Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
 
   7 *
   8 *	This program is free software; you can redistribute it and/or modify
   9 *	it under the terms of the GNU General Public License as published by
  10 *	the Free Software Foundation; either version 2 of the License, or
  11 *	(at your option) any later version.
  12 */
  13
 
  14#include <linux/capability.h>
 
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/kernel.h>
  18#include <linux/security.h>
  19#include <linux/integrity.h>
  20#include <linux/ima.h>
  21#include <linux/evm.h>
  22#include <linux/fsnotify.h>
  23#include <linux/mman.h>
  24#include <linux/mount.h>
  25#include <linux/personality.h>
  26#include <linux/backing-dev.h>
 
  27#include <net/flow.h>
  28
 
 
  29#define MAX_LSM_EVM_XATTR	2
  30
 
 
 
 
 
 
 
  31/* Boot-time LSM user choice */
  32static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  33	CONFIG_DEFAULT_SECURITY;
  34
  35static struct security_operations *security_ops;
  36static struct security_operations default_security_ops = {
  37	.name	= "default",
  38};
  39
  40static inline int __init verify(struct security_operations *ops)
  41{
  42	/* verify the security_operations structure exists */
  43	if (!ops)
  44		return -EINVAL;
  45	security_fixup_ops(ops);
  46	return 0;
  47}
  48
  49static void __init do_security_initcalls(void)
  50{
 
  51	initcall_t *call;
  52	call = __security_initcall_start;
 
  53	while (call < __security_initcall_end) {
  54		(*call) ();
 
 
  55		call++;
  56	}
  57}
  58
  59/**
  60 * security_init - initializes the security framework
  61 *
  62 * This should be called early in the kernel initialization sequence.
  63 */
  64int __init security_init(void)
  65{
  66	printk(KERN_INFO "Security Framework initialized\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
  67
  68	security_fixup_ops(&default_security_ops);
  69	security_ops = &default_security_ops;
 
  70	do_security_initcalls();
  71
  72	return 0;
  73}
  74
  75void reset_security_ops(void)
  76{
  77	security_ops = &default_security_ops;
  78}
  79
  80/* Save user chosen LSM */
  81static int __init choose_lsm(char *str)
  82{
  83	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  84	return 1;
  85}
  86__setup("security=", choose_lsm);
  87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88/**
  89 * security_module_enable - Load given security module on boot ?
  90 * @ops: a pointer to the struct security_operations that is to be checked.
  91 *
  92 * Each LSM must pass this method before registering its own operations
  93 * to avoid security registration races. This method may also be used
  94 * to check if your LSM is currently loaded during kernel initialization.
  95 *
  96 * Return true if:
  97 *	-The passed LSM is the one chosen by user at boot time,
  98 *	-or the passed LSM is configured as the default and the user did not
  99 *	 choose an alternate LSM at boot time.
 
 
 
 
 100 * Otherwise, return false.
 101 */
 102int __init security_module_enable(struct security_operations *ops)
 103{
 104	return !strcmp(ops->name, chosen_lsm);
 105}
 106
 107/**
 108 * register_security - registers a security framework with the kernel
 109 * @ops: a pointer to the struct security_options that is to be registered
 110 *
 111 * This function allows a security module to register itself with the
 112 * kernel security subsystem.  Some rudimentary checking is done on the @ops
 113 * value passed to this function. You'll need to check first if your LSM
 114 * is allowed to register its @ops by calling security_module_enable(@ops).
 115 *
 116 * If there is already a security module registered with the kernel,
 117 * an error will be returned.  Otherwise %0 is returned on success.
 118 */
 119int __init register_security(struct security_operations *ops)
 
 120{
 121	if (verify(ops)) {
 122		printk(KERN_DEBUG "%s could not verify "
 123		       "security_operations structure.\n", __func__);
 124		return -EINVAL;
 
 125	}
 
 
 
 126
 127	if (security_ops != &default_security_ops)
 128		return -EAGAIN;
 
 
 
 129
 130	security_ops = ops;
 
 
 
 
 131
 132	return 0;
 
 
 133}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134
 135/* Security operations */
 136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 138{
 139	return security_ops->ptrace_access_check(child, mode);
 140}
 141
 142int security_ptrace_traceme(struct task_struct *parent)
 143{
 144	return security_ops->ptrace_traceme(parent);
 145}
 146
 147int security_capget(struct task_struct *target,
 148		     kernel_cap_t *effective,
 149		     kernel_cap_t *inheritable,
 150		     kernel_cap_t *permitted)
 151{
 152	return security_ops->capget(target, effective, inheritable, permitted);
 
 153}
 154
 155int security_capset(struct cred *new, const struct cred *old,
 156		    const kernel_cap_t *effective,
 157		    const kernel_cap_t *inheritable,
 158		    const kernel_cap_t *permitted)
 159{
 160	return security_ops->capset(new, old,
 161				    effective, inheritable, permitted);
 162}
 163
 164int security_capable(const struct cred *cred, struct user_namespace *ns,
 165		     int cap)
 166{
 167	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
 168}
 169
 170int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
 171			     int cap)
 172{
 173	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
 174}
 175
 176int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 177{
 178	return security_ops->quotactl(cmds, type, id, sb);
 179}
 180
 181int security_quota_on(struct dentry *dentry)
 182{
 183	return security_ops->quota_on(dentry);
 184}
 185
 186int security_syslog(int type)
 187{
 188	return security_ops->syslog(type);
 189}
 190
 191int security_settime(const struct timespec *ts, const struct timezone *tz)
 192{
 193	return security_ops->settime(ts, tz);
 194}
 195
 196int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 197{
 198	return security_ops->vm_enough_memory(mm, pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199}
 200
 201int security_bprm_set_creds(struct linux_binprm *bprm)
 202{
 203	return security_ops->bprm_set_creds(bprm);
 204}
 205
 206int security_bprm_check(struct linux_binprm *bprm)
 207{
 208	int ret;
 209
 210	ret = security_ops->bprm_check_security(bprm);
 211	if (ret)
 212		return ret;
 213	return ima_bprm_check(bprm);
 214}
 215
 216void security_bprm_committing_creds(struct linux_binprm *bprm)
 217{
 218	security_ops->bprm_committing_creds(bprm);
 219}
 220
 221void security_bprm_committed_creds(struct linux_binprm *bprm)
 222{
 223	security_ops->bprm_committed_creds(bprm);
 224}
 225
 226int security_bprm_secureexec(struct linux_binprm *bprm)
 227{
 228	return security_ops->bprm_secureexec(bprm);
 229}
 230
 231int security_sb_alloc(struct super_block *sb)
 232{
 233	return security_ops->sb_alloc_security(sb);
 234}
 235
 236void security_sb_free(struct super_block *sb)
 237{
 238	security_ops->sb_free_security(sb);
 239}
 240
 241int security_sb_copy_data(char *orig, char *copy)
 242{
 243	return security_ops->sb_copy_data(orig, copy);
 244}
 245EXPORT_SYMBOL(security_sb_copy_data);
 246
 247int security_sb_remount(struct super_block *sb, void *data)
 248{
 249	return security_ops->sb_remount(sb, data);
 250}
 251
 252int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 253{
 254	return security_ops->sb_kern_mount(sb, flags, data);
 255}
 256
 257int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 258{
 259	return security_ops->sb_show_options(m, sb);
 260}
 261
 262int security_sb_statfs(struct dentry *dentry)
 263{
 264	return security_ops->sb_statfs(dentry);
 265}
 266
 267int security_sb_mount(char *dev_name, struct path *path,
 268                       char *type, unsigned long flags, void *data)
 269{
 270	return security_ops->sb_mount(dev_name, path, type, flags, data);
 271}
 272
 273int security_sb_umount(struct vfsmount *mnt, int flags)
 274{
 275	return security_ops->sb_umount(mnt, flags);
 276}
 277
 278int security_sb_pivotroot(struct path *old_path, struct path *new_path)
 279{
 280	return security_ops->sb_pivotroot(old_path, new_path);
 281}
 282
 283int security_sb_set_mnt_opts(struct super_block *sb,
 284				struct security_mnt_opts *opts)
 285{
 286	return security_ops->sb_set_mnt_opts(sb, opts);
 
 
 
 
 287}
 288EXPORT_SYMBOL(security_sb_set_mnt_opts);
 289
 290void security_sb_clone_mnt_opts(const struct super_block *oldsb,
 291				struct super_block *newsb)
 
 
 292{
 293	security_ops->sb_clone_mnt_opts(oldsb, newsb);
 
 294}
 295EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 296
 297int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 298{
 299	return security_ops->sb_parse_opts_str(options, opts);
 300}
 301EXPORT_SYMBOL(security_sb_parse_opts_str);
 302
 303int security_inode_alloc(struct inode *inode)
 304{
 305	inode->i_security = NULL;
 306	return security_ops->inode_alloc_security(inode);
 307}
 308
 309void security_inode_free(struct inode *inode)
 310{
 311	integrity_inode_free(inode);
 312	security_ops->inode_free_security(inode);
 
 
 
 
 
 
 
 
 313}
 
 
 
 
 
 
 
 
 
 
 314
 315int security_inode_init_security(struct inode *inode, struct inode *dir,
 316				 const struct qstr *qstr,
 317				 const initxattrs initxattrs, void *fs_data)
 318{
 319	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 320	struct xattr *lsm_xattr, *evm_xattr, *xattr;
 321	int ret;
 322
 323	if (unlikely(IS_PRIVATE(inode)))
 324		return 0;
 325
 326	memset(new_xattrs, 0, sizeof new_xattrs);
 327	if (!initxattrs)
 328		return security_ops->inode_init_security(inode, dir, qstr,
 329							 NULL, NULL, NULL);
 
