Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * Common interrupt code for 32 and 64 bit
  3 */
  4#include <linux/cpu.h>
  5#include <linux/interrupt.h>
  6#include <linux/kernel_stat.h>
  7#include <linux/of.h>
  8#include <linux/seq_file.h>
  9#include <linux/smp.h>
 10#include <linux/ftrace.h>
 11#include <linux/delay.h>
 12#include <linux/export.h>
 13
 14#include <asm/apic.h>
 15#include <asm/io_apic.h>
 16#include <asm/irq.h>
 17#include <asm/idle.h>
 18#include <asm/mce.h>
 19#include <asm/hw_irq.h>
 
 20
 21atomic_t irq_err_count;
 
 22
 23/* Function pointer for generic interrupt vector handling */
 24void (*x86_platform_ipi_callback)(void) = NULL;
 
 
 
 
 
 25
 26/*
 27 * 'what should we do if we get a hw irq event on an illegal vector'.
 28 * each architecture has to answer this themselves.
 29 */
 30void ack_bad_irq(unsigned int irq)
 31{
 32	if (printk_ratelimit())
 33		pr_err("unexpected IRQ trap at vector %02x\n", irq);
 34
 35	/*
 36	 * Currently unexpected vectors happen only on SMP and APIC.
 37	 * We _must_ ack these because every local APIC has only N
 38	 * irq slots per priority level, and a 'hanging, unacked' IRQ
 39	 * holds up an irq slot - in excessive cases (when multiple
 40	 * unexpected vectors occur) that might lock up the APIC
 41	 * completely.
 42	 * But only ack when the APIC is enabled -AK
 43	 */
 44	ack_APIC_irq();
 45}
 46
 47#define irq_stats(x)		(&per_cpu(irq_stat, x))
 48/*
 49 * /proc/interrupts printing for arch specific interrupts
 50 */
 51int arch_show_interrupts(struct seq_file *p, int prec)
 52{
 53	int j;
 54
 55	seq_printf(p, "%*s: ", prec, "NMI");
 56	for_each_online_cpu(j)
 57		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
 58	seq_printf(p, "  Non-maskable interrupts\n");
 59#ifdef CONFIG_X86_LOCAL_APIC
 60	seq_printf(p, "%*s: ", prec, "LOC");
 61	for_each_online_cpu(j)
 62		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
 63	seq_printf(p, "  Local timer interrupts\n");
 64
 65	seq_printf(p, "%*s: ", prec, "SPU");
 66	for_each_online_cpu(j)
 67		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
 68	seq_printf(p, "  Spurious interrupts\n");
 69	seq_printf(p, "%*s: ", prec, "PMI");
 70	for_each_online_cpu(j)
 71		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
 72	seq_printf(p, "  Performance monitoring interrupts\n");
 73	seq_printf(p, "%*s: ", prec, "IWI");
 74	for_each_online_cpu(j)
 75		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
 76	seq_printf(p, "  IRQ work interrupts\n");
 77	seq_printf(p, "%*s: ", prec, "RTR");
 78	for_each_online_cpu(j)
 79		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
 80	seq_printf(p, "  APIC ICR read retries\n");
 81#endif
 82	if (x86_platform_ipi_callback) {
 83		seq_printf(p, "%*s: ", prec, "PLT");
 84		for_each_online_cpu(j)
 85			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
 86		seq_printf(p, "  Platform interrupts\n");
 87	}
 
 88#ifdef CONFIG_SMP
 89	seq_printf(p, "%*s: ", prec, "RES");
 90	for_each_online_cpu(j)
 91		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
 92	seq_printf(p, "  Rescheduling interrupts\n");
 93	seq_printf(p, "%*s: ", prec, "CAL");
 94	for_each_online_cpu(j)
 95		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
 96	seq_printf(p, "  Function call interrupts\n");
 97	seq_printf(p, "%*s: ", prec, "TLB");
 98	for_each_online_cpu(j)
 99		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
100	seq_printf(p, "  TLB shootdowns\n");
101#endif
102#ifdef CONFIG_X86_THERMAL_VECTOR
103	seq_printf(p, "%*s: ", prec, "TRM");
104	for_each_online_cpu(j)
105		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
106	seq_printf(p, "  Thermal event interrupts\n");
107#endif
108#ifdef CONFIG_X86_MCE_THRESHOLD
109	seq_printf(p, "%*s: ", prec, "THR");
110	for_each_online_cpu(j)
111		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
112	seq_printf(p, "  Threshold APIC interrupts\n");
 
