Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 *
   8 *	This program is free software; you can redistribute it and/or modify
   9 *	it under the terms of the GNU General Public License as published by
  10 *	the Free Software Foundation; either version 2 of the License, or
  11 *	(at your option) any later version.
  12 */
  13
  14#include <linux/capability.h>
 
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/kernel.h>
  18#include <linux/security.h>
  19#include <linux/integrity.h>
  20#include <linux/ima.h>
  21#include <linux/evm.h>
  22#include <linux/fsnotify.h>
  23#include <linux/mman.h>
  24#include <linux/mount.h>
  25#include <linux/personality.h>
  26#include <linux/backing-dev.h>
  27#include <net/flow.h>
  28
  29#define MAX_LSM_EVM_XATTR	2
  30
  31/* Boot-time LSM user choice */
  32static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  33	CONFIG_DEFAULT_SECURITY;
  34
  35static struct security_operations *security_ops;
  36static struct security_operations default_security_ops = {
  37	.name	= "default",
  38};
  39
  40static inline int __init verify(struct security_operations *ops)
  41{
  42	/* verify the security_operations structure exists */
  43	if (!ops)
  44		return -EINVAL;
  45	security_fixup_ops(ops);
  46	return 0;
  47}
  48
  49static void __init do_security_initcalls(void)
  50{
  51	initcall_t *call;
  52	call = __security_initcall_start;
  53	while (call < __security_initcall_end) {
  54		(*call) ();
  55		call++;
  56	}
  57}
  58
  59/**
  60 * security_init - initializes the security framework
  61 *
  62 * This should be called early in the kernel initialization sequence.
  63 */
  64int __init security_init(void)
  65{
  66	printk(KERN_INFO "Security Framework initialized\n");
  67
  68	security_fixup_ops(&default_security_ops);
  69	security_ops = &default_security_ops;
  70	do_security_initcalls();
  71
  72	return 0;
  73}
  74
  75void reset_security_ops(void)
  76{
  77	security_ops = &default_security_ops;
  78}
  79
  80/* Save user chosen LSM */
  81static int __init choose_lsm(char *str)
  82{
  83	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  84	return 1;
  85}
  86__setup("security=", choose_lsm);
  87
  88/**
  89 * security_module_enable - Load given security module on boot ?
  90 * @ops: a pointer to the struct security_operations that is to be checked.
  91 *
  92 * Each LSM must pass this method before registering its own operations
  93 * to avoid security registration races. This method may also be used
  94 * to check if your LSM is currently loaded during kernel initialization.
  95 *
  96 * Return true if:
  97 *	-The passed LSM is the one chosen by user at boot time,
  98 *	-or the passed LSM is configured as the default and the user did not
  99 *	 choose an alternate LSM at boot time.
 100 * Otherwise, return false.
 101 */
 102int __init security_module_enable(struct security_operations *ops)
 103{
 104	return !strcmp(ops->name, chosen_lsm);
 105}
 106
 107/**
 108 * register_security - registers a security framework with the kernel
 109 * @ops: a pointer to the struct security_options that is to be registered
 110 *
 111 * This function allows a security module to register itself with the
 112 * kernel security subsystem.  Some rudimentary checking is done on the @ops
 113 * value passed to this function. You'll need to check first if your LSM
 114 * is allowed to register its @ops by calling security_module_enable(@ops).
 115 *
 116 * If there is already a security module registered with the kernel,
 117 * an error will be returned.  Otherwise %0 is returned on success.
 118 */
 119int __init register_security(struct security_operations *ops)
 120{
 121	if (verify(ops)) {
 122		printk(KERN_DEBUG "%s could not verify "
 123		       "security_operations structure.\n", __func__);
 124		return -EINVAL;
 125	}
 126
 127	if (security_ops != &default_security_ops)
 128		return -EAGAIN;
 129
 130	security_ops = ops;
 131
 132	return 0;
 133}
 134
 135/* Security operations */
 136
 137int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 138{
 
 
 
 
 
 
 139	return security_ops->ptrace_access_check(child, mode);
 140}
 141
 142int security_ptrace_traceme(struct task_struct *parent)
 143{
 
 
 
 
 
 
 144	return security_ops->ptrace_traceme(parent);
 145}
 146
 147int security_capget(struct task_struct *target,
 148		     kernel_cap_t *effective,
 149		     kernel_cap_t *inheritable,
 150		     kernel_cap_t *permitted)
 151{
 152	return security_ops->capget(target, effective, inheritable, permitted);
 153}
 154
 155int security_capset(struct cred *new, const struct cred *old,
 156		    const kernel_cap_t *effective,
 157		    const kernel_cap_t *inheritable,
 158		    const kernel_cap_t *permitted)
 159{
 160	return security_ops->capset(new, old,
 161				    effective, inheritable, permitted);
 162}
 163
 164int security_capable(const struct cred *cred, struct user_namespace *ns,
 165		     int cap)
 166{
 167	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
 168}
 169
 170int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
 171			     int cap)
 172{
 173	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
 174}
 175
 176int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 177{
 178	return security_ops->quotactl(cmds, type, id, sb);
 179}
 180
 181int security_quota_on(struct dentry *dentry)
 182{
 183	return security_ops->quota_on(dentry);
 184}
 185
 186int security_syslog(int type)
 187{
 188	return security_ops->syslog(type);
 189}
 190
 191int security_settime(const struct timespec *ts, const struct timezone *tz)
 192{
 193	return security_ops->settime(ts, tz);
 194}
 195
 196int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 197{
 198	return security_ops->vm_enough_memory(mm, pages);
 199}
 200
 201int security_bprm_set_creds(struct linux_binprm *bprm)
 202{
 203	return security_ops->bprm_set_creds(bprm);
 204}
 205
 206int security_bprm_check(struct linux_binprm *bprm)
 207{
 208	int ret;
 209
 210	ret = security_ops->bprm_check_security(bprm);
 211	if (ret)
 212		return ret;
 213	return ima_bprm_check(bprm);
 214}
 215
 216void security_bprm_committing_creds(struct linux_binprm *bprm)
 217{
 218	security_ops->bprm_committing_creds(bprm);
 219}
 220
 221void security_bprm_committed_creds(struct linux_binprm *bprm)
 222{
 223	security_ops->bprm_committed_creds(bprm);
 224}
 225
 226int security_bprm_secureexec(struct linux_binprm *bprm)
 227{
 228	return security_ops->bprm_secureexec(bprm);
 229}
 230
 231int security_sb_alloc(struct super_block *sb)
 232{
 233	return security_ops->sb_alloc_security(sb);
 234}
 235
 236void security_sb_free(struct super_block *sb)
 237{
 238	security_ops->sb_free_security(sb);
 239}
 240
 241int security_sb_copy_data(char *orig, char *copy)
 242{
 243	return security_ops->sb_copy_data(orig, copy);
 244}
 245EXPORT_SYMBOL(security_sb_copy_data);
 246
 247int security_sb_remount(struct super_block *sb, void *data)
 248{
 249	return security_ops->sb_remount(sb, data);
 250}
 251
 252int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 253{
 254	return security_ops->sb_kern_mount(sb, flags, data);
 255}
 256
 257int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 258{
 259	return security_ops->sb_show_options(m, sb);
 260}
 261
 262int security_sb_statfs(struct dentry *dentry)
 263{
 264	return security_ops->sb_statfs(dentry);
 265}
 266
 267int security_sb_mount(char *dev_name, struct path *path,
 268                       char *type, unsigned long flags, void *data)
 269{
 270	return security_ops->sb_mount(dev_name, path, type, flags, data);
 271}
 272
 273int security_sb_umount(struct vfsmount *mnt, int flags)
 274{
 275	return security_ops->sb_umount(mnt, flags);
 276}
 277
 278int security_sb_pivotroot(struct path *old_path, struct path *new_path)
 279{
 280	return security_ops->sb_pivotroot(old_path, new_path);
 281}
 282
 283int security_sb_set_mnt_opts(struct super_block *sb,
 284				struct security_mnt_opts *opts)
 
 
 285{
 286	return security_ops->sb_set_mnt_opts(sb, opts);
 
 287}
 288EXPORT_SYMBOL(security_sb_set_mnt_opts);
 289
 290void security_sb_clone_mnt_opts(const struct super_block *oldsb,
 291				struct super_block *newsb)
 292{
 293	security_ops->sb_clone_mnt_opts(oldsb, newsb);
 294}
 295EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 296
 297int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 298{
 299	return security_ops->sb_parse_opts_str(options, opts);
 300}
 301EXPORT_SYMBOL(security_sb_parse_opts_str);
 302
 303int security_inode_alloc(struct inode *inode)
 304{
 305	inode->i_security = NULL;
 306	return security_ops->inode_alloc_security(inode);
 307}
 308
 309void security_inode_free(struct inode *inode)
 310{
 311	integrity_inode_free(inode);
 312	security_ops->inode_free_security(inode);
 313}
 314
 
 
 
 
 
 
 
 
 
 315int security_inode_init_security(struct inode *inode, struct inode *dir,
 316				 const struct qstr *qstr,
 317				 const initxattrs initxattrs, void *fs_data)
 318{
 319	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 320	struct xattr *lsm_xattr, *evm_xattr, *xattr;
 321	int ret;
 322
 323	if (unlikely(IS_PRIVATE(inode)))
 324		return 0;
 325
 326	memset(new_xattrs, 0, sizeof new_xattrs);
 327	if (!initxattrs)
 328		return security_ops->inode_init_security(inode, dir, qstr,
 329							 NULL, NULL, NULL);
 