 330	lsm_xattr = new_xattrs;
 331	ret = security_ops->inode_init_security(inode, dir, qstr,
 332						&lsm_xattr->name,
 333						&lsm_xattr->value,
 334						&lsm_xattr->value_len);
 335	if (ret)
 336		goto out;
 337
 338	evm_xattr = lsm_xattr + 1;
 339	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 340	if (ret)
 341		goto out;
 342	ret = initxattrs(inode, new_xattrs, fs_data);
 343out:
 344	for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
 345		kfree(xattr->name);
 346		kfree(xattr->value);
 347	}
 348	return (ret == -EOPNOTSUPP) ? 0 : ret;
 349}
 350EXPORT_SYMBOL(security_inode_init_security);
 351
 352int security_old_inode_init_security(struct inode *inode, struct inode *dir,
 353				     const struct qstr *qstr, char **name,
 354				     void **value, size_t *len)
 355{
 356	if (unlikely(IS_PRIVATE(inode)))
 357		return -EOPNOTSUPP;
 358	return security_ops->inode_init_security(inode, dir, qstr, name, value,
 359						 len);
 360}
 361EXPORT_SYMBOL(security_old_inode_init_security);
 362
 363#ifdef CONFIG_SECURITY_PATH
 364int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
 365			unsigned int dev)
 366{
 367	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 368		return 0;
 369	return security_ops->path_mknod(dir, dentry, mode, dev);
 370}
 371EXPORT_SYMBOL(security_path_mknod);
 372
 373int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
 374{
 375	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 376		return 0;
 377	return security_ops->path_mkdir(dir, dentry, mode);
 378}
 379EXPORT_SYMBOL(security_path_mkdir);
 380
 381int security_path_rmdir(struct path *dir, struct dentry *dentry)
 382{
 383	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 384		return 0;
 385	return security_ops->path_rmdir(dir, dentry);
 386}
 387
 388int security_path_unlink(struct path *dir, struct dentry *dentry)
 389{
 390	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 391		return 0;
 392	return security_ops->path_unlink(dir, dentry);
 393}
 394EXPORT_SYMBOL(security_path_unlink);
 395
 396int security_path_symlink(struct path *dir, struct dentry *dentry,
 397			  const char *old_name)
 398{
 399	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 400		return 0;
 401	return security_ops->path_symlink(dir, dentry, old_name);
 402}
 403
 404int security_path_link(struct dentry *old_dentry, struct path *new_dir,
 405		       struct dentry *new_dentry)
 406{
 407	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 408		return 0;
 409	return security_ops->path_link(old_dentry, new_dir, new_dentry);
 410}
 411
 412int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
 413			 struct path *new_dir, struct dentry *new_dentry)
 
 414{
 415	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 416		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 417		return 0;
 418	return security_ops->path_rename(old_dir, old_dentry, new_dir,
 419					 new_dentry);
 
 
 
 
 
 
 
 
 420}
 421EXPORT_SYMBOL(security_path_rename);
 422
 423int security_path_truncate(struct path *path)
 424{
 425	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 426		return 0;
 427	return security_ops->path_truncate(path);
 428}
 429
 430int security_path_chmod(struct path *path, umode_t mode)
 431{
 432	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 433		return 0;
 434	return security_ops->path_chmod(path, mode);
 435}
 436
 437int security_path_chown(struct path *path, uid_t uid, gid_t gid)
 438{
 439	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 440		return 0;
 441	return security_ops->path_chown(path, uid, gid);
 442}
 443
 444int security_path_chroot(struct path *path)
 445{
 446	return security_ops->path_chroot(path);
 447}
 448#endif
 449
 450int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
 451{
 452	if (unlikely(IS_PRIVATE(dir)))
 453		return 0;
 454	return security_ops->inode_create(dir, dentry, mode);
 455}
 456EXPORT_SYMBOL_GPL(security_inode_create);
 457
 458int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 459			 struct dentry *new_dentry)
 460{
 461	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 462		return 0;
 463	return security_ops->inode_link(old_dentry, dir, new_dentry);
 464}
 465
 466int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 467{
 468	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 469		return 0;
 470	return security_ops->inode_unlink(dir, dentry);
 471}
 472
 473int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 474			    const char *old_name)
 475{
 476	if (unlikely(IS_PRIVATE(dir)))
 477		return 0;
 478	return security_ops->inode_symlink(dir, dentry, old_name);
 479}
 480
 481int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 482{
 483	if (unlikely(IS_PRIVATE(dir)))
 484		return 0;
 485	return security_ops->inode_mkdir(dir, dentry, mode);
 486}
 487EXPORT_SYMBOL_GPL(security_inode_mkdir);
 488
 489int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 490{
 491	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 492		return 0;
 493	return security_ops->inode_rmdir(dir, dentry);
 494}
 495
 496int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 497{
 498	if (unlikely(IS_PRIVATE(dir)))
 499		return 0;
 500	return security_ops->inode_mknod(dir, dentry, mode, dev);
 501}
 502
 503int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 504			   struct inode *new_dir, struct dentry *new_dentry)
 
 505{
 506        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 507            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 508		return 0;
 509	return security_ops->inode_rename(old_dir, old_dentry,
 
 
 
 
 
 
 
 
 510					   new_dir, new_dentry);
 511}
 512
 513int security_inode_readlink(struct dentry *dentry)
 514{
 515	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 516		return 0;
 517	return security_ops->inode_readlink(dentry);
 518}
 519
 520int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
 
 521{
 522	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 523		return 0;
 524	return security_ops->inode_follow_link(dentry, nd);
 525}
 526
 527int security_inode_permission(struct inode *inode, int mask)
 528{
 529	if (unlikely(IS_PRIVATE(inode)))
 530		return 0;
 531	return security_ops->inode_permission(inode, mask);
 532}
 533
 534int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 535{
 536	int ret;
 537
 538	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 539		return 0;
 540	ret = security_ops->inode_setattr(dentry, attr);
 541	if (ret)
 542		return ret;
 543	return evm_inode_setattr(dentry, attr);
 544}
 545EXPORT_SYMBOL_GPL(security_inode_setattr);
 546
 547int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
 548{
 549	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 550		return 0;
 551	return security_ops->inode_getattr(mnt, dentry);
 552}
 553
 554int security_inode_setxattr(struct dentry *dentry, const char *name,
 555			    const void *value, size_t size, int flags)
 556{
 557	int ret;
 558
 559	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 560		return 0;
 561	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
 
 
 
 
 
 
 
 
 
 
 
 562	if (ret)
 563		return ret;
 564	return evm_inode_setxattr(dentry, name, value, size);
 565}
 566
 567void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 568				  const void *value, size_t size, int flags)
 569{
 570	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 571		return;
 572	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
 573	evm_inode_post_setxattr(dentry, name, value, size);
 574}
 575
 576int security_inode_getxattr(struct dentry *dentry, const char *name)
 577{
 578	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 579		return 0;
 580	return security_ops->inode_getxattr(dentry, name);
 581}
 582
 583int security_inode_listxattr(struct dentry *dentry)
 584{
 585	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 586		return 0;
 587	return security_ops->inode_listxattr(dentry);
 588}
 589
 590int security_inode_removexattr(struct dentry *dentry, const char *name)
 591{
 592	int ret;
 593
 594	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 595		return 0;
 596	ret = security_ops->inode_removexattr(dentry, name);
 
 
 
 
 
 
 
 
 
 597	if (ret)
 598		return ret;
 599	return evm_inode_removexattr(dentry, name);
 600}
 601
 602int security_inode_need_killpriv(struct dentry *dentry)
 603{
 604	return security_ops->inode_need_killpriv(dentry);
 605}
 606
 607int security_inode_killpriv(struct dentry *dentry)
 608{
 609	return security_ops->inode_killpriv(dentry);
 610}
 611
 612int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 613{
 
 
 
 614	if (unlikely(IS_PRIVATE(inode)))
 615		return -EOPNOTSUPP;
 616	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
 
 
 
 
 
 
 
 
 617}
 618
 619int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 620{
 
 
 
 621	if (unlikely(IS_PRIVATE(inode)))
 622		return -EOPNOTSUPP;
 623	return security_ops->inode_setsecurity(inode, name, value, size, flags);
 
 
 
 
 
 
 
 
 
 624}
 625
 626int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 627{
 628	if (unlikely(IS_PRIVATE(inode)))
 629		return 0;
 630	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
 631}
 
 632
 633void security_inode_getsecid(const struct inode *inode, u32 *secid)
 634{
 635	security_ops->inode_getsecid(inode, secid);
 636}
 637
 
 
 
 
 
 
 
 
 
 
 
 
 638int security_file_permission(struct file *file, int mask)
 639{
 640	int ret;
 641
 642	ret = security_ops->file_permission(file, mask);
 643	if (ret)
 644		return ret;
 645
 646	return fsnotify_perm(file, mask);
 647}
 648
 649int security_file_alloc(struct file *file)
 650{
 651	return security_ops->file_alloc_security(file);
 652}
 653
 654void security_file_free(struct file *file)
 655{
 656	security_ops->file_free_security(file);
 657}
 658
 659int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 660{
 661	return security_ops->file_ioctl(file, cmd, arg);
 662}
 663
 664static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
 665{
 666	/*
 667	 * Does we have PROT_READ and does the application expect
 668	 * it to imply PROT_EXEC?  If not, nothing to talk about...
 669	 */
 670	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
 671		return prot;
 672	if (!(current->personality & READ_IMPLIES_EXEC))
 673		return prot;
 674	/*
 675	 * if that's an anonymous mapping, let it.
 676	 */
 677	if (!file)
 678		return prot | PROT_EXEC;
 679	/*
 680	 * ditto if it's not on noexec mount, except that on !MMU we need
 681	 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
 682	 */
 683	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
 684#ifndef CONFIG_MMU
 685		unsigned long caps = 0;
 686		struct address_space *mapping = file->f_mapping;
 687		if (mapping && mapping->backing_dev_info)
 688			caps = mapping->backing_dev_info->capabilities;
 689		if (!(caps & BDI_CAP_EXEC_MAP))
 690			return prot;
 691#endif
 692		return prot | PROT_EXEC;
 693	}
 694	/* anything on noexec mount won't get PROT_EXEC */
 695	return prot;
 696}
 697
 698int security_mmap_file(struct file *file, unsigned long prot,
 699			unsigned long flags)
 700{
 701	int ret;
 702	ret = security_ops->mmap_file(file, prot,
 703					mmap_prot(file, prot), flags);
 704	if (ret)
 705		return ret;
 706	return ima_file_mmap(file, prot);
 707}
 708
 709int security_mmap_addr(unsigned long addr)
 710{
 711	return security_ops->mmap_addr(addr);
 712}
 713
 714int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 715			    unsigned long prot)
 716{
 717	return security_ops->file_mprotect(vma, reqprot, prot);
 718}
 719
 720int security_file_lock(struct file *file, unsigned int cmd)
 721{
 722	return security_ops->file_lock(file, cmd);
 723}
 724
 725int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 726{
 727	return security_ops->file_fcntl(file, cmd, arg);
 728}
 729
 730int security_file_set_fowner(struct file *file)
 731{
 732	return security_ops->file_set_fowner(file);
 733}
 734
 735int security_file_send_sigiotask(struct task_struct *tsk,
 736				  struct fown_struct *fown, int sig)
 737{
 738	return security_ops->file_send_sigiotask(tsk, fown, sig);
 739}
 740
 741int security_file_receive(struct file *file)
 742{
 743	return security_ops->file_receive(file);
 744}
 745
 746int security_file_open(struct file *file, const struct cred *cred)
 747{
 748	int ret;
 749
 750	ret = security_ops->file_open(file, cred);
 751	if (ret)
 752		return ret;
 753
 754	return fsnotify_perm(file, MAY_OPEN);
 755}
 756
 757int security_task_create(unsigned long clone_flags)
 758{
 759	return security_ops->task_create(clone_flags);
 760}
 761
 762void security_task_free(struct task_struct *task)
 763{
 764	security_ops->task_free(task);
 765}
 766
 767int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 768{
 769	return security_ops->cred_alloc_blank(cred, gfp);
 770}
 771
 772void security_cred_free(struct cred *cred)
 773{
 774	security_ops->cred_free(cred);
 775}
 776
 777int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
 778{
 779	return security_ops->cred_prepare(new, old, gfp);
 780}
 781
 782void security_transfer_creds(struct cred *new, const struct cred *old)
 783{
 784	security_ops->cred_transfer(new, old);
 785}
 786
 