 
 
 
 
 
113#endif
114#ifdef CONFIG_X86_MCE
115	seq_printf(p, "%*s: ", prec, "MCE");
116	for_each_online_cpu(j)
117		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
118	seq_printf(p, "  Machine check exceptions\n");
119	seq_printf(p, "%*s: ", prec, "MCP");
120	for_each_online_cpu(j)
121		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
122	seq_printf(p, "  Machine check polls\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123#endif
124	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
125#if defined(CONFIG_X86_IO_APIC)
126	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
127#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128	return 0;
129}
130
131/*
132 * /proc/stat helpers
133 */
134u64 arch_irq_stat_cpu(unsigned int cpu)
135{
136	u64 sum = irq_stats(cpu)->__nmi_count;
137
138#ifdef CONFIG_X86_LOCAL_APIC
139	sum += irq_stats(cpu)->apic_timer_irqs;
140	sum += irq_stats(cpu)->irq_spurious_count;
141	sum += irq_stats(cpu)->apic_perf_irqs;
142	sum += irq_stats(cpu)->apic_irq_work_irqs;
143	sum += irq_stats(cpu)->icr_read_retry_count;
144#endif
145	if (x86_platform_ipi_callback)
146		sum += irq_stats(cpu)->x86_platform_ipis;
 
147#ifdef CONFIG_SMP
148	sum += irq_stats(cpu)->irq_resched_count;
149	sum += irq_stats(cpu)->irq_call_count;
150	sum += irq_stats(cpu)->irq_tlb_count;
151#endif
152#ifdef CONFIG_X86_THERMAL_VECTOR
153	sum += irq_stats(cpu)->irq_thermal_count;
154#endif
155#ifdef CONFIG_X86_MCE_THRESHOLD
156	sum += irq_stats(cpu)->irq_threshold_count;
157#endif
158#ifdef CONFIG_X86_MCE
159	sum += per_cpu(mce_exception_count, cpu);
160	sum += per_cpu(mce_poll_count, cpu);
161#endif
162	return sum;
163}
164
165u64 arch_irq_stat(void)
166{
167	u64 sum = atomic_read(&irq_err_count);
168
169#ifdef CONFIG_X86_IO_APIC
170	sum += atomic_read(&irq_mis_count);
171#endif
172	return sum;
173}
174
175
176/*
177 * do_IRQ handles all normal device IRQ's (the special
178 * SMP cross-CPU interrupts have their own specific
179 * handlers).
180 */
181unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
182{
183	struct pt_regs *old_regs = set_irq_regs(regs);
184
185	/* high bit used in ret_from_ code  */
186	unsigned vector = ~regs->orig_ax;
187	unsigned irq;
188
189	irq_enter();
190	exit_idle();
191
192	irq = __this_cpu_read(vector_irq[vector]);
 
193
194	if (!handle_irq(irq, regs)) {
 
 
195		ack_APIC_irq();
196
197		if (printk_ratelimit())
198			pr_emerg("%s: %d.%d No irq handler for vector (irq %d)\n",
199				__func__, smp_processor_id(), vector, irq);
 
 
 
 
200	}
201
202	irq_exit();
203
204	set_irq_regs(old_regs);
205	return 1;
206}
207
 
 
 
208/*
209 * Handler for X86_PLATFORM_IPI_VECTOR.
210 */
211void smp_x86_platform_ipi(struct pt_regs *regs)
212{
213	struct pt_regs *old_regs = set_irq_regs(regs);
214
215	ack_APIC_irq();
 
 
 
 
 
 
 
 
 
216
217	irq_enter();
 
 
218
219	exit_idle();
 
 
 
 
 
 
 
220
221	inc_irq_stat(x86_platform_ipis);
 
 
 
 
 
222
223	if (x86_platform_ipi_callback)
224		x86_platform_ipi_callback();
 
 
 
225
226	irq_exit();
 
 
 
 
 
227
 
 
 
 
228	set_irq_regs(old_regs);
229}
230
231EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
 
 
 
 
 
 
 
 
 
 
 
 
 