 330	lsm_xattr = new_xattrs;
 331	ret = security_ops->inode_init_security(inode, dir, qstr,
 332						&lsm_xattr->name,
 333						&lsm_xattr->value,
 334						&lsm_xattr->value_len);
 335	if (ret)
 336		goto out;
 337
 338	evm_xattr = lsm_xattr + 1;
 339	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 340	if (ret)
 341		goto out;
 342	ret = initxattrs(inode, new_xattrs, fs_data);
 343out:
 344	for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
 345		kfree(xattr->name);
 346		kfree(xattr->value);
 347	}
 348	return (ret == -EOPNOTSUPP) ? 0 : ret;
 349}
 350EXPORT_SYMBOL(security_inode_init_security);
 351
 352int security_old_inode_init_security(struct inode *inode, struct inode *dir,
 353				     const struct qstr *qstr, char **name,
 354				     void **value, size_t *len)
 355{
 356	if (unlikely(IS_PRIVATE(inode)))
 357		return -EOPNOTSUPP;
 358	return security_ops->inode_init_security(inode, dir, qstr, name, value,
 359						 len);
 360}
 361EXPORT_SYMBOL(security_old_inode_init_security);
 362
 363#ifdef CONFIG_SECURITY_PATH
 364int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
 365			unsigned int dev)
 366{
 367	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 368		return 0;
 369	return security_ops->path_mknod(dir, dentry, mode, dev);
 370}
 371EXPORT_SYMBOL(security_path_mknod);
 372
 373int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
 374{
 375	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 376		return 0;
 377	return security_ops->path_mkdir(dir, dentry, mode);
 378}
 379EXPORT_SYMBOL(security_path_mkdir);
 380
 381int security_path_rmdir(struct path *dir, struct dentry *dentry)
 382{
 383	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 384		return 0;
 385	return security_ops->path_rmdir(dir, dentry);
 386}
 387
 388int security_path_unlink(struct path *dir, struct dentry *dentry)
 389{
 390	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 391		return 0;
 392	return security_ops->path_unlink(dir, dentry);
 393}
 394EXPORT_SYMBOL(security_path_unlink);
 395
 396int security_path_symlink(struct path *dir, struct dentry *dentry,
 397			  const char *old_name)
 398{
 399	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 400		return 0;
 401	return security_ops->path_symlink(dir, dentry, old_name);
 402}
 403
 404int security_path_link(struct dentry *old_dentry, struct path *new_dir,
 405		       struct dentry *new_dentry)
 406{
 407	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 408		return 0;
 409	return security_ops->path_link(old_dentry, new_dir, new_dentry);
 410}
 411
 412int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
 413			 struct path *new_dir, struct dentry *new_dentry)
 
 414{
 415	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 416		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 417		return 0;
 
 
 
 
 
 
 
 
 418	return security_ops->path_rename(old_dir, old_dentry, new_dir,
 419					 new_dentry);
 420}
 421EXPORT_SYMBOL(security_path_rename);
 422
 423int security_path_truncate(struct path *path)
 424{
 425	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 426		return 0;
 427	return security_ops->path_truncate(path);
 428}
 429
 430int security_path_chmod(struct path *path, umode_t mode)
 431{
 432	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 433		return 0;
 434	return security_ops->path_chmod(path, mode);
 435}
 436
 437int security_path_chown(struct path *path, uid_t uid, gid_t gid)
 438{
 439	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 440		return 0;
 441	return security_ops->path_chown(path, uid, gid);
 442}
 443
 444int security_path_chroot(struct path *path)
 445{
 446	return security_ops->path_chroot(path);
 447}
 448#endif
 449
 450int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
 451{
 452	if (unlikely(IS_PRIVATE(dir)))
 453		return 0;
 454	return security_ops->inode_create(dir, dentry, mode);
 455}
 456EXPORT_SYMBOL_GPL(security_inode_create);
 457
 458int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 459			 struct dentry *new_dentry)
 460{
 461	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 462		return 0;
 463	return security_ops->inode_link(old_dentry, dir, new_dentry);
 464}
 465
 466int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 467{
 468	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 469		return 0;
 470	return security_ops->inode_unlink(dir, dentry);
 471}
 472
 473int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 474			    const char *old_name)
 475{
 476	if (unlikely(IS_PRIVATE(dir)))
 477		return 0;
 478	return security_ops->inode_symlink(dir, dentry, old_name);
 479}
 480
 481int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 482{
 483	if (unlikely(IS_PRIVATE(dir)))
 484		return 0;
 485	return security_ops->inode_mkdir(dir, dentry, mode);
 486}
 487EXPORT_SYMBOL_GPL(security_inode_mkdir);
 488
 489int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 490{
 491	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 492		return 0;
 493	return security_ops->inode_rmdir(dir, dentry);
 494}
 495
 496int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 497{
 498	if (unlikely(IS_PRIVATE(dir)))
 499		return 0;
 500	return security_ops->inode_mknod(dir, dentry, mode, dev);
 501}
 502
 503int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 504			   struct inode *new_dir, struct dentry *new_dentry)
 
 505{
 506        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 507            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 508		return 0;
 
 
 
 
 
 
 
 
 509	return security_ops->inode_rename(old_dir, old_dentry,
 510					   new_dir, new_dentry);
 511}
 512
 513int security_inode_readlink(struct dentry *dentry)
 514{
 515	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 516		return 0;
 517	return security_ops->inode_readlink(dentry);
 518}
 519
 520int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
 521{
 522	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 523		return 0;
 524	return security_ops->inode_follow_link(dentry, nd);
 525}
 526
 527int security_inode_permission(struct inode *inode, int mask)
 528{
 529	if (unlikely(IS_PRIVATE(inode)))
 530		return 0;
 531	return security_ops->inode_permission(inode, mask);
 532}
 533
 534int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 535{
 536	int ret;
 537
 538	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 539		return 0;
 540	ret = security_ops->inode_setattr(dentry, attr);
 541	if (ret)
 542		return ret;
 543	return evm_inode_setattr(dentry, attr);
 544}
 545EXPORT_SYMBOL_GPL(security_inode_setattr);
 546
 547int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
 548{
 549	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 550		return 0;
 551	return security_ops->inode_getattr(mnt, dentry);
 552}
 553
 554int security_inode_setxattr(struct dentry *dentry, const char *name,
 555			    const void *value, size_t size, int flags)
 556{
 557	int ret;
 558
 559	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 560		return 0;
 561	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
 562	if (ret)
 563		return ret;
 
 
 
 564	return evm_inode_setxattr(dentry, name, value, size);
 565}
 566
 567void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 568				  const void *value, size_t size, int flags)
 569{
 570	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 571		return;
 572	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
 573	evm_inode_post_setxattr(dentry, name, value, size);
 574}
 575
 576int security_inode_getxattr(struct dentry *dentry, const char *name)
 577{
 578	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 579		return 0;
 580	return security_ops->inode_getxattr(dentry, name);
 581}
 582
 583int security_inode_listxattr(struct dentry *dentry)
 584{
 585	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 586		return 0;
 587	return security_ops->inode_listxattr(dentry);
 588}
 589
 590int security_inode_removexattr(struct dentry *dentry, const char *name)
 591{
 592	int ret;
 593
 594	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 595		return 0;
 596	ret = security_ops->inode_removexattr(dentry, name);
 597	if (ret)
 598		return ret;
 
 
 
 599	return evm_inode_removexattr(dentry, name);
 600}
 601
 602int security_inode_need_killpriv(struct dentry *dentry)
 603{
 604	return security_ops->inode_need_killpriv(dentry);
 605}
 606
 607int security_inode_killpriv(struct dentry *dentry)
 608{
 609	return security_ops->inode_killpriv(dentry);
 610}
 611
 612int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 613{
 614	if (unlikely(IS_PRIVATE(inode)))
 615		return -EOPNOTSUPP;
 616	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
 617}
 618
 619int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 620{
 621	if (unlikely(IS_PRIVATE(inode)))
 622		return -EOPNOTSUPP;
 623	return security_ops->inode_setsecurity(inode, name, value, size, flags);
 624}
 625
 626int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 627{
 628	if (unlikely(IS_PRIVATE(inode)))
 629		return 0;
 630	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
 631}
 