 
 
 
 
 
 
 787int security_kernel_act_as(struct cred *new, u32 secid)
 788{
 789	return security_ops->kernel_act_as(new, secid);
 790}
 791
 792int security_kernel_create_files_as(struct cred *new, struct inode *inode)
 793{
 794	return security_ops->kernel_create_files_as(new, inode);
 795}
 796
 797int security_kernel_module_request(char *kmod_name)
 798{
 799	return security_ops->kernel_module_request(kmod_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800}
 
 801
 802int security_task_fix_setuid(struct cred *new, const struct cred *old,
 803			     int flags)
 804{
 805	return security_ops->task_fix_setuid(new, old, flags);
 806}
 807
 808int security_task_setpgid(struct task_struct *p, pid_t pgid)
 809{
 810	return security_ops->task_setpgid(p, pgid);
 811}
 812
 813int security_task_getpgid(struct task_struct *p)
 814{
 815	return security_ops->task_getpgid(p);
 816}
 817
 818int security_task_getsid(struct task_struct *p)
 819{
 820	return security_ops->task_getsid(p);
 821}
 822
 823void security_task_getsecid(struct task_struct *p, u32 *secid)
 824{
 825	security_ops->task_getsecid(p, secid);
 
 826}
 827EXPORT_SYMBOL(security_task_getsecid);
 828
 829int security_task_setnice(struct task_struct *p, int nice)
 830{
 831	return security_ops->task_setnice(p, nice);
 832}
 833
 834int security_task_setioprio(struct task_struct *p, int ioprio)
 835{
 836	return security_ops->task_setioprio(p, ioprio);
 837}
 838
 839int security_task_getioprio(struct task_struct *p)
 840{
 841	return security_ops->task_getioprio(p);
 
 
 
 
 
 
 842}
 843
 844int security_task_setrlimit(struct task_struct *p, unsigned int resource,
 845		struct rlimit *new_rlim)
 846{
 847	return security_ops->task_setrlimit(p, resource, new_rlim);
 848}
 849
 850int security_task_setscheduler(struct task_struct *p)
 851{
 852	return security_ops->task_setscheduler(p);
 853}
 854
 855int security_task_getscheduler(struct task_struct *p)
 856{
 857	return security_ops->task_getscheduler(p);
 858}
 859
 860int security_task_movememory(struct task_struct *p)
 861{
 862	return security_ops->task_movememory(p);
 863}
 864
 865int security_task_kill(struct task_struct *p, struct siginfo *info,
 866			int sig, u32 secid)
 867{
 868	return security_ops->task_kill(p, info, sig, secid);
 869}
 870
 871int security_task_wait(struct task_struct *p)
 872{
 873	return security_ops->task_wait(p);
 874}
 875
 876int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 877			 unsigned long arg4, unsigned long arg5)
 878{
 879	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
 
 
 
 
 
 
 
 
 
 
 
 
 880}
 881
 882void security_task_to_inode(struct task_struct *p, struct inode *inode)
 883{
 884	security_ops->task_to_inode(p, inode);
 885}
 886
 887int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
 888{
 889	return security_ops->ipc_permission(ipcp, flag);
 890}
 891
 892void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 893{
 894	security_ops->ipc_getsecid(ipcp, secid);
 
 895}
 896
 897int security_msg_msg_alloc(struct msg_msg *msg)
 898{
 899	return security_ops->msg_msg_alloc_security(msg);
 900}
 901
 902void security_msg_msg_free(struct msg_msg *msg)
 903{
 904	security_ops->msg_msg_free_security(msg);
 905}
 906
 907int security_msg_queue_alloc(struct msg_queue *msq)
 908{
 909	return security_ops->msg_queue_alloc_security(msq);
 910}
 911
 912void security_msg_queue_free(struct msg_queue *msq)
 913{
 914	security_ops->msg_queue_free_security(msq);
 915}
 916
 917int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
 918{
 919	return security_ops->msg_queue_associate(msq, msqflg);
 920}
 921
 922int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
 923{
 924	return security_ops->msg_queue_msgctl(msq, cmd);
 925}
 926
 927int security_msg_queue_msgsnd(struct msg_queue *msq,
 928			       struct msg_msg *msg, int msqflg)
 929{
 930	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
 931}
 932
 933int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
 934			       struct task_struct *target, long type, int mode)
 935{
 936	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
 937}
 938
 939int security_shm_alloc(struct shmid_kernel *shp)
 940{
 941	return security_ops->shm_alloc_security(shp);
 942}
 943
 944void security_shm_free(struct shmid_kernel *shp)
 945{
 946	security_ops->shm_free_security(shp);
 947}
 948
 949int security_shm_associate(struct shmid_kernel *shp, int shmflg)
 950{
 951	return security_ops->shm_associate(shp, shmflg);
 952}
 953
 954int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
 955{
 956	return security_ops->shm_shmctl(shp, cmd);
 957}
 958
 959int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
 960{
 961	return security_ops->shm_shmat(shp, shmaddr, shmflg);
 962}
 963
 964int security_sem_alloc(struct sem_array *sma)
 965{
 966	return security_ops->sem_alloc_security(sma);
 967}
 968
 969void security_sem_free(struct sem_array *sma)
 970{
 971	security_ops->sem_free_security(sma);
 972}
 973
 974int security_sem_associate(struct sem_array *sma, int semflg)
 975{
 976	return security_ops->sem_associate(sma, semflg);
 977}
 978
 979int security_sem_semctl(struct sem_array *sma, int cmd)
 980{
 981	return security_ops->sem_semctl(sma, cmd);
 982}
 983
 984int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
 985			unsigned nsops, int alter)
 986{
 987	return security_ops->sem_semop(sma, sops, nsops, alter);
 988}
 989
 990void security_d_instantiate(struct dentry *dentry, struct inode *inode)
 991{
 992	if (unlikely(inode && IS_PRIVATE(inode)))
 993		return;
 994	security_ops->d_instantiate(dentry, inode);
 995}
 996EXPORT_SYMBOL(security_d_instantiate);
 997
 998int security_getprocattr(struct task_struct *p, char *name, char **value)
 999{
1000	return security_ops->getprocattr(p, name, value);
1001}
1002
1003int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1004{
1005	return security_ops->setprocattr(p, name, value, size);
1006}
1007
1008int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1009{
1010	return security_ops->netlink_send(sk, skb);
1011}
1012
 
 
 
 
 
 
1013int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1014{
1015	return security_ops->secid_to_secctx(secid, secdata, seclen);
 
1016}
1017EXPORT_SYMBOL(security_secid_to_secctx);
1018
1019int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1020{
1021	return security_ops->secctx_to_secid(secdata, seclen, secid);
 
1022}
1023EXPORT_SYMBOL(security_secctx_to_secid);
1024
1025void security_release_secctx(char *secdata, u32 seclen)
1026{
1027	security_ops->release_secctx(secdata, seclen);
1028}
1029EXPORT_SYMBOL(security_release_secctx);
1030
 
 
 
 
 
 
1031int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1032{
1033	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1034}
1035EXPORT_SYMBOL(security_inode_notifysecctx);
1036
1037int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1038{
1039	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1040}
1041EXPORT_SYMBOL(security_inode_setsecctx);
1042
1043int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1044{
1045	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1046}
1047EXPORT_SYMBOL(security_inode_getsecctx);
1048
1049#ifdef CONFIG_SECURITY_NETWORK
1050
1051int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1052{
1053	return security_ops->unix_stream_connect(sock, other, newsk);
1054}
1055EXPORT_SYMBOL(security_unix_stream_connect);
1056
1057int security_unix_may_send(struct socket *sock,  struct socket *other)
1058{
1059	return security_ops->unix_may_send(sock, other);
1060}
1061EXPORT_SYMBOL(security_unix_may_send);
1062
1063int security_socket_create(int family, int type, int protocol, int kern)
1064{
1065	return security_ops->socket_create(family, type, protocol, kern);
1066}
1067
1068int security_socket_post_create(struct socket *sock, int family,
1069				int type, int protocol, int kern)
1070{
1071	return security_ops->socket_post_create(sock, family, type,
1072						protocol, kern);
1073}
1074
1075int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1076{
1077	return security_ops->socket_bind(sock, address, addrlen);
1078}
1079
1080int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1081{
1082	return security_ops->socket_connect(sock, address, addrlen);
1083}
1084
1085int security_socket_listen(struct socket *sock, int backlog)
1086{
1087	return security_ops->socket_listen(sock, backlog);
1088}
1089
1090int security_socket_accept(struct socket *sock, struct socket *newsock)
1091{
1092	return security_ops->socket_accept(sock, newsock);
1093}
1094
1095int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1096{
1097	return security_ops->socket_sendmsg(sock, msg, size);
1098}
1099
1100int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1101			    int size, int flags)
1102{
1103	return security_ops->socket_recvmsg(sock, msg, size, flags);
1104}
1105
1106int security_socket_getsockname(struct socket *sock)
1107{
1108	return security_ops->socket_getsockname(sock);
1109}
1110
1111int security_socket_getpeername(struct socket *sock)
1112{
1113	return security_ops->socket_getpeername(sock);
1114}
1115
1116int security_socket_getsockopt(struct socket *sock, int level, int optname)
1117{
1118	return security_ops->socket_getsockopt(sock, level, optname);
1119}
1120
1121int security_socket_setsockopt(struct socket *sock, int level, int optname)
1122{
1123	return security_ops->socket_setsockopt(sock, level, optname);
1124}
1125
1126int security_socket_shutdown(struct socket *sock, int how)
1127{
1128	return security_ops->socket_shutdown(sock, how);
1129}
1130
1131int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1132{
1133	return security_ops->socket_sock_rcv_skb(sk, skb);
1134}
1135EXPORT_SYMBOL(security_sock_rcv_skb);
1136
1137int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1138				      int __user *optlen, unsigned len)
1139{
1140	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
 
1141}
1142
1143int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1144{
1145	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
 
