Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * SH RSPI driver
  3 *
  4 * Copyright (C) 2012  Renesas Solutions Corp.
 
  5 *
  6 * Based on spi-sh.c:
  7 * Copyright (C) 2011 Renesas Solutions Corp.
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License as published by
 11 * the Free Software Foundation; version 2 of the License.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 21 *
 22 */
 23
 24#include <linux/module.h>
 25#include <linux/kernel.h>
 26#include <linux/sched.h>
 27#include <linux/errno.h>
 28#include <linux/list.h>
 29#include <linux/workqueue.h>
 30#include <linux/interrupt.h>
 31#include <linux/platform_device.h>
 32#include <linux/io.h>
 33#include <linux/clk.h>
 34#include <linux/dmaengine.h>
 35#include <linux/dma-mapping.h>
 
 
 36#include <linux/sh_dma.h>
 37#include <linux/spi/spi.h>
 38#include <linux/spi/rspi.h>
 39
 40#define RSPI_SPCR		0x00
 41#define RSPI_SSLP		0x01
 42#define RSPI_SPPCR		0x02
 43#define RSPI_SPSR		0x03
 44#define RSPI_SPDR		0x04
 45#define RSPI_SPSCR		0x08
 46#define RSPI_SPSSR		0x09
 47#define RSPI_SPBR		0x0a
 48#define RSPI_SPDCR		0x0b
 49#define RSPI_SPCKD		0x0c
 50#define RSPI_SSLND		0x0d
 51#define RSPI_SPND		0x0e
 52#define RSPI_SPCR2		0x0f
 53#define RSPI_SPCMD0		0x10
 54#define RSPI_SPCMD1		0x12
 55#define RSPI_SPCMD2		0x14
 56#define RSPI_SPCMD3		0x16
 57#define RSPI_SPCMD4		0x18
 58#define RSPI_SPCMD5		0x1a
 59#define RSPI_SPCMD6		0x1c
 60#define RSPI_SPCMD7		0x1e
 61
 62/* SPCR */
 63#define SPCR_SPRIE		0x80
 64#define SPCR_SPE		0x40
 65#define SPCR_SPTIE		0x20
 66#define SPCR_SPEIE		0x10
 67#define SPCR_MSTR		0x08
 68#define SPCR_MODFEN		0x04
 69#define SPCR_TXMD		0x02
 70#define SPCR_SPMS		0x01
 71
 72/* SSLP */
 73#define SSLP_SSL1P		0x02
 74#define SSLP_SSL0P		0x01
 75
 76/* SPPCR */
 77#define SPPCR_MOIFE		0x20
 78#define SPPCR_MOIFV		0x10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79#define SPPCR_SPOM		0x04
 80#define SPPCR_SPLP2		0x02
 81#define SPPCR_SPLP		0x01
 
 
 
 82
 83/* SPSR */
 84#define SPSR_SPRF		0x80
 85#define SPSR_SPTEF		0x20
 86#define SPSR_PERF		0x08
 87#define SPSR_MODF		0x04
 88#define SPSR_IDLNF		0x02
 89#define SPSR_OVRF		0x01
 90
 91/* SPSCR */
 92#define SPSCR_SPSLN_MASK	0x07
 93
 94/* SPSSR */
 95#define SPSSR_SPECM_MASK	0x70
 96#define SPSSR_SPCP_MASK		0x07
 97
 98/* SPDCR */
 99#define SPDCR_SPLW		0x20
100#define SPDCR_SPRDTD		0x10
 
 
 
 
 
 
 
101#define SPDCR_SLSEL1		0x08
102#define SPDCR_SLSEL0		0x04
103#define SPDCR_SLSEL_MASK	0x0c
104#define SPDCR_SPFC1		0x02
105#define SPDCR_SPFC0		0x01
 
106
107/* SPCKD */
108#define SPCKD_SCKDL_MASK	0x07
109
110/* SSLND */
111#define SSLND_SLNDL_MASK	0x07
112
113/* SPND */
114#define SPND_SPNDL_MASK		0x07
115
116/* SPCR2 */
117#define SPCR2_PTE		0x08
118#define SPCR2_SPIE		0x04
119#define SPCR2_SPOE		0x02
120#define SPCR2_SPPE		0x01
121
122/* SPCMDn */
123#define SPCMD_SCKDEN		0x8000
124#define SPCMD_SLNDEN		0x4000
125#define SPCMD_SPNDEN		0x2000
126#define SPCMD_LSBF		0x1000
127#define SPCMD_SPB_MASK		0x0f00
128#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
 
 
129#define SPCMD_SPB_20BIT		0x0000
130#define SPCMD_SPB_24BIT		0x0100
131#define SPCMD_SPB_32BIT		0x0200
132#define SPCMD_SSLKP		0x0080
133#define SPCMD_SSLA_MASK		0x0030
134#define SPCMD_BRDV_MASK		0x000c
135#define SPCMD_CPOL		0x0002
136#define SPCMD_CPHA		0x0001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
138struct rspi_data {
139	void __iomem *addr;
140	u32 max_speed_hz;
141	struct spi_master *master;
142	struct list_head queue;
143	struct work_struct ws;
144	wait_queue_head_t wait;
145	spinlock_t lock;
146	struct clk *clk;
147	unsigned char spsr;
148
149	/* for dmaengine */
150	struct sh_dmae_slave dma_tx;
151	struct sh_dmae_slave dma_rx;
152	struct dma_chan *chan_tx;
153	struct dma_chan *chan_rx;
154	int irq;
155
156	unsigned dma_width_16bit:1;
157	unsigned dma_callbacked:1;
 
158};
159
160static void rspi_write8(struct rspi_data *rspi, u8 data, u16 offset)
161{
162	iowrite8(data, rspi->addr + offset);
163}
164
165static void rspi_write16(struct rspi_data *rspi, u16 data, u16 offset)
166{
167	iowrite16(data, rspi->addr + offset);
168}
169
170static u8 rspi_read8(struct rspi_data *rspi, u16 offset)
 
 
 
 
 
171{
172	return ioread8(rspi->addr + offset);
173}
174
175static u16 rspi_read16(struct rspi_data *rspi, u16 offset)
176{
177	return ioread16(rspi->addr + offset);
178}
179
180static unsigned char rspi_calc_spbr(struct rspi_data *rspi)
181{
182	int tmp;
183	unsigned char spbr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
185	tmp = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
186	spbr = clamp(tmp, 0, 255);
 
 
 
 
187
188	return spbr;
189}
190
191static void rspi_enable_irq(struct rspi_data *rspi, u8 enable)
192{
193	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
194}
 
 
 
 
195
196static void rspi_disable_irq(struct rspi_data *rspi, u8 disable)
197{
198	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
199}
200
201static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
202				   u8 enable_bit)
203{
204	int ret;
205
206	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
207	rspi_enable_irq(rspi, enable_bit);
208	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
209	if (ret == 0 && !(rspi->spsr & wait_mask))
210		return -ETIMEDOUT;
 
211
212	return 0;
213}
214
215static void rspi_assert_ssl(struct rspi_data *rspi)
 
 
 
216{
217	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
218}
 
 
 
 
 
 
 
 
 
 
 
 
219
220static void rspi_negate_ssl(struct rspi_data *rspi)
221{
222	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223}
224
225static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
 
 
 
226{
227	/* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
228	rspi_write8(rspi, 0x00, RSPI_SPPCR);
 
 
229
230	/* Sets transfer bit rate */
231	rspi_write8(rspi, rspi_calc_spbr(rspi), RSPI_SPBR);
 
232
233	/* Sets number of frames to be used: 1 frame */
234	rspi_write8(rspi, 0x00, RSPI_SPDCR);
 
235
236	/* Sets RSPCK, SSL, next-access delay value */
237	rspi_write8(rspi, 0x00, RSPI_SPCKD);
238	rspi_write8(rspi, 0x00, RSPI_SSLND);
239	rspi_write8(rspi, 0x00, RSPI_SPND);
240
241	/* Sets parity, interrupt mask */
242	rspi_write8(rspi, 0x00, RSPI_SPCR2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243
244	/* Sets SPCMD */
245	rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | SPCMD_SSLKP,
246		     RSPI_SPCMD0);
247
248	/* Sets RSPI mode */
249	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
250
251	return 0;
252}
253
254static int rspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg,
255			 struct spi_transfer *t)
256{
257	int remain = t->len;
258	u8 *data;
259
260	data = (u8 *)t->tx_buf;
261	while (remain > 0) {
262		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD,
263			    RSPI_SPCR);
 
