Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * SH RSPI driver
  3 *
  4 * Copyright (C) 2012  Renesas Solutions Corp.
 
  5 *
  6 * Based on spi-sh.c:
  7 * Copyright (C) 2011 Renesas Solutions Corp.
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License as published by
 11 * the Free Software Foundation; version 2 of the License.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 21 *
 22 */
 23
 24#include <linux/module.h>
 25#include <linux/kernel.h>
 26#include <linux/sched.h>
 27#include <linux/errno.h>
 28#include <linux/list.h>
 29#include <linux/workqueue.h>
 30#include <linux/interrupt.h>
 31#include <linux/platform_device.h>
 32#include <linux/io.h>
 33#include <linux/clk.h>
 34#include <linux/dmaengine.h>
 35#include <linux/dma-mapping.h>
 
 
 36#include <linux/sh_dma.h>
 37#include <linux/spi/spi.h>
 38#include <linux/spi/rspi.h>
 39
 40#define RSPI_SPCR		0x00
 41#define RSPI_SSLP		0x01
 42#define RSPI_SPPCR		0x02
 43#define RSPI_SPSR		0x03
 44#define RSPI_SPDR		0x04
 45#define RSPI_SPSCR		0x08
 46#define RSPI_SPSSR		0x09
 47#define RSPI_SPBR		0x0a
 48#define RSPI_SPDCR		0x0b
 49#define RSPI_SPCKD		0x0c
 50#define RSPI_SSLND		0x0d
 51#define RSPI_SPND		0x0e
 52#define RSPI_SPCR2		0x0f
 53#define RSPI_SPCMD0		0x10
 54#define RSPI_SPCMD1		0x12
 55#define RSPI_SPCMD2		0x14
 56#define RSPI_SPCMD3		0x16
 57#define RSPI_SPCMD4		0x18
 58#define RSPI_SPCMD5		0x1a
 59#define RSPI_SPCMD6		0x1c
 60#define RSPI_SPCMD7		0x1e
 61
 62/* SPCR */
 63#define SPCR_SPRIE		0x80
 64#define SPCR_SPE		0x40
 65#define SPCR_SPTIE		0x20
 66#define SPCR_SPEIE		0x10
 67#define SPCR_MSTR		0x08
 68#define SPCR_MODFEN		0x04
 69#define SPCR_TXMD		0x02
 70#define SPCR_SPMS		0x01
 71
 72/* SSLP */
 73#define SSLP_SSL1P		0x02
 74#define SSLP_SSL0P		0x01
 75
 76/* SPPCR */
 77#define SPPCR_MOIFE		0x20
 78#define SPPCR_MOIFV		0x10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79#define SPPCR_SPOM		0x04
 80#define SPPCR_SPLP2		0x02
 81#define SPPCR_SPLP		0x01
 82
 83/* SPSR */
 84#define SPSR_SPRF		0x80
 85#define SPSR_SPTEF		0x20
 86#define SPSR_PERF		0x08
 87#define SPSR_MODF		0x04
 88#define SPSR_IDLNF		0x02
 89#define SPSR_OVRF		0x01
 90
 91/* SPSCR */
 92#define SPSCR_SPSLN_MASK	0x07
 93
 94/* SPSSR */
 95#define SPSSR_SPECM_MASK	0x70
 96#define SPSSR_SPCP_MASK		0x07
 97
 98/* SPDCR */
 99#define SPDCR_SPLW		0x20
100#define SPDCR_SPRDTD		0x10
 
 
 
 
 
 
 
 
 
 
101#define SPDCR_SLSEL1		0x08
102#define SPDCR_SLSEL0		0x04
103#define SPDCR_SLSEL_MASK	0x0c
104#define SPDCR_SPFC1		0x02
105#define SPDCR_SPFC0		0x01
 
106
107/* SPCKD */
108#define SPCKD_SCKDL_MASK	0x07
109
110/* SSLND */
111#define SSLND_SLNDL_MASK	0x07
112
113/* SPND */
114#define SPND_SPNDL_MASK		0x07
115
116/* SPCR2 */
117#define SPCR2_PTE		0x08
118#define SPCR2_SPIE		0x04
119#define SPCR2_SPOE		0x02
120#define SPCR2_SPPE		0x01
121
122/* SPCMDn */
123#define SPCMD_SCKDEN		0x8000
124#define SPCMD_SLNDEN		0x4000
125#define SPCMD_SPNDEN		0x2000
126#define SPCMD_LSBF		0x1000
127#define SPCMD_SPB_MASK		0x0f00
 
 
 
128#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
 
 
129#define SPCMD_SPB_20BIT		0x0000
130#define SPCMD_SPB_24BIT		0x0100
131#define SPCMD_SPB_32BIT		0x0200
132#define SPCMD_SSLKP		0x0080
133#define SPCMD_SSLA_MASK		0x0030
134#define SPCMD_BRDV_MASK		0x000c
135#define SPCMD_CPOL		0x0002
136#define SPCMD_CPHA		0x0001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
138struct rspi_data {
139	void __iomem *addr;
140	u32 max_speed_hz;
141	struct spi_master *master;
142	struct list_head queue;
143	struct work_struct ws;
144	wait_queue_head_t wait;
145	spinlock_t lock;
146	struct clk *clk;
147	unsigned char spsr;
 
 
 
 
148
149	/* for dmaengine */
150	struct sh_dmae_slave dma_tx;
151	struct sh_dmae_slave dma_rx;
152	struct dma_chan *chan_tx;
153	struct dma_chan *chan_rx;
154	int irq;
155
156	unsigned dma_width_16bit:1;
157	unsigned dma_callbacked:1;
 
158};
159
160static void rspi_write8(struct rspi_data *rspi, u8 data, u16 offset)
161{
162	iowrite8(data, rspi->addr + offset);
163}
164
165static void rspi_write16(struct rspi_data *rspi, u16 data, u16 offset)
166{
167	iowrite16(data, rspi->addr + offset);
168}
169
170static u8 rspi_read8(struct rspi_data *rspi, u16 offset)
171{
172	return ioread8(rspi->addr + offset);
173}
174
175static u16 rspi_read16(struct rspi_data *rspi, u16 offset)
176{
177	return ioread16(rspi->addr + offset);
178}
179
180static unsigned char rspi_calc_spbr(struct rspi_data *rspi)
181{
182	int tmp;
183	unsigned char spbr;
184
185	tmp = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
186	spbr = clamp(tmp, 0, 255);
187
188	return spbr;
189}
190
191static void rspi_enable_irq(struct rspi_data *rspi, u8 enable)
192{
193	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
 
 
 
194}
195
196static void rspi_disable_irq(struct rspi_data *rspi, u8 disable)
197{
198	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
 
 
 
199}
200
201static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
202				   u8 enable_bit)
 
 
 
 
 
 
 
 
 
 
203{
204	int ret;
205
206	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
207	rspi_enable_irq(rspi, enable_bit);
208	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
209	if (ret == 0 && !(rspi->spsr & wait_mask))
210		return -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211
212	return 0;
213}
214
215static void rspi_assert_ssl(struct rspi_data *rspi)
 
 
 
216{
217	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
218}
219
220static void rspi_negate_ssl(struct rspi_data *rspi)
221{
222	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223}
224
225static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
 
 
 
226{
227	/* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
228	rspi_write8(rspi, 0x00, RSPI_SPPCR);
 
 
229
230	/* Sets transfer bit rate */
231	rspi_write8(rspi, rspi_calc_spbr(rspi), RSPI_SPBR);
 
232
233	/* Sets number of frames to be used: 1 frame */
234	rspi_write8(rspi, 0x00, RSPI_SPDCR);
 
235
236	/* Sets RSPCK, SSL, next-access delay value */
237	rspi_write8(rspi, 0x00, RSPI_SPCKD);
238	rspi_write8(rspi, 0x00, RSPI_SSLND);
239	rspi_write8(rspi, 0x00, RSPI_SPND);
240
241	/* Sets parity, interrupt mask */
242	rspi_write8(rspi, 0x00, RSPI_SPCR2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243
244	/* Sets SPCMD */
245	rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | SPCMD_SSLKP,
246		     RSPI_SPCMD0);
247
248	/* Sets RSPI mode */
249	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
250
251	return 0;
252}
253
254static int rspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg,
255			 struct spi_transfer *t)
 