1146}
1147EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1148
1149int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1150{
1151	return security_ops->sk_alloc_security(sk, family, priority);
1152}
1153
1154void security_sk_free(struct sock *sk)
1155{
1156	security_ops->sk_free_security(sk);
1157}
1158
1159void security_sk_clone(const struct sock *sk, struct sock *newsk)
1160{
1161	security_ops->sk_clone_security(sk, newsk);
1162}
1163EXPORT_SYMBOL(security_sk_clone);
1164
1165void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1166{
1167	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1168}
1169EXPORT_SYMBOL(security_sk_classify_flow);
1170
1171void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1172{
1173	security_ops->req_classify_flow(req, fl);
1174}
1175EXPORT_SYMBOL(security_req_classify_flow);
1176
1177void security_sock_graft(struct sock *sk, struct socket *parent)
1178{
1179	security_ops->sock_graft(sk, parent);
1180}
1181EXPORT_SYMBOL(security_sock_graft);
1182
1183int security_inet_conn_request(struct sock *sk,
1184			struct sk_buff *skb, struct request_sock *req)
1185{
1186	return security_ops->inet_conn_request(sk, skb, req);
1187}
1188EXPORT_SYMBOL(security_inet_conn_request);
1189
1190void security_inet_csk_clone(struct sock *newsk,
1191			const struct request_sock *req)
1192{
1193	security_ops->inet_csk_clone(newsk, req);
1194}
1195
1196void security_inet_conn_established(struct sock *sk,
1197			struct sk_buff *skb)
1198{
1199	security_ops->inet_conn_established(sk, skb);
1200}
 
1201
1202int security_secmark_relabel_packet(u32 secid)
1203{
1204	return security_ops->secmark_relabel_packet(secid);
1205}
1206EXPORT_SYMBOL(security_secmark_relabel_packet);
1207
1208void security_secmark_refcount_inc(void)
1209{
1210	security_ops->secmark_refcount_inc();
1211}
1212EXPORT_SYMBOL(security_secmark_refcount_inc);
1213
1214void security_secmark_refcount_dec(void)
1215{
1216	security_ops->secmark_refcount_dec();
1217}
1218EXPORT_SYMBOL(security_secmark_refcount_dec);
1219
 
 
 
 
 
 
 
 
 
 
 
 
1220int security_tun_dev_create(void)
1221{
1222	return security_ops->tun_dev_create();
1223}
1224EXPORT_SYMBOL(security_tun_dev_create);
1225
1226void security_tun_dev_post_create(struct sock *sk)
1227{
1228	return security_ops->tun_dev_post_create(sk);
1229}
1230EXPORT_SYMBOL(security_tun_dev_post_create);
1231
1232int security_tun_dev_attach(struct sock *sk)
1233{
1234	return security_ops->tun_dev_attach(sk);
1235}
1236EXPORT_SYMBOL(security_tun_dev_attach);
1237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238#endif	/* CONFIG_SECURITY_NETWORK */
1239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240#ifdef CONFIG_SECURITY_NETWORK_XFRM
1241
1242int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
 
 
1243{
1244	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1245}
1246EXPORT_SYMBOL(security_xfrm_policy_alloc);
1247
1248int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1249			      struct xfrm_sec_ctx **new_ctxp)
1250{
1251	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1252}
1253
1254void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1255{
1256	security_ops->xfrm_policy_free_security(ctx);
1257}
1258EXPORT_SYMBOL(security_xfrm_policy_free);
1259
1260int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1261{
1262	return security_ops->xfrm_policy_delete_security(ctx);
1263}
1264
1265int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
 
1266{
1267	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1268}
1269EXPORT_SYMBOL(security_xfrm_state_alloc);
1270
1271int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1272				      struct xfrm_sec_ctx *polsec, u32 secid)
1273{
1274	if (!polsec)
1275		return 0;
1276	/*
1277	 * We want the context to be taken from secid which is usually
1278	 * from the sock.
1279	 */
1280	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1281}
1282
1283int security_xfrm_state_delete(struct xfrm_state *x)
1284{
1285	return security_ops->xfrm_state_delete_security(x);
1286}
1287EXPORT_SYMBOL(security_xfrm_state_delete);
1288
1289void security_xfrm_state_free(struct xfrm_state *x)
1290{
1291	security_ops->xfrm_state_free_security(x);
1292}
1293
1294int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1295{
1296	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1297}
1298
1299int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1300				       struct xfrm_policy *xp,
1301				       const struct flowi *fl)
1302{
1303	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304}
1305
1306int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1307{
1308	return security_ops->xfrm_decode_session(skb, secid, 1);
1309}
1310
1311void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1312{
1313	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
 
1314
1315	BUG_ON(rc);
1316}
1317EXPORT_SYMBOL(security_skb_classify_flow);
1318
1319#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1320
1321#ifdef CONFIG_KEYS
1322
1323int security_key_alloc(struct key *key, const struct cred *cred,
1324		       unsigned long flags)
1325{
1326	return security_ops->key_alloc(key, cred, flags);
1327}
1328
1329void security_key_free(struct key *key)
1330{
1331	security_ops->key_free(key);
1332}
1333
1334int security_key_permission(key_ref_t key_ref,
1335			    const struct cred *cred, key_perm_t perm)
1336{
1337	return security_ops->key_permission(key_ref, cred, perm);
1338}
1339
1340int security_key_getsecurity(struct key *key, char **_buffer)
1341{
1342	return security_ops->key_getsecurity(key, _buffer);
 
1343}
1344
1345#endif	/* CONFIG_KEYS */
1346
1347#ifdef CONFIG_AUDIT
1348
1349int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1350{
1351	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1352}
1353
1354int security_audit_rule_known(struct audit_krule *krule)
1355{
1356	return security_ops->audit_rule_known(krule);
1357}
1358
1359void security_audit_rule_free(void *lsmrule)
1360{
1361	security_ops->audit_rule_free(lsmrule);
1362}
1363
1364int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1365			      struct audit_context *actx)
1366{
1367	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
 
1368}
1369
1370#endif /* CONFIG_AUDIT */
v4.17
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 * Copyright (C) 2016 Mellanox Technologies
   8 *
   9 *	This program is free software; you can redistribute it and/or modify
  10 *	it under the terms of the GNU General Public License as published by
  11 *	the Free Software Foundation; either version 2 of the License, or
  12 *	(at your option) any later version.
  13 */
  14
  15#include <linux/bpf.h>
  16#include <linux/capability.h>
  17#include <linux/dcache.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/lsm_hooks.h>
  22#include <linux/integrity.h>
  23#include <linux/ima.h>
  24#include <linux/evm.h>
  25#include <linux/fsnotify.h>
  26#include <linux/mman.h>
  27#include <linux/mount.h>
  28#include <linux/personality.h>
  29#include <linux/backing-dev.h>
  30#include <linux/string.h>
  31#include <net/flow.h>
  32
  33#include <trace/events/initcall.h>
  34
  35#define MAX_LSM_EVM_XATTR	2
  36
  37/* Maximum number of letters for an LSM name string */
  38#define SECURITY_NAME_MAX	10
  39
  40struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  41static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
  42
  43char *lsm_names;
  44/* Boot-time LSM user choice */
  45static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  46	CONFIG_DEFAULT_SECURITY;
  47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48static void __init do_security_initcalls(void)
  49{
  50	int ret;
  51	initcall_t *call;
  52	call = __security_initcall_start;
  53	trace_initcall_level("security");
  54	while (call < __security_initcall_end) {
  55		trace_initcall_start((*call));
  56		ret = (*call) ();
  57		trace_initcall_finish((*call), ret);
  58		call++;
  59	}
  60}
  61
  62/**
  63 * security_init - initializes the security framework
  64 *
  65 * This should be called early in the kernel initialization sequence.
  66 */
  67int __init security_init(void)
  68{
  69	int i;
  70	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
  71
  72	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
  73	     i++)
  74		INIT_HLIST_HEAD(&list[i]);
  75	pr_info("Security Framework initialized\n");
  76
  77	/*
  78	 * Load minor LSMs, with the capability module always first.
  79	 */
  80	capability_add_hooks();
  81	yama_add_hooks();
  82	loadpin_add_hooks();
  83
  84	/*
  85	 * Load all the remaining security modules.
  86	 */
  87	do_security_initcalls();
  88
  89	return 0;
  90}
  91
 
 
 
 
 
  92/* Save user chosen LSM */
  93static int __init choose_lsm(char *str)
  94{
  95	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  96	return 1;
  97}
  98__setup("security=", choose_lsm);
  99
 100static bool match_last_lsm(const char *list, const char *lsm)
 101{
 102	const char *last;
 103
 104	if (WARN_ON(!list || !lsm))
 105		return false;
 106	last = strrchr(list, ',');
 107	if (last)
 108		/* Pass the comma, strcmp() will check for '\0' */
 109		last++;
 110	else
 111		last = list;
 112	return !strcmp(last, lsm);
 113}
 114
 115static int lsm_append(char *new, char **result)
 116{
 117	char *cp;
 118
 119	if (*result == NULL) {
 120		*result = kstrdup(new, GFP_KERNEL);
 121	} else {
 122		/* Check if it is the last registered name */
 123		if (match_last_lsm(*result, new))
 124			return 0;
 125		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 126		if (cp == NULL)
 127			return -ENOMEM;
 128		kfree(*result);
 129		*result = cp;
 130	}
 131	return 0;
 132}
 133
 134/**
 135 * security_module_enable - Load given security module on boot ?
 136 * @module: the name of the module
 137 *
 138 * Each LSM must pass this method before registering its own operations
 139 * to avoid security registration races. This method may also be used
 140 * to check if your LSM is currently loaded during kernel initialization.
 141 *
 142 * Returns:
 143 *
 144 * true if:
 145 *
 146 * - The passed LSM is the one chosen by user at boot time,
 147 * - or the passed LSM is configured as the default and the user did not
 148 *   choose an alternate LSM at boot time.
 149 *
 150 * Otherwise, return false.
 151 */
 152int __init security_module_enable(const char *module)
 153{
 154	return !strcmp(module, chosen_lsm);
 155}
 156
 157/**
 158 * security_add_hooks - Add a modules hooks to the hook lists.
 159 * @hooks: the hooks to add
 160 * @count: the number of hooks to add
 161 * @lsm: the name of the security module
 
 
 
 162 *
 163 * Each LSM has to register its hooks with the infrastructure.
 