264
265		if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
266			dev_err(&rspi->master->dev,
267				"%s: tx empty timeout\n", __func__);
268			return -ETIMEDOUT;
269		}
270
271		rspi_write16(rspi, *data, RSPI_SPDR);
272		data++;
273		remain--;
 
 
 
 
 
 
 
274	}
275
276	/* Waiting for the last transmition */
277	rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
278
279	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280}
281
282static void rspi_dma_complete(void *arg)
 
 
283{
284	struct rspi_data *rspi = arg;
 
285
286	rspi->dma_callbacked = 1;
287	wake_up_interruptible(&rspi->wait);
 
288}
289
290static int rspi_dma_map_sg(struct scatterlist *sg, void *buf, unsigned len,
291			   struct dma_chan *chan,
292			   enum dma_transfer_direction dir)
293{
294	sg_init_table(sg, 1);
295	sg_set_buf(sg, buf, len);
296	sg_dma_len(sg) = len;
297	return dma_map_sg(chan->device->dev, sg, 1, dir);
 
 
 
 
 
 
 
 
298}
299
300static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
301			      enum dma_transfer_direction dir)
302{
303	dma_unmap_sg(chan->device->dev, sg, 1, dir);
304}
305
306static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
307{
308	u16 *dst = buf;
309	const u8 *src = data;
310
311	while (len) {
312		*dst++ = (u16)(*src++);
313		len--;
 
 
 
314	}
 
 
315}
316
317static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
318{
319	u8 *dst = buf;
320	const u16 *src = data;
321
322	while (len) {
323		*dst++ = (u8)*src++;
324		len--;
 
325	}
 
 
326}
327
328static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
 
329{
330	struct scatterlist sg;
331	void *buf = NULL;
332	struct dma_async_tx_descriptor *desc;
333	unsigned len;
334	int ret = 0;
 
 
 
 
 
 
 
 
335
336	if (rspi->dma_width_16bit) {
337		/*
338		 * If DMAC bus width is 16-bit, the driver allocates a dummy
339		 * buffer. And, the driver converts original data into the
340		 * DMAC data as the following format:
341		 *  original data: 1st byte, 2nd byte ...
342		 *  DMAC data:     1st byte, dummy, 2nd byte, dummy ...
343		 */
344		len = t->len * 2;
345		buf = kmalloc(len, GFP_KERNEL);
346		if (!buf)
347			return -ENOMEM;
348		rspi_memory_to_8bit(buf, t->tx_buf, t->len);
349	} else {
350		len = t->len;
351		buf = (void *)t->tx_buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352	}
353
354	if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
355		ret = -EFAULT;
356		goto end_nomap;
357	}
358	desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
359				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
360	if (!desc) {
361		ret = -EIO;
362		goto end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363	}
364
365	/*
366	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
367	 * called. So, this driver disables the IRQ while DMA transfer.
368	 */
369	disable_irq(rspi->irq);
 
 
 
370
371	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
372	rspi_enable_irq(rspi, SPCR_SPTIE);
373	rspi->dma_callbacked = 0;
374
375	desc->callback = rspi_dma_complete;
376	desc->callback_param = rspi;
377	dmaengine_submit(desc);
378	dma_async_issue_pending(rspi->chan_tx);
 
379
380	ret = wait_event_interruptible_timeout(rspi->wait,
381					       rspi->dma_callbacked, HZ);
382	if (ret > 0 && rspi->dma_callbacked)
383		ret = 0;
384	else if (!ret)
 
385		ret = -ETIMEDOUT;
386	rspi_disable_irq(rspi, SPCR_SPTIE);
 
 
 
 
387
388	enable_irq(rspi->irq);
 
 
 
 
 
389
390end:
391	rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
392end_nomap:
393	if (rspi->dma_width_16bit)
394		kfree(buf);
395
 
 
 
 
 
 
 
 
 
396	return ret;
397}
398
399static void rspi_receive_init(struct rspi_data *rspi)
400{
401	unsigned char spsr;
402
403	spsr = rspi_read8(rspi, RSPI_SPSR);
404	if (spsr & SPSR_SPRF)
405		rspi_read16(rspi, RSPI_SPDR);	/* dummy read */
406	if (spsr & SPSR_OVRF)
407		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
408			    RSPI_SPCR);
409}
410
411static int rspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg,
412			    struct spi_transfer *t)
413{
414	int remain = t->len;
415	u8 *data;
416
417	rspi_receive_init(rspi);
 
 
 
418
419	data = (u8 *)t->rx_buf;
420	while (remain > 0) {
421		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD,
422			    RSPI_SPCR);
423
424		if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
425			dev_err(&rspi->master->dev,
426				"%s: tx empty timeout\n", __func__);
427			return -ETIMEDOUT;
428		}
429		/* dummy write for generate clock */
430		rspi_write16(rspi, 0x00, RSPI_SPDR);
431
432		if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
433			dev_err(&rspi->master->dev,
434				"%s: receive timeout\n", __func__);
435			return -ETIMEDOUT;
436		}
437		/* SPDR allows 16 or 32-bit access only */
438		*data = (u8)rspi_read16(rspi, RSPI_SPDR);
439
440		data++;
441		remain--;
442	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443
444	return 0;
445}
446
447static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
448{
449	struct scatterlist sg, sg_dummy;
450	void *dummy = NULL, *rx_buf = NULL;
451	struct dma_async_tx_descriptor *desc, *desc_dummy;
452	unsigned len;
453	int ret = 0;
454
455	if (rspi->dma_width_16bit) {
456		/*
457		 * If DMAC bus width is 16-bit, the driver allocates a dummy
458		 * buffer. And, finally the driver converts the DMAC data into
459		 * actual data as the following format:
460		 *  DMAC data:   1st byte, dummy, 2nd byte, dummy ...
461		 *  actual data: 1st byte, 2nd byte ...
462		 */
463		len = t->len * 2;
464		rx_buf = kmalloc(len, GFP_KERNEL);
465		if (!rx_buf)
466			return -ENOMEM;
467	 } else {
468		len = t->len;
469		rx_buf = t->rx_buf;
470	}
471
472	/* prepare dummy transfer to generate SPI clocks */
473	dummy = kzalloc(len, GFP_KERNEL);
474	if (!dummy) {
475		ret = -ENOMEM;
476		goto end_nomap;
477	}
478	if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
479			     DMA_TO_DEVICE)) {
480		ret = -EFAULT;
481		goto end_nomap;
482	}
483	desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
484			DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
485	if (!desc_dummy) {
486		ret = -EIO;
487		goto end_dummy_mapped;
488	}
489
490	/* prepare receive transfer */
491	if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
492			     DMA_FROM_DEVICE)) {
493		ret = -EFAULT;
494		goto end_dummy_mapped;
495
496	}
497	desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
498				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
499	if (!desc) {
500		ret = -EIO;
501		goto end;
502	}
 
503
504	rspi_receive_init(rspi);
 
505
506	/*
507	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
508	 * called. So, this driver disables the IRQ while DMA transfer.
509	 */
510	disable_irq(rspi->irq);
511
512	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
513	rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
514	rspi->dma_callbacked = 0;
515
516	desc->callback = rspi_dma_complete;
517	desc->callback_param = rspi;
518	dmaengine_submit(desc);
519	dma_async_issue_pending(rspi->chan_rx);
520
521	desc_dummy->callback = NULL;	/* No callback */
522	dmaengine_submit(desc_dummy);
523	dma_async_issue_pending(rspi->chan_tx);
524
525	ret = wait_event_interruptible_timeout(rspi->wait,
526					       rspi->dma_callbacked, HZ);
527	if (ret > 0 && rspi->dma_callbacked)
528		ret = 0;
529	else if (!ret)
530		ret = -ETIMEDOUT;
531	rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
532
533	enable_irq(rspi->irq);
 
 
 
 
 
 
 
 
 
 
534
535end:
536	rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
537end_dummy_mapped:
538	rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
539end_nomap:
540	if (rspi->dma_width_16bit) {
541		if (!ret)
542			rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
543		kfree(rx_buf);
 
 
 
 
544	}
545	kfree(dummy);
546
547	return ret;
548}
549
550static int rspi_is_dma(struct rspi_data *rspi, struct spi_transfer *t)
 
551{
552	if (t->tx_buf && rspi->chan_tx)
553		return 1;
554	/* If the module receives data by DMAC, it also needs TX DMAC */
555	if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
556		return 1;
557
558	return 0;
 
 
 
 
 
 
 