256{
257	int remain = t->len;
258	u8 *data;
259
260	data = (u8 *)t->tx_buf;
261	while (remain > 0) {
262		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD,
263			    RSPI_SPCR);
264
265		if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
266			dev_err(&rspi->master->dev,
267				"%s: tx empty timeout\n", __func__);
268			return -ETIMEDOUT;
269		}
270
271		rspi_write16(rspi, *data, RSPI_SPDR);
272		data++;
273		remain--;
274	}
275
276	/* Waiting for the last transmition */
277	rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
 
 
278
279	return 0;
280}
281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282static void rspi_dma_complete(void *arg)
283{
284	struct rspi_data *rspi = arg;
285
286	rspi->dma_callbacked = 1;
287	wake_up_interruptible(&rspi->wait);
288}
289
290static int rspi_dma_map_sg(struct scatterlist *sg, void *buf, unsigned len,
291			   struct dma_chan *chan,
292			   enum dma_transfer_direction dir)
293{
294	sg_init_table(sg, 1);
295	sg_set_buf(sg, buf, len);
296	sg_dma_len(sg) = len;
297	return dma_map_sg(chan->device->dev, sg, 1, dir);
298}
299
300static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
301			      enum dma_transfer_direction dir)
302{
303	dma_unmap_sg(chan->device->dev, sg, 1, dir);
304}
305
306static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
307{
308	u16 *dst = buf;
309	const u8 *src = data;
310
311	while (len) {
312		*dst++ = (u16)(*src++);
313		len--;
314	}
315}
316
317static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
318{
319	u8 *dst = buf;
320	const u16 *src = data;
321
322	while (len) {
323		*dst++ = (u8)*src++;
324		len--;
325	}
326}
327
328static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
329{
330	struct scatterlist sg;
331	void *buf = NULL;
332	struct dma_async_tx_descriptor *desc;
333	unsigned len;
334	int ret = 0;
335
336	if (rspi->dma_width_16bit) {
 
337		/*
338		 * If DMAC bus width is 16-bit, the driver allocates a dummy
339		 * buffer. And, the driver converts original data into the
340		 * DMAC data as the following format:
341		 *  original data: 1st byte, 2nd byte ...
342		 *  DMAC data:     1st byte, dummy, 2nd byte, dummy ...
343		 */
344		len = t->len * 2;
345		buf = kmalloc(len, GFP_KERNEL);
346		if (!buf)
347			return -ENOMEM;
348		rspi_memory_to_8bit(buf, t->tx_buf, t->len);
 
349	} else {
350		len = t->len;
351		buf = (void *)t->tx_buf;
352	}
353
354	if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
355		ret = -EFAULT;
356		goto end_nomap;
357	}
358	desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
359				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
360	if (!desc) {
361		ret = -EIO;
362		goto end;
363	}
364
365	/*
366	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
367	 * called. So, this driver disables the IRQ while DMA transfer.
368	 */
369	disable_irq(rspi->irq);
370
371	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
372	rspi_enable_irq(rspi, SPCR_SPTIE);
373	rspi->dma_callbacked = 0;
374
375	desc->callback = rspi_dma_complete;
376	desc->callback_param = rspi;
377	dmaengine_submit(desc);
378	dma_async_issue_pending(rspi->chan_tx);
379
380	ret = wait_event_interruptible_timeout(rspi->wait,
381					       rspi->dma_callbacked, HZ);
382	if (ret > 0 && rspi->dma_callbacked)
383		ret = 0;
384	else if (!ret)
385		ret = -ETIMEDOUT;
386	rspi_disable_irq(rspi, SPCR_SPTIE);
387
388	enable_irq(rspi->irq);
389
390end:
391	rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
392end_nomap:
393	if (rspi->dma_width_16bit)
394		kfree(buf);
395
396	return ret;
397}
398
399static void rspi_receive_init(struct rspi_data *rspi)
400{
401	unsigned char spsr;
402
403	spsr = rspi_read8(rspi, RSPI_SPSR);
404	if (spsr & SPSR_SPRF)
405		rspi_read16(rspi, RSPI_SPDR);	/* dummy read */
406	if (spsr & SPSR_OVRF)
407		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
408			    RSPI_SPCR);
409}
410
411static int rspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg,
412			    struct spi_transfer *t)
413{
414	int remain = t->len;
415	u8 *data;
416
417	rspi_receive_init(rspi);
 
 
 
418
419	data = (u8 *)t->rx_buf;
420	while (remain > 0) {
421		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD,
422			    RSPI_SPCR);
423
424		if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
425			dev_err(&rspi->master->dev,
426				"%s: tx empty timeout\n", __func__);
427			return -ETIMEDOUT;
428		}
429		/* dummy write for generate clock */
430		rspi_write16(rspi, 0x00, RSPI_SPDR);
431
432		if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
433			dev_err(&rspi->master->dev,
434				"%s: receive timeout\n", __func__);
435			return -ETIMEDOUT;
436		}
437		/* SPDR allows 16 or 32-bit access only */
438		*data = (u8)rspi_read16(rspi, RSPI_SPDR);
439
440		data++;
441		remain--;
442	}
443
444	return 0;
 
 
 
 
445}
446
447static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
448{
449	struct scatterlist sg, sg_dummy;
450	void *dummy = NULL, *rx_buf = NULL;
451	struct dma_async_tx_descriptor *desc, *desc_dummy;
452	unsigned len;
453	int ret = 0;
454
455	if (rspi->dma_width_16bit) {
456		/*
457		 * If DMAC bus width is 16-bit, the driver allocates a dummy
458		 * buffer. And, finally the driver converts the DMAC data into
459		 * actual data as the following format:
460		 *  DMAC data:   1st byte, dummy, 2nd byte, dummy ...
461		 *  actual data: 1st byte, 2nd byte ...
462		 */
463		len = t->len * 2;
464		rx_buf = kmalloc(len, GFP_KERNEL);
465		if (!rx_buf)
466			return -ENOMEM;
467	 } else {
468		len = t->len;
469		rx_buf = t->rx_buf;
470	}
471
472	/* prepare dummy transfer to generate SPI clocks */
473	dummy = kzalloc(len, GFP_KERNEL);
474	if (!dummy) {
475		ret = -ENOMEM;
476		goto end_nomap;
477	}
478	if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
479			     DMA_TO_DEVICE)) {
480		ret = -EFAULT;
481		goto end_nomap;
482	}
483	desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
484			DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
485	if (!desc_dummy) {
486		ret = -EIO;
487		goto end_dummy_mapped;
488	}
489
490	/* prepare receive transfer */
491	if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
492			     DMA_FROM_DEVICE)) {
493		ret = -EFAULT;
494		goto end_dummy_mapped;
495
496	}
497	desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
498				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
499	if (!desc) {
500		ret = -EIO;
501		goto end;
502	}
503
504	rspi_receive_init(rspi);
505
506	/*
507	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
508	 * called. So, this driver disables the IRQ while DMA transfer.
509	 */
510	disable_irq(rspi->irq);
 
 
511
512	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
513	rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
514	rspi->dma_callbacked = 0;
515
516	desc->callback = rspi_dma_complete;
517	desc->callback_param = rspi;
518	dmaengine_submit(desc);
519	dma_async_issue_pending(rspi->chan_rx);
520
521	desc_dummy->callback = NULL;	/* No callback */
522	dmaengine_submit(desc_dummy);
523	dma_async_issue_pending(rspi->chan_tx);
524
525	ret = wait_event_interruptible_timeout(rspi->wait,
526					       rspi->dma_callbacked, HZ);
527	if (ret > 0 && rspi->dma_callbacked)
528		ret = 0;
529	else if (!ret)
530		ret = -ETIMEDOUT;
531	rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
532
533	enable_irq(rspi->irq);
 
 
534
535end:
536	rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
537end_dummy_mapped:
538	rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
539end_nomap:
540	if (rspi->dma_width_16bit) {
541		if (!ret)
542			rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
543		kfree(rx_buf);
544	}
545	kfree(dummy);
546
547	return ret;
548}
549
550static int rspi_is_dma(struct rspi_data *rspi, struct spi_transfer *t)
551{
552	if (t->tx_buf && rspi->chan_tx)
553		return 1;
554	/* If the module receives data by DMAC, it also needs TX DMAC */
555	if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
556		return 1;
557
558	return 0;
559}
560
561static void rspi_work(struct work_struct *work)
 
562{
563	struct rspi_data *rspi = container_of(work, struct rspi_data, ws);
564	struct spi_message *mesg;
565	struct spi_transfer *t;
566	unsigned long flags;
567	int ret;
 