232
233#ifdef CONFIG_HOTPLUG_CPU
234/* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
235void fixup_irqs(void)
236{
237	unsigned int irq, vector;
238	static int warned;
239	struct irq_desc *desc;
240	struct irq_data *data;
241	struct irq_chip *chip;
242
243	for_each_irq_desc(irq, desc) {
244		int break_affinity = 0;
245		int set_affinity = 1;
246		const struct cpumask *affinity;
247
248		if (!desc)
249			continue;
250		if (irq == 2)
251			continue;
252
253		/* interrupt's are disabled at this point */
254		raw_spin_lock(&desc->lock);
255
256		data = irq_desc_get_irq_data(desc);
257		affinity = data->affinity;
258		if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
259		    cpumask_subset(affinity, cpu_online_mask)) {
260			raw_spin_unlock(&desc->lock);
261			continue;
262		}
263
264		/*
265		 * Complete the irq move. This cpu is going down and for
266		 * non intr-remapping case, we can't wait till this interrupt
267		 * arrives at this cpu before completing the irq move.
268		 */
269		irq_force_complete_move(irq);
270
271		if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
272			break_affinity = 1;
273			affinity = cpu_all_mask;
274		}
275
276		chip = irq_data_get_irq_chip(data);
277		if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
278			chip->irq_mask(data);
279
280		if (chip->irq_set_affinity)
281			chip->irq_set_affinity(data, affinity, true);
282		else if (!(warned++))
283			set_affinity = 0;
284
285		/*
286		 * We unmask if the irq was not marked masked by the
287		 * core code. That respects the lazy irq disable
288		 * behaviour.
289		 */
290		if (!irqd_can_move_in_process_context(data) &&
291		    !irqd_irq_masked(data) && chip->irq_unmask)
292			chip->irq_unmask(data);
293
294		raw_spin_unlock(&desc->lock);
295
296		if (break_affinity && set_affinity)
297			printk("Broke affinity for irq %i\n", irq);
298		else if (!set_affinity)
299			printk("Cannot set affinity for irq %i\n", irq);
300	}
301
302	/*
303	 * We can remove mdelay() and then send spuriuous interrupts to
304	 * new cpu targets for all the irqs that were handled previously by
305	 * this cpu. While it works, I have seen spurious interrupt messages
306	 * (nothing wrong but still...).
307	 *
308	 * So for now, retain mdelay(1) and check the IRR and then send those
309	 * interrupts to new targets as this cpu is already offlined...
310	 */
311	mdelay(1);
312
 
 
 
 
 
313	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
314		unsigned int irr;
315
316		if (__this_cpu_read(vector_irq[vector]) < 0)
317			continue;
318
319		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
320		if (irr  & (1 << (vector % 32))) {
321			irq = __this_cpu_read(vector_irq[vector]);
322
323			desc = irq_to_desc(irq);
324			data = irq_desc_get_irq_data(desc);
325			chip = irq_data_get_irq_chip(data);
326			raw_spin_lock(&desc->lock);
327			if (chip->irq_retrigger)
328				chip->irq_retrigger(data);
 
 
329			raw_spin_unlock(&desc->lock);
330		}
 
 
331	}
332}
333#endif
v4.17
  1/*
  2 * Common interrupt code for 32 and 64 bit
  3 */
  4#include <linux/cpu.h>
  5#include <linux/interrupt.h>
  6#include <linux/kernel_stat.h>
  7#include <linux/of.h>
  8#include <linux/seq_file.h>
  9#include <linux/smp.h>
 10#include <linux/ftrace.h>
 11#include <linux/delay.h>
 12#include <linux/export.h>
 13
 14#include <asm/apic.h>
 15#include <asm/io_apic.h>
 16#include <asm/irq.h>
 