559}
560
561static void rspi_work(struct work_struct *work)
562{
563	struct rspi_data *rspi = container_of(work, struct rspi_data, ws);
564	struct spi_message *mesg;
565	struct spi_transfer *t;
566	unsigned long flags;
567	int ret;
568
569	spin_lock_irqsave(&rspi->lock, flags);
570	while (!list_empty(&rspi->queue)) {
571		mesg = list_entry(rspi->queue.next, struct spi_message, queue);
572		list_del_init(&mesg->queue);
573		spin_unlock_irqrestore(&rspi->lock, flags);
574
575		rspi_assert_ssl(rspi);
576
577		list_for_each_entry(t, &mesg->transfers, transfer_list) {
578			if (t->tx_buf) {
579				if (rspi_is_dma(rspi, t))
580					ret = rspi_send_dma(rspi, t);
581				else
582					ret = rspi_send_pio(rspi, mesg, t);
583				if (ret < 0)
584					goto error;
585			}
586			if (t->rx_buf) {
587				if (rspi_is_dma(rspi, t))
588					ret = rspi_receive_dma(rspi, t);
589				else
590					ret = rspi_receive_pio(rspi, mesg, t);
591				if (ret < 0)
592					goto error;
593			}
594			mesg->actual_length += t->len;
 
 
 
 
 
595		}
596		rspi_negate_ssl(rspi);
 
 
 
 
 
 
 
597
598		mesg->status = 0;
599		mesg->complete(mesg->context);
 
 
 
 
600
601		spin_lock_irqsave(&rspi->lock, flags);
 
 
 
602	}
603
604	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
605
606error:
607	mesg->status = ret;
608	mesg->complete(mesg->context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609}
610
611static int rspi_setup(struct spi_device *spi)
612{
613	struct rspi_data *rspi = spi_master_get_devdata(spi->master);
614
615	if (!spi->bits_per_word)
616		spi->bits_per_word = 8;
617	rspi->max_speed_hz = spi->max_speed_hz;
618
619	rspi_set_config_register(rspi, 8);
 
 
 
 
 
 
 
 
 
 
 
620
621	return 0;
622}
623
624static int rspi_transfer(struct spi_device *spi, struct spi_message *mesg)
625{
626	struct rspi_data *rspi = spi_master_get_devdata(spi->master);
627	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628
629	mesg->actual_length = 0;
630	mesg->status = -EINPROGRESS;
 
 
 
631
632	spin_lock_irqsave(&rspi->lock, flags);
633	list_add_tail(&mesg->queue, &rspi->queue);
634	schedule_work(&rspi->ws);
635	spin_unlock_irqrestore(&rspi->lock, flags);
 
 
 
636
 
 
637	return 0;
638}
639
640static void rspi_cleanup(struct spi_device *spi)
 
641{
 
 
 
 
 
 
 
 
 
642}
643
644static irqreturn_t rspi_irq(int irq, void *_sr)
645{
646	struct rspi_data *rspi = (struct rspi_data *)_sr;
647	unsigned long spsr;
648	irqreturn_t ret = IRQ_NONE;
649	unsigned char disable_irq = 0;
650
651	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
652	if (spsr & SPSR_SPRF)
653		disable_irq |= SPCR_SPRIE;
654	if (spsr & SPSR_SPTEF)
655		disable_irq |= SPCR_SPTIE;
656
657	if (disable_irq) {
658		ret = IRQ_HANDLED;
659		rspi_disable_irq(rspi, disable_irq);
660		wake_up(&rspi->wait);
661	}
662
663	return ret;
664}
665
666static bool rspi_filter(struct dma_chan *chan, void *filter_param)
667{
668	chan->private = filter_param;
669	return true;
 
 
 
 
 
 
 
 
 
670}
671
672static void __devinit rspi_request_dma(struct rspi_data *rspi,
673				       struct platform_device *pdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
674{
675	struct rspi_plat_data *rspi_pd = pdev->dev.platform_data;
676	dma_cap_mask_t mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677
678	if (!rspi_pd)
679		return;
680
681	rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
 
 
 
 
682
683	/* If the module receives data by DMAC, it also needs TX DMAC */
684	if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
685		dma_cap_zero(mask);
686		dma_cap_set(DMA_SLAVE, mask);
687		rspi->dma_rx.slave_id = rspi_pd->dma_rx_id;
688		rspi->chan_rx = dma_request_channel(mask, rspi_filter,
689						    &rspi->dma_rx);
690		if (rspi->chan_rx)
691			dev_info(&pdev->dev, "Use DMA when rx.\n");
 
692	}
693	if (rspi_pd->dma_tx_id) {
694		dma_cap_zero(mask);
695		dma_cap_set(DMA_SLAVE, mask);
696		rspi->dma_tx.slave_id = rspi_pd->dma_tx_id;
697		rspi->chan_tx = dma_request_channel(mask, rspi_filter,
698						    &rspi->dma_tx);
699		if (rspi->chan_tx)
700			dev_info(&pdev->dev, "Use DMA when tx\n");
 
 
 
 
701	}
 
 
 
 
702}
703
704static void __devexit rspi_release_dma(struct rspi_data *rspi)
705{
706	if (rspi->chan_tx)
707		dma_release_channel(rspi->chan_tx);
708	if (rspi->chan_rx)
709		dma_release_channel(rspi->chan_rx);
710}
711
712static int __devexit rspi_remove(struct platform_device *pdev)
713{
714	struct rspi_data *rspi = dev_get_drvdata(&pdev->dev);
715
716	spi_unregister_master(rspi->master);
717	rspi_release_dma(rspi);
718	free_irq(platform_get_irq(pdev, 0), rspi);
719	clk_put(rspi->clk);
720	iounmap(rspi->addr);
721	spi_master_put(rspi->master);
722
723	return 0;
724}
725
726static int __devinit rspi_probe(struct platform_device *pdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727{
728	struct resource *res;
729	struct spi_master *master;
730	struct rspi_data *rspi;
731	int ret, irq;
732	char clk_name[16];
733
734	/* get base addr */
735	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
736	if (unlikely(res == NULL)) {
737		dev_err(&pdev->dev, "invalid resource\n");
738		return -EINVAL;
739	}
740
741	irq = platform_get_irq(pdev, 0);
742	if (irq < 0) {
743		dev_err(&pdev->dev, "platform_get_irq error\n");
744		return -ENODEV;
745	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746
747	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
748	if (master == NULL) {
749		dev_err(&pdev->dev, "spi_alloc_master error.\n");
750		return -ENOMEM;
751	}
752
753	rspi = spi_master_get_devdata(master);
754	dev_set_drvdata(&pdev->dev, rspi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755
 
 
 
756	rspi->master = master;
757	rspi->addr = ioremap(res->start, resource_size(res));
758	if (rspi->addr == NULL) {
759		dev_err(&pdev->dev, "ioremap error.\n");
760		ret = -ENOMEM;
 
761		goto error1;
762	}
763
764	snprintf(clk_name, sizeof(clk_name), "rspi%d", pdev->id);
765	rspi->clk = clk_get(&pdev->dev, clk_name);
766	if (IS_ERR(rspi->clk)) {
767		dev_err(&pdev->dev, "cannot get clock\n");
768		ret = PTR_ERR(rspi->clk);
769		goto error2;
770	}
771	clk_enable(rspi->clk);
772
773	INIT_LIST_HEAD(&rspi->queue);
774	spin_lock_init(&rspi->lock);
775	INIT_WORK(&rspi->ws, rspi_work);
776	init_waitqueue_head(&rspi->wait);
777
778	master->num_chipselect = 2;
779	master->bus_num = pdev->id;
780	master->setup = rspi_setup;
781	master->transfer = rspi_transfer;
782	master->cleanup = rspi_cleanup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783
784	ret = request_irq(irq, rspi_irq, 0, dev_name(&pdev->dev), rspi);
 
 
 
 
 
 
 
 
 
 
 
785	if (ret < 0) {
786		dev_err(&pdev->dev, "request_irq error\n");
787		goto error3;
788	}
789
790	rspi->irq = irq;
791	rspi_request_dma(rspi, pdev);
 
792
793	ret = spi_register_master(master);
794	if (ret < 0) {
795		dev_err(&pdev->dev, "spi_register_master error.\n");
796		goto error4;
797	}
798
799	dev_info(&pdev->dev, "probed\n");
800
801	return 0;
802
803error4:
804	rspi_release_dma(rspi);
805	free_irq(irq, rspi);
806error3:
807	clk_put(rspi->clk);
808error2:
809	iounmap(rspi->addr);
810error1:
811	spi_master_put(master);
812
813	return ret;
814}
815
 
 
 
 
 
 
 
 
 
816static struct platform_driver rspi_driver = {
817	.probe =	rspi_probe,
818	.remove =	__devexit_p(rspi_remove),
 
