Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8
  9/*
 10 * Handle hardware traps and faults.
 11 */
 
 
 
 
 12#include <linux/interrupt.h>
 13#include <linux/kallsyms.h>
 14#include <linux/spinlock.h>
 15#include <linux/kprobes.h>
 16#include <linux/uaccess.h>
 17#include <linux/kdebug.h>
 18#include <linux/kgdb.h>
 19#include <linux/kernel.h>
 20#include <linux/module.h>
 21#include <linux/ptrace.h>
 
 22#include <linux/string.h>
 23#include <linux/delay.h>
 24#include <linux/errno.h>
 25#include <linux/kexec.h>
 26#include <linux/sched.h>
 27#include <linux/timer.h>
 28#include <linux/init.h>
 29#include <linux/bug.h>
 30#include <linux/nmi.h>
 31#include <linux/mm.h>
 32#include <linux/smp.h>
 33#include <linux/io.h>
 34
 35#ifdef CONFIG_EISA
 36#include <linux/ioport.h>
 37#include <linux/eisa.h>
 38#endif
 39
 40#if defined(CONFIG_EDAC)
 41#include <linux/edac.h>
 42#endif
 43
 44#include <asm/kmemcheck.h>
 45#include <asm/stacktrace.h>
 46#include <asm/processor.h>
 47#include <asm/debugreg.h>
 48#include <linux/atomic.h>
 49#include <asm/ftrace.h>
 50#include <asm/traps.h>
 51#include <asm/desc.h>
 52#include <asm/i387.h>
 53#include <asm/fpu-internal.h>
 54#include <asm/mce.h>
 55
 56#include <asm/mach_traps.h>
 
 
 
 
 
 57
 58#ifdef CONFIG_X86_64
 59#include <asm/x86_init.h>
 60#include <asm/pgalloc.h>
 61#include <asm/proto.h>
 
 
 
 62#else
 63#include <asm/processor-flags.h>
 64#include <asm/setup.h>
 65
 66asmlinkage int system_call(void);
 67
 68/* Do we ignore FPU interrupts ? */
 69char ignore_fpu_irq;
 70
 71/*
 72 * The IDT has to be page-aligned to simplify the Pentium
 73 * F0 0F bug workaround.
 74 */
 75gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, };
 76#endif
 77
 
 
 
 78DECLARE_BITMAP(used_vectors, NR_VECTORS);
 79EXPORT_SYMBOL_GPL(used_vectors);
 80
 81static inline void conditional_sti(struct pt_regs *regs)
 82{
 83	if (regs->flags & X86_EFLAGS_IF)
 84		local_irq_enable();
 85}
 86
 87static inline void preempt_conditional_sti(struct pt_regs *regs)
 88{
 89	inc_preempt_count();
 90	if (regs->flags & X86_EFLAGS_IF)
 91		local_irq_enable();
 92}
 93
 94static inline void conditional_cli(struct pt_regs *regs)
 95{
 96	if (regs->flags & X86_EFLAGS_IF)
 97		local_irq_disable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 98}
 99
100static inline void preempt_conditional_cli(struct pt_regs *regs)
101{
102	if (regs->flags & X86_EFLAGS_IF)
103		local_irq_disable();
104	dec_preempt_count();
 
105}
106
107static void __kprobes
108do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
109	long error_code, siginfo_t *info)
 
 
 
 
 
 
 
 
 
 
 
110{
111	struct task_struct *tsk = current;
112
113#ifdef CONFIG_X86_32
114	if (regs->flags & X86_VM_MASK) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115		/*
116		 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
117		 * On nmi (interrupt 2), do_trap should not be called.
118		 */
119		if (trapnr < X86_TRAP_UD)
120			goto vm86_trap;
121		goto trap_signal;
 
 
 
122	}
123#endif
124
125	if (!user_mode(regs))
126		goto kernel_trap;
 
 
 
 
 
 
127
128#ifdef CONFIG_X86_32
129trap_signal:
130#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131	/*
132	 * We want error_code and trap_nr set for userspace faults and
133	 * kernelspace faults which result in die(), but not
134	 * kernelspace faults which are fixed up.  die() gives the
135	 * process no chance to handle the signal and notice the
136	 * kernel fault information, so that won't result in polluting
137	 * the information about previously queued, but not yet
138	 * delivered, faults.  See also do_general_protection below.
139	 */
140	tsk->thread.error_code = error_code;
141	tsk->thread.trap_nr = trapnr;
142
143#ifdef CONFIG_X86_64
144	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
145	    printk_ratelimit()) {
146		printk(KERN_INFO
147		       "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
148		       tsk->comm, tsk->pid, str,
149		       regs->ip, regs->sp, error_code);
150		print_vma_addr(" in ", regs->ip);
151		printk("\n");
152	}
153#endif
154
155	if (info)
156		force_sig_info(signr, info, tsk);
157	else
158		force_sig(signr, tsk);
159	return;
160
161kernel_trap:
162	if (!fixup_exception(regs)) {
163		tsk->thread.error_code = error_code;
164		tsk->thread.trap_nr = trapnr;
165		die(str, regs, error_code);
166	}
167	return;
168
169#ifdef CONFIG_X86_32
170vm86_trap:
171	if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
172						error_code, trapnr))
173		goto trap_signal;
174	return;
175#endif
 
176}
177
178#define DO_ERROR(trapnr, signr, str, name)				\
179dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
180{									\
181	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
182							== NOTIFY_STOP)	\
183		return;							\
184	conditional_sti(regs);						\
185	do_trap(trapnr, signr, str, regs, error_code, NULL);		\
186}
187
188#define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr)		\
189dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
190{									\
191	siginfo_t info;							\
192	info.si_signo = signr;						\
193	info.si_errno = 0;						\
194	info.si_code = sicode;						\
195	info.si_addr = (void __user *)siaddr;				\
196	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\
197							== NOTIFY_STOP)	\
198		return;							\
199	conditional_sti(regs);						\
200	do_trap(trapnr, signr, str, regs, error_code, &info);		\
201}
202
203DO_ERROR_INFO(X86_TRAP_DE, SIGFPE, "divide error", divide_error, FPE_INTDIV,
204		regs->ip)
205DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
206DO_ERROR(X86_TRAP_BR, SIGSEGV, "bounds", bounds)
207DO_ERROR_INFO(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN,
208		regs->ip)
209DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",
210		coprocessor_segment_overrun)
211DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
212DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
213#ifdef CONFIG_X86_32
214DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
215#endif
216DO_ERROR_INFO(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check,
217		BUS_ADRALN, 0)
218
219#ifdef CONFIG_X86_64
220/* Runs on IST stack */
221dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
222{
223	if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
224			X86_TRAP_SS, SIGBUS) == NOTIFY_STOP)
225		return;
226	preempt_conditional_sti(regs);
227	do_trap(X86_TRAP_SS, SIGBUS, "stack segment", regs, error_code, NULL);
228	preempt_conditional_cli(regs);
229}
230
231dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
232{
233	static const char str[] = "double fault";
234	struct task_struct *tsk = current;
235
236	/* Return not checked because double check cannot be ignored */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
238
239	tsk->thread.error_code = error_code;
240	tsk->thread.trap_nr = X86_TRAP_DF;
241
 