 632
 633void security_inode_getsecid(const struct inode *inode, u32 *secid)
 634{
 635	security_ops->inode_getsecid(inode, secid);
 636}
 637
 638int security_file_permission(struct file *file, int mask)
 639{
 640	int ret;
 641
 642	ret = security_ops->file_permission(file, mask);
 643	if (ret)
 644		return ret;
 645
 646	return fsnotify_perm(file, mask);
 647}
 648
 649int security_file_alloc(struct file *file)
 650{
 651	return security_ops->file_alloc_security(file);
 652}
 653
 654void security_file_free(struct file *file)
 655{
 656	security_ops->file_free_security(file);
 657}
 658
 659int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 660{
 661	return security_ops->file_ioctl(file, cmd, arg);
 662}
 663
 664static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
 665{
 666	/*
 667	 * Does we have PROT_READ and does the application expect
 668	 * it to imply PROT_EXEC?  If not, nothing to talk about...
 669	 */
 670	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
 671		return prot;
 672	if (!(current->personality & READ_IMPLIES_EXEC))
 673		return prot;
 674	/*
 675	 * if that's an anonymous mapping, let it.
 676	 */
 677	if (!file)
 678		return prot | PROT_EXEC;
 679	/*
 680	 * ditto if it's not on noexec mount, except that on !MMU we need
 681	 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
 682	 */
 683	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
 684#ifndef CONFIG_MMU
 685		unsigned long caps = 0;
 686		struct address_space *mapping = file->f_mapping;
 687		if (mapping && mapping->backing_dev_info)
 688			caps = mapping->backing_dev_info->capabilities;
 689		if (!(caps & BDI_CAP_EXEC_MAP))
 690			return prot;
 691#endif
 692		return prot | PROT_EXEC;
 693	}
 694	/* anything on noexec mount won't get PROT_EXEC */
 695	return prot;
 696}
 697
 698int security_mmap_file(struct file *file, unsigned long prot,
 699			unsigned long flags)
 700{
 701	int ret;
 702	ret = security_ops->mmap_file(file, prot,
 703					mmap_prot(file, prot), flags);
 704	if (ret)
 705		return ret;
 706	return ima_file_mmap(file, prot);
 707}
 708
 709int security_mmap_addr(unsigned long addr)
 710{
 711	return security_ops->mmap_addr(addr);
 712}
 713
 714int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 715			    unsigned long prot)
 716{
 717	return security_ops->file_mprotect(vma, reqprot, prot);
 718}
 719
 720int security_file_lock(struct file *file, unsigned int cmd)
 721{
 722	return security_ops->file_lock(file, cmd);
 723}
 724
 725int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 726{
 727	return security_ops->file_fcntl(file, cmd, arg);
 728}
 729
 730int security_file_set_fowner(struct file *file)
 731{
 732	return security_ops->file_set_fowner(file);
 733}
 734
 735int security_file_send_sigiotask(struct task_struct *tsk,
 736				  struct fown_struct *fown, int sig)
 737{
 738	return security_ops->file_send_sigiotask(tsk, fown, sig);
 739}
 740
 741int security_file_receive(struct file *file)
 742{
 743	return security_ops->file_receive(file);
 744}
 745
 746int security_file_open(struct file *file, const struct cred *cred)
 747{
 748	int ret;
 749
 750	ret = security_ops->file_open(file, cred);
 751	if (ret)
 752		return ret;
 753
 754	return fsnotify_perm(file, MAY_OPEN);
 755}
 756
 757int security_task_create(unsigned long clone_flags)
 758{
 759	return security_ops->task_create(clone_flags);
 760}
 761
 762void security_task_free(struct task_struct *task)
 763{
 
 
 
 764	security_ops->task_free(task);
 765}
 766
 767int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 768{
 769	return security_ops->cred_alloc_blank(cred, gfp);
 770}
 771
 772void security_cred_free(struct cred *cred)
 773{
 774	security_ops->cred_free(cred);
 775}
 776
 777int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
 778{
 779	return security_ops->cred_prepare(new, old, gfp);
 780}
 781
 782void security_transfer_creds(struct cred *new, const struct cred *old)
 783{
 784	security_ops->cred_transfer(new, old);
 785}
 786
 787int security_kernel_act_as(struct cred *new, u32 secid)
 788{
 789	return security_ops->kernel_act_as(new, secid);
 790}
 791
 792int security_kernel_create_files_as(struct cred *new, struct inode *inode)
 793{
 794	return security_ops->kernel_create_files_as(new, inode);
 795}
 796
 797int security_kernel_module_request(char *kmod_name)
 798{
 799	return security_ops->kernel_module_request(kmod_name);
 800}
 801
 
 
 
 
 
 
 
 
 
 
 802int security_task_fix_setuid(struct cred *new, const struct cred *old,
 803			     int flags)
 804{
 805	return security_ops->task_fix_setuid(new, old, flags);
 806}
 807
 808int security_task_setpgid(struct task_struct *p, pid_t pgid)
 809{
 810	return security_ops->task_setpgid(p, pgid);
 811}
 812
 813int security_task_getpgid(struct task_struct *p)
 814{
 815	return security_ops->task_getpgid(p);
 816}
 817
 818int security_task_getsid(struct task_struct *p)
 819{
 820	return security_ops->task_getsid(p);
 821}
 822
 823void security_task_getsecid(struct task_struct *p, u32 *secid)
 824{
 825	security_ops->task_getsecid(p, secid);
 826}
 827EXPORT_SYMBOL(security_task_getsecid);
 828
 829int security_task_setnice(struct task_struct *p, int nice)
 830{
 831	return security_ops->task_setnice(p, nice);
 832}
 833
 834int security_task_setioprio(struct task_struct *p, int ioprio)
 835{
 836	return security_ops->task_setioprio(p, ioprio);
 837}
 838
 839int security_task_getioprio(struct task_struct *p)
 840{
 841	return security_ops->task_getioprio(p);
 842}
 843
 844int security_task_setrlimit(struct task_struct *p, unsigned int resource,
 845		struct rlimit *new_rlim)
 846{
 847	return security_ops->task_setrlimit(p, resource, new_rlim);
 848}
 849
 850int security_task_setscheduler(struct task_struct *p)
 851{
 852	return security_ops->task_setscheduler(p);
 853}
 854
 855int security_task_getscheduler(struct task_struct *p)
 856{
 857	return security_ops->task_getscheduler(p);
 858}
 859
 860int security_task_movememory(struct task_struct *p)
 861{
 862	return security_ops->task_movememory(p);
 863}
 864
 865int security_task_kill(struct task_struct *p, struct siginfo *info,
 866			int sig, u32 secid)
 867{
 868	return security_ops->task_kill(p, info, sig, secid);
 869}
 870
 871int security_task_wait(struct task_struct *p)
 872{
 873	return security_ops->task_wait(p);
 874}
 875
 876int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 877			 unsigned long arg4, unsigned long arg5)
 878{
 
 
 
 
 
 
 879	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
 880}
 881
 882void security_task_to_inode(struct task_struct *p, struct inode *inode)
 883{
 884	security_ops->task_to_inode(p, inode);
 885}
 886
 887int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
 888{
 889	return security_ops->ipc_permission(ipcp, flag);
 890}
 891
 892void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 893{
 894	security_ops->ipc_getsecid(ipcp, secid);
 895}
 896
 897int security_msg_msg_alloc(struct msg_msg *msg)
 898{
 899	return security_ops->msg_msg_alloc_security(msg);
 900}
 901
 902void security_msg_msg_free(struct msg_msg *msg)
 903{
 904	security_ops->msg_msg_free_security(msg);
 905}
 906
 907int security_msg_queue_alloc(struct msg_queue *msq)
 908{
 909	return security_ops->msg_queue_alloc_security(msq);
 910}
 911
 912void security_msg_queue_free(struct msg_queue *msq)
 913{
 914	security_ops->msg_queue_free_security(msq);
 915}
 916
 917int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
 918{
 919	return security_ops->msg_queue_associate(msq, msqflg);
 920}
 921
 922int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
 923{
 924	return security_ops->msg_queue_msgctl(msq, cmd);
 925}
 926
 927int security_msg_queue_msgsnd(struct msg_queue *msq,
 928			       struct msg_msg *msg, int msqflg)
 929{
 930	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
 931}
 932
 933int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
 934			       struct task_struct *target, long type, int mode)
 935{
 936	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
 937}
 938
 939int security_shm_alloc(struct shmid_kernel *shp)
 940{
 941	return security_ops->shm_alloc_security(shp);
 942}
 943
 944void security_shm_free(struct shmid_kernel *shp)
 945{
 946	security_ops->shm_free_security(shp);
 947}
 948
 949int security_shm_associate(struct shmid_kernel *shp, int shmflg)
 950{
 951	return security_ops->shm_associate(shp, shmflg);
 952}
 953
 954int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
 955{
 956	return security_ops->shm_shmctl(shp, cmd);
 957}
 958
 959int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
 960{
 961	return security_ops->shm_shmat(shp, shmaddr, shmflg);
 962}
 963
 964int security_sem_alloc(struct sem_array *sma)
 965{
 966	return security_ops->sem_alloc_security(sma);
 967}
 968
 969void security_sem_free(struct sem_array *sma)
 970{
 971	security_ops->sem_free_security(sma);
 972}
 973
 974int security_sem_associate(struct sem_array *sma, int semflg)
 975{
 976	return security_ops->sem_associate(sma, semflg);
 977}
 978
 979int security_sem_semctl(struct sem_array *sma, int cmd)
 980{
 981	return security_ops->sem_semctl(sma, cmd);
 982}
 983
 984int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
 985			unsigned nsops, int alter)
 986{
 987	return security_ops->sem_semop(sma, sops, nsops, alter);
 988}
 989
 990void security_d_instantiate(struct dentry *dentry, struct inode *inode)
 991{
 992	if (unlikely(inode && IS_PRIVATE(inode)))
 993		return;
 994	security_ops->d_instantiate(dentry, inode);
 995}
 996EXPORT_SYMBOL(security_d_instantiate);
 997
 998int security_getprocattr(struct task_struct *p, char *name, char **value)
 999{
1000	return security_ops->getprocattr(p, name, value);
1001}
1002
1003int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1004{
1005	return security_ops->setprocattr(p, name, value, size);
1006}
1007
1008int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1009{
1010	return security_ops->netlink_send(sk, skb);
1011}
1012
 
 
 
 
 