 17#include <asm/mce.h>
 18#include <asm/hw_irq.h>
 19#include <asm/desc.h>
 20
 21#define CREATE_TRACE_POINTS
 22#include <asm/trace/irq_vectors.h>
 23
 24DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
 25EXPORT_PER_CPU_SYMBOL(irq_stat);
 26
 27DEFINE_PER_CPU(struct pt_regs *, irq_regs);
 28EXPORT_PER_CPU_SYMBOL(irq_regs);
 29
 30atomic_t irq_err_count;
 31
 32/*
 33 * 'what should we do if we get a hw irq event on an illegal vector'.
 34 * each architecture has to answer this themselves.
 35 */
 36void ack_bad_irq(unsigned int irq)
 37{
 38	if (printk_ratelimit())
 39		pr_err("unexpected IRQ trap at vector %02x\n", irq);
 40
 41	/*
 42	 * Currently unexpected vectors happen only on SMP and APIC.
 43	 * We _must_ ack these because every local APIC has only N
 44	 * irq slots per priority level, and a 'hanging, unacked' IRQ
 45	 * holds up an irq slot - in excessive cases (when multiple
 46	 * unexpected vectors occur) that might lock up the APIC
 47	 * completely.
 48	 * But only ack when the APIC is enabled -AK
 49	 */
 50	ack_APIC_irq();
 51}
 52
 53#define irq_stats(x)		(&per_cpu(irq_stat, x))
 54/*
 55 * /proc/interrupts printing for arch specific interrupts
 56 */
 57int arch_show_interrupts(struct seq_file *p, int prec)
 58{
 59	int j;
 60
 61	seq_printf(p, "%*s: ", prec, "NMI");
 62	for_each_online_cpu(j)
 63		seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
 64	seq_puts(p, "  Non-maskable interrupts\n");
 65#ifdef CONFIG_X86_LOCAL_APIC
 66	seq_printf(p, "%*s: ", prec, "LOC");
 67	for_each_online_cpu(j)
 68		seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
 69	seq_puts(p, "  Local timer interrupts\n");
 70
 71	seq_printf(p, "%*s: ", prec, "SPU");
 72	for_each_online_cpu(j)
 73		seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
 74	seq_puts(p, "  Spurious interrupts\n");
 75	seq_printf(p, "%*s: ", prec, "PMI");
 76	for_each_online_cpu(j)
 77		seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
 78	seq_puts(p, "  Performance monitoring interrupts\n");
 79	seq_printf(p, "%*s: ", prec, "IWI");
 80	for_each_online_cpu(j)
 81		seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
 82	seq_puts(p, "  IRQ work interrupts\n");
 83	seq_printf(p, "%*s: ", prec, "RTR");
 84	for_each_online_cpu(j)
 85		seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
 86	seq_puts(p, "  APIC ICR read retries\n");
 
