Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30#include <net/ip6_checksum.h>
  31#include <linux/io.h>
  32#include <linux/prefetch.h>
  33#include <linux/bitops.h>
  34#include <linux/if_vlan.h>
  35
  36char e1000_driver_name[] = "e1000";
  37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  38#define DRV_VERSION "7.3.21-k8-NAPI"
  39const char e1000_driver_version[] = DRV_VERSION;
  40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  41
  42/* e1000_pci_tbl - PCI Device ID Table
  43 *
  44 * Last entry must be all 0s
  45 *
  46 * Macro expands to...
  47 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  48 */
  49static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
  50	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  53	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  54	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  55	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  57	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  58	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  59	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  60	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  61	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  62	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  63	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  64	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  65	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  66	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  67	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  68	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  69	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  70	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  71	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  72	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  73	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  74	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  75	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  76	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  77	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  78	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  79	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  80	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  81	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  82	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  83	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  84	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  85	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  86	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  87	/* required last entry */
  88	{0,}
  89};
  90
  91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  92
  93int e1000_up(struct e1000_adapter *adapter);
  94void e1000_down(struct e1000_adapter *adapter);
  95void e1000_reinit_locked(struct e1000_adapter *adapter);
  96void e1000_reset(struct e1000_adapter *adapter);
  97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
 101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 102                             struct e1000_tx_ring *txdr);
 103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 104                             struct e1000_rx_ring *rxdr);
 105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 106                             struct e1000_tx_ring *tx_ring);
 107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 108                             struct e1000_rx_ring *rx_ring);
 109void e1000_update_stats(struct e1000_adapter *adapter);
 110
 111static int e1000_init_module(void);
 112static void e1000_exit_module(void);
 113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 114static void __devexit e1000_remove(struct pci_dev *pdev);
 115static int e1000_alloc_queues(struct e1000_adapter *adapter);
 116static int e1000_sw_init(struct e1000_adapter *adapter);
 117static int e1000_open(struct net_device *netdev);
 118static int e1000_close(struct net_device *netdev);
 119static void e1000_configure_tx(struct e1000_adapter *adapter);
 120static void e1000_configure_rx(struct e1000_adapter *adapter);
 121static void e1000_setup_rctl(struct e1000_adapter *adapter);
 122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 125                                struct e1000_tx_ring *tx_ring);
 126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 127                                struct e1000_rx_ring *rx_ring);
 128static void e1000_set_rx_mode(struct net_device *netdev);
 129static void e1000_update_phy_info_task(struct work_struct *work);
 130static void e1000_watchdog(struct work_struct *work);
 131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 133				    struct net_device *netdev);
 134static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
 135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 136static int e1000_set_mac(struct net_device *netdev, void *p);
 137static irqreturn_t e1000_intr(int irq, void *data);
 138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 139			       struct e1000_tx_ring *tx_ring);
 140static int e1000_clean(struct napi_struct *napi, int budget);
 141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 142			       struct e1000_rx_ring *rx_ring,
 143			       int *work_done, int work_to_do);
 144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 145				     struct e1000_rx_ring *rx_ring,
 146				     int *work_done, int work_to_do);
 147static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 148				   struct e1000_rx_ring *rx_ring,
 149				   int cleaned_count);
 150static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 151					 struct e1000_rx_ring *rx_ring,
 152					 int cleaned_count);
 153static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 154static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 155			   int cmd);
 156static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 157static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 158static void e1000_tx_timeout(struct net_device *dev);
 159static void e1000_reset_task(struct work_struct *work);
 160static void e1000_smartspeed(struct e1000_adapter *adapter);
 161static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 162                                       struct sk_buff *skb);
 163
 164static bool e1000_vlan_used(struct e1000_adapter *adapter);
 165static void e1000_vlan_mode(struct net_device *netdev,
 166			    netdev_features_t features);
 167static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 168				     bool filter_on);
 169static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
 170static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
 171static void e1000_restore_vlan(struct e1000_adapter *adapter);
 172
 173#ifdef CONFIG_PM
 174static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 175static int e1000_resume(struct pci_dev *pdev);
 176#endif
 177static void e1000_shutdown(struct pci_dev *pdev);
 178
 179#ifdef CONFIG_NET_POLL_CONTROLLER
 180/* for netdump / net console */
 181static void e1000_netpoll (struct net_device *netdev);
 182#endif
 183
 184#define COPYBREAK_DEFAULT 256
 185static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 186module_param(copybreak, uint, 0644);
 187MODULE_PARM_DESC(copybreak,
 188	"Maximum size of packet that is copied to a new buffer on receive");
 189
 190static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 191                     pci_channel_state_t state);
 192static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 193static void e1000_io_resume(struct pci_dev *pdev);
 194
 195static struct pci_error_handlers e1000_err_handler = {
 196	.error_detected = e1000_io_error_detected,
 197	.slot_reset = e1000_io_slot_reset,
 198	.resume = e1000_io_resume,
 199};
 200
 201static struct pci_driver e1000_driver = {
 202	.name     = e1000_driver_name,
 203	.id_table = e1000_pci_tbl,
 204	.probe    = e1000_probe,
 205	.remove   = __devexit_p(e1000_remove),
 206#ifdef CONFIG_PM
 207	/* Power Management Hooks */
 208	.suspend  = e1000_suspend,
 209	.resume   = e1000_resume,
 210#endif
 211	.shutdown = e1000_shutdown,
 212	.err_handler = &e1000_err_handler
 213};
 214
 215MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 216MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 217MODULE_LICENSE("GPL");
 218MODULE_VERSION(DRV_VERSION);
 219
 220#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 221static int debug = -1;
 222module_param(debug, int, 0);
 223MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 224
 225/**
 226 * e1000_get_hw_dev - return device
 227 * used by hardware layer to print debugging information
 228 *
 229 **/
 230struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 231{
 232	struct e1000_adapter *adapter = hw->back;
 233	return adapter->netdev;
 234}
 235
 236/**
 237 * e1000_init_module - Driver Registration Routine
 238 *
 239 * e1000_init_module is the first routine called when the driver is
 240 * loaded. All it does is register with the PCI subsystem.
 241 **/
 242
 243static int __init e1000_init_module(void)
 244{
 245	int ret;
 246	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 247
 248	pr_info("%s\n", e1000_copyright);
 249
 250	ret = pci_register_driver(&e1000_driver);
 251	if (copybreak != COPYBREAK_DEFAULT) {
 252		if (copybreak == 0)
 253			pr_info("copybreak disabled\n");
 254		else
 255			pr_info("copybreak enabled for "
 256				   "packets <= %u bytes\n", copybreak);
 257	}
 258	return ret;
 259}
 260
 261module_init(e1000_init_module);
 262
 263/**
 264 * e1000_exit_module - Driver Exit Cleanup Routine
 265 *
 266 * e1000_exit_module is called just before the driver is removed
 267 * from memory.
 268 **/
 269
 270static void __exit e1000_exit_module(void)
 271{
 272	pci_unregister_driver(&e1000_driver);
 273}
 274
 275module_exit(e1000_exit_module);
 276
 277static int e1000_request_irq(struct e1000_adapter *adapter)
 278{
 279	struct net_device *netdev = adapter->netdev;
 280	irq_handler_t handler = e1000_intr;
 281	int irq_flags = IRQF_SHARED;
 282	int err;
 283
 284	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 285	                  netdev);
 286	if (err) {
 287		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 288	}
 289
 290	return err;
 291}
 292
 293static void e1000_free_irq(struct e1000_adapter *adapter)
 294{
 295	struct net_device *netdev = adapter->netdev;
 296
 297	free_irq(adapter->pdev->irq, netdev);
 298}
 299
 300/**
 301 * e1000_irq_disable - Mask off interrupt generation on the NIC
 302 * @adapter: board private structure
 303 **/
 304
 305static void e1000_irq_disable(struct e1000_adapter *adapter)
 306{
 307	struct e1000_hw *hw = &adapter->hw;
 308
 309	ew32(IMC, ~0);
 310	E1000_WRITE_FLUSH();
 311	synchronize_irq(adapter->pdev->irq);
 312}
 313
 314/**
 315 * e1000_irq_enable - Enable default interrupt generation settings
 316 * @adapter: board private structure
 317 **/
 318
 319static void e1000_irq_enable(struct e1000_adapter *adapter)
 320{
 321	struct e1000_hw *hw = &adapter->hw;
 322
 323	ew32(IMS, IMS_ENABLE_MASK);
 324	E1000_WRITE_FLUSH();
 325}
 326
 327static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 328{
 329	struct e1000_hw *hw = &adapter->hw;
 330	struct net_device *netdev = adapter->netdev;
 331	u16 vid = hw->mng_cookie.vlan_id;
 332	u16 old_vid = adapter->mng_vlan_id;
 333
 334	if (!e1000_vlan_used(adapter))
 335		return;
 336
 337	if (!test_bit(vid, adapter->active_vlans)) {
 338		if (hw->mng_cookie.status &
 339		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 340			e1000_vlan_rx_add_vid(netdev, vid);
 341			adapter->mng_vlan_id = vid;
 342		} else {
 343			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 344		}
 345		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 346		    (vid != old_vid) &&
 347		    !test_bit(old_vid, adapter->active_vlans))
 348			e1000_vlan_rx_kill_vid(netdev, old_vid);
 349	} else {
 350		adapter->mng_vlan_id = vid;
 351	}
 352}
 353
 354static void e1000_init_manageability(struct e1000_adapter *adapter)
 355{
 356	struct e1000_hw *hw = &adapter->hw;
 357
 358	if (adapter->en_mng_pt) {
 359		u32 manc = er32(MANC);
 360
 361		/* disable hardware interception of ARP */
 362		manc &= ~(E1000_MANC_ARP_EN);
 363
 364		ew32(MANC, manc);
 365	}
 366}
 367
 368static void e1000_release_manageability(struct e1000_adapter *adapter)
 369{
 370	struct e1000_hw *hw = &adapter->hw;
 371
 372	if (adapter->en_mng_pt) {
 373		u32 manc = er32(MANC);
 374
 375		/* re-enable hardware interception of ARP */
 376		manc |= E1000_MANC_ARP_EN;
 377
 378		ew32(MANC, manc);
 379	}
 380}
 381
 382/**
 383 * e1000_configure - configure the hardware for RX and TX
 384 * @adapter = private board structure
 385 **/
 386static void e1000_configure(struct e1000_adapter *adapter)
 387{
 388	struct net_device *netdev = adapter->netdev;
 389	int i;
 390
 391	e1000_set_rx_mode(netdev);
 392
 393	e1000_restore_vlan(adapter);
 394	e1000_init_manageability(adapter);
 395
 396	e1000_configure_tx(adapter);
 397	e1000_setup_rctl(adapter);
 398	e1000_configure_rx(adapter);
 399	/* call E1000_DESC_UNUSED which always leaves
 400	 * at least 1 descriptor unused to make sure
 401	 * next_to_use != next_to_clean */
 402	for (i = 0; i < adapter->num_rx_queues; i++) {