568
569	spin_lock_irqsave(&rspi->lock, flags);
570	while (!list_empty(&rspi->queue)) {
571		mesg = list_entry(rspi->queue.next, struct spi_message, queue);
572		list_del_init(&mesg->queue);
573		spin_unlock_irqrestore(&rspi->lock, flags);
574
575		rspi_assert_ssl(rspi);
576
577		list_for_each_entry(t, &mesg->transfers, transfer_list) {
578			if (t->tx_buf) {
579				if (rspi_is_dma(rspi, t))
580					ret = rspi_send_dma(rspi, t);
581				else
582					ret = rspi_send_pio(rspi, mesg, t);
583				if (ret < 0)
584					goto error;
585			}
586			if (t->rx_buf) {
587				if (rspi_is_dma(rspi, t))
588					ret = rspi_receive_dma(rspi, t);
589				else
590					ret = rspi_receive_pio(rspi, mesg, t);
591				if (ret < 0)
592					goto error;
593			}
594			mesg->actual_length += t->len;
595		}
596		rspi_negate_ssl(rspi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597
598		mesg->status = 0;
599		mesg->complete(mesg->context);
 
 
 
600
601		spin_lock_irqsave(&rspi->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602	}
603
604	return;
 
605
606error:
607	mesg->status = ret;
608	mesg->complete(mesg->context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609}
610
611static int rspi_setup(struct spi_device *spi)
612{
613	struct rspi_data *rspi = spi_master_get_devdata(spi->master);
614
615	if (!spi->bits_per_word)
616		spi->bits_per_word = 8;
617	rspi->max_speed_hz = spi->max_speed_hz;
618
619	rspi_set_config_register(rspi, 8);
 
 
 
 
 
 
 
 
 
 
 
620
621	return 0;
622}
623
624static int rspi_transfer(struct spi_device *spi, struct spi_message *mesg)
625{
626	struct rspi_data *rspi = spi_master_get_devdata(spi->master);
627	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628
629	mesg->actual_length = 0;
630	mesg->status = -EINPROGRESS;
631
632	spin_lock_irqsave(&rspi->lock, flags);
633	list_add_tail(&mesg->queue, &rspi->queue);
634	schedule_work(&rspi->ws);
635	spin_unlock_irqrestore(&rspi->lock, flags);
 
636
 
 
 
 
 
 
 
 
 
 
637	return 0;
638}
639
640static void rspi_cleanup(struct spi_device *spi)
 
641{
 
 
 
 
 
 
 
 
 
642}
643
644static irqreturn_t rspi_irq(int irq, void *_sr)
645{
646	struct rspi_data *rspi = (struct rspi_data *)_sr;
647	unsigned long spsr;
648	irqreturn_t ret = IRQ_NONE;
649	unsigned char disable_irq = 0;
650
651	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
652	if (spsr & SPSR_SPRF)
653		disable_irq |= SPCR_SPRIE;
654	if (spsr & SPSR_SPTEF)
655		disable_irq |= SPCR_SPTIE;
656
657	if (disable_irq) {
658		ret = IRQ_HANDLED;
659		rspi_disable_irq(rspi, disable_irq);
660		wake_up(&rspi->wait);
661	}
662
663	return ret;
664}
665
666static bool rspi_filter(struct dma_chan *chan, void *filter_param)
667{
668	chan->private = filter_param;
669	return true;
 
 
 
 
 
 
 
 
 
670}
671
672static void __devinit rspi_request_dma(struct rspi_data *rspi,
673				       struct platform_device *pdev)
674{
675	struct rspi_plat_data *rspi_pd = pdev->dev.platform_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676	dma_cap_mask_t mask;
 
 
677
678	if (!rspi_pd)
679		return;
680
681	rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
682
683	/* If the module receives data by DMAC, it also needs TX DMAC */
684	if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
685		dma_cap_zero(mask);
686		dma_cap_set(DMA_SLAVE, mask);
687		rspi->dma_rx.slave_id = rspi_pd->dma_rx_id;
688		rspi->chan_rx = dma_request_channel(mask, rspi_filter,
689						    &rspi->dma_rx);
690		if (rspi->chan_rx)
691			dev_info(&pdev->dev, "Use DMA when rx.\n");
 
 
 
 
 
 
 
 
692	}
693	if (rspi_pd->dma_tx_id) {
694		dma_cap_zero(mask);
695		dma_cap_set(DMA_SLAVE, mask);
696		rspi->dma_tx.slave_id = rspi_pd->dma_tx_id;
697		rspi->chan_tx = dma_request_channel(mask, rspi_filter,
698						    &rspi->dma_tx);
699		if (rspi->chan_tx)
700			dev_info(&pdev->dev, "Use DMA when tx\n");
 
 
 
 
 
 
 
 
701	}
 
 
702}
703
704static void __devexit rspi_release_dma(struct rspi_data *rspi)
705{
706	if (rspi->chan_tx)
707		dma_release_channel(rspi->chan_tx);
708	if (rspi->chan_rx)
709		dma_release_channel(rspi->chan_rx);
710}
711
712static int __devexit rspi_remove(struct platform_device *pdev)
713{
714	struct rspi_data *rspi = dev_get_drvdata(&pdev->dev);
715
716	spi_unregister_master(rspi->master);
717	rspi_release_dma(rspi);
718	free_irq(platform_get_irq(pdev, 0), rspi);
719	clk_put(rspi->clk);
720	iounmap(rspi->addr);
721	spi_master_put(rspi->master);
722
723	return 0;
724}
725
726static int __devinit rspi_probe(struct platform_device *pdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
727{
728	struct resource *res;
729	struct spi_master *master;
730	struct rspi_data *rspi;
731	int ret, irq;
732	char clk_name[16];
733
734	/* get base addr */
735	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
736	if (unlikely(res == NULL)) {
737		dev_err(&pdev->dev, "invalid resource\n");
738		return -EINVAL;
739	}
740
741	irq = platform_get_irq(pdev, 0);
742	if (irq < 0) {
743		dev_err(&pdev->dev, "platform_get_irq error\n");
744		return -ENODEV;
745	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
746
747	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
748	if (master == NULL) {
749		dev_err(&pdev->dev, "spi_alloc_master error.\n");
750		return -ENOMEM;
751	}
752
753	rspi = spi_master_get_devdata(master);
754	dev_set_drvdata(&pdev->dev, rspi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755
 
 
 
756	rspi->master = master;
757	rspi->addr = ioremap(res->start, resource_size(res));
758	if (rspi->addr == NULL) {
759		dev_err(&pdev->dev, "ioremap error.\n");
760		ret = -ENOMEM;
 
761		goto error1;
762	}
763
764	snprintf(clk_name, sizeof(clk_name), "rspi%d", pdev->id);
765	rspi->clk = clk_get(&pdev->dev, clk_name);
766	if (IS_ERR(rspi->clk)) {
767		dev_err(&pdev->dev, "cannot get clock\n");
768		ret = PTR_ERR(rspi->clk);
769		goto error2;
770	}
771	clk_enable(rspi->clk);
772
773	INIT_LIST_HEAD(&rspi->queue);
774	spin_lock_init(&rspi->lock);
775	INIT_WORK(&rspi->ws, rspi_work);
776	init_waitqueue_head(&rspi->wait);
777
778	master->num_chipselect = 2;
779	master->bus_num = pdev->id;
780	master->setup = rspi_setup;
781	master->transfer = rspi_transfer;
782	master->cleanup = rspi_cleanup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783
784	ret = request_irq(irq, rspi_irq, 0, dev_name(&pdev->dev), rspi);
 
 
 
 
 
 
 
 
 
 
 
785	if (ret < 0) {
786		dev_err(&pdev->dev, "request_irq error\n");
787		goto error3;
788	}
789
790	rspi->irq = irq;
791	rspi_request_dma(rspi, pdev);
 
 
 
792
793	ret = spi_register_master(master);
794	if (ret < 0) {
795		dev_err(&pdev->dev, "spi_register_master error.\n");
796		goto error4;
797	}
798
799	dev_info(&pdev->dev, "probed\n");
800
801	return 0;
802
803error4:
804	rspi_release_dma(rspi);
805	free_irq(irq, rspi);
806error3:
807	clk_put(rspi->clk);
808error2:
809	iounmap(rspi->addr);
810error1:
811	spi_master_put(master);
812
813	return ret;
814}
815
 
 
 
 
 
 
 
 
 
816static struct platform_driver rspi_driver = {
817	.probe =	rspi_probe,
818	.remove =	__devexit_p(rspi_remove),
 