 
1013int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1014{
1015	return security_ops->secid_to_secctx(secid, secdata, seclen);
1016}
1017EXPORT_SYMBOL(security_secid_to_secctx);
1018
1019int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1020{
1021	return security_ops->secctx_to_secid(secdata, seclen, secid);
1022}
1023EXPORT_SYMBOL(security_secctx_to_secid);
1024
1025void security_release_secctx(char *secdata, u32 seclen)
1026{
1027	security_ops->release_secctx(secdata, seclen);
1028}
1029EXPORT_SYMBOL(security_release_secctx);
1030
1031int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1032{
1033	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1034}
1035EXPORT_SYMBOL(security_inode_notifysecctx);
1036
1037int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1038{
1039	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1040}
1041EXPORT_SYMBOL(security_inode_setsecctx);
1042
1043int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1044{
1045	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1046}
1047EXPORT_SYMBOL(security_inode_getsecctx);
1048
1049#ifdef CONFIG_SECURITY_NETWORK
1050
1051int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1052{
1053	return security_ops->unix_stream_connect(sock, other, newsk);
1054}
1055EXPORT_SYMBOL(security_unix_stream_connect);
1056
1057int security_unix_may_send(struct socket *sock,  struct socket *other)
1058{
1059	return security_ops->unix_may_send(sock, other);
1060}
1061EXPORT_SYMBOL(security_unix_may_send);
1062
1063int security_socket_create(int family, int type, int protocol, int kern)
1064{
1065	return security_ops->socket_create(family, type, protocol, kern);
1066}
1067
1068int security_socket_post_create(struct socket *sock, int family,
1069				int type, int protocol, int kern)
1070{
1071	return security_ops->socket_post_create(sock, family, type,
1072						protocol, kern);
1073}
1074
1075int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1076{
1077	return security_ops->socket_bind(sock, address, addrlen);
1078}
1079
1080int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1081{
1082	return security_ops->socket_connect(sock, address, addrlen);
1083}
1084
1085int security_socket_listen(struct socket *sock, int backlog)
1086{
1087	return security_ops->socket_listen(sock, backlog);
1088}
1089
1090int security_socket_accept(struct socket *sock, struct socket *newsock)
1091{
1092	return security_ops->socket_accept(sock, newsock);
1093}
1094
1095int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1096{
1097	return security_ops->socket_sendmsg(sock, msg, size);
1098}
1099
1100int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1101			    int size, int flags)
1102{
1103	return security_ops->socket_recvmsg(sock, msg, size, flags);
1104}
1105
1106int security_socket_getsockname(struct socket *sock)
1107{
1108	return security_ops->socket_getsockname(sock);
1109}
1110
1111int security_socket_getpeername(struct socket *sock)
1112{
1113	return security_ops->socket_getpeername(sock);
1114}
1115
1116int security_socket_getsockopt(struct socket *sock, int level, int optname)
1117{
1118	return security_ops->socket_getsockopt(sock, level, optname);
1119}
1120
1121int security_socket_setsockopt(struct socket *sock, int level, int optname)
1122{
1123	return security_ops->socket_setsockopt(sock, level, optname);
1124}
1125
1126int security_socket_shutdown(struct socket *sock, int how)
1127{
1128	return security_ops->socket_shutdown(sock, how);
1129}
1130
1131int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1132{
1133	return security_ops->socket_sock_rcv_skb(sk, skb);
1134}
1135EXPORT_SYMBOL(security_sock_rcv_skb);
1136
1137int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1138				      int __user *optlen, unsigned len)
1139{
1140	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1141}
1142
1143int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1144{
1145	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1146}
1147EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1148
1149int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1150{
1151	return security_ops->sk_alloc_security(sk, family, priority);
1152}
1153
1154void security_sk_free(struct sock *sk)
1155{
1156	security_ops->sk_free_security(sk);
1157}
1158
1159void security_sk_clone(const struct sock *sk, struct sock *newsk)
1160{
1161	security_ops->sk_clone_security(sk, newsk);
1162}
1163EXPORT_SYMBOL(security_sk_clone);
1164
1165void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1166{
1167	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1168}
1169EXPORT_SYMBOL(security_sk_classify_flow);
1170
1171void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1172{
1173	security_ops->req_classify_flow(req, fl);
1174}
1175EXPORT_SYMBOL(security_req_classify_flow);
1176
1177void security_sock_graft(struct sock *sk, struct socket *parent)
1178{
1179	security_ops->sock_graft(sk, parent);
1180}
1181EXPORT_SYMBOL(security_sock_graft);
1182
1183int security_inet_conn_request(struct sock *sk,
1184			struct sk_buff *skb, struct request_sock *req)
1185{
1186	return security_ops->inet_conn_request(sk, skb, req);
1187}
1188EXPORT_SYMBOL(security_inet_conn_request);
1189
1190void security_inet_csk_clone(struct sock *newsk,
1191			const struct request_sock *req)
1192{
1193	security_ops->inet_csk_clone(newsk, req);
1194}
1195
1196void security_inet_conn_established(struct sock *sk,
1197			struct sk_buff *skb)
1198{
1199	security_ops->inet_conn_established(sk, skb);
1200}
1201
1202int security_secmark_relabel_packet(u32 secid)
1203{
1204	return security_ops->secmark_relabel_packet(secid);
1205}
1206EXPORT_SYMBOL(security_secmark_relabel_packet);
1207
1208void security_secmark_refcount_inc(void)
1209{
1210	security_ops->secmark_refcount_inc();
1211}
1212EXPORT_SYMBOL(security_secmark_refcount_inc);
1213
1214void security_secmark_refcount_dec(void)
1215{
1216	security_ops->secmark_refcount_dec();
1217}
1218EXPORT_SYMBOL(security_secmark_refcount_dec);
1219
 
 
 
 
 
 
 
 
 
 
 
 
1220int security_tun_dev_create(void)
1221{
1222	return security_ops->tun_dev_create();
1223}
1224EXPORT_SYMBOL(security_tun_dev_create);
1225
1226void security_tun_dev_post_create(struct sock *sk)
1227{
1228	return security_ops->tun_dev_post_create(sk);
1229}
1230EXPORT_SYMBOL(security_tun_dev_post_create);
1231
1232int security_tun_dev_attach(struct sock *sk)
1233{
1234	return security_ops->tun_dev_attach(sk);
1235}
1236EXPORT_SYMBOL(security_tun_dev_attach);
1237
 
 
 
 
 
 
 
 
 
 
 
1238#endif	/* CONFIG_SECURITY_NETWORK */
1239
1240#ifdef CONFIG_SECURITY_NETWORK_XFRM
1241
1242int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
 
 
1243{
1244	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1245}
1246EXPORT_SYMBOL(security_xfrm_policy_alloc);
1247
1248int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1249			      struct xfrm_sec_ctx **new_ctxp)
1250{
1251	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1252}
1253
1254void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1255{
1256	security_ops->xfrm_policy_free_security(ctx);
1257}
1258EXPORT_SYMBOL(security_xfrm_policy_free);
1259
1260int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1261{
1262	return security_ops->xfrm_policy_delete_security(ctx);
1263}
1264
1265int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
 