 403		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 404		adapter->alloc_rx_buf(adapter, ring,
 405		                      E1000_DESC_UNUSED(ring));
 406	}
 407}
 408
 409int e1000_up(struct e1000_adapter *adapter)
 410{
 411	struct e1000_hw *hw = &adapter->hw;
 412
 413	/* hardware has been reset, we need to reload some things */
 414	e1000_configure(adapter);
 415
 416	clear_bit(__E1000_DOWN, &adapter->flags);
 417
 418	napi_enable(&adapter->napi);
 419
 420	e1000_irq_enable(adapter);
 421
 422	netif_wake_queue(adapter->netdev);
 423
 424	/* fire a link change interrupt to start the watchdog */
 425	ew32(ICS, E1000_ICS_LSC);
 426	return 0;
 427}
 428
 429/**
 430 * e1000_power_up_phy - restore link in case the phy was powered down
 431 * @adapter: address of board private structure
 432 *
 433 * The phy may be powered down to save power and turn off link when the
 434 * driver is unloaded and wake on lan is not enabled (among others)
 435 * *** this routine MUST be followed by a call to e1000_reset ***
 436 *
 437 **/
 438
 439void e1000_power_up_phy(struct e1000_adapter *adapter)
 440{
 441	struct e1000_hw *hw = &adapter->hw;
 442	u16 mii_reg = 0;
 443
 444	/* Just clear the power down bit to wake the phy back up */
 445	if (hw->media_type == e1000_media_type_copper) {
 446		/* according to the manual, the phy will retain its
 447		 * settings across a power-down/up cycle */
 448		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 449		mii_reg &= ~MII_CR_POWER_DOWN;
 450		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 451	}
 452}
 453
 454static void e1000_power_down_phy(struct e1000_adapter *adapter)
 455{
 456	struct e1000_hw *hw = &adapter->hw;
 457
 458	/* Power down the PHY so no link is implied when interface is down *
 459	 * The PHY cannot be powered down if any of the following is true *
 460	 * (a) WoL is enabled
 461	 * (b) AMT is active
 462	 * (c) SoL/IDER session is active */
 463	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 464	   hw->media_type == e1000_media_type_copper) {
 465		u16 mii_reg = 0;
 466
 467		switch (hw->mac_type) {
 468		case e1000_82540:
 469		case e1000_82545:
 470		case e1000_82545_rev_3:
 471		case e1000_82546:
 472		case e1000_ce4100:
 473		case e1000_82546_rev_3:
 474		case e1000_82541:
 475		case e1000_82541_rev_2:
 476		case e1000_82547:
 477		case e1000_82547_rev_2:
 478			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 479				goto out;
 480			break;
 481		default:
 482			goto out;
 483		}
 484		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 485		mii_reg |= MII_CR_POWER_DOWN;
 486		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 487		msleep(1);
 488	}
 489out:
 490	return;
 491}
 492
 493static void e1000_down_and_stop(struct e1000_adapter *adapter)
 494{
 495	set_bit(__E1000_DOWN, &adapter->flags);
 496
 497	/* Only kill reset task if adapter is not resetting */
 498	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 499		cancel_work_sync(&adapter->reset_task);
 500
 501	cancel_delayed_work_sync(&adapter->watchdog_task);
 502	cancel_delayed_work_sync(&adapter->phy_info_task);
 503	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 504}
 505
 506void e1000_down(struct e1000_adapter *adapter)
 507{
 508	struct e1000_hw *hw = &adapter->hw;
 509	struct net_device *netdev = adapter->netdev;
 510	u32 rctl, tctl;
 511
 512
 513	/* disable receives in the hardware */
 514	rctl = er32(RCTL);
 515	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 516	/* flush and sleep below */
 517
 518	netif_tx_disable(netdev);
 519
 520	/* disable transmits in the hardware */
 521	tctl = er32(TCTL);
 522	tctl &= ~E1000_TCTL_EN;
 523	ew32(TCTL, tctl);
 524	/* flush both disables and wait for them to finish */
 525	E1000_WRITE_FLUSH();
 526	msleep(10);
 527
 528	napi_disable(&adapter->napi);
 529
 530	e1000_irq_disable(adapter);
 531
 532	/*
 533	 * Setting DOWN must be after irq_disable to prevent
 534	 * a screaming interrupt.  Setting DOWN also prevents
 535	 * tasks from rescheduling.
 536	 */
 537	e1000_down_and_stop(adapter);
 538
 539	adapter->link_speed = 0;
 540	adapter->link_duplex = 0;
 541	netif_carrier_off(netdev);
 542
 543	e1000_reset(adapter);
 544	e1000_clean_all_tx_rings(adapter);
 545	e1000_clean_all_rx_rings(adapter);
 546}
 547
 548static void e1000_reinit_safe(struct e1000_adapter *adapter)
 549{
 550	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 551		msleep(1);
 552	mutex_lock(&adapter->mutex);
 553	e1000_down(adapter);
 554	e1000_up(adapter);
 555	mutex_unlock(&adapter->mutex);
 556	clear_bit(__E1000_RESETTING, &adapter->flags);
 557}
 558
 559void e1000_reinit_locked(struct e1000_adapter *adapter)
 560{
 561	/* if rtnl_lock is not held the call path is bogus */
 562	ASSERT_RTNL();
 563	WARN_ON(in_interrupt());
 564	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 565		msleep(1);
 566	e1000_down(adapter);
 567	e1000_up(adapter);
 568	clear_bit(__E1000_RESETTING, &adapter->flags);
 569}
 570
 571void e1000_reset(struct e1000_adapter *adapter)
 572{
 573	struct e1000_hw *hw = &adapter->hw;
 574	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 575	bool legacy_pba_adjust = false;
 576	u16 hwm;
 577
 578	/* Repartition Pba for greater than 9k mtu
 579	 * To take effect CTRL.RST is required.
 580	 */
 581
 582	switch (hw->mac_type) {
 583	case e1000_82542_rev2_0:
 584	case e1000_82542_rev2_1:
 585	case e1000_82543:
 586	case e1000_82544:
 587	case e1000_82540:
 588	case e1000_82541:
 589	case e1000_82541_rev_2:
 590		legacy_pba_adjust = true;
 591		pba = E1000_PBA_48K;
 592		break;
 593	case e1000_82545:
 594	case e1000_82545_rev_3:
 595	case e1000_82546:
 596	case e1000_ce4100:
 597	case e1000_82546_rev_3:
 598		pba = E1000_PBA_48K;
 599		break;
 600	case e1000_82547:
 601	case e1000_82547_rev_2:
 602		legacy_pba_adjust = true;
 603		pba = E1000_PBA_30K;
 604		break;
 605	case e1000_undefined:
 606	case e1000_num_macs:
 607		break;
 608	}
 609
 610	if (legacy_pba_adjust) {
 611		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 612			pba -= 8; /* allocate more FIFO for Tx */
 613
 614		if (hw->mac_type == e1000_82547) {
 615			adapter->tx_fifo_head = 0;
 616			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 617			adapter->tx_fifo_size =
 618				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 619			atomic_set(&adapter->tx_fifo_stall, 0);
 620		}
 621	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 622		/* adjust PBA for jumbo frames */
 623		ew32(PBA, pba);
 624
 625		/* To maintain wire speed transmits, the Tx FIFO should be
 626		 * large enough to accommodate two full transmit packets,
 627		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 628		 * the Rx FIFO should be large enough to accommodate at least
 629		 * one full receive packet and is similarly rounded up and
 630		 * expressed in KB. */
 631		pba = er32(PBA);
 632		/* upper 16 bits has Tx packet buffer allocation size in KB */
 633		tx_space = pba >> 16;
 634		/* lower 16 bits has Rx packet buffer allocation size in KB */
 635		pba &= 0xffff;
 636		/*
 637		 * the tx fifo also stores 16 bytes of information about the tx
 638		 * but don't include ethernet FCS because hardware appends it
 639		 */
 640		min_tx_space = (hw->max_frame_size +
 641		                sizeof(struct e1000_tx_desc) -
 642		                ETH_FCS_LEN) * 2;
 643		min_tx_space = ALIGN(min_tx_space, 1024);
 644		min_tx_space >>= 10;
 645		/* software strips receive CRC, so leave room for it */
 646		min_rx_space = hw->max_frame_size;
 647		min_rx_space = ALIGN(min_rx_space, 1024);
 648		min_rx_space >>= 10;
 649
 650		/* If current Tx allocation is less than the min Tx FIFO size,
 651		 * and the min Tx FIFO size is less than the current Rx FIFO
 652		 * allocation, take space away from current Rx allocation */
 653		if (tx_space < min_tx_space &&
 654		    ((min_tx_space - tx_space) < pba)) {
 655			pba = pba - (min_tx_space - tx_space);
 656
 657			/* PCI/PCIx hardware has PBA alignment constraints */
 658			switch (hw->mac_type) {
 659			case e1000_82545 ... e1000_82546_rev_3:
 660				pba &= ~(E1000_PBA_8K - 1);
 661				break;
 662			default:
 663				break;
 664			}
 665
 666			/* if short on rx space, rx wins and must trump tx
 667			 * adjustment or use Early Receive if available */
 668			if (pba < min_rx_space)
 669				pba = min_rx_space;
 670		}
 671	}
 672
 673	ew32(PBA, pba);
 674
 675	/*
 676	 * flow control settings:
 677	 * The high water mark must be low enough to fit one full frame
 678	 * (or the size used for early receive) above it in the Rx FIFO.
 679	 * Set it to the lower of:
 680	 * - 90% of the Rx FIFO size, and
 681	 * - the full Rx FIFO size minus the early receive size (for parts
 682	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 683	 * - the full Rx FIFO size minus one full frame
 684	 */
 685	hwm = min(((pba << 10) * 9 / 10),
 686		  ((pba << 10) - hw->max_frame_size));
 687
 688	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 689	hw->fc_low_water = hw->fc_high_water - 8;
 690	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 691	hw->fc_send_xon = 1;
 692	hw->fc = hw->original_fc;
 693
 694	/* Allow time for pending master requests to run */
 695	e1000_reset_hw(hw);
 696	if (hw->mac_type >= e1000_82544)
 697		ew32(WUC, 0);
 698
 699	if (e1000_init_hw(hw))
 700		e_dev_err("Hardware Error\n");
 701	e1000_update_mng_vlan(adapter);
 702
 703	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 704	if (hw->mac_type >= e1000_82544 &&
 705	    hw->autoneg == 1 &&
 706	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 707		u32 ctrl = er32(CTRL);
 708		/* clear phy power management bit if we are in gig only mode,
 709		 * which if enabled will attempt negotiation to 100Mb, which
 710		 * can cause a loss of link at power off or driver unload */
 711		ctrl &= ~E1000_CTRL_SWDPIN3;
 712		ew32(CTRL, ctrl);
 713	}
 714
 715	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 716	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 717
 718	e1000_reset_adaptive(hw);
 719	e1000_phy_get_info(hw, &adapter->phy_info);
 720
 721	e1000_release_manageability(adapter);
 722}
 723
 724/**
 725 *  Dump the eeprom for users having checksum issues
 726 **/
 727static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 728{
 729	struct net_device *netdev = adapter->netdev;
 730	struct ethtool_eeprom eeprom;
 731	const struct ethtool_ops *ops = netdev->ethtool_ops;
 732	u8 *data;
 733	int i;
 734	u16 csum_old, csum_new = 0;
 735
 736	eeprom.len = ops->get_eeprom_len(netdev);
 737	eeprom.offset = 0;
 738
 739	data = kmalloc(eeprom.len, GFP_KERNEL);
 740	if (!data)
 741		return;
 742
 743	ops->get_eeprom(netdev, &eeprom, data);
 744
 745	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 746		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 747	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 748		csum_new += data[i] + (data[i + 1] << 8);
 749	csum_new = EEPROM_SUM - csum_new;
 750
 751	pr_err("/*********************/\n");
 752	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 753	pr_err("Calculated              : 0x%04x\n", csum_new);
 754
 755	pr_err("Offset    Values\n");
 756	pr_err("========  ======\n");
 757	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 758
 759	pr_err("Include this output when contacting your support provider.\n");
 760	pr_err("This is not a software error! Something bad happened to\n");
 761	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 762	pr_err("result in further problems, possibly loss of data,\n");
 763	pr_err("corruption or system hangs!\n");
 764	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 765	pr_err("which is invalid and requires you to set the proper MAC\n");
 766	pr_err("address manually before continuing to enable this network\n");
 767	pr_err("device. Please inspect the EEPROM dump and report the\n");
 768	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 769	pr_err("/*********************/\n");
 770
 771	kfree(data);
 772}
 773
 774/**
 775 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 776 * @pdev: PCI device information struct
 777 *
 778 * Return true if an adapter needs ioport resources
 779 **/
 780static int e1000_is_need_ioport(struct pci_dev *pdev)
 781{
 782	switch (pdev->device) {
 783	case E1000_DEV_ID_82540EM:
 784	case E1000_DEV_ID_82540EM_LOM:
 785	case E1000_DEV_ID_82540EP:
 786	case E1000_DEV_ID_82540EP_LOM:
 787	case E1000_DEV_ID_82540EP_LP:
 788	case E1000_DEV_ID_82541EI:
 789	case E1000_DEV_ID_82541EI_MOBILE:
 790	case E1000_DEV_ID_82541ER:
 791	case E1000_DEV_ID_82541ER_LOM:
 792	case E1000_DEV_ID_82541GI:
 793	case E1000_DEV_ID_82541GI_LF:
 794	case E1000_DEV_ID_82541GI_MOBILE:
 795	case E1000_DEV_ID_82544EI_COPPER:
 796	case E1000_DEV_ID_82544EI_FIBER:
 797	case E1000_DEV_ID_82544GC_COPPER:
 798	case E1000_DEV_ID_82544GC_LOM:
 799	case E1000_DEV_ID_82545EM_COPPER:
 800	case E1000_DEV_ID_82545EM_FIBER:
 801	case E1000_DEV_ID_82546EB_COPPER:
 802	case E1000_DEV_ID_82546EB_FIBER:
 803	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 804		return true;
 805	default:
 806		return false;
 807	}
 808}
 809
 810static netdev_features_t e1000_fix_features(struct net_device *netdev,
 811	netdev_features_t features)
 812{
 813	/*
 814	 * Since there is no support for separate rx/tx vlan accel
 815	 * enable/disable make sure tx flag is always in same state as rx.