 
 
242	/*
243	 * This is always a kernel trap and never fixable (and thus must
244	 * never return).
245	 */
246	for (;;)
247		die(str, regs, error_code);
248}
249#endif
250
251dotraplinkage void __kprobes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
252do_general_protection(struct pt_regs *regs, long error_code)
253{
254	struct task_struct *tsk;
255
256	conditional_sti(regs);
 
257
258#ifdef CONFIG_X86_32
259	if (regs->flags & X86_VM_MASK)
260		goto gp_in_vm86;
261#endif
 
262
263	tsk = current;
264	if (!user_mode(regs))
265		goto gp_in_kernel;
 
 
 
 
 
 
 
 
 
266
267	tsk->thread.error_code = error_code;
268	tsk->thread.trap_nr = X86_TRAP_GP;
269
270	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
271			printk_ratelimit()) {
272		printk(KERN_INFO
273			"%s[%d] general protection ip:%lx sp:%lx error:%lx",
274			tsk->comm, task_pid_nr(tsk),
275			regs->ip, regs->sp, error_code);
276		print_vma_addr(" in ", regs->ip);
277		printk("\n");
278	}
279
280	force_sig(SIGSEGV, tsk);
281	return;
282
283#ifdef CONFIG_X86_32
284gp_in_vm86:
285	local_irq_enable();
286	handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
287	return;
288#endif
289
290gp_in_kernel:
291	if (fixup_exception(regs))
292		return;
293
294	tsk->thread.error_code = error_code;
295	tsk->thread.trap_nr = X86_TRAP_GP;
296	if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
297			X86_TRAP_GP, SIGSEGV) == NOTIFY_STOP)
298		return;
299	die("general protection fault", regs, error_code);
300}
 
301
302/* May run on IST stack. */
303dotraplinkage void __kprobes notrace do_int3(struct pt_regs *regs, long error_code)
304{
305#ifdef CONFIG_DYNAMIC_FTRACE
306	/*
307	 * ftrace must be first, everything else may cause a recursive crash.
308	 * See note by declaration of modifying_ftrace_code in ftrace.c
309	 */
310	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
311	    ftrace_int3_handler(regs))
312		return;
313#endif
 
 
 
 
 
314#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
315	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
316				SIGTRAP) == NOTIFY_STOP)
317		return;
318#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
319
 
 
 
 
 
320	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
321			SIGTRAP) == NOTIFY_STOP)
322		return;
323
324	/*
325	 * Let others (NMI) know that the debug stack is in use
326	 * as we may switch to the interrupt stack.
327	 */
328	debug_stack_usage_inc();
329	preempt_conditional_sti(regs);
 
330	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
331	preempt_conditional_cli(regs);
 
332	debug_stack_usage_dec();
 
 
333}
 
334
335#ifdef CONFIG_X86_64
336/*
337 * Help handler running on IST stack to switch back to user stack
338 * for scheduling or signal handling. The actual stack switch is done in
339 * entry.S
340 */
341asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
342{
343	struct pt_regs *regs = eregs;
344	/* Did already sync */
345	if (eregs == (struct pt_regs *)eregs->sp)
346		;
347	/* Exception from user space */
348	else if (user_mode(eregs))
349		regs = task_pt_regs(current);
350	/*
351	 * Exception from kernel and interrupts are enabled. Move to
352	 * kernel process stack.
353	 */
354	else if (eregs->flags & X86_EFLAGS_IF)
355		regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
356	if (eregs != regs)
357		*regs = *eregs;
358	return regs;
359}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360#endif
 
361
362/*
363 * Our handling of the processor debug registers is non-trivial.
364 * We do not clear them on entry and exit from the kernel. Therefore
365 * it is possible to get a watchpoint trap here from inside the kernel.
366 * However, the code in ./ptrace.c has ensured that the user can
367 * only set watchpoints on userspace addresses. Therefore the in-kernel
368 * watchpoint trap can only occur in code which is reading/writing
369 * from user space. Such code must not hold kernel locks (since it
370 * can equally take a page fault), therefore it is safe to call
371 * force_sig_info even though that claims and releases locks.
372 *
373 * Code in ./signal.c ensures that the debug control register
374 * is restored before we deliver any signal, and therefore that
375 * user code runs with the correct debug control register even though
376 * we clear it here.
377 *
378 * Being careful here means that we don't have to be as careful in a
379 * lot of more complicated places (task switching can be a bit lazy
380 * about restoring all the debug state, and ptrace doesn't have to
381 * find every occurrence of the TF bit that could be saved away even
382 * by user code)
383 *
384 * May run on IST stack.
385 */
386dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
387{
388	struct task_struct *tsk = current;
389	int user_icebp = 0;
390	unsigned long dr6;
391	int si_code;
392
 
 
393	get_debugreg(dr6, 6);
 
 
 
 
 
 
 
 
 
 
 
 
394
395	/* Filter out all the reserved bits which are preset to 1 */
396	dr6 &= ~DR6_RESERVED;
397
398	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399	 * If dr6 has no reason to give us about the origin of this trap,
400	 * then it's very likely the result of an icebp/int01 trap.
401	 * User wants a sigtrap for that.
402	 */
403	if (!dr6 && user_mode(regs))
404		user_icebp = 1;
405
406	/* Catch kmemcheck conditions first of all! */
407	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
408		return;
409
410	/* DR6 may or may not be cleared by the CPU */
411	set_debugreg(0, 6);
412
413	/*
414	 * The processor cleared BTF, so don't mark that we need it set.
415	 */
416	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
417
418	/* Store the virtualized DR6 value */
419	tsk->thread.debugreg6 = dr6;
420
421	if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
 
 
 
 
 
422							SIGTRAP) == NOTIFY_STOP)
423		return;
424
425	/*
426	 * Let others (NMI) know that the debug stack is in use
427	 * as we may switch to the interrupt stack.
428	 */
429	debug_stack_usage_inc();
430
431	/* It's safe to allow irq's after DR6 has been saved */
432	preempt_conditional_sti(regs);
 