 164 */
 165void __init security_add_hooks(struct security_hook_list *hooks, int count,
 166				char *lsm)
 167{
 168	int i;
 169
 170	for (i = 0; i < count; i++) {
 171		hooks[i].lsm = lsm;
 172		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 173	}
 174	if (lsm_append(lsm, &lsm_names) < 0)
 175		panic("%s - Cannot get early memory.\n", __func__);
 176}
 177
 178int call_lsm_notifier(enum lsm_event event, void *data)
 179{
 180	return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
 181}
 182EXPORT_SYMBOL(call_lsm_notifier);
 183
 184int register_lsm_notifier(struct notifier_block *nb)
 185{
 186	return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
 187}
 188EXPORT_SYMBOL(register_lsm_notifier);
 189
 190int unregister_lsm_notifier(struct notifier_block *nb)
 191{
 192	return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
 193}
 194EXPORT_SYMBOL(unregister_lsm_notifier);
 195
 196/*
 197 * Hook list operation macros.
 198 *
 199 * call_void_hook:
 200 *	This is a hook that does not return a value.
 201 *
 202 * call_int_hook:
 203 *	This is a hook that returns a value.
 204 */
 205
 206#define call_void_hook(FUNC, ...)				\
 207	do {							\
 208		struct security_hook_list *P;			\
 209								\
 210		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 211			P->hook.FUNC(__VA_ARGS__);		\
 212	} while (0)
 213
 214#define call_int_hook(FUNC, IRC, ...) ({			\
 215	int RC = IRC;						\
 216	do {							\
 217		struct security_hook_list *P;			\
 218								\
 219		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 220			RC = P->hook.FUNC(__VA_ARGS__);		\
 221			if (RC != 0)				\
 222				break;				\
 223		}						\
 224	} while (0);						\
 225	RC;							\
 226})
 227
 228/* Security operations */
 229
 230int security_binder_set_context_mgr(struct task_struct *mgr)
 231{
 232	return call_int_hook(binder_set_context_mgr, 0, mgr);
 233}
 234
 235int security_binder_transaction(struct task_struct *from,
 236				struct task_struct *to)
 237{
 238	return call_int_hook(binder_transaction, 0, from, to);
 239}
 240
 241int security_binder_transfer_binder(struct task_struct *from,
 242				    struct task_struct *to)
 243{
 244	return call_int_hook(binder_transfer_binder, 0, from, to);
 245}
 246
 247int security_binder_transfer_file(struct task_struct *from,
 248				  struct task_struct *to, struct file *file)
 249{
 250	return call_int_hook(binder_transfer_file, 0, from, to, file);
 251}
 252
 253int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 254{
 255	return call_int_hook(ptrace_access_check, 0, child, mode);
 256}
 257
 258int security_ptrace_traceme(struct task_struct *parent)
 259{
 260	return call_int_hook(ptrace_traceme, 0, parent);
 261}
 262
 263int security_capget(struct task_struct *target,
 264		     kernel_cap_t *effective,
 265		     kernel_cap_t *inheritable,
 266		     kernel_cap_t *permitted)
 267{
 268	return call_int_hook(capget, 0, target,
 269				effective, inheritable, permitted);
 270}
 271
 272int security_capset(struct cred *new, const struct cred *old,
 273		    const kernel_cap_t *effective,
 274		    const kernel_cap_t *inheritable,
 275		    const kernel_cap_t *permitted)
 276{
 277	return call_int_hook(capset, 0, new, old,
 278				effective, inheritable, permitted);
 279}
 280
 281int security_capable(const struct cred *cred, struct user_namespace *ns,
 282		     int cap)
 283{
 284	return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
 285}
 286
 287int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
 288			     int cap)
 289{
 290	return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
 291}
 292
 293int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 294{
 295	return call_int_hook(quotactl, 0, cmds, type, id, sb);
 296}
 297
 298int security_quota_on(struct dentry *dentry)
 299{
 300	return call_int_hook(quota_on, 0, dentry);
 301}
 302
 303int security_syslog(int type)
 304{
 305	return call_int_hook(syslog, 0, type);
 306}
 307
 308int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 309{
 310	return call_int_hook(settime, 0, ts, tz);
 311}
 312
 313int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 314{
 315	struct security_hook_list *hp;
 316	int cap_sys_admin = 1;
 317	int rc;
 318
 319	/*
 320	 * The module will respond with a positive value if
 321	 * it thinks the __vm_enough_memory() call should be
 322	 * made with the cap_sys_admin set. If all of the modules
 323	 * agree that it should be set it will. If any module
 324	 * thinks it should not be set it won't.
 325	 */
 326	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 327		rc = hp->hook.vm_enough_memory(mm, pages);
 328		if (rc <= 0) {
 329			cap_sys_admin = 0;
 330			break;
 331		}
 332	}
 333	return __vm_enough_memory(mm, pages, cap_sys_admin);
 334}
 335
 336int security_bprm_set_creds(struct linux_binprm *bprm)
 337{
 338	return call_int_hook(bprm_set_creds, 0, bprm);
 339}
 340
 341int security_bprm_check(struct linux_binprm *bprm)
 342{
 343	int ret;
 344
 345	ret = call_int_hook(bprm_check_security, 0, bprm);
 346	if (ret)
 347		return ret;
 348	return ima_bprm_check(bprm);
 349}
 350
 351void security_bprm_committing_creds(struct linux_binprm *bprm)
 352{
 353	call_void_hook(bprm_committing_creds, bprm);
 354}
 355
 356void security_bprm_committed_creds(struct linux_binprm *bprm)
 357{
 358	call_void_hook(bprm_committed_creds, bprm);
 
 
 
 
 
 359}
 360
 361int security_sb_alloc(struct super_block *sb)
 362{
 363	return call_int_hook(sb_alloc_security, 0, sb);
 364}
 365
 366void security_sb_free(struct super_block *sb)
 367{
 368	call_void_hook(sb_free_security, sb);
 369}
 370
 371int security_sb_copy_data(char *orig, char *copy)
 372{
 373	return call_int_hook(sb_copy_data, 0, orig, copy);
 374}
 375EXPORT_SYMBOL(security_sb_copy_data);
 376
 377int security_sb_remount(struct super_block *sb, void *data)
 378{
 379	return call_int_hook(sb_remount, 0, sb, data);
 380}
 381
 382int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 383{
 384	return call_int_hook(sb_kern_mount, 0, sb, flags, data);
 385}
 386
 387int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 388{
 389	return call_int_hook(sb_show_options, 0, m, sb);
 390}
 391
 392int security_sb_statfs(struct dentry *dentry)
 393{
 394	return call_int_hook(sb_statfs, 0, dentry);
 395}
 396
 397int security_sb_mount(const char *dev_name, const struct path *path,
 398                       const char *type, unsigned long flags, void *data)
 399{
 400	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
 401}
 402
 403int security_sb_umount(struct vfsmount *mnt, int flags)
 404{
 405	return call_int_hook(sb_umount, 0, mnt, flags);
 406}
 407
 408int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 409{
 410	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
 411}
 412
 413int security_sb_set_mnt_opts(struct super_block *sb,
 414				struct security_mnt_opts *opts,
 415				unsigned long kern_flags,
 416				unsigned long *set_kern_flags)
 417{
 418	return call_int_hook(sb_set_mnt_opts,
 419				opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb,
 420				opts, kern_flags, set_kern_flags);
 421}
 422EXPORT_SYMBOL(security_sb_set_mnt_opts);
 423
 424int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 425				struct super_block *newsb,
 426				unsigned long kern_flags,
 427				unsigned long *set_kern_flags)
 428{
 429	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
 430				kern_flags, set_kern_flags);
 431}
 432EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 433
 434int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 435{
 436	return call_int_hook(sb_parse_opts_str, 0, options, opts);
 437}
 438EXPORT_SYMBOL(security_sb_parse_opts_str);
 439
 440int security_inode_alloc(struct inode *inode)
 441{
 442	inode->i_security = NULL;
 443	return call_int_hook(inode_alloc_security, 0, inode);
 444}
 445
 446void security_inode_free(struct inode *inode)
 447{
 448	integrity_inode_free(inode);
 449	call_void_hook(inode_free_security, inode);
 450}
 451
 452int security_dentry_init_security(struct dentry *dentry, int mode,
 453					const struct qstr *name, void **ctx,
 454					u32 *ctxlen)
 455{
 456	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
 457				name, ctx, ctxlen);
 458}
 459EXPORT_SYMBOL(security_dentry_init_security);
 460
 461int security_dentry_create_files_as(struct dentry *dentry, int mode,
 462				    struct qstr *name,
 463				    const struct cred *old, struct cred *new)
 464{
 465	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
 466				name, old, new);
 467}
 468EXPORT_SYMBOL(security_dentry_create_files_as);
 469
 470int security_inode_init_security(struct inode *inode, struct inode *dir,
 471				 const struct qstr *qstr,
 472				 const initxattrs initxattrs, void *fs_data)
 473{
 474	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 475	struct xattr *lsm_xattr, *evm_xattr, *xattr;
 476	int ret;
 477
 478	if (unlikely(IS_PRIVATE(inode)))
 479		return 0;
 480
 
 481	if (!initxattrs)
 482		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
 483				     dir, qstr, NULL, NULL, NULL);
 484	memset(new_xattrs, 0, sizeof(new_xattrs));
 485	lsm_xattr = new_xattrs;
 486	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
 487						&lsm_xattr->name,
 488						&lsm_xattr->value,
 489						&lsm_xattr->value_len);
 490	if (ret)
 491		goto out;
 492
 493	evm_xattr = lsm_xattr + 1;
 494	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 495	if (ret)
 496		goto out;
 497	ret = initxattrs(inode, new_xattrs, fs_data);
 498out:
 499	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
 
 500		kfree(xattr->value);
 