819	.driver		= {
820		.name = "rspi",
821		.owner	= THIS_MODULE,
822	},
823};
824module_platform_driver(rspi_driver);
825
826MODULE_DESCRIPTION("Renesas RSPI bus driver");
827MODULE_LICENSE("GPL v2");
828MODULE_AUTHOR("Yoshihiro Shimoda");
829MODULE_ALIAS("platform:rspi");
v4.10.11
   1/*
   2 * SH RSPI driver
   3 *
   4 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
   5 * Copyright (C) 2014 Glider bvba
   6 *
   7 * Based on spi-sh.c:
   8 * Copyright (C) 2011 Renesas Solutions Corp.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; version 2 of the License.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
 
 
 
 
 
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/kernel.h>
  22#include <linux/sched.h>
  23#include <linux/errno.h>
 
 
  24#include <linux/interrupt.h>
  25#include <linux/platform_device.h>
  26#include <linux/io.h>
  27#include <linux/clk.h>
  28#include <linux/dmaengine.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/of_device.h>
  31#include <linux/pm_runtime.h>
  32#include <linux/sh_dma.h>
  33#include <linux/spi/spi.h>
  34#include <linux/spi/rspi.h>
  35
  36#define RSPI_SPCR		0x00	/* Control Register */
  37#define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
  38#define RSPI_SPPCR		0x02	/* Pin Control Register */
  39#define RSPI_SPSR		0x03	/* Status Register */
  40#define RSPI_SPDR		0x04	/* Data Register */
  41#define RSPI_SPSCR		0x08	/* Sequence Control Register */
  42#define RSPI_SPSSR		0x09	/* Sequence Status Register */
  43#define RSPI_SPBR		0x0a	/* Bit Rate Register */
  44#define RSPI_SPDCR		0x0b	/* Data Control Register */
  45#define RSPI_SPCKD		0x0c	/* Clock Delay Register */
  46#define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
  47#define RSPI_SPND		0x0e	/* Next-Access Delay Register */
  48#define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
  49#define RSPI_SPCMD0		0x10	/* Command Register 0 */
  50#define RSPI_SPCMD1		0x12	/* Command Register 1 */
  51#define RSPI_SPCMD2		0x14	/* Command Register 2 */
  52#define RSPI_SPCMD3		0x16	/* Command Register 3 */
  53#define RSPI_SPCMD4		0x18	/* Command Register 4 */
  54#define RSPI_SPCMD5		0x1a	/* Command Register 5 */
  55#define RSPI_SPCMD6		0x1c	/* Command Register 6 */
  56#define RSPI_SPCMD7		0x1e	/* Command Register 7 */
  57#define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
  58#define RSPI_NUM_SPCMD		8
  59#define RSPI_RZ_NUM_SPCMD	4
  60#define QSPI_NUM_SPCMD		4
  61
  62/* RSPI on RZ only */
  63#define RSPI_SPBFCR		0x20	/* Buffer Control Register */
  64#define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
  65
  66/* QSPI only */
  67#define QSPI_SPBFCR		0x18	/* Buffer Control Register */
  68#define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
  69#define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
  70#define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
  71#define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
  72#define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
  73#define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
  74
  75/* SPCR - Control Register */
  76#define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
  77#define SPCR_SPE		0x40	/* Function Enable */
  78#define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
  79#define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
  80#define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
  81#define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
  82/* RSPI on SH only */
  83#define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
  84#define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
  85/* QSPI on R-Car Gen2 only */
  86#define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
  87#define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
  88
  89/* SSLP - Slave Select Polarity Register */
  90#define SSLP_SSL1P		0x02	/* SSL1 Signal Polarity Setting */
  91#define SSLP_SSL0P		0x01	/* SSL0 Signal Polarity Setting */
  92
  93/* SPPCR - Pin Control Register */
  94#define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
  95#define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
  96#define SPPCR_SPOM		0x04
  97#define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
  98#define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */
  99
 100#define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
 101#define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */
 102
 103/* SPSR - Status Register */
 104#define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
 105#define SPSR_TEND		0x40	/* Transmit End */
 106#define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
 107#define SPSR_PERF		0x08	/* Parity Error Flag */
 108#define SPSR_MODF		0x04	/* Mode Fault Error Flag */
 109#define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
 110#define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
 111
 112/* SPSCR - Sequence Control Register */
 113#define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */
 114
 115/* SPSSR - Sequence Status Register */
 116#define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
 117#define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */
 118
 119/* SPDCR - Data Control Register */
 120#define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
 121#define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
 122#define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
 123#define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
 124#define SPDCR_SPLWORD		SPDCR_SPLW1
 125#define SPDCR_SPLBYTE		SPDCR_SPLW0
 126#define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
 127#define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
 128#define SPDCR_SLSEL1		0x08
 129#define SPDCR_SLSEL0		0x04
 130#define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
 131#define SPDCR_SPFC1		0x02
 132#define SPDCR_SPFC0		0x01
 133#define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
 134
 135/* SPCKD - Clock Delay Register */
 136#define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
 137
 138/* SSLND - Slave Select Negation Delay Register */
 139#define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
 140
 141/* SPND - Next-Access Delay Register */
 142#define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
 143
 144/* SPCR2 - Control Register 2 */
 145#define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
 146#define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
 147#define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
 148#define SPCR2_SPPE		0x01	/* Parity Enable */
 149
 150/* SPCMDn - Command Registers */
 151#define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
 152#define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
 153#define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
 154#define SPCMD_LSBF		0x1000	/* LSB First */
 155#define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
 156#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
 157#define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
 158#define SPCMD_SPB_16BIT		0x0100
 159#define SPCMD_SPB_20BIT		0x0000
 160#define SPCMD_SPB_24BIT		0x0100
 161#define SPCMD_SPB_32BIT		0x0200
 162#define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
 163#define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
 164#define SPCMD_SPIMOD1		0x0040
 165#define SPCMD_SPIMOD0		0x0020
 166#define SPCMD_SPIMOD_SINGLE	0
 167#define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
 168#define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
 169#define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
 170#define SPCMD_SSLA_MASK		0x0030	/* SSL Assert Signal Setting (RSPI) */
 171#define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
 172#define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
 173#define SPCMD_CPHA		0x0001	/* Clock Phase Setting */
 174
 175/* SPBFCR - Buffer Control Register */
 176#define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
 177#define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
 178#define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
 179#define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
 180/* QSPI on R-Car Gen2 */
 181#define SPBFCR_TXTRG_1B		0x00	/* 31 bytes (1 byte available) */
 182#define SPBFCR_TXTRG_32B	0x30	/* 0 byte (32 bytes available) */
 183#define SPBFCR_RXTRG_1B		0x00	/* 1 byte (31 bytes available) */
 184#define SPBFCR_RXTRG_32B	0x07	/* 32 bytes (0 byte available) */
 185
 186#define QSPI_BUFFER_SIZE        32u
 187
 188struct rspi_data {
 189	void __iomem *addr;
 190	u32 max_speed_hz;
 191	struct spi_master *master;
 
 
 192	wait_queue_head_t wait;
 
 193	struct clk *clk;
 194	u16 spcmd;
 195	u8 spsr;
 196	u8 sppcr;
 197	int rx_irq, tx_irq;
 198	const struct spi_ops *ops;
 
 
 
 199
 
 200	unsigned dma_callbacked:1;
 201	unsigned byte_access:1;
 202};
 203
 204static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
 205{
 206	iowrite8(data, rspi->addr + offset);
 207}
 208
 209static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
 210{
 211	iowrite16(data, rspi->addr + offset);
 212}
 213
 214static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
 215{
 216	iowrite32(data, rspi->addr + offset);
 217}
 218
 219static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
 220{
 221	return ioread8(rspi->addr + offset);
 222}
 223
 224static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
 225{
 226	return ioread16(rspi->addr + offset);
 227}
 228
 229static void rspi_write_data(const struct rspi_data *rspi, u16 data)
 230{
 231	if (rspi->byte_access)
 232		rspi_write8(rspi, data, RSPI_SPDR);
 233	else /* 16 bit */
 234		rspi_write16(rspi, data, RSPI_SPDR);
 235}
 236
 237static u16 rspi_read_data(const struct rspi_data *rspi)
 238{
 239	if (rspi->byte_access)
 240		return rspi_read8(rspi, RSPI_SPDR);
 241	else /* 16 bit */
 242		return rspi_read16(rspi, RSPI_SPDR);
 243}
 244
 245/* optional functions */
 246struct spi_ops {
 247	int (*set_config_register)(struct rspi_data *rspi, int access_size);
 248	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
 249			    struct spi_transfer *xfer);
 250	u16 mode_bits;
 251	u16 flags;
 252	u16 fifo_size;
 253};
 254
 255/*
 256 * functions for RSPI on legacy SH
 257 */
 258static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
 259{
 260	int spbr;
 261
 262	/* Sets output mode, MOSI signal, and (optionally) loopback */
 263	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 264
 265	/* Sets transfer bit rate */
 266	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
 267			    2 * rspi->max_speed_hz) - 1;
 268	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 269
 270	/* Disable dummy transmission, set 16-bit word access, 1 frame */
 271	rspi_write8(rspi, 0, RSPI_SPDCR);
 272	rspi->byte_access = 0;
 273
 274	/* Sets RSPCK, SSL, next-access delay value */
 275	rspi_write8(rspi, 0x00, RSPI_SPCKD);
 276	rspi_write8(rspi, 0x00, RSPI_SSLND);
 277	rspi_write8(rspi, 0x00, RSPI_SPND);
 278
 279	/* Sets parity, interrupt mask */
 280	rspi_write8(rspi, 0x00, RSPI_SPCR2);
 