433
434	if (regs->flags & X86_VM_MASK) {
435		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
436					X86_TRAP_DB);
437		preempt_conditional_cli(regs);
 
438		debug_stack_usage_dec();
439		return;
440	}
441
442	/*
443	 * Single-stepping through system calls: ignore any exceptions in
444	 * kernel space, but re-enable TF when returning to user mode.
445	 *
446	 * We already checked v86 mode above, so we can check for kernel mode
447	 * by just checking the CPL of CS.
448	 */
449	if ((dr6 & DR_STEP) && !user_mode(regs)) {
450		tsk->thread.debugreg6 &= ~DR_STEP;
451		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
452		regs->flags &= ~X86_EFLAGS_TF;
453	}
454	si_code = get_si_code(tsk->thread.debugreg6);
455	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
456		send_sigtrap(tsk, regs, error_code, si_code);
457	preempt_conditional_cli(regs);
 
458	debug_stack_usage_dec();
459
460	return;
 
 
 
 
 
 
 
 
 
461}
 
462
463/*
464 * Note that we play around with the 'TS' bit in an attempt to get
465 * the correct behaviour even in the presence of the asynchronous
466 * IRQ13 behaviour
467 */
468void math_error(struct pt_regs *regs, int error_code, int trapnr)
469{
470	struct task_struct *task = current;
 
471	siginfo_t info;
472	unsigned short err;
473	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
474						"simd exception";
475
476	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
477		return;
478	conditional_sti(regs);
479
480	if (!user_mode_vm(regs))
481	{
482		if (!fixup_exception(regs)) {
483			task->thread.error_code = error_code;
484			task->thread.trap_nr = trapnr;
485			die(str, regs, error_code);
486		}
487		return;
488	}
489
490	/*
491	 * Save the info for the exception handler and clear the error.
492	 */
493	save_init_fpu(task);
494	task->thread.trap_nr = trapnr;
 
495	task->thread.error_code = error_code;
496	info.si_signo = SIGFPE;
497	info.si_errno = 0;
498	info.si_addr = (void __user *)regs->ip;
499	if (trapnr == X86_TRAP_MF) {
500		unsigned short cwd, swd;
501		/*
502		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
503		 * status.  0x3f is the exception bits in these regs, 0x200 is the
504		 * C1 reg you need in case of a stack fault, 0x040 is the stack
505		 * fault bit.  We should only be taking one exception at a time,
506		 * so if this combination doesn't produce any single exception,
507		 * then we have a bad program that isn't synchronizing its FPU usage
508		 * and it will suffer the consequences since we won't be able to
509		 * fully reproduce the context of the exception
510		 */
511		cwd = get_fpu_cwd(task);
512		swd = get_fpu_swd(task);
513
514		err = swd & ~cwd;
515	} else {
516		/*
517		 * The SIMD FPU exceptions are handled a little differently, as there
518		 * is only a single status/control register.  Thus, to determine which
519		 * unmasked exception was caught we must mask the exception mask bits
520		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
521		 */
522		unsigned short mxcsr = get_fpu_mxcsr(task);
523		err = ~(mxcsr >> 7) & mxcsr;
524	}
525
526	if (err & 0x001) {	/* Invalid op */
527		/*
528		 * swd & 0x240 == 0x040: Stack Underflow
529		 * swd & 0x240 == 0x240: Stack Overflow
530		 * User must clear the SF bit (0x40) if set
531		 */
532		info.si_code = FPE_FLTINV;
533	} else if (err & 0x004) { /* Divide by Zero */
534		info.si_code = FPE_FLTDIV;
535	} else if (err & 0x008) { /* Overflow */
536		info.si_code = FPE_FLTOVF;
537	} else if (err & 0x012) { /* Denormal, Underflow */
538		info.si_code = FPE_FLTUND;
539	} else if (err & 0x020) { /* Precision */
540		info.si_code = FPE_FLTRES;
541	} else {
542		/*
543		 * If we're using IRQ 13, or supposedly even some trap
544		 * X86_TRAP_MF implementations, it's possible
545		 * we get a spurious trap, which is not an error.
546		 */
547		return;
548	}
549	force_sig_info(SIGFPE, &info, task);
550}
551
552dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
553{
554#ifdef CONFIG_X86_32
555	ignore_fpu_irq = 1;
556#endif
557
558	math_error(regs, error_code, X86_TRAP_MF);
559}
560
561dotraplinkage void
562do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
563{
 
564	math_error(regs, error_code, X86_TRAP_XF);
565}
566
567dotraplinkage void
568do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
569{
570	conditional_sti(regs);
571#if 0
572	/* No need to warn about this any longer. */
573	printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
574#endif
575}
576
577asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
578{
579}
580
581asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
582{
583}
584
585/*
586 * 'math_state_restore()' saves the current math information in the
587 * old math state array, and gets the new ones from the current task
588 *
589 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
590 * Don't touch unless you *really* know how it works.
591 *
592 * Must be called with kernel preemption disabled (eg with local
593 * local interrupts as in the case of do_device_not_available).
594 */
595void math_state_restore(void)
596{
597	struct task_struct *tsk = current;
598
599	if (!tsk_used_math(tsk)) {
600		local_irq_enable();
601		/*
602		 * does a slab alloc which can sleep
603		 */
604		if (init_fpu(tsk)) {
605			/*
606			 * ran out of memory!
607			 */
608			do_group_exit(SIGKILL);
609			return;
610		}
611		local_irq_disable();
612	}
613
614	__thread_fpu_begin(tsk);
615	/*
616	 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
617	 */
618	if (unlikely(restore_fpu_checking(tsk))) {
619		__thread_fpu_end(tsk);
620		force_sig(SIGSEGV, tsk);
621		return;
622	}
623
624	tsk->fpu_counter++;
625}
626EXPORT_SYMBOL_GPL(math_state_restore);
627
628dotraplinkage void __kprobes
629do_device_not_available(struct pt_regs *regs, long error_code)
630{
 
 
631#ifdef CONFIG_MATH_EMULATION
632	if (read_cr0() & X86_CR0_EM) {
633		struct math_emu_info info = { };
634
635		conditional_sti(regs);
636
637		info.regs = regs;
638		math_emulate(&info);
639		return;
640	}
641#endif
642	math_state_restore(); /* interrupts still off */
643#ifdef CONFIG_X86_32
644	conditional_sti(regs);
645#endif
646}
 
