Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "iodev.h"
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched.h>
  36#include <linux/cpumask.h>
  37#include <linux/smp.h>
  38#include <linux/anon_inodes.h>
  39#include <linux/profile.h>
  40#include <linux/kvm_para.h>
  41#include <linux/pagemap.h>
  42#include <linux/mman.h>
  43#include <linux/swap.h>
  44#include <linux/bitops.h>
  45#include <linux/spinlock.h>
  46#include <linux/compat.h>
  47#include <linux/srcu.h>
  48#include <linux/hugetlb.h>
  49#include <linux/slab.h>
  50#include <linux/sort.h>
  51#include <linux/bsearch.h>
  52
  53#include <asm/processor.h>
  54#include <asm/io.h>
  55#include <asm/uaccess.h>
  56#include <asm/pgtable.h>
  57
  58#include "coalesced_mmio.h"
  59#include "async_pf.h"
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/kvm.h>
  63
  64MODULE_AUTHOR("Qumranet");
  65MODULE_LICENSE("GPL");
  66
  67/*
  68 * Ordering of locks:
  69 *
  70 * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  71 */
  72
  73DEFINE_RAW_SPINLOCK(kvm_lock);
  74LIST_HEAD(vm_list);
  75
  76static cpumask_var_t cpus_hardware_enabled;
  77static int kvm_usage_count = 0;
  78static atomic_t hardware_enable_failed;
  79
  80struct kmem_cache *kvm_vcpu_cache;
  81EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  82
  83static __read_mostly struct preempt_ops kvm_preempt_ops;
  84
  85struct dentry *kvm_debugfs_dir;
  86
  87static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  88			   unsigned long arg);
  89#ifdef CONFIG_COMPAT
  90static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  91				  unsigned long arg);
  92#endif
  93static int hardware_enable_all(void);
  94static void hardware_disable_all(void);
  95
  96static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  97
  98bool kvm_rebooting;
  99EXPORT_SYMBOL_GPL(kvm_rebooting);
 100
 101static bool largepages_enabled = true;
 102
 103static struct page *hwpoison_page;
 104static pfn_t hwpoison_pfn;
 105
 106struct page *fault_page;
 107pfn_t fault_pfn;
 108
 109inline int kvm_is_mmio_pfn(pfn_t pfn)
 110{
 111	if (pfn_valid(pfn)) {
 112		int reserved;
 113		struct page *tail = pfn_to_page(pfn);
 114		struct page *head = compound_trans_head(tail);
 115		reserved = PageReserved(head);
 116		if (head != tail) {
 117			/*
 118			 * "head" is not a dangling pointer
 119			 * (compound_trans_head takes care of that)
 120			 * but the hugepage may have been splitted
 121			 * from under us (and we may not hold a
 122			 * reference count on the head page so it can
 123			 * be reused before we run PageReferenced), so
 124			 * we've to check PageTail before returning
 125			 * what we just read.
 126			 */
 127			smp_rmb();
 128			if (PageTail(tail))
 129				return reserved;
 130		}
 131		return PageReserved(tail);
 132	}
 133
 134	return true;
 135}
 136
 137/*
 138 * Switches to specified vcpu, until a matching vcpu_put()
 139 */
 140void vcpu_load(struct kvm_vcpu *vcpu)
 141{
 142	int cpu;
 143
 144	mutex_lock(&vcpu->mutex);
 145	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
 146		/* The thread running this VCPU changed. */
 147		struct pid *oldpid = vcpu->pid;
 148		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
 149		rcu_assign_pointer(vcpu->pid, newpid);
 150		synchronize_rcu();
 151		put_pid(oldpid);
 152	}
 153	cpu = get_cpu();
 154	preempt_notifier_register(&vcpu->preempt_notifier);
 155	kvm_arch_vcpu_load(vcpu, cpu);
 156	put_cpu();
 157}
 158
 159void vcpu_put(struct kvm_vcpu *vcpu)
 160{
 161	preempt_disable();
 162	kvm_arch_vcpu_put(vcpu);
 163	preempt_notifier_unregister(&vcpu->preempt_notifier);
 164	preempt_enable();
 165	mutex_unlock(&vcpu->mutex);
 166}
 167
 168static void ack_flush(void *_completed)
 169{
 170}
 171
 172static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
 173{
 174	int i, cpu, me;
 175	cpumask_var_t cpus;
 176	bool called = true;
 177	struct kvm_vcpu *vcpu;
 178
 179	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 180
 181	me = get_cpu();
 182	kvm_for_each_vcpu(i, vcpu, kvm) {
 183		kvm_make_request(req, vcpu);
 184		cpu = vcpu->cpu;
 185
 186		/* Set ->requests bit before we read ->mode */
 187		smp_mb();
 188
 189		if (cpus != NULL && cpu != -1 && cpu != me &&
 190		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
 191			cpumask_set_cpu(cpu, cpus);
 192	}
 193	if (unlikely(cpus == NULL))
 194		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
 195	else if (!cpumask_empty(cpus))
 196		smp_call_function_many(cpus, ack_flush, NULL, 1);
 197	else
 198		called = false;
 199	put_cpu();
 200	free_cpumask_var(cpus);
 201	return called;
 202}
 203
 204void kvm_flush_remote_tlbs(struct kvm *kvm)
 205{
 206	long dirty_count = kvm->tlbs_dirty;
 207
 208	smp_mb();
 209	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 210		++kvm->stat.remote_tlb_flush;
 211	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 212}
 213
 214void kvm_reload_remote_mmus(struct kvm *kvm)
 215{
 216	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 217}
 218
 219int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 220{
 221	struct page *page;
 222	int r;
 223
 224	mutex_init(&vcpu->mutex);
 225	vcpu->cpu = -1;
 226	vcpu->kvm = kvm;
 227	vcpu->vcpu_id = id;
 228	vcpu->pid = NULL;
 229	init_waitqueue_head(&vcpu->wq);
 230	kvm_async_pf_vcpu_init(vcpu);
 231
 232	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 233	if (!page) {
 234		r = -ENOMEM;
 235		goto fail;
 236	}
 237	vcpu->run = page_address(page);
 238
 239	r = kvm_arch_vcpu_init(vcpu);
 240	if (r < 0)
 241		goto fail_free_run;
 242	return 0;
 243
 244fail_free_run:
 245	free_page((unsigned long)vcpu->run);
 246fail:
 247	return r;
 248}
 249EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 250
 251void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 252{
 253	put_pid(vcpu->pid);
 254	kvm_arch_vcpu_uninit(vcpu);
 255	free_page((unsigned long)vcpu->run);
 256}
 257EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 258
 259#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 260static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 261{
 262	return container_of(mn, struct kvm, mmu_notifier);
 263}
 264
 265static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
 266					     struct mm_struct *mm,
 267					     unsigned long address)
 268{
 269	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 270	int need_tlb_flush, idx;
 271
 272	/*
 273	 * When ->invalidate_page runs, the linux pte has been zapped
 274	 * already but the page is still allocated until
 275	 * ->invalidate_page returns. So if we increase the sequence
 276	 * here the kvm page fault will notice if the spte can't be
 277	 * established because the page is going to be freed. If
 278	 * instead the kvm page fault establishes the spte before
 279	 * ->invalidate_page runs, kvm_unmap_hva will release it
 280	 * before returning.
 281	 *
 282	 * The sequence increase only need to be seen at spin_unlock
 283	 * time, and not at spin_lock time.
 284	 *
 285	 * Increasing the sequence after the spin_unlock would be
 286	 * unsafe because the kvm page fault could then establish the
 287	 * pte after kvm_unmap_hva returned, without noticing the page
 288	 * is going to be freed.
 289	 */
 290	idx = srcu_read_lock(&kvm->srcu);
 291	spin_lock(&kvm->mmu_lock);
 292
 293	kvm->mmu_notifier_seq++;
 294	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
 
 
 
 295	/* we've to flush the tlb before the pages can be freed */
 296	if (need_tlb_flush)
 297		kvm_flush_remote_tlbs(kvm);
 298
 299	spin_unlock(&kvm->mmu_lock);
 300	srcu_read_unlock(&kvm->srcu, idx);
 301}
 302
 303static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 304					struct mm_struct *mm,
 305					unsigned long address,
 306					pte_t pte)
 307{
 308	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 309	int idx;
 310
 311	idx = srcu_read_lock(&kvm->srcu);
 312	spin_lock(&kvm->mmu_lock);
 313	kvm->mmu_notifier_seq++;
 314	kvm_set_spte_hva(kvm, address, pte);
 315	spin_unlock(&kvm->mmu_lock);
 316	srcu_read_unlock(&kvm->srcu, idx);
 317}
 318
 319static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 320						    struct mm_struct *mm,
 321						    unsigned long start,
 322						    unsigned long end)
 323{
 324	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 325	int need_tlb_flush = 0, idx;
 326
 327	idx = srcu_read_lock(&kvm->srcu);
 328	spin_lock(&kvm->mmu_lock);
 329	/*
 330	 * The count increase must become visible at unlock time as no
 331	 * spte can be established without taking the mmu_lock and
 332	 * count is also read inside the mmu_lock critical section.
 333	 */
 334	kvm->mmu_notifier_count++;
 335	for (; start < end; start += PAGE_SIZE)
 336		need_tlb_flush |= kvm_unmap_hva(kvm, start);
 337	need_tlb_flush |= kvm->tlbs_dirty;
 
 
 
 338	/* we've to flush the tlb before the pages can be freed */
 339	if (need_tlb_flush)
 340		kvm_flush_remote_tlbs(kvm);
 341
 342	spin_unlock(&kvm->mmu_lock);
 343	srcu_read_unlock(&kvm->srcu, idx);
 344}
 345
 346static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 347						  struct mm_struct *mm,
 348						  unsigned long start,
 349						  unsigned long end)
 350{
 351	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 352
 353	spin_lock(&kvm->mmu_lock);
 354	/*
 355	 * This sequence increase will notify the kvm page fault that
 356	 * the page that is going to be mapped in the spte could have
 357	 * been freed.
 358	 */
 359	kvm->mmu_notifier_seq++;
 360	smp_wmb();
 361	/*
 362	 * The above sequence increase must be visible before the
 363	 * below count decrease, which is ensured by the smp_wmb above
 364	 * in conjunction with the smp_rmb in mmu_notifier_retry().
 
 365	 */
 366	kvm->mmu_notifier_count--;
 367	spin_unlock(&kvm->mmu_lock);
 368
 369	BUG_ON(kvm->mmu_notifier_count < 0);
 370}
 371
 372static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 373					      struct mm_struct *mm,
 374					      unsigned long address)
 375{
 376	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 377	int young, idx;
 378
 379	idx = srcu_read_lock(&kvm->srcu);
 380	spin_lock(&kvm->mmu_lock);
 381
 382	young = kvm_age_hva(kvm, address);
 383	if (young)
 384		kvm_flush_remote_tlbs(kvm);
 385
 386	spin_unlock(&kvm->mmu_lock);
 387	srcu_read_unlock(&kvm->srcu, idx);
 388
 
 
 
 389	return young;
 390}
 391
 392static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 393				       struct mm_struct *mm,
 394				       unsigned long address)
 395{
 396	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 397	int young, idx;
 398
 399	idx = srcu_read_lock(&kvm->srcu);
 400	spin_lock(&kvm->mmu_lock);
 401	young = kvm_test_age_hva(kvm, address);
 402	spin_unlock(&kvm->mmu_lock);
 403	srcu_read_unlock(&kvm->srcu, idx);
 404
 405	return young;
 406}
 407
 408static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 409				     struct mm_struct *mm)
 410{
 411	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 412	int idx;
 413
 414	idx = srcu_read_lock(&kvm->srcu);
 415	kvm_arch_flush_shadow(kvm);
 416	srcu_read_unlock(&kvm->srcu, idx);
 417}
 418
 419static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 420	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
 421	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
 422	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
 423	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
 424	.test_young		= kvm_mmu_notifier_test_young,
 425	.change_pte		= kvm_mmu_notifier_change_pte,
 426	.release		= kvm_mmu_notifier_release,
 427};
 428
 429static int kvm_init_mmu_notifier(struct kvm *kvm)
 430{
 431	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 432	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 433}
 434
 435#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 436
 437static int kvm_init_mmu_notifier(struct kvm *kvm)
 438{
 439	return 0;
 440}
 441
 442#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 443
 444static void kvm_init_memslots_id(struct kvm *kvm)
 445{
 446	int i;
 447	struct kvm_memslots *slots = kvm->memslots;
 448
 449	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 450		slots->id_to_index[i] = slots->memslots[i].id = i;
 451}
 452
 453static struct kvm *kvm_create_vm(unsigned long type)
 454{
 455	int r, i;
 456	struct kvm *kvm = kvm_arch_alloc_vm();
 457
 458	if (!kvm)
 459		return ERR_PTR(-ENOMEM);
 460
 461	r = kvm_arch_init_vm(kvm, type);
 462	if (r)
 463		goto out_err_nodisable;
 464
 465	r = hardware_enable_all();
 466	if (r)
 467		goto out_err_nodisable;
 468
 469#ifdef CONFIG_HAVE_KVM_IRQCHIP
 470	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
 471	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 472#endif
 473
 474	r = -ENOMEM;
 475	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 476	if (!kvm->memslots)
 477		goto out_err_nosrcu;
 478	kvm_init_memslots_id(kvm);
 479	if (init_srcu_struct(&kvm->srcu))
 480		goto out_err_nosrcu;
 481	for (i = 0; i < KVM_NR_BUSES; i++) {
 482		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
 483					GFP_KERNEL);
 484		if (!kvm->buses[i])
 485			goto out_err;
 486	}
 487
 488	spin_lock_init(&kvm->mmu_lock);
 489	kvm->mm = current->mm;
 490	atomic_inc(&kvm->mm->mm_count);
 491	kvm_eventfd_init(kvm);
 492	mutex_init(&kvm->lock);
 493	mutex_init(&kvm->irq_lock);
 494	mutex_init(&kvm->slots_lock);
 495	atomic_set(&kvm->users_count, 1);
 496
 497	r = kvm_init_mmu_notifier(kvm);
 498	if (r)
 499		goto out_err;
 500
 501	raw_spin_lock(&kvm_lock);
 502	list_add(&kvm->vm_list, &vm_list);
 503	raw_spin_unlock(&kvm_lock);
 504
 505	return kvm;
 506
 507out_err:
 508	cleanup_srcu_struct(&kvm->srcu);
 509out_err_nosrcu:
 510	hardware_disable_all();
 511out_err_nodisable:
 512	for (i = 0; i < KVM_NR_BUSES; i++)
 513		kfree(kvm->buses[i]);
 514	kfree(kvm->memslots);
 515	kvm_arch_free_vm(kvm);
 516	return ERR_PTR(r);
 517}
 518
 519static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 520{
 521	if (!memslot->dirty_bitmap)
 522		return;
 523
 524	if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
 525		vfree(memslot->dirty_bitmap);
 526	else
 527		kfree(memslot->dirty_bitmap);
 528
 529	memslot->dirty_bitmap = NULL;
 
 530}
 531
 532/*
 533 * Free any memory in @free but not in @dont.
 534 */
 535static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
 536				  struct kvm_memory_slot *dont)
 537{
 
 
 538	if (!dont || free->rmap != dont->rmap)
 539		vfree(free->rmap);
 540
 541	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 542		kvm_destroy_dirty_bitmap(free);
 543
 544	kvm_arch_free_memslot(free, dont);
 
 
 
 
 
 
 545
 546	free->npages = 0;
 547	free->rmap = NULL;
 548}
 549
 550void kvm_free_physmem(struct kvm *kvm)
 551{
 
 552	struct kvm_memslots *slots = kvm->memslots;
 553	struct kvm_memory_slot *memslot;
 554
 555	kvm_for_each_memslot(memslot, slots)
 556		kvm_free_physmem_slot(memslot, NULL);
 557
 558	kfree(kvm->memslots);
 559}
 560
 561static void kvm_destroy_vm(struct kvm *kvm)
 562{
 563	int i;
 564	struct mm_struct *mm = kvm->mm;
 565
 566	kvm_arch_sync_events(kvm);
 567	raw_spin_lock(&kvm_lock);
 568	list_del(&kvm->vm_list);
 569	raw_spin_unlock(&kvm_lock);
 570	kvm_free_irq_routing(kvm);
 571	for (i = 0; i < KVM_NR_BUSES; i++)
 572		kvm_io_bus_destroy(kvm->buses[i]);
 573	kvm_coalesced_mmio_free(kvm);
 574#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 575	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 576#else
 577	kvm_arch_flush_shadow(kvm);
 578#endif
 579	kvm_arch_destroy_vm(kvm);
 580	kvm_free_physmem(kvm);
 581	cleanup_srcu_struct(&kvm->srcu);
 582	kvm_arch_free_vm(kvm);
 583	hardware_disable_all();
 584	mmdrop(mm);
 585}
 586
 587void kvm_get_kvm(struct kvm *kvm)
 588{
 589	atomic_inc(&kvm->users_count);
 590}
 591EXPORT_SYMBOL_GPL(kvm_get_kvm);
 592
 593void kvm_put_kvm(struct kvm *kvm)
 594{
 595	if (atomic_dec_and_test(&kvm->users_count))
 596		kvm_destroy_vm(kvm);
 597}
 598EXPORT_SYMBOL_GPL(kvm_put_kvm);
 599
 600
 601static int kvm_vm_release(struct inode *inode, struct file *filp)
 602{
 603	struct kvm *kvm = filp->private_data;
 604
 605	kvm_irqfd_release(kvm);
 606
 607	kvm_put_kvm(kvm);
 608	return 0;
 609}
 610
 