819	.driver		= {
820		.name = "rspi",
821		.owner	= THIS_MODULE,
 
822	},
823};
824module_platform_driver(rspi_driver);
825
826MODULE_DESCRIPTION("Renesas RSPI bus driver");
827MODULE_LICENSE("GPL v2");
828MODULE_AUTHOR("Yoshihiro Shimoda");
829MODULE_ALIAS("platform:rspi");
v3.15
   1/*
   2 * SH RSPI driver
   3 *
   4 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
   5 * Copyright (C) 2014 Glider bvba
   6 *
   7 * Based on spi-sh.c:
   8 * Copyright (C) 2011 Renesas Solutions Corp.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation; version 2 of the License.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/sched.h>
  28#include <linux/errno.h>
 
 
  29#include <linux/interrupt.h>
  30#include <linux/platform_device.h>
  31#include <linux/io.h>
  32#include <linux/clk.h>
  33#include <linux/dmaengine.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/of_device.h>
  36#include <linux/pm_runtime.h>
  37#include <linux/sh_dma.h>
  38#include <linux/spi/spi.h>
  39#include <linux/spi/rspi.h>
  40
  41#define RSPI_SPCR		0x00	/* Control Register */
  42#define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
  43#define RSPI_SPPCR		0x02	/* Pin Control Register */
  44#define RSPI_SPSR		0x03	/* Status Register */
  45#define RSPI_SPDR		0x04	/* Data Register */
  46#define RSPI_SPSCR		0x08	/* Sequence Control Register */
  47#define RSPI_SPSSR		0x09	/* Sequence Status Register */
  48#define RSPI_SPBR		0x0a	/* Bit Rate Register */
  49#define RSPI_SPDCR		0x0b	/* Data Control Register */
  50#define RSPI_SPCKD		0x0c	/* Clock Delay Register */
  51#define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
  52#define RSPI_SPND		0x0e	/* Next-Access Delay Register */
  53#define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
  54#define RSPI_SPCMD0		0x10	/* Command Register 0 */
  55#define RSPI_SPCMD1		0x12	/* Command Register 1 */
  56#define RSPI_SPCMD2		0x14	/* Command Register 2 */
  57#define RSPI_SPCMD3		0x16	/* Command Register 3 */
  58#define RSPI_SPCMD4		0x18	/* Command Register 4 */
  59#define RSPI_SPCMD5		0x1a	/* Command Register 5 */
  60#define RSPI_SPCMD6		0x1c	/* Command Register 6 */
  61#define RSPI_SPCMD7		0x1e	/* Command Register 7 */
  62#define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
  63#define RSPI_NUM_SPCMD		8
  64#define RSPI_RZ_NUM_SPCMD	4
  65#define QSPI_NUM_SPCMD		4
  66
  67/* RSPI on RZ only */
  68#define RSPI_SPBFCR		0x20	/* Buffer Control Register */
  69#define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
  70
  71/* QSPI only */
  72#define QSPI_SPBFCR		0x18	/* Buffer Control Register */
  73#define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
  74#define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
  75#define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
  76#define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
  77#define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
  78#define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
  79
  80/* SPCR - Control Register */
  81#define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
  82#define SPCR_SPE		0x40	/* Function Enable */
  83#define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
  84#define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
  85#define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
  86#define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
  87/* RSPI on SH only */
  88#define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
  89#define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
  90/* QSPI on R-Car M2 only */
  91#define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
  92#define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
  93
  94/* SSLP - Slave Select Polarity Register */
  95#define SSLP_SSL1P		0x02	/* SSL1 Signal Polarity Setting */
  96#define SSLP_SSL0P		0x01	/* SSL0 Signal Polarity Setting */
  97
  98/* SPPCR - Pin Control Register */
  99#define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
 100#define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
 101#define SPPCR_SPOM		0x04
 102#define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
 103#define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */
 104
 105#define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
 106#define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */
 107
 108/* SPSR - Status Register */
 109#define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
 110#define SPSR_TEND		0x40	/* Transmit End */
 111#define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
 112#define SPSR_PERF		0x08	/* Parity Error Flag */
 113#define SPSR_MODF		0x04	/* Mode Fault Error Flag */
 114#define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
 115#define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
 116
 117/* SPSCR - Sequence Control Register */
 118#define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */
 119
 120/* SPSSR - Sequence Status Register */
 121#define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
 122#define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */
 123
 124/* SPDCR - Data Control Register */
 125#define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
 126#define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
 127#define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
 128#define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
 129#define SPDCR_SPLWORD		SPDCR_SPLW1
 130#define SPDCR_SPLBYTE		SPDCR_SPLW0
 131#define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
 132#define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
 133#define SPDCR_SLSEL1		0x08
 134#define SPDCR_SLSEL0		0x04
 135#define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
 136#define SPDCR_SPFC1		0x02
 137#define SPDCR_SPFC0		0x01
 138#define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
 139
 140/* SPCKD - Clock Delay Register */
 141#define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
 
 
 
 142
 143/* SSLND - Slave Select Negation Delay Register */
 144#define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
 145
 146/* SPND - Next-Access Delay Register */
 147#define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
 148
 149/* SPCR2 - Control Register 2 */
 150#define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
 151#define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
 152#define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
 153#define SPCR2_SPPE		0x01	/* Parity Enable */
 154
 155/* SPCMDn - Command Registers */
 156#define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
 157#define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
 158#define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
 159#define SPCMD_LSBF		0x1000	/* LSB First */
 160#define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
 161#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
 162#define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
 163#define SPCMD_SPB_16BIT		0x0100
 164#define SPCMD_SPB_20BIT		0x0000
 165#define SPCMD_SPB_24BIT		0x0100
 166#define SPCMD_SPB_32BIT		0x0200
 167#define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
 168#define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
 169#define SPCMD_SPIMOD1		0x0040
 170#define SPCMD_SPIMOD0		0x0020
 171#define SPCMD_SPIMOD_SINGLE	0
 172#define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
 173#define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
 174#define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
 175#define SPCMD_SSLA_MASK		0x0030	/* SSL Assert Signal Setting (RSPI) */
 176#define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
 177#define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
 178#define SPCMD_CPHA		0x0001	/* Clock Phase Setting */
 179
 180/* SPBFCR - Buffer Control Register */
 181#define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
 182#define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
 183#define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
 184#define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
 185
 186#define DUMMY_DATA		0x00
 187
 188struct rspi_data {
 189	void __iomem *addr;
 190	u32 max_speed_hz;
 191	struct spi_master *master;
 
 
 192	wait_queue_head_t wait;
 
 193	struct clk *clk;
 194	u16 spcmd;
 195	u8 spsr;
 196	u8 sppcr;
 197	int rx_irq, tx_irq;
 198	const struct spi_ops *ops;
 199
 200	/* for dmaengine */
 
 
 201	struct dma_chan *chan_tx;
 202	struct dma_chan *chan_rx;
 
 203
 204	unsigned dma_width_16bit:1;
 205	unsigned dma_callbacked:1;
 206	unsigned byte_access:1;
 207};
 208
 209static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
 210{
 211	iowrite8(data, rspi->addr + offset);
 212}
 213
 214static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
 215{
 216	iowrite16(data, rspi->addr + offset);
 217}
 218
 219static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
 220{
 221	iowrite32(data, rspi->addr + offset);
 222}
 223
 224static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
 225{
 226	return ioread8(rspi->addr + offset);
 227}
 228
 229static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
 230{
 231	return ioread16(rspi->addr + offset);
 
 
 
 
 