1266{
1267	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1268}
1269EXPORT_SYMBOL(security_xfrm_state_alloc);
1270
1271int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1272				      struct xfrm_sec_ctx *polsec, u32 secid)
1273{
1274	if (!polsec)
1275		return 0;
1276	/*
1277	 * We want the context to be taken from secid which is usually
1278	 * from the sock.
1279	 */
1280	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1281}
1282
1283int security_xfrm_state_delete(struct xfrm_state *x)
1284{
1285	return security_ops->xfrm_state_delete_security(x);
1286}
1287EXPORT_SYMBOL(security_xfrm_state_delete);
1288
1289void security_xfrm_state_free(struct xfrm_state *x)
1290{
1291	security_ops->xfrm_state_free_security(x);
1292}
1293
1294int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1295{
1296	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1297}
1298
1299int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1300				       struct xfrm_policy *xp,
1301				       const struct flowi *fl)
1302{
1303	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1304}
1305
1306int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1307{
1308	return security_ops->xfrm_decode_session(skb, secid, 1);
1309}
1310
1311void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1312{
1313	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1314
1315	BUG_ON(rc);
1316}
1317EXPORT_SYMBOL(security_skb_classify_flow);
1318
1319#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1320
1321#ifdef CONFIG_KEYS
1322
1323int security_key_alloc(struct key *key, const struct cred *cred,
1324		       unsigned long flags)
1325{
1326	return security_ops->key_alloc(key, cred, flags);
1327}
1328
1329void security_key_free(struct key *key)
1330{
1331	security_ops->key_free(key);
1332}
1333
1334int security_key_permission(key_ref_t key_ref,
1335			    const struct cred *cred, key_perm_t perm)
1336{
1337	return security_ops->key_permission(key_ref, cred, perm);
1338}
1339
1340int security_key_getsecurity(struct key *key, char **_buffer)
1341{
1342	return security_ops->key_getsecurity(key, _buffer);
1343}
1344
1345#endif	/* CONFIG_KEYS */
1346
1347#ifdef CONFIG_AUDIT
1348
1349int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1350{
1351	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1352}
1353
1354int security_audit_rule_known(struct audit_krule *krule)
1355{
1356	return security_ops->audit_rule_known(krule);
1357}
1358
1359void security_audit_rule_free(void *lsmrule)
1360{
1361	security_ops->audit_rule_free(lsmrule);
1362}
1363
1364int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1365			      struct audit_context *actx)
1366{
1367	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1368}
1369
1370#endif /* CONFIG_AUDIT */
v3.15
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 *
   8 *	This program is free software; you can redistribute it and/or modify
   9 *	it under the terms of the GNU General Public License as published by
  10 *	the Free Software Foundation; either version 2 of the License, or
  11 *	(at your option) any later version.
  12 */
  13
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/module.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/security.h>
  20#include <linux/integrity.h>
  21#include <linux/ima.h>
  22#include <linux/evm.h>
  23#include <linux/fsnotify.h>
  24#include <linux/mman.h>
  25#include <linux/mount.h>
  26#include <linux/personality.h>
  27#include <linux/backing-dev.h>
  28#include <net/flow.h>
  29
  30#define MAX_LSM_EVM_XATTR	2
  31
  32/* Boot-time LSM user choice */
  33static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  34	CONFIG_DEFAULT_SECURITY;
  35
  36static struct security_operations *security_ops;
  37static struct security_operations default_security_ops = {
  38	.name	= "default",
  39};
  40
  41static inline int __init verify(struct security_operations *ops)
  42{
  43	/* verify the security_operations structure exists */
  44	if (!ops)
  45		return -EINVAL;
  46	security_fixup_ops(ops);
  47	return 0;
  48}
  49
  50static void __init do_security_initcalls(void)
  51{
  52	initcall_t *call;
  53	call = __security_initcall_start;
  54	while (call < __security_initcall_end) {
  55		(*call) ();
  56		call++;
  57	}
  58}
  59
  60/**
  61 * security_init - initializes the security framework
  62 *
  63 * This should be called early in the kernel initialization sequence.
  64 */
  65int __init security_init(void)
  66{
  67	printk(KERN_INFO "Security Framework initialized\n");
  68
  69	security_fixup_ops(&default_security_ops);
  70	security_ops = &default_security_ops;
  71	do_security_initcalls();
  72
  73	return 0;
  74}
  75
  76void reset_security_ops(void)
  77{
  78	security_ops = &default_security_ops;
  79}
  80
  81/* Save user chosen LSM */
  82static int __init choose_lsm(char *str)
  83{
  84	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  85	return 1;
  86}
  87__setup("security=", choose_lsm);
  88
  89/**
  90 * security_module_enable - Load given security module on boot ?
  91 * @ops: a pointer to the struct security_operations that is to be checked.
  92 *
  93 * Each LSM must pass this method before registering its own operations
  94 * to avoid security registration races. This method may also be used
  95 * to check if your LSM is currently loaded during kernel initialization.
  96 *
  97 * Return true if:
  98 *	-The passed LSM is the one chosen by user at boot time,
  99 *	-or the passed LSM is configured as the default and the user did not
 100 *	 choose an alternate LSM at boot time.
 101 * Otherwise, return false.
 102 */
 103int __init security_module_enable(struct security_operations *ops)
 104{
 105	return !strcmp(ops->name, chosen_lsm);
 106}
 107
 108/**
 109 * register_security - registers a security framework with the kernel
 110 * @ops: a pointer to the struct security_options that is to be registered
 111 *
 112 * This function allows a security module to register itself with the
 113 * kernel security subsystem.  Some rudimentary checking is done on the @ops
 114 * value passed to this function. You'll need to check first if your LSM
 115 * is allowed to register its @ops by calling security_module_enable(@ops).
 116 *
 117 * If there is already a security module registered with the kernel,
 118 * an error will be returned.  Otherwise %0 is returned on success.
 119 */
 120int __init register_security(struct security_operations *ops)
 121{
 122	if (verify(ops)) {
 123		printk(KERN_DEBUG "%s could not verify "
 124		       "security_operations structure.\n", __func__);
 125		return -EINVAL;
 126	}
 127
 128	if (security_ops != &default_security_ops)
 129		return -EAGAIN;
 130
 131	security_ops = ops;
 132
 133	return 0;
 134}
 135
 136/* Security operations */
 137
 138int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 139{
 140#ifdef CONFIG_SECURITY_YAMA_STACKED
 141	int rc;
 142	rc = yama_ptrace_access_check(child, mode);
 143	if (rc)
 144		return rc;
 145#endif
 146	return security_ops->ptrace_access_check(child, mode);
 147}
 148
 149int security_ptrace_traceme(struct task_struct *parent)
 150{
 151#ifdef CONFIG_SECURITY_YAMA_STACKED
 152	int rc;
 153	rc = yama_ptrace_traceme(parent);
 154	if (rc)
 155		return rc;
 156#endif
 157	return security_ops->ptrace_traceme(parent);
 158}
 159
 160int security_capget(struct task_struct *target,
 161		     kernel_cap_t *effective,
 162		     kernel_cap_t *inheritable,
 163		     kernel_cap_t *permitted)
 164{
 165	return security_ops->capget(target, effective, inheritable, permitted);
 166}
 167
 168int security_capset(struct cred *new, const struct cred *old,
 169		    const kernel_cap_t *effective,
 170		    const kernel_cap_t *inheritable,
 171		    const kernel_cap_t *permitted)
 172{
 173	return security_ops->capset(new, old,
 174				    effective, inheritable, permitted);
 175}
 176
 177int security_capable(const struct cred *cred, struct user_namespace *ns,
 178		     int cap)
 179{
 180	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
 181}
 182
 183int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
 184			     int cap)
 185{
 186	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
 187}
 188
 189int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 190{
 191	return security_ops->quotactl(cmds, type, id, sb);
 192}
 193
 194int security_quota_on(struct dentry *dentry)
 195{
 196	return security_ops->quota_on(dentry);
 197}
 198
 199int security_syslog(int type)
 200{
 201	return security_ops->syslog(type);
 202}
 203
 204int security_settime(const struct timespec *ts, const struct timezone *tz)
 205{
 206	return security_ops->settime(ts, tz);
 207}
 208
 209int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 210{
 211	return security_ops->vm_enough_memory(mm, pages);
 212}
 213
 214int security_bprm_set_creds(struct linux_binprm *bprm)
 215{
 216	return security_ops->bprm_set_creds(bprm);
 217}
 218
 219int security_bprm_check(struct linux_binprm *bprm)
 220{
 221	int ret;
 222
 223	ret = security_ops->bprm_check_security(bprm);
 224	if (ret)
 225		return ret;
 226	return ima_bprm_check(bprm);
 227}
 228
 229void security_bprm_committing_creds(struct linux_binprm *bprm)
 230{
 231	security_ops->bprm_committing_creds(bprm);
 232}
 233
 234void security_bprm_committed_creds(struct linux_binprm *bprm)
 235{
 236	security_ops->bprm_committed_creds(bprm);
 237}
 238
 239int security_bprm_secureexec(struct linux_binprm *bprm)
 240{
 241	return security_ops->bprm_secureexec(bprm);
 242}
 243
 244int security_sb_alloc(struct super_block *sb)
 245{
 246	return security_ops->sb_alloc_security(sb);
 247}
 248
 249void security_sb_free(struct super_block *sb)
 250{
 251	security_ops->sb_free_security(sb);
 252}
 253
 254int security_sb_copy_data(char *orig, char *copy)
 255{
 256	return security_ops->sb_copy_data(orig, copy);
 257}
 258EXPORT_SYMBOL(security_sb_copy_data);
 259
 260int security_sb_remount(struct super_block *sb, void *data)
 261{
 262	return security_ops->sb_remount(sb, data);
 263}
 264
 265int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 266{
 267	return security_ops->sb_kern_mount(sb, flags, data);
 268}
 269
 270int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 271{
 272	return security_ops->sb_show_options(m, sb);
 273}
 274
 275int security_sb_statfs(struct dentry *dentry)
 276{
 277	return security_ops->sb_statfs(dentry);
 278}
 279
 280int security_sb_mount(const char *dev_name, struct path *path,
 281                       const char *type, unsigned long flags, void *data)
 282{
 283	return security_ops->sb_mount(dev_name, path, type, flags, data);
 284}
 285
 286int security_sb_umount(struct vfsmount *mnt, int flags)
 287{
 288	return security_ops->sb_umount(mnt, flags);
 289}
 290
 291int security_sb_pivotroot(struct path *old_path, struct path *new_path)
 292{
 293	return security_ops->sb_pivotroot(old_path, new_path);
 294}
 295
 296int security_sb_set_mnt_opts(struct super_block *sb,
 297				struct security_mnt_opts *opts,
 298				unsigned long kern_flags,
 299				unsigned long *set_kern_flags)
 300{
 301	return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
 302						set_kern_flags);
 303}
 304EXPORT_SYMBOL(security_sb_set_mnt_opts);
 305
 306int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 307				struct super_block *newsb)
 308{
 309	return security_ops->sb_clone_mnt_opts(oldsb, newsb);
 310}
 311EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 312
 313int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 314{
 315	return security_ops->sb_parse_opts_str(options, opts);
 316}
 317EXPORT_SYMBOL(security_sb_parse_opts_str);
 318
 319int security_inode_alloc(struct inode *inode)
 320{
 321	inode->i_security = NULL;
 322	return security_ops->inode_alloc_security(inode);
 323}
 324
 325void security_inode_free(struct inode *inode)
 326{
 327	integrity_inode_free(inode);
 328	security_ops->inode_free_security(inode);
 329}
 330
 331int security_dentry_init_security(struct dentry *dentry, int mode,
 332					struct qstr *name, void **ctx,
 333					u32 *ctxlen)
 334{
 335	return security_ops->dentry_init_security(dentry, mode, name,
 336							ctx, ctxlen);
 337}
 338EXPORT_SYMBOL(security_dentry_init_security);
 339
 340int security_inode_init_security(struct inode *inode, struct inode *dir,
 341				 const struct qstr *qstr,
 342				 const initxattrs initxattrs, void *fs_data)
 343{
 344	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 345	struct xattr *lsm_xattr, *evm_xattr, *xattr;
 346	int ret;
 347
 348	if (unlikely(IS_PRIVATE(inode)))
 349		return 0;
 350
 
 351	if (!initxattrs)
 352		return security_ops->inode_init_security(inode, dir, qstr,
 353							 NULL, NULL, NULL);
 354	memset(new_xattrs, 0, sizeof(new_xattrs));
 355	lsm_xattr = new_xattrs;
 356	ret = security_ops->inode_init_security(inode, dir, qstr,
 357						&lsm_xattr->name,
 358						&lsm_xattr->value,
 359						&lsm_xattr->value_len);
 360	if (ret)
 361		goto out;
 362
 363	evm_xattr = lsm_xattr + 1;
 364	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 365	if (ret)
 366		goto out;
 367	ret = initxattrs(inode, new_xattrs, fs_data);
 368out:
 369	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
 
 370		kfree(xattr->value);
 
