Loading...
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/security.h>
19#include <linux/integrity.h>
20#include <linux/ima.h>
21#include <linux/evm.h>
22#include <linux/fsnotify.h>
23#include <linux/mman.h>
24#include <linux/mount.h>
25#include <linux/personality.h>
26#include <linux/backing-dev.h>
27#include <net/flow.h>
28
29#define MAX_LSM_EVM_XATTR 2
30
31/* Boot-time LSM user choice */
32static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
33 CONFIG_DEFAULT_SECURITY;
34
35static struct security_operations *security_ops;
36static struct security_operations default_security_ops = {
37 .name = "default",
38};
39
40static inline int __init verify(struct security_operations *ops)
41{
42 /* verify the security_operations structure exists */
43 if (!ops)
44 return -EINVAL;
45 security_fixup_ops(ops);
46 return 0;
47}
48
49static void __init do_security_initcalls(void)
50{
51 initcall_t *call;
52 call = __security_initcall_start;
53 while (call < __security_initcall_end) {
54 (*call) ();
55 call++;
56 }
57}
58
59/**
60 * security_init - initializes the security framework
61 *
62 * This should be called early in the kernel initialization sequence.
63 */
64int __init security_init(void)
65{
66 printk(KERN_INFO "Security Framework initialized\n");
67
68 security_fixup_ops(&default_security_ops);
69 security_ops = &default_security_ops;
70 do_security_initcalls();
71
72 return 0;
73}
74
75void reset_security_ops(void)
76{
77 security_ops = &default_security_ops;
78}
79
80/* Save user chosen LSM */
81static int __init choose_lsm(char *str)
82{
83 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
84 return 1;
85}
86__setup("security=", choose_lsm);
87
88/**
89 * security_module_enable - Load given security module on boot ?
90 * @ops: a pointer to the struct security_operations that is to be checked.
91 *
92 * Each LSM must pass this method before registering its own operations
93 * to avoid security registration races. This method may also be used
94 * to check if your LSM is currently loaded during kernel initialization.
95 *
96 * Return true if:
97 * -The passed LSM is the one chosen by user at boot time,
98 * -or the passed LSM is configured as the default and the user did not
99 * choose an alternate LSM at boot time.
100 * Otherwise, return false.
101 */
102int __init security_module_enable(struct security_operations *ops)
103{
104 return !strcmp(ops->name, chosen_lsm);
105}
106
107/**
108 * register_security - registers a security framework with the kernel
109 * @ops: a pointer to the struct security_options that is to be registered
110 *
111 * This function allows a security module to register itself with the
112 * kernel security subsystem. Some rudimentary checking is done on the @ops
113 * value passed to this function. You'll need to check first if your LSM
114 * is allowed to register its @ops by calling security_module_enable(@ops).
115 *
116 * If there is already a security module registered with the kernel,
117 * an error will be returned. Otherwise %0 is returned on success.
118 */
119int __init register_security(struct security_operations *ops)
120{
121 if (verify(ops)) {
122 printk(KERN_DEBUG "%s could not verify "
123 "security_operations structure.\n", __func__);
124 return -EINVAL;
125 }
126
127 if (security_ops != &default_security_ops)
128 return -EAGAIN;
129
130 security_ops = ops;
131
132 return 0;
133}
134
135/* Security operations */
136
137int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
138{
139 return security_ops->ptrace_access_check(child, mode);
140}
141
142int security_ptrace_traceme(struct task_struct *parent)
143{
144 return security_ops->ptrace_traceme(parent);
145}
146
147int security_capget(struct task_struct *target,
148 kernel_cap_t *effective,
149 kernel_cap_t *inheritable,
150 kernel_cap_t *permitted)
151{
152 return security_ops->capget(target, effective, inheritable, permitted);
153}
154
155int security_capset(struct cred *new, const struct cred *old,
156 const kernel_cap_t *effective,
157 const kernel_cap_t *inheritable,
158 const kernel_cap_t *permitted)
159{
160 return security_ops->capset(new, old,
161 effective, inheritable, permitted);
162}
163
164int security_capable(const struct cred *cred, struct user_namespace *ns,
165 int cap)
166{
167 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
168}
169
170int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
171 int cap)
172{
173 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
174}
175
176int security_quotactl(int cmds, int type, int id, struct super_block *sb)
177{
178 return security_ops->quotactl(cmds, type, id, sb);
179}
180
181int security_quota_on(struct dentry *dentry)
182{
183 return security_ops->quota_on(dentry);
184}
185
186int security_syslog(int type)
187{
188 return security_ops->syslog(type);
189}
190
191int security_settime(const struct timespec *ts, const struct timezone *tz)
192{
193 return security_ops->settime(ts, tz);
194}
195
196int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
197{
198 return security_ops->vm_enough_memory(mm, pages);
199}
200
201int security_bprm_set_creds(struct linux_binprm *bprm)
202{
203 return security_ops->bprm_set_creds(bprm);
204}
205
206int security_bprm_check(struct linux_binprm *bprm)
207{
208 int ret;
209
210 ret = security_ops->bprm_check_security(bprm);
211 if (ret)
212 return ret;
213 return ima_bprm_check(bprm);
214}
215
216void security_bprm_committing_creds(struct linux_binprm *bprm)
217{
218 security_ops->bprm_committing_creds(bprm);
219}
220
221void security_bprm_committed_creds(struct linux_binprm *bprm)
222{
223 security_ops->bprm_committed_creds(bprm);
224}
225
226int security_bprm_secureexec(struct linux_binprm *bprm)
227{
228 return security_ops->bprm_secureexec(bprm);
229}
230
231int security_sb_alloc(struct super_block *sb)
232{
233 return security_ops->sb_alloc_security(sb);
234}
235
236void security_sb_free(struct super_block *sb)
237{
238 security_ops->sb_free_security(sb);
239}
240
241int security_sb_copy_data(char *orig, char *copy)
242{
243 return security_ops->sb_copy_data(orig, copy);
244}
245EXPORT_SYMBOL(security_sb_copy_data);
246
247int security_sb_remount(struct super_block *sb, void *data)
248{
249 return security_ops->sb_remount(sb, data);
250}
251
252int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
253{
254 return security_ops->sb_kern_mount(sb, flags, data);
255}
256
257int security_sb_show_options(struct seq_file *m, struct super_block *sb)
258{
259 return security_ops->sb_show_options(m, sb);
260}
261
262int security_sb_statfs(struct dentry *dentry)
263{
264 return security_ops->sb_statfs(dentry);
265}
266
267int security_sb_mount(char *dev_name, struct path *path,
268 char *type, unsigned long flags, void *data)
269{
270 return security_ops->sb_mount(dev_name, path, type, flags, data);
271}
272
273int security_sb_umount(struct vfsmount *mnt, int flags)
274{
275 return security_ops->sb_umount(mnt, flags);
276}
277
278int security_sb_pivotroot(struct path *old_path, struct path *new_path)
279{
280 return security_ops->sb_pivotroot(old_path, new_path);
281}
282
283int security_sb_set_mnt_opts(struct super_block *sb,
284 struct security_mnt_opts *opts)
285{
286 return security_ops->sb_set_mnt_opts(sb, opts);
287}
288EXPORT_SYMBOL(security_sb_set_mnt_opts);
289
290void security_sb_clone_mnt_opts(const struct super_block *oldsb,
291 struct super_block *newsb)
292{
293 security_ops->sb_clone_mnt_opts(oldsb, newsb);
294}
295EXPORT_SYMBOL(security_sb_clone_mnt_opts);
296
297int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
298{
299 return security_ops->sb_parse_opts_str(options, opts);
300}
301EXPORT_SYMBOL(security_sb_parse_opts_str);
302
303int security_inode_alloc(struct inode *inode)
304{
305 inode->i_security = NULL;
306 return security_ops->inode_alloc_security(inode);
307}
308
309void security_inode_free(struct inode *inode)
310{
311 integrity_inode_free(inode);
312 security_ops->inode_free_security(inode);
313}
314
315int security_inode_init_security(struct inode *inode, struct inode *dir,
316 const struct qstr *qstr,
317 const initxattrs initxattrs, void *fs_data)
318{
319 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
320 struct xattr *lsm_xattr, *evm_xattr, *xattr;
321 int ret;
322
323 if (unlikely(IS_PRIVATE(inode)))
324 return 0;
325
326 memset(new_xattrs, 0, sizeof new_xattrs);
327 if (!initxattrs)
328 return security_ops->inode_init_security(inode, dir, qstr,
329 NULL, NULL, NULL);
330 lsm_xattr = new_xattrs;
331 ret = security_ops->inode_init_security(inode, dir, qstr,
332 &lsm_xattr->name,
333 &lsm_xattr->value,
334 &lsm_xattr->value_len);
335 if (ret)
336 goto out;
337
338 evm_xattr = lsm_xattr + 1;
339 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
340 if (ret)
341 goto out;
342 ret = initxattrs(inode, new_xattrs, fs_data);
343out:
344 for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
345 kfree(xattr->name);
346 kfree(xattr->value);
347 }
348 return (ret == -EOPNOTSUPP) ? 0 : ret;
349}
350EXPORT_SYMBOL(security_inode_init_security);
351
352int security_old_inode_init_security(struct inode *inode, struct inode *dir,
353 const struct qstr *qstr, char **name,
354 void **value, size_t *len)
355{
356 if (unlikely(IS_PRIVATE(inode)))
357 return -EOPNOTSUPP;
358 return security_ops->inode_init_security(inode, dir, qstr, name, value,
359 len);
360}
361EXPORT_SYMBOL(security_old_inode_init_security);
362
363#ifdef CONFIG_SECURITY_PATH
364int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
365 unsigned int dev)
366{
367 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
368 return 0;
369 return security_ops->path_mknod(dir, dentry, mode, dev);
370}
371EXPORT_SYMBOL(security_path_mknod);
372
373int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
374{
375 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
376 return 0;
377 return security_ops->path_mkdir(dir, dentry, mode);
378}
379EXPORT_SYMBOL(security_path_mkdir);
380
381int security_path_rmdir(struct path *dir, struct dentry *dentry)
382{
383 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
384 return 0;
385 return security_ops->path_rmdir(dir, dentry);
386}
387
388int security_path_unlink(struct path *dir, struct dentry *dentry)
389{
390 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
391 return 0;
392 return security_ops->path_unlink(dir, dentry);
393}
394EXPORT_SYMBOL(security_path_unlink);
395
396int security_path_symlink(struct path *dir, struct dentry *dentry,
397 const char *old_name)
398{
399 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
400 return 0;
401 return security_ops->path_symlink(dir, dentry, old_name);
402}
403
404int security_path_link(struct dentry *old_dentry, struct path *new_dir,
405 struct dentry *new_dentry)
406{
407 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
408 return 0;
409 return security_ops->path_link(old_dentry, new_dir, new_dentry);
410}
411
412int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
413 struct path *new_dir, struct dentry *new_dentry)
414{
415 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
416 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
417 return 0;
418 return security_ops->path_rename(old_dir, old_dentry, new_dir,
419 new_dentry);
420}
421EXPORT_SYMBOL(security_path_rename);
422
423int security_path_truncate(struct path *path)
424{
425 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
426 return 0;
427 return security_ops->path_truncate(path);
428}
429
430int security_path_chmod(struct path *path, umode_t mode)
431{
432 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
433 return 0;
434 return security_ops->path_chmod(path, mode);
435}
436
437int security_path_chown(struct path *path, uid_t uid, gid_t gid)
438{
439 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
440 return 0;
441 return security_ops->path_chown(path, uid, gid);
442}
443
444int security_path_chroot(struct path *path)
445{
446 return security_ops->path_chroot(path);
447}
448#endif
449
450int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
451{
452 if (unlikely(IS_PRIVATE(dir)))
453 return 0;
454 return security_ops->inode_create(dir, dentry, mode);
455}
456EXPORT_SYMBOL_GPL(security_inode_create);
457
458int security_inode_link(struct dentry *old_dentry, struct inode *dir,
459 struct dentry *new_dentry)
460{
461 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
462 return 0;
463 return security_ops->inode_link(old_dentry, dir, new_dentry);
464}
465
466int security_inode_unlink(struct inode *dir, struct dentry *dentry)
467{
468 if (unlikely(IS_PRIVATE(dentry->d_inode)))
469 return 0;
470 return security_ops->inode_unlink(dir, dentry);
471}
472
473int security_inode_symlink(struct inode *dir, struct dentry *dentry,
474 const char *old_name)
475{
476 if (unlikely(IS_PRIVATE(dir)))
477 return 0;
478 return security_ops->inode_symlink(dir, dentry, old_name);
479}
480
481int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
482{
483 if (unlikely(IS_PRIVATE(dir)))
484 return 0;
485 return security_ops->inode_mkdir(dir, dentry, mode);
486}
487EXPORT_SYMBOL_GPL(security_inode_mkdir);
488
489int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
490{
491 if (unlikely(IS_PRIVATE(dentry->d_inode)))
492 return 0;