 816	 */
 817	if (features & NETIF_F_HW_VLAN_RX)
 818		features |= NETIF_F_HW_VLAN_TX;
 819	else
 820		features &= ~NETIF_F_HW_VLAN_TX;
 821
 822	return features;
 823}
 824
 825static int e1000_set_features(struct net_device *netdev,
 826	netdev_features_t features)
 827{
 828	struct e1000_adapter *adapter = netdev_priv(netdev);
 829	netdev_features_t changed = features ^ netdev->features;
 830
 831	if (changed & NETIF_F_HW_VLAN_RX)
 832		e1000_vlan_mode(netdev, features);
 833
 834	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 835		return 0;
 836
 837	netdev->features = features;
 838	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 839
 840	if (netif_running(netdev))
 841		e1000_reinit_locked(adapter);
 842	else
 843		e1000_reset(adapter);
 844
 845	return 0;
 846}
 847
 848static const struct net_device_ops e1000_netdev_ops = {
 849	.ndo_open		= e1000_open,
 850	.ndo_stop		= e1000_close,
 851	.ndo_start_xmit		= e1000_xmit_frame,
 852	.ndo_get_stats		= e1000_get_stats,
 853	.ndo_set_rx_mode	= e1000_set_rx_mode,
 854	.ndo_set_mac_address	= e1000_set_mac,
 855	.ndo_tx_timeout		= e1000_tx_timeout,
 856	.ndo_change_mtu		= e1000_change_mtu,
 857	.ndo_do_ioctl		= e1000_ioctl,
 858	.ndo_validate_addr	= eth_validate_addr,
 859	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 860	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 861#ifdef CONFIG_NET_POLL_CONTROLLER
 862	.ndo_poll_controller	= e1000_netpoll,
 863#endif
 864	.ndo_fix_features	= e1000_fix_features,
 865	.ndo_set_features	= e1000_set_features,
 866};
 867
 868/**
 869 * e1000_init_hw_struct - initialize members of hw struct
 870 * @adapter: board private struct
 871 * @hw: structure used by e1000_hw.c
 872 *
 873 * Factors out initialization of the e1000_hw struct to its own function
 874 * that can be called very early at init (just after struct allocation).
 875 * Fields are initialized based on PCI device information and
 876 * OS network device settings (MTU size).
 877 * Returns negative error codes if MAC type setup fails.
 878 */
 879static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 880				struct e1000_hw *hw)
 881{
 882	struct pci_dev *pdev = adapter->pdev;
 883
 884	/* PCI config space info */
 885	hw->vendor_id = pdev->vendor;
 886	hw->device_id = pdev->device;
 887	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 888	hw->subsystem_id = pdev->subsystem_device;
 889	hw->revision_id = pdev->revision;
 890
 891	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 892
 893	hw->max_frame_size = adapter->netdev->mtu +
 894			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 895	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 896
 897	/* identify the MAC */
 898	if (e1000_set_mac_type(hw)) {
 899		e_err(probe, "Unknown MAC Type\n");
 900		return -EIO;
 901	}
 902
 903	switch (hw->mac_type) {
 904	default:
 905		break;
 906	case e1000_82541:
 907	case e1000_82547:
 908	case e1000_82541_rev_2:
 909	case e1000_82547_rev_2:
 910		hw->phy_init_script = 1;
 911		break;
 912	}
 913
 914	e1000_set_media_type(hw);
 915	e1000_get_bus_info(hw);
 916
 917	hw->wait_autoneg_complete = false;
 918	hw->tbi_compatibility_en = true;
 919	hw->adaptive_ifs = true;
 920
 921	/* Copper options */
 922
 923	if (hw->media_type == e1000_media_type_copper) {
 924		hw->mdix = AUTO_ALL_MODES;
 925		hw->disable_polarity_correction = false;
 926		hw->master_slave = E1000_MASTER_SLAVE;
 927	}
 928
 929	return 0;
 930}
 931
 932/**
 933 * e1000_probe - Device Initialization Routine
 934 * @pdev: PCI device information struct
 935 * @ent: entry in e1000_pci_tbl
 936 *
 937 * Returns 0 on success, negative on failure
 938 *
 939 * e1000_probe initializes an adapter identified by a pci_dev structure.
 940 * The OS initialization, configuring of the adapter private structure,
 941 * and a hardware reset occur.
 942 **/
 943static int __devinit e1000_probe(struct pci_dev *pdev,
 944				 const struct pci_device_id *ent)
 945{
 946	struct net_device *netdev;
 947	struct e1000_adapter *adapter;
 948	struct e1000_hw *hw;
 949
 950	static int cards_found = 0;
 951	static int global_quad_port_a = 0; /* global ksp3 port a indication */
 952	int i, err, pci_using_dac;
 953	u16 eeprom_data = 0;
 954	u16 tmp = 0;
 955	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 956	int bars, need_ioport;
 957
 958	/* do not allocate ioport bars when not needed */
 959	need_ioport = e1000_is_need_ioport(pdev);
 960	if (need_ioport) {
 961		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 962		err = pci_enable_device(pdev);
 963	} else {
 964		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 965		err = pci_enable_device_mem(pdev);
 966	}
 967	if (err)
 968		return err;
 969
 970	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 971	if (err)
 972		goto err_pci_reg;
 973
 974	pci_set_master(pdev);
 975	err = pci_save_state(pdev);
 976	if (err)
 977		goto err_alloc_etherdev;
 978
 979	err = -ENOMEM;
 980	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 981	if (!netdev)
 982		goto err_alloc_etherdev;
 983
 984	SET_NETDEV_DEV(netdev, &pdev->dev);
 985
 986	pci_set_drvdata(pdev, netdev);
 987	adapter = netdev_priv(netdev);
 988	adapter->netdev = netdev;
 989	adapter->pdev = pdev;
 990	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 991	adapter->bars = bars;
 992	adapter->need_ioport = need_ioport;
 993
 994	hw = &adapter->hw;
 995	hw->back = adapter;
 996
 997	err = -EIO;
 998	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 999	if (!hw->hw_addr)
1000		goto err_ioremap;
1001
1002	if (adapter->need_ioport) {
1003		for (i = BAR_1; i <= BAR_5; i++) {
1004			if (pci_resource_len(pdev, i) == 0)
1005				continue;
1006			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1007				hw->io_base = pci_resource_start(pdev, i);
1008				break;
1009			}
1010		}
1011	}
1012
1013	/* make ready for any if (hw->...) below */
1014	err = e1000_init_hw_struct(adapter, hw);
1015	if (err)
1016		goto err_sw_init;
1017
1018	/*
1019	 * there is a workaround being applied below that limits
1020	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1021	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1022	 */
1023	pci_using_dac = 0;
1024	if ((hw->bus_type == e1000_bus_type_pcix) &&
1025	    !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1026		/*
1027		 * according to DMA-API-HOWTO, coherent calls will always
1028		 * succeed if the set call did
1029		 */
1030		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1031		pci_using_dac = 1;
1032	} else {
1033		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1034		if (err) {
1035			pr_err("No usable DMA config, aborting\n");
1036			goto err_dma;
1037		}
1038		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1039	}
1040
1041	netdev->netdev_ops = &e1000_netdev_ops;
1042	e1000_set_ethtool_ops(netdev);
1043	netdev->watchdog_timeo = 5 * HZ;
1044	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1045
1046	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1047
1048	adapter->bd_number = cards_found;
1049
1050	/* setup the private structure */
1051
1052	err = e1000_sw_init(adapter);
1053	if (err)
1054		goto err_sw_init;
1055
1056	err = -EIO;
1057	if (hw->mac_type == e1000_ce4100) {
1058		hw->ce4100_gbe_mdio_base_virt =
1059					ioremap(pci_resource_start(pdev, BAR_1),
1060		                                pci_resource_len(pdev, BAR_1));
1061
1062		if (!hw->ce4100_gbe_mdio_base_virt)
1063			goto err_mdio_ioremap;
1064	}
1065
1066	if (hw->mac_type >= e1000_82543) {
1067		netdev->hw_features = NETIF_F_SG |
1068				   NETIF_F_HW_CSUM |
1069				   NETIF_F_HW_VLAN_RX;
1070		netdev->features = NETIF_F_HW_VLAN_TX |
1071				   NETIF_F_HW_VLAN_FILTER;
1072	}
1073
1074	if ((hw->mac_type >= e1000_82544) &&
1075	   (hw->mac_type != e1000_82547))
1076		netdev->hw_features |= NETIF_F_TSO;
1077
1078	netdev->priv_flags |= IFF_SUPP_NOFCS;
1079
1080	netdev->features |= netdev->hw_features;
1081	netdev->hw_features |= NETIF_F_RXCSUM;
1082	netdev->hw_features |= NETIF_F_RXALL;
1083	netdev->hw_features |= NETIF_F_RXFCS;
1084
1085	if (pci_using_dac) {
1086		netdev->features |= NETIF_F_HIGHDMA;
1087		netdev->vlan_features |= NETIF_F_HIGHDMA;
1088	}
1089
1090	netdev->vlan_features |= NETIF_F_TSO;
1091	netdev->vlan_features |= NETIF_F_HW_CSUM;
1092	netdev->vlan_features |= NETIF_F_SG;
1093
1094	netdev->priv_flags |= IFF_UNICAST_FLT;
1095
1096	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1097
1098	/* initialize eeprom parameters */
1099	if (e1000_init_eeprom_params(hw)) {
1100		e_err(probe, "EEPROM initialization failed\n");
1101		goto err_eeprom;
1102	}
1103
1104	/* before reading the EEPROM, reset the controller to
1105	 * put the device in a known good starting state */
1106
1107	e1000_reset_hw(hw);
1108
1109	/* make sure the EEPROM is good */
1110	if (e1000_validate_eeprom_checksum(hw) < 0) {
1111		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1112		e1000_dump_eeprom(adapter);
1113		/*
1114		 * set MAC address to all zeroes to invalidate and temporary
1115		 * disable this device for the user. This blocks regular
1116		 * traffic while still permitting ethtool ioctls from reaching
1117		 * the hardware as well as allowing the user to run the
1118		 * interface after manually setting a hw addr using
1119		 * `ip set address`
1120		 */
1121		memset(hw->mac_addr, 0, netdev->addr_len);
1122	} else {
1123		/* copy the MAC address out of the EEPROM */
1124		if (e1000_read_mac_addr(hw))
1125			e_err(probe, "EEPROM Read Error\n");
1126	}
1127	/* don't block initalization here due to bad MAC address */
1128	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1129	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1130
1131	if (!is_valid_ether_addr(netdev->perm_addr))