647
648#ifdef CONFIG_X86_32
649dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
650{
651	siginfo_t info;
 
 
652	local_irq_enable();
653
654	info.si_signo = SIGILL;
655	info.si_errno = 0;
656	info.si_code = ILL_BADSTK;
657	info.si_addr = NULL;
658	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
659			X86_TRAP_IRET, SIGILL) == NOTIFY_STOP)
660		return;
661	do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
662		&info);
663}
664#endif
665
666/* Set of traps needed for early debugging. */
667void __init early_trap_init(void)
668{
669	set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
 
 
 
 
 
 
 
 
 
 
 
 
670	/* int3 can be called from all */
671	set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
672	set_intr_gate(X86_TRAP_PF, &page_fault);
 
 
673	load_idt(&idt_descr);
674}
675
 
 
 
 
 
 
 
676void __init trap_init(void)
677{
678	int i;
679
680#ifdef CONFIG_EISA
681	void __iomem *p = early_ioremap(0x0FFFD9, 4);
682
683	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
684		EISA_bus = 1;
685	early_iounmap(p, 4);
686#endif
687
688	set_intr_gate(X86_TRAP_DE, &divide_error);
689	set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
690	/* int4 can be called from all */
691	set_system_intr_gate(X86_TRAP_OF, &overflow);
692	set_intr_gate(X86_TRAP_BR, &bounds);
693	set_intr_gate(X86_TRAP_UD, &invalid_op);
694	set_intr_gate(X86_TRAP_NM, &device_not_available);
695#ifdef CONFIG_X86_32
696	set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
697#else
698	set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
699#endif
700	set_intr_gate(X86_TRAP_OLD_MF, &coprocessor_segment_overrun);
701	set_intr_gate(X86_TRAP_TS, &invalid_TSS);
702	set_intr_gate(X86_TRAP_NP, &segment_not_present);
703	set_intr_gate_ist(X86_TRAP_SS, &stack_segment, STACKFAULT_STACK);
704	set_intr_gate(X86_TRAP_GP, &general_protection);
705	set_intr_gate(X86_TRAP_SPURIOUS, &spurious_interrupt_bug);
706	set_intr_gate(X86_TRAP_MF, &coprocessor_error);
707	set_intr_gate(X86_TRAP_AC, &alignment_check);
708#ifdef CONFIG_X86_MCE
709	set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
710#endif
711	set_intr_gate(X86_TRAP_XF, &simd_coprocessor_error);
712
713	/* Reserve all the builtin and the syscall vector: */
714	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
715		set_bit(i, used_vectors);
716
717#ifdef CONFIG_IA32_EMULATION
718	set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
719	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
720#endif
721
722#ifdef CONFIG_X86_32
723	set_system_trap_gate(SYSCALL_VECTOR, &system_call);
724	set_bit(SYSCALL_VECTOR, used_vectors);
725#endif
726
727	/*
 
 
 
 
 
 
 
 
728	 * Should be a barrier for any external CPU state:
729	 */
730	cpu_init();
731
 
 
 
 
 
 
 
 
 
732	x86_init.irqs.trap_init();
733
734#ifdef CONFIG_X86_64
735	memcpy(&nmi_idt_table, &idt_table, IDT_ENTRIES * 16);
736	set_nmi_gate(X86_TRAP_DB, &debug);
737	set_nmi_gate(X86_TRAP_BP, &int3);
738#endif
739}
v4.6
  1/*
  2 *  Copyright (C) 1991, 1992  Linus Torvalds
  3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 */
  8
  9/*
 10 * Handle hardware traps and faults.
 11 */
 12
 13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 14
 15#include <linux/context_tracking.h>
 16#include <linux/interrupt.h>
 17#include <linux/kallsyms.h>
 18#include <linux/spinlock.h>
 19#include <linux/kprobes.h>
 20#include <linux/uaccess.h>
 21#include <linux/kdebug.h>
 22#include <linux/kgdb.h>
 23#include <linux/kernel.h>
 24#include <linux/module.h>
 25#include <linux/ptrace.h>
 26#include <linux/uprobes.h>
 27#include <linux/string.h>
 28#include <linux/delay.h>
 29#include <linux/errno.h>
 30#include <linux/kexec.h>
 31#include <linux/sched.h>
 32#include <linux/timer.h>
 33#include <linux/init.h>
 34#include <linux/bug.h>
 35#include <linux/nmi.h>
 36#include <linux/mm.h>
 37#include <linux/smp.h>
 38#include <linux/io.h>
 39
 40#ifdef CONFIG_EISA
 41#include <linux/ioport.h>
 42#include <linux/eisa.h>
 43#endif
 44
 45#if defined(CONFIG_EDAC)
 46#include <linux/edac.h>
 47#endif
 48
 49#include <asm/kmemcheck.h>
 50#include <asm/stacktrace.h>
 51#include <asm/processor.h>
 52#include <asm/debugreg.h>
 53#include <linux/atomic.h>
 54#include <asm/ftrace.h>
 55#include <asm/traps.h>
 56#include <asm/desc.h>
 57#include <asm/fpu/internal.h>
 
 58#include <asm/mce.h>
 59#include <asm/fixmap.h>
 60#include <asm/mach_traps.h>
 61#include <asm/alternative.h>
 62#include <asm/fpu/xstate.h>
 63#include <asm/trace/mpx.h>
 64#include <asm/mpx.h>
 65#include <asm/vm86.h>
 66
 67#ifdef CONFIG_X86_64
 68#include <asm/x86_init.h>
 69#include <asm/pgalloc.h>
 70#include <asm/proto.h>
 71
 72/* No need to be aligned, but done to keep all IDTs defined the same way. */
 73gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
 74#else
 75#include <asm/processor-flags.h>
 76#include <asm/setup.h>
 77#include <asm/proto.h>
 
 
 
 
 
 
 
 
 
 
 78#endif
 79
 80/* Must be page-aligned because the real IDT is used in a fixmap. */
 81gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
 82
 83DECLARE_BITMAP(used_vectors, NR_VECTORS);
 84EXPORT_SYMBOL_GPL(used_vectors);
 85
 86static inline void cond_local_irq_enable(struct pt_regs *regs)
 87{
 88	if (regs->flags & X86_EFLAGS_IF)
 89		local_irq_enable();
 90}
 91
 92static inline void cond_local_irq_disable(struct pt_regs *regs)
 93{
 