 611/*
 612 * Allocation size is twice as large as the actual dirty bitmap size.
 613 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 
 614 */
 615static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 616{
 617#ifndef CONFIG_S390
 618	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 619
 620	if (dirty_bytes > PAGE_SIZE)
 621		memslot->dirty_bitmap = vzalloc(dirty_bytes);
 622	else
 623		memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
 624
 625	if (!memslot->dirty_bitmap)
 626		return -ENOMEM;
 627
 628#endif /* !CONFIG_S390 */
 629	return 0;
 630}
 631
 632static int cmp_memslot(const void *slot1, const void *slot2)
 633{
 634	struct kvm_memory_slot *s1, *s2;
 635
 636	s1 = (struct kvm_memory_slot *)slot1;
 637	s2 = (struct kvm_memory_slot *)slot2;
 638
 639	if (s1->npages < s2->npages)
 640		return 1;
 641	if (s1->npages > s2->npages)
 642		return -1;
 643
 644	return 0;
 645}
 646
 647/*
 648 * Sort the memslots base on its size, so the larger slots
 649 * will get better fit.
 650 */
 651static void sort_memslots(struct kvm_memslots *slots)
 652{
 653	int i;
 654
 655	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
 656	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
 657
 658	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 659		slots->id_to_index[slots->memslots[i].id] = i;
 660}
 661
 662void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
 663{
 664	if (new) {
 665		int id = new->id;
 666		struct kvm_memory_slot *old = id_to_memslot(slots, id);
 667		unsigned long npages = old->npages;
 668
 669		*old = *new;
 670		if (new->npages != npages)
 671			sort_memslots(slots);
 672	}
 673
 674	slots->generation++;
 675}
 676
 677/*
 678 * Allocate some memory and give it an address in the guest physical address
 679 * space.
 680 *
 681 * Discontiguous memory is allowed, mostly for framebuffers.
 682 *
 683 * Must be called holding mmap_sem for write.
 684 */
 685int __kvm_set_memory_region(struct kvm *kvm,
 686			    struct kvm_userspace_memory_region *mem,
 687			    int user_alloc)
 688{
 689	int r;
 690	gfn_t base_gfn;
 691	unsigned long npages;
 692	unsigned long i;
 693	struct kvm_memory_slot *memslot;
 694	struct kvm_memory_slot old, new;
 695	struct kvm_memslots *slots, *old_memslots;
 696
 697	r = -EINVAL;
 698	/* General sanity checks */
 699	if (mem->memory_size & (PAGE_SIZE - 1))
 700		goto out;
 701	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 702		goto out;
 703	/* We can read the guest memory with __xxx_user() later on. */
 704	if (user_alloc &&
 705	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 706	     !access_ok(VERIFY_WRITE,
 707			(void __user *)(unsigned long)mem->userspace_addr,
 708			mem->memory_size)))
 709		goto out;
 710	if (mem->slot >= KVM_MEM_SLOTS_NUM)
 711		goto out;
 712	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 713		goto out;
 714
 715	memslot = id_to_memslot(kvm->memslots, mem->slot);
 716	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 717	npages = mem->memory_size >> PAGE_SHIFT;
 718
 719	r = -EINVAL;
 720	if (npages > KVM_MEM_MAX_NR_PAGES)
 721		goto out;
 722
 723	if (!npages)
 724		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
 725
 726	new = old = *memslot;
 727
 728	new.id = mem->slot;
 729	new.base_gfn = base_gfn;
 730	new.npages = npages;
 731	new.flags = mem->flags;
 732
 733	/* Disallow changing a memory slot's size. */
 734	r = -EINVAL;
 735	if (npages && old.npages && npages != old.npages)
 736		goto out_free;
 737
 738	/* Check for overlaps */
 739	r = -EEXIST;
 740	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
 741		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
 742
 743		if (s == memslot || !s->npages)
 744			continue;
 745		if (!((base_gfn + npages <= s->base_gfn) ||
 746		      (base_gfn >= s->base_gfn + s->npages)))
 747			goto out_free;
 748	}
 749
 750	/* Free page dirty bitmap if unneeded */
 751	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 752		new.dirty_bitmap = NULL;
 753
 754	r = -ENOMEM;
 755
 756	/* Allocate if a slot is being created */
 757	if (npages && !old.npages) {
 758		new.user_alloc = user_alloc;
 759		new.userspace_addr = mem->userspace_addr;
 760#ifndef CONFIG_S390
 
 761		new.rmap = vzalloc(npages * sizeof(*new.rmap));
 
 762		if (!new.rmap)
 763			goto out_free;
 764#endif /* not defined CONFIG_S390 */
 765		if (kvm_arch_create_memslot(&new, npages))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766			goto out_free;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 767	}
 768
 
 
 769	/* Allocate page dirty bitmap if needed */
 770	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 771		if (kvm_create_dirty_bitmap(&new) < 0)
 772			goto out_free;
 773		/* destroy any largepage mappings for dirty tracking */
 774	}
 
 
 
 
 
 775
 776	if (!npages) {
 777		struct kvm_memory_slot *slot;
 778
 779		r = -ENOMEM;
 780		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
 781				GFP_KERNEL);
 782		if (!slots)
 783			goto out_free;
 784		slot = id_to_memslot(slots, mem->slot);
 785		slot->flags |= KVM_MEMSLOT_INVALID;
 786
 787		update_memslots(slots, NULL);
 
 788
 789		old_memslots = kvm->memslots;
 790		rcu_assign_pointer(kvm->memslots, slots);
 791		synchronize_srcu_expedited(&kvm->srcu);
 792		/* From this point no new shadow pages pointing to a deleted
 793		 * memslot will be created.
 794		 *
 795		 * validation of sp->gfn happens in:
 796		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
 797		 * 	- kvm_is_visible_gfn (mmu_check_roots)
 798		 */
 799		kvm_arch_flush_shadow(kvm);
 800		kfree(old_memslots);
 801	}
 802
 803	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
 804	if (r)
 805		goto out_free;
 806
 807	/* map/unmap the pages in iommu page table */
 808	if (npages) {
 809		r = kvm_iommu_map_pages(kvm, &new);
 810		if (r)
 811			goto out_free;
 812	} else
 813		kvm_iommu_unmap_pages(kvm, &old);
 814
 815	r = -ENOMEM;
 816	slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
 817			GFP_KERNEL);
 818	if (!slots)
 819		goto out_free;
 
 
 
 
 820
 821	/* actual memory is freed via old in kvm_free_physmem_slot below */
 822	if (!npages) {
 823		new.rmap = NULL;
 824		new.dirty_bitmap = NULL;
 825		memset(&new.arch, 0, sizeof(new.arch));
 
 826	}
 827
 828	update_memslots(slots, &new);
 829	old_memslots = kvm->memslots;
 830	rcu_assign_pointer(kvm->memslots, slots);
 831	synchronize_srcu_expedited(&kvm->srcu);
 832
 833	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
 834
 835	/*
 836	 * If the new memory slot is created, we need to clear all
 837	 * mmio sptes.
 838	 */
 839	if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
 840		kvm_arch_flush_shadow(kvm);
 841
 842	kvm_free_physmem_slot(&old, &new);
 843	kfree(old_memslots);
 844
 845	return 0;
 846
 847out_free:
 848	kvm_free_physmem_slot(&new, &old);
 849out:
 850	return r;
 851
 852}
 853EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
 854
 855int kvm_set_memory_region(struct kvm *kvm,
 856			  struct kvm_userspace_memory_region *mem,
 857			  int user_alloc)
 858{
 859	int r;
 860
 861	mutex_lock(&kvm->slots_lock);
 862	r = __kvm_set_memory_region(kvm, mem, user_alloc);
 863	mutex_unlock(&kvm->slots_lock);
 864	return r;
 865}
 866EXPORT_SYMBOL_GPL(kvm_set_memory_region);
 867
 868int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
 869				   struct
 870				   kvm_userspace_memory_region *mem,
 871				   int user_alloc)
 872{
 873	if (mem->slot >= KVM_MEMORY_SLOTS)
 874		return -EINVAL;
 875	return kvm_set_memory_region(kvm, mem, user_alloc);
 876}
 877
 878int kvm_get_dirty_log(struct kvm *kvm,
 879			struct kvm_dirty_log *log, int *is_dirty)
 880{
 881	struct kvm_memory_slot *memslot;
 882	int r, i;
 883	unsigned long n;
 884	unsigned long any = 0;
 885
 886	r = -EINVAL;
 887	if (log->slot >= KVM_MEMORY_SLOTS)
 888		goto out;
 889
 890	memslot = id_to_memslot(kvm->memslots, log->slot);
 891	r = -ENOENT;
 892	if (!memslot->dirty_bitmap)
 893		goto out;
 894
 895	n = kvm_dirty_bitmap_bytes(memslot);
 896
 897	for (i = 0; !any && i < n/sizeof(long); ++i)
 898		any = memslot->dirty_bitmap[i];
 899
 900	r = -EFAULT;
 901	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
 902		goto out;
 903
 904	if (any)
 905		*is_dirty = 1;
 906
 907	r = 0;
 908out:
 909	return r;
 910}
 911
 912bool kvm_largepages_enabled(void)
 913{
 914	return largepages_enabled;
 915}
 916
 917void kvm_disable_largepages(void)
 918{
 919	largepages_enabled = false;
 920}
 921EXPORT_SYMBOL_GPL(kvm_disable_largepages);
 922
 923int is_error_page(struct page *page)
 924{
 925	return page == bad_page || page == hwpoison_page || page == fault_page;
 926}
 927EXPORT_SYMBOL_GPL(is_error_page);
 928
 929int is_error_pfn(pfn_t pfn)
 930{
 931	return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
 932}
 933EXPORT_SYMBOL_GPL(is_error_pfn);
 934
 935int is_hwpoison_pfn(pfn_t pfn)
 936{
 937	return pfn == hwpoison_pfn;
 938}
 939EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
 940
 941int is_fault_pfn(pfn_t pfn)
 942{
 943	return pfn == fault_pfn;
 944}
 945EXPORT_SYMBOL_GPL(is_fault_pfn);
 946
 947int is_noslot_pfn(pfn_t pfn)
 948{
 949	return pfn == bad_pfn;
 950}
 951EXPORT_SYMBOL_GPL(is_noslot_pfn);
 952
 953int is_invalid_pfn(pfn_t pfn)
 954{
 955	return pfn == hwpoison_pfn || pfn == fault_pfn;
 956}
 957EXPORT_SYMBOL_GPL(is_invalid_pfn);
 958
 959static inline unsigned long bad_hva(void)
 960{
 961	return PAGE_OFFSET;
 962}
 963
 964int kvm_is_error_hva(unsigned long addr)
 965{
 966	return addr == bad_hva();
 967}
 968EXPORT_SYMBOL_GPL(kvm_is_error_hva);
 969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
 971{
 972	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
 973}
 974EXPORT_SYMBOL_GPL(gfn_to_memslot);
 975
 976int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
 977{
 978	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
 
 979
 980	if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
 981	      memslot->flags & KVM_MEMSLOT_INVALID)
 982		return 0;
 983
 984	return 1;
 
 
 
 
 
 
 
 985}
 986EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
 987
 988unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
 989{
 990	struct vm_area_struct *vma;
 991	unsigned long addr, size;
 992
 993	size = PAGE_SIZE;
 994
 995	addr = gfn_to_hva(kvm, gfn);
 996	if (kvm_is_error_hva(addr))
 997		return PAGE_SIZE;
 998
 999	down_read(&current->mm->mmap_sem);
1000	vma = find_vma(current->mm, addr);
1001	if (!vma)
1002		goto out;
1003
1004	size = vma_kernel_pagesize(vma);
1005
1006out:
1007	up_read(&current->mm->mmap_sem);
1008
1009	return size;
1010}
1011
1012static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1013				     gfn_t *nr_pages)
1014{
1015	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1016		return bad_hva();
1017
1018	if (nr_pages)
1019		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1020
1021	return gfn_to_hva_memslot(slot, gfn);
1022}
1023
1024unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1025{
1026	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1027}
1028EXPORT_SYMBOL_GPL(gfn_to_hva);
1029
1030static pfn_t get_fault_pfn(void)
1031{
1032	get_page(fault_page);
1033	return fault_pfn;
1034}
1035
1036int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1037	unsigned long start, int write, struct page **page)
1038{
1039	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1040
1041	if (write)
1042		flags |= FOLL_WRITE;
1043
1044	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1045}
1046
1047static inline int check_user_page_hwpoison(unsigned long addr)
1048{
1049	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1050
1051	rc = __get_user_pages(current, current->mm, addr, 1,
1052			      flags, NULL, NULL, NULL);
1053	return rc == -EHWPOISON;
1054}
1055
1056static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1057			bool *async, bool write_fault, bool *writable)
1058{
1059	struct page *page[1];
1060	int npages = 0;
1061	pfn_t pfn;
1062
1063	/* we can do it either atomically or asynchronously, not both */
1064	BUG_ON(atomic && async);
1065
1066	BUG_ON(!write_fault && !writable);
1067
1068	if (writable)
1069		*writable = true;
1070
1071	if (atomic || async)
1072		npages = __get_user_pages_fast(addr, 1, 1, page);
1073
1074	if (unlikely(npages != 1) && !atomic) {
1075		might_sleep();
1076
1077		if (writable)
1078			*writable = write_fault;
1079
1080		if (async) {
1081			down_read(&current->mm->mmap_sem);
1082			npages = get_user_page_nowait(current, current->mm,
1083						     addr, write_fault, page);
1084			up_read(&current->mm->mmap_sem);
1085		} else
1086			npages = get_user_pages_fast(addr, 1, write_fault,
1087						     page);
1088
1089		/* map read fault as writable if possible */
1090		if (unlikely(!write_fault) && npages == 1) {
1091			struct page *wpage[1];
1092
1093			npages = __get_user_pages_fast(addr, 1, 1, wpage);
1094			if (npages == 1) {
1095				*writable = true;
1096				put_page(page[0]);
1097				page[0] = wpage[0];
1098			}
1099			npages = 1;
1100		}
1101	}
1102
1103	if (unlikely(npages != 1)) {
1104		struct vm_area_struct *vma;
1105
1106		if (atomic)
1107			return get_fault_pfn();
1108
1109		down_read(&current->mm->mmap_sem);
1110		if (npages == -EHWPOISON ||
1111			(!async && check_user_page_hwpoison(addr))) {
1112			up_read(&current->mm->mmap_sem);
1113			get_page(hwpoison_page);
1114			return page_to_pfn(hwpoison_page);
1115		}
1116
1117		vma = find_vma_intersection(current->mm, addr, addr+1);
1118
1119		if (vma == NULL)
1120			pfn = get_fault_pfn();
1121		else if ((vma->vm_flags & VM_PFNMAP)) {
1122			pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1123				vma->vm_pgoff;
1124			BUG_ON(!kvm_is_mmio_pfn(pfn));
1125		} else {
1126			if (async && (vma->vm_flags & VM_WRITE))
1127				*async = true;
1128			pfn = get_fault_pfn();
1129		}
1130		up_read(&current->mm->mmap_sem);
1131	} else
1132		pfn = page_to_pfn(page[0]);
1133
1134	return pfn;
1135}
1136
1137pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1138{
1139	return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1140}
1141EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1142
1143static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1144			  bool write_fault, bool *writable)
1145{
1146	unsigned long addr;
1147
1148	if (async)
1149		*async = false;
1150
1151	addr = gfn_to_hva(kvm, gfn);
1152	if (kvm_is_error_hva(addr)) {
1153		get_page(bad_page);
1154		return page_to_pfn(bad_page);
1155	}
1156
1157	return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1158}
1159
1160pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1161{
1162	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1163}
1164EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1165
1166pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1167		       bool write_fault, bool *writable)
1168{
1169	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1170}
1171EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1172
1173pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1174{
1175	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1176}
1177EXPORT_SYMBOL_GPL(gfn_to_pfn);
1178
1179pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1180		      bool *writable)
1181{
1182	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1183}
1184EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1185
1186pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1187			 struct kvm_memory_slot *slot, gfn_t gfn)
1188{
1189	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1190	return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1191}
1192
1193int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1194								  int nr_pages)
1195{
1196	unsigned long addr;
1197	gfn_t entry;
1198
1199	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1200	if (kvm_is_error_hva(addr))
1201		return -1;
1202
1203	if (entry < nr_pages)
1204		return 0;
1205
1206	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1207}
1208EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1209
1210struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1211{
1212	pfn_t pfn;
1213
1214	pfn = gfn_to_pfn(kvm, gfn);
1215	if (!kvm_is_mmio_pfn(pfn))
1216		return pfn_to_page(pfn);
1217
1218	WARN_ON(kvm_is_mmio_pfn(pfn));
1219
1220	get_page(bad_page);
1221	return bad_page;
1222}
1223
1224EXPORT_SYMBOL_GPL(gfn_to_page);
1225
1226void kvm_release_page_clean(struct page *page)
1227{
1228	kvm_release_pfn_clean(page_to_pfn(page));
1229}
1230EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1231
1232void kvm_release_pfn_clean(pfn_t pfn)
1233{
1234	if (!kvm_is_mmio_pfn(pfn))
1235		put_page(pfn_to_page(pfn));
1236}
1237EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1238
1239void kvm_release_page_dirty(struct page *page)
1240{
1241	kvm_release_pfn_dirty(page_to_pfn(page));
1242}
1243EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1244
1245void kvm_release_pfn_dirty(pfn_t pfn)
1246{
1247	kvm_set_pfn_dirty(pfn);
1248	kvm_release_pfn_clean(pfn);
1249}
1250EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1251
1252void kvm_set_page_dirty(struct page *page)
1253{
1254	kvm_set_pfn_dirty(page_to_pfn(page));
1255}
1256EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1257
1258void kvm_set_pfn_dirty(pfn_t pfn)
1259{
1260	if (!kvm_is_mmio_pfn(pfn)) {
1261		struct page *page = pfn_to_page(pfn);
1262		if (!PageReserved(page))
1263			SetPageDirty(page);
1264	}
1265}
1266EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1267
1268void kvm_set_pfn_accessed(pfn_t pfn)
1269{
1270	if (!kvm_is_mmio_pfn(pfn))
1271		mark_page_accessed(pfn_to_page(pfn));
1272}
1273EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1274
1275void kvm_get_pfn(pfn_t pfn)
1276{
1277	if (!kvm_is_mmio_pfn(pfn))
1278		get_page(pfn_to_page(pfn));
1279}
1280EXPORT_SYMBOL_GPL(kvm_get_pfn);
1281
1282static int next_segment(unsigned long len, int offset)
1283{
1284	if (len > PAGE_SIZE - offset)
1285		return PAGE_SIZE - offset;
1286	else
1287		return len;
1288}
1289
1290int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1291			int len)
1292{
1293	int r;
1294	unsigned long addr;
1295
1296	addr = gfn_to_hva(kvm, gfn);
1297	if (kvm_is_error_hva(addr))
1298		return -EFAULT;
1299	r = __copy_from_user(data, (void __user *)addr + offset, len);
1300	if (r)
1301		return -EFAULT;
1302	return 0;
1303}
1304EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1305
1306int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1307{
1308	gfn_t gfn = gpa >> PAGE_SHIFT;
1309	int seg;
1310	int offset = offset_in_page(gpa);
1311	int ret;
1312
1313	while ((seg = next_segment(len, offset)) != 0) {
1314		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1315		if (ret < 0)
1316			return ret;
1317		offset = 0;
1318		len -= seg;
1319		data += seg;
1320		++gfn;
1321	}
1322	return 0;
1323}
1324EXPORT_SYMBOL_GPL(kvm_read_guest);
1325
1326int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1327			  unsigned long len)
1328{
1329	int r;
1330	unsigned long addr;
1331	gfn_t gfn = gpa >> PAGE_SHIFT;
1332	int offset = offset_in_page(gpa);
1333
1334	addr = gfn_to_hva(kvm, gfn);
1335	if (kvm_is_error_hva(addr))
1336		return -EFAULT;
1337	pagefault_disable();
1338	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1339	pagefault_enable();
1340	if (r)
1341		return -EFAULT;
1342	return 0;
1343}
1344EXPORT_SYMBOL(kvm_read_guest_atomic);
1345
1346int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1347			 int offset, int len)
1348{
1349	int r;
1350	unsigned long addr;
1351
1352	addr = gfn_to_hva(kvm, gfn);
1353	if (kvm_is_error_hva(addr))
1354		return -EFAULT;
1355	r = __copy_to_user((void __user *)addr + offset, data, len);
1356	if (r)
1357		return -EFAULT;
1358	mark_page_dirty(kvm, gfn);
1359	return 0;
1360}
1361EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1362
1363int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1364		    unsigned long len)
1365{
1366	gfn_t gfn = gpa >> PAGE_SHIFT;
1367	int seg;
1368	int offset = offset_in_page(gpa);
1369	int ret;
1370
1371	while ((seg = next_segment(len, offset)) != 0) {
1372		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1373		if (ret < 0)
1374			return ret;
1375		offset = 0;
1376		len -= seg;
1377		data += seg;
1378		++gfn;
1379	}
1380	return 0;
1381}
1382
1383int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1384			      gpa_t gpa)
1385{
1386	struct kvm_memslots *slots = kvm_memslots(kvm);
1387	int offset = offset_in_page(gpa);
1388	gfn_t gfn = gpa >> PAGE_SHIFT;
1389
1390	ghc->gpa = gpa;
1391	ghc->generation = slots->generation;
1392	ghc->memslot = gfn_to_memslot(kvm, gfn);
1393	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1394	if (!kvm_is_error_hva(ghc->hva))
1395		ghc->hva += offset;
1396	else
1397		return -EFAULT;
1398
1399	return 0;
1400}
1401EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1402
1403int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1404			   void *data, unsigned long len)
1405{
1406	struct kvm_memslots *slots = kvm_memslots(kvm);
1407	int r;
1408
1409	if (slots->generation != ghc->generation)
1410		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1411
1412	if (kvm_is_error_hva(ghc->hva))
1413		return -EFAULT;
1414
1415	r = __copy_to_user((void __user *)ghc->hva, data, len);
1416	if (r)
1417		return -EFAULT;
1418	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1419
1420	return 0;
1421}
1422EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1423
1424int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1425			   void *data, unsigned long len)
1426{
1427	struct kvm_memslots *slots = kvm_memslots(kvm);
1428	int r;
1429
1430	if (slots->generation != ghc->generation)
1431		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1432
1433	if (kvm_is_error_hva(ghc->hva))
1434		return -EFAULT;
1435
1436	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1437	if (r)
1438		return -EFAULT;
1439
1440	return 0;
1441}
1442EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1443
1444int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1445{
1446	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1447				    offset, len);
1448}
1449EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1450
1451int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1452{
1453	gfn_t gfn = gpa >> PAGE_SHIFT;
1454	int seg;
1455	int offset = offset_in_page(gpa);
1456	int ret;
1457
1458        while ((seg = next_segment(len, offset)) != 0) {
1459		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1460		if (ret < 0)
1461			return ret;
1462		offset = 0;
1463		len -= seg;
1464		++gfn;
1465	}
1466	return 0;
1467}
1468EXPORT_SYMBOL_GPL(kvm_clear_guest);
1469
1470void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1471			     gfn_t gfn)
1472{
1473	if (memslot && memslot->dirty_bitmap) {
1474		unsigned long rel_gfn = gfn - memslot->base_gfn;
1475
1476		/* TODO: introduce set_bit_le() and use it */
1477		test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap);
1478	}
1479}
1480
1481void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1482{
1483	struct kvm_memory_slot *memslot;
1484
1485	memslot = gfn_to_memslot(kvm, gfn);
1486	mark_page_dirty_in_slot(kvm, memslot, gfn);
1487}
1488
1489/*
1490 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1491 */
1492void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1493{
1494	DEFINE_WAIT(wait);
1495
1496	for (;;) {
1497		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1498
1499		if (kvm_arch_vcpu_runnable(vcpu)) {
1500			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1501			break;
1502		}
1503		if (kvm_cpu_has_pending_timer(vcpu))
1504			break;
1505		if (signal_pending(current))
1506			break;
1507
1508		schedule();
1509	}
1510
1511	finish_wait(&vcpu->wq, &wait);
1512}
1513
1514#ifndef CONFIG_S390
1515/*
1516 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1517 */
1518void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1519{
1520	int me;
1521	int cpu = vcpu->cpu;
1522	wait_queue_head_t *wqp;
1523
1524	wqp = kvm_arch_vcpu_wq(vcpu);
1525	if (waitqueue_active(wqp)) {
1526		wake_up_interruptible(wqp);
1527		++vcpu->stat.halt_wakeup;
1528	}
1529
1530	me = get_cpu();
1531	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1532		if (kvm_arch_vcpu_should_kick(vcpu))
1533			smp_send_reschedule(cpu);
1534	put_cpu();
1535}
1536#endif /* !CONFIG_S390 */
1537
1538void kvm_resched(struct kvm_vcpu *vcpu)
1539{
1540	if (!need_resched())
1541		return;
1542	cond_resched();
1543}
1544EXPORT_SYMBOL_GPL(kvm_resched);
1545
1546bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1547{
1548	struct pid *pid;
1549	struct task_struct *task = NULL;
1550
1551	rcu_read_lock();
1552	pid = rcu_dereference(target->pid);
1553	if (pid)
1554		task = get_pid_task(target->pid, PIDTYPE_PID);
1555	rcu_read_unlock();
1556	if (!task)
1557		return false;
1558	if (task->flags & PF_VCPU) {
1559		put_task_struct(task);
1560		return false;
1561	}
1562	if (yield_to(task, 1)) {
1563		put_task_struct(task);
1564		return true;
1565	}
1566	put_task_struct(task);
1567	return false;
1568}
1569EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1570
1571void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1572{
1573	struct kvm *kvm = me->kvm;
1574	struct kvm_vcpu *vcpu;
1575	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1576	int yielded = 0;
1577	int pass;
1578	int i;
1579
1580	/*
1581	 * We boost the priority of a VCPU that is runnable but not
1582	 * currently running, because it got preempted by something
1583	 * else and called schedule in __vcpu_run.  Hopefully that
1584	 * VCPU is holding the lock that we need and will release it.
1585	 * We approximate round-robin by starting at the last boosted VCPU.
1586	 */
1587	for (pass = 0; pass < 2 && !yielded; pass++) {
1588		kvm_for_each_vcpu(i, vcpu, kvm) {
 