 
 232}
 233
 234static void rspi_write_data(const struct rspi_data *rspi, u16 data)
 235{
 236	if (rspi->byte_access)
 237		rspi_write8(rspi, data, RSPI_SPDR);
 238	else /* 16 bit */
 239		rspi_write16(rspi, data, RSPI_SPDR);
 240}
 241
 242static u16 rspi_read_data(const struct rspi_data *rspi)
 243{
 244	if (rspi->byte_access)
 245		return rspi_read8(rspi, RSPI_SPDR);
 246	else /* 16 bit */
 247		return rspi_read16(rspi, RSPI_SPDR);
 248}
 249
 250/* optional functions */
 251struct spi_ops {
 252	int (*set_config_register)(struct rspi_data *rspi, int access_size);
 253	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
 254			    struct spi_transfer *xfer);
 255	u16 mode_bits;
 256};
 257
 258/*
 259 * functions for RSPI on legacy SH
 260 */
 261static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
 262{
 263	int spbr;
 264
 265	/* Sets output mode, MOSI signal, and (optionally) loopback */
 266	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 267
 268	/* Sets transfer bit rate */
 269	spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
 270	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 271
 272	/* Disable dummy transmission, set 16-bit word access, 1 frame */
 273	rspi_write8(rspi, 0, RSPI_SPDCR);
 274	rspi->byte_access = 0;
 275
 276	/* Sets RSPCK, SSL, next-access delay value */
 277	rspi_write8(rspi, 0x00, RSPI_SPCKD);
 278	rspi_write8(rspi, 0x00, RSPI_SSLND);
 279	rspi_write8(rspi, 0x00, RSPI_SPND);
 280
 281	/* Sets parity, interrupt mask */
 282	rspi_write8(rspi, 0x00, RSPI_SPCR2);
 283
 284	/* Sets SPCMD */
 285	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 286	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 287
 288	/* Sets RSPI mode */
 289	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 290
 291	return 0;
 292}
 293
 294/*
 295 * functions for RSPI on RZ
 296 */
 297static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
 298{
 299	int spbr;
 
 300
 301	/* Sets output mode, MOSI signal, and (optionally) loopback */
 302	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 303
 304	/* Sets transfer bit rate */
 305	spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
 306	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 307
 308	/* Disable dummy transmission, set byte access */
 309	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
 310	rspi->byte_access = 1;
 311
 312	/* Sets RSPCK, SSL, next-access delay value */
 313	rspi_write8(rspi, 0x00, RSPI_SPCKD);
 314	rspi_write8(rspi, 0x00, RSPI_SSLND);
 315	rspi_write8(rspi, 0x00, RSPI_SPND);
 316
 317	/* Sets SPCMD */
 318	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 319	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 320
 321	/* Sets RSPI mode */
 322	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 323
 324	return 0;
 325}
 326
 327/*
 328 * functions for QSPI
 329 */
 330static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
 331{
 332	int spbr;
 333
 334	/* Sets output mode, MOSI signal, and (optionally) loopback */
 335	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 336
 337	/* Sets transfer bit rate */
 338	spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz);
 339	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 340
 341	/* Disable dummy transmission, set byte access */
 342	rspi_write8(rspi, 0, RSPI_SPDCR);
 343	rspi->byte_access = 1;
 344
 345	/* Sets RSPCK, SSL, next-access delay value */
 346	rspi_write8(rspi, 0x00, RSPI_SPCKD);
 347	rspi_write8(rspi, 0x00, RSPI_SSLND);
 348	rspi_write8(rspi, 0x00, RSPI_SPND);
 349
 350	/* Data Length Setting */
 351	if (access_size == 8)
 352		rspi->spcmd |= SPCMD_SPB_8BIT;
 353	else if (access_size == 16)
 354		rspi->spcmd |= SPCMD_SPB_16BIT;
 355	else
 356		rspi->spcmd |= SPCMD_SPB_32BIT;
 357
 358	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
 359
 360	/* Resets transfer data length */
 361	rspi_write32(rspi, 0, QSPI_SPBMUL0);
 362
 363	/* Resets transmit and receive buffer */
 364	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 365	/* Sets buffer to allow normal operation */
 366	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
 367
 368	/* Sets SPCMD */
 369	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 
 370
 371	/* Enables SPI function in master mode */
 372	rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
 373
 374	return 0;
 375}
 376
 377#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
 378
 379static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
 380{
 381	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
 382}
 383
 384static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
 385{
 386	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
 387}
 388
 389static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
 390				   u8 enable_bit)
 391{
 392	int ret;
 
 393
 394	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
 395	if (rspi->spsr & wait_mask)
 396		return 0;
 
 397
 398	rspi_enable_irq(rspi, enable_bit);
 399	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
 400	if (ret == 0 && !(rspi->spsr & wait_mask))
 401		return -ETIMEDOUT;
 402
 403	return 0;
 404}
 405
 406static int rspi_data_out(struct rspi_data *rspi, u8 data)
 407{
 408	if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
 409		dev_err(&rspi->master->dev, "transmit timeout\n");
 410		return -ETIMEDOUT;
 411	}
 412	rspi_write_data(rspi, data);
 413	return 0;
 414}
 415
 416static int rspi_data_in(struct rspi_data *rspi)
 417{
 418	u8 data;
 419
 420	if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
 421		dev_err(&rspi->master->dev, "receive timeout\n");
 422		return -ETIMEDOUT;
 423	}
 424	data = rspi_read_data(rspi);
 425	return data;
 426}
 427
 428static int rspi_data_out_in(struct rspi_data *rspi, u8 data)
 429{
 430	int ret;
 431
 432	ret = rspi_data_out(rspi, data);
 433	if (ret < 0)
 434		return ret;
 435
 436	return rspi_data_in(rspi);
 437}
 438
 439static void rspi_dma_complete(void *arg)
 440{
 441	struct rspi_data *rspi = arg;
 442
 443	rspi->dma_callbacked = 1;
 444	wake_up_interruptible(&rspi->wait);
 445}
 446
 447static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
 448			   unsigned len, struct dma_chan *chan,
 449			   enum dma_transfer_direction dir)
 450{
 451	sg_init_table(sg, 1);
 452	sg_set_buf(sg, buf, len);
 453	sg_dma_len(sg) = len;
 454	return dma_map_sg(chan->device->dev, sg, 1, dir);
 455}
 456
 457static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
 458			      enum dma_transfer_direction dir)
 459{
 460	dma_unmap_sg(chan->device->dev, sg, 1, dir);
 461}
 462
 463static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
 464{
 465	u16 *dst = buf;
 466	const u8 *src = data;
 467
 468	while (len) {
 469		*dst++ = (u16)(*src++);
 470		len--;
 471	}
 472}
 473
 474static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
 475{
 476	u8 *dst = buf;
 477	const u16 *src = data;
 478
 479	while (len) {
 480		*dst++ = (u8)*src++;
 481		len--;
 482	}
 483}
 484
 485static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
 486{
 487	struct scatterlist sg;
 488	const void *buf = NULL;
 489	struct dma_async_tx_descriptor *desc;
 490	unsigned int len;
 491	int ret = 0;
 492
 493	if (rspi->dma_width_16bit) {
 494		void *tmp;
 495		/*
 496		 * If DMAC bus width is 16-bit, the driver allocates a dummy
 497		 * buffer. And, the driver converts original data into the
 498		 * DMAC data as the following format:
 499		 *  original data: 1st byte, 2nd byte ...
 500		 *  DMAC data:     1st byte, dummy, 2nd byte, dummy ...
 501		 */
 502		len = t->len * 2;
 503		tmp = kmalloc(len, GFP_KERNEL);
 504		if (!tmp)
 505			return -ENOMEM;
 506		rspi_memory_to_8bit(tmp, t->tx_buf, t->len);
 507		buf = tmp;
 508	} else {
 509		len = t->len;
 510		buf = t->tx_buf;
 511	}
 512
 513	if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
 514		ret = -EFAULT;
 515		goto end_nomap;
 516	}
 517	desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
 518				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 519	if (!desc) {
 520		ret = -EIO;
 521		goto end;
 522	}
 523
 524	/*
 525	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
 526	 * called. So, this driver disables the IRQ while DMA transfer.
 527	 */
 528	disable_irq(rspi->tx_irq);
 529
 530	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
 531	rspi_enable_irq(rspi, SPCR_SPTIE);
 532	rspi->dma_callbacked = 0;
 533
 534	desc->callback = rspi_dma_complete;
 535	desc->callback_param = rspi;
 536	dmaengine_submit(desc);
 537	dma_async_issue_pending(rspi->chan_tx);
 538
 539	ret = wait_event_interruptible_timeout(rspi->wait,
 540					       rspi->dma_callbacked, HZ);
 541	if (ret > 0 && rspi->dma_callbacked)
 542		ret = 0;
 543	else if (!ret)
 544		ret = -ETIMEDOUT;
 545	rspi_disable_irq(rspi, SPCR_SPTIE);
 546
 547	enable_irq(rspi->tx_irq);
 548
 549end:
 550	rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
 551end_nomap:
 552	if (rspi->dma_width_16bit)
 553		kfree(buf);
 554
 555	return ret;
 556}
 557
 558static void rspi_receive_init(const struct rspi_data *rspi)
 559{
 560	u8 spsr;
 561
 562	spsr = rspi_read8(rspi, RSPI_SPSR);
 563	if (spsr & SPSR_SPRF)
 564		rspi_read_data(rspi);	/* dummy read */
 565	if (spsr & SPSR_OVRF)
 566		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
 567			    RSPI_SPSR);
 568}
 569
 570static void rspi_rz_receive_init(const struct rspi_data *rspi)
 