 501	return (ret == -EOPNOTSUPP) ? 0 : ret;
 502}
 503EXPORT_SYMBOL(security_inode_init_security);
 504
 505int security_old_inode_init_security(struct inode *inode, struct inode *dir,
 506				     const struct qstr *qstr, const char **name,
 507				     void **value, size_t *len)
 508{
 509	if (unlikely(IS_PRIVATE(inode)))
 510		return -EOPNOTSUPP;
 511	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
 512			     qstr, name, value, len);
 513}
 514EXPORT_SYMBOL(security_old_inode_init_security);
 515
 516#ifdef CONFIG_SECURITY_PATH
 517int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
 518			unsigned int dev)
 519{
 520	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
 521		return 0;
 522	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
 523}
 524EXPORT_SYMBOL(security_path_mknod);
 525
 526int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
 527{
 528	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
 529		return 0;
 530	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
 531}
 532EXPORT_SYMBOL(security_path_mkdir);
 533
 534int security_path_rmdir(const struct path *dir, struct dentry *dentry)
 535{
 536	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
 537		return 0;
 538	return call_int_hook(path_rmdir, 0, dir, dentry);
 539}
 540
 541int security_path_unlink(const struct path *dir, struct dentry *dentry)
 542{
 543	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
 544		return 0;
 545	return call_int_hook(path_unlink, 0, dir, dentry);
 546}
 547EXPORT_SYMBOL(security_path_unlink);
 548
 549int security_path_symlink(const struct path *dir, struct dentry *dentry,
 550			  const char *old_name)
 551{
 552	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
 553		return 0;
 554	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
 555}
 556
 557int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
 558		       struct dentry *new_dentry)
 559{
 560	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
 561		return 0;
 562	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
 563}
 564
 565int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
 566			 const struct path *new_dir, struct dentry *new_dentry,
 567			 unsigned int flags)
 568{
 569	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
 570		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
 571		return 0;
 572
 573	if (flags & RENAME_EXCHANGE) {
 574		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
 575					old_dir, old_dentry);
 576		if (err)
 577			return err;
 578	}
 579
 580	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
 581				new_dentry);
 582}
 583EXPORT_SYMBOL(security_path_rename);
 584
 585int security_path_truncate(const struct path *path)
 586{
 587	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
 588		return 0;
 589	return call_int_hook(path_truncate, 0, path);
 590}
 591
 592int security_path_chmod(const struct path *path, umode_t mode)
 593{
 594	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
 595		return 0;
 596	return call_int_hook(path_chmod, 0, path, mode);
 597}
 598
 599int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
 600{
 601	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
 602		return 0;
 603	return call_int_hook(path_chown, 0, path, uid, gid);
 604}
 605
 606int security_path_chroot(const struct path *path)
 607{
 608	return call_int_hook(path_chroot, 0, path);
 609}
 610#endif
 611
 612int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
 613{
 614	if (unlikely(IS_PRIVATE(dir)))
 615		return 0;
 616	return call_int_hook(inode_create, 0, dir, dentry, mode);
 617}
 618EXPORT_SYMBOL_GPL(security_inode_create);
 619
 620int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 621			 struct dentry *new_dentry)
 622{
 623	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
 624		return 0;
 625	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
 626}
 627
 628int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 629{
 630	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 631		return 0;
 632	return call_int_hook(inode_unlink, 0, dir, dentry);
 633}
 634
 635int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 636			    const char *old_name)
 637{
 638	if (unlikely(IS_PRIVATE(dir)))
 639		return 0;
 640	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
 641}
 642
 643int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 644{
 645	if (unlikely(IS_PRIVATE(dir)))
 646		return 0;
 647	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
 648}
 649EXPORT_SYMBOL_GPL(security_inode_mkdir);
 650
 651int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 652{
 653	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 654		return 0;
 655	return call_int_hook(inode_rmdir, 0, dir, dentry);
 656}
 657
 658int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 659{
 660	if (unlikely(IS_PRIVATE(dir)))
 661		return 0;
 662	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
 663}
 664
 665int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 666			   struct inode *new_dir, struct dentry *new_dentry,
 667			   unsigned int flags)
 668{
 669        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
 670            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
 671		return 0;
 672
 673	if (flags & RENAME_EXCHANGE) {
 674		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
 675						     old_dir, old_dentry);
 676		if (err)
 677			return err;
 678	}
 679
 680	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
 681					   new_dir, new_dentry);
 682}
 683
 684int security_inode_readlink(struct dentry *dentry)
 685{
 686	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 687		return 0;
 688	return call_int_hook(inode_readlink, 0, dentry);
 689}
 690
 691int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
 692			       bool rcu)
 693{
 694	if (unlikely(IS_PRIVATE(inode)))
 695		return 0;
 696	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
 697}
 698
 699int security_inode_permission(struct inode *inode, int mask)
 700{
 701	if (unlikely(IS_PRIVATE(inode)))
 702		return 0;
 703	return call_int_hook(inode_permission, 0, inode, mask);
 704}
 705
 706int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 707{
 708	int ret;
 709
 710	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 711		return 0;
 712	ret = call_int_hook(inode_setattr, 0, dentry, attr);
 713	if (ret)
 714		return ret;
 715	return evm_inode_setattr(dentry, attr);
 716}
 717EXPORT_SYMBOL_GPL(security_inode_setattr);
 718
 719int security_inode_getattr(const struct path *path)
 720{
 721	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
 722		return 0;
 723	return call_int_hook(inode_getattr, 0, path);
 724}
 725
 726int security_inode_setxattr(struct dentry *dentry, const char *name,
 727			    const void *value, size_t size, int flags)
 728{
 729	int ret;
 730
 731	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 732		return 0;
 733	/*
 734	 * SELinux and Smack integrate the cap call,
 735	 * so assume that all LSMs supplying this call do so.
 736	 */
 737	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
 738				flags);
 739
 740	if (ret == 1)
 741		ret = cap_inode_setxattr(dentry, name, value, size, flags);
 742	if (ret)
 743		return ret;
 744	ret = ima_inode_setxattr(dentry, name, value, size);
 745	if (ret)
 746		return ret;
 747	return evm_inode_setxattr(dentry, name, value, size);
 748}
 749
 750void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 751				  const void *value, size_t size, int flags)
 752{
 753	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 754		return;
 755	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
 756	evm_inode_post_setxattr(dentry, name, value, size);
 757}
 758
 759int security_inode_getxattr(struct dentry *dentry, const char *name)
 760{
 761	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 762		return 0;
 763	return call_int_hook(inode_getxattr, 0, dentry, name);
 764}
 765
 766int security_inode_listxattr(struct dentry *dentry)
 767{
 768	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 769		return 0;
 770	return call_int_hook(inode_listxattr, 0, dentry);
 771}
 772
 773int security_inode_removexattr(struct dentry *dentry, const char *name)
 774{
 775	int ret;
 776
 777	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
 778		return 0;
 779	/*
 780	 * SELinux and Smack integrate the cap call,
 781	 * so assume that all LSMs supplying this call do so.
 782	 */
 783	ret = call_int_hook(inode_removexattr, 1, dentry, name);
 784	if (ret == 1)
 785		ret = cap_inode_removexattr(dentry, name);
 786	if (ret)
 787		return ret;
 788	ret = ima_inode_removexattr(dentry, name);
 789	if (ret)
 790		return ret;
 791	return evm_inode_removexattr(dentry, name);
 792}
 793
 794int security_inode_need_killpriv(struct dentry *dentry)
 795{
 796	return call_int_hook(inode_need_killpriv, 0, dentry);
 797}
 798
 799int security_inode_killpriv(struct dentry *dentry)
 800{
 801	return call_int_hook(inode_killpriv, 0, dentry);
 802}
 803
 804int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
 805{
 806	struct security_hook_list *hp;
 807	int rc;
 808
 809	if (unlikely(IS_PRIVATE(inode)))
 810		return -EOPNOTSUPP;
 811	/*
 812	 * Only one module will provide an attribute with a given name.
 813	 */
 814	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
 815		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
 816		if (rc != -EOPNOTSUPP)
 817			return rc;
 818	}
 819	return -EOPNOTSUPP;
 820}
 821
 822int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 823{
 824	struct security_hook_list *hp;
 825	int rc;
 826
 827	if (unlikely(IS_PRIVATE(inode)))
 828		return -EOPNOTSUPP;
 829	/*
 830	 * Only one module will provide an attribute with a given name.
 831	 */
 832	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
 833		rc = hp->hook.inode_setsecurity(inode, name, value, size,
 834								flags);
 835		if (rc != -EOPNOTSUPP)
 836			return rc;
 837	}
 838	return -EOPNOTSUPP;
 839}
 840
 841int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 842{
 843	if (unlikely(IS_PRIVATE(inode)))
 844		return 0;
 845	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
 846}
 847EXPORT_SYMBOL(security_inode_listsecurity);
 848
 849void security_inode_getsecid(struct inode *inode, u32 *secid)
 850{
 851	call_void_hook(inode_getsecid, inode, secid);
 852}
 853
 854int security_inode_copy_up(struct dentry *src, struct cred **new)
 855{
 856	return call_int_hook(inode_copy_up, 0, src, new);
 857}
 858EXPORT_SYMBOL(security_inode_copy_up);
 859
 860int security_inode_copy_up_xattr(const char *name)
 861{
 862	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
 863}
 864EXPORT_SYMBOL(security_inode_copy_up_xattr);
 865
 866int security_file_permission(struct file *file, int mask)
 867{
 868	int ret;
 869
 870	ret = call_int_hook(file_permission, 0, file, mask);
 871	if (ret)
 872		return ret;
 873
 874	return fsnotify_perm(file, mask);
 875}
 876
 877int security_file_alloc(struct file *file)
 878{
 879	return call_int_hook(file_alloc_security, 0, file);
 880}
 881
 882void security_file_free(struct file *file)
 883{
 884	call_void_hook(file_free_security, file);
 885}
 886
 887int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 888{
 889	return call_int_hook(file_ioctl, 0, file, cmd, arg);
 890}
 891
 892static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
 893{
 894	/*
 895	 * Does we have PROT_READ and does the application expect
 896	 * it to imply PROT_EXEC?  If not, nothing to talk about...
 897	 */
 898	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
 899		return prot;
 900	if (!(current->personality & READ_IMPLIES_EXEC))
 901		return prot;
 902	/*
 903	 * if that's an anonymous mapping, let it.
 904	 */
 905	if (!file)
 906		return prot | PROT_EXEC;
 907	/*
 908	 * ditto if it's not on noexec mount, except that on !MMU we need
 909	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
 910	 */
 911	if (!path_noexec(&file->f_path)) {
 912#ifndef CONFIG_MMU
 913		if (file->f_op->mmap_capabilities) {
 914			unsigned caps = file->f_op->mmap_capabilities(file);
 915			if (!(caps & NOMMU_MAP_EXEC))
 916				return prot;
 917		}
 