1132		e_err(probe, "Invalid MAC Address\n");
1133
1134
1135	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1136	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1137			  e1000_82547_tx_fifo_stall_task);
1138	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1139	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1140
1141	e1000_check_options(adapter);
1142
1143	/* Initial Wake on LAN setting
1144	 * If APM wake is enabled in the EEPROM,
1145	 * enable the ACPI Magic Packet filter
1146	 */
1147
1148	switch (hw->mac_type) {
1149	case e1000_82542_rev2_0:
1150	case e1000_82542_rev2_1:
1151	case e1000_82543:
1152		break;
1153	case e1000_82544:
1154		e1000_read_eeprom(hw,
1155			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1156		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1157		break;
1158	case e1000_82546:
1159	case e1000_82546_rev_3:
1160		if (er32(STATUS) & E1000_STATUS_FUNC_1){
1161			e1000_read_eeprom(hw,
1162				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1163			break;
1164		}
1165		/* Fall Through */
1166	default:
1167		e1000_read_eeprom(hw,
1168			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1169		break;
1170	}
1171	if (eeprom_data & eeprom_apme_mask)
1172		adapter->eeprom_wol |= E1000_WUFC_MAG;
1173
1174	/* now that we have the eeprom settings, apply the special cases
1175	 * where the eeprom may be wrong or the board simply won't support
1176	 * wake on lan on a particular port */
1177	switch (pdev->device) {
1178	case E1000_DEV_ID_82546GB_PCIE:
1179		adapter->eeprom_wol = 0;
1180		break;
1181	case E1000_DEV_ID_82546EB_FIBER:
1182	case E1000_DEV_ID_82546GB_FIBER:
1183		/* Wake events only supported on port A for dual fiber
1184		 * regardless of eeprom setting */
1185		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1186			adapter->eeprom_wol = 0;
1187		break;
1188	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1189		/* if quad port adapter, disable WoL on all but port A */
1190		if (global_quad_port_a != 0)
1191			adapter->eeprom_wol = 0;
1192		else
1193			adapter->quad_port_a = true;
1194		/* Reset for multiple quad port adapters */
1195		if (++global_quad_port_a == 4)
1196			global_quad_port_a = 0;
1197		break;
1198	}
1199
1200	/* initialize the wol settings based on the eeprom settings */
1201	adapter->wol = adapter->eeprom_wol;
1202	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1203
1204	/* Auto detect PHY address */
1205	if (hw->mac_type == e1000_ce4100) {
1206		for (i = 0; i < 32; i++) {
1207			hw->phy_addr = i;
1208			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1209			if (tmp == 0 || tmp == 0xFF) {
1210				if (i == 31)
1211					goto err_eeprom;
1212				continue;
1213			} else
1214				break;
1215		}
1216	}
1217
1218	/* reset the hardware with the new settings */
1219	e1000_reset(adapter);
1220
1221	strcpy(netdev->name, "eth%d");
1222	err = register_netdev(netdev);
1223	if (err)
1224		goto err_register;
1225
1226	e1000_vlan_filter_on_off(adapter, false);
1227
1228	/* print bus type/speed/width info */
1229	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1230	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1231	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1232		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1233		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1234		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1235	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1236	       netdev->dev_addr);
1237
1238	/* carrier off reporting is important to ethtool even BEFORE open */
1239	netif_carrier_off(netdev);
1240
1241	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1242
1243	cards_found++;
1244	return 0;
1245
1246err_register:
1247err_eeprom:
1248	e1000_phy_hw_reset(hw);
1249
1250	if (hw->flash_address)
1251		iounmap(hw->flash_address);
1252	kfree(adapter->tx_ring);
1253	kfree(adapter->rx_ring);
1254err_dma:
1255err_sw_init:
1256err_mdio_ioremap:
1257	iounmap(hw->ce4100_gbe_mdio_base_virt);
1258	iounmap(hw->hw_addr);
1259err_ioremap:
1260	free_netdev(netdev);
1261err_alloc_etherdev:
1262	pci_release_selected_regions(pdev, bars);
1263err_pci_reg:
1264	pci_disable_device(pdev);
1265	return err;
1266}
1267
1268/**
1269 * e1000_remove - Device Removal Routine
1270 * @pdev: PCI device information struct
1271 *
1272 * e1000_remove is called by the PCI subsystem to alert the driver
1273 * that it should release a PCI device.  The could be caused by a
1274 * Hot-Plug event, or because the driver is going to be removed from
1275 * memory.
1276 **/
1277
1278static void __devexit e1000_remove(struct pci_dev *pdev)
1279{
1280	struct net_device *netdev = pci_get_drvdata(pdev);
1281	struct e1000_adapter *adapter = netdev_priv(netdev);
1282	struct e1000_hw *hw = &adapter->hw;
1283
1284	e1000_down_and_stop(adapter);
1285	e1000_release_manageability(adapter);
1286
1287	unregister_netdev(netdev);
1288
1289	e1000_phy_hw_reset(hw);
1290
1291	kfree(adapter->tx_ring);
1292	kfree(adapter->rx_ring);
1293
1294	if (hw->mac_type == e1000_ce4100)
1295		iounmap(hw->ce4100_gbe_mdio_base_virt);
1296	iounmap(hw->hw_addr);
1297	if (hw->flash_address)
1298		iounmap(hw->flash_address);
1299	pci_release_selected_regions(pdev, adapter->bars);
1300
1301	free_netdev(netdev);
1302
1303	pci_disable_device(pdev);
1304}
1305
1306/**
1307 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1308 * @adapter: board private structure to initialize
1309 *
1310 * e1000_sw_init initializes the Adapter private data structure.
1311 * e1000_init_hw_struct MUST be called before this function
1312 **/
1313
1314static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1315{
1316	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1317
1318	adapter->num_tx_queues = 1;
1319	adapter->num_rx_queues = 1;
1320
1321	if (e1000_alloc_queues(adapter)) {
1322		e_err(probe, "Unable to allocate memory for queues\n");
1323		return -ENOMEM;
1324	}
1325
1326	/* Explicitly disable IRQ since the NIC can be in any state. */
1327	e1000_irq_disable(adapter);
1328
1329	spin_lock_init(&adapter->stats_lock);
1330	mutex_init(&adapter->mutex);
1331
1332	set_bit(__E1000_DOWN, &adapter->flags);
1333
1334	return 0;
1335}
1336
1337/**
1338 * e1000_alloc_queues - Allocate memory for all rings
1339 * @adapter: board private structure to initialize
1340 *
1341 * We allocate one ring per queue at run-time since we don't know the
1342 * number of queues at compile-time.
1343 **/
1344
1345static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1346{
1347	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1348	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
1349	if (!adapter->tx_ring)
1350		return -ENOMEM;
1351
1352	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1353	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
1354	if (!adapter->rx_ring) {
1355		kfree(adapter->tx_ring);
1356		return -ENOMEM;
1357	}
1358
1359	return E1000_SUCCESS;
1360}
1361
1362/**
1363 * e1000_open - Called when a network interface is made active
1364 * @netdev: network interface device structure
1365 *
1366 * Returns 0 on success, negative value on failure
1367 *
1368 * The open entry point is called when a network interface is made
1369 * active by the system (IFF_UP).  At this point all resources needed
1370 * for transmit and receive operations are allocated, the interrupt
1371 * handler is registered with the OS, the watchdog task is started,
1372 * and the stack is notified that the interface is ready.
1373 **/
1374
1375static int e1000_open(struct net_device *netdev)
1376{
1377	struct e1000_adapter *adapter = netdev_priv(netdev);
1378	struct e1000_hw *hw = &adapter->hw;
1379	int err;
1380
1381	/* disallow open during test */
1382	if (test_bit(__E1000_TESTING, &adapter->flags))
1383		return -EBUSY;
1384
1385	netif_carrier_off(netdev);
1386
1387	/* allocate transmit descriptors */
1388	err = e1000_setup_all_tx_resources(adapter);
1389	if (err)
1390		goto err_setup_tx;
1391
1392	/* allocate receive descriptors */
1393	err = e1000_setup_all_rx_resources(adapter);
1394	if (err)
1395		goto err_setup_rx;
1396
1397	e1000_power_up_phy(adapter);
1398
1399	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1400	if ((hw->mng_cookie.status &
1401			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1402		e1000_update_mng_vlan(adapter);
1403	}
1404
1405	/* before we allocate an interrupt, we must be ready to handle it.
1406	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1407	 * as soon as we call pci_request_irq, so we have to setup our
1408	 * clean_rx handler before we do so.  */
1409	e1000_configure(adapter);
1410
1411	err = e1000_request_irq(adapter);
1412	if (err)
1413		goto err_req_irq;
1414
1415	/* From here on the code is the same as e1000_up() */
1416	clear_bit(__E1000_DOWN, &adapter->flags);
1417
1418	napi_enable(&adapter->napi);
1419
1420	e1000_irq_enable(adapter);
1421
1422	netif_start_queue(netdev);
1423
1424	/* fire a link status change interrupt to start the watchdog */
1425	ew32(ICS, E1000_ICS_LSC);
1426
1427	return E1000_SUCCESS;
1428
1429err_req_irq:
1430	e1000_power_down_phy(adapter);
1431	e1000_free_all_rx_resources(adapter);
1432err_setup_rx:
1433	e1000_free_all_tx_resources(adapter);
1434err_setup_tx:
1435	e1000_reset(adapter);
1436
1437	return err;
1438}
1439
1440/**
1441 * e1000_close - Disables a network interface
1442 * @netdev: network interface device structure
1443 *
1444 * Returns 0, this is not allowed to fail
1445 *
1446 * The close entry point is called when an interface is de-activated
1447 * by the OS.  The hardware is still under the drivers control, but
1448 * needs to be disabled.  A global MAC reset is issued to stop the
1449 * hardware, and all transmit and receive resources are freed.