493 return security_ops->inode_rmdir(dir, dentry);
494}
495
496int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
497{
498 if (unlikely(IS_PRIVATE(dir)))
499 return 0;
500 return security_ops->inode_mknod(dir, dentry, mode, dev);
501}
502
503int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
504 struct inode *new_dir, struct dentry *new_dentry)
505{
506 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
507 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
508 return 0;
509 return security_ops->inode_rename(old_dir, old_dentry,
510 new_dir, new_dentry);
511}
512
513int security_inode_readlink(struct dentry *dentry)
514{
515 if (unlikely(IS_PRIVATE(dentry->d_inode)))
516 return 0;
517 return security_ops->inode_readlink(dentry);
518}
519
520int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
521{
522 if (unlikely(IS_PRIVATE(dentry->d_inode)))
523 return 0;
524 return security_ops->inode_follow_link(dentry, nd);
525}
526
527int security_inode_permission(struct inode *inode, int mask)
528{
529 if (unlikely(IS_PRIVATE(inode)))
530 return 0;
531 return security_ops->inode_permission(inode, mask);
532}
533
534int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
535{
536 int ret;
537
538 if (unlikely(IS_PRIVATE(dentry->d_inode)))
539 return 0;
540 ret = security_ops->inode_setattr(dentry, attr);
541 if (ret)
542 return ret;
543 return evm_inode_setattr(dentry, attr);
544}
545EXPORT_SYMBOL_GPL(security_inode_setattr);
546
547int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
548{
549 if (unlikely(IS_PRIVATE(dentry->d_inode)))
550 return 0;
551 return security_ops->inode_getattr(mnt, dentry);
552}
553
554int security_inode_setxattr(struct dentry *dentry, const char *name,
555 const void *value, size_t size, int flags)
556{
557 int ret;
558
559 if (unlikely(IS_PRIVATE(dentry->d_inode)))
560 return 0;
561 ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
562 if (ret)
563 return ret;
564 return evm_inode_setxattr(dentry, name, value, size);
565}
566
567void security_inode_post_setxattr(struct dentry *dentry, const char *name,
568 const void *value, size_t size, int flags)
569{
570 if (unlikely(IS_PRIVATE(dentry->d_inode)))
571 return;
572 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
573 evm_inode_post_setxattr(dentry, name, value, size);
574}
575
576int security_inode_getxattr(struct dentry *dentry, const char *name)
577{
578 if (unlikely(IS_PRIVATE(dentry->d_inode)))
579 return 0;
580 return security_ops->inode_getxattr(dentry, name);
581}
582
583int security_inode_listxattr(struct dentry *dentry)
584{
585 if (unlikely(IS_PRIVATE(dentry->d_inode)))
586 return 0;
587 return security_ops->inode_listxattr(dentry);
588}
589
590int security_inode_removexattr(struct dentry *dentry, const char *name)
591{
592 int ret;
593
594 if (unlikely(IS_PRIVATE(dentry->d_inode)))
595 return 0;
596 ret = security_ops->inode_removexattr(dentry, name);
597 if (ret)
598 return ret;
599 return evm_inode_removexattr(dentry, name);
600}
601
602int security_inode_need_killpriv(struct dentry *dentry)
603{
604 return security_ops->inode_need_killpriv(dentry);
605}
606
607int security_inode_killpriv(struct dentry *dentry)
608{
609 return security_ops->inode_killpriv(dentry);
610}
611
612int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
613{
614 if (unlikely(IS_PRIVATE(inode)))
615 return -EOPNOTSUPP;
616 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
617}
618
619int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
620{
621 if (unlikely(IS_PRIVATE(inode)))
622 return -EOPNOTSUPP;
623 return security_ops->inode_setsecurity(inode, name, value, size, flags);
624}
625
626int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
627{
628 if (unlikely(IS_PRIVATE(inode)))
629 return 0;
630 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
631}
632
633void security_inode_getsecid(const struct inode *inode, u32 *secid)
634{
635 security_ops->inode_getsecid(inode, secid);
636}
637
638int security_file_permission(struct file *file, int mask)
639{
640 int ret;
641
642 ret = security_ops->file_permission(file, mask);
643 if (ret)
644 return ret;
645
646 return fsnotify_perm(file, mask);
647}
648
649int security_file_alloc(struct file *file)
650{
651 return security_ops->file_alloc_security(file);
652}
653
654void security_file_free(struct file *file)
655{
656 security_ops->file_free_security(file);
657}
658
659int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
660{
661 return security_ops->file_ioctl(file, cmd, arg);
662}
663
664static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
665{
666 /*
667 * Does we have PROT_READ and does the application expect
668 * it to imply PROT_EXEC? If not, nothing to talk about...
669 */
670 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
671 return prot;
672 if (!(current->personality & READ_IMPLIES_EXEC))
673 return prot;
674 /*
675 * if that's an anonymous mapping, let it.
676 */
677 if (!file)
678 return prot | PROT_EXEC;
679 /*
680 * ditto if it's not on noexec mount, except that on !MMU we need
681 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
682 */
683 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
684#ifndef CONFIG_MMU
685 unsigned long caps = 0;
686 struct address_space *mapping = file->f_mapping;
687 if (mapping && mapping->backing_dev_info)
688 caps = mapping->backing_dev_info->capabilities;
689 if (!(caps & BDI_CAP_EXEC_MAP))
690 return prot;
691#endif
692 return prot | PROT_EXEC;
693 }
694 /* anything on noexec mount won't get PROT_EXEC */
695 return prot;
696}
697
698int security_mmap_file(struct file *file, unsigned long prot,
699 unsigned long flags)
700{
701 int ret;
702 ret = security_ops->mmap_file(file, prot,
703 mmap_prot(file, prot), flags);
704 if (ret)
705 return ret;
706 return ima_file_mmap(file, prot);
707}
708
709int security_mmap_addr(unsigned long addr)
710{
711 return security_ops->mmap_addr(addr);
712}
713
714int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
715 unsigned long prot)
716{
717 return security_ops->file_mprotect(vma, reqprot, prot);
718}
719
720int security_file_lock(struct file *file, unsigned int cmd)
721{
722 return security_ops->file_lock(file, cmd);
723}
724
725int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
726{
727 return security_ops->file_fcntl(file, cmd, arg);
728}
729
730int security_file_set_fowner(struct file *file)
731{
732 return security_ops->file_set_fowner(file);
733}
734
735int security_file_send_sigiotask(struct task_struct *tsk,
736 struct fown_struct *fown, int sig)
737{
738 return security_ops->file_send_sigiotask(tsk, fown, sig);
739}
740
741int security_file_receive(struct file *file)
742{
743 return security_ops->file_receive(file);
744}
745
746int security_file_open(struct file *file, const struct cred *cred)
747{
748 int ret;
749
750 ret = security_ops->file_open(file, cred);
751 if (ret)
752 return ret;
753
754 return fsnotify_perm(file, MAY_OPEN);
755}
756
757int security_task_create(unsigned long clone_flags)
758{
759 return security_ops->task_create(clone_flags);
760}
761
762void security_task_free(struct task_struct *task)
763{
764 security_ops->task_free(task);
765}
766
767int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
768{
769 return security_ops->cred_alloc_blank(cred, gfp);
770}
771
772void security_cred_free(struct cred *cred)
773{
774 security_ops->cred_free(cred);
775}
776
777int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
778{
779 return security_ops->cred_prepare(new, old, gfp);
780}
781
782void security_transfer_creds(struct cred *new, const struct cred *old)
783{
784 security_ops->cred_transfer(new, old);
785}
786
787int security_kernel_act_as(struct cred *new, u32 secid)
788{
789 return security_ops->kernel_act_as(new, secid);
790}
791
792int security_kernel_create_files_as(struct cred *new, struct inode *inode)
793{
794 return security_ops->kernel_create_files_as(new, inode);
795}
796
797int security_kernel_module_request(char *kmod_name)
798{
799 return security_ops->kernel_module_request(kmod_name);
800}
801
802int security_task_fix_setuid(struct cred *new, const struct cred *old,
803 int flags)
804{
805 return security_ops->task_fix_setuid(new, old, flags);
806}
807
808int security_task_setpgid(struct task_struct *p, pid_t pgid)
809{
810 return security_ops->task_setpgid(p, pgid);
811}
812
813int security_task_getpgid(struct task_struct *p)
814{
815 return security_ops->task_getpgid(p);
816}
817
818int security_task_getsid(struct task_struct *p)
819{
820 return security_ops->task_getsid(p);
821}
822
823void security_task_getsecid(struct task_struct *p, u32 *secid)
824{
825 security_ops->task_getsecid(p, secid);
826}
827EXPORT_SYMBOL(security_task_getsecid);
828
829int security_task_setnice(struct task_struct *p, int nice)
830{
831 return security_ops->task_setnice(p, nice);
832}
833
834int security_task_setioprio(struct task_struct *p, int ioprio)
835{
836 return security_ops->task_setioprio(p, ioprio);
837}
838
839int security_task_getioprio(struct task_struct *p)
840{
841 return security_ops->task_getioprio(p);
842}
843
844int security_task_setrlimit(struct task_struct *p, unsigned int resource,
845 struct rlimit *new_rlim)
846{
847 return security_ops->task_setrlimit(p, resource, new_rlim);
848}
849
850int security_task_setscheduler(struct task_struct *p)
851{
852 return security_ops->task_setscheduler(p);
853}
854
855int security_task_getscheduler(struct task_struct *p)
856{
857 return security_ops->task_getscheduler(p);
858}
859
860int security_task_movememory(struct task_struct *p)
861{
862 return security_ops->task_movememory(p);
863}
864
865int security_task_kill(struct task_struct *p, struct siginfo *info,
866 int sig, u32 secid)
867{
868 return security_ops->task_kill(p, info, sig, secid);
869}
870
871int security_task_wait(struct task_struct *p)
872{
873 return security_ops->task_wait(p);
874}
875
876int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
877 unsigned long arg4, unsigned long arg5)
878{
879 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
880}
881
882void security_task_to_inode(struct task_struct *p, struct inode *inode)
883{
884 security_ops->task_to_inode(p, inode);
885}
886
887int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
888{
889 return security_ops->ipc_permission(ipcp, flag);
890}
891
892void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
893{
894 security_ops->ipc_getsecid(ipcp, secid);
895}
896
897int security_msg_msg_alloc(struct msg_msg *msg)
898{
899 return security_ops->msg_msg_alloc_security(msg);
900}
901
902void security_msg_msg_free(struct msg_msg *msg)
903{
904 security_ops->msg_msg_free_security(msg);
905}
906
907int security_msg_queue_alloc(struct msg_queue *msq)
908{
909 return security_ops->msg_queue_alloc_security(msq);
910}
911
912void security_msg_queue_free(struct msg_queue *msq)
913{
914 security_ops->msg_queue_free_security(msq);
915}
916
917int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
918{
919 return security_ops->msg_queue_associate(msq, msqflg);
920}
921
922int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
923{
924 return security_ops->msg_queue_msgctl(msq, cmd);
925}
926
927int security_msg_queue_msgsnd(struct msg_queue *msq,
928 struct msg_msg *msg, int msqflg)
929{
930 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
931}
932
933int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
934 struct task_struct *target, long type, int mode)
935{
936 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
937}
938
939int security_shm_alloc(struct shmid_kernel *shp)
940{
941 return security_ops->shm_alloc_security(shp);
942}
943
944void security_shm_free(struct shmid_kernel *shp)
945{
946 security_ops->shm_free_security(shp);
947}
948
949int security_shm_associate(struct shmid_kernel *shp, int shmflg)
950{
951 return security_ops->shm_associate(shp, shmflg);
952}
953
954int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
955{
956 return security_ops->shm_shmctl(shp, cmd);
957}
958
959int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
960{
961 return security_ops->shm_shmat(shp, shmaddr, shmflg);
962}
963
964int security_sem_alloc(struct sem_array *sma)
965{
966 return security_ops->sem_alloc_security(sma);
967}
968
969void security_sem_free(struct sem_array *sma)
970{
971 security_ops->sem_free_security(sma);
972}
973
974int security_sem_associate(struct sem_array *sma, int semflg)
975{
976 return security_ops->sem_associate(sma, semflg);
977}
978
979int security_sem_semctl(struct sem_array *sma, int cmd)
980{
981 return security_ops->sem_semctl(sma, cmd);
982}
983
984int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
985 unsigned nsops, int alter)
986{
987 return security_ops->sem_semop(sma, sops, nsops, alter);
988}
989
990void security_d_instantiate(struct dentry *dentry, struct inode *inode)
991{
992 if (unlikely(inode && IS_PRIVATE(inode)))
993 return;
994 security_ops->d_instantiate(dentry, inode);
995}
996EXPORT_SYMBOL(security_d_instantiate);
997
998int security_getprocattr(struct task_struct *p, char *name, char **value)
999{
1000 return security_ops->getprocattr(p, name, value);
1001}
1002
1003int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1004{
1005 return security_ops->setprocattr(p, name, value, size);
1006}