 371	return (ret == -EOPNOTSUPP) ? 0 : ret;
 372}
 373EXPORT_SYMBOL(security_inode_init_security);
 374
 375int security_old_inode_init_security(struct inode *inode, struct inode *dir,
 376				     const struct qstr *qstr, const char **name,
 377				     void **value, size_t *len)
 378{
 379	if (unlikely(IS_PRIVATE(inode)))
 380		return -EOPNOTSUPP;
 381	return security_ops->inode_init_security(inode, dir, qstr, name, value,
 382						 len);
 383}
 384EXPORT_SYMBOL(security_old_inode_init_security);
 385
 386#ifdef CONFIG_SECURITY_PATH
 387int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
 388			unsigned int dev)
 389{
 390	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 391		return 0;
 392	return security_ops->path_mknod(dir, dentry, mode, dev);
 393}
 394EXPORT_SYMBOL(security_path_mknod);
 395
 396int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
 397{
 398	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 399		return 0;
 400	return security_ops->path_mkdir(dir, dentry, mode);
 401}
 402EXPORT_SYMBOL(security_path_mkdir);
 403
 404int security_path_rmdir(struct path *dir, struct dentry *dentry)
 405{
 406	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 407		return 0;
 408	return security_ops->path_rmdir(dir, dentry);
 409}
 410
 411int security_path_unlink(struct path *dir, struct dentry *dentry)
 412{
 413	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 414		return 0;
 415	return security_ops->path_unlink(dir, dentry);
 416}
 417EXPORT_SYMBOL(security_path_unlink);
 418
 419int security_path_symlink(struct path *dir, struct dentry *dentry,
 420			  const char *old_name)
 421{
 422	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 423		return 0;
 424	return security_ops->path_symlink(dir, dentry, old_name);
 425}
 426
 427int security_path_link(struct dentry *old_dentry, struct path *new_dir,
 428		       struct dentry *new_dentry)
 429{
 430	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 431		return 0;
 432	return security_ops->path_link(old_dentry, new_dir, new_dentry);
 433}
 434
 435int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
 436			 struct path *new_dir, struct dentry *new_dentry,
 437			 unsigned int flags)
 438{
 439	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 440		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 441		return 0;
 442
 443	if (flags & RENAME_EXCHANGE) {
 444		int err = security_ops->path_rename(new_dir, new_dentry,
 445						    old_dir, old_dentry);
 446		if (err)
 447			return err;
 448	}
 449
 450	return security_ops->path_rename(old_dir, old_dentry, new_dir,
 451					 new_dentry);
 452}
 453EXPORT_SYMBOL(security_path_rename);
 454
 455int security_path_truncate(struct path *path)
 456{
 457	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 458		return 0;
 459	return security_ops->path_truncate(path);
 460}
 461
 462int security_path_chmod(struct path *path, umode_t mode)
 463{
 464	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 465		return 0;
 466	return security_ops->path_chmod(path, mode);
 467}
 468
 469int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
 470{
 471	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 472		return 0;
 473	return security_ops->path_chown(path, uid, gid);
 474}
 475
 476int security_path_chroot(struct path *path)
 477{
 478	return security_ops->path_chroot(path);
 479}
 480#endif
 481
 482int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
 483{
 484	if (unlikely(IS_PRIVATE(dir)))
 485		return 0;
 486	return security_ops->inode_create(dir, dentry, mode);
 487}
 488EXPORT_SYMBOL_GPL(security_inode_create);
 489
 490int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 491			 struct dentry *new_dentry)
 492{
 493	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 494		return 0;
 495	return security_ops->inode_link(old_dentry, dir, new_dentry);
 496}
 497
 498int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 499{
 500	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 501		return 0;
 502	return security_ops->inode_unlink(dir, dentry);
 503}
 504
 505int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 506			    const char *old_name)
 507{
 508	if (unlikely(IS_PRIVATE(dir)))
 509		return 0;
 510	return security_ops->inode_symlink(dir, dentry, old_name);
 511}
 512
 513int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 514{
 515	if (unlikely(IS_PRIVATE(dir)))
 516		return 0;
 517	return security_ops->inode_mkdir(dir, dentry, mode);
 518}
 519EXPORT_SYMBOL_GPL(security_inode_mkdir);
 520
 521int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 522{
 523	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 524		return 0;
 525	return security_ops->inode_rmdir(dir, dentry);
 526}
 527
 528int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 529{
 530	if (unlikely(IS_PRIVATE(dir)))
 531		return 0;
 532	return security_ops->inode_mknod(dir, dentry, mode, dev);
 533}
 534
 535int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 536			   struct inode *new_dir, struct dentry *new_dentry,
 537			   unsigned int flags)
 538{
 539        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 540            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 541		return 0;
 542
 543	if (flags & RENAME_EXCHANGE) {
 544		int err = security_ops->inode_rename(new_dir, new_dentry,
 545						     old_dir, old_dentry);
 546		if (err)
 547			return err;
 548	}
 549
 550	return security_ops->inode_rename(old_dir, old_dentry,
 551					   new_dir, new_dentry);
 552}
 553
 554int security_inode_readlink(struct dentry *dentry)
 555{
 556	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 557		return 0;
 558	return security_ops->inode_readlink(dentry);
 559}
 560
 561int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
 562{
 563	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 564		return 0;
 565	return security_ops->inode_follow_link(dentry, nd);
 566}
 567
 568int security_inode_permission(struct inode *inode, int mask)
 569{
 570	if (unlikely(IS_PRIVATE(inode)))
 571		return 0;
 572	return security_ops->inode_permission(inode, mask);
 573}
 574
 575int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 576{
 577	int ret;
 578
 579	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 580		return 0;
 581	ret = security_ops->inode_setattr(dentry, attr);
 582	if (ret)
 583		return ret;
 584	return evm_inode_setattr(dentry, attr);
 585}
 586EXPORT_SYMBOL_GPL(security_inode_setattr);
 587
 588int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
 589{
 590	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 591		return 0;
 592	return security_ops->inode_getattr(mnt, dentry);
 593}
 594
 595int security_inode_setxattr(struct dentry *dentry, const char *name,
 596			    const void *value, size_t size, int flags)
 597{
 598	int ret;
 599
 600	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 601		return 0;
 602	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
 603	if (ret)
 604		return ret;
 605	ret = ima_inode_setxattr(dentry, name, value, size);
 606	if (ret)
 607		return ret;
 608	return evm_inode_setxattr(dentry, name, value, size);
 609}
 610
 611void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 612				  const void *value, size_t size, int flags)
 613{
 614	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 615		return;
 616	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
 617	evm_inode_post_setxattr(dentry, name, value, size);
 618}
 619
 620int security_inode_getxattr(struct dentry *dentry, const char *name)
 621{
 622	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 623		return 0;
 624	return security_ops->inode_getxattr(dentry, name);
 625}
 626
 627int security_inode_listxattr(struct dentry *dentry)
 628{
 629	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 630		return 0;
 631	return security_ops->inode_listxattr(dentry);
 632}
 633
 634int security_inode_removexattr(struct dentry *dentry, const char *name)
 635{
 636	int ret;
 637
 638	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 639		return 0;
 640	ret = security_ops->inode_removexattr(dentry, name);
 641	if (ret)
 642		return ret;
 643	ret = ima_inode_removexattr(dentry, name);
 644	if (ret)
 645		return ret;
 646	return evm_inode_removexattr(dentry, name);
 647}
 648
 649int security_inode_need_killpriv(struct dentry *dentry)
 650{
 651	return security_ops->inode_need_killpriv(dentry);
 652}
 653
 654int security_inode_killpriv(struct dentry *dentry)
 655{
 656	return security_ops->inode_killpriv(dentry);
 657}
 658
 659int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 660{
 661	if (unlikely(IS_PRIVATE(inode)))
 662		return -EOPNOTSUPP;
 663	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
 664}
 665
 666int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 667{
 668	if (unlikely(IS_PRIVATE(inode)))
 669		return -EOPNOTSUPP;
 670	return security_ops->inode_setsecurity(inode, name, value, size, flags);
 671}
 672
 673int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 674{
 675	if (unlikely(IS_PRIVATE(inode)))
 676		return 0;
 677	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
 678}
 679EXPORT_SYMBOL(security_inode_listsecurity);
 680
 681void security_inode_getsecid(const struct inode *inode, u32 *secid)
 682{
 683	security_ops->inode_getsecid(inode, secid);
 684}
 685
 686int security_file_permission(struct file *file, int mask)
 687{
 688	int ret;
 689
 690	ret = security_ops->file_permission(file, mask);
 691	if (ret)
 692		return ret;
 693
 694	return fsnotify_perm(file, mask);
 695}
 696
 697int security_file_alloc(struct file *file)
 698{
 699	return security_ops->file_alloc_security(file);
 700}
 701
 702void security_file_free(struct file *file)
 703{
 704	security_ops->file_free_security(file);
 705}
 706
 707int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 708{
 709	return security_ops->file_ioctl(file, cmd, arg);
 710}
 711
 712static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
 713{
 714	/*
 715	 * Does we have PROT_READ and does the application expect
 716	 * it to imply PROT_EXEC?  If not, nothing to talk about...
 717	 */
 718	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
 719		return prot;
 720	if (!(current->personality & READ_IMPLIES_EXEC))
 721		return prot;
 722	/*
 723	 * if that's an anonymous mapping, let it.
 724	 */
 725	if (!file)
 726		return prot | PROT_EXEC;
 727	/*
 728	 * ditto if it's not on noexec mount, except that on !MMU we need
 729	 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
 730	 */
 731	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
 732#ifndef CONFIG_MMU
 733		unsigned long caps = 0;
 734		struct address_space *mapping = file->f_mapping;
 735		if (mapping && mapping->backing_dev_info)
 736			caps = mapping->backing_dev_info->capabilities;
 737		if (!(caps & BDI_CAP_EXEC_MAP))
 738			return prot;
 739#endif
 740		return prot | PROT_EXEC;
 741	}
 742	/* anything on noexec mount won't get PROT_EXEC */
 743	return prot;
 744}
 745
 746int security_mmap_file(struct file *file, unsigned long prot,
 747			unsigned long flags)
 748{
 749	int ret;
 750	ret = security_ops->mmap_file(file, prot,
 751					mmap_prot(file, prot), flags);
 752	if (ret)
 753		return ret;
 754	return ima_file_mmap(file, prot);
 755}
 756
 757int security_mmap_addr(unsigned long addr)
 758{
 759	return security_ops->mmap_addr(addr);
 760}
 761
 762int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 763			    unsigned long prot)
 764{
 765	return security_ops->file_mprotect(vma, reqprot, prot);
 766}
 767
 768int security_file_lock(struct file *file, unsigned int cmd)
 769{
 770	return security_ops->file_lock(file, cmd);
 771}
 772
 773int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 774{
 775	return security_ops->file_fcntl(file, cmd, arg);
 776}
 777
 778int security_file_set_fowner(struct file *file)
 779{
 780	return security_ops->file_set_fowner(file);
 781}
 782
 783int security_file_send_sigiotask(struct task_struct *tsk,
 784				  struct fown_struct *fown, int sig)
 785{
 786	return security_ops->file_send_sigiotask(tsk, fown, sig);
 787}
 788
 789int security_file_receive(struct file *file)
 790{
 791	return security_ops->file_receive(file);
 792}
 793
 794int security_file_open(struct file *file, const struct cred *cred)
 795{
 796	int ret;
 797
 798	ret = security_ops->file_open(file, cred);
 799	if (ret)
 800		return ret;
 801
 802	return fsnotify_perm(file, MAY_OPEN);
 803}
 804
 805int security_task_create(unsigned long clone_flags)
 806{
 807	return security_ops->task_create(clone_flags);
 808}
 809
 810void security_task_free(struct task_struct *task)
 811{
 812#ifdef CONFIG_SECURITY_YAMA_STACKED
 813	yama_task_free(task);
 814#endif
 815	security_ops->task_free(task);
 816}
 817
 818int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 819{
 820	return security_ops->cred_alloc_blank(cred, gfp);
 821}
 822
 823void security_cred_free(struct cred *cred)
 824{
 825	security_ops->cred_free(cred);
 826}
 827
 828int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
 829{
 830	return security_ops->cred_prepare(new, old, gfp);
 831}
 832
 833void security_transfer_creds(struct cred *new, const struct cred *old)
 834{
 835	security_ops->cred_transfer(new, old);
 836}
 837
 838int security_kernel_act_as(struct cred *new, u32 secid)
 839{
 840	return security_ops->kernel_act_as(new, secid);
 841}
 842
 843int security_kernel_create_files_as(struct cred *new, struct inode *inode)
 844{
 845	return security_ops->kernel_create_files_as(new, inode);
 846}
 847
 848int security_kernel_module_request(char *kmod_name)
 849{
 850	return security_ops->kernel_module_request(kmod_name);
 851}
 852
 853int security_kernel_module_from_file(struct file *file)
 854{
 855	int ret;
 856
 857	ret = security_ops->kernel_module_from_file(file);
 858	if (ret)
 859		return ret;
 860	return ima_module_check(file);
 861}
 862
 863int security_task_fix_setuid(struct cred *new, const struct cred *old,
 864			     int flags)
 865{
 866	return security_ops->task_fix_setuid(new, old, flags);