 94	if (regs->flags & X86_EFLAGS_IF)
 95		local_irq_disable();
 96}
 97
 98void ist_enter(struct pt_regs *regs)
 99{
100	if (user_mode(regs)) {
101		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
102	} else {
103		/*
104		 * We might have interrupted pretty much anything.  In
105		 * fact, if we're a machine check, we can even interrupt
106		 * NMI processing.  We don't want in_nmi() to return true,
107		 * but we need to notify RCU.
108		 */
109		rcu_nmi_enter();
110	}
111
112	/*
113	 * We are atomic because we're on the IST stack; or we're on
114	 * x86_32, in which case we still shouldn't schedule; or we're
115	 * on x86_64 and entered from user mode, in which case we're
116	 * still atomic unless ist_begin_non_atomic is called.
117	 */
118	preempt_count_add(HARDIRQ_OFFSET);
119
120	/* This code is a bit fragile.  Test it. */
121	RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work");
122}
123
124void ist_exit(struct pt_regs *regs)
125{
126	preempt_count_sub(HARDIRQ_OFFSET);
127
128	if (!user_mode(regs))
129		rcu_nmi_exit();
130}
131
132/**
133 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
134 * @regs:	regs passed to the IST exception handler
135 *
136 * IST exception handlers normally cannot schedule.  As a special
137 * exception, if the exception interrupted userspace code (i.e.
138 * user_mode(regs) would return true) and the exception was not
139 * a double fault, it can be safe to schedule.  ist_begin_non_atomic()
140 * begins a non-atomic section within an ist_enter()/ist_exit() region.
141 * Callers are responsible for enabling interrupts themselves inside
142 * the non-atomic section, and callers must call ist_end_non_atomic()
143 * before ist_exit().
144 */
145void ist_begin_non_atomic(struct pt_regs *regs)
146{
147	BUG_ON(!user_mode(regs));
148
149	/*
150	 * Sanity check: we need to be on the normal thread stack.  This
151	 * will catch asm bugs and any attempt to use ist_preempt_enable
152	 * from double_fault.
153	 */
154	BUG_ON((unsigned long)(current_top_of_stack() -
155			       current_stack_pointer()) >= THREAD_SIZE);
156
157	preempt_count_sub(HARDIRQ_OFFSET);
158}
159
160/**
161 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
162 *
163 * Ends a non-atomic section started with ist_begin_non_atomic().
164 */
165void ist_end_non_atomic(void)
166{
167	preempt_count_add(HARDIRQ_OFFSET);
168}
169
170static nokprobe_inline int
171do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
172		  struct pt_regs *regs,	long error_code)
173{
174	if (v8086_mode(regs)) {
175		/*
176		 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
177		 * On nmi (interrupt 2), do_trap should not be called.
178		 */
179		if (trapnr < X86_TRAP_UD) {
180			if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
181						error_code, trapnr))
182				return 0;
183		}
184		return -1;
185	}
 
186
187	if (!user_mode(regs)) {
188		if (!fixup_exception(regs, trapnr)) {
189			tsk->thread.error_code = error_code;
190			tsk->thread.trap_nr = trapnr;
191			die(str, regs, error_code);
192		}
193		return 0;
194	}
195
196	return -1;
197}
198
199static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
200				siginfo_t *info)
201{
202	unsigned long siaddr;
203	int sicode;
204
205	switch (trapnr) {
206	default:
207		return SEND_SIG_PRIV;
208
209	case X86_TRAP_DE:
210		sicode = FPE_INTDIV;
211		siaddr = uprobe_get_trap_addr(regs);
212		break;
213	case X86_TRAP_UD:
214		sicode = ILL_ILLOPN;
215		siaddr = uprobe_get_trap_addr(regs);
216		break;
217	case X86_TRAP_AC:
218		sicode = BUS_ADRALN;
219		siaddr = 0;
220		break;
221	}
222
223	info->si_signo = signr;
224	info->si_errno = 0;
225	info->si_code = sicode;
226	info->si_addr = (void __user *)siaddr;
227	return info;
228}
229
230static void
231do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
232	long error_code, siginfo_t *info)
233{
234	struct task_struct *tsk = current;
235
236
237	if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
238		return;
239	/*
240	 * We want error_code and trap_nr set for userspace faults and
241	 * kernelspace faults which result in die(), but not
242	 * kernelspace faults which are fixed up.  die() gives the
243	 * process no chance to handle the signal and notice the
244	 * kernel fault information, so that won't result in polluting
245	 * the information about previously queued, but not yet
246	 * delivered, faults.  See also do_general_protection below.
247	 */
248	tsk->thread.error_code = error_code;
249	tsk->thread.trap_nr = trapnr;
250
 
251	if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
252	    printk_ratelimit()) {
253		pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
254			tsk->comm, tsk->pid, str,
255			regs->ip, regs->sp, error_code);
 
256		print_vma_addr(" in ", regs->ip);
257		pr_cont("\n");
258	}
 
259
260	force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
261}
262NOKPROBE_SYMBOL(do_trap);
 
 
263
264static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
265			  unsigned long trapnr, int signr)
266{
267	siginfo_t info;
 
 
 
268
269	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
270
271	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
272			NOTIFY_STOP) {
273		cond_local_irq_enable(regs);
274		do_trap(trapnr, signr, str, regs, error_code,
275			fill_trap_info(regs, signr, trapnr, &info));
276	}
277}
278
279#define DO_ERROR(trapnr, signr, str, name)				\
280dotraplinkage void do_##name(struct pt_regs *regs, long error_code)	\
281{									\
282	do_error_trap(regs, error_code, str, trapnr, signr);		\
 
 
 
 
283}
284
285DO_ERROR(X86_TRAP_DE,     SIGFPE,  "divide error",		divide_error)
286DO_ERROR(X86_TRAP_OF,     SIGSEGV, "overflow",			overflow)
287DO_ERROR(X86_TRAP_UD,     SIGILL,  "invalid opcode",		invalid_op)
288DO_ERROR(X86_TRAP_OLD_MF, SIGFPE,  "coprocessor segment overrun",coprocessor_segment_overrun)
289DO_ERROR(X86_TRAP_TS,     SIGSEGV, "invalid TSS",		invalid_TSS)
290DO_ERROR(X86_TRAP_NP,     SIGBUS,  "segment not present",	segment_not_present)
291DO_ERROR(X86_TRAP_SS,     SIGBUS,  "stack segment",		stack_segment)
292DO_ERROR(X86_TRAP_AC,     SIGBUS,  "alignment check",		alignment_check)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293
294#ifdef CONFIG_X86_64
295/* Runs on IST stack */
 
 
 
 
 
 
 
 
 