 571{
 
 
 
 572	rspi_receive_init(rspi);
 573	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
 574	rspi_write8(rspi, 0, RSPI_SPBFCR);
 575}
 576
 577static void qspi_receive_init(const struct rspi_data *rspi)
 578{
 579	u8 spsr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580
 581	spsr = rspi_read8(rspi, RSPI_SPSR);
 582	if (spsr & SPSR_SPRF)
 583		rspi_read_data(rspi);   /* dummy read */
 584	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 585	rspi_write8(rspi, 0, QSPI_SPBFCR);
 586}
 587
 588static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
 589{
 590	struct scatterlist sg, sg_dummy;
 591	void *dummy = NULL, *rx_buf = NULL;
 592	struct dma_async_tx_descriptor *desc, *desc_dummy;
 593	unsigned int len;
 594	int ret = 0;
 595
 596	if (rspi->dma_width_16bit) {
 597		/*
 598		 * If DMAC bus width is 16-bit, the driver allocates a dummy
 599		 * buffer. And, finally the driver converts the DMAC data into
 600		 * actual data as the following format:
 601		 *  DMAC data:   1st byte, dummy, 2nd byte, dummy ...
 602		 *  actual data: 1st byte, 2nd byte ...
 603		 */
 604		len = t->len * 2;
 605		rx_buf = kmalloc(len, GFP_KERNEL);
 606		if (!rx_buf)
 607			return -ENOMEM;
 608	 } else {
 609		len = t->len;
 610		rx_buf = t->rx_buf;
 611	}
 612
 613	/* prepare dummy transfer to generate SPI clocks */
 614	dummy = kzalloc(len, GFP_KERNEL);
 615	if (!dummy) {
 616		ret = -ENOMEM;
 617		goto end_nomap;
 618	}
 619	if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
 620			     DMA_TO_DEVICE)) {
 621		ret = -EFAULT;
 622		goto end_nomap;
 623	}
 624	desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
 625			DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 626	if (!desc_dummy) {
 627		ret = -EIO;
 628		goto end_dummy_mapped;
 629	}
 630
 631	/* prepare receive transfer */
 632	if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
 633			     DMA_FROM_DEVICE)) {
 634		ret = -EFAULT;
 635		goto end_dummy_mapped;
 636
 637	}
 638	desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
 639				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 640	if (!desc) {
 641		ret = -EIO;
 642		goto end;
 643	}
 644
 645	rspi_receive_init(rspi);
 646
 647	/*
 648	 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
 649	 * called. So, this driver disables the IRQ while DMA transfer.
 650	 */
 651	disable_irq(rspi->tx_irq);
 652	if (rspi->rx_irq != rspi->tx_irq)
 653		disable_irq(rspi->rx_irq);
 654
 655	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
 656	rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
 657	rspi->dma_callbacked = 0;
 658
 659	desc->callback = rspi_dma_complete;
 660	desc->callback_param = rspi;
 661	dmaengine_submit(desc);
 662	dma_async_issue_pending(rspi->chan_rx);
 663
 664	desc_dummy->callback = NULL;	/* No callback */
 665	dmaengine_submit(desc_dummy);
 666	dma_async_issue_pending(rspi->chan_tx);
 667
 668	ret = wait_event_interruptible_timeout(rspi->wait,
 669					       rspi->dma_callbacked, HZ);
 670	if (ret > 0 && rspi->dma_callbacked)
 671		ret = 0;
 672	else if (!ret)
 673		ret = -ETIMEDOUT;
 674	rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
 675
 676	enable_irq(rspi->tx_irq);
 677	if (rspi->rx_irq != rspi->tx_irq)
 678		enable_irq(rspi->rx_irq);
 679
 680end:
 681	rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
 682end_dummy_mapped:
 683	rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
 684end_nomap:
 685	if (rspi->dma_width_16bit) {
 686		if (!ret)
 687			rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
 688		kfree(rx_buf);
 689	}
 690	kfree(dummy);
 691
 692	return ret;
 693}
 694
 695static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
 696{
 697	if (t->tx_buf && rspi->chan_tx)
 698		return 1;
 699	/* If the module receives data by DMAC, it also needs TX DMAC */
 700	if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
 701		return 1;
 702
 703	return 0;
 704}
 705
 706static int rspi_transfer_out_in(struct rspi_data *rspi,
 707				struct spi_transfer *xfer)
 708{
 709	int remain = xfer->len, ret;
 710	const u8 *tx_buf = xfer->tx_buf;
 711	u8 *rx_buf = xfer->rx_buf;
 712	u8 spcr, data;
 713
 714	rspi_receive_init(rspi);
 715
 716	spcr = rspi_read8(rspi, RSPI_SPCR);
 717	if (rx_buf)
 718		spcr &= ~SPCR_TXMD;
 719	else
 720		spcr |= SPCR_TXMD;
 721	rspi_write8(rspi, spcr, RSPI_SPCR);
 722
 723	while (remain > 0) {
 724		data = tx_buf ? *tx_buf++ : DUMMY_DATA;
 725		ret = rspi_data_out(rspi, data);
 726		if (ret < 0)
 727			return ret;
 728		if (rx_buf) {
 729			ret = rspi_data_in(rspi);
 730			if (ret < 0)
 731				return ret;
 732			*rx_buf++ = ret;
 
 
 
 
 
 
 
 
 
 733		}
 734		remain--;
 735	}
 736
 737	/* Wait for the last transmission */
 738	rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
 739
 740	return 0;
 741}
 742
 743static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
 744			     struct spi_transfer *xfer)
 745{
 746	struct rspi_data *rspi = spi_master_get_devdata(master);
 747	int ret;
 748
 749	if (!rspi_is_dma(rspi, xfer))
 750		return rspi_transfer_out_in(rspi, xfer);
 751
 752	if (xfer->tx_buf) {
 753		ret = rspi_send_dma(rspi, xfer);
 754		if (ret < 0)
 755			return ret;
 756	}
 757	if (xfer->rx_buf)
 758		return rspi_receive_dma(rspi, xfer);
 759
 760	return 0;
 761}
 762
 763static int rspi_rz_transfer_out_in(struct rspi_data *rspi,
 764				   struct spi_transfer *xfer)
 765{
 766	int remain = xfer->len, ret;
 767	const u8 *tx_buf = xfer->tx_buf;
 768	u8 *rx_buf = xfer->rx_buf;
 769	u8 data;
 770
 771	rspi_rz_receive_init(rspi);
 772
 773	while (remain > 0) {
 774		data = tx_buf ? *tx_buf++ : DUMMY_DATA;
 775		ret = rspi_data_out_in(rspi, data);
 776		if (ret < 0)
 777			return ret;
 778		if (rx_buf)
 779			*rx_buf++ = ret;
 780		remain--;
 781	}
 782
 783	/* Wait for the last transmission */
 784	rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
 785
 786	return 0;
 787}
 788
 789static int rspi_rz_transfer_one(struct spi_master *master,
 790				struct spi_device *spi,
 791				struct spi_transfer *xfer)
 792{
 793	struct rspi_data *rspi = spi_master_get_devdata(master);
 794
 795	return rspi_rz_transfer_out_in(rspi, xfer);
 796}
 797
 798static int qspi_transfer_out_in(struct rspi_data *rspi,
 799				struct spi_transfer *xfer)
 800{
 801	int remain = xfer->len, ret;
 802	const u8 *tx_buf = xfer->tx_buf;
 803	u8 *rx_buf = xfer->rx_buf;
 804	u8 data;
 805
 806	qspi_receive_init(rspi);
 807
 808	while (remain > 0) {
 809		data = tx_buf ? *tx_buf++ : DUMMY_DATA;
 810		ret = rspi_data_out_in(rspi, data);
 811		if (ret < 0)
 812			return ret;
 813		if (rx_buf)
 814			*rx_buf++ = ret;
 815		remain--;
 816	}
 817
 818	/* Wait for the last transmission */
 819	rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
 820
 821	return 0;
 822}
 823
 824static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
 825{
 826	const u8 *buf = xfer->tx_buf;
 827	unsigned int i;
 828	int ret;
 829
 830	for (i = 0; i < xfer->len; i++) {
 831		ret = rspi_data_out(rspi, *buf++);
 832		if (ret < 0)
 833			return ret;
 834	}
 835
 836	/* Wait for the last transmission */
 837	rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
 838
 839	return 0;
 840}
 841
 842static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
 843{
 844	u8 *buf = xfer->rx_buf;
 845	unsigned int i;
 846	int ret;
 847
 848	for (i = 0; i < xfer->len; i++) {
 849		ret = rspi_data_in(rspi);
 850		if (ret < 0)
 851			return ret;
 852		*buf++ = ret;
 853	}
 854
 855	return 0;
 856}
 857
 858static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
 859			     struct spi_transfer *xfer)
 860{
 861	struct rspi_data *rspi = spi_master_get_devdata(master);
 862
 863	if (spi->mode & SPI_LOOP) {
 864		return qspi_transfer_out_in(rspi, xfer);
 865	} else if (xfer->tx_buf && xfer->tx_nbits > SPI_NBITS_SINGLE) {
 866		/* Quad or Dual SPI Write */
 867		return qspi_transfer_out(rspi, xfer);
 868	} else if (xfer->rx_buf && xfer->rx_nbits > SPI_NBITS_SINGLE) {
 869		/* Quad or Dual SPI Read */
 870		return qspi_transfer_in(rspi, xfer);
 871	} else {
 872		/* Single SPI Transfer */
 873		return qspi_transfer_out_in(rspi, xfer);
 874	}
 875}
 876
 877static int rspi_setup(struct spi_device *spi)
 878{
 879	struct rspi_data *rspi = spi_master_get_devdata(spi->master);
 880
 