 
1589			if (!pass && i < last_boosted_vcpu) {
1590				i = last_boosted_vcpu;
1591				continue;
1592			} else if (pass && i > last_boosted_vcpu)
1593				break;
1594			if (vcpu == me)
1595				continue;
1596			if (waitqueue_active(&vcpu->wq))
1597				continue;
1598			if (kvm_vcpu_yield_to(vcpu)) {
 
 
 
 
 
 
 
 
 
 
 
 
1599				kvm->last_boosted_vcpu = i;
1600				yielded = 1;
1601				break;
1602			}
 
1603		}
1604	}
1605}
1606EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1607
1608static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1609{
1610	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1611	struct page *page;
1612
1613	if (vmf->pgoff == 0)
1614		page = virt_to_page(vcpu->run);
1615#ifdef CONFIG_X86
1616	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1617		page = virt_to_page(vcpu->arch.pio_data);
1618#endif
1619#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1620	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1621		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1622#endif
1623	else
1624		return kvm_arch_vcpu_fault(vcpu, vmf);
1625	get_page(page);
1626	vmf->page = page;
1627	return 0;
1628}
1629
1630static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1631	.fault = kvm_vcpu_fault,
1632};
1633
1634static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1635{
1636	vma->vm_ops = &kvm_vcpu_vm_ops;
1637	return 0;
1638}
1639
1640static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1641{
1642	struct kvm_vcpu *vcpu = filp->private_data;
1643
1644	kvm_put_kvm(vcpu->kvm);
1645	return 0;
1646}
1647
1648static struct file_operations kvm_vcpu_fops = {
1649	.release        = kvm_vcpu_release,
1650	.unlocked_ioctl = kvm_vcpu_ioctl,
1651#ifdef CONFIG_COMPAT
1652	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1653#endif
1654	.mmap           = kvm_vcpu_mmap,
1655	.llseek		= noop_llseek,
1656};
1657
1658/*
1659 * Allocates an inode for the vcpu.
1660 */
1661static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1662{
1663	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1664}
1665
1666/*
1667 * Creates some virtual cpus.  Good luck creating more than one.
1668 */
1669static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1670{
1671	int r;
1672	struct kvm_vcpu *vcpu, *v;
1673
1674	vcpu = kvm_arch_vcpu_create(kvm, id);
1675	if (IS_ERR(vcpu))
1676		return PTR_ERR(vcpu);
1677
1678	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1679
1680	r = kvm_arch_vcpu_setup(vcpu);
1681	if (r)
1682		goto vcpu_destroy;
1683
1684	mutex_lock(&kvm->lock);
1685	if (!kvm_vcpu_compatible(vcpu)) {
1686		r = -EINVAL;
1687		goto unlock_vcpu_destroy;
1688	}
1689	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1690		r = -EINVAL;
1691		goto unlock_vcpu_destroy;
1692	}
1693
1694	kvm_for_each_vcpu(r, v, kvm)
1695		if (v->vcpu_id == id) {
1696			r = -EEXIST;
1697			goto unlock_vcpu_destroy;
1698		}
1699
1700	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1701
1702	/* Now it's all set up, let userspace reach it */
1703	kvm_get_kvm(kvm);
1704	r = create_vcpu_fd(vcpu);
1705	if (r < 0) {
1706		kvm_put_kvm(kvm);
1707		goto unlock_vcpu_destroy;
1708	}
1709
1710	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1711	smp_wmb();
1712	atomic_inc(&kvm->online_vcpus);
1713
 
 
 
 
1714	mutex_unlock(&kvm->lock);
1715	return r;
1716
1717unlock_vcpu_destroy:
1718	mutex_unlock(&kvm->lock);
1719vcpu_destroy:
1720	kvm_arch_vcpu_destroy(vcpu);
1721	return r;
1722}
1723
1724static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1725{
1726	if (sigset) {
1727		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1728		vcpu->sigset_active = 1;
1729		vcpu->sigset = *sigset;
1730	} else
1731		vcpu->sigset_active = 0;
1732	return 0;
1733}
1734
1735static long kvm_vcpu_ioctl(struct file *filp,
1736			   unsigned int ioctl, unsigned long arg)
1737{
1738	struct kvm_vcpu *vcpu = filp->private_data;
1739	void __user *argp = (void __user *)arg;
1740	int r;
1741	struct kvm_fpu *fpu = NULL;
1742	struct kvm_sregs *kvm_sregs = NULL;
1743
1744	if (vcpu->kvm->mm != current->mm)
1745		return -EIO;
1746
1747#if defined(CONFIG_S390) || defined(CONFIG_PPC)
1748	/*
1749	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1750	 * so vcpu_load() would break it.
1751	 */
1752	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1753		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1754#endif
1755
1756
1757	vcpu_load(vcpu);
1758	switch (ioctl) {
1759	case KVM_RUN:
1760		r = -EINVAL;
1761		if (arg)
1762			goto out;
1763		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1764		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1765		break;
1766	case KVM_GET_REGS: {
1767		struct kvm_regs *kvm_regs;
1768
1769		r = -ENOMEM;
1770		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1771		if (!kvm_regs)
1772			goto out;
1773		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1774		if (r)
1775			goto out_free1;
1776		r = -EFAULT;
1777		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1778			goto out_free1;
1779		r = 0;
1780out_free1:
1781		kfree(kvm_regs);
1782		break;
1783	}
1784	case KVM_SET_REGS: {
1785		struct kvm_regs *kvm_regs;
1786
1787		r = -ENOMEM;
1788		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1789		if (IS_ERR(kvm_regs)) {
1790			r = PTR_ERR(kvm_regs);
1791			goto out;
1792		}
 
 
1793		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1794		if (r)
1795			goto out_free2;
1796		r = 0;
1797out_free2:
1798		kfree(kvm_regs);
1799		break;
1800	}
1801	case KVM_GET_SREGS: {
1802		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1803		r = -ENOMEM;
1804		if (!kvm_sregs)
1805			goto out;
1806		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1807		if (r)
1808			goto out;
1809		r = -EFAULT;
1810		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1811			goto out;
1812		r = 0;
1813		break;
1814	}
1815	case KVM_SET_SREGS: {
1816		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1817		if (IS_ERR(kvm_sregs)) {
1818			r = PTR_ERR(kvm_sregs);
 
 
 
1819			goto out;
1820		}
1821		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1822		if (r)
1823			goto out;
1824		r = 0;
1825		break;
1826	}
1827	case KVM_GET_MP_STATE: {
1828		struct kvm_mp_state mp_state;
1829
1830		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1831		if (r)
1832			goto out;
1833		r = -EFAULT;
1834		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1835			goto out;
1836		r = 0;
1837		break;
1838	}
1839	case KVM_SET_MP_STATE: {
1840		struct kvm_mp_state mp_state;
1841
1842		r = -EFAULT;
1843		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1844			goto out;
1845		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1846		if (r)
1847			goto out;
1848		r = 0;
1849		break;
1850	}
1851	case KVM_TRANSLATE: {
1852		struct kvm_translation tr;
1853
1854		r = -EFAULT;
1855		if (copy_from_user(&tr, argp, sizeof tr))
1856			goto out;
1857		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1858		if (r)
1859			goto out;
1860		r = -EFAULT;
1861		if (copy_to_user(argp, &tr, sizeof tr))
1862			goto out;
1863		r = 0;
1864		break;
1865	}
1866	case KVM_SET_GUEST_DEBUG: {
1867		struct kvm_guest_debug dbg;
1868
1869		r = -EFAULT;
1870		if (copy_from_user(&dbg, argp, sizeof dbg))
1871			goto out;
1872		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1873		if (r)
1874			goto out;
1875		r = 0;
1876		break;
1877	}
1878	case KVM_SET_SIGNAL_MASK: {
1879		struct kvm_signal_mask __user *sigmask_arg = argp;
1880		struct kvm_signal_mask kvm_sigmask;
1881		sigset_t sigset, *p;
1882
1883		p = NULL;
1884		if (argp) {
1885			r = -EFAULT;
1886			if (copy_from_user(&kvm_sigmask, argp,
1887					   sizeof kvm_sigmask))
1888				goto out;
1889			r = -EINVAL;
1890			if (kvm_sigmask.len != sizeof sigset)
1891				goto out;
1892			r = -EFAULT;
1893			if (copy_from_user(&sigset, sigmask_arg->sigset,
1894					   sizeof sigset))
1895				goto out;
1896			p = &sigset;
1897		}
1898		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1899		break;
1900	}
1901	case KVM_GET_FPU: {
1902		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1903		r = -ENOMEM;
1904		if (!fpu)
1905			goto out;
1906		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1907		if (r)
1908			goto out;
1909		r = -EFAULT;
1910		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1911			goto out;
1912		r = 0;
1913		break;
1914	}
1915	case KVM_SET_FPU: {
1916		fpu = memdup_user(argp, sizeof(*fpu));
1917		if (IS_ERR(fpu)) {
1918			r = PTR_ERR(fpu);
 
 
 
1919			goto out;
1920		}
1921		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1922		if (r)
1923			goto out;
1924		r = 0;
1925		break;
1926	}
1927	default:
1928		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1929	}
1930out:
1931	vcpu_put(vcpu);
1932	kfree(fpu);
1933	kfree(kvm_sregs);
1934	return r;
1935}
1936
1937#ifdef CONFIG_COMPAT
1938static long kvm_vcpu_compat_ioctl(struct file *filp,
1939				  unsigned int ioctl, unsigned long arg)
1940{
1941	struct kvm_vcpu *vcpu = filp->private_data;
1942	void __user *argp = compat_ptr(arg);
1943	int r;
1944
1945	if (vcpu->kvm->mm != current->mm)
1946		return -EIO;
1947
1948	switch (ioctl) {
1949	case KVM_SET_SIGNAL_MASK: {
1950		struct kvm_signal_mask __user *sigmask_arg = argp;
1951		struct kvm_signal_mask kvm_sigmask;
1952		compat_sigset_t csigset;
1953		sigset_t sigset;
1954
1955		if (argp) {
1956			r = -EFAULT;
1957			if (copy_from_user(&kvm_sigmask, argp,
1958					   sizeof kvm_sigmask))
1959				goto out;
1960			r = -EINVAL;
1961			if (kvm_sigmask.len != sizeof csigset)
1962				goto out;
1963			r = -EFAULT;
1964			if (copy_from_user(&csigset, sigmask_arg->sigset,
1965					   sizeof csigset))
1966				goto out;
1967		}
1968		sigset_from_compat(&sigset, &csigset);
1969		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1970		break;
1971	}
1972	default:
1973		r = kvm_vcpu_ioctl(filp, ioctl, arg);
1974	}
1975
1976out:
1977	return r;
1978}
1979#endif
1980
1981static long kvm_vm_ioctl(struct file *filp,
1982			   unsigned int ioctl, unsigned long arg)
1983{
1984	struct kvm *kvm = filp->private_data;
1985	void __user *argp = (void __user *)arg;
1986	int r;
1987
1988	if (kvm->mm != current->mm)
1989		return -EIO;
1990	switch (ioctl) {
1991	case KVM_CREATE_VCPU:
1992		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1993		if (r < 0)
1994			goto out;
1995		break;
1996	case KVM_SET_USER_MEMORY_REGION: {
1997		struct kvm_userspace_memory_region kvm_userspace_mem;
1998
1999		r = -EFAULT;
2000		if (copy_from_user(&kvm_userspace_mem, argp,
2001						sizeof kvm_userspace_mem))
2002			goto out;
2003
2004		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2005		if (r)
2006			goto out;
2007		break;
2008	}
2009	case KVM_GET_DIRTY_LOG: {
2010		struct kvm_dirty_log log;
2011
2012		r = -EFAULT;
2013		if (copy_from_user(&log, argp, sizeof log))
2014			goto out;
2015		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2016		if (r)
2017			goto out;
2018		break;
2019	}
2020#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2021	case KVM_REGISTER_COALESCED_MMIO: {
2022		struct kvm_coalesced_mmio_zone zone;
2023		r = -EFAULT;
2024		if (copy_from_user(&zone, argp, sizeof zone))
2025			goto out;
2026		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2027		if (r)
2028			goto out;
2029		r = 0;
2030		break;
2031	}
2032	case KVM_UNREGISTER_COALESCED_MMIO: {
2033		struct kvm_coalesced_mmio_zone zone;
2034		r = -EFAULT;
2035		if (copy_from_user(&zone, argp, sizeof zone))
2036			goto out;
2037		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2038		if (r)
2039			goto out;
2040		r = 0;
2041		break;
2042	}
2043#endif
2044	case KVM_IRQFD: {
2045		struct kvm_irqfd data;
2046
2047		r = -EFAULT;
2048		if (copy_from_user(&data, argp, sizeof data))
2049			goto out;
2050		r = kvm_irqfd(kvm, &data);
2051		break;
2052	}
2053	case KVM_IOEVENTFD: {
2054		struct kvm_ioeventfd data;
2055
2056		r = -EFAULT;
2057		if (copy_from_user(&data, argp, sizeof data))
2058			goto out;
2059		r = kvm_ioeventfd(kvm, &data);
2060		break;
2061	}
2062#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2063	case KVM_SET_BOOT_CPU_ID:
2064		r = 0;
2065		mutex_lock(&kvm->lock);
2066		if (atomic_read(&kvm->online_vcpus) != 0)
2067			r = -EBUSY;
2068		else
2069			kvm->bsp_vcpu_id = arg;
2070		mutex_unlock(&kvm->lock);
2071		break;
2072#endif
2073#ifdef CONFIG_HAVE_KVM_MSI
2074	case KVM_SIGNAL_MSI: {
2075		struct kvm_msi msi;
2076
2077		r = -EFAULT;
2078		if (copy_from_user(&msi, argp, sizeof msi))
2079			goto out;
2080		r = kvm_send_userspace_msi(kvm, &msi);
2081		break;
2082	}
2083#endif
2084	default:
2085		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2086		if (r == -ENOTTY)
2087			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2088	}
2089out:
2090	return r;
2091}
2092
2093#ifdef CONFIG_COMPAT
2094struct compat_kvm_dirty_log {
2095	__u32 slot;
2096	__u32 padding1;
2097	union {
2098		compat_uptr_t dirty_bitmap; /* one bit per page */
2099		__u64 padding2;
2100	};
2101};
2102
2103static long kvm_vm_compat_ioctl(struct file *filp,
2104			   unsigned int ioctl, unsigned long arg)
2105{
2106	struct kvm *kvm = filp->private_data;
2107	int r;
2108
2109	if (kvm->mm != current->mm)
2110		return -EIO;
2111	switch (ioctl) {
2112	case KVM_GET_DIRTY_LOG: {
2113		struct compat_kvm_dirty_log compat_log;
2114		struct kvm_dirty_log log;
2115
2116		r = -EFAULT;
2117		if (copy_from_user(&compat_log, (void __user *)arg,
2118				   sizeof(compat_log)))
2119			goto out;
2120		log.slot	 = compat_log.slot;
2121		log.padding1	 = compat_log.padding1;
2122		log.padding2	 = compat_log.padding2;
2123		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2124
2125		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2126		if (r)
2127			goto out;
2128		break;
2129	}
2130	default:
2131		r = kvm_vm_ioctl(filp, ioctl, arg);
2132	}
2133
2134out:
2135	return r;
2136}
2137#endif
2138
2139static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2140{
2141	struct page *page[1];
2142	unsigned long addr;
2143	int npages;
2144	gfn_t gfn = vmf->pgoff;
2145	struct kvm *kvm = vma->vm_file->private_data;
2146
2147	addr = gfn_to_hva(kvm, gfn);
2148	if (kvm_is_error_hva(addr))
2149		return VM_FAULT_SIGBUS;
2150
2151	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2152				NULL);
2153	if (unlikely(npages != 1))
2154		return VM_FAULT_SIGBUS;
2155
2156	vmf->page = page[0];
2157	return 0;
2158}
2159
2160static const struct vm_operations_struct kvm_vm_vm_ops = {
2161	.fault = kvm_vm_fault,
2162};
2163
2164static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2165{
2166	vma->vm_ops = &kvm_vm_vm_ops;
2167	return 0;
2168}
2169
2170static struct file_operations kvm_vm_fops = {
2171	.release        = kvm_vm_release,
2172	.unlocked_ioctl = kvm_vm_ioctl,
2173#ifdef CONFIG_COMPAT
2174	.compat_ioctl   = kvm_vm_compat_ioctl,
2175#endif
2176	.mmap           = kvm_vm_mmap,
2177	.llseek		= noop_llseek,
2178};
2179
2180static int kvm_dev_ioctl_create_vm(unsigned long type)
2181{
2182	int r;
2183	struct kvm *kvm;
2184
2185	kvm = kvm_create_vm(type);
2186	if (IS_ERR(kvm))
2187		return PTR_ERR(kvm);
2188#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2189	r = kvm_coalesced_mmio_init(kvm);
2190	if (r < 0) {
2191		kvm_put_kvm(kvm);
2192		return r;
2193	}
2194#endif
2195	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2196	if (r < 0)
2197		kvm_put_kvm(kvm);
2198
2199	return r;
2200}
2201
2202static long kvm_dev_ioctl_check_extension_generic(long arg)
2203{
2204	switch (arg) {
2205	case KVM_CAP_USER_MEMORY:
2206	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2207	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2208#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2209	case KVM_CAP_SET_BOOT_CPU_ID:
2210#endif
2211	case KVM_CAP_INTERNAL_ERROR_DATA:
2212#ifdef CONFIG_HAVE_KVM_MSI
2213	case KVM_CAP_SIGNAL_MSI:
2214#endif
2215		return 1;
2216#ifdef CONFIG_HAVE_KVM_IRQCHIP
2217	case KVM_CAP_IRQ_ROUTING:
2218		return KVM_MAX_IRQ_ROUTES;
2219#endif
2220	default:
2221		break;
2222	}
2223	return kvm_dev_ioctl_check_extension(arg);
2224}
2225
2226static long kvm_dev_ioctl(struct file *filp,
2227			  unsigned int ioctl, unsigned long arg)
2228{
2229	long r = -EINVAL;
2230
2231	switch (ioctl) {
2232	case KVM_GET_API_VERSION:
2233		r = -EINVAL;
2234		if (arg)
2235			goto out;
2236		r = KVM_API_VERSION;
2237		break;
2238	case KVM_CREATE_VM:
2239		r = kvm_dev_ioctl_create_vm(arg);
 