 
 281
 282	/* Sets SPCMD */
 283	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 284	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 285
 286	/* Sets RSPI mode */
 287	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 288
 289	return 0;
 290}
 291
 292/*
 293 * functions for RSPI on RZ
 294 */
 295static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
 296{
 297	int spbr;
 298	int div = 0;
 299	unsigned long clksrc;
 300
 301	/* Sets output mode, MOSI signal, and (optionally) loopback */
 302	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 303
 304	clksrc = clk_get_rate(rspi->clk);
 305	while (div < 3) {
 306		if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
 307			break;
 308		div++;
 309		clksrc /= 2;
 310	}
 311
 312	/* Sets transfer bit rate */
 313	spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1;
 314	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 315	rspi->spcmd |= div << 2;
 316
 317	/* Disable dummy transmission, set byte access */
 318	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
 319	rspi->byte_access = 1;
 320
 321	/* Sets RSPCK, SSL, next-access delay value */
 322	rspi_write8(rspi, 0x00, RSPI_SPCKD);
 323	rspi_write8(rspi, 0x00, RSPI_SSLND);
 324	rspi_write8(rspi, 0x00, RSPI_SPND);
 325
 326	/* Sets SPCMD */
 327	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 328	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 329
 330	/* Sets RSPI mode */
 331	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 332
 333	return 0;
 334}
 335
 336/*
 337 * functions for QSPI
 338 */
 339static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
 340{
 341	int spbr;
 342
 343	/* Sets output mode, MOSI signal, and (optionally) loopback */
 344	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 345
 346	/* Sets transfer bit rate */
 347	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
 348	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 349
 350	/* Disable dummy transmission, set byte access */
 351	rspi_write8(rspi, 0, RSPI_SPDCR);
 352	rspi->byte_access = 1;
 353
 354	/* Sets RSPCK, SSL, next-access delay value */
 355	rspi_write8(rspi, 0x00, RSPI_SPCKD);
 356	rspi_write8(rspi, 0x00, RSPI_SSLND);
 357	rspi_write8(rspi, 0x00, RSPI_SPND);
 358
 359	/* Data Length Setting */
 360	if (access_size == 8)
 361		rspi->spcmd |= SPCMD_SPB_8BIT;
 362	else if (access_size == 16)
 363		rspi->spcmd |= SPCMD_SPB_16BIT;
 364	else
 365		rspi->spcmd |= SPCMD_SPB_32BIT;
 366
 367	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
 368
 369	/* Resets transfer data length */
 370	rspi_write32(rspi, 0, QSPI_SPBMUL0);
 371
 372	/* Resets transmit and receive buffer */
 373	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 374	/* Sets buffer to allow normal operation */
 375	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
 376
 377	/* Sets SPCMD */
 378	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 
 379
 380	/* Enables SPI function in master mode */
 381	rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
 382
 383	return 0;
 384}
 385
 386static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
 
 387{
 388	u8 data;
 
 389
 390	data = rspi_read8(rspi, reg);
 391	data &= ~mask;
 392	data |= (val & mask);
 393	rspi_write8(rspi, data, reg);
 394}
 395
 396static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
 397					  unsigned int len)
 398{
 399	unsigned int n;
 
 400
 401	n = min(len, QSPI_BUFFER_SIZE);
 402
 403	if (len >= QSPI_BUFFER_SIZE) {
 404		/* sets triggering number to 32 bytes */
 405		qspi_update(rspi, SPBFCR_TXTRG_MASK,
 406			     SPBFCR_TXTRG_32B, QSPI_SPBFCR);
 407	} else {
 408		/* sets triggering number to 1 byte */
 409		qspi_update(rspi, SPBFCR_TXTRG_MASK,
 410			     SPBFCR_TXTRG_1B, QSPI_SPBFCR);
 411	}
 412
 413	return n;
 414}
 415
 416static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
 417{
 418	unsigned int n;
 419
 420	n = min(len, QSPI_BUFFER_SIZE);
 421
 422	if (len >= QSPI_BUFFER_SIZE) {
 423		/* sets triggering number to 32 bytes */
 424		qspi_update(rspi, SPBFCR_RXTRG_MASK,
 425			     SPBFCR_RXTRG_32B, QSPI_SPBFCR);
 426	} else {
 427		/* sets triggering number to 1 byte */
 428		qspi_update(rspi, SPBFCR_RXTRG_MASK,
 429			     SPBFCR_RXTRG_1B, QSPI_SPBFCR);
 430	}
 431	return n;
 432}
 433
 434#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
 435
 436static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
 437{
 438	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
 439}
 440
 441static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
 442{
 443	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
 444}
 445
 446static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
 447				   u8 enable_bit)
 
 448{
 449	int ret;
 450
 451	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
 452	if (rspi->spsr & wait_mask)
 453		return 0;
 454
 455	rspi_enable_irq(rspi, enable_bit);
 456	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
 457	if (ret == 0 && !(rspi->spsr & wait_mask))
 458		return -ETIMEDOUT;
 459
 460	return 0;
 461}
 462
 463static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
 
 464{
 465	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
 466}
 467
 468static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
 469{
 470	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
 471}
 472
 473static int rspi_data_out(struct rspi_data *rspi, u8 data)
 474{
 475	int error = rspi_wait_for_tx_empty(rspi);
 476	if (error < 0) {
 477		dev_err(&rspi->master->dev, "transmit timeout\n");
 478		return error;
 479	}
 480	rspi_write_data(rspi, data);
 481	return 0;
 482}
 483
 484static int rspi_data_in(struct rspi_data *rspi)
 485{
 486	int error;
 487	u8 data;
 488
 489	error = rspi_wait_for_rx_full(rspi);
 490	if (error < 0) {
 491		dev_err(&rspi->master->dev, "receive timeout\n");
 492		return error;
 493	}
 494	data = rspi_read_data(rspi);
 495	return data;
 496}
 497
 498static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
 499			     unsigned int n)
 500{
 501	while (n-- > 0) {
 502		if (tx) {
 503			int ret = rspi_data_out(rspi, *tx++);
 504			if (ret < 0)
 505				return ret;
 506		}
 507		if (rx) {
 508			int ret = rspi_data_in(rspi);
 509			if (ret < 0)
 510				return ret;
 511			*rx++ = ret;
 512		}
 513	}
 514
 515	return 0;
 516}
 517
 518static void rspi_dma_complete(void *arg)
 519{
 520	struct rspi_data *rspi = arg;
 521
 522	rspi->dma_callbacked = 1;
 523	wake_up_interruptible(&rspi->wait);
 524}
 525
 526static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
 527			     struct sg_table *rx)
 528{
 529	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 530	u8 irq_mask = 0;
 531	unsigned int other_irq = 0;
 532	dma_cookie_t cookie;
 533	int ret;
 534
 535	/* First prepare and submit the DMA request(s), as this may fail */
 536	if (rx) {
 537		desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
 538					rx->sgl, rx->nents, DMA_FROM_DEVICE,
 539					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 540		if (!desc_rx) {
 541			ret = -EAGAIN;
 542			goto no_dma_rx;
 543		}
 544
 545		desc_rx->callback = rspi_dma_complete;
 546		desc_rx->callback_param = rspi;
 547		cookie = dmaengine_submit(desc_rx);
 548		if (dma_submit_error(cookie)) {
 549			ret = cookie;
 550			goto no_dma_rx;
 551		}
 552
 553		irq_mask |= SPCR_SPRIE;
 554	}
 555
 556	if (tx) {
 557		desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
 558					tx->sgl, tx->nents, DMA_TO_DEVICE,
 559					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 560		if (!desc_tx) {
 561			ret = -EAGAIN;
 562			goto no_dma_tx;
 563		}
 564
 565		if (rx) {
 566			/* No callback */
 567			desc_tx->callback = NULL;
 568		} else {
 569			desc_tx->callback = rspi_dma_complete;
 570			desc_tx->callback_param = rspi;
 571		}
 572		cookie = dmaengine_submit(desc_tx);
 573		if (dma_submit_error(cookie)) {
 574			ret = cookie;
 575			goto no_dma_tx;
 576		}
 577
 578		irq_mask |= SPCR_SPTIE;
 579	}
 580
 581	/*
 582	 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
 583	 * called. So, this driver disables the IRQ while DMA transfer.
 584	 */
 585	if (tx)
 586		disable_irq(other_irq = rspi->tx_irq);
 587	if (rx && rspi->rx_irq != other_irq)
 588		disable_irq(rspi->rx_irq);
 589
 590	rspi_enable_irq(rspi, irq_mask);
 