 
 881	rspi->max_speed_hz = spi->max_speed_hz;
 882
 883	rspi->spcmd = SPCMD_SSLKP;
 884	if (spi->mode & SPI_CPOL)
 885		rspi->spcmd |= SPCMD_CPOL;
 886	if (spi->mode & SPI_CPHA)
 887		rspi->spcmd |= SPCMD_CPHA;
 888
 889	/* CMOS output mode and MOSI signal from previous transfer */
 890	rspi->sppcr = 0;
 891	if (spi->mode & SPI_LOOP)
 892		rspi->sppcr |= SPPCR_SPLP;
 893
 894	set_config_register(rspi, 8);
 895
 896	return 0;
 897}
 898
 899static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
 900{
 901	if (xfer->tx_buf)
 902		switch (xfer->tx_nbits) {
 903		case SPI_NBITS_QUAD:
 904			return SPCMD_SPIMOD_QUAD;
 905		case SPI_NBITS_DUAL:
 906			return SPCMD_SPIMOD_DUAL;
 907		default:
 908			return 0;
 909		}
 910	if (xfer->rx_buf)
 911		switch (xfer->rx_nbits) {
 912		case SPI_NBITS_QUAD:
 913			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
 914		case SPI_NBITS_DUAL:
 915			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
 916		default:
 917			return 0;
 918		}
 919
 920	return 0;
 921}
 922
 923static int qspi_setup_sequencer(struct rspi_data *rspi,
 924				const struct spi_message *msg)
 925{
 926	const struct spi_transfer *xfer;
 927	unsigned int i = 0, len = 0;
 928	u16 current_mode = 0xffff, mode;
 929
 930	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 931		mode = qspi_transfer_mode(xfer);
 932		if (mode == current_mode) {
 933			len += xfer->len;
 934			continue;
 935		}
 936
 937		/* Transfer mode change */
 938		if (i) {
 939			/* Set transfer data length of previous transfer */
 940			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 941		}
 942
 943		if (i >= QSPI_NUM_SPCMD) {
 944			dev_err(&msg->spi->dev,
 945				"Too many different transfer modes");
 946			return -EINVAL;
 947		}
 948
 949		/* Program transfer mode for this transfer */
 950		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
 951		current_mode = mode;
 952		len = xfer->len;
 953		i++;
 954	}
 955	if (i) {
 956		/* Set final transfer data length and sequence length */
 957		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 958		rspi_write8(rspi, i - 1, RSPI_SPSCR);
 959	}
 960
 961	return 0;
 962}
 963
 964static int rspi_prepare_message(struct spi_master *master,
 965				struct spi_message *msg)
 966{
 967	struct rspi_data *rspi = spi_master_get_devdata(master);
 968	int ret;
 969
 970	if (msg->spi->mode &
 971	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
 972		/* Setup sequencer for messages with multiple transfer modes */
 973		ret = qspi_setup_sequencer(rspi, msg);
 974		if (ret < 0)
 975			return ret;
 976	}
 977
 978	/* Enable SPI function in master mode */
 979	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
 980	return 0;
 981}
 982
 983static int rspi_unprepare_message(struct spi_master *master,
 984				  struct spi_message *msg)
 985{
 986	struct rspi_data *rspi = spi_master_get_devdata(master);
 987
 988	/* Disable SPI function */
 989	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
 990
 991	/* Reset sequencer for Single SPI Transfers */
 992	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 993	rspi_write8(rspi, 0, RSPI_SPSCR);
 994	return 0;
 995}
 996
 997static irqreturn_t rspi_irq_mux(int irq, void *_sr)
 998{
 999	struct rspi_data *rspi = _sr;
1000	u8 spsr;
1001	irqreturn_t ret = IRQ_NONE;
1002	u8 disable_irq = 0;
1003
1004	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1005	if (spsr & SPSR_SPRF)
1006		disable_irq |= SPCR_SPRIE;
1007	if (spsr & SPSR_SPTEF)
1008		disable_irq |= SPCR_SPTIE;
1009
1010	if (disable_irq) {
1011		ret = IRQ_HANDLED;
1012		rspi_disable_irq(rspi, disable_irq);
1013		wake_up(&rspi->wait);
1014	}
1015
1016	return ret;
1017}
1018
1019static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1020{
1021	struct rspi_data *rspi = _sr;
1022	u8 spsr;
1023
1024	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1025	if (spsr & SPSR_SPRF) {
1026		rspi_disable_irq(rspi, SPCR_SPRIE);
1027		wake_up(&rspi->wait);
1028		return IRQ_HANDLED;
1029	}
1030
1031	return 0;
1032}
1033
1034static irqreturn_t rspi_irq_tx(int irq, void *_sr)
 
1035{
1036	struct rspi_data *rspi = _sr;
1037	u8 spsr;
1038
1039	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1040	if (spsr & SPSR_SPTEF) {
1041		rspi_disable_irq(rspi, SPCR_SPTIE);
1042		wake_up(&rspi->wait);
1043		return IRQ_HANDLED;
1044	}
1045
1046	return 0;
1047}
1048
1049static int rspi_request_dma(struct rspi_data *rspi,
1050				      struct platform_device *pdev)
1051{
1052	const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
1053	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1054	dma_cap_mask_t mask;
1055	struct dma_slave_config cfg;
1056	int ret;
1057
1058	if (!res || !rspi_pd)
1059		return 0;	/* The driver assumes no error. */
1060
1061	rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
1062
1063	/* If the module receives data by DMAC, it also needs TX DMAC */
1064	if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
1065		dma_cap_zero(mask);
1066		dma_cap_set(DMA_SLAVE, mask);
1067		rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
1068						    (void *)rspi_pd->dma_rx_id);
1069		if (rspi->chan_rx) {
1070			cfg.slave_id = rspi_pd->dma_rx_id;
1071			cfg.direction = DMA_DEV_TO_MEM;
1072			cfg.dst_addr = 0;
1073			cfg.src_addr = res->start + RSPI_SPDR;
1074			ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
1075			if (!ret)
1076				dev_info(&pdev->dev, "Use DMA when rx.\n");
1077			else
1078				return ret;
1079		}
1080	}
1081	if (rspi_pd->dma_tx_id) {
1082		dma_cap_zero(mask);
1083		dma_cap_set(DMA_SLAVE, mask);
1084		rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
1085						    (void *)rspi_pd->dma_tx_id);
1086		if (rspi->chan_tx) {
1087			cfg.slave_id = rspi_pd->dma_tx_id;
1088			cfg.direction = DMA_MEM_TO_DEV;
1089			cfg.dst_addr = res->start + RSPI_SPDR;
1090			cfg.src_addr = 0;
1091			ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
1092			if (!ret)
1093				dev_info(&pdev->dev, "Use DMA when tx\n");
1094			else
1095				return ret;
1096		}
1097	}
1098
1099	return 0;
1100}
1101
1102static void rspi_release_dma(struct rspi_data *rspi)
1103{
1104	if (rspi->chan_tx)
1105		dma_release_channel(rspi->chan_tx);
1106	if (rspi->chan_rx)
1107		dma_release_channel(rspi->chan_rx);
1108}
1109
1110static int rspi_remove(struct platform_device *pdev)
1111{
1112	struct rspi_data *rspi = platform_get_drvdata(pdev);
1113
 