 918#endif
 919		return prot | PROT_EXEC;
 920	}
 921	/* anything on noexec mount won't get PROT_EXEC */
 922	return prot;
 923}
 924
 925int security_mmap_file(struct file *file, unsigned long prot,
 926			unsigned long flags)
 927{
 928	int ret;
 929	ret = call_int_hook(mmap_file, 0, file, prot,
 930					mmap_prot(file, prot), flags);
 931	if (ret)
 932		return ret;
 933	return ima_file_mmap(file, prot);
 934}
 935
 936int security_mmap_addr(unsigned long addr)
 937{
 938	return call_int_hook(mmap_addr, 0, addr);
 939}
 940
 941int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 942			    unsigned long prot)
 943{
 944	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
 945}
 946
 947int security_file_lock(struct file *file, unsigned int cmd)
 948{
 949	return call_int_hook(file_lock, 0, file, cmd);
 950}
 951
 952int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 953{
 954	return call_int_hook(file_fcntl, 0, file, cmd, arg);
 955}
 956
 957void security_file_set_fowner(struct file *file)
 958{
 959	call_void_hook(file_set_fowner, file);
 960}
 961
 962int security_file_send_sigiotask(struct task_struct *tsk,
 963				  struct fown_struct *fown, int sig)
 964{
 965	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
 966}
 967
 968int security_file_receive(struct file *file)
 969{
 970	return call_int_hook(file_receive, 0, file);
 971}
 972
 973int security_file_open(struct file *file, const struct cred *cred)
 974{
 975	int ret;
 976
 977	ret = call_int_hook(file_open, 0, file, cred);
 978	if (ret)
 979		return ret;
 980
 981	return fsnotify_perm(file, MAY_OPEN);
 982}
 983
 984int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
 985{
 986	return call_int_hook(task_alloc, 0, task, clone_flags);
 987}
 988
 989void security_task_free(struct task_struct *task)
 990{
 991	call_void_hook(task_free, task);
 992}
 993
 994int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 995{
 996	return call_int_hook(cred_alloc_blank, 0, cred, gfp);
 997}
 998
 999void security_cred_free(struct cred *cred)
1000{
1001	call_void_hook(cred_free, cred);
1002}
1003
1004int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1005{
1006	return call_int_hook(cred_prepare, 0, new, old, gfp);
1007}
1008
1009void security_transfer_creds(struct cred *new, const struct cred *old)
1010{
1011	call_void_hook(cred_transfer, new, old);
1012}
1013
1014void security_cred_getsecid(const struct cred *c, u32 *secid)
1015{
1016	*secid = 0;
1017	call_void_hook(cred_getsecid, c, secid);
1018}
1019EXPORT_SYMBOL(security_cred_getsecid);
1020
1021int security_kernel_act_as(struct cred *new, u32 secid)
1022{
1023	return call_int_hook(kernel_act_as, 0, new, secid);
1024}
1025
1026int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1027{
1028	return call_int_hook(kernel_create_files_as, 0, new, inode);
1029}
1030
1031int security_kernel_module_request(char *kmod_name)
1032{
1033	return call_int_hook(kernel_module_request, 0, kmod_name);
1034}
1035
1036int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1037{
1038	int ret;
1039
1040	ret = call_int_hook(kernel_read_file, 0, file, id);
1041	if (ret)
1042		return ret;
1043	return ima_read_file(file, id);
1044}
1045EXPORT_SYMBOL_GPL(security_kernel_read_file);
1046
1047int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1048				   enum kernel_read_file_id id)
1049{
1050	int ret;
1051
1052	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1053	if (ret)
1054		return ret;
1055	return ima_post_read_file(file, buf, size, id);
1056}
1057EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1058
1059int security_task_fix_setuid(struct cred *new, const struct cred *old,
1060			     int flags)
1061{
1062	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1063}
1064
1065int security_task_setpgid(struct task_struct *p, pid_t pgid)
1066{
1067	return call_int_hook(task_setpgid, 0, p, pgid);
1068}
1069
1070int security_task_getpgid(struct task_struct *p)
1071{
1072	return call_int_hook(task_getpgid, 0, p);
1073}
1074
1075int security_task_getsid(struct task_struct *p)
1076{
1077	return call_int_hook(task_getsid, 0, p);
1078}
1079
1080void security_task_getsecid(struct task_struct *p, u32 *secid)
1081{
1082	*secid = 0;
1083	call_void_hook(task_getsecid, p, secid);
1084}
1085EXPORT_SYMBOL(security_task_getsecid);
1086
1087int security_task_setnice(struct task_struct *p, int nice)
1088{
1089	return call_int_hook(task_setnice, 0, p, nice);
1090}
1091
1092int security_task_setioprio(struct task_struct *p, int ioprio)
1093{
1094	return call_int_hook(task_setioprio, 0, p, ioprio);
1095}
1096
1097int security_task_getioprio(struct task_struct *p)
1098{
1099	return call_int_hook(task_getioprio, 0, p);
1100}
1101
1102int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1103			  unsigned int flags)
1104{
1105	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1106}
1107
1108int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1109		struct rlimit *new_rlim)
1110{
1111	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1112}
1113
1114int security_task_setscheduler(struct task_struct *p)
1115{
1116	return call_int_hook(task_setscheduler, 0, p);
1117}
1118
1119int security_task_getscheduler(struct task_struct *p)
1120{
1121	return call_int_hook(task_getscheduler, 0, p);
1122}
1123
1124int security_task_movememory(struct task_struct *p)
1125{
1126	return call_int_hook(task_movememory, 0, p);
1127}
1128
1129int security_task_kill(struct task_struct *p, struct siginfo *info,
1130			int sig, const struct cred *cred)
 
 
 
 
 