 591	rspi->dma_callbacked = 0;
 592
 593	/* Now start DMA */
 594	if (rx)
 595		dma_async_issue_pending(rspi->master->dma_rx);
 596	if (tx)
 597		dma_async_issue_pending(rspi->master->dma_tx);
 598
 599	ret = wait_event_interruptible_timeout(rspi->wait,
 600					       rspi->dma_callbacked, HZ);
 601	if (ret > 0 && rspi->dma_callbacked)
 602		ret = 0;
 603	else if (!ret) {
 604		dev_err(&rspi->master->dev, "DMA timeout\n");
 605		ret = -ETIMEDOUT;
 606		if (tx)
 607			dmaengine_terminate_all(rspi->master->dma_tx);
 608		if (rx)
 609			dmaengine_terminate_all(rspi->master->dma_rx);
 610	}
 611
 612	rspi_disable_irq(rspi, irq_mask);
 613
 614	if (tx)
 615		enable_irq(rspi->tx_irq);
 616	if (rx && rspi->rx_irq != other_irq)
 617		enable_irq(rspi->rx_irq);
 618
 619	return ret;
 
 
 
 
 620
 621no_dma_tx:
 622	if (rx)
 623		dmaengine_terminate_all(rspi->master->dma_rx);
 624no_dma_rx:
 625	if (ret == -EAGAIN) {
 626		pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
 627			     dev_driver_string(&rspi->master->dev),
 628			     dev_name(&rspi->master->dev));
 629	}
 630	return ret;
 631}
 632
 633static void rspi_receive_init(const struct rspi_data *rspi)
 634{
 635	u8 spsr;
 636
 637	spsr = rspi_read8(rspi, RSPI_SPSR);
 638	if (spsr & SPSR_SPRF)
 639		rspi_read_data(rspi);	/* dummy read */
 640	if (spsr & SPSR_OVRF)
 641		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
 642			    RSPI_SPSR);
 643}
 644
 645static void rspi_rz_receive_init(const struct rspi_data *rspi)
 
 646{
 
 
 
 647	rspi_receive_init(rspi);
 648	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
 649	rspi_write8(rspi, 0, RSPI_SPBFCR);
 650}
 651
 652static void qspi_receive_init(const struct rspi_data *rspi)
 653{
 654	u8 spsr;
 655
 656	spsr = rspi_read8(rspi, RSPI_SPSR);
 657	if (spsr & SPSR_SPRF)
 658		rspi_read_data(rspi);   /* dummy read */
 659	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 660	rspi_write8(rspi, 0, QSPI_SPBFCR);
 661}
 662
 663static bool __rspi_can_dma(const struct rspi_data *rspi,
 664			   const struct spi_transfer *xfer)
 665{
 666	return xfer->len > rspi->ops->fifo_size;
 667}
 668
 669static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
 670			 struct spi_transfer *xfer)
 671{
 672	struct rspi_data *rspi = spi_master_get_devdata(master);
 673
 674	return __rspi_can_dma(rspi, xfer);
 675}
 676
 677static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
 678					 struct spi_transfer *xfer)
 679{
 680	if (!rspi->master->can_dma || !__rspi_can_dma(rspi, xfer))
 681		return -EAGAIN;
 682
 683	/* rx_buf can be NULL on RSPI on SH in TX-only Mode */
 684	return rspi_dma_transfer(rspi, &xfer->tx_sg,
 685				xfer->rx_buf ? &xfer->rx_sg : NULL);
 686}
 687
 688static int rspi_common_transfer(struct rspi_data *rspi,
 689				struct spi_transfer *xfer)
 690{
 691	int ret;
 692
 693	ret = rspi_dma_check_then_transfer(rspi, xfer);
 694	if (ret != -EAGAIN)
 695		return ret;
 696
 697	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
 698	if (ret < 0)
 699		return ret;
 700
 701	/* Wait for the last transmission */
 702	rspi_wait_for_tx_empty(rspi);
 703
 704	return 0;
 705}
 706
 707static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
 708			     struct spi_transfer *xfer)
 709{
 710	struct rspi_data *rspi = spi_master_get_devdata(master);
 711	u8 spcr;
 712
 713	spcr = rspi_read8(rspi, RSPI_SPCR);
 714	if (xfer->rx_buf) {
 715		rspi_receive_init(rspi);
 716		spcr &= ~SPCR_TXMD;
 717	} else {
 718		spcr |= SPCR_TXMD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 719	}
 720	rspi_write8(rspi, spcr, RSPI_SPCR);
 721
 722	return rspi_common_transfer(rspi, xfer);
 723}
 724
 725static int rspi_rz_transfer_one(struct spi_master *master,
 726				struct spi_device *spi,
 727				struct spi_transfer *xfer)
 728{
 729	struct rspi_data *rspi = spi_master_get_devdata(master);
 730
 731	rspi_rz_receive_init(rspi);
 
 
 732
 733	return rspi_common_transfer(rspi, xfer);
 734}
 
 
 
 
 
 
 735
 736static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
 737					u8 *rx, unsigned int len)
 738{
 739	unsigned int i, n;
 740	int ret;
 
 
 741
 742	while (len > 0) {
 743		n = qspi_set_send_trigger(rspi, len);
 744		qspi_set_receive_trigger(rspi, len);
 745		if (n == QSPI_BUFFER_SIZE) {
 746			ret = rspi_wait_for_tx_empty(rspi);
 747			if (ret < 0) {
 748				dev_err(&rspi->master->dev, "transmit timeout\n");
 749				return ret;
 750			}
 751			for (i = 0; i < n; i++)
 752				rspi_write_data(rspi, *tx++);
 753
 754			ret = rspi_wait_for_rx_full(rspi);
 755			if (ret < 0) {
 756				dev_err(&rspi->master->dev, "receive timeout\n");
 757				return ret;
 758			}
 759			for (i = 0; i < n; i++)
 760				*rx++ = rspi_read_data(rspi);
 761		} else {
 762			ret = rspi_pio_transfer(rspi, tx, rx, n);
 763			if (ret < 0)
 764				return ret;
 765		}
 766		len -= n;
 767	}
 
 768
 769	return 0;
 770}
 771
 772static int qspi_transfer_out_in(struct rspi_data *rspi,
 773				struct spi_transfer *xfer)
 774{
 775	int ret;
 
 
 
 
 776
 777	qspi_receive_init(rspi);
 778
 779	ret = rspi_dma_check_then_transfer(rspi, xfer);
 780	if (ret != -EAGAIN)
 781		return ret;
 782
 783	return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
 784					    xfer->rx_buf, xfer->len);
 785}
 786
 787static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
 788{
 789	const u8 *tx = xfer->tx_buf;
 790	unsigned int n = xfer->len;
 791	unsigned int i, len;
 
 792	int ret;
 793
 794	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
 795		ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
 796		if (ret != -EAGAIN)
 797			return ret;
 798	}
 799
 800	while (n > 0) {
 801		len = qspi_set_send_trigger(rspi, n);
 802		if (len == QSPI_BUFFER_SIZE) {
 803			ret = rspi_wait_for_tx_empty(rspi);
 804			if (ret < 0) {
 805				dev_err(&rspi->master->dev, "transmit timeout\n");
 806				return ret;
 
 
 
 
 
 
 
 
 
 
 