 
296dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
297{
298	static const char str[] = "double fault";
299	struct task_struct *tsk = current;
300
301#ifdef CONFIG_X86_ESPFIX64
302	extern unsigned char native_irq_return_iret[];
303
304	/*
305	 * If IRET takes a non-IST fault on the espfix64 stack, then we
306	 * end up promoting it to a doublefault.  In that case, modify
307	 * the stack to make it look like we just entered the #GP
308	 * handler from user space, similar to bad_iret.
309	 *
310	 * No need for ist_enter here because we don't use RCU.
311	 */
312	if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
313		regs->cs == __KERNEL_CS &&
314		regs->ip == (unsigned long)native_irq_return_iret)
315	{
316		struct pt_regs *normal_regs = task_pt_regs(current);
317
318		/* Fake a #GP(0) from userspace. */
319		memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
320		normal_regs->orig_ax = 0;  /* Missing (lost) #GP error code */
321		regs->ip = (unsigned long)general_protection;
322		regs->sp = (unsigned long)&normal_regs->orig_ax;
323
324		return;
325	}
326#endif
327
328	ist_enter(regs);
329	notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
330
331	tsk->thread.error_code = error_code;
332	tsk->thread.trap_nr = X86_TRAP_DF;
333
334#ifdef CONFIG_DOUBLEFAULT
335	df_debug(regs, error_code);
336#endif
337	/*
338	 * This is always a kernel trap and never fixable (and thus must
339	 * never return).
340	 */
341	for (;;)
342		die(str, regs, error_code);
343}
344#endif
345
346dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
347{
348	const struct mpx_bndcsr *bndcsr;
349	siginfo_t *info;
350
351	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
352	if (notify_die(DIE_TRAP, "bounds", regs, error_code,
353			X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
354		return;
355	cond_local_irq_enable(regs);
356
357	if (!user_mode(regs))
358		die("bounds", regs, error_code);
359
360	if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
361		/* The exception is not from Intel MPX */
362		goto exit_trap;
363	}
364
365	/*
366	 * We need to look at BNDSTATUS to resolve this exception.
367	 * A NULL here might mean that it is in its 'init state',
368	 * which is all zeros which indicates MPX was not
369	 * responsible for the exception.
370	 */
371	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
372	if (!bndcsr)
373		goto exit_trap;
374
375	trace_bounds_exception_mpx(bndcsr);
376	/*
377	 * The error code field of the BNDSTATUS register communicates status
378	 * information of a bound range exception #BR or operation involving
379	 * bound directory.
380	 */
381	switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
382	case 2:	/* Bound directory has invalid entry. */
383		if (mpx_handle_bd_fault())
384			goto exit_trap;
385		break; /* Success, it was handled */
386	case 1: /* Bound violation. */
387		info = mpx_generate_siginfo(regs);
388		if (IS_ERR(info)) {
389			/*
390			 * We failed to decode the MPX instruction.  Act as if
391			 * the exception was not caused by MPX.
392			 */
393			goto exit_trap;
394		}
395		/*
396		 * Success, we decoded the instruction and retrieved
397		 * an 'info' containing the address being accessed
398		 * which caused the exception.  This information
399		 * allows and application to possibly handle the
400		 * #BR exception itself.
401		 */
402		do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
403		kfree(info);
404		break;
405	case 0: /* No exception caused by Intel MPX operations. */
406		goto exit_trap;
407	default:
408		die("bounds", regs, error_code);
409	}
410
411	return;
412
413exit_trap:
414	/*
415	 * This path out is for all the cases where we could not
416	 * handle the exception in some way (like allocating a
417	 * table or telling userspace about it.  We will also end
418	 * up here if the kernel has MPX turned off at compile
419	 * time..
420	 */
421	do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
422}
423
424dotraplinkage void
425do_general_protection(struct pt_regs *regs, long error_code)
426{
427	struct task_struct *tsk;
428
429	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
430	cond_local_irq_enable(regs);
431
432	if (v8086_mode(regs)) {
433		local_irq_enable();
434		handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
435		return;
436	}
437
438	tsk = current;
439	if (!user_mode(regs)) {
440		if (fixup_exception(regs, X86_TRAP_GP))
441			return;
442
443		tsk->thread.error_code = error_code;
444		tsk->thread.trap_nr = X86_TRAP_GP;
445		if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
446			       X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
447			die("general protection fault", regs, error_code);
448		return;
449	}
450
451	tsk->thread.error_code = error_code;
452	tsk->thread.trap_nr = X86_TRAP_GP;
453
454	if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
455			printk_ratelimit()) {
456		pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
 
457			tsk->comm, task_pid_nr(tsk),
458			regs->ip, regs->sp, error_code);
459		print_vma_addr(" in ", regs->ip);
460		pr_cont("\n");
461	}
462
463	force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
464}
465NOKPROBE_SYMBOL(do_general_protection);
466
467/* May run on IST stack. */
468dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
469{
470#ifdef CONFIG_DYNAMIC_FTRACE
471	/*
472	 * ftrace must be first, everything else may cause a recursive crash.
473	 * See note by declaration of modifying_ftrace_code in ftrace.c
474	 */
475	if (unlikely(atomic_read(&modifying_ftrace_code)) &&
476	    ftrace_int3_handler(regs))
477		return;
478#endif
479	if (poke_int3_handler(regs))
480		return;
481
482	ist_enter(regs);
483	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
484#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
485	if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
486				SIGTRAP) == NOTIFY_STOP)
487		goto exit;
488#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
489
490#ifdef CONFIG_KPROBES
491	if (kprobe_int3_handler(regs))
492		goto exit;
493#endif
494
495	if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
496			SIGTRAP) == NOTIFY_STOP)
497		goto exit;
498
499	/*
500	 * Let others (NMI) know that the debug stack is in use
501	 * as we may switch to the interrupt stack.
502	 */
503	debug_stack_usage_inc();
504	preempt_disable();
505	cond_local_irq_enable(regs);
506	do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
507	cond_local_irq_disable(regs);
508	preempt_enable_no_resched();
509	debug_stack_usage_dec();
510exit:
511	ist_exit(regs);
512}
513NOKPROBE_SYMBOL(do_int3);
514
515#ifdef CONFIG_X86_64
516/*
517 * Help handler running on IST stack to switch off the IST stack if the
518 * interrupted code was in user mode. The actual stack switch is done in
519 * entry_64.S
520 */
521asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
522{
523	struct pt_regs *regs = task_pt_regs(current);
524	*regs = *eregs;
 
 
 
 
 
 
 
 
 
 
 
 
 