 
 
2240		break;
2241	case KVM_CHECK_EXTENSION:
2242		r = kvm_dev_ioctl_check_extension_generic(arg);
2243		break;
2244	case KVM_GET_VCPU_MMAP_SIZE:
2245		r = -EINVAL;
2246		if (arg)
2247			goto out;
2248		r = PAGE_SIZE;     /* struct kvm_run */
2249#ifdef CONFIG_X86
2250		r += PAGE_SIZE;    /* pio data page */
2251#endif
2252#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2253		r += PAGE_SIZE;    /* coalesced mmio ring page */
2254#endif
2255		break;
2256	case KVM_TRACE_ENABLE:
2257	case KVM_TRACE_PAUSE:
2258	case KVM_TRACE_DISABLE:
2259		r = -EOPNOTSUPP;
2260		break;
2261	default:
2262		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2263	}
2264out:
2265	return r;
2266}
2267
2268static struct file_operations kvm_chardev_ops = {
2269	.unlocked_ioctl = kvm_dev_ioctl,
2270	.compat_ioctl   = kvm_dev_ioctl,
2271	.llseek		= noop_llseek,
2272};
2273
2274static struct miscdevice kvm_dev = {
2275	KVM_MINOR,
2276	"kvm",
2277	&kvm_chardev_ops,
2278};
2279
2280static void hardware_enable_nolock(void *junk)
2281{
2282	int cpu = raw_smp_processor_id();
2283	int r;
2284
2285	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2286		return;
2287
2288	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2289
2290	r = kvm_arch_hardware_enable(NULL);
2291
2292	if (r) {
2293		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2294		atomic_inc(&hardware_enable_failed);
2295		printk(KERN_INFO "kvm: enabling virtualization on "
2296				 "CPU%d failed\n", cpu);
2297	}
2298}
2299
2300static void hardware_enable(void *junk)
2301{
2302	raw_spin_lock(&kvm_lock);
2303	hardware_enable_nolock(junk);
2304	raw_spin_unlock(&kvm_lock);
2305}
2306
2307static void hardware_disable_nolock(void *junk)
2308{
2309	int cpu = raw_smp_processor_id();
2310
2311	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2312		return;
2313	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2314	kvm_arch_hardware_disable(NULL);
2315}
2316
2317static void hardware_disable(void *junk)
2318{
2319	raw_spin_lock(&kvm_lock);
2320	hardware_disable_nolock(junk);
2321	raw_spin_unlock(&kvm_lock);
2322}
2323
2324static void hardware_disable_all_nolock(void)
2325{
2326	BUG_ON(!kvm_usage_count);
2327
2328	kvm_usage_count--;
2329	if (!kvm_usage_count)
2330		on_each_cpu(hardware_disable_nolock, NULL, 1);
2331}
2332
2333static void hardware_disable_all(void)
2334{
2335	raw_spin_lock(&kvm_lock);
2336	hardware_disable_all_nolock();
2337	raw_spin_unlock(&kvm_lock);
2338}
2339
2340static int hardware_enable_all(void)
2341{
2342	int r = 0;
2343
2344	raw_spin_lock(&kvm_lock);
2345
2346	kvm_usage_count++;
2347	if (kvm_usage_count == 1) {
2348		atomic_set(&hardware_enable_failed, 0);
2349		on_each_cpu(hardware_enable_nolock, NULL, 1);
2350
2351		if (atomic_read(&hardware_enable_failed)) {
2352			hardware_disable_all_nolock();
2353			r = -EBUSY;
2354		}
2355	}
2356
2357	raw_spin_unlock(&kvm_lock);
2358
2359	return r;
2360}
2361
2362static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2363			   void *v)
2364{
2365	int cpu = (long)v;
2366
2367	if (!kvm_usage_count)
2368		return NOTIFY_OK;
2369
2370	val &= ~CPU_TASKS_FROZEN;
2371	switch (val) {
2372	case CPU_DYING:
2373		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2374		       cpu);
2375		hardware_disable(NULL);
2376		break;
2377	case CPU_STARTING:
2378		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2379		       cpu);
2380		hardware_enable(NULL);
2381		break;
2382	}
2383	return NOTIFY_OK;
2384}
2385
2386
2387asmlinkage void kvm_spurious_fault(void)
2388{
2389	/* Fault while not rebooting.  We want the trace. */
2390	BUG();
2391}
2392EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2393
2394static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2395		      void *v)
2396{
2397	/*
2398	 * Some (well, at least mine) BIOSes hang on reboot if
2399	 * in vmx root mode.
2400	 *
2401	 * And Intel TXT required VMX off for all cpu when system shutdown.
2402	 */
2403	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2404	kvm_rebooting = true;
2405	on_each_cpu(hardware_disable_nolock, NULL, 1);
2406	return NOTIFY_OK;
2407}
2408
2409static struct notifier_block kvm_reboot_notifier = {
2410	.notifier_call = kvm_reboot,
2411	.priority = 0,
2412};
2413
2414static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2415{
2416	int i;
2417
2418	for (i = 0; i < bus->dev_count; i++) {
2419		struct kvm_io_device *pos = bus->range[i].dev;
2420
2421		kvm_iodevice_destructor(pos);
2422	}
2423	kfree(bus);
2424}
2425
2426int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2427{
2428	const struct kvm_io_range *r1 = p1;
2429	const struct kvm_io_range *r2 = p2;
2430
2431	if (r1->addr < r2->addr)
2432		return -1;
2433	if (r1->addr + r1->len > r2->addr + r2->len)
2434		return 1;
2435	return 0;
2436}
2437
2438int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2439			  gpa_t addr, int len)
2440{
2441	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2442		.addr = addr,
2443		.len = len,
2444		.dev = dev,
2445	};
2446
2447	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2448		kvm_io_bus_sort_cmp, NULL);
2449
2450	return 0;
2451}
2452
2453int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2454			     gpa_t addr, int len)
2455{
2456	struct kvm_io_range *range, key;
2457	int off;
2458
2459	key = (struct kvm_io_range) {
2460		.addr = addr,
2461		.len = len,
2462	};
2463
2464	range = bsearch(&key, bus->range, bus->dev_count,
2465			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2466	if (range == NULL)
2467		return -ENOENT;
2468
2469	off = range - bus->range;
2470
2471	while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2472		off--;
2473
2474	return off;
2475}
2476
2477/* kvm_io_bus_write - called under kvm->slots_lock */
2478int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2479		     int len, const void *val)
2480{
2481	int idx;
2482	struct kvm_io_bus *bus;
2483	struct kvm_io_range range;
2484
2485	range = (struct kvm_io_range) {
2486		.addr = addr,
2487		.len = len,
2488	};
2489
2490	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2491	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2492	if (idx < 0)
2493		return -EOPNOTSUPP;
2494
2495	while (idx < bus->dev_count &&
2496		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2497		if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2498			return 0;
2499		idx++;
2500	}
2501
2502	return -EOPNOTSUPP;
2503}
2504
2505/* kvm_io_bus_read - called under kvm->slots_lock */
2506int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2507		    int len, void *val)
2508{
2509	int idx;
2510	struct kvm_io_bus *bus;
2511	struct kvm_io_range range;
2512
2513	range = (struct kvm_io_range) {
2514		.addr = addr,
2515		.len = len,
2516	};
2517
2518	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2519	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2520	if (idx < 0)
2521		return -EOPNOTSUPP;
2522
2523	while (idx < bus->dev_count &&
2524		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2525		if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2526			return 0;
2527		idx++;
2528	}
2529
2530	return -EOPNOTSUPP;
2531}
2532
2533/* Caller must hold slots_lock. */
2534int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2535			    int len, struct kvm_io_device *dev)
2536{
2537	struct kvm_io_bus *new_bus, *bus;
2538
2539	bus = kvm->buses[bus_idx];
2540	if (bus->dev_count > NR_IOBUS_DEVS - 1)
2541		return -ENOSPC;
2542
2543	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2544			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2545	if (!new_bus)
2546		return -ENOMEM;
2547	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2548	       sizeof(struct kvm_io_range)));
2549	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2550	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2551	synchronize_srcu_expedited(&kvm->srcu);
2552	kfree(bus);
2553
2554	return 0;
2555}
2556
2557/* Caller must hold slots_lock. */
2558int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2559			      struct kvm_io_device *dev)
2560{
2561	int i, r;
2562	struct kvm_io_bus *new_bus, *bus;
2563
 
 
 
 
2564	bus = kvm->buses[bus_idx];
 
 
2565	r = -ENOENT;
2566	for (i = 0; i < bus->dev_count; i++)
2567		if (bus->range[i].dev == dev) {
2568			r = 0;
 
2569			break;
2570		}
2571
2572	if (r)
 
2573		return r;
2574
2575	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2576			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2577	if (!new_bus)
2578		return -ENOMEM;
2579
2580	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2581	new_bus->dev_count--;
2582	memcpy(new_bus->range + i, bus->range + i + 1,
2583	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2584
2585	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2586	synchronize_srcu_expedited(&kvm->srcu);
2587	kfree(bus);
2588	return r;
2589}
2590
2591static struct notifier_block kvm_cpu_notifier = {
2592	.notifier_call = kvm_cpu_hotplug,
2593};
2594
2595static int vm_stat_get(void *_offset, u64 *val)
2596{
2597	unsigned offset = (long)_offset;
2598	struct kvm *kvm;
2599
2600	*val = 0;
2601	raw_spin_lock(&kvm_lock);
2602	list_for_each_entry(kvm, &vm_list, vm_list)
2603		*val += *(u32 *)((void *)kvm + offset);
2604	raw_spin_unlock(&kvm_lock);
2605	return 0;
2606}
2607
2608DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2609
2610static int vcpu_stat_get(void *_offset, u64 *val)
2611{
2612	unsigned offset = (long)_offset;
2613	struct kvm *kvm;
2614	struct kvm_vcpu *vcpu;
2615	int i;
2616
2617	*val = 0;
2618	raw_spin_lock(&kvm_lock);
2619	list_for_each_entry(kvm, &vm_list, vm_list)
2620		kvm_for_each_vcpu(i, vcpu, kvm)
2621			*val += *(u32 *)((void *)vcpu + offset);
2622
2623	raw_spin_unlock(&kvm_lock);
2624	return 0;
2625}
2626
2627DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2628
2629static const struct file_operations *stat_fops[] = {
2630	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2631	[KVM_STAT_VM]   = &vm_stat_fops,
2632};
2633
2634static int kvm_init_debug(void)
2635{
2636	int r = -EFAULT;
2637	struct kvm_stats_debugfs_item *p;
2638
2639	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2640	if (kvm_debugfs_dir == NULL)
2641		goto out;
2642
2643	for (p = debugfs_entries; p->name; ++p) {
2644		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2645						(void *)(long)p->offset,
2646						stat_fops[p->kind]);
2647		if (p->dentry == NULL)
2648			goto out_dir;
2649	}
2650
2651	return 0;
2652
2653out_dir:
2654	debugfs_remove_recursive(kvm_debugfs_dir);
2655out:
2656	return r;
2657}
2658
2659static void kvm_exit_debug(void)
2660{
2661	struct kvm_stats_debugfs_item *p;
2662
2663	for (p = debugfs_entries; p->name; ++p)
2664		debugfs_remove(p->dentry);
2665	debugfs_remove(kvm_debugfs_dir);
2666}
2667
2668static int kvm_suspend(void)
2669{
2670	if (kvm_usage_count)
2671		hardware_disable_nolock(NULL);
2672	return 0;
2673}
2674
2675static void kvm_resume(void)
2676{
2677	if (kvm_usage_count) {
2678		WARN_ON(raw_spin_is_locked(&kvm_lock));
2679		hardware_enable_nolock(NULL);
2680	}
2681}
2682
2683static struct syscore_ops kvm_syscore_ops = {
2684	.suspend = kvm_suspend,
2685	.resume = kvm_resume,
2686};
2687
2688struct page *bad_page;
2689pfn_t bad_pfn;
2690
2691static inline
2692struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2693{
2694	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2695}
2696
2697static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2698{
2699	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2700
2701	kvm_arch_vcpu_load(vcpu, cpu);
2702}
2703
2704static void kvm_sched_out(struct preempt_notifier *pn,
2705			  struct task_struct *next)
2706{
2707	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2708
2709	kvm_arch_vcpu_put(vcpu);
2710}
2711
2712int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2713		  struct module *module)
2714{
2715	int r;
2716	int cpu;
2717
2718	r = kvm_arch_init(opaque);
2719	if (r)
2720		goto out_fail;
2721
2722	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2723
2724	if (bad_page == NULL) {
2725		r = -ENOMEM;
2726		goto out;
2727	}
2728
2729	bad_pfn = page_to_pfn(bad_page);
2730
2731	hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2732
2733	if (hwpoison_page == NULL) {
2734		r = -ENOMEM;
2735		goto out_free_0;
2736	}
2737
2738	hwpoison_pfn = page_to_pfn(hwpoison_page);
2739
2740	fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2741
2742	if (fault_page == NULL) {
2743		r = -ENOMEM;
2744		goto out_free_0;
2745	}
2746
2747	fault_pfn = page_to_pfn(fault_page);
2748
2749	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2750		r = -ENOMEM;
2751		goto out_free_0;
2752	}
2753
2754	r = kvm_arch_hardware_setup();
2755	if (r < 0)
2756		goto out_free_0a;
2757
2758	for_each_online_cpu(cpu) {
2759		smp_call_function_single(cpu,
2760				kvm_arch_check_processor_compat,
2761				&r, 1);
2762		if (r < 0)
2763			goto out_free_1;
2764	}
2765
2766	r = register_cpu_notifier(&kvm_cpu_notifier);
2767	if (r)
2768		goto out_free_2;
2769	register_reboot_notifier(&kvm_reboot_notifier);
2770
2771	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2772	if (!vcpu_align)
2773		vcpu_align = __alignof__(struct kvm_vcpu);
2774	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2775					   0, NULL);
2776	if (!kvm_vcpu_cache) {
2777		r = -ENOMEM;
2778		goto out_free_3;
2779	}
2780
2781	r = kvm_async_pf_init();
2782	if (r)
2783		goto out_free;
2784
2785	kvm_chardev_ops.owner = module;
2786	kvm_vm_fops.owner = module;
2787	kvm_vcpu_fops.owner = module;
2788
2789	r = misc_register(&kvm_dev);
2790	if (r) {
2791		printk(KERN_ERR "kvm: misc device register failed\n");
2792		goto out_unreg;
2793	}
2794
2795	register_syscore_ops(&kvm_syscore_ops);
2796
2797	kvm_preempt_ops.sched_in = kvm_sched_in;
2798	kvm_preempt_ops.sched_out = kvm_sched_out;
2799
2800	r = kvm_init_debug();
2801	if (r) {
2802		printk(KERN_ERR "kvm: create debugfs files failed\n");
2803		goto out_undebugfs;
2804	}
2805
2806	return 0;
2807
2808out_undebugfs:
2809	unregister_syscore_ops(&kvm_syscore_ops);
2810out_unreg:
2811	kvm_async_pf_deinit();
2812out_free:
2813	kmem_cache_destroy(kvm_vcpu_cache);
2814out_free_3:
2815	unregister_reboot_notifier(&kvm_reboot_notifier);
2816	unregister_cpu_notifier(&kvm_cpu_notifier);
2817out_free_2:
2818out_free_1:
2819	kvm_arch_hardware_unsetup();
2820out_free_0a:
2821	free_cpumask_var(cpus_hardware_enabled);
2822out_free_0:
2823	if (fault_page)
2824		__free_page(fault_page);
2825	if (hwpoison_page)
2826		__free_page(hwpoison_page);
2827	__free_page(bad_page);
2828out:
2829	kvm_arch_exit();
2830out_fail:
2831	return r;
2832}
2833EXPORT_SYMBOL_GPL(kvm_init);
2834
2835void kvm_exit(void)
2836{
2837	kvm_exit_debug();
2838	misc_deregister(&kvm_dev);
2839	kmem_cache_destroy(kvm_vcpu_cache);
2840	kvm_async_pf_deinit();
2841	unregister_syscore_ops(&kvm_syscore_ops);
2842	unregister_reboot_notifier(&kvm_reboot_notifier);
2843	unregister_cpu_notifier(&kvm_cpu_notifier);
2844	on_each_cpu(hardware_disable_nolock, NULL, 1);
2845	kvm_arch_hardware_unsetup();
2846	kvm_arch_exit();
2847	free_cpumask_var(cpus_hardware_enabled);
2848	__free_page(fault_page);
2849	__free_page(hwpoison_page);
2850	__free_page(bad_page);
2851}
2852EXPORT_SYMBOL_GPL(kvm_exit);
v3.1
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "iodev.h"
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched.h>
  36#include <linux/cpumask.h>
  37#include <linux/smp.h>
  38#include <linux/anon_inodes.h>
  39#include <linux/profile.h>
  40#include <linux/kvm_para.h>
  41#include <linux/pagemap.h>
  42#include <linux/mman.h>
  43#include <linux/swap.h>
  44#include <linux/bitops.h>
  45#include <linux/spinlock.h>
  46#include <linux/compat.h>
  47#include <linux/srcu.h>
  48#include <linux/hugetlb.h>
  49#include <linux/slab.h>
 