 867}
 868
 869int security_task_setpgid(struct task_struct *p, pid_t pgid)
 870{
 871	return security_ops->task_setpgid(p, pgid);
 872}
 873
 874int security_task_getpgid(struct task_struct *p)
 875{
 876	return security_ops->task_getpgid(p);
 877}
 878
 879int security_task_getsid(struct task_struct *p)
 880{
 881	return security_ops->task_getsid(p);
 882}
 883
 884void security_task_getsecid(struct task_struct *p, u32 *secid)
 885{
 886	security_ops->task_getsecid(p, secid);
 887}
 888EXPORT_SYMBOL(security_task_getsecid);
 889
 890int security_task_setnice(struct task_struct *p, int nice)
 891{
 892	return security_ops->task_setnice(p, nice);
 893}
 894
 895int security_task_setioprio(struct task_struct *p, int ioprio)
 896{
 897	return security_ops->task_setioprio(p, ioprio);
 898}
 899
 900int security_task_getioprio(struct task_struct *p)
 901{
 902	return security_ops->task_getioprio(p);
 903}
 904
 905int security_task_setrlimit(struct task_struct *p, unsigned int resource,
 906		struct rlimit *new_rlim)
 907{
 908	return security_ops->task_setrlimit(p, resource, new_rlim);
 909}
 910
 911int security_task_setscheduler(struct task_struct *p)
 912{
 913	return security_ops->task_setscheduler(p);
 914}
 915
 916int security_task_getscheduler(struct task_struct *p)
 917{
 918	return security_ops->task_getscheduler(p);
 919}
 920
 921int security_task_movememory(struct task_struct *p)
 922{
 923	return security_ops->task_movememory(p);
 924}
 925
 926int security_task_kill(struct task_struct *p, struct siginfo *info,
 927			int sig, u32 secid)
 928{
 929	return security_ops->task_kill(p, info, sig, secid);
 930}
 931
 932int security_task_wait(struct task_struct *p)
 933{
 934	return security_ops->task_wait(p);
 935}
 936
 937int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 938			 unsigned long arg4, unsigned long arg5)
 939{
 940#ifdef CONFIG_SECURITY_YAMA_STACKED
 941	int rc;
 942	rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
 943	if (rc != -ENOSYS)
 944		return rc;
 945#endif
 946	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
 947}
 948
 949void security_task_to_inode(struct task_struct *p, struct inode *inode)
 950{
 951	security_ops->task_to_inode(p, inode);
 952}
 953
 954int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
 955{
 956	return security_ops->ipc_permission(ipcp, flag);
 957}
 958
 959void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 960{
 961	security_ops->ipc_getsecid(ipcp, secid);
 962}
 963
 964int security_msg_msg_alloc(struct msg_msg *msg)
 965{
 966	return security_ops->msg_msg_alloc_security(msg);
 967}
 968
 969void security_msg_msg_free(struct msg_msg *msg)
 970{
 971	security_ops->msg_msg_free_security(msg);
 972}
 973
 974int security_msg_queue_alloc(struct msg_queue *msq)
 975{
 976	return security_ops->msg_queue_alloc_security(msq);
 977}
 978
 979void security_msg_queue_free(struct msg_queue *msq)
 980{
 981	security_ops->msg_queue_free_security(msq);
 982}
 983
 984int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
 985{
 986	return security_ops->msg_queue_associate(msq, msqflg);
 987}
 988
 989int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
 990{
 991	return security_ops->msg_queue_msgctl(msq, cmd);
 992}
 993
 994int security_msg_queue_msgsnd(struct msg_queue *msq,
 995			       struct msg_msg *msg, int msqflg)
 996{
 997	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
 998}
 999
1000int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1001			       struct task_struct *target, long type, int mode)
1002{
1003	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
1004}
1005
1006int security_shm_alloc(struct shmid_kernel *shp)
1007{
1008	return security_ops->shm_alloc_security(shp);
1009}
1010
1011void security_shm_free(struct shmid_kernel *shp)
1012{
1013	security_ops->shm_free_security(shp);
1014}
1015
1016int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1017{
1018	return security_ops->shm_associate(shp, shmflg);
1019}
1020
1021int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1022{
1023	return security_ops->shm_shmctl(shp, cmd);
1024}
1025
1026int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1027{
1028	return security_ops->shm_shmat(shp, shmaddr, shmflg);
1029}
1030
1031int security_sem_alloc(struct sem_array *sma)
1032{
1033	return security_ops->sem_alloc_security(sma);
1034}
1035
1036void security_sem_free(struct sem_array *sma)
1037{
1038	security_ops->sem_free_security(sma);
1039}
1040
1041int security_sem_associate(struct sem_array *sma, int semflg)
1042{
1043	return security_ops->sem_associate(sma, semflg);
1044}
1045
1046int security_sem_semctl(struct sem_array *sma, int cmd)
1047{
1048	return security_ops->sem_semctl(sma, cmd);
1049}
1050
1051int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1052			unsigned nsops, int alter)
1053{
1054	return security_ops->sem_semop(sma, sops, nsops, alter);
1055}
1056
1057void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1058{
1059	if (unlikely(inode && IS_PRIVATE(inode)))
1060		return;
1061	security_ops->d_instantiate(dentry, inode);
1062}
1063EXPORT_SYMBOL(security_d_instantiate);
1064
1065int security_getprocattr(struct task_struct *p, char *name, char **value)
1066{
1067	return security_ops->getprocattr(p, name, value);
1068}
1069
1070int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1071{
1072	return security_ops->setprocattr(p, name, value, size);
1073}
1074
1075int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1076{
1077	return security_ops->netlink_send(sk, skb);
1078}
1079
1080int security_ismaclabel(const char *name)
1081{
1082	return security_ops->ismaclabel(name);
1083}
1084EXPORT_SYMBOL(security_ismaclabel);
1085
1086int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1087{
1088	return security_ops->secid_to_secctx(secid, secdata, seclen);
1089}
1090EXPORT_SYMBOL(security_secid_to_secctx);
1091
1092int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1093{
1094	return security_ops->secctx_to_secid(secdata, seclen, secid);
1095}
1096EXPORT_SYMBOL(security_secctx_to_secid);
1097
1098void security_release_secctx(char *secdata, u32 seclen)
1099{
1100	security_ops->release_secctx(secdata, seclen);
1101}
1102EXPORT_SYMBOL(security_release_secctx);
1103
1104int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1105{
1106	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1107}
1108EXPORT_SYMBOL(security_inode_notifysecctx);
1109
1110int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1111{
1112	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1113}
1114EXPORT_SYMBOL(security_inode_setsecctx);
1115
1116int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1117{
1118	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1119}
1120EXPORT_SYMBOL(security_inode_getsecctx);
1121
1122#ifdef CONFIG_SECURITY_NETWORK
1123
1124int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1125{
1126	return security_ops->unix_stream_connect(sock, other, newsk);
1127}
1128EXPORT_SYMBOL(security_unix_stream_connect);
1129
1130int security_unix_may_send(struct socket *sock,  struct socket *other)
1131{
1132	return security_ops->unix_may_send(sock, other);
1133}
1134EXPORT_SYMBOL(security_unix_may_send);
1135
1136int security_socket_create(int family, int type, int protocol, int kern)
1137{
1138	return security_ops->socket_create(family, type, protocol, kern);
1139}
1140
1141int security_socket_post_create(struct socket *sock, int family,
1142				int type, int protocol, int kern)
1143{
1144	return security_ops->socket_post_create(sock, family, type,
1145						protocol, kern);
1146}
1147
1148int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1149{
1150	return security_ops->socket_bind(sock, address, addrlen);
1151}
1152
1153int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1154{
1155	return security_ops->socket_connect(sock, address, addrlen);
1156}
1157
1158int security_socket_listen(struct socket *sock, int backlog)
1159{
1160	return security_ops->socket_listen(sock, backlog);
1161}
1162
1163int security_socket_accept(struct socket *sock, struct socket *newsock)
1164{
1165	return security_ops->socket_accept(sock, newsock);
1166}
1167
1168int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1169{
1170	return security_ops->socket_sendmsg(sock, msg, size);
1171}
1172
1173int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1174			    int size, int flags)
1175{
1176	return security_ops->socket_recvmsg(sock, msg, size, flags);
1177}
1178
1179int security_socket_getsockname(struct socket *sock)
1180{
1181	return security_ops->socket_getsockname(sock);
1182}
1183
1184int security_socket_getpeername(struct socket *sock)
1185{
1186	return security_ops->socket_getpeername(sock);
1187}
1188
1189int security_socket_getsockopt(struct socket *sock, int level, int optname)
1190{
1191	return security_ops->socket_getsockopt(sock, level, optname);
1192}
1193
1194int security_socket_setsockopt(struct socket *sock, int level, int optname)
1195{
1196	return security_ops->socket_setsockopt(sock, level, optname);
1197}
1198
1199int security_socket_shutdown(struct socket *sock, int how)
1200{
1201	return security_ops->socket_shutdown(sock, how);
1202}
1203
1204int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1205{
1206	return security_ops->socket_sock_rcv_skb(sk, skb);
1207}
1208EXPORT_SYMBOL(security_sock_rcv_skb);
1209
1210int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1211				      int __user *optlen, unsigned len)
1212{
1213	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1214}
1215
1216int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1217{
1218	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1219}
1220EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1221
1222int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1223{
1224	return security_ops->sk_alloc_security(sk, family, priority);
1225}
1226
1227void security_sk_free(struct sock *sk)
1228{
1229	security_ops->sk_free_security(sk);
1230}
1231
1232void security_sk_clone(const struct sock *sk, struct sock *newsk)
1233{
1234	security_ops->sk_clone_security(sk, newsk);
1235}
1236EXPORT_SYMBOL(security_sk_clone);
1237
1238void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1239{
1240	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1241}
1242EXPORT_SYMBOL(security_sk_classify_flow);
1243
1244void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1245{
1246	security_ops->req_classify_flow(req, fl);
1247}
1248EXPORT_SYMBOL(security_req_classify_flow);
1249
1250void security_sock_graft(struct sock *sk, struct socket *parent)
1251{
1252	security_ops->sock_graft(sk, parent);
1253}
1254EXPORT_SYMBOL(security_sock_graft);
1255
1256int security_inet_conn_request(struct sock *sk,
1257			struct sk_buff *skb, struct request_sock *req)
1258{
1259	return security_ops->inet_conn_request(sk, skb, req);
1260}
1261EXPORT_SYMBOL(security_inet_conn_request);
1262
1263void security_inet_csk_clone(struct sock *newsk,
1264			const struct request_sock *req)
1265{
1266	security_ops->inet_csk_clone(newsk, req);
1267}
1268
1269void security_inet_conn_established(struct sock *sk,
1270			struct sk_buff *skb)
1271{
1272	security_ops->inet_conn_established(sk, skb);
1273}
1274
1275int security_secmark_relabel_packet(u32 secid)
1276{
1277	return security_ops->secmark_relabel_packet(secid);
1278}
1279EXPORT_SYMBOL(security_secmark_relabel_packet);
1280
1281void security_secmark_refcount_inc(void)
1282{
1283	security_ops->secmark_refcount_inc();
1284}
1285EXPORT_SYMBOL(security_secmark_refcount_inc);
1286
1287void security_secmark_refcount_dec(void)
1288{
1289	security_ops->secmark_refcount_dec();
1290}
1291EXPORT_SYMBOL(security_secmark_refcount_dec);
1292
1293int security_tun_dev_alloc_security(void **security)
1294{
1295	return security_ops->tun_dev_alloc_security(security);
1296}
1297EXPORT_SYMBOL(security_tun_dev_alloc_security);
1298
1299void security_tun_dev_free_security(void *security)
1300{
1301	security_ops->tun_dev_free_security(security);
1302}
1303EXPORT_SYMBOL(security_tun_dev_free_security);
1304
1305int security_tun_dev_create(void)
1306{
1307	return security_ops->tun_dev_create();
1308}
1309EXPORT_SYMBOL(security_tun_dev_create);
1310
1311int security_tun_dev_attach_queue(void *security)
1312{
1313	return security_ops->tun_dev_attach_queue(security);
1314}
1315EXPORT_SYMBOL(security_tun_dev_attach_queue);
1316
1317int security_tun_dev_attach(struct sock *sk, void *security)
1318{
1319	return security_ops->tun_dev_attach(sk, security);
1320}
1321EXPORT_SYMBOL(security_tun_dev_attach);
1322
1323int security_tun_dev_open(void *security)
1324{
1325	return security_ops->tun_dev_open(security);
1326}
1327EXPORT_SYMBOL(security_tun_dev_open);
1328
1329void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1330{
1331	security_ops->skb_owned_by(skb, sk);
1332}
1333
1334#endif	/* CONFIG_SECURITY_NETWORK */
1335
1336#ifdef CONFIG_SECURITY_NETWORK_XFRM
1337
1338int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1339			       struct xfrm_user_sec_ctx *sec_ctx,
1340			       gfp_t gfp)
1341{
1342	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
1343}
1344EXPORT_SYMBOL(security_xfrm_policy_alloc);
1345
1346int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1347			      struct xfrm_sec_ctx **new_ctxp)
1348{
1349	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1350}
1351
1352void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1353{
1354	security_ops->xfrm_policy_free_security(ctx);
1355}
1356EXPORT_SYMBOL(security_xfrm_policy_free);
1357
1358int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1359{
1360	return security_ops->xfrm_policy_delete_security(ctx);
1361}
1362
1363int security_xfrm_state_alloc(struct xfrm_state *x,
1364			      struct xfrm_user_sec_ctx *sec_ctx)
1365{
1366	return security_ops->xfrm_state_alloc(x, sec_ctx);
1367}
1368EXPORT_SYMBOL(security_xfrm_state_alloc);
1369
1370int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1371				      struct xfrm_sec_ctx *polsec, u32 secid)
1372{
1373	return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
 