1007
1008int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1009{
1010 return security_ops->netlink_send(sk, skb);
1011}
1012
1013int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1014{
1015 return security_ops->secid_to_secctx(secid, secdata, seclen);
1016}
1017EXPORT_SYMBOL(security_secid_to_secctx);
1018
1019int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1020{
1021 return security_ops->secctx_to_secid(secdata, seclen, secid);
1022}
1023EXPORT_SYMBOL(security_secctx_to_secid);
1024
1025void security_release_secctx(char *secdata, u32 seclen)
1026{
1027 security_ops->release_secctx(secdata, seclen);
1028}
1029EXPORT_SYMBOL(security_release_secctx);
1030
1031int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1032{
1033 return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1034}
1035EXPORT_SYMBOL(security_inode_notifysecctx);
1036
1037int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1038{
1039 return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1040}
1041EXPORT_SYMBOL(security_inode_setsecctx);
1042
1043int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1044{
1045 return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1046}
1047EXPORT_SYMBOL(security_inode_getsecctx);
1048
1049#ifdef CONFIG_SECURITY_NETWORK
1050
1051int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1052{
1053 return security_ops->unix_stream_connect(sock, other, newsk);
1054}
1055EXPORT_SYMBOL(security_unix_stream_connect);
1056
1057int security_unix_may_send(struct socket *sock, struct socket *other)
1058{
1059 return security_ops->unix_may_send(sock, other);
1060}
1061EXPORT_SYMBOL(security_unix_may_send);
1062
1063int security_socket_create(int family, int type, int protocol, int kern)
1064{
1065 return security_ops->socket_create(family, type, protocol, kern);
1066}
1067
1068int security_socket_post_create(struct socket *sock, int family,
1069 int type, int protocol, int kern)
1070{
1071 return security_ops->socket_post_create(sock, family, type,
1072 protocol, kern);
1073}
1074
1075int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1076{
1077 return security_ops->socket_bind(sock, address, addrlen);
1078}
1079
1080int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1081{
1082 return security_ops->socket_connect(sock, address, addrlen);
1083}
1084
1085int security_socket_listen(struct socket *sock, int backlog)
1086{
1087 return security_ops->socket_listen(sock, backlog);
1088}
1089
1090int security_socket_accept(struct socket *sock, struct socket *newsock)
1091{
1092 return security_ops->socket_accept(sock, newsock);
1093}
1094
1095int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1096{
1097 return security_ops->socket_sendmsg(sock, msg, size);
1098}
1099
1100int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1101 int size, int flags)
1102{
1103 return security_ops->socket_recvmsg(sock, msg, size, flags);
1104}
1105
1106int security_socket_getsockname(struct socket *sock)
1107{
1108 return security_ops->socket_getsockname(sock);
1109}
1110
1111int security_socket_getpeername(struct socket *sock)
1112{
1113 return security_ops->socket_getpeername(sock);
1114}
1115
1116int security_socket_getsockopt(struct socket *sock, int level, int optname)
1117{
1118 return security_ops->socket_getsockopt(sock, level, optname);
1119}
1120
1121int security_socket_setsockopt(struct socket *sock, int level, int optname)
1122{
1123 return security_ops->socket_setsockopt(sock, level, optname);
1124}
1125
1126int security_socket_shutdown(struct socket *sock, int how)
1127{
1128 return security_ops->socket_shutdown(sock, how);
1129}
1130
1131int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1132{
1133 return security_ops->socket_sock_rcv_skb(sk, skb);
1134}
1135EXPORT_SYMBOL(security_sock_rcv_skb);
1136
1137int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1138 int __user *optlen, unsigned len)
1139{
1140 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1141}
1142
1143int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1144{
1145 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1146}
1147EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1148
1149int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1150{
1151 return security_ops->sk_alloc_security(sk, family, priority);
1152}
1153
1154void security_sk_free(struct sock *sk)
1155{
1156 security_ops->sk_free_security(sk);
1157}
1158
1159void security_sk_clone(const struct sock *sk, struct sock *newsk)
1160{
1161 security_ops->sk_clone_security(sk, newsk);
1162}
1163EXPORT_SYMBOL(security_sk_clone);
1164
1165void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1166{
1167 security_ops->sk_getsecid(sk, &fl->flowi_secid);
1168}
1169EXPORT_SYMBOL(security_sk_classify_flow);
1170
1171void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1172{
1173 security_ops->req_classify_flow(req, fl);
1174}
1175EXPORT_SYMBOL(security_req_classify_flow);
1176
1177void security_sock_graft(struct sock *sk, struct socket *parent)
1178{
1179 security_ops->sock_graft(sk, parent);
1180}
1181EXPORT_SYMBOL(security_sock_graft);
1182
1183int security_inet_conn_request(struct sock *sk,
1184 struct sk_buff *skb, struct request_sock *req)
1185{
1186 return security_ops->inet_conn_request(sk, skb, req);
1187}
1188EXPORT_SYMBOL(security_inet_conn_request);
1189
1190void security_inet_csk_clone(struct sock *newsk,
1191 const struct request_sock *req)
1192{
1193 security_ops->inet_csk_clone(newsk, req);
1194}
1195
1196void security_inet_conn_established(struct sock *sk,
1197 struct sk_buff *skb)
1198{
1199 security_ops->inet_conn_established(sk, skb);
1200}
1201
1202int security_secmark_relabel_packet(u32 secid)
1203{
1204 return security_ops->secmark_relabel_packet(secid);
1205}
1206EXPORT_SYMBOL(security_secmark_relabel_packet);
1207
1208void security_secmark_refcount_inc(void)
1209{
1210 security_ops->secmark_refcount_inc();
1211}
1212EXPORT_SYMBOL(security_secmark_refcount_inc);
1213
1214void security_secmark_refcount_dec(void)
1215{
1216 security_ops->secmark_refcount_dec();
1217}
1218EXPORT_SYMBOL(security_secmark_refcount_dec);
1219
1220int security_tun_dev_create(void)
1221{
1222 return security_ops->tun_dev_create();
1223}
1224EXPORT_SYMBOL(security_tun_dev_create);
1225
1226void security_tun_dev_post_create(struct sock *sk)
1227{
1228 return security_ops->tun_dev_post_create(sk);
1229}
1230EXPORT_SYMBOL(security_tun_dev_post_create);
1231
1232int security_tun_dev_attach(struct sock *sk)
1233{
1234 return security_ops->tun_dev_attach(sk);
1235}
1236EXPORT_SYMBOL(security_tun_dev_attach);
1237
1238#endif /* CONFIG_SECURITY_NETWORK */
1239
1240#ifdef CONFIG_SECURITY_NETWORK_XFRM
1241
1242int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1243{
1244 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1245}
1246EXPORT_SYMBOL(security_xfrm_policy_alloc);
1247
1248int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1249 struct xfrm_sec_ctx **new_ctxp)
1250{
1251 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1252}
1253
1254void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1255{
1256 security_ops->xfrm_policy_free_security(ctx);
1257}
1258EXPORT_SYMBOL(security_xfrm_policy_free);
1259
1260int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1261{
1262 return security_ops->xfrm_policy_delete_security(ctx);
1263}
1264
1265int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1266{
1267 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1268}
1269EXPORT_SYMBOL(security_xfrm_state_alloc);
1270
1271int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1272 struct xfrm_sec_ctx *polsec, u32 secid)
1273{
1274 if (!polsec)
1275 return 0;
1276 /*
1277 * We want the context to be taken from secid which is usually
1278 * from the sock.
1279 */
1280 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1281}
1282
1283int security_xfrm_state_delete(struct xfrm_state *x)
1284{
1285 return security_ops->xfrm_state_delete_security(x);
1286}
1287EXPORT_SYMBOL(security_xfrm_state_delete);
1288
1289void security_xfrm_state_free(struct xfrm_state *x)
1290{
1291 security_ops->xfrm_state_free_security(x);
1292}
1293
1294int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1295{
1296 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1297}
1298
1299int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1300 struct xfrm_policy *xp,
1301 const struct flowi *fl)
1302{
1303 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1304}
1305
1306int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1307{
1308 return security_ops->xfrm_decode_session(skb, secid, 1);
1309}
1310
1311void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1312{
1313 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1314
1315 BUG_ON(rc);
1316}
1317EXPORT_SYMBOL(security_skb_classify_flow);
1318
1319#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1320
1321#ifdef CONFIG_KEYS
1322
1323int security_key_alloc(struct key *key, const struct cred *cred,
1324 unsigned long flags)
1325{
1326 return security_ops->key_alloc(key, cred, flags);
1327}
1328
1329void security_key_free(struct key *key)
1330{
1331 security_ops->key_free(key);
1332}
1333
1334int security_key_permission(key_ref_t key_ref,
1335 const struct cred *cred, key_perm_t perm)
1336{
1337 return security_ops->key_permission(key_ref, cred, perm);
1338}
1339
1340int security_key_getsecurity(struct key *key, char **_buffer)
1341{
1342 return security_ops->key_getsecurity(key, _buffer);
1343}
1344
1345#endif /* CONFIG_KEYS */
1346
1347#ifdef CONFIG_AUDIT
1348
1349int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1350{
1351 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1352}
1353
1354int security_audit_rule_known(struct audit_krule *krule)
1355{
1356 return security_ops->audit_rule_known(krule);
1357}
1358
1359void security_audit_rule_free(void *lsmrule)
1360{
1361 security_ops->audit_rule_free(lsmrule);
1362}
1363
1364int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1365 struct audit_context *actx)
1366{
1367 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1368}
1369
1370#endif /* CONFIG_AUDIT */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11#define pr_fmt(fmt) "LSM: " fmt
12
13#include <linux/bpf.h>
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/export.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/kernel_read_file.h>
20#include <linux/lsm_hooks.h>
21#include <linux/integrity.h>
22#include <linux/ima.h>
23#include <linux/evm.h>
24#include <linux/fsnotify.h>
25#include <linux/mman.h>
26#include <linux/mount.h>
27#include <linux/personality.h>
28#include <linux/backing-dev.h>
29#include <linux/string.h>
30#include <linux/msg.h>
31#include <net/flow.h>
32
33#define MAX_LSM_EVM_XATTR 2
34
35/* How many LSMs were built into the kernel? */
36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38/*
39 * These are descriptions of the reasons that can be passed to the
40 * security_locked_down() LSM hook. Placing this array here allows
41 * all security modules to use the same descriptions for auditing
42 * purposes.
43 */
44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 [LOCKDOWN_NONE] = "none",
46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 [LOCKDOWN_HIBERNATION] = "hibernation",
51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 [LOCKDOWN_IOPORT] = "raw io port access",
53 [LOCKDOWN_MSR] = "raw MSR access",
54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 [LOCKDOWN_DEBUGFS] = "debugfs access",
60 [LOCKDOWN_XMON_WR] = "xmon write access",
61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
63 [LOCKDOWN_KCORE] = "/proc/kcore access",
64 [LOCKDOWN_KPROBES] = "use of kprobes",
65 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
66 [LOCKDOWN_PERF] = "unsafe use of perf",
67 [LOCKDOWN_TRACEFS] = "use of tracefs",
68 [LOCKDOWN_XMON_RW] = "xmon read and write access",
69 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
70 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
71};
72
73struct security_hook_heads security_hook_heads __lsm_ro_after_init;
74static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
75
76static struct kmem_cache *lsm_file_cache;
77static struct kmem_cache *lsm_inode_cache;
78
79char *lsm_names;
80static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
81
82/* Boot-time LSM user choice */
83static __initdata const char *chosen_lsm_order;
84static __initdata const char *chosen_major_lsm;
85
86static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
87
88/* Ordered list of LSMs to initialize. */
89static __initdata struct lsm_info **ordered_lsms;
90static __initdata struct lsm_info *exclusive;
91
92static __initdata bool debug;
93#define init_debug(...) \
94 do { \
95 if (debug) \
96 pr_info(__VA_ARGS__); \
97 } while (0)
98
99static bool __init is_enabled(struct lsm_info *lsm)
100{
101 if (!lsm->enabled)
102 return false;
103
104 return *lsm->enabled;
105}
106
107/* Mark an LSM's enabled flag. */
108static int lsm_enabled_true __initdata = 1;
109static int lsm_enabled_false __initdata = 0;
110static void __init set_enabled(struct lsm_info *lsm, bool enabled)
111{
112 /*
113 * When an LSM hasn't configured an enable variable, we can use
114 * a hard-coded location for storing the default enabled state.