 807			}
 808			for (i = 0; i < len; i++)
 809				rspi_write_data(rspi, *tx++);
 810		} else {
 811			ret = rspi_pio_transfer(rspi, tx, NULL, n);
 812			if (ret < 0)
 813				return ret;
 814		}
 815		n -= len;
 816	}
 817
 818	/* Wait for the last transmission */
 819	rspi_wait_for_tx_empty(rspi);
 820
 821	return 0;
 822}
 823
 824static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
 825{
 826	u8 *rx = xfer->rx_buf;
 827	unsigned int n = xfer->len;
 828	unsigned int i, len;
 829	int ret;
 830
 831	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
 832		int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
 833		if (ret != -EAGAIN)
 834			return ret;
 835	}
 836
 837	while (n > 0) {
 838		len = qspi_set_receive_trigger(rspi, n);
 839		if (len == QSPI_BUFFER_SIZE) {
 840			ret = rspi_wait_for_rx_full(rspi);
 841			if (ret < 0) {
 842				dev_err(&rspi->master->dev, "receive timeout\n");
 843				return ret;
 844			}
 845			for (i = 0; i < len; i++)
 846				*rx++ = rspi_read_data(rspi);
 847		} else {
 848			ret = rspi_pio_transfer(rspi, NULL, rx, n);
 849			if (ret < 0)
 850				return ret;
 851			*rx++ = ret;
 852		}
 853		n -= len;
 854	}
 855
 856	return 0;
 857}
 858
 859static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
 860			     struct spi_transfer *xfer)
 861{
 862	struct rspi_data *rspi = spi_master_get_devdata(master);
 863
 864	if (spi->mode & SPI_LOOP) {
 865		return qspi_transfer_out_in(rspi, xfer);
 866	} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
 867		/* Quad or Dual SPI Write */
 868		return qspi_transfer_out(rspi, xfer);
 869	} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
 870		/* Quad or Dual SPI Read */
 871		return qspi_transfer_in(rspi, xfer);
 872	} else {
 873		/* Single SPI Transfer */
 874		return qspi_transfer_out_in(rspi, xfer);
 875	}
 876}
 877
 878static int rspi_setup(struct spi_device *spi)
 879{
 880	struct rspi_data *rspi = spi_master_get_devdata(spi->master);
 881
 
 
 882	rspi->max_speed_hz = spi->max_speed_hz;
 883
 884	rspi->spcmd = SPCMD_SSLKP;
 885	if (spi->mode & SPI_CPOL)
 886		rspi->spcmd |= SPCMD_CPOL;
 887	if (spi->mode & SPI_CPHA)
 888		rspi->spcmd |= SPCMD_CPHA;
 889
 890	/* CMOS output mode and MOSI signal from previous transfer */
 891	rspi->sppcr = 0;
 892	if (spi->mode & SPI_LOOP)
 893		rspi->sppcr |= SPPCR_SPLP;
 894
 895	set_config_register(rspi, 8);
 896
 897	return 0;
 898}
 899
 900static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
 901{
 902	if (xfer->tx_buf)
 903		switch (xfer->tx_nbits) {
 904		case SPI_NBITS_QUAD:
 905			return SPCMD_SPIMOD_QUAD;
 906		case SPI_NBITS_DUAL:
 907			return SPCMD_SPIMOD_DUAL;
 908		default:
 909			return 0;
 910		}
 911	if (xfer->rx_buf)
 912		switch (xfer->rx_nbits) {
 913		case SPI_NBITS_QUAD:
 914			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
 915		case SPI_NBITS_DUAL:
 916			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
 917		default:
 918			return 0;
 919		}
 920
 921	return 0;
 922}
 923
 924static int qspi_setup_sequencer(struct rspi_data *rspi,
 925				const struct spi_message *msg)
 926{
 927	const struct spi_transfer *xfer;
 928	unsigned int i = 0, len = 0;
 929	u16 current_mode = 0xffff, mode;
 930
 931	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 932		mode = qspi_transfer_mode(xfer);
 933		if (mode == current_mode) {
 934			len += xfer->len;
 935			continue;
 936		}
 937
 938		/* Transfer mode change */
 939		if (i) {
 940			/* Set transfer data length of previous transfer */
 941			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 942		}
 943
 944		if (i >= QSPI_NUM_SPCMD) {
 945			dev_err(&msg->spi->dev,
 946				"Too many different transfer modes");
 947			return -EINVAL;
 948		}
 949
 950		/* Program transfer mode for this transfer */
 951		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
 952		current_mode = mode;
 953		len = xfer->len;
 954		i++;
 955	}
 956	if (i) {
 957		/* Set final transfer data length and sequence length */
 958		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 959		rspi_write8(rspi, i - 1, RSPI_SPSCR);
 960	}
 961
 962	return 0;
 963}
 964
 965static int rspi_prepare_message(struct spi_master *master,
 966				struct spi_message *msg)
 967{
 968	struct rspi_data *rspi = spi_master_get_devdata(master);
 969	int ret;
 970
 971	if (msg->spi->mode &
 972	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
 973		/* Setup sequencer for messages with multiple transfer modes */
 974		ret = qspi_setup_sequencer(rspi, msg);
 975		if (ret < 0)
 976			return ret;
 977	}
 978
 979	/* Enable SPI function in master mode */
 980	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
 981	return 0;
 982}
 983
 984static int rspi_unprepare_message(struct spi_master *master,
 985				  struct spi_message *msg)
 986{
 987	struct rspi_data *rspi = spi_master_get_devdata(master);
 988
 989	/* Disable SPI function */
 990	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
 991
 992	/* Reset sequencer for Single SPI Transfers */
 993	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 994	rspi_write8(rspi, 0, RSPI_SPSCR);
 995	return 0;
 996}
 997
 998static irqreturn_t rspi_irq_mux(int irq, void *_sr)
 999{
1000	struct rspi_data *rspi = _sr;
1001	u8 spsr;
1002	irqreturn_t ret = IRQ_NONE;
1003	u8 disable_irq = 0;
1004
1005	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1006	if (spsr & SPSR_SPRF)
1007		disable_irq |= SPCR_SPRIE;
1008	if (spsr & SPSR_SPTEF)
1009		disable_irq |= SPCR_SPTIE;
1010
1011	if (disable_irq) {
1012		ret = IRQ_HANDLED;
1013		rspi_disable_irq(rspi, disable_irq);
1014		wake_up(&rspi->wait);
1015	}
1016
1017	return ret;
1018}
1019
1020static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1021{
1022	struct rspi_data *rspi = _sr;
1023	u8 spsr;
1024
1025	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1026	if (spsr & SPSR_SPRF) {
1027		rspi_disable_irq(rspi, SPCR_SPRIE);
1028		wake_up(&rspi->wait);
1029		return IRQ_HANDLED;
1030	}
1031
1032	return 0;
1033}
1034
1035static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1036{
1037	struct rspi_data *rspi = _sr;
1038	u8 spsr;
1039
1040	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1041	if (spsr & SPSR_SPTEF) {
1042		rspi_disable_irq(rspi, SPCR_SPTIE);
1043		wake_up(&rspi->wait);
1044		return IRQ_HANDLED;
1045	}
1046
1047	return 0;
1048}
1049
1050static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1051					      enum dma_transfer_direction dir,
1052					      unsigned int id,
1053					      dma_addr_t port_addr)
1054{
 
1055	dma_cap_mask_t mask;
1056	struct dma_chan *chan;
1057	struct dma_slave_config cfg;
1058	int ret;
1059
1060	dma_cap_zero(mask);
1061	dma_cap_set(DMA_SLAVE, mask);
1062
1063	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1064				(void *)(unsigned long)id, dev,
1065				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1066	if (!chan) {
1067		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1068		return NULL;
1069	}
1070
1071	memset(&cfg, 0, sizeof(cfg));
1072	cfg.direction = dir;
1073	if (dir == DMA_MEM_TO_DEV) {
1074		cfg.dst_addr = port_addr;
1075		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1076	} else {
1077		cfg.src_addr = port_addr;
1078		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1079	}
1080
1081	ret = dmaengine_slave_config(chan, &cfg);
1082	if (ret) {
1083		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1084		dma_release_channel(chan);
1085		return NULL;
1086	}
1087
1088	return chan;
1089}
1090
1091static int rspi_request_dma(struct device *dev, struct spi_master *master,
1092			    const struct resource *res)
1093{
1094	const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1095	unsigned int dma_tx_id, dma_rx_id;
1096
1097	if (dev->of_node) {
1098		/* In the OF case we will get the slave IDs from the DT */
1099		dma_tx_id = 0;
1100		dma_rx_id = 0;
1101	} else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1102		dma_tx_id = rspi_pd->dma_tx_id;
1103		dma_rx_id = rspi_pd->dma_rx_id;
1104	} else {
1105		/* The driver assumes no error. */
1106		return 0;
1107	}
1108
1109	master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1110					       res->start + RSPI_SPDR);
1111	if (!master->dma_tx)
1112		return -ENODEV;
1113
1114	master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1115					       res->start + RSPI_SPDR);
1116	if (!master->dma_rx) {
1117		dma_release_channel(master->dma_tx);
1118		master->dma_tx = NULL;
1119		return -ENODEV;
1120	}
1121
1122	master->can_dma = rspi_can_dma;
1123	dev_info(dev, "DMA available");
1124	return 0;
1125}
1126
1127static void rspi_release_dma(struct spi_master *master)
1128{
1129	if (master->dma_tx)
1130		dma_release_channel(master->dma_tx);
1131	if (master->dma_rx)
1132		dma_release_channel(master->dma_rx);
1133}
1134
1135static int rspi_remove(struct platform_device *pdev)
1136{
1137	struct rspi_data *rspi = platform_get_drvdata(pdev);
1138
1139	rspi_release_dma(rspi->master);
1140	pm_runtime_disable(&pdev->dev);
 