1450 **/
1451
1452static int e1000_close(struct net_device *netdev)
1453{
1454	struct e1000_adapter *adapter = netdev_priv(netdev);
1455	struct e1000_hw *hw = &adapter->hw;
1456
1457	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1458	e1000_down(adapter);
1459	e1000_power_down_phy(adapter);
1460	e1000_free_irq(adapter);
1461
1462	e1000_free_all_tx_resources(adapter);
1463	e1000_free_all_rx_resources(adapter);
1464
1465	/* kill manageability vlan ID if supported, but not if a vlan with
1466	 * the same ID is registered on the host OS (let 8021q kill it) */
1467	if ((hw->mng_cookie.status &
1468			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1469	     !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1470		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1471	}
1472
1473	return 0;
1474}
1475
1476/**
1477 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1478 * @adapter: address of board private structure
1479 * @start: address of beginning of memory
1480 * @len: length of memory
1481 **/
1482static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1483				  unsigned long len)
1484{
1485	struct e1000_hw *hw = &adapter->hw;
1486	unsigned long begin = (unsigned long)start;
1487	unsigned long end = begin + len;
1488
1489	/* First rev 82545 and 82546 need to not allow any memory
1490	 * write location to cross 64k boundary due to errata 23 */
1491	if (hw->mac_type == e1000_82545 ||
1492	    hw->mac_type == e1000_ce4100 ||
1493	    hw->mac_type == e1000_82546) {
1494		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1495	}
1496
1497	return true;
1498}
1499
1500/**
1501 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1502 * @adapter: board private structure
1503 * @txdr:    tx descriptor ring (for a specific queue) to setup
1504 *
1505 * Return 0 on success, negative on failure
1506 **/
1507
1508static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1509				    struct e1000_tx_ring *txdr)
1510{
1511	struct pci_dev *pdev = adapter->pdev;
1512	int size;
1513
1514	size = sizeof(struct e1000_buffer) * txdr->count;
1515	txdr->buffer_info = vzalloc(size);
1516	if (!txdr->buffer_info) {
1517		e_err(probe, "Unable to allocate memory for the Tx descriptor "
1518		      "ring\n");
1519		return -ENOMEM;
1520	}
1521
1522	/* round up to nearest 4K */
1523
1524	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1525	txdr->size = ALIGN(txdr->size, 4096);
1526
1527	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1528					GFP_KERNEL);
1529	if (!txdr->desc) {
1530setup_tx_desc_die:
1531		vfree(txdr->buffer_info);
1532		e_err(probe, "Unable to allocate memory for the Tx descriptor "
1533		      "ring\n");
1534		return -ENOMEM;
1535	}
1536
1537	/* Fix for errata 23, can't cross 64kB boundary */
1538	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539		void *olddesc = txdr->desc;
1540		dma_addr_t olddma = txdr->dma;
1541		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1542		      txdr->size, txdr->desc);
1543		/* Try again, without freeing the previous */
1544		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1545						&txdr->dma, GFP_KERNEL);
1546		/* Failed allocation, critical failure */
1547		if (!txdr->desc) {
1548			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1549					  olddma);
1550			goto setup_tx_desc_die;
1551		}
1552
1553		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1554			/* give up */
1555			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1556					  txdr->dma);
1557			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1558					  olddma);
1559			e_err(probe, "Unable to allocate aligned memory "
1560			      "for the transmit descriptor ring\n");
1561			vfree(txdr->buffer_info);
1562			return -ENOMEM;
1563		} else {
1564			/* Free old allocation, new allocation was successful */
1565			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1566					  olddma);
1567		}
1568	}
1569	memset(txdr->desc, 0, txdr->size);
1570
1571	txdr->next_to_use = 0;
1572	txdr->next_to_clean = 0;
1573
1574	return 0;
1575}
1576
1577/**
1578 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1579 * 				  (Descriptors) for all queues
1580 * @adapter: board private structure
1581 *
1582 * Return 0 on success, negative on failure
1583 **/
1584
1585int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1586{
1587	int i, err = 0;
1588
1589	for (i = 0; i < adapter->num_tx_queues; i++) {
1590		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1591		if (err) {
1592			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1593			for (i-- ; i >= 0; i--)
1594				e1000_free_tx_resources(adapter,
1595							&adapter->tx_ring[i]);
1596			break;
1597		}
1598	}
1599
1600	return err;
1601}
1602
1603/**
1604 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1605 * @adapter: board private structure
1606 *
1607 * Configure the Tx unit of the MAC after a reset.
1608 **/
1609
1610static void e1000_configure_tx(struct e1000_adapter *adapter)
1611{
1612	u64 tdba;
1613	struct e1000_hw *hw = &adapter->hw;
1614	u32 tdlen, tctl, tipg;
1615	u32 ipgr1, ipgr2;
1616
1617	/* Setup the HW Tx Head and Tail descriptor pointers */
1618
1619	switch (adapter->num_tx_queues) {
1620	case 1:
1621	default:
1622		tdba = adapter->tx_ring[0].dma;
1623		tdlen = adapter->tx_ring[0].count *
1624			sizeof(struct e1000_tx_desc);
1625		ew32(TDLEN, tdlen);
1626		ew32(TDBAH, (tdba >> 32));
1627		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1628		ew32(TDT, 0);
1629		ew32(TDH, 0);
1630		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1631		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1632		break;
1633	}
1634
1635	/* Set the default values for the Tx Inter Packet Gap timer */
1636	if ((hw->media_type == e1000_media_type_fiber ||
1637	     hw->media_type == e1000_media_type_internal_serdes))
1638		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1639	else
1640		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1641
1642	switch (hw->mac_type) {
1643	case e1000_82542_rev2_0:
1644	case e1000_82542_rev2_1:
1645		tipg = DEFAULT_82542_TIPG_IPGT;
1646		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1647		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1648		break;
1649	default:
1650		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1651		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1652		break;
1653	}
1654	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1655	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1656	ew32(TIPG, tipg);
1657
1658	/* Set the Tx Interrupt Delay register */
1659
1660	ew32(TIDV, adapter->tx_int_delay);
1661	if (hw->mac_type >= e1000_82540)
1662		ew32(TADV, adapter->tx_abs_int_delay);
1663
1664	/* Program the Transmit Control Register */
1665
1666	tctl = er32(TCTL);
1667	tctl &= ~E1000_TCTL_CT;
1668	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1669		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1670
1671	e1000_config_collision_dist(hw);
1672
1673	/* Setup Transmit Descriptor Settings for eop descriptor */
1674	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1675
1676	/* only set IDE if we are delaying interrupts using the timers */
1677	if (adapter->tx_int_delay)
1678		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1679
1680	if (hw->mac_type < e1000_82543)
1681		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1682	else
1683		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1684
1685	/* Cache if we're 82544 running in PCI-X because we'll
1686	 * need this to apply a workaround later in the send path. */
1687	if (hw->mac_type == e1000_82544 &&
1688	    hw->bus_type == e1000_bus_type_pcix)
1689		adapter->pcix_82544 = true;
1690
1691	ew32(TCTL, tctl);
1692
1693}
1694
1695/**
1696 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1697 * @adapter: board private structure
1698 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1699 *
1700 * Returns 0 on success, negative on failure
1701 **/
1702
1703static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1704				    struct e1000_rx_ring *rxdr)
1705{
1706	struct pci_dev *pdev = adapter->pdev;
1707	int size, desc_len;
1708
1709	size = sizeof(struct e1000_buffer) * rxdr->count;
1710	rxdr->buffer_info = vzalloc(size);
1711	if (!rxdr->buffer_info) {
1712		e_err(probe, "Unable to allocate memory for the Rx descriptor "
1713		      "ring\n");
1714		return -ENOMEM;
1715	}
1716
1717	desc_len = sizeof(struct e1000_rx_desc);
1718
1719	/* Round up to nearest 4K */
1720
1721	rxdr->size = rxdr->count * desc_len;
1722	rxdr->size = ALIGN(rxdr->size, 4096);
1723
1724	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1725					GFP_KERNEL);
1726
1727	if (!rxdr->desc) {
1728		e_err(probe, "Unable to allocate memory for the Rx descriptor "
1729		      "ring\n");
1730setup_rx_desc_die:
1731		vfree(rxdr->buffer_info);
1732		return -ENOMEM;
1733	}
1734
1735	/* Fix for errata 23, can't cross 64kB boundary */
1736	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1737		void *olddesc = rxdr->desc;
1738		dma_addr_t olddma = rxdr->dma;
1739		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1740		      rxdr->size, rxdr->desc);
1741		/* Try again, without freeing the previous */
1742		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1743						&rxdr->dma, GFP_KERNEL);
1744		/* Failed allocation, critical failure */
1745		if (!rxdr->desc) {
1746			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1747					  olddma);
1748			e_err(probe, "Unable to allocate memory for the Rx "
1749			      "descriptor ring\n");
1750			goto setup_rx_desc_die;
1751		}
1752
1753		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1754			/* give up */
1755			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1756					  rxdr->dma);
1757			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1758					  olddma);
1759			e_err(probe, "Unable to allocate aligned memory for "
1760			      "the Rx descriptor ring\n");
1761			goto setup_rx_desc_die;
1762		} else {
1763			/* Free old allocation, new allocation was successful */
1764			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1765					  olddma);
1766		}
1767	}
1768	memset(rxdr->desc, 0, rxdr->size);
1769
1770	rxdr->next_to_clean = 0;
1771	rxdr->next_to_use = 0;
1772	rxdr->rx_skb_top = NULL;
1773
1774	return 0;
1775}
1776
1777/**
1778 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1779 * 				  (Descriptors) for all queues
1780 * @adapter: board private structure
1781 *
1782 * Return 0 on success, negative on failure
1783 **/
1784
1785int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1786{
1787	int i, err = 0;
1788
1789	for (i = 0; i < adapter->num_rx_queues; i++) {
1790		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1791		if (err) {
1792			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1793			for (i-- ; i >= 0; i--)
1794				e1000_free_rx_resources(adapter,
1795							&adapter->rx_ring[i]);
1796			break;
1797		}
1798	}
1799
1800	return err;
1801}
1802
1803/**
1804 * e1000_setup_rctl - configure the receive control registers
1805 * @adapter: Board private structure
1806 **/
1807static void e1000_setup_rctl(struct e1000_adapter *adapter)
1808{
1809	struct e1000_hw *hw = &adapter->hw;
1810	u32 rctl;
1811
1812	rctl = er32(RCTL);
1813
1814	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1815
1816	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1817		E1000_RCTL_RDMTS_HALF |
1818		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1819
1820	if (hw->tbi_compatibility_on == 1)
1821		rctl |= E1000_RCTL_SBP;
1822	else
1823		rctl &= ~E1000_RCTL_SBP;
1824
1825	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1826		rctl &= ~E1000_RCTL_LPE;
1827	else
1828		rctl |= E1000_RCTL_LPE;
1829
1830	/* Setup buffer sizes */
1831	rctl &= ~E1000_RCTL_SZ_4096;
1832	rctl |= E1000_RCTL_BSEX;
1833	switch (adapter->rx_buffer_len) {
1834		case E1000_RXBUFFER_2048:
1835		default:
1836			rctl |= E1000_RCTL_SZ_2048;
1837			rctl &= ~E1000_RCTL_BSEX;
1838			break;
1839		case E1000_RXBUFFER_4096:
1840			rctl |= E1000_RCTL_SZ_4096;
1841			break;
1842		case E1000_RXBUFFER_8192:
1843			rctl |= E1000_RCTL_SZ_8192;
1844			break;
1845		case E1000_RXBUFFER_16384:
1846			rctl |= E1000_RCTL_SZ_16384;
1847			break;
1848	}
1849
1850	/* This is useful for sniffing bad packets. */
1851	if (adapter->netdev->features & NETIF_F_RXALL) {
1852		/* UPE and MPE will be handled by normal PROMISC logic
1853		 * in e1000e_set_rx_mode */
1854		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1855			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1856			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1857
1858		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1859			  E1000_RCTL_DPF | /* Allow filtered pause */
1860			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1861		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1862		 * and that breaks VLANs.
1863		 */
1864	}
1865
1866	ew32(RCTL, rctl);
1867}
1868
1869/**
1870 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1871 * @adapter: board private structure
1872 *
1873 * Configure the Rx unit of the MAC after a reset.