115 */
116 if (!lsm->enabled) {
117 if (enabled)
118 lsm->enabled = &lsm_enabled_true;
119 else
120 lsm->enabled = &lsm_enabled_false;
121 } else if (lsm->enabled == &lsm_enabled_true) {
122 if (!enabled)
123 lsm->enabled = &lsm_enabled_false;
124 } else if (lsm->enabled == &lsm_enabled_false) {
125 if (enabled)
126 lsm->enabled = &lsm_enabled_true;
127 } else {
128 *lsm->enabled = enabled;
129 }
130}
131
132/* Is an LSM already listed in the ordered LSMs list? */
133static bool __init exists_ordered_lsm(struct lsm_info *lsm)
134{
135 struct lsm_info **check;
136
137 for (check = ordered_lsms; *check; check++)
138 if (*check == lsm)
139 return true;
140
141 return false;
142}
143
144/* Append an LSM to the list of ordered LSMs to initialize. */
145static int last_lsm __initdata;
146static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
147{
148 /* Ignore duplicate selections. */
149 if (exists_ordered_lsm(lsm))
150 return;
151
152 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
153 return;
154
155 /* Enable this LSM, if it is not already set. */
156 if (!lsm->enabled)
157 lsm->enabled = &lsm_enabled_true;
158 ordered_lsms[last_lsm++] = lsm;
159
160 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
161 is_enabled(lsm) ? "en" : "dis");
162}
163
164/* Is an LSM allowed to be initialized? */
165static bool __init lsm_allowed(struct lsm_info *lsm)
166{
167 /* Skip if the LSM is disabled. */
168 if (!is_enabled(lsm))
169 return false;
170
171 /* Not allowed if another exclusive LSM already initialized. */
172 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
173 init_debug("exclusive disabled: %s\n", lsm->name);
174 return false;
175 }
176
177 return true;
178}
179
180static void __init lsm_set_blob_size(int *need, int *lbs)
181{
182 int offset;
183
184 if (*need > 0) {
185 offset = *lbs;
186 *lbs += *need;
187 *need = offset;
188 }
189}
190
191static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
192{
193 if (!needed)
194 return;
195
196 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
197 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
198 /*
199 * The inode blob gets an rcu_head in addition to
200 * what the modules might need.
201 */
202 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
203 blob_sizes.lbs_inode = sizeof(struct rcu_head);
204 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
205 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
206 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
207 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
208 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
209}
210
211/* Prepare LSM for initialization. */
212static void __init prepare_lsm(struct lsm_info *lsm)
213{
214 int enabled = lsm_allowed(lsm);
215
216 /* Record enablement (to handle any following exclusive LSMs). */
217 set_enabled(lsm, enabled);
218
219 /* If enabled, do pre-initialization work. */
220 if (enabled) {
221 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
222 exclusive = lsm;
223 init_debug("exclusive chosen: %s\n", lsm->name);
224 }
225
226 lsm_set_blob_sizes(lsm->blobs);
227 }
228}
229
230/* Initialize a given LSM, if it is enabled. */
231static void __init initialize_lsm(struct lsm_info *lsm)
232{
233 if (is_enabled(lsm)) {
234 int ret;
235
236 init_debug("initializing %s\n", lsm->name);
237 ret = lsm->init();
238 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
239 }
240}
241
242/* Populate ordered LSMs list from comma-separated LSM name list. */
243static void __init ordered_lsm_parse(const char *order, const char *origin)
244{
245 struct lsm_info *lsm;
246 char *sep, *name, *next;
247
248 /* LSM_ORDER_FIRST is always first. */
249 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
250 if (lsm->order == LSM_ORDER_FIRST)
251 append_ordered_lsm(lsm, "first");
252 }
253
254 /* Process "security=", if given. */
255 if (chosen_major_lsm) {
256 struct lsm_info *major;
257
258 /*
259 * To match the original "security=" behavior, this
260 * explicitly does NOT fallback to another Legacy Major
261 * if the selected one was separately disabled: disable
262 * all non-matching Legacy Major LSMs.
263 */
264 for (major = __start_lsm_info; major < __end_lsm_info;
265 major++) {
266 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
267 strcmp(major->name, chosen_major_lsm) != 0) {
268 set_enabled(major, false);
269 init_debug("security=%s disabled: %s\n",
270 chosen_major_lsm, major->name);
271 }
272 }
273 }
274
275 sep = kstrdup(order, GFP_KERNEL);
276 next = sep;
277 /* Walk the list, looking for matching LSMs. */
278 while ((name = strsep(&next, ",")) != NULL) {
279 bool found = false;
280
281 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
282 if (lsm->order == LSM_ORDER_MUTABLE &&
283 strcmp(lsm->name, name) == 0) {
284 append_ordered_lsm(lsm, origin);
285 found = true;
286 }
287 }
288
289 if (!found)
290 init_debug("%s ignored: %s\n", origin, name);
291 }
292
293 /* Process "security=", if given. */
294 if (chosen_major_lsm) {
295 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
296 if (exists_ordered_lsm(lsm))
297 continue;
298 if (strcmp(lsm->name, chosen_major_lsm) == 0)
299 append_ordered_lsm(lsm, "security=");
300 }
301 }
302
303 /* Disable all LSMs not in the ordered list. */
304 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
305 if (exists_ordered_lsm(lsm))
306 continue;
307 set_enabled(lsm, false);
308 init_debug("%s disabled: %s\n", origin, lsm->name);
309 }
310
311 kfree(sep);
312}
313
314static void __init lsm_early_cred(struct cred *cred);
315static void __init lsm_early_task(struct task_struct *task);
316
317static int lsm_append(const char *new, char **result);
318
319static void __init ordered_lsm_init(void)
320{
321 struct lsm_info **lsm;
322
323 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
324 GFP_KERNEL);
325
326 if (chosen_lsm_order) {
327 if (chosen_major_lsm) {
328 pr_info("security= is ignored because it is superseded by lsm=\n");
329 chosen_major_lsm = NULL;
330 }
331 ordered_lsm_parse(chosen_lsm_order, "cmdline");
332 } else
333 ordered_lsm_parse(builtin_lsm_order, "builtin");
334
335 for (lsm = ordered_lsms; *lsm; lsm++)
336 prepare_lsm(*lsm);
337
338 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
339 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
340 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
341 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
342 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
343 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
344 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
345
346 /*
347 * Create any kmem_caches needed for blobs
348 */
349 if (blob_sizes.lbs_file)
350 lsm_file_cache = kmem_cache_create("lsm_file_cache",
351 blob_sizes.lbs_file, 0,
352 SLAB_PANIC, NULL);
353 if (blob_sizes.lbs_inode)
354 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
355 blob_sizes.lbs_inode, 0,
356 SLAB_PANIC, NULL);
357
358 lsm_early_cred((struct cred *) current->cred);
359 lsm_early_task(current);
360 for (lsm = ordered_lsms; *lsm; lsm++)
361 initialize_lsm(*lsm);
362
363 kfree(ordered_lsms);
364}
365
366int __init early_security_init(void)
367{
368 int i;
369 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
370 struct lsm_info *lsm;
371
372 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
373 i++)
374 INIT_HLIST_HEAD(&list[i]);
375
376 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
377 if (!lsm->enabled)
378 lsm->enabled = &lsm_enabled_true;
379 prepare_lsm(lsm);
380 initialize_lsm(lsm);
381 }
382
383 return 0;
384}
385
386/**
387 * security_init - initializes the security framework
388 *
389 * This should be called early in the kernel initialization sequence.
390 */
391int __init security_init(void)
392{
393 struct lsm_info *lsm;
394
395 pr_info("Security Framework initializing\n");
396
397 /*
398 * Append the names of the early LSM modules now that kmalloc() is
399 * available
400 */
401 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
402 if (lsm->enabled)
403 lsm_append(lsm->name, &lsm_names);
404 }
405
406 /* Load LSMs in specified order. */
407 ordered_lsm_init();
408
409 return 0;
410}
411
412/* Save user chosen LSM */
413static int __init choose_major_lsm(char *str)
414{
415 chosen_major_lsm = str;
416 return 1;
417}
418__setup("security=", choose_major_lsm);
419
420/* Explicitly choose LSM initialization order. */
421static int __init choose_lsm_order(char *str)
422{
423 chosen_lsm_order = str;
424 return 1;
425}
426__setup("lsm=", choose_lsm_order);
427
428/* Enable LSM order debugging. */
429static int __init enable_debug(char *str)
430{
431 debug = true;
432 return 1;
433}
434__setup("lsm.debug", enable_debug);
435
436static bool match_last_lsm(const char *list, const char *lsm)
437{
438 const char *last;
439
440 if (WARN_ON(!list || !lsm))
441 return false;
442 last = strrchr(list, ',');
443 if (last)
444 /* Pass the comma, strcmp() will check for '\0' */
445 last++;
446 else
447 last = list;
448 return !strcmp(last, lsm);
449}
450
451static int lsm_append(const char *new, char **result)
452{
453 char *cp;
454
455 if (*result == NULL) {
456 *result = kstrdup(new, GFP_KERNEL);
457 if (*result == NULL)
458 return -ENOMEM;
459 } else {
460 /* Check if it is the last registered name */
461 if (match_last_lsm(*result, new))
462 return 0;
463 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
464 if (cp == NULL)
465 return -ENOMEM;
466 kfree(*result);
467 *result = cp;
468 }
469 return 0;
470}
471
472/**
473 * security_add_hooks - Add a modules hooks to the hook lists.
474 * @hooks: the hooks to add
475 * @count: the number of hooks to add
476 * @lsm: the name of the security module
477 *
478 * Each LSM has to register its hooks with the infrastructure.
479 */
480void __init security_add_hooks(struct security_hook_list *hooks, int count,
481 char *lsm)
482{
483 int i;
484
485 for (i = 0; i < count; i++) {
486 hooks[i].lsm = lsm;
487 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
488 }
489
490 /*
491 * Don't try to append during early_security_init(), we'll come back
492 * and fix this up afterwards.
493 */
494 if (slab_is_available()) {
495 if (lsm_append(lsm, &lsm_names) < 0)
496 panic("%s - Cannot get early memory.\n", __func__);
497 }
498}
499
500int call_blocking_lsm_notifier(enum lsm_event event, void *data)
501{
502 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
503 event, data);
504}
505EXPORT_SYMBOL(call_blocking_lsm_notifier);
506
507int register_blocking_lsm_notifier(struct notifier_block *nb)
508{
509 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
510 nb);
511}
512EXPORT_SYMBOL(register_blocking_lsm_notifier);
513
514int unregister_blocking_lsm_notifier(struct notifier_block *nb)
515{
516 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
517 nb);
518}
519EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
520
521/**
522 * lsm_cred_alloc - allocate a composite cred blob
523 * @cred: the cred that needs a blob
524 * @gfp: allocation type
525 *
526 * Allocate the cred blob for all the modules
527 *
528 * Returns 0, or -ENOMEM if memory can't be allocated.
529 */
530static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
531{
532 if (blob_sizes.lbs_cred == 0) {
533 cred->security = NULL;
534 return 0;
535 }
536
537 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
538 if (cred->security == NULL)
539 return -ENOMEM;
540 return 0;
541}
542
543/**
544 * lsm_early_cred - during initialization allocate a composite cred blob
545 * @cred: the cred that needs a blob
546 *
547 * Allocate the cred blob for all the modules
548 */
549static void __init lsm_early_cred(struct cred *cred)
550{
551 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
552
553 if (rc)
554 panic("%s: Early cred alloc failed.\n", __func__);
555}
556
557/**
558 * lsm_file_alloc - allocate a composite file blob
559 * @file: the file that needs a blob
560 *
561 * Allocate the file blob for all the modules
562 *
563 * Returns 0, or -ENOMEM if memory can't be allocated.
564 */
565static int lsm_file_alloc(struct file *file)
566{
567 if (!lsm_file_cache) {
568 file->f_security = NULL;
569 return 0;
570 }
571
572 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
573 if (file->f_security == NULL)
574 return -ENOMEM;
575 return 0;
576}
577
578/**
579 * lsm_inode_alloc - allocate a composite inode blob
580 * @inode: the inode that needs a blob
581 *
582 * Allocate the inode blob for all the modules
583 *
584 * Returns 0, or -ENOMEM if memory can't be allocated.
585 */
586int lsm_inode_alloc(struct inode *inode)
587{
588 if (!lsm_inode_cache) {
589 inode->i_security = NULL;
590 return 0;
591 }
592
593 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
594 if (inode->i_security == NULL)
595 return -ENOMEM;
596 return 0;
597}
598
599/**
600 * lsm_task_alloc - allocate a composite task blob
601 * @task: the task that needs a blob
602 *
603 * Allocate the task blob for all the modules
604 *
605 * Returns 0, or -ENOMEM if memory can't be allocated.
606 */
607static int lsm_task_alloc(struct task_struct *task)
608{
609 if (blob_sizes.lbs_task == 0) {
610 task->security = NULL;
611 return 0;
612 }
613
614 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
615 if (task->security == NULL)
616 return -ENOMEM;
617 return 0;
618}
619
620/**
621 * lsm_ipc_alloc - allocate a composite ipc blob
622 * @kip: the ipc that needs a blob
623 *
624 * Allocate the ipc blob for all the modules
625 *
626 * Returns 0, or -ENOMEM if memory can't be allocated.