 
 
 
 
 
1374}
1375
1376int security_xfrm_state_delete(struct xfrm_state *x)
1377{
1378	return security_ops->xfrm_state_delete_security(x);
1379}
1380EXPORT_SYMBOL(security_xfrm_state_delete);
1381
1382void security_xfrm_state_free(struct xfrm_state *x)
1383{
1384	security_ops->xfrm_state_free_security(x);
1385}
1386
1387int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1388{
1389	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1390}
1391
1392int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1393				       struct xfrm_policy *xp,
1394				       const struct flowi *fl)
1395{
1396	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1397}
1398
1399int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1400{
1401	return security_ops->xfrm_decode_session(skb, secid, 1);
1402}
1403
1404void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1405{
1406	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1407
1408	BUG_ON(rc);
1409}
1410EXPORT_SYMBOL(security_skb_classify_flow);
1411
1412#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1413
1414#ifdef CONFIG_KEYS
1415
1416int security_key_alloc(struct key *key, const struct cred *cred,
1417		       unsigned long flags)
1418{
1419	return security_ops->key_alloc(key, cred, flags);
1420}
1421
1422void security_key_free(struct key *key)
1423{
1424	security_ops->key_free(key);
1425}
1426
1427int security_key_permission(key_ref_t key_ref,
1428			    const struct cred *cred, key_perm_t perm)
1429{
1430	return security_ops->key_permission(key_ref, cred, perm);
1431}
1432
1433int security_key_getsecurity(struct key *key, char **_buffer)
1434{
1435	return security_ops->key_getsecurity(key, _buffer);
1436}
1437
1438#endif	/* CONFIG_KEYS */
1439
1440#ifdef CONFIG_AUDIT
1441
1442int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1443{
1444	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1445}
1446
1447int security_audit_rule_known(struct audit_krule *krule)
1448{
1449	return security_ops->audit_rule_known(krule);
1450}
1451
1452void security_audit_rule_free(void *lsmrule)
1453{
1454	security_ops->audit_rule_free(lsmrule);
1455}
1456
1457int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1458			      struct audit_context *actx)
1459{
1460	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1461}
1462
1463#endif /* CONFIG_AUDIT */