1874 **/
1875
1876static void e1000_configure_rx(struct e1000_adapter *adapter)
1877{
1878	u64 rdba;
1879	struct e1000_hw *hw = &adapter->hw;
1880	u32 rdlen, rctl, rxcsum;
1881
1882	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1883		rdlen = adapter->rx_ring[0].count *
1884		        sizeof(struct e1000_rx_desc);
1885		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1886		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1887	} else {
1888		rdlen = adapter->rx_ring[0].count *
1889		        sizeof(struct e1000_rx_desc);
1890		adapter->clean_rx = e1000_clean_rx_irq;
1891		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1892	}
1893
1894	/* disable receives while setting up the descriptors */
1895	rctl = er32(RCTL);
1896	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1897
1898	/* set the Receive Delay Timer Register */
1899	ew32(RDTR, adapter->rx_int_delay);
1900
1901	if (hw->mac_type >= e1000_82540) {
1902		ew32(RADV, adapter->rx_abs_int_delay);
1903		if (adapter->itr_setting != 0)
1904			ew32(ITR, 1000000000 / (adapter->itr * 256));
1905	}
1906
1907	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1908	 * the Base and Length of the Rx Descriptor Ring */
1909	switch (adapter->num_rx_queues) {
1910	case 1:
1911	default:
1912		rdba = adapter->rx_ring[0].dma;
1913		ew32(RDLEN, rdlen);
1914		ew32(RDBAH, (rdba >> 32));
1915		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1916		ew32(RDT, 0);
1917		ew32(RDH, 0);
1918		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1919		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1920		break;
1921	}
1922
1923	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1924	if (hw->mac_type >= e1000_82543) {
1925		rxcsum = er32(RXCSUM);
1926		if (adapter->rx_csum)
1927			rxcsum |= E1000_RXCSUM_TUOFL;
1928		else
1929			/* don't need to clear IPPCSE as it defaults to 0 */
1930			rxcsum &= ~E1000_RXCSUM_TUOFL;
1931		ew32(RXCSUM, rxcsum);
1932	}
1933
1934	/* Enable Receives */
1935	ew32(RCTL, rctl | E1000_RCTL_EN);
1936}
1937
1938/**
1939 * e1000_free_tx_resources - Free Tx Resources per Queue
1940 * @adapter: board private structure
1941 * @tx_ring: Tx descriptor ring for a specific queue
1942 *
1943 * Free all transmit software resources
1944 **/
1945
1946static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1947				    struct e1000_tx_ring *tx_ring)
1948{
1949	struct pci_dev *pdev = adapter->pdev;
1950
1951	e1000_clean_tx_ring(adapter, tx_ring);
1952
1953	vfree(tx_ring->buffer_info);
1954	tx_ring->buffer_info = NULL;
1955
1956	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1957			  tx_ring->dma);
1958
1959	tx_ring->desc = NULL;
1960}
1961
1962/**
1963 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1964 * @adapter: board private structure
1965 *
1966 * Free all transmit software resources
1967 **/
1968
1969void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1970{
1971	int i;
1972
1973	for (i = 0; i < adapter->num_tx_queues; i++)
1974		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1975}
1976
1977static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1978					     struct e1000_buffer *buffer_info)
1979{
1980	if (buffer_info->dma) {
1981		if (buffer_info->mapped_as_page)
1982			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1983				       buffer_info->length, DMA_TO_DEVICE);
1984		else
1985			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1986					 buffer_info->length,
1987					 DMA_TO_DEVICE);
1988		buffer_info->dma = 0;
1989	}
1990	if (buffer_info->skb) {
1991		dev_kfree_skb_any(buffer_info->skb);
1992		buffer_info->skb = NULL;
1993	}
1994	buffer_info->time_stamp = 0;
1995	/* buffer_info must be completely set up in the transmit path */
1996}
1997
1998/**
1999 * e1000_clean_tx_ring - Free Tx Buffers
2000 * @adapter: board private structure
2001 * @tx_ring: ring to be cleaned
2002 **/
2003
2004static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2005				struct e1000_tx_ring *tx_ring)
2006{
2007	struct e1000_hw *hw = &adapter->hw;
2008	struct e1000_buffer *buffer_info;
2009	unsigned long size;
2010	unsigned int i;
2011
2012	/* Free all the Tx ring sk_buffs */
2013
2014	for (i = 0; i < tx_ring->count; i++) {
2015		buffer_info = &tx_ring->buffer_info[i];
2016		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2017	}
2018
2019	size = sizeof(struct e1000_buffer) * tx_ring->count;
2020	memset(tx_ring->buffer_info, 0, size);
2021
2022	/* Zero out the descriptor ring */
2023
2024	memset(tx_ring->desc, 0, tx_ring->size);
2025
2026	tx_ring->next_to_use = 0;
2027	tx_ring->next_to_clean = 0;
2028	tx_ring->last_tx_tso = false;
2029
2030	writel(0, hw->hw_addr + tx_ring->tdh);
2031	writel(0, hw->hw_addr + tx_ring->tdt);
2032}
2033
2034/**
2035 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2036 * @adapter: board private structure
2037 **/
2038
2039static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2040{
2041	int i;
2042
2043	for (i = 0; i < adapter->num_tx_queues; i++)
2044		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2045}
2046
2047/**
2048 * e1000_free_rx_resources - Free Rx Resources
2049 * @adapter: board private structure
2050 * @rx_ring: ring to clean the resources from
2051 *
2052 * Free all receive software resources
2053 **/
2054
2055static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2056				    struct e1000_rx_ring *rx_ring)
2057{
2058	struct pci_dev *pdev = adapter->pdev;
2059
2060	e1000_clean_rx_ring(adapter, rx_ring);
2061
2062	vfree(rx_ring->buffer_info);
2063	rx_ring->buffer_info = NULL;
2064
2065	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2066			  rx_ring->dma);
2067
2068	rx_ring->desc = NULL;
2069}
2070
2071/**
2072 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2073 * @adapter: board private structure
2074 *
2075 * Free all receive software resources
2076 **/
2077
2078void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2079{
2080	int i;
2081
2082	for (i = 0; i < adapter->num_rx_queues; i++)
2083		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2084}
2085
2086/**
2087 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2088 * @adapter: board private structure
2089 * @rx_ring: ring to free buffers from
2090 **/
2091
2092static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2093				struct e1000_rx_ring *rx_ring)
2094{
2095	struct e1000_hw *hw = &adapter->hw;
2096	struct e1000_buffer *buffer_info;
2097	struct pci_dev *pdev = adapter->pdev;
2098	unsigned long size;
2099	unsigned int i;
2100
2101	/* Free all the Rx ring sk_buffs */
2102	for (i = 0; i < rx_ring->count; i++) {
2103		buffer_info = &rx_ring->buffer_info[i];
2104		if (buffer_info->dma &&
2105		    adapter->clean_rx == e1000_clean_rx_irq) {
2106			dma_unmap_single(&pdev->dev, buffer_info->dma,
2107			                 buffer_info->length,
2108					 DMA_FROM_DEVICE);
2109		} else if (buffer_info->dma &&
2110		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2111			dma_unmap_page(&pdev->dev, buffer_info->dma,
2112				       buffer_info->length,
2113				       DMA_FROM_DEVICE);
2114		}
2115
2116		buffer_info->dma = 0;
2117		if (buffer_info->page) {
2118			put_page(buffer_info->page);
2119			buffer_info->page = NULL;
2120		}
2121		if (buffer_info->skb) {
2122			dev_kfree_skb(buffer_info->skb);
2123			buffer_info->skb = NULL;
2124		}
2125	}
2126
2127	/* there also may be some cached data from a chained receive */
2128	if (rx_ring->rx_skb_top) {
2129		dev_kfree_skb(rx_ring->rx_skb_top);
2130		rx_ring->rx_skb_top = NULL;
2131	}
2132
2133	size = sizeof(struct e1000_buffer) * rx_ring->count;
2134	memset(rx_ring->buffer_info, 0, size);
2135
2136	/* Zero out the descriptor ring */
2137	memset(rx_ring->desc, 0, rx_ring->size);
2138
2139	rx_ring->next_to_clean = 0;
2140	rx_ring->next_to_use = 0;
2141
2142	writel(0, hw->hw_addr + rx_ring->rdh);
2143	writel(0, hw->hw_addr + rx_ring->rdt);
2144}
2145
2146/**
2147 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2148 * @adapter: board private structure
2149 **/
2150
2151static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2152{
2153	int i;
2154
2155	for (i = 0; i < adapter->num_rx_queues; i++)
2156		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2157}
2158
2159/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2160 * and memory write and invalidate disabled for certain operations
2161 */
2162static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2163{
2164	struct e1000_hw *hw = &adapter->hw;
2165	struct net_device *netdev = adapter->netdev;
2166	u32 rctl;
2167
2168	e1000_pci_clear_mwi(hw);
2169
2170	rctl = er32(RCTL);
2171	rctl |= E1000_RCTL_RST;
2172	ew32(RCTL, rctl);
2173	E1000_WRITE_FLUSH();
2174	mdelay(5);
2175
2176	if (netif_running(netdev))
2177		e1000_clean_all_rx_rings(adapter);
2178}
2179
2180static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2181{
2182	struct e1000_hw *hw = &adapter->hw;
2183	struct net_device *netdev = adapter->netdev;
2184	u32 rctl;
2185
2186	rctl = er32(RCTL);
2187	rctl &= ~E1000_RCTL_RST;
2188	ew32(RCTL, rctl);
2189	E1000_WRITE_FLUSH();
2190	mdelay(5);
2191
2192	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2193		e1000_pci_set_mwi(hw);
2194
2195	if (netif_running(netdev)) {
2196		/* No need to loop, because 82542 supports only 1 queue */
2197		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2198		e1000_configure_rx(adapter);
2199		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2200	}
2201}
2202
2203/**
2204 * e1000_set_mac - Change the Ethernet Address of the NIC
2205 * @netdev: network interface device structure
2206 * @p: pointer to an address structure
2207 *
2208 * Returns 0 on success, negative on failure
2209 **/
2210
2211static int e1000_set_mac(struct net_device *netdev, void *p)
2212{
2213	struct e1000_adapter *adapter = netdev_priv(netdev);
2214	struct e1000_hw *hw = &adapter->hw;
2215	struct sockaddr *addr = p;
2216
2217	if (!is_valid_ether_addr(addr->sa_data))
2218		return -EADDRNOTAVAIL;
2219
2220	/* 82542 2.0 needs to be in reset to write receive address registers */
2221
2222	if (hw->mac_type == e1000_82542_rev2_0)
2223		e1000_enter_82542_rst(adapter);
2224
2225	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2226	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2227
2228	e1000_rar_set(hw, hw->mac_addr, 0);
2229
2230	if (hw->mac_type == e1000_82542_rev2_0)
2231		e1000_leave_82542_rst(adapter);
2232
2233	return 0;
2234}
2235
2236/**
2237 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2238 * @netdev: network interface device structure
2239 *
2240 * The set_rx_mode entry point is called whenever the unicast or multicast
2241 * address lists or the network interface flags are updated. This routine is
2242 * responsible for configuring the hardware for proper unicast, multicast,
2243 * promiscuous mode, and all-multi behavior.