627 */
628static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
629{
630 if (blob_sizes.lbs_ipc == 0) {
631 kip->security = NULL;
632 return 0;
633 }
634
635 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
636 if (kip->security == NULL)
637 return -ENOMEM;
638 return 0;
639}
640
641/**
642 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
643 * @mp: the msg_msg that needs a blob
644 *
645 * Allocate the ipc blob for all the modules
646 *
647 * Returns 0, or -ENOMEM if memory can't be allocated.
648 */
649static int lsm_msg_msg_alloc(struct msg_msg *mp)
650{
651 if (blob_sizes.lbs_msg_msg == 0) {
652 mp->security = NULL;
653 return 0;
654 }
655
656 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
657 if (mp->security == NULL)
658 return -ENOMEM;
659 return 0;
660}
661
662/**
663 * lsm_early_task - during initialization allocate a composite task blob
664 * @task: the task that needs a blob
665 *
666 * Allocate the task blob for all the modules
667 */
668static void __init lsm_early_task(struct task_struct *task)
669{
670 int rc = lsm_task_alloc(task);
671
672 if (rc)
673 panic("%s: Early task alloc failed.\n", __func__);
674}
675
676/**
677 * lsm_superblock_alloc - allocate a composite superblock blob
678 * @sb: the superblock that needs a blob
679 *
680 * Allocate the superblock blob for all the modules
681 *
682 * Returns 0, or -ENOMEM if memory can't be allocated.
683 */
684static int lsm_superblock_alloc(struct super_block *sb)
685{
686 if (blob_sizes.lbs_superblock == 0) {
687 sb->s_security = NULL;
688 return 0;
689 }
690
691 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
692 if (sb->s_security == NULL)
693 return -ENOMEM;
694 return 0;
695}
696
697/*
698 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
699 * can be accessed with:
700 *
701 * LSM_RET_DEFAULT(<hook_name>)
702 *
703 * The macros below define static constants for the default value of each
704 * LSM hook.
705 */
706#define LSM_RET_DEFAULT(NAME) (NAME##_default)
707#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
708#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
709 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
710#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
711 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
712
713#include <linux/lsm_hook_defs.h>
714#undef LSM_HOOK
715
716/*
717 * Hook list operation macros.
718 *
719 * call_void_hook:
720 * This is a hook that does not return a value.
721 *
722 * call_int_hook:
723 * This is a hook that returns a value.
724 */
725
726#define call_void_hook(FUNC, ...) \
727 do { \
728 struct security_hook_list *P; \
729 \
730 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
731 P->hook.FUNC(__VA_ARGS__); \
732 } while (0)
733
734#define call_int_hook(FUNC, IRC, ...) ({ \
735 int RC = IRC; \
736 do { \
737 struct security_hook_list *P; \
738 \
739 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
740 RC = P->hook.FUNC(__VA_ARGS__); \
741 if (RC != 0) \
742 break; \
743 } \
744 } while (0); \
745 RC; \
746})
747
748/* Security operations */
749
750int security_binder_set_context_mgr(struct task_struct *mgr)
751{
752 return call_int_hook(binder_set_context_mgr, 0, mgr);
753}
754
755int security_binder_transaction(struct task_struct *from,
756 struct task_struct *to)
757{
758 return call_int_hook(binder_transaction, 0, from, to);
759}
760
761int security_binder_transfer_binder(struct task_struct *from,
762 struct task_struct *to)
763{
764 return call_int_hook(binder_transfer_binder, 0, from, to);
765}
766
767int security_binder_transfer_file(struct task_struct *from,
768 struct task_struct *to, struct file *file)
769{
770 return call_int_hook(binder_transfer_file, 0, from, to, file);
771}
772
773int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
774{
775 return call_int_hook(ptrace_access_check, 0, child, mode);
776}
777
778int security_ptrace_traceme(struct task_struct *parent)
779{
780 return call_int_hook(ptrace_traceme, 0, parent);
781}
782
783int security_capget(struct task_struct *target,
784 kernel_cap_t *effective,
785 kernel_cap_t *inheritable,
786 kernel_cap_t *permitted)
787{
788 return call_int_hook(capget, 0, target,
789 effective, inheritable, permitted);
790}
791
792int security_capset(struct cred *new, const struct cred *old,
793 const kernel_cap_t *effective,
794 const kernel_cap_t *inheritable,
795 const kernel_cap_t *permitted)
796{
797 return call_int_hook(capset, 0, new, old,
798 effective, inheritable, permitted);
799}
800
801int security_capable(const struct cred *cred,
802 struct user_namespace *ns,
803 int cap,
804 unsigned int opts)
805{
806 return call_int_hook(capable, 0, cred, ns, cap, opts);
807}
808
809int security_quotactl(int cmds, int type, int id, struct super_block *sb)
810{
811 return call_int_hook(quotactl, 0, cmds, type, id, sb);
812}
813
814int security_quota_on(struct dentry *dentry)
815{
816 return call_int_hook(quota_on, 0, dentry);
817}
818
819int security_syslog(int type)
820{
821 return call_int_hook(syslog, 0, type);
822}
823
824int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
825{
826 return call_int_hook(settime, 0, ts, tz);
827}
828
829int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
830{
831 struct security_hook_list *hp;
832 int cap_sys_admin = 1;
833 int rc;
834
835 /*
836 * The module will respond with a positive value if
837 * it thinks the __vm_enough_memory() call should be
838 * made with the cap_sys_admin set. If all of the modules
839 * agree that it should be set it will. If any module
840 * thinks it should not be set it won't.
841 */
842 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
843 rc = hp->hook.vm_enough_memory(mm, pages);
844 if (rc <= 0) {
845 cap_sys_admin = 0;
846 break;
847 }
848 }
849 return __vm_enough_memory(mm, pages, cap_sys_admin);
850}
851
852int security_bprm_creds_for_exec(struct linux_binprm *bprm)
853{
854 return call_int_hook(bprm_creds_for_exec, 0, bprm);
855}
856
857int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
858{
859 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
860}
861
862int security_bprm_check(struct linux_binprm *bprm)
863{
864 int ret;
865
866 ret = call_int_hook(bprm_check_security, 0, bprm);
867 if (ret)
868 return ret;
869 return ima_bprm_check(bprm);
870}
871
872void security_bprm_committing_creds(struct linux_binprm *bprm)
873{
874 call_void_hook(bprm_committing_creds, bprm);
875}
876
877void security_bprm_committed_creds(struct linux_binprm *bprm)
878{
879 call_void_hook(bprm_committed_creds, bprm);
880}
881
882int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
883{
884 return call_int_hook(fs_context_dup, 0, fc, src_fc);
885}
886
887int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
888{
889 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
890}
891
892int security_sb_alloc(struct super_block *sb)
893{
894 int rc = lsm_superblock_alloc(sb);
895
896 if (unlikely(rc))
897 return rc;
898 rc = call_int_hook(sb_alloc_security, 0, sb);
899 if (unlikely(rc))
900 security_sb_free(sb);
901 return rc;
902}
903
904void security_sb_delete(struct super_block *sb)
905{
906 call_void_hook(sb_delete, sb);
907}
908
909void security_sb_free(struct super_block *sb)
910{
911 call_void_hook(sb_free_security, sb);
912 kfree(sb->s_security);
913 sb->s_security = NULL;
914}
915
916void security_free_mnt_opts(void **mnt_opts)
917{
918 if (!*mnt_opts)
919 return;
920 call_void_hook(sb_free_mnt_opts, *mnt_opts);
921 *mnt_opts = NULL;
922}
923EXPORT_SYMBOL(security_free_mnt_opts);
924
925int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
926{
927 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
928}
929EXPORT_SYMBOL(security_sb_eat_lsm_opts);
930
931int security_sb_mnt_opts_compat(struct super_block *sb,
932 void *mnt_opts)
933{
934 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
935}
936EXPORT_SYMBOL(security_sb_mnt_opts_compat);
937
938int security_sb_remount(struct super_block *sb,
939 void *mnt_opts)
940{
941 return call_int_hook(sb_remount, 0, sb, mnt_opts);
942}
943EXPORT_SYMBOL(security_sb_remount);
944
945int security_sb_kern_mount(struct super_block *sb)
946{
947 return call_int_hook(sb_kern_mount, 0, sb);
948}
949
950int security_sb_show_options(struct seq_file *m, struct super_block *sb)
951{
952 return call_int_hook(sb_show_options, 0, m, sb);
953}
954
955int security_sb_statfs(struct dentry *dentry)
956{
957 return call_int_hook(sb_statfs, 0, dentry);
958}
959
960int security_sb_mount(const char *dev_name, const struct path *path,
961 const char *type, unsigned long flags, void *data)
962{
963 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
964}
965
966int security_sb_umount(struct vfsmount *mnt, int flags)
967{
968 return call_int_hook(sb_umount, 0, mnt, flags);
969}
970
971int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
972{
973 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
974}
975
976int security_sb_set_mnt_opts(struct super_block *sb,
977 void *mnt_opts,
978 unsigned long kern_flags,
979 unsigned long *set_kern_flags)
980{
981 return call_int_hook(sb_set_mnt_opts,
982 mnt_opts ? -EOPNOTSUPP : 0, sb,
983 mnt_opts, kern_flags, set_kern_flags);
984}
985EXPORT_SYMBOL(security_sb_set_mnt_opts);
986
987int security_sb_clone_mnt_opts(const struct super_block *oldsb,
988 struct super_block *newsb,
989 unsigned long kern_flags,
990 unsigned long *set_kern_flags)
991{
992 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
993 kern_flags, set_kern_flags);
994}
995EXPORT_SYMBOL(security_sb_clone_mnt_opts);
996
997int security_add_mnt_opt(const char *option, const char *val, int len,
998 void **mnt_opts)
999{
1000 return call_int_hook(sb_add_mnt_opt, -EINVAL,
1001 option, val, len, mnt_opts);
1002}
1003EXPORT_SYMBOL(security_add_mnt_opt);
1004
1005int security_move_mount(const struct path *from_path, const struct path *to_path)
1006{
1007 return call_int_hook(move_mount, 0, from_path, to_path);
1008}
1009
1010int security_path_notify(const struct path *path, u64 mask,
1011 unsigned int obj_type)
1012{
1013 return call_int_hook(path_notify, 0, path, mask, obj_type);
1014}
1015
1016int security_inode_alloc(struct inode *inode)
1017{
1018 int rc = lsm_inode_alloc(inode);
1019
1020 if (unlikely(rc))
1021 return rc;
1022 rc = call_int_hook(inode_alloc_security, 0, inode);
1023 if (unlikely(rc))
1024 security_inode_free(inode);
1025 return rc;
1026}
1027
1028static void inode_free_by_rcu(struct rcu_head *head)
1029{
1030 /*
1031 * The rcu head is at the start of the inode blob
1032 */
1033 kmem_cache_free(lsm_inode_cache, head);
1034}
1035
1036void security_inode_free(struct inode *inode)
1037{
1038 integrity_inode_free(inode);
1039 call_void_hook(inode_free_security, inode);
1040 /*
1041 * The inode may still be referenced in a path walk and
1042 * a call to security_inode_permission() can be made
1043 * after inode_free_security() is called. Ideally, the VFS
1044 * wouldn't do this, but fixing that is a much harder
1045 * job. For now, simply free the i_security via RCU, and
1046 * leave the current inode->i_security pointer intact.
1047 * The inode will be freed after the RCU grace period too.