525	return regs;
526}
527NOKPROBE_SYMBOL(sync_regs);
528
529struct bad_iret_stack {
530	void *error_entry_ret;
531	struct pt_regs regs;
532};
533
534asmlinkage __visible notrace
535struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
536{
537	/*
538	 * This is called from entry_64.S early in handling a fault
539	 * caused by a bad iret to user mode.  To handle the fault
540	 * correctly, we want move our stack frame to task_pt_regs
541	 * and we want to pretend that the exception came from the
542	 * iret target.
543	 */
544	struct bad_iret_stack *new_stack =
545		container_of(task_pt_regs(current),
546			     struct bad_iret_stack, regs);
547
548	/* Copy the IRET target to the new stack. */
549	memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
550
551	/* Copy the remainder of the stack from the current stack. */
552	memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
553
554	BUG_ON(!user_mode(&new_stack->regs));
555	return new_stack;
556}
557NOKPROBE_SYMBOL(fixup_bad_iret);
558#endif
559
560static bool is_sysenter_singlestep(struct pt_regs *regs)
561{
562	/*
563	 * We don't try for precision here.  If we're anywhere in the region of
564	 * code that can be single-stepped in the SYSENTER entry path, then
565	 * assume that this is a useless single-step trap due to SYSENTER
566	 * being invoked with TF set.  (We don't know in advance exactly
567	 * which instructions will be hit because BTF could plausibly
568	 * be set.)
569	 */
570#ifdef CONFIG_X86_32
571	return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
572		(unsigned long)__end_SYSENTER_singlestep_region -
573		(unsigned long)__begin_SYSENTER_singlestep_region;
574#elif defined(CONFIG_IA32_EMULATION)
575	return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
576		(unsigned long)__end_entry_SYSENTER_compat -
577		(unsigned long)entry_SYSENTER_compat;
578#else
579	return false;
580#endif
581}
582
583/*
584 * Our handling of the processor debug registers is non-trivial.
585 * We do not clear them on entry and exit from the kernel. Therefore
586 * it is possible to get a watchpoint trap here from inside the kernel.
587 * However, the code in ./ptrace.c has ensured that the user can
588 * only set watchpoints on userspace addresses. Therefore the in-kernel
589 * watchpoint trap can only occur in code which is reading/writing
590 * from user space. Such code must not hold kernel locks (since it
591 * can equally take a page fault), therefore it is safe to call
592 * force_sig_info even though that claims and releases locks.
593 *
594 * Code in ./signal.c ensures that the debug control register
595 * is restored before we deliver any signal, and therefore that
596 * user code runs with the correct debug control register even though
597 * we clear it here.
598 *
599 * Being careful here means that we don't have to be as careful in a
600 * lot of more complicated places (task switching can be a bit lazy
601 * about restoring all the debug state, and ptrace doesn't have to
602 * find every occurrence of the TF bit that could be saved away even
603 * by user code)
604 *
605 * May run on IST stack.
606 */
607dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
608{
609	struct task_struct *tsk = current;
610	int user_icebp = 0;
611	unsigned long dr6;
612	int si_code;
613
614	ist_enter(regs);
615
616	get_debugreg(dr6, 6);
617	/*
618	 * The Intel SDM says:
619	 *
620	 *   Certain debug exceptions may clear bits 0-3. The remaining
621	 *   contents of the DR6 register are never cleared by the
622	 *   processor. To avoid confusion in identifying debug
623	 *   exceptions, debug handlers should clear the register before
624	 *   returning to the interrupted task.
625	 *
626	 * Keep it simple: clear DR6 immediately.
627	 */
628	set_debugreg(0, 6);
629
630	/* Filter out all the reserved bits which are preset to 1 */
631	dr6 &= ~DR6_RESERVED;
632
633	/*
634	 * The SDM says "The processor clears the BTF flag when it
635	 * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
636	 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
637	 */
638	clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
639
640	if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) &&
641		     is_sysenter_singlestep(regs))) {
642		dr6 &= ~DR_STEP;
643		if (!dr6)
644			goto exit;
645		/*
646		 * else we might have gotten a single-step trap and hit a
647		 * watchpoint at the same time, in which case we should fall
648		 * through and handle the watchpoint.
649		 */
650	}
651
652	/*
653	 * If dr6 has no reason to give us about the origin of this trap,
654	 * then it's very likely the result of an icebp/int01 trap.
655	 * User wants a sigtrap for that.
656	 */
657	if (!dr6 && user_mode(regs))
658		user_icebp = 1;
659
660	/* Catch kmemcheck conditions! */
661	if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
662		goto exit;
 
 
 
 
 
 
 
 
663
664	/* Store the virtualized DR6 value */
665	tsk->thread.debugreg6 = dr6;
666
667#ifdef CONFIG_KPROBES
668	if (kprobe_debug_handler(regs))
669		goto exit;
670#endif
671
672	if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
673							SIGTRAP) == NOTIFY_STOP)
674		goto exit;
675
676	/*
677	 * Let others (NMI) know that the debug stack is in use
678	 * as we may switch to the interrupt stack.
679	 */
680	debug_stack_usage_inc();
681
682	/* It's safe to allow irq's after DR6 has been saved */
683	preempt_disable();
684	cond_local_irq_enable(regs);
685
686	if (v8086_mode(regs)) {
687		handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
688					X86_TRAP_DB);
689		cond_local_irq_disable(regs);
690		preempt_enable_no_resched();
691		debug_stack_usage_dec();
692		goto exit;
693	}
694
695	if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
696		/*
697		 * Historical junk that used to handle SYSENTER single-stepping.
698		 * This should be unreachable now.  If we survive for a while
699		 * without anyone hitting this warning, we'll turn this into
700		 * an oops.
701		 */
 
702		tsk->thread.debugreg6 &= ~DR_STEP;
703		set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
704		regs->flags &= ~X86_EFLAGS_TF;
705	}
706	si_code = get_si_code(tsk->thread.debugreg6);
707	if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
708		send_sigtrap(tsk, regs, error_code, si_code);
709	cond_local_irq_disable(regs);
710	preempt_enable_no_resched();
711	debug_stack_usage_dec();
712
713exit:
714#if defined(CONFIG_X86_32)
715	/*
716	 * This is the most likely code path that involves non-trivial use
717	 * of the SYSENTER stack.  Check that we haven't overrun it.
718	 */
719	WARN(this_cpu_read(cpu_tss.SYSENTER_stack_canary) != STACK_END_MAGIC,
720	     "Overran or corrupted SYSENTER stack\n");
721#endif
722	ist_exit(regs);
723}
724NOKPROBE_SYMBOL(do_debug);
725
726/*
727 * Note that we play around with the 'TS' bit in an attempt to get
728 * the correct behaviour even in the presence of the asynchronous
729 * IRQ13 behaviour
730 */
731static void math_error(struct pt_regs *regs, int error_code, int trapnr)
732{
733	struct task_struct *task = current;
734	struct fpu *fpu = &task->thread.fpu;
735	siginfo_t info;
 