2244 **/
2245
2246static void e1000_set_rx_mode(struct net_device *netdev)
2247{
2248	struct e1000_adapter *adapter = netdev_priv(netdev);
2249	struct e1000_hw *hw = &adapter->hw;
2250	struct netdev_hw_addr *ha;
2251	bool use_uc = false;
2252	u32 rctl;
2253	u32 hash_value;
2254	int i, rar_entries = E1000_RAR_ENTRIES;
2255	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2256	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2257
2258	if (!mcarray) {
2259		e_err(probe, "memory allocation failed\n");
2260		return;
2261	}
2262
2263	/* Check for Promiscuous and All Multicast modes */
2264
2265	rctl = er32(RCTL);
2266
2267	if (netdev->flags & IFF_PROMISC) {
2268		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2269		rctl &= ~E1000_RCTL_VFE;
2270	} else {
2271		if (netdev->flags & IFF_ALLMULTI)
2272			rctl |= E1000_RCTL_MPE;
2273		else
2274			rctl &= ~E1000_RCTL_MPE;
2275		/* Enable VLAN filter if there is a VLAN */
2276		if (e1000_vlan_used(adapter))
2277			rctl |= E1000_RCTL_VFE;
2278	}
2279
2280	if (netdev_uc_count(netdev) > rar_entries - 1) {
2281		rctl |= E1000_RCTL_UPE;
2282	} else if (!(netdev->flags & IFF_PROMISC)) {
2283		rctl &= ~E1000_RCTL_UPE;
2284		use_uc = true;
2285	}
2286
2287	ew32(RCTL, rctl);
2288
2289	/* 82542 2.0 needs to be in reset to write receive address registers */
2290
2291	if (hw->mac_type == e1000_82542_rev2_0)
2292		e1000_enter_82542_rst(adapter);
2293
2294	/* load the first 14 addresses into the exact filters 1-14. Unicast
2295	 * addresses take precedence to avoid disabling unicast filtering
2296	 * when possible.
2297	 *
2298	 * RAR 0 is used for the station MAC address
2299	 * if there are not 14 addresses, go ahead and clear the filters
2300	 */
2301	i = 1;
2302	if (use_uc)
2303		netdev_for_each_uc_addr(ha, netdev) {
2304			if (i == rar_entries)
2305				break;
2306			e1000_rar_set(hw, ha->addr, i++);
2307		}
2308
2309	netdev_for_each_mc_addr(ha, netdev) {
2310		if (i == rar_entries) {
2311			/* load any remaining addresses into the hash table */
2312			u32 hash_reg, hash_bit, mta;
2313			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2314			hash_reg = (hash_value >> 5) & 0x7F;
2315			hash_bit = hash_value & 0x1F;
2316			mta = (1 << hash_bit);
2317			mcarray[hash_reg] |= mta;
2318		} else {
2319			e1000_rar_set(hw, ha->addr, i++);
2320		}
2321	}
2322
2323	for (; i < rar_entries; i++) {
2324		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2325		E1000_WRITE_FLUSH();
2326		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2327		E1000_WRITE_FLUSH();
2328	}
2329
2330	/* write the hash table completely, write from bottom to avoid
2331	 * both stupid write combining chipsets, and flushing each write */
2332	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2333		/*
2334		 * If we are on an 82544 has an errata where writing odd
2335		 * offsets overwrites the previous even offset, but writing
2336		 * backwards over the range solves the issue by always
2337		 * writing the odd offset first
2338		 */
2339		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2340	}
2341	E1000_WRITE_FLUSH();
2342
2343	if (hw->mac_type == e1000_82542_rev2_0)
2344		e1000_leave_82542_rst(adapter);
2345
2346	kfree(mcarray);
2347}
2348
2349/**
2350 * e1000_update_phy_info_task - get phy info
2351 * @work: work struct contained inside adapter struct
2352 *
2353 * Need to wait a few seconds after link up to get diagnostic information from
2354 * the phy
2355 */
2356static void e1000_update_phy_info_task(struct work_struct *work)
2357{
2358	struct e1000_adapter *adapter = container_of(work,
2359						     struct e1000_adapter,
2360						     phy_info_task.work);
2361	if (test_bit(__E1000_DOWN, &adapter->flags))
2362		return;
2363	mutex_lock(&adapter->mutex);
2364	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2365	mutex_unlock(&adapter->mutex);
2366}
2367
2368/**
2369 * e1000_82547_tx_fifo_stall_task - task to complete work
2370 * @work: work struct contained inside adapter struct
2371 **/
2372static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2373{
2374	struct e1000_adapter *adapter = container_of(work,
2375						     struct e1000_adapter,
2376						     fifo_stall_task.work);
2377	struct e1000_hw *hw = &adapter->hw;
2378	struct net_device *netdev = adapter->netdev;
2379	u32 tctl;
2380
2381	if (test_bit(__E1000_DOWN, &adapter->flags))
2382		return;
2383	mutex_lock(&adapter->mutex);
2384	if (atomic_read(&adapter->tx_fifo_stall)) {
2385		if ((er32(TDT) == er32(TDH)) &&
2386		   (er32(TDFT) == er32(TDFH)) &&
2387		   (er32(TDFTS) == er32(TDFHS))) {
2388			tctl = er32(TCTL);
2389			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2390			ew32(TDFT, adapter->tx_head_addr);
2391			ew32(TDFH, adapter->tx_head_addr);
2392			ew32(TDFTS, adapter->tx_head_addr);
2393			ew32(TDFHS, adapter->tx_head_addr);
2394			ew32(TCTL, tctl);
2395			E1000_WRITE_FLUSH();
2396
2397			adapter->tx_fifo_head = 0;
2398			atomic_set(&adapter->tx_fifo_stall, 0);
2399			netif_wake_queue(netdev);
2400		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2401			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2402		}
2403	}
2404	mutex_unlock(&adapter->mutex);
2405}
2406
2407bool e1000_has_link(struct e1000_adapter *adapter)
2408{
2409	struct e1000_hw *hw = &adapter->hw;
2410	bool link_active = false;
2411
2412	/* get_link_status is set on LSC (link status) interrupt or rx
2413	 * sequence error interrupt (except on intel ce4100).
2414	 * get_link_status will stay false until the
2415	 * e1000_check_for_link establishes link for copper adapters
2416	 * ONLY
2417	 */
2418	switch (hw->media_type) {
2419	case e1000_media_type_copper:
2420		if (hw->mac_type == e1000_ce4100)
2421			hw->get_link_status = 1;
2422		if (hw->get_link_status) {
2423			e1000_check_for_link(hw);
2424			link_active = !hw->get_link_status;
2425		} else {
2426			link_active = true;
2427		}
2428		break;
2429	case e1000_media_type_fiber:
2430		e1000_check_for_link(hw);
2431		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2432		break;
2433	case e1000_media_type_internal_serdes:
2434		e1000_check_for_link(hw);
2435		link_active = hw->serdes_has_link;
2436		break;
2437	default:
2438		break;
2439	}
2440
2441	return link_active;
2442}
2443
2444/**
2445 * e1000_watchdog - work function
2446 * @work: work struct contained inside adapter struct
2447 **/
2448static void e1000_watchdog(struct work_struct *work)
2449{
2450	struct e1000_adapter *adapter = container_of(work,
2451						     struct e1000_adapter,
2452						     watchdog_task.work);
2453	struct e1000_hw *hw = &adapter->hw;
2454	struct net_device *netdev = adapter->netdev;
2455	struct e1000_tx_ring *txdr = adapter->tx_ring;
2456	u32 link, tctl;
2457
2458	if (test_bit(__E1000_DOWN, &adapter->flags))
2459		return;
2460
2461	mutex_lock(&adapter->mutex);
2462	link = e1000_has_link(adapter);
2463	if ((netif_carrier_ok(netdev)) && link)
2464		goto link_up;
2465
2466	if (link) {
2467		if (!netif_carrier_ok(netdev)) {
2468			u32 ctrl;
2469			bool txb2b = true;
2470			/* update snapshot of PHY registers on LSC */
2471			e1000_get_speed_and_duplex(hw,
2472			                           &adapter->link_speed,
2473			                           &adapter->link_duplex);
2474
2475			ctrl = er32(CTRL);
2476			pr_info("%s NIC Link is Up %d Mbps %s, "
2477				"Flow Control: %s\n",
2478				netdev->name,
2479				adapter->link_speed,
2480				adapter->link_duplex == FULL_DUPLEX ?
2481				"Full Duplex" : "Half Duplex",
2482				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2483				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2484				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2485				E1000_CTRL_TFCE) ? "TX" : "None")));
2486
2487			/* adjust timeout factor according to speed/duplex */
2488			adapter->tx_timeout_factor = 1;
2489			switch (adapter->link_speed) {
2490			case SPEED_10:
2491				txb2b = false;
2492				adapter->tx_timeout_factor = 16;
2493				break;
2494			case SPEED_100:
2495				txb2b = false;
2496				/* maybe add some timeout factor ? */
2497				break;
2498			}
2499
2500			/* enable transmits in the hardware */
2501			tctl = er32(TCTL);
2502			tctl |= E1000_TCTL_EN;
2503			ew32(TCTL, tctl);
2504
2505			netif_carrier_on(netdev);
2506			if (!test_bit(__E1000_DOWN, &adapter->flags))
2507				schedule_delayed_work(&adapter->phy_info_task,
2508						      2 * HZ);
2509			adapter->smartspeed = 0;
2510		}
2511	} else {
2512		if (netif_carrier_ok(netdev)) {
2513			adapter->link_speed = 0;
2514			adapter->link_duplex = 0;
2515			pr_info("%s NIC Link is Down\n",
2516				netdev->name);
2517			netif_carrier_off(netdev);
2518
2519			if (!test_bit(__E1000_DOWN, &adapter->flags))
2520				schedule_delayed_work(&adapter->phy_info_task,
2521						      2 * HZ);
2522		}
2523
2524		e1000_smartspeed(adapter);
2525	}
2526
2527link_up:
2528	e1000_update_stats(adapter);
2529
2530	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2531	adapter->tpt_old = adapter->stats.tpt;
2532	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2533	adapter->colc_old = adapter->stats.colc;
2534
2535	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2536	adapter->gorcl_old = adapter->stats.gorcl;
2537	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2538	adapter->gotcl_old = adapter->stats.gotcl;
2539
2540	e1000_update_adaptive(hw);
2541
2542	if (!netif_carrier_ok(netdev)) {
2543		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2544			/* We've lost link, so the controller stops DMA,
2545			 * but we've got queued Tx work that's never going
2546			 * to get done, so reset controller to flush Tx.
2547			 * (Do the reset outside of interrupt context). */
2548			adapter->tx_timeout_count++;
2549			schedule_work(&adapter->reset_task);
2550			/* exit immediately since reset is imminent */
2551			goto unlock;
2552		}
2553	}
2554
2555	/* Simple mode for Interrupt Throttle Rate (ITR) */
2556	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2557		/*
2558		 * Symmetric Tx/Rx gets a reduced ITR=2000;
2559		 * Total asymmetrical Tx or Rx gets ITR=8000;
2560		 * everyone else is between 2000-8000.
2561		 */
2562		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2563		u32 dif = (adapter->gotcl > adapter->gorcl ?
2564			    adapter->gotcl - adapter->gorcl :
2565			    adapter->gorcl - adapter->gotcl) / 10000;
2566		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2567
2568		ew32(ITR, 1000000000 / (itr * 256));
2569	}
2570
2571	/* Cause software interrupt to ensure rx ring is cleaned */
2572	ew32(ICS, E1000_ICS_RXDMT0);
2573
2574	/* Force detection of hung controller every watchdog period */
2575	adapter->detect_tx_hung = true;
2576
2577	/* Reschedule the task */
2578	if (!test_bit(__E1000_DOWN, &adapter->flags))
2579		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2580
2581unlock:
2582	mutex_unlock(&adapter->mutex);
2583}
2584
2585enum latency_range {
2586	lowest_latency = 0,
2587	low_latency = 1,
2588	bulk_latency = 2,
2589	latency_invalid = 255
2590};
2591
2592/**
2593 * e1000_update_itr - update the dynamic ITR value based on statistics
2594 * @adapter: pointer to adapter
2595 * @itr_setting: current adapter->itr
2596 * @packets: the number of packets during this measurement interval
2597 * @bytes: the number of bytes during this measurement interval
2598 *
2599 *      Stores a new ITR value based on packets and byte
2600 *      counts during the last interrupt.  The advantage of per interrupt
2601 *      computation is faster updates and more accurate ITR for the current
2602 *      traffic pattern.  Constants in this function were computed
2603 *      based on theoretical maximum wire speed and thresholds were set based
2604 *      on testing data as well as attempting to minimize response time
2605 *      while increasing bulk throughput.