1048 */
1049 if (inode->i_security)
1050 call_rcu((struct rcu_head *)inode->i_security,
1051 inode_free_by_rcu);
1052}
1053
1054int security_dentry_init_security(struct dentry *dentry, int mode,
1055 const struct qstr *name, void **ctx,
1056 u32 *ctxlen)
1057{
1058 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1059 name, ctx, ctxlen);
1060}
1061EXPORT_SYMBOL(security_dentry_init_security);
1062
1063int security_dentry_create_files_as(struct dentry *dentry, int mode,
1064 struct qstr *name,
1065 const struct cred *old, struct cred *new)
1066{
1067 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1068 name, old, new);
1069}
1070EXPORT_SYMBOL(security_dentry_create_files_as);
1071
1072int security_inode_init_security(struct inode *inode, struct inode *dir,
1073 const struct qstr *qstr,
1074 const initxattrs initxattrs, void *fs_data)
1075{
1076 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1077 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1078 int ret;
1079
1080 if (unlikely(IS_PRIVATE(inode)))
1081 return 0;
1082
1083 if (!initxattrs)
1084 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1085 dir, qstr, NULL, NULL, NULL);
1086 memset(new_xattrs, 0, sizeof(new_xattrs));
1087 lsm_xattr = new_xattrs;
1088 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1089 &lsm_xattr->name,
1090 &lsm_xattr->value,
1091 &lsm_xattr->value_len);
1092 if (ret)
1093 goto out;
1094
1095 evm_xattr = lsm_xattr + 1;
1096 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1097 if (ret)
1098 goto out;
1099 ret = initxattrs(inode, new_xattrs, fs_data);
1100out:
1101 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1102 kfree(xattr->value);
1103 return (ret == -EOPNOTSUPP) ? 0 : ret;
1104}
1105EXPORT_SYMBOL(security_inode_init_security);
1106
1107int security_inode_init_security_anon(struct inode *inode,
1108 const struct qstr *name,
1109 const struct inode *context_inode)
1110{
1111 return call_int_hook(inode_init_security_anon, 0, inode, name,
1112 context_inode);
1113}
1114
1115int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1116 const struct qstr *qstr, const char **name,
1117 void **value, size_t *len)
1118{
1119 if (unlikely(IS_PRIVATE(inode)))
1120 return -EOPNOTSUPP;
1121 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1122 qstr, name, value, len);
1123}
1124EXPORT_SYMBOL(security_old_inode_init_security);
1125
1126#ifdef CONFIG_SECURITY_PATH
1127int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1128 unsigned int dev)
1129{
1130 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1131 return 0;
1132 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1133}
1134EXPORT_SYMBOL(security_path_mknod);
1135
1136int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1137{
1138 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1139 return 0;
1140 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1141}
1142EXPORT_SYMBOL(security_path_mkdir);
1143
1144int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1145{
1146 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1147 return 0;
1148 return call_int_hook(path_rmdir, 0, dir, dentry);
1149}
1150
1151int security_path_unlink(const struct path *dir, struct dentry *dentry)
1152{
1153 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1154 return 0;
1155 return call_int_hook(path_unlink, 0, dir, dentry);
1156}
1157EXPORT_SYMBOL(security_path_unlink);
1158
1159int security_path_symlink(const struct path *dir, struct dentry *dentry,
1160 const char *old_name)
1161{
1162 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1163 return 0;
1164 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1165}
1166
1167int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1168 struct dentry *new_dentry)
1169{
1170 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1171 return 0;
1172 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1173}
1174
1175int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1176 const struct path *new_dir, struct dentry *new_dentry,
1177 unsigned int flags)
1178{
1179 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1180 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1181 return 0;
1182
1183 if (flags & RENAME_EXCHANGE) {
1184 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1185 old_dir, old_dentry);
1186 if (err)
1187 return err;
1188 }
1189
1190 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1191 new_dentry);
1192}
1193EXPORT_SYMBOL(security_path_rename);
1194
1195int security_path_truncate(const struct path *path)
1196{
1197 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1198 return 0;
1199 return call_int_hook(path_truncate, 0, path);
1200}
1201
1202int security_path_chmod(const struct path *path, umode_t mode)
1203{
1204 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1205 return 0;
1206 return call_int_hook(path_chmod, 0, path, mode);
1207}
1208
1209int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1210{
1211 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1212 return 0;
1213 return call_int_hook(path_chown, 0, path, uid, gid);
1214}
1215
1216int security_path_chroot(const struct path *path)
1217{
1218 return call_int_hook(path_chroot, 0, path);
1219}
1220#endif
1221
1222int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1223{
1224 if (unlikely(IS_PRIVATE(dir)))
1225 return 0;
1226 return call_int_hook(inode_create, 0, dir, dentry, mode);
1227}
1228EXPORT_SYMBOL_GPL(security_inode_create);
1229
1230int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1231 struct dentry *new_dentry)
1232{
1233 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1234 return 0;
1235 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1236}
1237
1238int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1239{
1240 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1241 return 0;
1242 return call_int_hook(inode_unlink, 0, dir, dentry);
1243}
1244
1245int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1246 const char *old_name)
1247{
1248 if (unlikely(IS_PRIVATE(dir)))
1249 return 0;
1250 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1251}
1252
1253int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1254{
1255 if (unlikely(IS_PRIVATE(dir)))
1256 return 0;
1257 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1258}
1259EXPORT_SYMBOL_GPL(security_inode_mkdir);
1260
1261int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1262{
1263 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1264 return 0;
1265 return call_int_hook(inode_rmdir, 0, dir, dentry);
1266}
1267
1268int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1269{
1270 if (unlikely(IS_PRIVATE(dir)))
1271 return 0;
1272 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1273}
1274
1275int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1276 struct inode *new_dir, struct dentry *new_dentry,
1277 unsigned int flags)
1278{
1279 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1280 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1281 return 0;
1282
1283 if (flags & RENAME_EXCHANGE) {
1284 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1285 old_dir, old_dentry);
1286 if (err)
1287 return err;
1288 }
1289
1290 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1291 new_dir, new_dentry);
1292}
1293
1294int security_inode_readlink(struct dentry *dentry)
1295{
1296 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1297 return 0;
1298 return call_int_hook(inode_readlink, 0, dentry);
1299}
1300
1301int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1302 bool rcu)
1303{
1304 if (unlikely(IS_PRIVATE(inode)))
1305 return 0;
1306 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1307}
1308
1309int security_inode_permission(struct inode *inode, int mask)
1310{
1311 if (unlikely(IS_PRIVATE(inode)))
1312 return 0;
1313 return call_int_hook(inode_permission, 0, inode, mask);
1314}
1315
1316int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1317{
1318 int ret;
1319
1320 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1321 return 0;
1322 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1323 if (ret)
1324 return ret;
1325 return evm_inode_setattr(dentry, attr);
1326}
1327EXPORT_SYMBOL_GPL(security_inode_setattr);
1328
1329int security_inode_getattr(const struct path *path)
1330{
1331 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1332 return 0;
1333 return call_int_hook(inode_getattr, 0, path);
1334}
1335
1336int security_inode_setxattr(struct user_namespace *mnt_userns,
1337 struct dentry *dentry, const char *name,
1338 const void *value, size_t size, int flags)
1339{
1340 int ret;
1341
1342 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1343 return 0;
1344 /*
1345 * SELinux and Smack integrate the cap call,
1346 * so assume that all LSMs supplying this call do so.
1347 */
1348 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1349 size, flags);
1350
1351 if (ret == 1)
1352 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1353 if (ret)
1354 return ret;
1355 ret = ima_inode_setxattr(dentry, name, value, size);
1356 if (ret)
1357 return ret;
1358 return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1359}
1360
1361void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1362 const void *value, size_t size, int flags)
1363{
1364 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1365 return;
1366 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1367 evm_inode_post_setxattr(dentry, name, value, size);
1368}
1369
1370int security_inode_getxattr(struct dentry *dentry, const char *name)
1371{
1372 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1373 return 0;
1374 return call_int_hook(inode_getxattr, 0, dentry, name);
1375}
1376
1377int security_inode_listxattr(struct dentry *dentry)
1378{
1379 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1380 return 0;
1381 return call_int_hook(inode_listxattr, 0, dentry);
1382}
1383
1384int security_inode_removexattr(struct user_namespace *mnt_userns,
1385 struct dentry *dentry, const char *name)
1386{
1387 int ret;
1388
1389 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1390 return 0;
1391 /*
1392 * SELinux and Smack integrate the cap call,
1393 * so assume that all LSMs supplying this call do so.
1394 */
1395 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1396 if (ret == 1)
1397 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1398 if (ret)
1399 return ret;
1400 ret = ima_inode_removexattr(dentry, name);
1401 if (ret)
1402 return ret;
1403 return evm_inode_removexattr(mnt_userns, dentry, name);
1404}
1405
1406int security_inode_need_killpriv(struct dentry *dentry)
1407{
1408 return call_int_hook(inode_need_killpriv, 0, dentry);
1409}
1410
1411int security_inode_killpriv(struct user_namespace *mnt_userns,
1412 struct dentry *dentry)
1413{
1414 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1415}
1416
1417int security_inode_getsecurity(struct user_namespace *mnt_userns,
1418 struct inode *inode, const char *name,
1419 void **buffer, bool alloc)
1420{
1421 struct security_hook_list *hp;
1422 int rc;
1423
1424 if (unlikely(IS_PRIVATE(inode)))
1425 return LSM_RET_DEFAULT(inode_getsecurity);
1426 /*
1427 * Only one module will provide an attribute with a given name.
1428 */
1429 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1430 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1431 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1432 return rc;
1433 }
1434 return LSM_RET_DEFAULT(inode_getsecurity);
1435}
1436
1437int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1438{
1439 struct security_hook_list *hp;
1440 int rc;
1441
1442 if (unlikely(IS_PRIVATE(inode)))
1443 return LSM_RET_DEFAULT(inode_setsecurity);
1444 /*
1445 * Only one module will provide an attribute with a given name.
1446 */
1447 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1448 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1449 flags);
1450 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1451 return rc;
1452 }
1453 return LSM_RET_DEFAULT(inode_setsecurity);
1454}
1455
1456int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1457{
1458 if (unlikely(IS_PRIVATE(inode)))
1459 return 0;
1460 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1461}
1462EXPORT_SYMBOL(security_inode_listsecurity);
1463
1464void security_inode_getsecid(struct inode *inode, u32 *secid)
1465{
1466 call_void_hook(inode_getsecid, inode, secid);
1467}
1468
1469int security_inode_copy_up(struct dentry *src, struct cred **new)
1470{
1471 return call_int_hook(inode_copy_up, 0, src, new);
1472}
1473EXPORT_SYMBOL(security_inode_copy_up);
1474
1475int security_inode_copy_up_xattr(const char *name)
1476{
1477 struct security_hook_list *hp;
1478 int rc;
1479
1480 /*
1481 * The implementation can return 0 (accept the xattr), 1 (discard the
1482 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1483 * any other error code incase of an error.
1484 */
1485 hlist_for_each_entry(hp,
1486 &security_hook_heads.inode_copy_up_xattr, list) {
1487 rc = hp->hook.inode_copy_up_xattr(name);
1488 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1489 return rc;
1490 }
1491
1492 return LSM_RET_DEFAULT(inode_copy_up_xattr);
1493}
1494EXPORT_SYMBOL(security_inode_copy_up_xattr);
1495
1496int security_kernfs_init_security(struct kernfs_node *kn_dir,
1497 struct kernfs_node *kn)
1498{
1499 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1500}
1501
1502int security_file_permission(struct file *file, int mask)
1503{
1504 int ret;
1505
1506 ret = call_int_hook(file_permission, 0, file, mask);
1507 if (ret)
1508 return ret;
1509
1510 return fsnotify_perm(file, mask);
1511}
1512
1513int security_file_alloc(struct file *file)
1514{
1515 int rc = lsm_file_alloc(file);
1516
1517 if (rc)
1518 return rc;
1519 rc = call_int_hook(file_alloc_security, 0, file);
1520 if (unlikely(rc))
1521 security_file_free(file);
1522 return rc;
1523}
1524
1525void security_file_free(struct file *file)
1526{
1527 void *blob;
1528
1529 call_void_hook(file_free_security, file);
1530
1531 blob = file->f_security;
1532 if (blob) {
1533 file->f_security = NULL;
1534 kmem_cache_free(lsm_file_cache, blob);
1535 }
1536}
1537
1538int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1539{
1540 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1541}
1542EXPORT_SYMBOL_GPL(security_file_ioctl);
1543
1544static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1545{
1546 /*
1547 * Does we have PROT_READ and does the application expect
1548 * it to imply PROT_EXEC? If not, nothing to talk about...
1549 */
1550 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1551 return prot;
1552 if (!(current->personality & READ_IMPLIES_EXEC))
1553 return prot;
1554 /*
1555 * if that's an anonymous mapping, let it.
1556 */
1557 if (!file)
1558 return prot | PROT_EXEC;
1559 /*
1560 * ditto if it's not on noexec mount, except that on !MMU we need
1561 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1562 */
1563 if (!path_noexec(&file->f_path)) {
1564#ifndef CONFIG_MMU
1565 if (file->f_op->mmap_capabilities) {
1566 unsigned caps = file->f_op->mmap_capabilities(file);
1567 if (!(caps & NOMMU_MAP_EXEC))
1568 return prot;
1569 }
1570#endif
1571 return prot | PROT_EXEC;
1572 }
1573 /* anything on noexec mount won't get PROT_EXEC */
1574 return prot;
1575}
1576
1577int security_mmap_file(struct file *file, unsigned long prot,
1578 unsigned long flags)
1579{
1580 int ret;
1581 ret = call_int_hook(mmap_file, 0, file, prot,
1582 mmap_prot(file, prot), flags);
1583 if (ret)
1584 return ret;
1585 return ima_file_mmap(file, prot);
1586}
1587
1588int security_mmap_addr(unsigned long addr)
1589{
1590 return call_int_hook(mmap_addr, 0, addr);
1591}
1592
1593int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1594 unsigned long prot)
1595{
1596 int ret;
1597
1598 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1599 if (ret)
1600 return ret;
1601 return ima_file_mprotect(vma, prot);
1602}
1603
1604int security_file_lock(struct file *file, unsigned int cmd)
1605{
1606 return call_int_hook(file_lock, 0, file, cmd);
1607}
1608
1609int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1610{
1611 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1612}
1613
1614void security_file_set_fowner(struct file *file)
1615{
1616 call_void_hook(file_set_fowner, file);
1617}
1618
1619int security_file_send_sigiotask(struct task_struct *tsk,
1620 struct fown_struct *fown, int sig)
1621{
1622 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1623}
1624
1625int security_file_receive(struct file *file)
1626{
1627 return call_int_hook(file_receive, 0, file);
1628}
1629
1630int security_file_open(struct file *file)
1631{
1632 int ret;
1633
1634 ret = call_int_hook(file_open, 0, file);
1635 if (ret)
1636 return ret;
1637
1638 return fsnotify_perm(file, MAY_OPEN);
1639}
1640
1641int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1642{
1643 int rc = lsm_task_alloc(task);
1644
1645 if (rc)
1646 return rc;
1647 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1648 if (unlikely(rc))
1649 security_task_free(task);
1650 return rc;
1651}
1652
1653void security_task_free(struct task_struct *task)
1654{
1655 call_void_hook(task_free, task);
1656
1657 kfree(task->security);
1658 task->security = NULL;
1659}
1660
1661int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1662{
1663 int rc = lsm_cred_alloc(cred, gfp);
1664
1665 if (rc)
1666 return rc;
1667
1668 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1669 if (unlikely(rc))
1670 security_cred_free(cred);
1671 return rc;
1672}
1673
1674void security_cred_free(struct cred *cred)
1675{
1676 /*
1677 * There is a failure case in prepare_creds() that
1678 * may result in a call here with ->security being NULL.