 
  50
  51#include <asm/processor.h>
  52#include <asm/io.h>
  53#include <asm/uaccess.h>
  54#include <asm/pgtable.h>
  55
  56#include "coalesced_mmio.h"
  57#include "async_pf.h"
  58
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/kvm.h>
  61
  62MODULE_AUTHOR("Qumranet");
  63MODULE_LICENSE("GPL");
  64
  65/*
  66 * Ordering of locks:
  67 *
  68 * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  69 */
  70
  71DEFINE_RAW_SPINLOCK(kvm_lock);
  72LIST_HEAD(vm_list);
  73
  74static cpumask_var_t cpus_hardware_enabled;
  75static int kvm_usage_count = 0;
  76static atomic_t hardware_enable_failed;
  77
  78struct kmem_cache *kvm_vcpu_cache;
  79EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  80
  81static __read_mostly struct preempt_ops kvm_preempt_ops;
  82
  83struct dentry *kvm_debugfs_dir;
  84
  85static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  86			   unsigned long arg);
  87#ifdef CONFIG_COMPAT
  88static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
  89				  unsigned long arg);
  90#endif
  91static int hardware_enable_all(void);
  92static void hardware_disable_all(void);
  93
  94static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  95
  96bool kvm_rebooting;
  97EXPORT_SYMBOL_GPL(kvm_rebooting);
  98
  99static bool largepages_enabled = true;
 100
 101static struct page *hwpoison_page;
 102static pfn_t hwpoison_pfn;
 103
 104struct page *fault_page;
 105pfn_t fault_pfn;
 106
 107inline int kvm_is_mmio_pfn(pfn_t pfn)
 108{
 109	if (pfn_valid(pfn)) {
 110		int reserved;
 111		struct page *tail = pfn_to_page(pfn);
 112		struct page *head = compound_trans_head(tail);
 113		reserved = PageReserved(head);
 114		if (head != tail) {
 115			/*
 116			 * "head" is not a dangling pointer
 117			 * (compound_trans_head takes care of that)
 118			 * but the hugepage may have been splitted
 119			 * from under us (and we may not hold a
 120			 * reference count on the head page so it can
 121			 * be reused before we run PageReferenced), so
 122			 * we've to check PageTail before returning
 123			 * what we just read.
 124			 */
 125			smp_rmb();
 126			if (PageTail(tail))
 127				return reserved;
 128		}
 129		return PageReserved(tail);
 130	}
 131
 132	return true;
 133}
 134
 135/*
 136 * Switches to specified vcpu, until a matching vcpu_put()
 137 */
 138void vcpu_load(struct kvm_vcpu *vcpu)
 139{
 140	int cpu;
 141
 142	mutex_lock(&vcpu->mutex);
 143	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
 144		/* The thread running this VCPU changed. */
 145		struct pid *oldpid = vcpu->pid;
 146		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
 147		rcu_assign_pointer(vcpu->pid, newpid);
 148		synchronize_rcu();
 149		put_pid(oldpid);
 150	}
 151	cpu = get_cpu();
 152	preempt_notifier_register(&vcpu->preempt_notifier);
 153	kvm_arch_vcpu_load(vcpu, cpu);
 154	put_cpu();
 155}
 156
 157void vcpu_put(struct kvm_vcpu *vcpu)
 158{
 159	preempt_disable();
 160	kvm_arch_vcpu_put(vcpu);
 161	preempt_notifier_unregister(&vcpu->preempt_notifier);
 162	preempt_enable();
 163	mutex_unlock(&vcpu->mutex);
 164}
 165
 166static void ack_flush(void *_completed)
 167{
 168}
 169
 170static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
 171{
 172	int i, cpu, me;
 173	cpumask_var_t cpus;
 174	bool called = true;
 175	struct kvm_vcpu *vcpu;
 176
 177	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 178
 179	me = get_cpu();
 180	kvm_for_each_vcpu(i, vcpu, kvm) {
 181		kvm_make_request(req, vcpu);
 182		cpu = vcpu->cpu;
 183
 184		/* Set ->requests bit before we read ->mode */
 185		smp_mb();
 186
 187		if (cpus != NULL && cpu != -1 && cpu != me &&
 188		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
 189			cpumask_set_cpu(cpu, cpus);
 190	}
 191	if (unlikely(cpus == NULL))
 192		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
 193	else if (!cpumask_empty(cpus))
 194		smp_call_function_many(cpus, ack_flush, NULL, 1);
 195	else
 196		called = false;
 197	put_cpu();
 198	free_cpumask_var(cpus);
 199	return called;
 200}
 201
 202void kvm_flush_remote_tlbs(struct kvm *kvm)
 203{
 204	int dirty_count = kvm->tlbs_dirty;
 205
 206	smp_mb();
 207	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 208		++kvm->stat.remote_tlb_flush;
 209	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 210}
 211
 212void kvm_reload_remote_mmus(struct kvm *kvm)
 213{
 214	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 215}
 216
 217int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 218{
 219	struct page *page;
 220	int r;
 221
 222	mutex_init(&vcpu->mutex);
 223	vcpu->cpu = -1;
 224	vcpu->kvm = kvm;
 225	vcpu->vcpu_id = id;
 226	vcpu->pid = NULL;
 227	init_waitqueue_head(&vcpu->wq);
 228	kvm_async_pf_vcpu_init(vcpu);
 229
 230	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 231	if (!page) {
 232		r = -ENOMEM;
 233		goto fail;
 234	}
 235	vcpu->run = page_address(page);
 236
 237	r = kvm_arch_vcpu_init(vcpu);
 238	if (r < 0)
 239		goto fail_free_run;
 240	return 0;
 241
 242fail_free_run:
 243	free_page((unsigned long)vcpu->run);
 244fail:
 245	return r;
 246}
 247EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 248
 249void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 250{
 251	put_pid(vcpu->pid);
 252	kvm_arch_vcpu_uninit(vcpu);
 253	free_page((unsigned long)vcpu->run);
 254}
 255EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 256
 257#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 258static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 259{
 260	return container_of(mn, struct kvm, mmu_notifier);
 261}
 262
 263static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
 264					     struct mm_struct *mm,
 265					     unsigned long address)
 266{
 267	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 268	int need_tlb_flush, idx;
 269
 270	/*
 271	 * When ->invalidate_page runs, the linux pte has been zapped
 272	 * already but the page is still allocated until
 273	 * ->invalidate_page returns. So if we increase the sequence
 274	 * here the kvm page fault will notice if the spte can't be
 275	 * established because the page is going to be freed. If
 276	 * instead the kvm page fault establishes the spte before
 277	 * ->invalidate_page runs, kvm_unmap_hva will release it
 278	 * before returning.
 279	 *
 280	 * The sequence increase only need to be seen at spin_unlock
 281	 * time, and not at spin_lock time.
 282	 *
 283	 * Increasing the sequence after the spin_unlock would be
 284	 * unsafe because the kvm page fault could then establish the
 285	 * pte after kvm_unmap_hva returned, without noticing the page
 286	 * is going to be freed.
 287	 */
 288	idx = srcu_read_lock(&kvm->srcu);
 289	spin_lock(&kvm->mmu_lock);
 
 290	kvm->mmu_notifier_seq++;
 291	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
 292	spin_unlock(&kvm->mmu_lock);
 293	srcu_read_unlock(&kvm->srcu, idx);
 294
 295	/* we've to flush the tlb before the pages can be freed */
 296	if (need_tlb_flush)
 297		kvm_flush_remote_tlbs(kvm);
 298
 
 
 299}
 300
 301static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 302					struct mm_struct *mm,
 303					unsigned long address,
 304					pte_t pte)
 305{
 306	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 307	int idx;
 308
 309	idx = srcu_read_lock(&kvm->srcu);
 310	spin_lock(&kvm->mmu_lock);
 311	kvm->mmu_notifier_seq++;
 312	kvm_set_spte_hva(kvm, address, pte);
 313	spin_unlock(&kvm->mmu_lock);
 314	srcu_read_unlock(&kvm->srcu, idx);
 315}
 316
 317static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 318						    struct mm_struct *mm,
 319						    unsigned long start,
 320						    unsigned long end)
 321{
 322	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 323	int need_tlb_flush = 0, idx;
 324
 325	idx = srcu_read_lock(&kvm->srcu);
 326	spin_lock(&kvm->mmu_lock);
 327	/*
 328	 * The count increase must become visible at unlock time as no
 329	 * spte can be established without taking the mmu_lock and
 330	 * count is also read inside the mmu_lock critical section.
 331	 */
 332	kvm->mmu_notifier_count++;
 333	for (; start < end; start += PAGE_SIZE)
 334		need_tlb_flush |= kvm_unmap_hva(kvm, start);
 335	need_tlb_flush |= kvm->tlbs_dirty;
 336	spin_unlock(&kvm->mmu_lock);
 337	srcu_read_unlock(&kvm->srcu, idx);
 338
 339	/* we've to flush the tlb before the pages can be freed */
 340	if (need_tlb_flush)
 341		kvm_flush_remote_tlbs(kvm);
 
 
 
 342}
 343
 344static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 345						  struct mm_struct *mm,
 346						  unsigned long start,
 347						  unsigned long end)
 348{
 349	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 350
 351	spin_lock(&kvm->mmu_lock);
 352	/*
 353	 * This sequence increase will notify the kvm page fault that
 354	 * the page that is going to be mapped in the spte could have
 355	 * been freed.
 356	 */
 357	kvm->mmu_notifier_seq++;
 
 358	/*
 359	 * The above sequence increase must be visible before the
 360	 * below count decrease but both values are read by the kvm
 361	 * page fault under mmu_lock spinlock so we don't need to add
 362	 * a smb_wmb() here in between the two.
 363	 */
 364	kvm->mmu_notifier_count--;
 365	spin_unlock(&kvm->mmu_lock);
 366
 367	BUG_ON(kvm->mmu_notifier_count < 0);
 368}
 369
 370static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 371					      struct mm_struct *mm,
 372					      unsigned long address)
 373{
 374	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 375	int young, idx;
 376
 377	idx = srcu_read_lock(&kvm->srcu);
 378	spin_lock(&kvm->mmu_lock);
 
 379	young = kvm_age_hva(kvm, address);
 
 
 
 380	spin_unlock(&kvm->mmu_lock);
 381	srcu_read_unlock(&kvm->srcu, idx);
 382
 383	if (young)
 384		kvm_flush_remote_tlbs(kvm);
 385
 386	return young;
 387}
 388
 389static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 390				       struct mm_struct *mm,
 391				       unsigned long address)
 392{
 393	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 394	int young, idx;
 395
 396	idx = srcu_read_lock(&kvm->srcu);
 397	spin_lock(&kvm->mmu_lock);
 398	young = kvm_test_age_hva(kvm, address);
 399	spin_unlock(&kvm->mmu_lock);
 400	srcu_read_unlock(&kvm->srcu, idx);
 401
 402	return young;
 403}
 404
 405static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 406				     struct mm_struct *mm)
 407{
 408	struct kvm *kvm = mmu_notifier_to_kvm(mn);
 409	int idx;
 410
 411	idx = srcu_read_lock(&kvm->srcu);
 412	kvm_arch_flush_shadow(kvm);
 413	srcu_read_unlock(&kvm->srcu, idx);
 414}
 415
 416static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 417	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
 418	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
 419	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
 420	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
 421	.test_young		= kvm_mmu_notifier_test_young,
 422	.change_pte		= kvm_mmu_notifier_change_pte,
 423	.release		= kvm_mmu_notifier_release,
 424};
 425
 426static int kvm_init_mmu_notifier(struct kvm *kvm)
 427{
 428	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 429	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 430}
 431
 432#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 433
 434static int kvm_init_mmu_notifier(struct kvm *kvm)
 435{
 436	return 0;
 437}
 438
 439#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 440
 441static struct kvm *kvm_create_vm(void)
 
 
 
 
 
 
 
 
 
 442{
 443	int r, i;
 444	struct kvm *kvm = kvm_arch_alloc_vm();
 445
 446	if (!kvm)
 447		return ERR_PTR(-ENOMEM);
 448
 449	r = kvm_arch_init_vm(kvm);
 450	if (r)
 451		goto out_err_nodisable;
 452
 453	r = hardware_enable_all();
 454	if (r)
 455		goto out_err_nodisable;
 456
 457#ifdef CONFIG_HAVE_KVM_IRQCHIP
 458	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
 459	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 460#endif
 461
 462	r = -ENOMEM;
 463	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 464	if (!kvm->memslots)
 465		goto out_err_nosrcu;
 
 466	if (init_srcu_struct(&kvm->srcu))
 467		goto out_err_nosrcu;
 468	for (i = 0; i < KVM_NR_BUSES; i++) {
 469		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
 470					GFP_KERNEL);
 471		if (!kvm->buses[i])
 472			goto out_err;
 473	}
 474
 475	spin_lock_init(&kvm->mmu_lock);
 476	kvm->mm = current->mm;
 477	atomic_inc(&kvm->mm->mm_count);
 478	kvm_eventfd_init(kvm);
 479	mutex_init(&kvm->lock);
 480	mutex_init(&kvm->irq_lock);
 481	mutex_init(&kvm->slots_lock);
 482	atomic_set(&kvm->users_count, 1);
 483
 484	r = kvm_init_mmu_notifier(kvm);
 485	if (r)
 486		goto out_err;
 487
 488	raw_spin_lock(&kvm_lock);
 489	list_add(&kvm->vm_list, &vm_list);
 490	raw_spin_unlock(&kvm_lock);
 491
 492	return kvm;
 493
 494out_err:
 495	cleanup_srcu_struct(&kvm->srcu);
 496out_err_nosrcu:
 497	hardware_disable_all();
 498out_err_nodisable:
 499	for (i = 0; i < KVM_NR_BUSES; i++)
 500		kfree(kvm->buses[i]);
 501	kfree(kvm->memslots);
 502	kvm_arch_free_vm(kvm);
 503	return ERR_PTR(r);
 504}
 505
 506static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 507{
 508	if (!memslot->dirty_bitmap)
 509		return;
 510
 511	if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
 512		vfree(memslot->dirty_bitmap_head);
 513	else
 514		kfree(memslot->dirty_bitmap_head);
 515
 516	memslot->dirty_bitmap = NULL;
 517	memslot->dirty_bitmap_head = NULL;
 518}
 519
 520/*
 521 * Free any memory in @free but not in @dont.
 522 */
 523static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
 524				  struct kvm_memory_slot *dont)
 525{
 526	int i;
 527
 528	if (!dont || free->rmap != dont->rmap)
 529		vfree(free->rmap);
 530
 531	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 532		kvm_destroy_dirty_bitmap(free);
 533
 534
 535	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
 536		if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
 537			vfree(free->lpage_info[i]);
 538			free->lpage_info[i] = NULL;
 539		}
 540	}
 541
 542	free->npages = 0;
 543	free->rmap = NULL;
 544}
 545
 546void kvm_free_physmem(struct kvm *kvm)
 547{
 548	int i;
 549	struct kvm_memslots *slots = kvm->memslots;
 
 550
 551	for (i = 0; i < slots->nmemslots; ++i)
 552		kvm_free_physmem_slot(&slots->memslots[i], NULL);
 553
 554	kfree(kvm->memslots);
 555}
 556
 557static void kvm_destroy_vm(struct kvm *kvm)
 558{
 559	int i;
 560	struct mm_struct *mm = kvm->mm;
 561
 562	kvm_arch_sync_events(kvm);
 563	raw_spin_lock(&kvm_lock);
 564	list_del(&kvm->vm_list);
 565	raw_spin_unlock(&kvm_lock);
 566	kvm_free_irq_routing(kvm);
 567	for (i = 0; i < KVM_NR_BUSES; i++)
 568		kvm_io_bus_destroy(kvm->buses[i]);
 569	kvm_coalesced_mmio_free(kvm);
 570#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 571	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 572#else
 573	kvm_arch_flush_shadow(kvm);
 574#endif
 575	kvm_arch_destroy_vm(kvm);
 576	kvm_free_physmem(kvm);
 577	cleanup_srcu_struct(&kvm->srcu);
 578	kvm_arch_free_vm(kvm);
 579	hardware_disable_all();
 580	mmdrop(mm);
 581}
 582
 583void kvm_get_kvm(struct kvm *kvm)
 584{
 585	atomic_inc(&kvm->users_count);
 586}
 587EXPORT_SYMBOL_GPL(kvm_get_kvm);
 588
 589void kvm_put_kvm(struct kvm *kvm)
 590{
 591	if (atomic_dec_and_test(&kvm->users_count))
 592		kvm_destroy_vm(kvm);
 593}
 594EXPORT_SYMBOL_GPL(kvm_put_kvm);
 595
 596
 597static int kvm_vm_release(struct inode *inode, struct file *filp)
 598{
 599	struct kvm *kvm = filp->private_data;
 600
 601	kvm_irqfd_release(kvm);
 602
 603	kvm_put_kvm(kvm);
 604	return 0;
 605}
 606
 607#ifndef CONFIG_S390
 608/*
 609 * Allocation size is twice as large as the actual dirty bitmap size.
 610 * This makes it possible to do double buffering: see x86's
 611 * kvm_vm_ioctl_get_dirty_log().
 612 */
 613static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 614{
 