 87	if (x86_platform_ipi_callback) {
 88		seq_printf(p, "%*s: ", prec, "PLT");
 89		for_each_online_cpu(j)
 90			seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
 91		seq_puts(p, "  Platform interrupts\n");
 92	}
 93#endif
 94#ifdef CONFIG_SMP
 95	seq_printf(p, "%*s: ", prec, "RES");
 96	for_each_online_cpu(j)
 97		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
 98	seq_puts(p, "  Rescheduling interrupts\n");
 99	seq_printf(p, "%*s: ", prec, "CAL");
100	for_each_online_cpu(j)
101		seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
102	seq_puts(p, "  Function call interrupts\n");
103	seq_printf(p, "%*s: ", prec, "TLB");
104	for_each_online_cpu(j)
105		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
106	seq_puts(p, "  TLB shootdowns\n");
107#endif
108#ifdef CONFIG_X86_THERMAL_VECTOR
109	seq_printf(p, "%*s: ", prec, "TRM");
110	for_each_online_cpu(j)
111		seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
112	seq_puts(p, "  Thermal event interrupts\n");
113#endif
114#ifdef CONFIG_X86_MCE_THRESHOLD
115	seq_printf(p, "%*s: ", prec, "THR");
116	for_each_online_cpu(j)
117		seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
118	seq_puts(p, "  Threshold APIC interrupts\n");
119#endif
120#ifdef CONFIG_X86_MCE_AMD
121	seq_printf(p, "%*s: ", prec, "DFR");
122	for_each_online_cpu(j)
123		seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
124	seq_puts(p, "  Deferred Error APIC interrupts\n");
125#endif
126#ifdef CONFIG_X86_MCE
127	seq_printf(p, "%*s: ", prec, "MCE");
128	for_each_online_cpu(j)
129		seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
130	seq_puts(p, "  Machine check exceptions\n");
131	seq_printf(p, "%*s: ", prec, "MCP");
132	for_each_online_cpu(j)
133		seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
134	seq_puts(p, "  Machine check polls\n");
135#endif
136#if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
137	if (test_bit(HYPERVISOR_CALLBACK_VECTOR, system_vectors)) {
138		seq_printf(p, "%*s: ", prec, "HYP");
139		for_each_online_cpu(j)
140			seq_printf(p, "%10u ",
141				   irq_stats(j)->irq_hv_callback_count);
142		seq_puts(p, "  Hypervisor callback interrupts\n");
143	}
144#endif
145#if IS_ENABLED(CONFIG_HYPERV)
146	if (test_bit(HYPERV_REENLIGHTENMENT_VECTOR, system_vectors)) {
147		seq_printf(p, "%*s: ", prec, "HRE");
148		for_each_online_cpu(j)
149			seq_printf(p, "%10u ",
150				   irq_stats(j)->irq_hv_reenlightenment_count);
151		seq_puts(p, "  Hyper-V reenlightenment interrupts\n");
152	}
153	if (test_bit(HYPERV_STIMER0_VECTOR, system_vectors)) {
154		seq_printf(p, "%*s: ", prec, "HVS");
155		for_each_online_cpu(j)
156			seq_printf(p, "%10u ",
157				   irq_stats(j)->hyperv_stimer0_count);
158		seq_puts(p, "  Hyper-V stimer0 interrupts\n");
159	}
160#endif
161	seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
162#if defined(CONFIG_X86_IO_APIC)
163	seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
164#endif
165#ifdef CONFIG_HAVE_KVM
166	seq_printf(p, "%*s: ", prec, "PIN");
167	for_each_online_cpu(j)
168		seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
169	seq_puts(p, "  Posted-interrupt notification event\n");
170
171	seq_printf(p, "%*s: ", prec, "NPI");
172	for_each_online_cpu(j)
173		seq_printf(p, "%10u ",
174			   irq_stats(j)->kvm_posted_intr_nested_ipis);
175	seq_puts(p, "  Nested posted-interrupt event\n");
176
177	seq_printf(p, "%*s: ", prec, "PIW");
178	for_each_online_cpu(j)
179		seq_printf(p, "%10u ",
180			   irq_stats(j)->kvm_posted_intr_wakeup_ipis);
181	seq_puts(p, "  Posted-interrupt wakeup event\n");
182#endif
183	return 0;
184}
185
186/*
187 * /proc/stat helpers
188 */
189u64 arch_irq_stat_cpu(unsigned int cpu)
190{
191	u64 sum = irq_stats(cpu)->__nmi_count;
192
193#ifdef CONFIG_X86_LOCAL_APIC
194	sum += irq_stats(cpu)->apic_timer_irqs;
195	sum += irq_stats(cpu)->irq_spurious_count;
196	sum += irq_stats(cpu)->apic_perf_irqs;
197	sum += irq_stats(cpu)->apic_irq_work_irqs;
198	sum += irq_stats(cpu)->icr_read_retry_count;
 
199	if (x86_platform_ipi_callback)
200		sum += irq_stats(cpu)->x86_platform_ipis;
201#endif
202#ifdef CONFIG_SMP
203	sum += irq_stats(cpu)->irq_resched_count;
204	sum += irq_stats(cpu)->irq_call_count;
 
205#endif
206#ifdef CONFIG_X86_THERMAL_VECTOR
207	sum += irq_stats(cpu)->irq_thermal_count;
208#endif
209#ifdef CONFIG_X86_MCE_THRESHOLD
210	sum += irq_stats(cpu)->irq_threshold_count;
211#endif
212#ifdef CONFIG_X86_MCE
213	sum += per_cpu(mce_exception_count, cpu);
214	sum += per_cpu(mce_poll_count, cpu);
215#endif
216	return sum;
217}
218
219u64 arch_irq_stat(void)
220{
221	u64 sum = atomic_read(&irq_err_count);
 
 
 
 
222	return sum;
223}
224
225
226/*
227 * do_IRQ handles all normal device IRQ's (the special
228 * SMP cross-CPU interrupts have their own specific
229 * handlers).
230 */
231__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
232{
233	struct pt_regs *old_regs = set_irq_regs(regs);
234	struct irq_desc * desc;
235	/* high bit used in ret_from_ code  */
236	unsigned vector = ~regs->orig_ax;
 
237
238	entering_irq();
 