1679 */
1680 if (unlikely(cred->security == NULL))
1681 return;
1682
1683 call_void_hook(cred_free, cred);
1684
1685 kfree(cred->security);
1686 cred->security = NULL;
1687}
1688
1689int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1690{
1691 int rc = lsm_cred_alloc(new, gfp);
1692
1693 if (rc)
1694 return rc;
1695
1696 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1697 if (unlikely(rc))
1698 security_cred_free(new);
1699 return rc;
1700}
1701
1702void security_transfer_creds(struct cred *new, const struct cred *old)
1703{
1704 call_void_hook(cred_transfer, new, old);
1705}
1706
1707void security_cred_getsecid(const struct cred *c, u32 *secid)
1708{
1709 *secid = 0;
1710 call_void_hook(cred_getsecid, c, secid);
1711}
1712EXPORT_SYMBOL(security_cred_getsecid);
1713
1714int security_kernel_act_as(struct cred *new, u32 secid)
1715{
1716 return call_int_hook(kernel_act_as, 0, new, secid);
1717}
1718
1719int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1720{
1721 return call_int_hook(kernel_create_files_as, 0, new, inode);
1722}
1723
1724int security_kernel_module_request(char *kmod_name)
1725{
1726 int ret;
1727
1728 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1729 if (ret)
1730 return ret;
1731 return integrity_kernel_module_request(kmod_name);
1732}
1733
1734int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1735 bool contents)
1736{
1737 int ret;
1738
1739 ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1740 if (ret)
1741 return ret;
1742 return ima_read_file(file, id, contents);
1743}
1744EXPORT_SYMBOL_GPL(security_kernel_read_file);
1745
1746int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1747 enum kernel_read_file_id id)
1748{
1749 int ret;
1750
1751 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1752 if (ret)
1753 return ret;
1754 return ima_post_read_file(file, buf, size, id);
1755}
1756EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1757
1758int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1759{
1760 int ret;
1761
1762 ret = call_int_hook(kernel_load_data, 0, id, contents);
1763 if (ret)
1764 return ret;
1765 return ima_load_data(id, contents);
1766}
1767EXPORT_SYMBOL_GPL(security_kernel_load_data);
1768
1769int security_kernel_post_load_data(char *buf, loff_t size,
1770 enum kernel_load_data_id id,
1771 char *description)
1772{
1773 int ret;
1774
1775 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1776 description);
1777 if (ret)
1778 return ret;
1779 return ima_post_load_data(buf, size, id, description);
1780}
1781EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1782
1783int security_task_fix_setuid(struct cred *new, const struct cred *old,
1784 int flags)
1785{
1786 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1787}
1788
1789int security_task_fix_setgid(struct cred *new, const struct cred *old,
1790 int flags)
1791{
1792 return call_int_hook(task_fix_setgid, 0, new, old, flags);
1793}
1794
1795int security_task_setpgid(struct task_struct *p, pid_t pgid)
1796{
1797 return call_int_hook(task_setpgid, 0, p, pgid);
1798}
1799
1800int security_task_getpgid(struct task_struct *p)
1801{
1802 return call_int_hook(task_getpgid, 0, p);
1803}
1804
1805int security_task_getsid(struct task_struct *p)
1806{
1807 return call_int_hook(task_getsid, 0, p);
1808}
1809
1810void security_task_getsecid_subj(struct task_struct *p, u32 *secid)
1811{
1812 *secid = 0;
1813 call_void_hook(task_getsecid_subj, p, secid);
1814}
1815EXPORT_SYMBOL(security_task_getsecid_subj);
1816
1817void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1818{
1819 *secid = 0;
1820 call_void_hook(task_getsecid_obj, p, secid);
1821}
1822EXPORT_SYMBOL(security_task_getsecid_obj);
1823
1824int security_task_setnice(struct task_struct *p, int nice)
1825{
1826 return call_int_hook(task_setnice, 0, p, nice);
1827}
1828
1829int security_task_setioprio(struct task_struct *p, int ioprio)
1830{
1831 return call_int_hook(task_setioprio, 0, p, ioprio);
1832}
1833
1834int security_task_getioprio(struct task_struct *p)
1835{
1836 return call_int_hook(task_getioprio, 0, p);
1837}
1838
1839int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1840 unsigned int flags)
1841{
1842 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1843}
1844
1845int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1846 struct rlimit *new_rlim)
1847{
1848 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1849}
1850
1851int security_task_setscheduler(struct task_struct *p)
1852{
1853 return call_int_hook(task_setscheduler, 0, p);
1854}
1855
1856int security_task_getscheduler(struct task_struct *p)
1857{
1858 return call_int_hook(task_getscheduler, 0, p);
1859}
1860
1861int security_task_movememory(struct task_struct *p)
1862{
1863 return call_int_hook(task_movememory, 0, p);
1864}
1865
1866int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1867 int sig, const struct cred *cred)
1868{
1869 return call_int_hook(task_kill, 0, p, info, sig, cred);
1870}
1871
1872int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1873 unsigned long arg4, unsigned long arg5)
1874{
1875 int thisrc;
1876 int rc = LSM_RET_DEFAULT(task_prctl);
1877 struct security_hook_list *hp;
1878
1879 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1880 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1881 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1882 rc = thisrc;
1883 if (thisrc != 0)
1884 break;
1885 }
1886 }
1887 return rc;
1888}
1889
1890void security_task_to_inode(struct task_struct *p, struct inode *inode)
1891{
1892 call_void_hook(task_to_inode, p, inode);
1893}
1894
1895int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1896{
1897 return call_int_hook(ipc_permission, 0, ipcp, flag);
1898}
1899
1900void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1901{
1902 *secid = 0;
1903 call_void_hook(ipc_getsecid, ipcp, secid);
1904}
1905
1906int security_msg_msg_alloc(struct msg_msg *msg)
1907{
1908 int rc = lsm_msg_msg_alloc(msg);
1909
1910 if (unlikely(rc))
1911 return rc;
1912 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1913 if (unlikely(rc))
1914 security_msg_msg_free(msg);
1915 return rc;
1916}
1917
1918void security_msg_msg_free(struct msg_msg *msg)
1919{
1920 call_void_hook(msg_msg_free_security, msg);
1921 kfree(msg->security);
1922 msg->security = NULL;
1923}
1924
1925int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1926{
1927 int rc = lsm_ipc_alloc(msq);
1928
1929 if (unlikely(rc))
1930 return rc;
1931 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1932 if (unlikely(rc))
1933 security_msg_queue_free(msq);
1934 return rc;
1935}
1936
1937void security_msg_queue_free(struct kern_ipc_perm *msq)
1938{
1939 call_void_hook(msg_queue_free_security, msq);
1940 kfree(msq->security);
1941 msq->security = NULL;
1942}
1943
1944int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1945{
1946 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1947}
1948
1949int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1950{
1951 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1952}
1953
1954int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1955 struct msg_msg *msg, int msqflg)
1956{
1957 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1958}
1959
1960int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1961 struct task_struct *target, long type, int mode)
1962{
1963 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1964}
1965
1966int security_shm_alloc(struct kern_ipc_perm *shp)
1967{
1968 int rc = lsm_ipc_alloc(shp);
1969
1970 if (unlikely(rc))
1971 return rc;
1972 rc = call_int_hook(shm_alloc_security, 0, shp);
1973 if (unlikely(rc))
1974 security_shm_free(shp);
1975 return rc;
1976}
1977
1978void security_shm_free(struct kern_ipc_perm *shp)
1979{
1980 call_void_hook(shm_free_security, shp);
1981 kfree(shp->security);
1982 shp->security = NULL;
1983}
1984
1985int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1986{
1987 return call_int_hook(shm_associate, 0, shp, shmflg);
1988}
1989
1990int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1991{
1992 return call_int_hook(shm_shmctl, 0, shp, cmd);
1993}
1994
1995int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1996{
1997 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1998}
1999
2000int security_sem_alloc(struct kern_ipc_perm *sma)
2001{
2002 int rc = lsm_ipc_alloc(sma);
2003
2004 if (unlikely(rc))
2005 return rc;
2006 rc = call_int_hook(sem_alloc_security, 0, sma);
2007 if (unlikely(rc))
2008 security_sem_free(sma);
2009 return rc;
2010}
2011
2012void security_sem_free(struct kern_ipc_perm *sma)
2013{
2014 call_void_hook(sem_free_security, sma);
2015 kfree(sma->security);
2016 sma->security = NULL;
2017}
2018
2019int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2020{
2021 return call_int_hook(sem_associate, 0, sma, semflg);
2022}
2023
2024int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2025{
2026 return call_int_hook(sem_semctl, 0, sma, cmd);
2027}
2028
2029int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2030 unsigned nsops, int alter)
2031{
2032 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2033}
2034
2035void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2036{
2037 if (unlikely(inode && IS_PRIVATE(inode)))
2038 return;
2039 call_void_hook(d_instantiate, dentry, inode);
2040}
2041EXPORT_SYMBOL(security_d_instantiate);
2042
2043int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2044 char **value)
2045{
2046 struct security_hook_list *hp;
2047
2048 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2049 if (lsm != NULL && strcmp(lsm, hp->lsm))
2050 continue;
2051 return hp->hook.getprocattr(p, name, value);
2052 }
2053 return LSM_RET_DEFAULT(getprocattr);
2054}
2055
2056int security_setprocattr(const char *lsm, const char *name, void *value,
2057 size_t size)
2058{
2059 struct security_hook_list *hp;
2060
2061 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2062 if (lsm != NULL && strcmp(lsm, hp->lsm))
2063 continue;
2064 return hp->hook.setprocattr(name, value, size);
2065 }
2066 return LSM_RET_DEFAULT(setprocattr);
2067}
2068
2069int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2070{
2071 return call_int_hook(netlink_send, 0, sk, skb);
2072}
2073
2074int security_ismaclabel(const char *name)
2075{
2076 return call_int_hook(ismaclabel, 0, name);
2077}
2078EXPORT_SYMBOL(security_ismaclabel);
2079
2080int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2081{
2082 struct security_hook_list *hp;
2083 int rc;
2084
2085 /*
2086 * Currently, only one LSM can implement secid_to_secctx (i.e this
2087 * LSM hook is not "stackable").