 615	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 616
 617	if (dirty_bytes > PAGE_SIZE)
 618		memslot->dirty_bitmap = vzalloc(dirty_bytes);
 619	else
 620		memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
 621
 622	if (!memslot->dirty_bitmap)
 623		return -ENOMEM;
 624
 625	memslot->dirty_bitmap_head = memslot->dirty_bitmap;
 626	return 0;
 627}
 628#endif /* !CONFIG_S390 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629
 630/*
 631 * Allocate some memory and give it an address in the guest physical address
 632 * space.
 633 *
 634 * Discontiguous memory is allowed, mostly for framebuffers.
 635 *
 636 * Must be called holding mmap_sem for write.
 637 */
 638int __kvm_set_memory_region(struct kvm *kvm,
 639			    struct kvm_userspace_memory_region *mem,
 640			    int user_alloc)
 641{
 642	int r;
 643	gfn_t base_gfn;
 644	unsigned long npages;
 645	unsigned long i;
 646	struct kvm_memory_slot *memslot;
 647	struct kvm_memory_slot old, new;
 648	struct kvm_memslots *slots, *old_memslots;
 649
 650	r = -EINVAL;
 651	/* General sanity checks */
 652	if (mem->memory_size & (PAGE_SIZE - 1))
 653		goto out;
 654	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 655		goto out;
 656	/* We can read the guest memory with __xxx_user() later on. */
 657	if (user_alloc &&
 658	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 659	     !access_ok(VERIFY_WRITE,
 660			(void __user *)(unsigned long)mem->userspace_addr,
 661			mem->memory_size)))
 662		goto out;
 663	if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
 664		goto out;
 665	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 666		goto out;
 667
 668	memslot = &kvm->memslots->memslots[mem->slot];
 669	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 670	npages = mem->memory_size >> PAGE_SHIFT;
 671
 672	r = -EINVAL;
 673	if (npages > KVM_MEM_MAX_NR_PAGES)
 674		goto out;
 675
 676	if (!npages)
 677		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
 678
 679	new = old = *memslot;
 680
 681	new.id = mem->slot;
 682	new.base_gfn = base_gfn;
 683	new.npages = npages;
 684	new.flags = mem->flags;
 685
 686	/* Disallow changing a memory slot's size. */
 687	r = -EINVAL;
 688	if (npages && old.npages && npages != old.npages)
 689		goto out_free;
 690
 691	/* Check for overlaps */
 692	r = -EEXIST;
 693	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
 694		struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
 695
 696		if (s == memslot || !s->npages)
 697			continue;
 698		if (!((base_gfn + npages <= s->base_gfn) ||
 699		      (base_gfn >= s->base_gfn + s->npages)))
 700			goto out_free;
 701	}
 702
 703	/* Free page dirty bitmap if unneeded */
 704	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
 705		new.dirty_bitmap = NULL;
 706
 707	r = -ENOMEM;
 708
 709	/* Allocate if a slot is being created */
 
 
 
 710#ifndef CONFIG_S390
 711	if (npages && !new.rmap) {
 712		new.rmap = vzalloc(npages * sizeof(*new.rmap));
 713
 714		if (!new.rmap)
 715			goto out_free;
 716
 717		new.user_alloc = user_alloc;
 718		new.userspace_addr = mem->userspace_addr;
 719	}
 720	if (!npages)
 721		goto skip_lpage;
 722
 723	for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
 724		unsigned long ugfn;
 725		unsigned long j;
 726		int lpages;
 727		int level = i + 2;
 728
 729		/* Avoid unused variable warning if no large pages */
 730		(void)level;
 731
 732		if (new.lpage_info[i])
 733			continue;
 734
 735		lpages = 1 + ((base_gfn + npages - 1)
 736			     >> KVM_HPAGE_GFN_SHIFT(level));
 737		lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
 738
 739		new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
 740
 741		if (!new.lpage_info[i])
 742			goto out_free;
 743
 744		if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
 745			new.lpage_info[i][0].write_count = 1;
 746		if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
 747			new.lpage_info[i][lpages - 1].write_count = 1;
 748		ugfn = new.userspace_addr >> PAGE_SHIFT;
 749		/*
 750		 * If the gfn and userspace address are not aligned wrt each
 751		 * other, or if explicitly asked to, disable large page
 752		 * support for this slot
 753		 */
 754		if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
 755		    !largepages_enabled)
 756			for (j = 0; j < lpages; ++j)
 757				new.lpage_info[i][j].write_count = 1;
 758	}
 759
 760skip_lpage:
 761
 762	/* Allocate page dirty bitmap if needed */
 763	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
 764		if (kvm_create_dirty_bitmap(&new) < 0)
 765			goto out_free;
 766		/* destroy any largepage mappings for dirty tracking */
 767	}
 768#else  /* not defined CONFIG_S390 */
 769	new.user_alloc = user_alloc;
 770	if (user_alloc)
 771		new.userspace_addr = mem->userspace_addr;
 772#endif /* not defined CONFIG_S390 */
 773
 774	if (!npages) {
 
 
 775		r = -ENOMEM;
 776		slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 
 777		if (!slots)
 778			goto out_free;
 779		memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
 780		if (mem->slot >= slots->nmemslots)
 781			slots->nmemslots = mem->slot + 1;
 782		slots->generation++;
 783		slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
 784
 785		old_memslots = kvm->memslots;
 786		rcu_assign_pointer(kvm->memslots, slots);
 787		synchronize_srcu_expedited(&kvm->srcu);
 788		/* From this point no new shadow pages pointing to a deleted
 789		 * memslot will be created.
 790		 *
 791		 * validation of sp->gfn happens in:
 792		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
 793		 * 	- kvm_is_visible_gfn (mmu_check_roots)
 794		 */
 795		kvm_arch_flush_shadow(kvm);
 796		kfree(old_memslots);
 797	}
 798
 799	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
 800	if (r)
 801		goto out_free;
 802
 803	/* map the pages in iommu page table */
 804	if (npages) {
 805		r = kvm_iommu_map_pages(kvm, &new);
 806		if (r)
 807			goto out_free;
 808	}
 
 809
 810	r = -ENOMEM;
 811	slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 
 812	if (!slots)
 813		goto out_free;
 814	memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
 815	if (mem->slot >= slots->nmemslots)
 816		slots->nmemslots = mem->slot + 1;
 817	slots->generation++;
 818
 819	/* actual memory is freed via old in kvm_free_physmem_slot below */
 820	if (!npages) {
 821		new.rmap = NULL;
 822		new.dirty_bitmap = NULL;
 823		for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
 824			new.lpage_info[i] = NULL;
 825	}
 826
 827	slots->memslots[mem->slot] = new;
 828	old_memslots = kvm->memslots;
 829	rcu_assign_pointer(kvm->memslots, slots);
 830	synchronize_srcu_expedited(&kvm->srcu);
 831
 832	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
 833
 834	/*
 835	 * If the new memory slot is created, we need to clear all
 836	 * mmio sptes.
 837	 */
 838	if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
 839		kvm_arch_flush_shadow(kvm);
 840
 841	kvm_free_physmem_slot(&old, &new);
 842	kfree(old_memslots);
 843
 844	return 0;
 845
 846out_free:
 847	kvm_free_physmem_slot(&new, &old);
 848out:
 849	return r;
 850
 851}
 852EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
 853
 854int kvm_set_memory_region(struct kvm *kvm,
 855			  struct kvm_userspace_memory_region *mem,
 856			  int user_alloc)
 857{
 858	int r;
 859
 860	mutex_lock(&kvm->slots_lock);
 861	r = __kvm_set_memory_region(kvm, mem, user_alloc);
 862	mutex_unlock(&kvm->slots_lock);
 863	return r;
 864}
 865EXPORT_SYMBOL_GPL(kvm_set_memory_region);
 866
 867int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
 868				   struct
 869				   kvm_userspace_memory_region *mem,
 870				   int user_alloc)
 871{
 872	if (mem->slot >= KVM_MEMORY_SLOTS)
 873		return -EINVAL;
 874	return kvm_set_memory_region(kvm, mem, user_alloc);
 875}
 876
 877int kvm_get_dirty_log(struct kvm *kvm,
 878			struct kvm_dirty_log *log, int *is_dirty)
 879{
 880	struct kvm_memory_slot *memslot;
 881	int r, i;
 882	unsigned long n;
 883	unsigned long any = 0;
 884
 885	r = -EINVAL;
 886	if (log->slot >= KVM_MEMORY_SLOTS)
 887		goto out;
 888
 889	memslot = &kvm->memslots->memslots[log->slot];
 890	r = -ENOENT;
 891	if (!memslot->dirty_bitmap)
 892		goto out;
 893
 894	n = kvm_dirty_bitmap_bytes(memslot);
 895
 896	for (i = 0; !any && i < n/sizeof(long); ++i)
 897		any = memslot->dirty_bitmap[i];
 898
 899	r = -EFAULT;
 900	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
 901		goto out;
 902
 903	if (any)
 904		*is_dirty = 1;
 905
 906	r = 0;
 907out:
 908	return r;
 909}
 910
 
 
 
 
 
 911void kvm_disable_largepages(void)
 912{
 913	largepages_enabled = false;
 914}
 915EXPORT_SYMBOL_GPL(kvm_disable_largepages);
 916
 917int is_error_page(struct page *page)
 918{
 919	return page == bad_page || page == hwpoison_page || page == fault_page;
 920}
 921EXPORT_SYMBOL_GPL(is_error_page);
 922
 923int is_error_pfn(pfn_t pfn)
 924{
 925	return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
 926}
 927EXPORT_SYMBOL_GPL(is_error_pfn);
 928
 929int is_hwpoison_pfn(pfn_t pfn)
 930{
 931	return pfn == hwpoison_pfn;
 932}
 933EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
 934
 935int is_fault_pfn(pfn_t pfn)
 936{
 937	return pfn == fault_pfn;
 938}
 939EXPORT_SYMBOL_GPL(is_fault_pfn);
 940
 941int is_noslot_pfn(pfn_t pfn)
 942{
 943	return pfn == bad_pfn;
 944}
 945EXPORT_SYMBOL_GPL(is_noslot_pfn);
 946
 947int is_invalid_pfn(pfn_t pfn)
 948{
 949	return pfn == hwpoison_pfn || pfn == fault_pfn;
 950}
 951EXPORT_SYMBOL_GPL(is_invalid_pfn);
 952
 953static inline unsigned long bad_hva(void)
 954{
 955	return PAGE_OFFSET;
 956}
 957
 958int kvm_is_error_hva(unsigned long addr)
 959{
 960	return addr == bad_hva();
 961}
 962EXPORT_SYMBOL_GPL(kvm_is_error_hva);
 963
 964static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
 965						gfn_t gfn)
 966{
 967	int i;
 968
 969	for (i = 0; i < slots->nmemslots; ++i) {
 970		struct kvm_memory_slot *memslot = &slots->memslots[i];
 971
 972		if (gfn >= memslot->base_gfn
 973		    && gfn < memslot->base_gfn + memslot->npages)
 974			return memslot;
 975	}
 976	return NULL;
 977}
 978
 979struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
 980{
 981	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
 982}
 983EXPORT_SYMBOL_GPL(gfn_to_memslot);
 984
 985int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
 986{
 987	int i;
 988	struct kvm_memslots *slots = kvm_memslots(kvm);
 989
 990	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
 991		struct kvm_memory_slot *memslot = &slots->memslots[i];
 
 992
 993		if (memslot->flags & KVM_MEMSLOT_INVALID)
 994			continue;
 995
 996		if (gfn >= memslot->base_gfn
 997		    && gfn < memslot->base_gfn + memslot->npages)
 998			return 1;
 999	}
1000	return 0;
1001}
1002EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1003
1004unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1005{
1006	struct vm_area_struct *vma;
1007	unsigned long addr, size;
1008
1009	size = PAGE_SIZE;
1010
1011	addr = gfn_to_hva(kvm, gfn);
1012	if (kvm_is_error_hva(addr))
1013		return PAGE_SIZE;
1014
1015	down_read(&current->mm->mmap_sem);
1016	vma = find_vma(current->mm, addr);
1017	if (!vma)
1018		goto out;
1019
1020	size = vma_kernel_pagesize(vma);
1021
1022out:
1023	up_read(&current->mm->mmap_sem);
1024
1025	return size;
1026}
1027
1028static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1029				     gfn_t *nr_pages)
1030{
1031	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1032		return bad_hva();
1033
1034	if (nr_pages)
1035		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1036
1037	return gfn_to_hva_memslot(slot, gfn);
1038}
1039
1040unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1041{
1042	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1043}
1044EXPORT_SYMBOL_GPL(gfn_to_hva);
1045
1046static pfn_t get_fault_pfn(void)
1047{
1048	get_page(fault_page);
1049	return fault_pfn;
1050}
1051
1052int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1053	unsigned long start, int write, struct page **page)
1054{
1055	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1056
1057	if (write)
1058		flags |= FOLL_WRITE;
1059
1060	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1061}
1062
1063static inline int check_user_page_hwpoison(unsigned long addr)
1064{
1065	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1066
1067	rc = __get_user_pages(current, current->mm, addr, 1,
1068			      flags, NULL, NULL, NULL);
1069	return rc == -EHWPOISON;
1070}
1071
1072static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1073			bool *async, bool write_fault, bool *writable)
1074{
1075	struct page *page[1];
1076	int npages = 0;
1077	pfn_t pfn;
1078
1079	/* we can do it either atomically or asynchronously, not both */
1080	BUG_ON(atomic && async);
1081
1082	BUG_ON(!write_fault && !writable);
1083
1084	if (writable)
1085		*writable = true;
1086
1087	if (atomic || async)
1088		npages = __get_user_pages_fast(addr, 1, 1, page);
1089
1090	if (unlikely(npages != 1) && !atomic) {
1091		might_sleep();
1092
1093		if (writable)
1094			*writable = write_fault;
1095
1096		if (async) {
1097			down_read(&current->mm->mmap_sem);
1098			npages = get_user_page_nowait(current, current->mm,
1099						     addr, write_fault, page);
1100			up_read(&current->mm->mmap_sem);
1101		} else
1102			npages = get_user_pages_fast(addr, 1, write_fault,
1103						     page);
1104
1105		/* map read fault as writable if possible */
1106		if (unlikely(!write_fault) && npages == 1) {
1107			struct page *wpage[1];
1108
1109			npages = __get_user_pages_fast(addr, 1, 1, wpage);
1110			if (npages == 1) {
1111				*writable = true;
1112				put_page(page[0]);
1113				page[0] = wpage[0];
1114			}
1115			npages = 1;
1116		}
1117	}
1118
1119	if (unlikely(npages != 1)) {
1120		struct vm_area_struct *vma;
1121
1122		if (atomic)
1123			return get_fault_pfn();
1124
1125		down_read(&current->mm->mmap_sem);
1126		if (npages == -EHWPOISON ||
1127			(!async && check_user_page_hwpoison(addr))) {
1128			up_read(&current->mm->mmap_sem);
1129			get_page(hwpoison_page);
1130			return page_to_pfn(hwpoison_page);
1131		}
1132
1133		vma = find_vma_intersection(current->mm, addr, addr+1);
1134
1135		if (vma == NULL)
1136			pfn = get_fault_pfn();
1137		else if ((vma->vm_flags & VM_PFNMAP)) {
1138			pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1139				vma->vm_pgoff;
1140			BUG_ON(!kvm_is_mmio_pfn(pfn));
1141		} else {
1142			if (async && (vma->vm_flags & VM_WRITE))
1143				*async = true;
1144			pfn = get_fault_pfn();
1145		}
1146		up_read(&current->mm->mmap_sem);
1147	} else
1148		pfn = page_to_pfn(page[0]);
1149
1150	return pfn;
1151}
1152
1153pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1154{
1155	return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1156}
1157EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1158
1159static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1160			  bool write_fault, bool *writable)
1161{
1162	unsigned long addr;
1163
1164	if (async)
1165		*async = false;
1166
1167	addr = gfn_to_hva(kvm, gfn);
1168	if (kvm_is_error_hva(addr)) {
1169		get_page(bad_page);
1170		return page_to_pfn(bad_page);
1171	}
1172
1173	return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1174}
1175
1176pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1177{
1178	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1179}
1180EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1181
1182pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1183		       bool write_fault, bool *writable)
1184{
1185	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1186}
1187EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1188
1189pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1190{
1191	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1192}
1193EXPORT_SYMBOL_GPL(gfn_to_pfn);
1194
1195pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1196		      bool *writable)
1197{
1198	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1199}
1200EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1201
1202pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1203			 struct kvm_memory_slot *slot, gfn_t gfn)
1204{
1205	unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1206	return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1207}
1208
1209int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1210								  int nr_pages)
1211{
1212	unsigned long addr;
1213	gfn_t entry;
1214
1215	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1216	if (kvm_is_error_hva(addr))
1217		return -1;
1218
1219	if (entry < nr_pages)
1220		return 0;
1221
1222	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1223}
1224EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1225
1226struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1227{
1228	pfn_t pfn;
1229
1230	pfn = gfn_to_pfn(kvm, gfn);
1231	if (!kvm_is_mmio_pfn(pfn))
1232		return pfn_to_page(pfn);
1233
1234	WARN_ON(kvm_is_mmio_pfn(pfn));
1235
1236	get_page(bad_page);
1237	return bad_page;
1238}
1239
1240EXPORT_SYMBOL_GPL(gfn_to_page);
1241
1242void kvm_release_page_clean(struct page *page)
1243{
1244	kvm_release_pfn_clean(page_to_pfn(page));
1245}
1246EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1247
1248void kvm_release_pfn_clean(pfn_t pfn)
1249{
1250	if (!kvm_is_mmio_pfn(pfn))
1251		put_page(pfn_to_page(pfn));
1252}
1253EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1254
1255void kvm_release_page_dirty(struct page *page)
1256{
1257	kvm_release_pfn_dirty(page_to_pfn(page));
1258}
1259EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1260
1261void kvm_release_pfn_dirty(pfn_t pfn)
1262{
1263	kvm_set_pfn_dirty(pfn);
1264	kvm_release_pfn_clean(pfn);
1265}
1266EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1267
1268void kvm_set_page_dirty(struct page *page)
1269{
1270	kvm_set_pfn_dirty(page_to_pfn(page));
1271}
1272EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1273
1274void kvm_set_pfn_dirty(pfn_t pfn)
1275{
1276	if (!kvm_is_mmio_pfn(pfn)) {
1277		struct page *page = pfn_to_page(pfn);
1278		if (!PageReserved(page))
1279			SetPageDirty(page);
1280	}
1281}
1282EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1283
1284void kvm_set_pfn_accessed(pfn_t pfn)
1285{
1286	if (!kvm_is_mmio_pfn(pfn))
1287		mark_page_accessed(pfn_to_page(pfn));
1288}
1289EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1290
1291void kvm_get_pfn(pfn_t pfn)
1292{
1293	if (!kvm_is_mmio_pfn(pfn))
1294		get_page(pfn_to_page(pfn));
1295}
1296EXPORT_SYMBOL_GPL(kvm_get_pfn);
1297
1298static int next_segment(unsigned long len, int offset)
1299{
1300	if (len > PAGE_SIZE - offset)
1301		return PAGE_SIZE - offset;
1302	else
1303		return len;
1304}
1305
1306int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1307			int len)
1308{
1309	int r;
1310	unsigned long addr;
1311
1312	addr = gfn_to_hva(kvm, gfn);
1313	if (kvm_is_error_hva(addr))
1314		return -EFAULT;
1315	r = __copy_from_user(data, (void __user *)addr + offset, len);
1316	if (r)
1317		return -EFAULT;
1318	return 0;
1319}
1320EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1321
1322int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1323{
1324	gfn_t gfn = gpa >> PAGE_SHIFT;
1325	int seg;
1326	int offset = offset_in_page(gpa);
1327	int ret;
1328
1329	while ((seg = next_segment(len, offset)) != 0) {
1330		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1331		if (ret < 0)
1332			return ret;
1333		offset = 0;
1334		len -= seg;
1335		data += seg;
1336		++gfn;
1337	}
1338	return 0;
1339}
1340EXPORT_SYMBOL_GPL(kvm_read_guest);
1341
1342int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1343			  unsigned long len)
1344{
1345	int r;
1346	unsigned long addr;
1347	gfn_t gfn = gpa >> PAGE_SHIFT;
1348	int offset = offset_in_page(gpa);
1349
1350	addr = gfn_to_hva(kvm, gfn);
1351	if (kvm_is_error_hva(addr))
1352		return -EFAULT;
1353	pagefault_disable();
1354	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1355	pagefault_enable();
1356	if (r)
1357		return -EFAULT;
1358	return 0;
1359}
1360EXPORT_SYMBOL(kvm_read_guest_atomic);
1361
1362int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1363			 int offset, int len)
1364{
1365	int r;
1366	unsigned long addr;
1367
1368	addr = gfn_to_hva(kvm, gfn);
1369	if (kvm_is_error_hva(addr))
1370		return -EFAULT;
1371	r = __copy_to_user((void __user *)addr + offset, data, len);
1372	if (r)
1373		return -EFAULT;
1374	mark_page_dirty(kvm, gfn);
1375	return 0;
1376}
1377EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1378
1379int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1380		    unsigned long len)
1381{
1382	gfn_t gfn = gpa >> PAGE_SHIFT;
1383	int seg;
1384	int offset = offset_in_page(gpa);
1385	int ret;
1386
1387	while ((seg = next_segment(len, offset)) != 0) {
1388		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1389		if (ret < 0)
1390			return ret;
1391		offset = 0;
1392		len -= seg;
1393		data += seg;
1394		++gfn;
1395	}
1396	return 0;
1397}
1398
1399int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1400			      gpa_t gpa)
1401{
1402	struct kvm_memslots *slots = kvm_memslots(kvm);
1403	int offset = offset_in_page(gpa);
1404	gfn_t gfn = gpa >> PAGE_SHIFT;
1405
1406	ghc->gpa = gpa;
1407	ghc->generation = slots->generation;
1408	ghc->memslot = __gfn_to_memslot(slots, gfn);
1409	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1410	if (!kvm_is_error_hva(ghc->hva))
1411		ghc->hva += offset;
1412	else
1413		return -EFAULT;
1414
1415	return 0;
1416}
1417EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1418
1419int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1420			   void *data, unsigned long len)
1421{
1422	struct kvm_memslots *slots = kvm_memslots(kvm);
1423	int r;
1424
1425	if (slots->generation != ghc->generation)
1426		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1427
1428	if (kvm_is_error_hva(ghc->hva))
1429		return -EFAULT;
1430
1431	r = __copy_to_user((void __user *)ghc->hva, data, len);
1432	if (r)
1433		return -EFAULT;
1434	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1435
1436	return 0;
1437}
1438EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1439
1440int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1441			   void *data, unsigned long len)
1442{
1443	struct kvm_memslots *slots = kvm_memslots(kvm);
1444	int r;
1445
1446	if (slots->generation != ghc->generation)
1447		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1448
1449	if (kvm_is_error_hva(ghc->hva))
1450		return -EFAULT;
1451
1452	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1453	if (r)
1454		return -EFAULT;
1455
1456	return 0;
1457}
1458EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1459
1460int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1461{
1462	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1463				    offset, len);
1464}
1465EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1466
1467int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1468{
1469	gfn_t gfn = gpa >> PAGE_SHIFT;
1470	int seg;
1471	int offset = offset_in_page(gpa);
1472	int ret;
1473
1474        while ((seg = next_segment(len, offset)) != 0) {
1475		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1476		if (ret < 0)
1477			return ret;
1478		offset = 0;
1479		len -= seg;
1480		++gfn;
1481	}
1482	return 0;
1483}
1484EXPORT_SYMBOL_GPL(kvm_clear_guest);
1485
1486void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1487			     gfn_t gfn)
1488{
1489	if (memslot && memslot->dirty_bitmap) {
1490		unsigned long rel_gfn = gfn - memslot->base_gfn;
1491
1492		__set_bit_le(rel_gfn, memslot->dirty_bitmap);
 