736	char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
737						"simd exception";
738
739	if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
740		return;
741	cond_local_irq_enable(regs);
742
743	if (!user_mode(regs)) {
744		if (!fixup_exception(regs, trapnr)) {
 
745			task->thread.error_code = error_code;
746			task->thread.trap_nr = trapnr;
747			die(str, regs, error_code);
748		}
749		return;
750	}
751
752	/*
753	 * Save the info for the exception handler and clear the error.
754	 */
755	fpu__save(fpu);
756
757	task->thread.trap_nr	= trapnr;
758	task->thread.error_code = error_code;
759	info.si_signo		= SIGFPE;
760	info.si_errno		= 0;
761	info.si_addr		= (void __user *)uprobe_get_trap_addr(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
762
763	info.si_code = fpu__exception_code(fpu, trapnr);
 
 
 
 
 
 
 
 
 
 
764
765	/* Retry when we get spurious exceptions: */
766	if (!info.si_code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
767		return;
768
769	force_sig_info(SIGFPE, &info, task);
770}
771
772dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
773{
774	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 
 
 
775	math_error(regs, error_code, X86_TRAP_MF);
776}
777
778dotraplinkage void
779do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
780{
781	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
782	math_error(regs, error_code, X86_TRAP_XF);
783}
784
785dotraplinkage void
786do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
787{
788	cond_local_irq_enable(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
789}
 
790
791dotraplinkage void
792do_device_not_available(struct pt_regs *regs, long error_code)
793{
794	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
795
796#ifdef CONFIG_MATH_EMULATION
797	if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) {
798		struct math_emu_info info = { };
799
800		cond_local_irq_enable(regs);
801
802		info.regs = regs;
803		math_emulate(&info);
804		return;
805	}
806#endif
807	fpu__restore(&current->thread.fpu); /* interrupts still off */
808#ifdef CONFIG_X86_32
809	cond_local_irq_enable(regs);
810#endif
811}
812NOKPROBE_SYMBOL(do_device_not_available);
813
814#ifdef CONFIG_X86_32
815dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
816{
817	siginfo_t info;
818
819	RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
820	local_irq_enable();
821
822	info.si_signo = SIGILL;
823	info.si_errno = 0;
824	info.si_code = ILL_BADSTK;
825	info.si_addr = NULL;
826	if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
827			X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
828		do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
829			&info);
830	}
831}
832#endif
833
834/* Set of traps needed for early debugging. */
835void __init early_trap_init(void)
836{
837	/*
838	 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
839	 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
840	 * CPU runs at ring 0 so it is impossible to hit an invalid
841	 * stack.  Using the original stack works well enough at this
842	 * early stage. DEBUG_STACK will be equipped after cpu_init() in
843	 * trap_init().
844	 *
845	 * We don't need to set trace_idt_table like set_intr_gate(),
846	 * since we don't have trace_debug and it will be reset to
847	 * 'debug' in trap_init() by set_intr_gate_ist().
848	 */
849	set_intr_gate_notrace(X86_TRAP_DB, debug);
850	/* int3 can be called from all */
851	set_system_intr_gate(X86_TRAP_BP, &int3);
852#ifdef CONFIG_X86_32
853	set_intr_gate(X86_TRAP_PF, page_fault);
854#endif
855	load_idt(&idt_descr);
856}
857
858void __init early_trap_pf_init(void)
859{
860#ifdef CONFIG_X86_64
861	set_intr_gate(X86_TRAP_PF, page_fault);
862#endif
863}
864
865void __init trap_init(void)
866{
867	int i;
868
869#ifdef CONFIG_EISA
870	void __iomem *p = early_ioremap(0x0FFFD9, 4);
871
872	if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
873		EISA_bus = 1;
874	early_iounmap(p, 4);
875#endif
876
877	set_intr_gate(X86_TRAP_DE, divide_error);
878	set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
879	/* int4 can be called from all */
880	set_system_intr_gate(X86_TRAP_OF, &overflow);
881	set_intr_gate(X86_TRAP_BR, bounds);
882	set_intr_gate(X86_TRAP_UD, invalid_op);
883	set_intr_gate(X86_TRAP_NM, device_not_available);
884#ifdef CONFIG_X86_32
885	set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
886#else
887	set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
888#endif
889	set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
890	set_intr_gate(X86_TRAP_TS, invalid_TSS);
891	set_intr_gate(X86_TRAP_NP, segment_not_present);
892	set_intr_gate(X86_TRAP_SS, stack_segment);
893	set_intr_gate(X86_TRAP_GP, general_protection);
894	set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
895	set_intr_gate(X86_TRAP_MF, coprocessor_error);
896	set_intr_gate(X86_TRAP_AC, alignment_check);
897#ifdef CONFIG_X86_MCE
898	set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
899#endif
900	set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
901
902	/* Reserve all the builtin and the syscall vector: */
903	for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
904		set_bit(i, used_vectors);
905
906#ifdef CONFIG_IA32_EMULATION
907	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_compat);
908	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
909#endif
910
911#ifdef CONFIG_X86_32
912	set_system_intr_gate(IA32_SYSCALL_VECTOR, entry_INT80_32);
913	set_bit(IA32_SYSCALL_VECTOR, used_vectors);
914#endif
915
916	/*
917	 * Set the IDT descriptor to a fixed read-only location, so that the
918	 * "sidt" instruction will not leak the location of the kernel, and
919	 * to defend the IDT against arbitrary memory write vulnerabilities.
920	 * It will be reloaded in cpu_init() */
921	__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
922	idt_descr.address = fix_to_virt(FIX_RO_IDT);
923
924	/*
925	 * Should be a barrier for any external CPU state:
926	 */
927	cpu_init();
928
929	/*
930	 * X86_TRAP_DB and X86_TRAP_BP have been set
931	 * in early_trap_init(). However, ITS works only after
932	 * cpu_init() loads TSS. See comments in early_trap_init().
933	 */
934	set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
935	/* int3 can be called from all */
936	set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
937
938	x86_init.irqs.trap_init();
939
940#ifdef CONFIG_X86_64
941	memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
942	set_nmi_gate(X86_TRAP_DB, &debug);
943	set_nmi_gate(X86_TRAP_BP, &int3);
944#endif
945}