2088 */
2089 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2090 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2091 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2092 return rc;
2093 }
2094
2095 return LSM_RET_DEFAULT(secid_to_secctx);
2096}
2097EXPORT_SYMBOL(security_secid_to_secctx);
2098
2099int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2100{
2101 *secid = 0;
2102 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2103}
2104EXPORT_SYMBOL(security_secctx_to_secid);
2105
2106void security_release_secctx(char *secdata, u32 seclen)
2107{
2108 call_void_hook(release_secctx, secdata, seclen);
2109}
2110EXPORT_SYMBOL(security_release_secctx);
2111
2112void security_inode_invalidate_secctx(struct inode *inode)
2113{
2114 call_void_hook(inode_invalidate_secctx, inode);
2115}
2116EXPORT_SYMBOL(security_inode_invalidate_secctx);
2117
2118int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2119{
2120 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2121}
2122EXPORT_SYMBOL(security_inode_notifysecctx);
2123
2124int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2125{
2126 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2127}
2128EXPORT_SYMBOL(security_inode_setsecctx);
2129
2130int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2131{
2132 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2133}
2134EXPORT_SYMBOL(security_inode_getsecctx);
2135
2136#ifdef CONFIG_WATCH_QUEUE
2137int security_post_notification(const struct cred *w_cred,
2138 const struct cred *cred,
2139 struct watch_notification *n)
2140{
2141 return call_int_hook(post_notification, 0, w_cred, cred, n);
2142}
2143#endif /* CONFIG_WATCH_QUEUE */
2144
2145#ifdef CONFIG_KEY_NOTIFICATIONS
2146int security_watch_key(struct key *key)
2147{
2148 return call_int_hook(watch_key, 0, key);
2149}
2150#endif
2151
2152#ifdef CONFIG_SECURITY_NETWORK
2153
2154int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2155{
2156 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2157}
2158EXPORT_SYMBOL(security_unix_stream_connect);
2159
2160int security_unix_may_send(struct socket *sock, struct socket *other)
2161{
2162 return call_int_hook(unix_may_send, 0, sock, other);
2163}
2164EXPORT_SYMBOL(security_unix_may_send);
2165
2166int security_socket_create(int family, int type, int protocol, int kern)
2167{
2168 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2169}
2170
2171int security_socket_post_create(struct socket *sock, int family,
2172 int type, int protocol, int kern)
2173{
2174 return call_int_hook(socket_post_create, 0, sock, family, type,
2175 protocol, kern);
2176}
2177
2178int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2179{
2180 return call_int_hook(socket_socketpair, 0, socka, sockb);
2181}
2182EXPORT_SYMBOL(security_socket_socketpair);
2183
2184int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2185{
2186 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2187}
2188
2189int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2190{
2191 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2192}
2193
2194int security_socket_listen(struct socket *sock, int backlog)
2195{
2196 return call_int_hook(socket_listen, 0, sock, backlog);
2197}
2198
2199int security_socket_accept(struct socket *sock, struct socket *newsock)
2200{
2201 return call_int_hook(socket_accept, 0, sock, newsock);
2202}
2203
2204int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2205{
2206 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2207}
2208
2209int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2210 int size, int flags)
2211{
2212 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2213}
2214
2215int security_socket_getsockname(struct socket *sock)
2216{
2217 return call_int_hook(socket_getsockname, 0, sock);
2218}
2219
2220int security_socket_getpeername(struct socket *sock)
2221{
2222 return call_int_hook(socket_getpeername, 0, sock);
2223}
2224
2225int security_socket_getsockopt(struct socket *sock, int level, int optname)
2226{
2227 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2228}
2229
2230int security_socket_setsockopt(struct socket *sock, int level, int optname)
2231{
2232 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2233}
2234
2235int security_socket_shutdown(struct socket *sock, int how)
2236{
2237 return call_int_hook(socket_shutdown, 0, sock, how);
2238}
2239
2240int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2241{
2242 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2243}
2244EXPORT_SYMBOL(security_sock_rcv_skb);
2245
2246int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2247 int __user *optlen, unsigned len)
2248{
2249 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2250 optval, optlen, len);
2251}
2252
2253int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2254{
2255 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2256 skb, secid);
2257}
2258EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2259
2260int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2261{
2262 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2263}
2264
2265void security_sk_free(struct sock *sk)
2266{
2267 call_void_hook(sk_free_security, sk);
2268}
2269
2270void security_sk_clone(const struct sock *sk, struct sock *newsk)
2271{
2272 call_void_hook(sk_clone_security, sk, newsk);
2273}
2274EXPORT_SYMBOL(security_sk_clone);
2275
2276void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2277{
2278 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2279}
2280EXPORT_SYMBOL(security_sk_classify_flow);
2281
2282void security_req_classify_flow(const struct request_sock *req,
2283 struct flowi_common *flic)
2284{
2285 call_void_hook(req_classify_flow, req, flic);
2286}
2287EXPORT_SYMBOL(security_req_classify_flow);
2288
2289void security_sock_graft(struct sock *sk, struct socket *parent)
2290{
2291 call_void_hook(sock_graft, sk, parent);
2292}
2293EXPORT_SYMBOL(security_sock_graft);
2294
2295int security_inet_conn_request(const struct sock *sk,
2296 struct sk_buff *skb, struct request_sock *req)
2297{
2298 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2299}
2300EXPORT_SYMBOL(security_inet_conn_request);
2301
2302void security_inet_csk_clone(struct sock *newsk,
2303 const struct request_sock *req)
2304{
2305 call_void_hook(inet_csk_clone, newsk, req);
2306}
2307
2308void security_inet_conn_established(struct sock *sk,
2309 struct sk_buff *skb)
2310{
2311 call_void_hook(inet_conn_established, sk, skb);
2312}
2313EXPORT_SYMBOL(security_inet_conn_established);
2314
2315int security_secmark_relabel_packet(u32 secid)
2316{
2317 return call_int_hook(secmark_relabel_packet, 0, secid);
2318}
2319EXPORT_SYMBOL(security_secmark_relabel_packet);
2320
2321void security_secmark_refcount_inc(void)
2322{
2323 call_void_hook(secmark_refcount_inc);
2324}
2325EXPORT_SYMBOL(security_secmark_refcount_inc);
2326
2327void security_secmark_refcount_dec(void)
2328{
2329 call_void_hook(secmark_refcount_dec);
2330}
2331EXPORT_SYMBOL(security_secmark_refcount_dec);
2332
2333int security_tun_dev_alloc_security(void **security)
2334{
2335 return call_int_hook(tun_dev_alloc_security, 0, security);
2336}
2337EXPORT_SYMBOL(security_tun_dev_alloc_security);
2338
2339void security_tun_dev_free_security(void *security)
2340{
2341 call_void_hook(tun_dev_free_security, security);
2342}
2343EXPORT_SYMBOL(security_tun_dev_free_security);
2344
2345int security_tun_dev_create(void)
2346{
2347 return call_int_hook(tun_dev_create, 0);
2348}
2349EXPORT_SYMBOL(security_tun_dev_create);
2350
2351int security_tun_dev_attach_queue(void *security)
2352{
2353 return call_int_hook(tun_dev_attach_queue, 0, security);
2354}
2355EXPORT_SYMBOL(security_tun_dev_attach_queue);
2356
2357int security_tun_dev_attach(struct sock *sk, void *security)
2358{
2359 return call_int_hook(tun_dev_attach, 0, sk, security);
2360}
2361EXPORT_SYMBOL(security_tun_dev_attach);
2362
2363int security_tun_dev_open(void *security)
2364{
2365 return call_int_hook(tun_dev_open, 0, security);
2366}
2367EXPORT_SYMBOL(security_tun_dev_open);
2368
2369int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2370{
2371 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2372}
2373EXPORT_SYMBOL(security_sctp_assoc_request);
2374
2375int security_sctp_bind_connect(struct sock *sk, int optname,
2376 struct sockaddr *address, int addrlen)
2377{
2378 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2379 address, addrlen);
2380}
2381EXPORT_SYMBOL(security_sctp_bind_connect);
2382
2383void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2384 struct sock *newsk)
2385{
2386 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2387}
2388EXPORT_SYMBOL(security_sctp_sk_clone);
2389
2390#endif /* CONFIG_SECURITY_NETWORK */
2391
2392#ifdef CONFIG_SECURITY_INFINIBAND
2393
2394int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2395{
2396 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2397}
2398EXPORT_SYMBOL(security_ib_pkey_access);
2399
2400int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2401{
2402 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2403}
2404EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2405
2406int security_ib_alloc_security(void **sec)
2407{
2408 return call_int_hook(ib_alloc_security, 0, sec);
2409}
2410EXPORT_SYMBOL(security_ib_alloc_security);
2411
2412void security_ib_free_security(void *sec)
2413{
2414 call_void_hook(ib_free_security, sec);
2415}
2416EXPORT_SYMBOL(security_ib_free_security);
2417#endif /* CONFIG_SECURITY_INFINIBAND */
2418
2419#ifdef CONFIG_SECURITY_NETWORK_XFRM
2420
2421int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2422 struct xfrm_user_sec_ctx *sec_ctx,
2423 gfp_t gfp)
2424{
2425 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2426}
2427EXPORT_SYMBOL(security_xfrm_policy_alloc);
2428
2429int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2430 struct xfrm_sec_ctx **new_ctxp)
2431{
2432 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2433}
2434
2435void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2436{
2437 call_void_hook(xfrm_policy_free_security, ctx);
2438}
2439EXPORT_SYMBOL(security_xfrm_policy_free);
2440
2441int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2442{
2443 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2444}
2445
2446int security_xfrm_state_alloc(struct xfrm_state *x,
2447 struct xfrm_user_sec_ctx *sec_ctx)
2448{
2449 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2450}
2451EXPORT_SYMBOL(security_xfrm_state_alloc);
2452
2453int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2454 struct xfrm_sec_ctx *polsec, u32 secid)
2455{
2456 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2457}
2458
2459int security_xfrm_state_delete(struct xfrm_state *x)
2460{
2461 return call_int_hook(xfrm_state_delete_security, 0, x);
2462}
2463EXPORT_SYMBOL(security_xfrm_state_delete);
2464
2465void security_xfrm_state_free(struct xfrm_state *x)
2466{
2467 call_void_hook(xfrm_state_free_security, x);
2468}
2469
2470int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2471{
2472 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2473}
2474
2475int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2476 struct xfrm_policy *xp,
2477 const struct flowi_common *flic)
2478{
2479 struct security_hook_list *hp;
2480 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2481
2482 /*
2483 * Since this function is expected to return 0 or 1, the judgment
2484 * becomes difficult if multiple LSMs supply this call. Fortunately,
2485 * we can use the first LSM's judgment because currently only SELinux
2486 * supplies this call.
2487 *
2488 * For speed optimization, we explicitly break the loop rather than
2489 * using the macro
2490 */
2491 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2492 list) {
2493 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2494 break;
2495 }
2496 return rc;
2497}
2498
2499int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2500{
2501 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2502}
2503
2504void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2505{
2506 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2507 0);
2508
2509 BUG_ON(rc);
2510}
2511EXPORT_SYMBOL(security_skb_classify_flow);
2512
2513#endif /* CONFIG_SECURITY_NETWORK_XFRM */
2514
2515#ifdef CONFIG_KEYS
2516
2517int security_key_alloc(struct key *key, const struct cred *cred,
2518 unsigned long flags)
2519{
2520 return call_int_hook(key_alloc, 0, key, cred, flags);
2521}
2522
2523void security_key_free(struct key *key)
2524{
2525 call_void_hook(key_free, key);
2526}
2527
2528int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2529 enum key_need_perm need_perm)
2530{
2531 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2532}
2533
2534int security_key_getsecurity(struct key *key, char **_buffer)
2535{
2536 *_buffer = NULL;
2537 return call_int_hook(key_getsecurity, 0, key, _buffer);
2538}
2539
2540#endif /* CONFIG_KEYS */
2541
2542#ifdef CONFIG_AUDIT
2543
2544int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2545{
2546 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2547}
2548
2549int security_audit_rule_known(struct audit_krule *krule)
2550{
2551 return call_int_hook(audit_rule_known, 0, krule);
2552}
2553
2554void security_audit_rule_free(void *lsmrule)
2555{
2556 call_void_hook(audit_rule_free, lsmrule);
2557}
2558
2559int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2560{
2561 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2562}
2563#endif /* CONFIG_AUDIT */
2564
2565#ifdef CONFIG_BPF_SYSCALL
2566int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2567{
2568 return call_int_hook(bpf, 0, cmd, attr, size);
2569}
2570int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2571{
2572 return call_int_hook(bpf_map, 0, map, fmode);
2573}
2574int security_bpf_prog(struct bpf_prog *prog)
2575{
2576 return call_int_hook(bpf_prog, 0, prog);
2577}
2578int security_bpf_map_alloc(struct bpf_map *map)
2579{
2580 return call_int_hook(bpf_map_alloc_security, 0, map);
2581}
2582int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2583{
2584 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2585}
2586void security_bpf_map_free(struct bpf_map *map)
2587{
2588 call_void_hook(bpf_map_free_security, map);
2589}
2590void security_bpf_prog_free(struct bpf_prog_aux *aux)
2591{
2592 call_void_hook(bpf_prog_free_security, aux);
2593}
2594#endif /* CONFIG_BPF_SYSCALL */
2595
2596int security_locked_down(enum lockdown_reason what)
2597{
2598 return call_int_hook(locked_down, 0, what);
2599}
2600EXPORT_SYMBOL(security_locked_down);
2601
2602#ifdef CONFIG_PERF_EVENTS
2603int security_perf_event_open(struct perf_event_attr *attr, int type)
2604{
2605 return call_int_hook(perf_event_open, 0, attr, type);
2606}
2607
2608int security_perf_event_alloc(struct perf_event *event)
2609{
2610 return call_int_hook(perf_event_alloc, 0, event);
2611}
2612
2613void security_perf_event_free(struct perf_event *event)
2614{
2615 call_void_hook(perf_event_free, event);
2616}
2617
2618int security_perf_event_read(struct perf_event *event)
2619{
2620 return call_int_hook(perf_event_read, 0, event);
2621}
2622
2623int security_perf_event_write(struct perf_event *event)
2624{
2625 return call_int_hook(perf_event_write, 0, event);
2626}
2627#endif /* CONFIG_PERF_EVENTS */