1493	}
1494}
1495
1496void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1497{
1498	struct kvm_memory_slot *memslot;
1499
1500	memslot = gfn_to_memslot(kvm, gfn);
1501	mark_page_dirty_in_slot(kvm, memslot, gfn);
1502}
1503
1504/*
1505 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1506 */
1507void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1508{
1509	DEFINE_WAIT(wait);
1510
1511	for (;;) {
1512		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1513
1514		if (kvm_arch_vcpu_runnable(vcpu)) {
1515			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1516			break;
1517		}
1518		if (kvm_cpu_has_pending_timer(vcpu))
1519			break;
1520		if (signal_pending(current))
1521			break;
1522
1523		schedule();
1524	}
1525
1526	finish_wait(&vcpu->wq, &wait);
1527}
1528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529void kvm_resched(struct kvm_vcpu *vcpu)
1530{
1531	if (!need_resched())
1532		return;
1533	cond_resched();
1534}
1535EXPORT_SYMBOL_GPL(kvm_resched);
1536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1538{
1539	struct kvm *kvm = me->kvm;
1540	struct kvm_vcpu *vcpu;
1541	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1542	int yielded = 0;
1543	int pass;
1544	int i;
1545
1546	/*
1547	 * We boost the priority of a VCPU that is runnable but not
1548	 * currently running, because it got preempted by something
1549	 * else and called schedule in __vcpu_run.  Hopefully that
1550	 * VCPU is holding the lock that we need and will release it.
1551	 * We approximate round-robin by starting at the last boosted VCPU.
1552	 */
1553	for (pass = 0; pass < 2 && !yielded; pass++) {
1554		kvm_for_each_vcpu(i, vcpu, kvm) {
1555			struct task_struct *task = NULL;
1556			struct pid *pid;
1557			if (!pass && i < last_boosted_vcpu) {
1558				i = last_boosted_vcpu;
1559				continue;
1560			} else if (pass && i > last_boosted_vcpu)
1561				break;
1562			if (vcpu == me)
1563				continue;
1564			if (waitqueue_active(&vcpu->wq))
1565				continue;
1566			rcu_read_lock();
1567			pid = rcu_dereference(vcpu->pid);
1568			if (pid)
1569				task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1570			rcu_read_unlock();
1571			if (!task)
1572				continue;
1573			if (task->flags & PF_VCPU) {
1574				put_task_struct(task);
1575				continue;
1576			}
1577			if (yield_to(task, 1)) {
1578				put_task_struct(task);
1579				kvm->last_boosted_vcpu = i;
1580				yielded = 1;
1581				break;
1582			}
1583			put_task_struct(task);
1584		}
1585	}
1586}
1587EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1588
1589static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1590{
1591	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1592	struct page *page;
1593
1594	if (vmf->pgoff == 0)
1595		page = virt_to_page(vcpu->run);
1596#ifdef CONFIG_X86
1597	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1598		page = virt_to_page(vcpu->arch.pio_data);
1599#endif
1600#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1601	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1602		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1603#endif
1604	else
1605		return VM_FAULT_SIGBUS;
1606	get_page(page);
1607	vmf->page = page;
1608	return 0;
1609}
1610
1611static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1612	.fault = kvm_vcpu_fault,
1613};
1614
1615static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1616{
1617	vma->vm_ops = &kvm_vcpu_vm_ops;
1618	return 0;
1619}
1620
1621static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1622{
1623	struct kvm_vcpu *vcpu = filp->private_data;
1624
1625	kvm_put_kvm(vcpu->kvm);
1626	return 0;
1627}
1628
1629static struct file_operations kvm_vcpu_fops = {
1630	.release        = kvm_vcpu_release,
1631	.unlocked_ioctl = kvm_vcpu_ioctl,
1632#ifdef CONFIG_COMPAT
1633	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1634#endif
1635	.mmap           = kvm_vcpu_mmap,
1636	.llseek		= noop_llseek,
1637};
1638
1639/*
1640 * Allocates an inode for the vcpu.
1641 */
1642static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1643{
1644	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1645}
1646
1647/*
1648 * Creates some virtual cpus.  Good luck creating more than one.
1649 */
1650static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1651{
1652	int r;
1653	struct kvm_vcpu *vcpu, *v;
1654
1655	vcpu = kvm_arch_vcpu_create(kvm, id);
1656	if (IS_ERR(vcpu))
1657		return PTR_ERR(vcpu);
1658
1659	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1660
1661	r = kvm_arch_vcpu_setup(vcpu);
1662	if (r)
1663		goto vcpu_destroy;
1664
1665	mutex_lock(&kvm->lock);
 
 
 
 
1666	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1667		r = -EINVAL;
1668		goto unlock_vcpu_destroy;
1669	}
1670
1671	kvm_for_each_vcpu(r, v, kvm)
1672		if (v->vcpu_id == id) {
1673			r = -EEXIST;
1674			goto unlock_vcpu_destroy;
1675		}
1676
1677	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1678
1679	/* Now it's all set up, let userspace reach it */
1680	kvm_get_kvm(kvm);
1681	r = create_vcpu_fd(vcpu);
1682	if (r < 0) {
1683		kvm_put_kvm(kvm);
1684		goto unlock_vcpu_destroy;
1685	}
1686
1687	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1688	smp_wmb();
1689	atomic_inc(&kvm->online_vcpus);
1690
1691#ifdef CONFIG_KVM_APIC_ARCHITECTURE
1692	if (kvm->bsp_vcpu_id == id)
1693		kvm->bsp_vcpu = vcpu;
1694#endif
1695	mutex_unlock(&kvm->lock);
1696	return r;
1697
1698unlock_vcpu_destroy:
1699	mutex_unlock(&kvm->lock);
1700vcpu_destroy:
1701	kvm_arch_vcpu_destroy(vcpu);
1702	return r;
1703}
1704
1705static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1706{
1707	if (sigset) {
1708		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1709		vcpu->sigset_active = 1;
1710		vcpu->sigset = *sigset;
1711	} else
1712		vcpu->sigset_active = 0;
1713	return 0;
1714}
1715
1716static long kvm_vcpu_ioctl(struct file *filp,
1717			   unsigned int ioctl, unsigned long arg)
1718{
1719	struct kvm_vcpu *vcpu = filp->private_data;
1720	void __user *argp = (void __user *)arg;
1721	int r;
1722	struct kvm_fpu *fpu = NULL;
1723	struct kvm_sregs *kvm_sregs = NULL;
1724
1725	if (vcpu->kvm->mm != current->mm)
1726		return -EIO;
1727
1728#if defined(CONFIG_S390) || defined(CONFIG_PPC)
1729	/*
1730	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1731	 * so vcpu_load() would break it.
1732	 */
1733	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1734		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1735#endif
1736
1737
1738	vcpu_load(vcpu);
1739	switch (ioctl) {
1740	case KVM_RUN:
1741		r = -EINVAL;
1742		if (arg)
1743			goto out;
1744		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1745		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1746		break;
1747	case KVM_GET_REGS: {
1748		struct kvm_regs *kvm_regs;
1749
1750		r = -ENOMEM;
1751		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1752		if (!kvm_regs)
1753			goto out;
1754		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1755		if (r)
1756			goto out_free1;
1757		r = -EFAULT;
1758		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1759			goto out_free1;
1760		r = 0;
1761out_free1:
1762		kfree(kvm_regs);
1763		break;
1764	}
1765	case KVM_SET_REGS: {
1766		struct kvm_regs *kvm_regs;
1767
1768		r = -ENOMEM;
1769		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1770		if (!kvm_regs)
 
1771			goto out;
1772		r = -EFAULT;
1773		if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1774			goto out_free2;
1775		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1776		if (r)
1777			goto out_free2;
1778		r = 0;
1779out_free2:
1780		kfree(kvm_regs);
1781		break;
1782	}
1783	case KVM_GET_SREGS: {
1784		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1785		r = -ENOMEM;
1786		if (!kvm_sregs)
1787			goto out;
1788		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1789		if (r)
1790			goto out;
1791		r = -EFAULT;
1792		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1793			goto out;
1794		r = 0;
1795		break;
1796	}
1797	case KVM_SET_SREGS: {
1798		kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1799		r = -ENOMEM;
1800		if (!kvm_sregs)
1801			goto out;
1802		r = -EFAULT;
1803		if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1804			goto out;
 
1805		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1806		if (r)
1807			goto out;
1808		r = 0;
1809		break;
1810	}
1811	case KVM_GET_MP_STATE: {
1812		struct kvm_mp_state mp_state;
1813
1814		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1815		if (r)
1816			goto out;
1817		r = -EFAULT;
1818		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1819			goto out;
1820		r = 0;
1821		break;
1822	}
1823	case KVM_SET_MP_STATE: {
1824		struct kvm_mp_state mp_state;
1825
1826		r = -EFAULT;
1827		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1828			goto out;
1829		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1830		if (r)
1831			goto out;
1832		r = 0;
1833		break;
1834	}
1835	case KVM_TRANSLATE: {
1836		struct kvm_translation tr;
1837
1838		r = -EFAULT;
1839		if (copy_from_user(&tr, argp, sizeof tr))
1840			goto out;
1841		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1842		if (r)
1843			goto out;
1844		r = -EFAULT;
1845		if (copy_to_user(argp, &tr, sizeof tr))
1846			goto out;
1847		r = 0;
1848		break;
1849	}
1850	case KVM_SET_GUEST_DEBUG: {
1851		struct kvm_guest_debug dbg;
1852
1853		r = -EFAULT;
1854		if (copy_from_user(&dbg, argp, sizeof dbg))
1855			goto out;
1856		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1857		if (r)
1858			goto out;
1859		r = 0;
1860		break;
1861	}
1862	case KVM_SET_SIGNAL_MASK: {
1863		struct kvm_signal_mask __user *sigmask_arg = argp;
1864		struct kvm_signal_mask kvm_sigmask;
1865		sigset_t sigset, *p;
1866
1867		p = NULL;
1868		if (argp) {
1869			r = -EFAULT;
1870			if (copy_from_user(&kvm_sigmask, argp,
1871					   sizeof kvm_sigmask))
1872				goto out;
1873			r = -EINVAL;
1874			if (kvm_sigmask.len != sizeof sigset)
1875				goto out;
1876			r = -EFAULT;
1877			if (copy_from_user(&sigset, sigmask_arg->sigset,
1878					   sizeof sigset))
1879				goto out;
1880			p = &sigset;
1881		}
1882		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1883		break;
1884	}
1885	case KVM_GET_FPU: {
1886		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1887		r = -ENOMEM;
1888		if (!fpu)
1889			goto out;
1890		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1891		if (r)
1892			goto out;
1893		r = -EFAULT;
1894		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1895			goto out;
1896		r = 0;
1897		break;
1898	}
1899	case KVM_SET_FPU: {
1900		fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1901		r = -ENOMEM;
1902		if (!fpu)
1903			goto out;
1904		r = -EFAULT;
1905		if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1906			goto out;
 
1907		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1908		if (r)
1909			goto out;
1910		r = 0;
1911		break;
1912	}
1913	default:
1914		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1915	}
1916out:
1917	vcpu_put(vcpu);
1918	kfree(fpu);
1919	kfree(kvm_sregs);
1920	return r;
1921}
1922
1923#ifdef CONFIG_COMPAT
1924static long kvm_vcpu_compat_ioctl(struct file *filp,
1925				  unsigned int ioctl, unsigned long arg)
1926{
1927	struct kvm_vcpu *vcpu = filp->private_data;
1928	void __user *argp = compat_ptr(arg);
1929	int r;
1930
1931	if (vcpu->kvm->mm != current->mm)
1932		return -EIO;
1933
1934	switch (ioctl) {
1935	case KVM_SET_SIGNAL_MASK: {
1936		struct kvm_signal_mask __user *sigmask_arg = argp;
1937		struct kvm_signal_mask kvm_sigmask;
1938		compat_sigset_t csigset;
1939		sigset_t sigset;
1940
1941		if (argp) {
1942			r = -EFAULT;
1943			if (copy_from_user(&kvm_sigmask, argp,
1944					   sizeof kvm_sigmask))
1945				goto out;
1946			r = -EINVAL;
1947			if (kvm_sigmask.len != sizeof csigset)
1948				goto out;
1949			r = -EFAULT;
1950			if (copy_from_user(&csigset, sigmask_arg->sigset,
1951					   sizeof csigset))
1952				goto out;
1953		}
1954		sigset_from_compat(&sigset, &csigset);
1955		r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1956		break;
1957	}
1958	default:
1959		r = kvm_vcpu_ioctl(filp, ioctl, arg);
1960	}
1961
1962out:
1963	return r;
1964}
1965#endif
1966
1967static long kvm_vm_ioctl(struct file *filp,
1968			   unsigned int ioctl, unsigned long arg)
1969{
1970	struct kvm *kvm = filp->private_data;
1971	void __user *argp = (void __user *)arg;
1972	int r;
1973
1974	if (kvm->mm != current->mm)
1975		return -EIO;
1976	switch (ioctl) {
1977	case KVM_CREATE_VCPU:
1978		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1979		if (r < 0)
1980			goto out;
1981		break;
1982	case KVM_SET_USER_MEMORY_REGION: {
1983		struct kvm_userspace_memory_region kvm_userspace_mem;
1984
1985		r = -EFAULT;
1986		if (copy_from_user(&kvm_userspace_mem, argp,
1987						sizeof kvm_userspace_mem))
1988			goto out;
1989
1990		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1991		if (r)
1992			goto out;
1993		break;
1994	}
1995	case KVM_GET_DIRTY_LOG: {
1996		struct kvm_dirty_log log;
1997
1998		r = -EFAULT;
1999		if (copy_from_user(&log, argp, sizeof log))
2000			goto out;
2001		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2002		if (r)
2003			goto out;
2004		break;
2005	}
2006#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2007	case KVM_REGISTER_COALESCED_MMIO: {
2008		struct kvm_coalesced_mmio_zone zone;
2009		r = -EFAULT;
2010		if (copy_from_user(&zone, argp, sizeof zone))
2011			goto out;
2012		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2013		if (r)
2014			goto out;
2015		r = 0;
2016		break;
2017	}
2018	case KVM_UNREGISTER_COALESCED_MMIO: {
2019		struct kvm_coalesced_mmio_zone zone;
2020		r = -EFAULT;
2021		if (copy_from_user(&zone, argp, sizeof zone))
2022			goto out;
2023		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2024		if (r)
2025			goto out;
2026		r = 0;
2027		break;
2028	}
2029#endif
2030	case KVM_IRQFD: {
2031		struct kvm_irqfd data;
2032
2033		r = -EFAULT;
2034		if (copy_from_user(&data, argp, sizeof data))
2035			goto out;
2036		r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2037		break;
2038	}
2039	case KVM_IOEVENTFD: {
2040		struct kvm_ioeventfd data;
2041
2042		r = -EFAULT;
2043		if (copy_from_user(&data, argp, sizeof data))
2044			goto out;
2045		r = kvm_ioeventfd(kvm, &data);
2046		break;
2047	}
2048#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2049	case KVM_SET_BOOT_CPU_ID:
2050		r = 0;
2051		mutex_lock(&kvm->lock);
2052		if (atomic_read(&kvm->online_vcpus) != 0)
2053			r = -EBUSY;
2054		else
2055			kvm->bsp_vcpu_id = arg;
2056		mutex_unlock(&kvm->lock);
2057		break;
2058#endif
 