1114	rspi_release_dma(rspi);
1115	pm_runtime_disable(&pdev->dev);
 
 
 
1116
1117	return 0;
1118}
1119
1120static const struct spi_ops rspi_ops = {
1121	.set_config_register =		rspi_set_config_register,
1122	.transfer_one =			rspi_transfer_one,
1123	.mode_bits =			SPI_CPHA | SPI_CPOL | SPI_LOOP,
1124};
1125
1126static const struct spi_ops rspi_rz_ops = {
1127	.set_config_register =		rspi_rz_set_config_register,
1128	.transfer_one =			rspi_rz_transfer_one,
1129	.mode_bits =			SPI_CPHA | SPI_CPOL | SPI_LOOP,
1130};
1131
1132static const struct spi_ops qspi_ops = {
1133	.set_config_register =		qspi_set_config_register,
1134	.transfer_one =			qspi_transfer_one,
1135	.mode_bits =			SPI_CPHA | SPI_CPOL | SPI_LOOP |
1136					SPI_TX_DUAL | SPI_TX_QUAD |
1137					SPI_RX_DUAL | SPI_RX_QUAD,
1138};
1139
1140#ifdef CONFIG_OF
1141static const struct of_device_id rspi_of_match[] = {
1142	/* RSPI on legacy SH */
1143	{ .compatible = "renesas,rspi", .data = &rspi_ops },
1144	/* RSPI on RZ/A1H */
1145	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1146	/* QSPI on R-Car Gen2 */
1147	{ .compatible = "renesas,qspi", .data = &qspi_ops },
1148	{ /* sentinel */ }
1149};
1150
1151MODULE_DEVICE_TABLE(of, rspi_of_match);
1152
1153static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1154{
1155	u32 num_cs;
1156	int error;
 
 
 
1157
1158	/* Parse DT properties */
1159	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1160	if (error) {
1161		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1162		return error;
1163	}
1164
1165	master->num_chipselect = num_cs;
1166	return 0;
1167}
1168#else
1169#define rspi_of_match	NULL
1170static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1171{
1172	return -EINVAL;
1173}
1174#endif /* CONFIG_OF */
1175
1176static int rspi_request_irq(struct device *dev, unsigned int irq,
1177			    irq_handler_t handler, const char *suffix,
1178			    void *dev_id)
1179{
1180	const char *base = dev_name(dev);
1181	size_t len = strlen(base) + strlen(suffix) + 2;
1182	char *name = devm_kzalloc(dev, len, GFP_KERNEL);
1183	if (!name)
1184		return -ENOMEM;
1185	snprintf(name, len, "%s:%s", base, suffix);
1186	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1187}
1188
1189static int rspi_probe(struct platform_device *pdev)
1190{
1191	struct resource *res;
1192	struct spi_master *master;
1193	struct rspi_data *rspi;
1194	int ret;
1195	const struct of_device_id *of_id;
1196	const struct rspi_plat_data *rspi_pd;
1197	const struct spi_ops *ops;
1198
1199	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1200	if (master == NULL) {
1201		dev_err(&pdev->dev, "spi_alloc_master error.\n");
1202		return -ENOMEM;
1203	}
1204
1205	of_id = of_match_device(rspi_of_match, &pdev->dev);
1206	if (of_id) {
1207		ops = of_id->data;
1208		ret = rspi_parse_dt(&pdev->dev, master);
1209		if (ret)
1210			goto error1;
1211	} else {
1212		ops = (struct spi_ops *)pdev->id_entry->driver_data;
1213		rspi_pd = dev_get_platdata(&pdev->dev);
1214		if (rspi_pd && rspi_pd->num_chipselect)
1215			master->num_chipselect = rspi_pd->num_chipselect;
1216		else
1217			master->num_chipselect = 2; /* default */
1218	};
1219
1220	/* ops parameter check */
1221	if (!ops->set_config_register) {
1222		dev_err(&pdev->dev, "there is no set_config_register\n");
1223		ret = -ENODEV;
1224		goto error1;
1225	}
1226
1227	rspi = spi_master_get_devdata(master);
1228	platform_set_drvdata(pdev, rspi);
1229	rspi->ops = ops;
1230	rspi->master = master;
1231
1232	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1233	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1234	if (IS_ERR(rspi->addr)) {
1235		ret = PTR_ERR(rspi->addr);
1236		goto error1;
1237	}
1238
1239	rspi->clk = devm_clk_get(&pdev->dev, NULL);
 
1240	if (IS_ERR(rspi->clk)) {
1241		dev_err(&pdev->dev, "cannot get clock\n");
1242		ret = PTR_ERR(rspi->clk);
1243		goto error1;
1244	}
 
1245
1246	pm_runtime_enable(&pdev->dev);
1247
 
1248	init_waitqueue_head(&rspi->wait);
1249
 
1250	master->bus_num = pdev->id;
1251	master->setup = rspi_setup;
1252	master->auto_runtime_pm = true;
1253	master->transfer_one = ops->transfer_one;
1254	master->prepare_message = rspi_prepare_message;
1255	master->unprepare_message = rspi_unprepare_message;
1256	master->mode_bits = ops->mode_bits;
1257	master->dev.of_node = pdev->dev.of_node;
1258
1259	ret = platform_get_irq_byname(pdev, "rx");
1260	if (ret < 0) {
1261		ret = platform_get_irq_byname(pdev, "mux");
1262		if (ret < 0)
1263			ret = platform_get_irq(pdev, 0);
1264		if (ret >= 0)
1265			rspi->rx_irq = rspi->tx_irq = ret;
1266	} else {
1267		rspi->rx_irq = ret;
1268		ret = platform_get_irq_byname(pdev, "tx");
1269		if (ret >= 0)
1270			rspi->tx_irq = ret;
1271	}
1272	if (ret < 0) {
1273		dev_err(&pdev->dev, "platform_get_irq error\n");
1274		goto error2;
1275	}
1276
1277	if (rspi->rx_irq == rspi->tx_irq) {
1278		/* Single multiplexed interrupt */
1279		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1280				       "mux", rspi);
1281	} else {
1282		/* Multi-interrupt mode, only SPRI and SPTI are used */
1283		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1284				       "rx", rspi);
1285		if (!ret)
1286			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1287					       rspi_irq_tx, "tx", rspi);
1288	}
1289	if (ret < 0) {
1290		dev_err(&pdev->dev, "request_irq error\n");
1291		goto error2;
1292	}
1293
1294	ret = rspi_request_dma(rspi, pdev);
1295	if (ret < 0) {
1296		dev_err(&pdev->dev, "rspi_request_dma failed.\n");
1297		goto error3;
1298	}
1299
1300	ret = devm_spi_register_master(&pdev->dev, master);
1301	if (ret < 0) {
1302		dev_err(&pdev->dev, "spi_register_master error.\n");
1303		goto error3;
1304	}
1305
1306	dev_info(&pdev->dev, "probed\n");
1307
1308	return 0;
1309
 
 
 
1310error3:
1311	rspi_release_dma(rspi);
1312error2:
1313	pm_runtime_disable(&pdev->dev);
1314error1:
1315	spi_master_put(master);
1316
1317	return ret;
1318}
1319
1320static struct platform_device_id spi_driver_ids[] = {
1321	{ "rspi",	(kernel_ulong_t)&rspi_ops },
1322	{ "rspi-rz",	(kernel_ulong_t)&rspi_rz_ops },
1323	{ "qspi",	(kernel_ulong_t)&qspi_ops },
1324	{},
1325};
1326
1327MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1328
1329static struct platform_driver rspi_driver = {
1330	.probe =	rspi_probe,
1331	.remove =	rspi_remove,
1332	.id_table =	spi_driver_ids,
1333	.driver		= {
1334		.name = "renesas_spi",
1335		.owner	= THIS_MODULE,
1336		.of_match_table = of_match_ptr(rspi_of_match),
1337	},
1338};
1339module_platform_driver(rspi_driver);
1340
1341MODULE_DESCRIPTION("Renesas RSPI bus driver");
1342MODULE_LICENSE("GPL v2");
1343MODULE_AUTHOR("Yoshihiro Shimoda");
1344MODULE_ALIAS("platform:rspi");