 
 
 
1141
1142	return 0;
1143}
1144
1145static const struct spi_ops rspi_ops = {
1146	.set_config_register =	rspi_set_config_register,
1147	.transfer_one =		rspi_transfer_one,
1148	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
1149	.flags =		SPI_MASTER_MUST_TX,
1150	.fifo_size =		8,
1151};
1152
1153static const struct spi_ops rspi_rz_ops = {
1154	.set_config_register =	rspi_rz_set_config_register,
1155	.transfer_one =		rspi_rz_transfer_one,
1156	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
1157	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1158	.fifo_size =		8,	/* 8 for TX, 32 for RX */
1159};
1160
1161static const struct spi_ops qspi_ops = {
1162	.set_config_register =	qspi_set_config_register,
1163	.transfer_one =		qspi_transfer_one,
1164	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP |
1165				SPI_TX_DUAL | SPI_TX_QUAD |
1166				SPI_RX_DUAL | SPI_RX_QUAD,
1167	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1168	.fifo_size =		32,
1169};
1170
1171#ifdef CONFIG_OF
1172static const struct of_device_id rspi_of_match[] = {
1173	/* RSPI on legacy SH */
1174	{ .compatible = "renesas,rspi", .data = &rspi_ops },
1175	/* RSPI on RZ/A1H */
1176	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1177	/* QSPI on R-Car Gen2 */
1178	{ .compatible = "renesas,qspi", .data = &qspi_ops },
1179	{ /* sentinel */ }
1180};
1181
1182MODULE_DEVICE_TABLE(of, rspi_of_match);
1183
1184static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1185{
1186	u32 num_cs;
1187	int error;
 
 
 
1188
1189	/* Parse DT properties */
1190	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1191	if (error) {
1192		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1193		return error;
1194	}
1195
1196	master->num_chipselect = num_cs;
1197	return 0;
1198}
1199#else
1200#define rspi_of_match	NULL
1201static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1202{
1203	return -EINVAL;
1204}
1205#endif /* CONFIG_OF */
1206
1207static int rspi_request_irq(struct device *dev, unsigned int irq,
1208			    irq_handler_t handler, const char *suffix,
1209			    void *dev_id)
1210{
1211	const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1212					  dev_name(dev), suffix);
1213	if (!name)
1214		return -ENOMEM;
1215
1216	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1217}
1218
1219static int rspi_probe(struct platform_device *pdev)
1220{
1221	struct resource *res;
1222	struct spi_master *master;
1223	struct rspi_data *rspi;
1224	int ret;
1225	const struct of_device_id *of_id;
1226	const struct rspi_plat_data *rspi_pd;
1227	const struct spi_ops *ops;
1228
1229	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1230	if (master == NULL) {
1231		dev_err(&pdev->dev, "spi_alloc_master error.\n");
1232		return -ENOMEM;
1233	}
1234
1235	of_id = of_match_device(rspi_of_match, &pdev->dev);
1236	if (of_id) {
1237		ops = of_id->data;
1238		ret = rspi_parse_dt(&pdev->dev, master);
1239		if (ret)
1240			goto error1;
1241	} else {
1242		ops = (struct spi_ops *)pdev->id_entry->driver_data;
1243		rspi_pd = dev_get_platdata(&pdev->dev);
1244		if (rspi_pd && rspi_pd->num_chipselect)
1245			master->num_chipselect = rspi_pd->num_chipselect;
1246		else
1247			master->num_chipselect = 2; /* default */
1248	}
1249
1250	/* ops parameter check */
1251	if (!ops->set_config_register) {
1252		dev_err(&pdev->dev, "there is no set_config_register\n");
1253		ret = -ENODEV;
1254		goto error1;
1255	}
1256
1257	rspi = spi_master_get_devdata(master);
1258	platform_set_drvdata(pdev, rspi);
1259	rspi->ops = ops;
1260	rspi->master = master;
1261
1262	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1263	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1264	if (IS_ERR(rspi->addr)) {
1265		ret = PTR_ERR(rspi->addr);
1266		goto error1;
1267	}
1268
1269	rspi->clk = devm_clk_get(&pdev->dev, NULL);
 
1270	if (IS_ERR(rspi->clk)) {
1271		dev_err(&pdev->dev, "cannot get clock\n");
1272		ret = PTR_ERR(rspi->clk);
1273		goto error1;
1274	}
 
1275
1276	pm_runtime_enable(&pdev->dev);
1277
 
1278	init_waitqueue_head(&rspi->wait);
1279
 
1280	master->bus_num = pdev->id;
1281	master->setup = rspi_setup;
1282	master->auto_runtime_pm = true;
1283	master->transfer_one = ops->transfer_one;
1284	master->prepare_message = rspi_prepare_message;
1285	master->unprepare_message = rspi_unprepare_message;
1286	master->mode_bits = ops->mode_bits;
1287	master->flags = ops->flags;
1288	master->dev.of_node = pdev->dev.of_node;
1289
1290	ret = platform_get_irq_byname(pdev, "rx");
1291	if (ret < 0) {
1292		ret = platform_get_irq_byname(pdev, "mux");
1293		if (ret < 0)
1294			ret = platform_get_irq(pdev, 0);
1295		if (ret >= 0)
1296			rspi->rx_irq = rspi->tx_irq = ret;
1297	} else {
1298		rspi->rx_irq = ret;
1299		ret = platform_get_irq_byname(pdev, "tx");
1300		if (ret >= 0)
1301			rspi->tx_irq = ret;
1302	}
1303	if (ret < 0) {
1304		dev_err(&pdev->dev, "platform_get_irq error\n");
1305		goto error2;
1306	}
1307
1308	if (rspi->rx_irq == rspi->tx_irq) {
1309		/* Single multiplexed interrupt */
1310		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1311				       "mux", rspi);
1312	} else {
1313		/* Multi-interrupt mode, only SPRI and SPTI are used */
1314		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1315				       "rx", rspi);
1316		if (!ret)
1317			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1318					       rspi_irq_tx, "tx", rspi);
1319	}
1320	if (ret < 0) {
1321		dev_err(&pdev->dev, "request_irq error\n");
1322		goto error2;
1323	}
1324
1325	ret = rspi_request_dma(&pdev->dev, master, res);
1326	if (ret < 0)
1327		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1328
1329	ret = devm_spi_register_master(&pdev->dev, master);
1330	if (ret < 0) {
1331		dev_err(&pdev->dev, "spi_register_master error.\n");
1332		goto error3;
1333	}
1334
1335	dev_info(&pdev->dev, "probed\n");
1336
1337	return 0;
1338
 
 
 
1339error3:
1340	rspi_release_dma(master);
1341error2:
1342	pm_runtime_disable(&pdev->dev);
1343error1:
1344	spi_master_put(master);
1345
1346	return ret;
1347}
1348
1349static const struct platform_device_id spi_driver_ids[] = {
1350	{ "rspi",	(kernel_ulong_t)&rspi_ops },
1351	{ "rspi-rz",	(kernel_ulong_t)&rspi_rz_ops },
1352	{ "qspi",	(kernel_ulong_t)&qspi_ops },
1353	{},
1354};
1355
1356MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1357
1358static struct platform_driver rspi_driver = {
1359	.probe =	rspi_probe,
1360	.remove =	rspi_remove,
1361	.id_table =	spi_driver_ids,
1362	.driver		= {
1363		.name = "renesas_spi",
1364		.of_match_table = of_match_ptr(rspi_of_match),
1365	},
1366};
1367module_platform_driver(rspi_driver);
1368
1369MODULE_DESCRIPTION("Renesas RSPI bus driver");
1370MODULE_LICENSE("GPL v2");
1371MODULE_AUTHOR("Yoshihiro Shimoda");
1372MODULE_ALIAS("platform:rspi");