239
240	/* entering_irq() tells RCU that we're not quiescent.  Check it. */
241	RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
242
243	desc = __this_cpu_read(vector_irq[vector]);
244
245	if (!handle_irq(desc, regs)) {
246		ack_APIC_irq();
247
248		if (desc != VECTOR_RETRIGGERED) {
249			pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
250					     __func__, smp_processor_id(),
251					     vector);
252		} else {
253			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
254		}
255	}
256
257	exiting_irq();
258
259	set_irq_regs(old_regs);
260	return 1;
261}
262
263#ifdef CONFIG_X86_LOCAL_APIC
264/* Function pointer for generic interrupt vector handling */
265void (*x86_platform_ipi_callback)(void) = NULL;
266/*
267 * Handler for X86_PLATFORM_IPI_VECTOR.
268 */
269__visible void __irq_entry smp_x86_platform_ipi(struct pt_regs *regs)
270{
271	struct pt_regs *old_regs = set_irq_regs(regs);
272
273	entering_ack_irq();
274	trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
275	inc_irq_stat(x86_platform_ipis);
276	if (x86_platform_ipi_callback)
277		x86_platform_ipi_callback();
278	trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
279	exiting_irq();
280	set_irq_regs(old_regs);
281}
282#endif
283
284#ifdef CONFIG_HAVE_KVM
285static void dummy_handler(void) {}
286static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
287
288void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
289{
290	if (handler)
291		kvm_posted_intr_wakeup_handler = handler;
292	else
293		kvm_posted_intr_wakeup_handler = dummy_handler;
294}
295EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
296
297/*
298 * Handler for POSTED_INTERRUPT_VECTOR.
299 */
300__visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
301{
302	struct pt_regs *old_regs = set_irq_regs(regs);
303
304	entering_ack_irq();
305	inc_irq_stat(kvm_posted_intr_ipis);
306	exiting_irq();
307	set_irq_regs(old_regs);
308}
309
310/*
311 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
312 */
313__visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs)
314{
315	struct pt_regs *old_regs = set_irq_regs(regs);
316
317	entering_ack_irq();
318	inc_irq_stat(kvm_posted_intr_wakeup_ipis);
319	kvm_posted_intr_wakeup_handler();
320	exiting_irq();
321	set_irq_regs(old_regs);
322}
323
324/*
325 * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
326 */
327__visible void smp_kvm_posted_intr_nested_ipi(struct pt_regs *regs)
328{
329	struct pt_regs *old_regs = set_irq_regs(regs);
330
331	entering_ack_irq();
332	inc_irq_stat(kvm_posted_intr_nested_ipis);
333	exiting_irq();
334	set_irq_regs(old_regs);
335}
336#endif
337
338
339#ifdef CONFIG_HOTPLUG_CPU
340/* A cpu has been removed from cpu_online_mask.  Reset irq affinities. */
341void fixup_irqs(void)
342{
343	unsigned int irr, vector;
 
344	struct irq_desc *desc;
345	struct irq_data *data;
346	struct irq_chip *chip;
347
348	irq_migrate_all_off_this_cpu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
349
350	/*
351	 * We can remove mdelay() and then send spuriuous interrupts to
352	 * new cpu targets for all the irqs that were handled previously by
353	 * this cpu. While it works, I have seen spurious interrupt messages
354	 * (nothing wrong but still...).
355	 *
356	 * So for now, retain mdelay(1) and check the IRR and then send those
357	 * interrupts to new targets as this cpu is already offlined...
358	 */
359	mdelay(1);
360
361	/*
362	 * We can walk the vector array of this cpu without holding
363	 * vector_lock because the cpu is already marked !online, so
364	 * nothing else will touch it.
365	 */
366	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
367		if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
 
 
368			continue;
369
370		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
371		if (irr  & (1 << (vector % 32))) {
372			desc = __this_cpu_read(vector_irq[vector]);
373
374			raw_spin_lock(&desc->lock);
375			data = irq_desc_get_irq_data(desc);
376			chip = irq_data_get_irq_chip(data);
377			if (chip->irq_retrigger) {
 
378				chip->irq_retrigger(data);
379				__this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
380			}
381			raw_spin_unlock(&desc->lock);
382		}
383		if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
384			__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
385	}
386}
387#endif