1131{
1132	return call_int_hook(task_kill, 0, p, info, sig, cred);
1133}
1134
1135int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1136			 unsigned long arg4, unsigned long arg5)
1137{
1138	int thisrc;
1139	int rc = -ENOSYS;
1140	struct security_hook_list *hp;
1141
1142	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1143		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1144		if (thisrc != -ENOSYS) {
1145			rc = thisrc;
1146			if (thisrc != 0)
1147				break;
1148		}
1149	}
1150	return rc;
1151}
1152
1153void security_task_to_inode(struct task_struct *p, struct inode *inode)
1154{
1155	call_void_hook(task_to_inode, p, inode);
1156}
1157
1158int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1159{
1160	return call_int_hook(ipc_permission, 0, ipcp, flag);
1161}
1162
1163void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1164{
1165	*secid = 0;
1166	call_void_hook(ipc_getsecid, ipcp, secid);
1167}
1168
1169int security_msg_msg_alloc(struct msg_msg *msg)
1170{
1171	return call_int_hook(msg_msg_alloc_security, 0, msg);
1172}
1173
1174void security_msg_msg_free(struct msg_msg *msg)
1175{
1176	call_void_hook(msg_msg_free_security, msg);
1177}
1178
1179int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1180{
1181	return call_int_hook(msg_queue_alloc_security, 0, msq);
1182}
1183
1184void security_msg_queue_free(struct kern_ipc_perm *msq)
1185{
1186	call_void_hook(msg_queue_free_security, msq);
1187}
1188
1189int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1190{
1191	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1192}
1193
1194int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1195{
1196	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1197}
1198
1199int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1200			       struct msg_msg *msg, int msqflg)
1201{
1202	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1203}
1204
1205int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1206			       struct task_struct *target, long type, int mode)
1207{
1208	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1209}
1210
1211int security_shm_alloc(struct kern_ipc_perm *shp)
1212{
1213	return call_int_hook(shm_alloc_security, 0, shp);
1214}
1215
1216void security_shm_free(struct kern_ipc_perm *shp)
1217{
1218	call_void_hook(shm_free_security, shp);
1219}
1220
1221int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1222{
1223	return call_int_hook(shm_associate, 0, shp, shmflg);
1224}
1225
1226int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1227{
1228	return call_int_hook(shm_shmctl, 0, shp, cmd);
1229}
1230
1231int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1232{
1233	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1234}
1235
1236int security_sem_alloc(struct kern_ipc_perm *sma)
1237{
1238	return call_int_hook(sem_alloc_security, 0, sma);
1239}
1240
1241void security_sem_free(struct kern_ipc_perm *sma)
1242{
1243	call_void_hook(sem_free_security, sma);
1244}
1245
1246int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1247{
1248	return call_int_hook(sem_associate, 0, sma, semflg);
1249}
1250
1251int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1252{
1253	return call_int_hook(sem_semctl, 0, sma, cmd);
1254}
1255
1256int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1257			unsigned nsops, int alter)
1258{
1259	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1260}
1261
1262void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1263{
1264	if (unlikely(inode && IS_PRIVATE(inode)))
1265		return;
1266	call_void_hook(d_instantiate, dentry, inode);
1267}
1268EXPORT_SYMBOL(security_d_instantiate);
1269
1270int security_getprocattr(struct task_struct *p, char *name, char **value)
1271{
1272	return call_int_hook(getprocattr, -EINVAL, p, name, value);
1273}
1274
1275int security_setprocattr(const char *name, void *value, size_t size)
1276{
1277	return call_int_hook(setprocattr, -EINVAL, name, value, size);
1278}
1279
1280int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1281{
1282	return call_int_hook(netlink_send, 0, sk, skb);
1283}
1284
1285int security_ismaclabel(const char *name)
1286{
1287	return call_int_hook(ismaclabel, 0, name);
1288}
1289EXPORT_SYMBOL(security_ismaclabel);
1290
1291int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1292{
1293	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1294				seclen);
1295}
1296EXPORT_SYMBOL(security_secid_to_secctx);
1297
1298int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1299{
1300	*secid = 0;
1301	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1302}
1303EXPORT_SYMBOL(security_secctx_to_secid);
1304
1305void security_release_secctx(char *secdata, u32 seclen)
1306{
1307	call_void_hook(release_secctx, secdata, seclen);
1308}
1309EXPORT_SYMBOL(security_release_secctx);
1310
1311void security_inode_invalidate_secctx(struct inode *inode)
1312{
1313	call_void_hook(inode_invalidate_secctx, inode);
1314}
1315EXPORT_SYMBOL(security_inode_invalidate_secctx);
1316
1317int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1318{
1319	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1320}
1321EXPORT_SYMBOL(security_inode_notifysecctx);
1322
1323int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1324{
1325	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1326}
1327EXPORT_SYMBOL(security_inode_setsecctx);
1328
1329int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1330{
1331	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1332}
1333EXPORT_SYMBOL(security_inode_getsecctx);
1334
1335#ifdef CONFIG_SECURITY_NETWORK
1336
1337int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1338{
1339	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1340}
1341EXPORT_SYMBOL(security_unix_stream_connect);
1342
1343int security_unix_may_send(struct socket *sock,  struct socket *other)
1344{
1345	return call_int_hook(unix_may_send, 0, sock, other);
1346}
1347EXPORT_SYMBOL(security_unix_may_send);
1348
1349int security_socket_create(int family, int type, int protocol, int kern)
1350{
1351	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1352}
1353
1354int security_socket_post_create(struct socket *sock, int family,
1355				int type, int protocol, int kern)
1356{
1357	return call_int_hook(socket_post_create, 0, sock, family, type,
1358						protocol, kern);
1359}
1360
1361int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1362{
1363	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1364}
1365
1366int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1367{
1368	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1369}
1370
1371int security_socket_listen(struct socket *sock, int backlog)
1372{
1373	return call_int_hook(socket_listen, 0, sock, backlog);
1374}
1375
1376int security_socket_accept(struct socket *sock, struct socket *newsock)
1377{
1378	return call_int_hook(socket_accept, 0, sock, newsock);
1379}
1380
1381int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1382{
1383	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1384}
1385
1386int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1387			    int size, int flags)
1388{
1389	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1390}
1391
1392int security_socket_getsockname(struct socket *sock)
1393{
1394	return call_int_hook(socket_getsockname, 0, sock);
1395}
1396
1397int security_socket_getpeername(struct socket *sock)
1398{
1399	return call_int_hook(socket_getpeername, 0, sock);
1400}
1401
1402int security_socket_getsockopt(struct socket *sock, int level, int optname)
1403{
1404	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1405}
1406
1407int security_socket_setsockopt(struct socket *sock, int level, int optname)
1408{
1409	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1410}
1411
1412int security_socket_shutdown(struct socket *sock, int how)
1413{
1414	return call_int_hook(socket_shutdown, 0, sock, how);
1415}
1416
1417int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1418{
1419	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1420}
1421EXPORT_SYMBOL(security_sock_rcv_skb);
1422
1423int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1424				      int __user *optlen, unsigned len)
1425{
1426	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1427				optval, optlen, len);
1428}
1429
1430int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1431{
1432	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1433			     skb, secid);
1434}
1435EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1436
1437int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1438{
1439	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1440}
1441
1442void security_sk_free(struct sock *sk)
1443{
1444	call_void_hook(sk_free_security, sk);
1445}
1446
1447void security_sk_clone(const struct sock *sk, struct sock *newsk)
1448{
1449	call_void_hook(sk_clone_security, sk, newsk);
1450}
1451EXPORT_SYMBOL(security_sk_clone);
1452
1453void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1454{
1455	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1456}
1457EXPORT_SYMBOL(security_sk_classify_flow);
1458
1459void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1460{
1461	call_void_hook(req_classify_flow, req, fl);
1462}
1463EXPORT_SYMBOL(security_req_classify_flow);
1464
1465void security_sock_graft(struct sock *sk, struct socket *parent)
1466{
1467	call_void_hook(sock_graft, sk, parent);
1468}
1469EXPORT_SYMBOL(security_sock_graft);
1470
1471int security_inet_conn_request(struct sock *sk,
1472			struct sk_buff *skb, struct request_sock *req)
1473{
1474	return call_int_hook(inet_conn_request, 0, sk, skb, req);
1475}
1476EXPORT_SYMBOL(security_inet_conn_request);
1477
1478void security_inet_csk_clone(struct sock *newsk,
1479			const struct request_sock *req)
1480{
1481	call_void_hook(inet_csk_clone, newsk, req);
1482}
1483
1484void security_inet_conn_established(struct sock *sk,
1485			struct sk_buff *skb)
1486{
1487	call_void_hook(inet_conn_established, sk, skb);
1488}
1489EXPORT_SYMBOL(security_inet_conn_established);
1490
1491int security_secmark_relabel_packet(u32 secid)
1492{
1493	return call_int_hook(secmark_relabel_packet, 0, secid);
1494}
1495EXPORT_SYMBOL(security_secmark_relabel_packet);
1496
1497void security_secmark_refcount_inc(void)
1498{
1499	call_void_hook(secmark_refcount_inc);
1500}
1501EXPORT_SYMBOL(security_secmark_refcount_inc);
1502
1503void security_secmark_refcount_dec(void)
1504{
1505	call_void_hook(secmark_refcount_dec);
1506}
1507EXPORT_SYMBOL(security_secmark_refcount_dec);
1508
1509int security_tun_dev_alloc_security(void **security)
1510{
1511	return call_int_hook(tun_dev_alloc_security, 0, security);
1512}
1513EXPORT_SYMBOL(security_tun_dev_alloc_security);
1514
1515void security_tun_dev_free_security(void *security)
1516{
1517	call_void_hook(tun_dev_free_security, security);
1518}
1519EXPORT_SYMBOL(security_tun_dev_free_security);
1520
1521int security_tun_dev_create(void)
1522{
1523	return call_int_hook(tun_dev_create, 0);
1524}
1525EXPORT_SYMBOL(security_tun_dev_create);
1526
1527int security_tun_dev_attach_queue(void *security)
1528{
1529	return call_int_hook(tun_dev_attach_queue, 0, security);
1530}
1531EXPORT_SYMBOL(security_tun_dev_attach_queue);
1532
1533int security_tun_dev_attach(struct sock *sk, void *security)
1534{
1535	return call_int_hook(tun_dev_attach, 0, sk, security);
1536}
1537EXPORT_SYMBOL(security_tun_dev_attach);
1538
1539int security_tun_dev_open(void *security)
1540{
1541	return call_int_hook(tun_dev_open, 0, security);
1542}
1543EXPORT_SYMBOL(security_tun_dev_open);
1544
1545int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
1546{
1547	return call_int_hook(sctp_assoc_request, 0, ep, skb);
1548}
1549EXPORT_SYMBOL(security_sctp_assoc_request);
1550
1551int security_sctp_bind_connect(struct sock *sk, int optname,
1552			       struct sockaddr *address, int addrlen)
1553{
1554	return call_int_hook(sctp_bind_connect, 0, sk, optname,
1555			     address, addrlen);
1556}
1557EXPORT_SYMBOL(security_sctp_bind_connect);
1558
1559void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
1560			    struct sock *newsk)
1561{
1562	call_void_hook(sctp_sk_clone, ep, sk, newsk);
1563}
1564EXPORT_SYMBOL(security_sctp_sk_clone);
1565
1566#endif	/* CONFIG_SECURITY_NETWORK */
1567
1568#ifdef CONFIG_SECURITY_INFINIBAND
1569
1570int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
1571{
1572	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
1573}
1574EXPORT_SYMBOL(security_ib_pkey_access);
1575
1576int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
1577{
1578	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
1579}
1580EXPORT_SYMBOL(security_ib_endport_manage_subnet);
1581
1582int security_ib_alloc_security(void **sec)
1583{
1584	return call_int_hook(ib_alloc_security, 0, sec);
1585}
1586EXPORT_SYMBOL(security_ib_alloc_security);
1587
1588void security_ib_free_security(void *sec)
1589{
1590	call_void_hook(ib_free_security, sec);
1591}
1592EXPORT_SYMBOL(security_ib_free_security);
1593#endif	/* CONFIG_SECURITY_INFINIBAND */
1594
1595#ifdef CONFIG_SECURITY_NETWORK_XFRM
1596
1597int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1598			       struct xfrm_user_sec_ctx *sec_ctx,
1599			       gfp_t gfp)
1600{
1601	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1602}
1603EXPORT_SYMBOL(security_xfrm_policy_alloc);
1604
1605int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1606			      struct xfrm_sec_ctx **new_ctxp)
1607{
1608	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1609}
1610
1611void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1612{
1613	call_void_hook(xfrm_policy_free_security, ctx);
1614}
1615EXPORT_SYMBOL(security_xfrm_policy_free);
1616
1617int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1618{
1619	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1620}
1621
1622int security_xfrm_state_alloc(struct xfrm_state *x,
1623			      struct xfrm_user_sec_ctx *sec_ctx)
1624{
1625	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1626}
1627EXPORT_SYMBOL(security_xfrm_state_alloc);
1628
1629int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1630				      struct xfrm_sec_ctx *polsec, u32 secid)
1631{
1632	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
 
 
 
 
 
 
1633}
1634
1635int security_xfrm_state_delete(struct xfrm_state *x)
1636{
1637	return call_int_hook(xfrm_state_delete_security, 0, x);
1638}
1639EXPORT_SYMBOL(security_xfrm_state_delete);
1640
1641void security_xfrm_state_free(struct xfrm_state *x)
1642{
1643	call_void_hook(xfrm_state_free_security, x);
1644}
1645
1646int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1647{
1648	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1649}
1650
1651int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1652				       struct xfrm_policy *xp,
1653				       const struct flowi *fl)
1654{
1655	struct security_hook_list *hp;
1656	int rc = 1;
1657
1658	/*
1659	 * Since this function is expected to return 0 or 1, the judgment
1660	 * becomes difficult if multiple LSMs supply this call. Fortunately,
1661	 * we can use the first LSM's judgment because currently only SELinux
1662	 * supplies this call.
1663	 *
1664	 * For speed optimization, we explicitly break the loop rather than
1665	 * using the macro
1666	 */
1667	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1668				list) {
1669		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1670		break;
1671	}
1672	return rc;
1673}
1674
1675int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1676{
1677	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1678}
1679
1680void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1681{
1682	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1683				0);
1684
1685	BUG_ON(rc);
1686}
1687EXPORT_SYMBOL(security_skb_classify_flow);
1688
1689#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1690
1691#ifdef CONFIG_KEYS
1692
1693int security_key_alloc(struct key *key, const struct cred *cred,
1694		       unsigned long flags)
1695{
1696	return call_int_hook(key_alloc, 0, key, cred, flags);
1697}
1698
1699void security_key_free(struct key *key)
1700{
1701	call_void_hook(key_free, key);
1702}
1703
1704int security_key_permission(key_ref_t key_ref,
1705			    const struct cred *cred, unsigned perm)
1706{
1707	return call_int_hook(key_permission, 0, key_ref, cred, perm);
1708}
1709
1710int security_key_getsecurity(struct key *key, char **_buffer)
1711{
1712	*_buffer = NULL;
1713	return call_int_hook(key_getsecurity, 0, key, _buffer);
1714}
1715
1716#endif	/* CONFIG_KEYS */
1717
1718#ifdef CONFIG_AUDIT
1719
1720int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1721{
1722	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1723}
1724
1725int security_audit_rule_known(struct audit_krule *krule)
1726{
1727	return call_int_hook(audit_rule_known, 0, krule);
1728}
1729
1730void security_audit_rule_free(void *lsmrule)
1731{
1732	call_void_hook(audit_rule_free, lsmrule);
1733}
1734
1735int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1736			      struct audit_context *actx)
1737{
1738	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1739				actx);
1740}
 
1741#endif /* CONFIG_AUDIT */
1742
1743#ifdef CONFIG_BPF_SYSCALL
1744int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
1745{
1746	return call_int_hook(bpf, 0, cmd, attr, size);
1747}
1748int security_bpf_map(struct bpf_map *map, fmode_t fmode)
1749{
1750	return call_int_hook(bpf_map, 0, map, fmode);
1751}
1752int security_bpf_prog(struct bpf_prog *prog)
1753{
1754	return call_int_hook(bpf_prog, 0, prog);
1755}
1756int security_bpf_map_alloc(struct bpf_map *map)
1757{
1758	return call_int_hook(bpf_map_alloc_security, 0, map);
1759}
1760int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
1761{
1762	return call_int_hook(bpf_prog_alloc_security, 0, aux);
1763}
1764void security_bpf_map_free(struct bpf_map *map)
1765{
1766	call_void_hook(bpf_map_free_security, map);
1767}
1768void security_bpf_prog_free(struct bpf_prog_aux *aux)
1769{
1770	call_void_hook(bpf_prog_free_security, aux);
1771}
1772#endif /* CONFIG_BPF_SYSCALL */