rc;
3987}
3988#endif /* CONFIG_NETLABEL */
3989
3990/**
3991 * __security_read_policy - read the policy.
3992 * @policy: SELinux policy
3993 * @data: binary policy data
3994 * @len: length of data in bytes
3995 *
3996 */
3997static int __security_read_policy(struct selinux_policy *policy,
3998				  void *data, size_t *len)
3999{
4000	int rc;
4001	struct policy_file fp;
4002
4003	fp.data = data;
4004	fp.len = *len;
4005
4006	rc = policydb_write(&policy->policydb, &fp);
4007	if (rc)
4008		return rc;
4009
4010	*len = (unsigned long)fp.data - (unsigned long)data;
4011	return 0;
4012}
4013
4014/**
4015 * security_read_policy - read the policy.
4016 * @state: selinux_state
4017 * @data: binary policy data
4018 * @len: length of data in bytes
4019 *
4020 */
4021int security_read_policy(struct selinux_state *state,
4022			 void **data, size_t *len)
4023{
4024	struct selinux_policy *policy;
4025
4026	policy = rcu_dereference_protected(
4027			state->policy, lockdep_is_held(&state->policy_mutex));
4028	if (!policy)
4029		return -EINVAL;
4030
4031	*len = policy->policydb.len;
4032	*data = vmalloc_user(*len);
4033	if (!*data)
4034		return -ENOMEM;
4035
4036	return __security_read_policy(policy, *data, len);
4037}
4038
4039/**
4040 * security_read_state_kernel - read the policy.
4041 * @state: selinux_state
4042 * @data: binary policy data
4043 * @len: length of data in bytes
4044 *
4045 * Allocates kernel memory for reading SELinux policy.
4046 * This function is for internal use only and should not
4047 * be used for returning data to user space.
4048 *
4049 * This function must be called with policy_mutex held.
4050 */
4051int security_read_state_kernel(struct selinux_state *state,
4052			       void **data, size_t *len)
4053{
4054	struct selinux_policy *policy;
4055
4056	policy = rcu_dereference_protected(
4057			state->policy, lockdep_is_held(&state->policy_mutex));
4058	if (!policy)
4059		return -EINVAL;
4060
4061	*len = policy->policydb.len;
4062	*data = vmalloc(*len);
4063	if (!*data)
4064		return -ENOMEM;
4065
4066	return __security_read_policy(policy, *data, len);
4067}