 
 
 
 
 
 
 
 
 
 
2059	default:
2060		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2061		if (r == -ENOTTY)
2062			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2063	}
2064out:
2065	return r;
2066}
2067
2068#ifdef CONFIG_COMPAT
2069struct compat_kvm_dirty_log {
2070	__u32 slot;
2071	__u32 padding1;
2072	union {
2073		compat_uptr_t dirty_bitmap; /* one bit per page */
2074		__u64 padding2;
2075	};
2076};
2077
2078static long kvm_vm_compat_ioctl(struct file *filp,
2079			   unsigned int ioctl, unsigned long arg)
2080{
2081	struct kvm *kvm = filp->private_data;
2082	int r;
2083
2084	if (kvm->mm != current->mm)
2085		return -EIO;
2086	switch (ioctl) {
2087	case KVM_GET_DIRTY_LOG: {
2088		struct compat_kvm_dirty_log compat_log;
2089		struct kvm_dirty_log log;
2090
2091		r = -EFAULT;
2092		if (copy_from_user(&compat_log, (void __user *)arg,
2093				   sizeof(compat_log)))
2094			goto out;
2095		log.slot	 = compat_log.slot;
2096		log.padding1	 = compat_log.padding1;
2097		log.padding2	 = compat_log.padding2;
2098		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2099
2100		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2101		if (r)
2102			goto out;
2103		break;
2104	}
2105	default:
2106		r = kvm_vm_ioctl(filp, ioctl, arg);
2107	}
2108
2109out:
2110	return r;
2111}
2112#endif
2113
2114static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2115{
2116	struct page *page[1];
2117	unsigned long addr;
2118	int npages;
2119	gfn_t gfn = vmf->pgoff;
2120	struct kvm *kvm = vma->vm_file->private_data;
2121
2122	addr = gfn_to_hva(kvm, gfn);
2123	if (kvm_is_error_hva(addr))
2124		return VM_FAULT_SIGBUS;
2125
2126	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2127				NULL);
2128	if (unlikely(npages != 1))
2129		return VM_FAULT_SIGBUS;
2130
2131	vmf->page = page[0];
2132	return 0;
2133}
2134
2135static const struct vm_operations_struct kvm_vm_vm_ops = {
2136	.fault = kvm_vm_fault,
2137};
2138
2139static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2140{
2141	vma->vm_ops = &kvm_vm_vm_ops;
2142	return 0;
2143}
2144
2145static struct file_operations kvm_vm_fops = {
2146	.release        = kvm_vm_release,
2147	.unlocked_ioctl = kvm_vm_ioctl,
2148#ifdef CONFIG_COMPAT
2149	.compat_ioctl   = kvm_vm_compat_ioctl,
2150#endif
2151	.mmap           = kvm_vm_mmap,
2152	.llseek		= noop_llseek,
2153};
2154
2155static int kvm_dev_ioctl_create_vm(void)
2156{
2157	int r;
2158	struct kvm *kvm;
2159
2160	kvm = kvm_create_vm();
2161	if (IS_ERR(kvm))
2162		return PTR_ERR(kvm);
2163#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2164	r = kvm_coalesced_mmio_init(kvm);
2165	if (r < 0) {
2166		kvm_put_kvm(kvm);
2167		return r;
2168	}
2169#endif
2170	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2171	if (r < 0)
2172		kvm_put_kvm(kvm);
2173
2174	return r;
2175}
2176
2177static long kvm_dev_ioctl_check_extension_generic(long arg)
2178{
2179	switch (arg) {
2180	case KVM_CAP_USER_MEMORY:
2181	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2182	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2183#ifdef CONFIG_KVM_APIC_ARCHITECTURE
2184	case KVM_CAP_SET_BOOT_CPU_ID:
2185#endif
2186	case KVM_CAP_INTERNAL_ERROR_DATA:
 
 
 
2187		return 1;
2188#ifdef CONFIG_HAVE_KVM_IRQCHIP
2189	case KVM_CAP_IRQ_ROUTING:
2190		return KVM_MAX_IRQ_ROUTES;
2191#endif
2192	default:
2193		break;
2194	}
2195	return kvm_dev_ioctl_check_extension(arg);
2196}
2197
2198static long kvm_dev_ioctl(struct file *filp,
2199			  unsigned int ioctl, unsigned long arg)
2200{
2201	long r = -EINVAL;
2202
2203	switch (ioctl) {
2204	case KVM_GET_API_VERSION:
2205		r = -EINVAL;
2206		if (arg)
2207			goto out;
2208		r = KVM_API_VERSION;
2209		break;
2210	case KVM_CREATE_VM:
2211		r = -EINVAL;
2212		if (arg)
2213			goto out;
2214		r = kvm_dev_ioctl_create_vm();
2215		break;
2216	case KVM_CHECK_EXTENSION:
2217		r = kvm_dev_ioctl_check_extension_generic(arg);
2218		break;
2219	case KVM_GET_VCPU_MMAP_SIZE:
2220		r = -EINVAL;
2221		if (arg)
2222			goto out;
2223		r = PAGE_SIZE;     /* struct kvm_run */
2224#ifdef CONFIG_X86
2225		r += PAGE_SIZE;    /* pio data page */
2226#endif
2227#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2228		r += PAGE_SIZE;    /* coalesced mmio ring page */
2229#endif
2230		break;
2231	case KVM_TRACE_ENABLE:
2232	case KVM_TRACE_PAUSE:
2233	case KVM_TRACE_DISABLE:
2234		r = -EOPNOTSUPP;
2235		break;
2236	default:
2237		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2238	}
2239out:
2240	return r;
2241}
2242
2243static struct file_operations kvm_chardev_ops = {
2244	.unlocked_ioctl = kvm_dev_ioctl,
2245	.compat_ioctl   = kvm_dev_ioctl,
2246	.llseek		= noop_llseek,
2247};
2248
2249static struct miscdevice kvm_dev = {
2250	KVM_MINOR,
2251	"kvm",
2252	&kvm_chardev_ops,
2253};
2254
2255static void hardware_enable_nolock(void *junk)
2256{
2257	int cpu = raw_smp_processor_id();
2258	int r;
2259
2260	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2261		return;
2262
2263	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2264
2265	r = kvm_arch_hardware_enable(NULL);
2266
2267	if (r) {
2268		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2269		atomic_inc(&hardware_enable_failed);
2270		printk(KERN_INFO "kvm: enabling virtualization on "
2271				 "CPU%d failed\n", cpu);
2272	}
2273}
2274
2275static void hardware_enable(void *junk)
2276{
2277	raw_spin_lock(&kvm_lock);
2278	hardware_enable_nolock(junk);
2279	raw_spin_unlock(&kvm_lock);
2280}
2281
2282static void hardware_disable_nolock(void *junk)
2283{
2284	int cpu = raw_smp_processor_id();
2285
2286	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2287		return;
2288	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2289	kvm_arch_hardware_disable(NULL);
2290}
2291
2292static void hardware_disable(void *junk)
2293{
2294	raw_spin_lock(&kvm_lock);
2295	hardware_disable_nolock(junk);
2296	raw_spin_unlock(&kvm_lock);
2297}
2298
2299static void hardware_disable_all_nolock(void)
2300{
2301	BUG_ON(!kvm_usage_count);
2302
2303	kvm_usage_count--;
2304	if (!kvm_usage_count)
2305		on_each_cpu(hardware_disable_nolock, NULL, 1);
2306}
2307
2308static void hardware_disable_all(void)
2309{
2310	raw_spin_lock(&kvm_lock);
2311	hardware_disable_all_nolock();
2312	raw_spin_unlock(&kvm_lock);
2313}
2314
2315static int hardware_enable_all(void)
2316{
2317	int r = 0;
2318
2319	raw_spin_lock(&kvm_lock);
2320
2321	kvm_usage_count++;
2322	if (kvm_usage_count == 1) {
2323		atomic_set(&hardware_enable_failed, 0);
2324		on_each_cpu(hardware_enable_nolock, NULL, 1);
2325
2326		if (atomic_read(&hardware_enable_failed)) {
2327			hardware_disable_all_nolock();
2328			r = -EBUSY;
2329		}
2330	}
2331
2332	raw_spin_unlock(&kvm_lock);
2333
2334	return r;
2335}
2336
2337static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2338			   void *v)
2339{
2340	int cpu = (long)v;
2341
2342	if (!kvm_usage_count)
2343		return NOTIFY_OK;
2344
2345	val &= ~CPU_TASKS_FROZEN;
2346	switch (val) {
2347	case CPU_DYING:
2348		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2349		       cpu);
2350		hardware_disable(NULL);
2351		break;
2352	case CPU_STARTING:
2353		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2354		       cpu);
2355		hardware_enable(NULL);
2356		break;
2357	}
2358	return NOTIFY_OK;
2359}
2360
2361
2362asmlinkage void kvm_spurious_fault(void)
2363{
2364	/* Fault while not rebooting.  We want the trace. */
2365	BUG();
2366}
2367EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2368
2369static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2370		      void *v)
2371{
2372	/*
2373	 * Some (well, at least mine) BIOSes hang on reboot if
2374	 * in vmx root mode.
2375	 *
2376	 * And Intel TXT required VMX off for all cpu when system shutdown.
2377	 */
2378	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2379	kvm_rebooting = true;
2380	on_each_cpu(hardware_disable_nolock, NULL, 1);
2381	return NOTIFY_OK;
2382}
2383
2384static struct notifier_block kvm_reboot_notifier = {
2385	.notifier_call = kvm_reboot,
2386	.priority = 0,
2387};
2388
2389static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2390{
2391	int i;
2392
2393	for (i = 0; i < bus->dev_count; i++) {
2394		struct kvm_io_device *pos = bus->devs[i];
2395
2396		kvm_iodevice_destructor(pos);
2397	}
2398	kfree(bus);
2399}
2400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2401/* kvm_io_bus_write - called under kvm->slots_lock */
2402int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2403		     int len, const void *val)
2404{
2405	int i;
2406	struct kvm_io_bus *bus;
 
 
 
 
 
 
2407
2408	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2409	for (i = 0; i < bus->dev_count; i++)
2410		if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
 
 
 
 
 
2411			return 0;
 
 
 
2412	return -EOPNOTSUPP;
2413}
2414
2415/* kvm_io_bus_read - called under kvm->slots_lock */
2416int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2417		    int len, void *val)
2418{
2419	int i;
2420	struct kvm_io_bus *bus;
 
 
 
 
 
 
2421
2422	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2423	for (i = 0; i < bus->dev_count; i++)
2424		if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
 
 
 
 
 
2425			return 0;
 
 
 
2426	return -EOPNOTSUPP;
2427}
2428
2429/* Caller must hold slots_lock. */
2430int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2431			    struct kvm_io_device *dev)
2432{
2433	struct kvm_io_bus *new_bus, *bus;
2434
2435	bus = kvm->buses[bus_idx];
2436	if (bus->dev_count > NR_IOBUS_DEVS-1)
2437		return -ENOSPC;
2438
2439	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
 
2440	if (!new_bus)
2441		return -ENOMEM;
2442	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2443	new_bus->devs[new_bus->dev_count++] = dev;
 
2444	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2445	synchronize_srcu_expedited(&kvm->srcu);
2446	kfree(bus);
2447
2448	return 0;
2449}
2450
2451/* Caller must hold slots_lock. */
2452int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2453			      struct kvm_io_device *dev)
2454{
2455	int i, r;
2456	struct kvm_io_bus *new_bus, *bus;
2457
2458	new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2459	if (!new_bus)
2460		return -ENOMEM;
2461
2462	bus = kvm->buses[bus_idx];
2463	memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2464
2465	r = -ENOENT;
2466	for (i = 0; i < new_bus->dev_count; i++)
2467		if (new_bus->devs[i] == dev) {
2468			r = 0;
2469			new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
2470			break;
2471		}
2472
2473	if (r) {
2474		kfree(new_bus);
2475		return r;
2476	}
 
 
 
 
 
 
 
 
 
2477
2478	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2479	synchronize_srcu_expedited(&kvm->srcu);
2480	kfree(bus);
2481	return r;
2482}
2483
2484static struct notifier_block kvm_cpu_notifier = {
2485	.notifier_call = kvm_cpu_hotplug,
2486};
2487
2488static int vm_stat_get(void *_offset, u64 *val)
2489{
2490	unsigned offset = (long)_offset;
2491	struct kvm *kvm;
2492
2493	*val = 0;
2494	raw_spin_lock(&kvm_lock);
2495	list_for_each_entry(kvm, &vm_list, vm_list)
2496		*val += *(u32 *)((void *)kvm + offset);
2497	raw_spin_unlock(&kvm_lock);
2498	return 0;
2499}
2500
2501DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2502
2503static int vcpu_stat_get(void *_offset, u64 *val)
2504{
2505	unsigned offset = (long)_offset;
2506	struct kvm *kvm;
2507	struct kvm_vcpu *vcpu;
2508	int i;
2509
2510	*val = 0;
2511	raw_spin_lock(&kvm_lock);
2512	list_for_each_entry(kvm, &vm_list, vm_list)
2513		kvm_for_each_vcpu(i, vcpu, kvm)
2514			*val += *(u32 *)((void *)vcpu + offset);
2515
2516	raw_spin_unlock(&kvm_lock);
2517	return 0;
2518}
2519
2520DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2521
2522static const struct file_operations *stat_fops[] = {
2523	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2524	[KVM_STAT_VM]   = &vm_stat_fops,
2525};
2526
2527static void kvm_init_debug(void)
2528{
 
2529	struct kvm_stats_debugfs_item *p;
2530
2531	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2532	for (p = debugfs_entries; p->name; ++p)
 
 
 
2533		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2534						(void *)(long)p->offset,
2535						stat_fops[p->kind]);
 
 
 
 
 
 
 
 
 
 
2536}
2537
2538static void kvm_exit_debug(void)
2539{
2540	struct kvm_stats_debugfs_item *p;
2541
2542	for (p = debugfs_entries; p->name; ++p)
2543		debugfs_remove(p->dentry);
2544	debugfs_remove(kvm_debugfs_dir);
2545}
2546
2547static int kvm_suspend(void)
2548{
2549	if (kvm_usage_count)
2550		hardware_disable_nolock(NULL);
2551	return 0;
2552}
2553
2554static void kvm_resume(void)
2555{
2556	if (kvm_usage_count) {
2557		WARN_ON(raw_spin_is_locked(&kvm_lock));
2558		hardware_enable_nolock(NULL);
2559	}
2560}
2561
2562static struct syscore_ops kvm_syscore_ops = {
2563	.suspend = kvm_suspend,
2564	.resume = kvm_resume,
2565};
2566
2567struct page *bad_page;
2568pfn_t bad_pfn;
2569
2570static inline
2571struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2572{
2573	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2574}
2575
2576static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2577{
2578	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2579
2580	kvm_arch_vcpu_load(vcpu, cpu);
2581}
2582
2583static void kvm_sched_out(struct preempt_notifier *pn,
2584			  struct task_struct *next)
2585{
2586	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2587
2588	kvm_arch_vcpu_put(vcpu);
2589}
2590
2591int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2592		  struct module *module)
2593{
2594	int r;
2595	int cpu;
2596
2597	r = kvm_arch_init(opaque);
2598	if (r)
2599		goto out_fail;
2600
2601	bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2602
2603	if (bad_page == NULL) {
2604		r = -ENOMEM;
2605		goto out;
2606	}
2607
2608	bad_pfn = page_to_pfn(bad_page);
2609
2610	hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2611
2612	if (hwpoison_page == NULL) {
2613		r = -ENOMEM;
2614		goto out_free_0;
2615	}
2616
2617	hwpoison_pfn = page_to_pfn(hwpoison_page);
2618
2619	fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2620
2621	if (fault_page == NULL) {
2622		r = -ENOMEM;
2623		goto out_free_0;
2624	}
2625
2626	fault_pfn = page_to_pfn(fault_page);
2627
2628	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2629		r = -ENOMEM;
2630		goto out_free_0;
2631	}
2632
2633	r = kvm_arch_hardware_setup();
2634	if (r < 0)
2635		goto out_free_0a;
2636
2637	for_each_online_cpu(cpu) {
2638		smp_call_function_single(cpu,
2639				kvm_arch_check_processor_compat,
2640				&r, 1);
2641		if (r < 0)
2642			goto out_free_1;
2643	}
2644
2645	r = register_cpu_notifier(&kvm_cpu_notifier);
2646	if (r)
2647		goto out_free_2;
2648	register_reboot_notifier(&kvm_reboot_notifier);
2649
2650	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2651	if (!vcpu_align)
2652		vcpu_align = __alignof__(struct kvm_vcpu);
2653	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2654					   0, NULL);
2655	if (!kvm_vcpu_cache) {
2656		r = -ENOMEM;
2657		goto out_free_3;
2658	}
2659
2660	r = kvm_async_pf_init();
2661	if (r)
2662		goto out_free;
2663
2664	kvm_chardev_ops.owner = module;
2665	kvm_vm_fops.owner = module;
2666	kvm_vcpu_fops.owner = module;
2667
2668	r = misc_register(&kvm_dev);
2669	if (r) {
2670		printk(KERN_ERR "kvm: misc device register failed\n");
2671		goto out_unreg;
2672	}
2673
2674	register_syscore_ops(&kvm_syscore_ops);
2675
2676	kvm_preempt_ops.sched_in = kvm_sched_in;
2677	kvm_preempt_ops.sched_out = kvm_sched_out;
2678
2679	kvm_init_debug();
 
 
 
 
2680
2681	return 0;
2682
 
 
2683out_unreg:
2684	kvm_async_pf_deinit();
2685out_free:
2686	kmem_cache_destroy(kvm_vcpu_cache);
2687out_free_3:
2688	unregister_reboot_notifier(&kvm_reboot_notifier);
2689	unregister_cpu_notifier(&kvm_cpu_notifier);
2690out_free_2:
2691out_free_1:
2692	kvm_arch_hardware_unsetup();
2693out_free_0a:
2694	free_cpumask_var(cpus_hardware_enabled);
2695out_free_0:
2696	if (fault_page)
2697		__free_page(fault_page);
2698	if (hwpoison_page)
2699		__free_page(hwpoison_page);
2700	__free_page(bad_page);
2701out:
2702	kvm_arch_exit();
2703out_fail:
2704	return r;
2705}
2706EXPORT_SYMBOL_GPL(kvm_init);
2707
2708void kvm_exit(void)
2709{
2710	kvm_exit_debug();
2711	misc_deregister(&kvm_dev);
2712	kmem_cache_destroy(kvm_vcpu_cache);
2713	kvm_async_pf_deinit();
2714	unregister_syscore_ops(&kvm_syscore_ops);
2715	unregister_reboot_notifier(&kvm_reboot_notifier);
2716	unregister_cpu_notifier(&kvm_cpu_notifier);
2717	on_each_cpu(hardware_disable_nolock, NULL, 1);
2718	kvm_arch_hardware_unsetup();
2719	kvm_arch_exit();
2720	free_cpumask_var(cpus_hardware_enabled);
 
2721	__free_page(hwpoison_page);
2722	__free_page(bad_page);
2723}
2724EXPORT_SYMBOL_GPL(kvm_exit);