2606 *      this functionality is controlled by the InterruptThrottleRate module
2607 *      parameter (see e1000_param.c)
2608 **/
2609static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2610				     u16 itr_setting, int packets, int bytes)
2611{
2612	unsigned int retval = itr_setting;
2613	struct e1000_hw *hw = &adapter->hw;
2614
2615	if (unlikely(hw->mac_type < e1000_82540))
2616		goto update_itr_done;
2617
2618	if (packets == 0)
2619		goto update_itr_done;
2620
2621	switch (itr_setting) {
2622	case lowest_latency:
2623		/* jumbo frames get bulk treatment*/
2624		if (bytes/packets > 8000)
2625			retval = bulk_latency;
2626		else if ((packets < 5) && (bytes > 512))
2627			retval = low_latency;
2628		break;
2629	case low_latency:  /* 50 usec aka 20000 ints/s */
2630		if (bytes > 10000) {
2631			/* jumbo frames need bulk latency setting */
2632			if (bytes/packets > 8000)
2633				retval = bulk_latency;
2634			else if ((packets < 10) || ((bytes/packets) > 1200))
2635				retval = bulk_latency;
2636			else if ((packets > 35))
2637				retval = lowest_latency;
2638		} else if (bytes/packets > 2000)
2639			retval = bulk_latency;
2640		else if (packets <= 2 && bytes < 512)
2641			retval = lowest_latency;
2642		break;
2643	case bulk_latency: /* 250 usec aka 4000 ints/s */
2644		if (bytes > 25000) {
2645			if (packets > 35)
2646				retval = low_latency;
2647		} else if (bytes < 6000) {
2648			retval = low_latency;
2649		}
2650		break;
2651	}
2652
2653update_itr_done:
2654	return retval;
2655}
2656
2657static void e1000_set_itr(struct e1000_adapter *adapter)
2658{
2659	struct e1000_hw *hw = &adapter->hw;
2660	u16 current_itr;
2661	u32 new_itr = adapter->itr;
2662
2663	if (unlikely(hw->mac_type < e1000_82540))
2664		return;
2665
2666	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2667	if (unlikely(adapter->link_speed != SPEED_1000)) {
2668		current_itr = 0;
2669		new_itr = 4000;
2670		goto set_itr_now;
2671	}
2672
2673	adapter->tx_itr = e1000_update_itr(adapter,
2674	                            adapter->tx_itr,
2675	                            adapter->total_tx_packets,
2676	                            adapter->total_tx_bytes);
2677	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2678	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2679		adapter->tx_itr = low_latency;
2680
2681	adapter->rx_itr = e1000_update_itr(adapter,
2682	                            adapter->rx_itr,
2683	                            adapter->total_rx_packets,
2684	                            adapter->total_rx_bytes);
2685	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2686	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2687		adapter->rx_itr = low_latency;
2688
2689	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2690
2691	switch (current_itr) {
2692	/* counts and packets in update_itr are dependent on these numbers */
2693	case lowest_latency:
2694		new_itr = 70000;
2695		break;
2696	case low_latency:
2697		new_itr = 20000; /* aka hwitr = ~200 */
2698		break;
2699	case bulk_latency:
2700		new_itr = 4000;
2701		break;
2702	default:
2703		break;
2704	}
2705
2706set_itr_now:
2707	if (new_itr != adapter->itr) {
2708		/* this attempts to bias the interrupt rate towards Bulk
2709		 * by adding intermediate steps when interrupt rate is
2710		 * increasing */
2711		new_itr = new_itr > adapter->itr ?
2712		             min(adapter->itr + (new_itr >> 2), new_itr) :
2713		             new_itr;
2714		adapter->itr = new_itr;
2715		ew32(ITR, 1000000000 / (new_itr * 256));
2716	}
2717}
2718
2719#define E1000_TX_FLAGS_CSUM		0x00000001
2720#define E1000_TX_FLAGS_VLAN		0x00000002
2721#define E1000_TX_FLAGS_TSO		0x00000004
2722#define E1000_TX_FLAGS_IPV4		0x00000008
2723#define E1000_TX_FLAGS_NO_FCS		0x00000010
2724#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2725#define E1000_TX_FLAGS_VLAN_SHIFT	16
2726
2727static int e1000_tso(struct e1000_adapter *adapter,
2728		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2729{
2730	struct e1000_context_desc *context_desc;
2731	struct e1000_buffer *buffer_info;
2732	unsigned int i;
2733	u32 cmd_length = 0;
2734	u16 ipcse = 0, tucse, mss;
2735	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2736	int err;
2737
2738	if (skb_is_gso(skb)) {
2739		if (skb_header_cloned(skb)) {
2740			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2741			if (err)
2742				return err;
2743		}
2744
2745		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2746		mss = skb_shinfo(skb)->gso_size;
2747		if (skb->protocol == htons(ETH_P_IP)) {
2748			struct iphdr *iph = ip_hdr(skb);
2749			iph->tot_len = 0;
2750			iph->check = 0;
2751			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2752								 iph->daddr, 0,
2753								 IPPROTO_TCP,
2754								 0);
2755			cmd_length = E1000_TXD_CMD_IP;
2756			ipcse = skb_transport_offset(skb) - 1;
2757		} else if (skb->protocol == htons(ETH_P_IPV6)) {
2758			ipv6_hdr(skb)->payload_len = 0;
2759			tcp_hdr(skb)->check =
2760				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2761						 &ipv6_hdr(skb)->daddr,
2762						 0, IPPROTO_TCP, 0);
2763			ipcse = 0;
2764		}
2765		ipcss = skb_network_offset(skb);
2766		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2767		tucss = skb_transport_offset(skb);
2768		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2769		tucse = 0;
2770
2771		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2772			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2773
2774		i = tx_ring->next_to_use;
2775		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2776		buffer_info = &tx_ring->buffer_info[i];
2777
2778		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2779		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2780		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2781		context_desc->upper_setup.tcp_fields.tucss = tucss;
2782		context_desc->upper_setup.tcp_fields.tucso = tucso;
2783		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2784		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2785		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2786		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2787
2788		buffer_info->time_stamp = jiffies;
2789		buffer_info->next_to_watch = i;
2790
2791		if (++i == tx_ring->count) i = 0;
2792		tx_ring->next_to_use = i;
2793
2794		return true;
2795	}
2796	return false;
2797}
2798
2799static bool e1000_tx_csum(struct e1000_adapter *adapter,
2800			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2801{
2802	struct e1000_context_desc *context_desc;
2803	struct e1000_buffer *buffer_info;
2804	unsigned int i;
2805	u8 css;
2806	u32 cmd_len = E1000_TXD_CMD_DEXT;
2807
2808	if (skb->ip_summed != CHECKSUM_PARTIAL)
2809		return false;
2810
2811	switch (skb->protocol) {
2812	case cpu_to_be16(ETH_P_IP):
2813		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2814			cmd_len |= E1000_TXD_CMD_TCP;
2815		break;
2816	case cpu_to_be16(ETH_P_IPV6):
2817		/* XXX not handling all IPV6 headers */
2818		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2819			cmd_len |= E1000_TXD_CMD_TCP;
2820		break;
2821	default:
2822		if (unlikely(net_ratelimit()))
2823			e_warn(drv, "checksum_partial proto=%x!\n",
2824			       skb->protocol);
2825		break;
2826	}
2827
2828	css = skb_checksum_start_offset(skb);
2829
2830	i = tx_ring->next_to_use;
2831	buffer_info = &tx_ring->buffer_info[i];
2832	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2833
2834	context_desc->lower_setup.ip_config = 0;
2835	context_desc->upper_setup.tcp_fields.tucss = css;
2836	context_desc->upper_setup.tcp_fields.tucso =
2837		css + skb->csum_offset;
2838	context_desc->upper_setup.tcp_fields.tucse = 0;
2839	context_desc->tcp_seg_setup.data = 0;
2840	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2841
2842	buffer_info->time_stamp = jiffies;
2843	buffer_info->next_to_watch = i;
2844
2845	if (unlikely(++i == tx_ring->count)) i = 0;
2846	tx_ring->next_to_use = i;
2847
2848	return true;
2849}
2850
2851#define E1000_MAX_TXD_PWR	12
2852#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2853
2854static int e1000_tx_map(struct e1000_adapter *adapter,
2855			struct e1000_tx_ring *tx_ring,
2856			struct sk_buff *skb, unsigned int first,
2857			unsigned int max_per_txd, unsigned int nr_frags,
2858			unsigned int mss)
2859{
2860	struct e1000_hw *hw = &adapter->hw;
2861	struct pci_dev *pdev = adapter->pdev;
2862	struct e1000_buffer *buffer_info;
2863	unsigned int len = skb_headlen(skb);
2864	unsigned int offset = 0, size, count = 0, i;
2865	unsigned int f, bytecount, segs;
2866
2867	i = tx_ring->next_to_use;
2868
2869	while (len) {
2870		buffer_info = &tx_ring->buffer_info[i];
2871		size = min(len, max_per_txd);
2872		/* Workaround for Controller erratum --
2873		 * descriptor for non-tso packet in a linear SKB that follows a
2874		 * tso gets written back prematurely before the data is fully
2875		 * DMA'd to the controller */
2876		if (!skb->data_len && tx_ring->last_tx_tso &&
2877		    !skb_is_gso(skb)) {
2878			tx_ring->last_tx_tso = false;
2879			size -= 4;
2880		}
2881
2882		/* Workaround for premature desc write-backs
2883		 * in TSO mode.  Append 4-byte sentinel desc */
2884		if (unlikely(mss && !nr_frags && size == len && size > 8))
2885			size -= 4;
2886		/* work-around for errata 10 and it applies
2887		 * to all controllers in PCI-X mode
2888		 * The fix is to make sure that the first descriptor of a
2889		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2890		 */
2891		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2892		                (size > 2015) && count == 0))
2893		        size = 2015;
2894
2895		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2896		 * terminating buffers within evenly-aligned dwords. */
2897		if (unlikely(adapter->pcix_82544 &&
2898		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2899		   size > 4))
2900			size -= 4;
2901
2902		buffer_info->length = size;
2903		/* set time_stamp *before* dma to help avoid a possible race */
2904		buffer_info->time_stamp = jiffies;
2905		buffer_info->mapped_as_page = false;
2906		buffer_info->dma = dma_map_single(&pdev->dev,
2907						  skb->data + offset,
2908						  size,	DMA_TO_DEVICE);
2909		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2910			goto dma_error;
2911		buffer_info->next_to_watch = i;
2912
2913		len -= size;
2914		offset += size;
2915		count++;
2916		if (len) {
2917			i++;
2918			if (unlikely(i == tx_ring->count))
2919				i = 0;
2920		}
2921	}
2922
2923	for (f = 0; f < nr_frags; f++) {
2924		const struct skb_frag_struct *frag;
2925
2926		frag = &skb_shinfo(skb)->frags[f];
2927		len = skb_frag_size(frag);
2928		offset = 0;
2929
2930		while (len) {
2931			unsigned long bufend;
2932			i++;
2933			if (unlikely(i == tx_ring->count))
2934				i = 0;
2935
2936			buffer_info = &tx_ring->buffer_info[i];
2937			size = min(len, max_per_txd);
2938			/* Workaround for premature desc write-backs
2939			 * in TSO mode.  Append 4-byte sentinel desc */
2940			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2941				size -= 4;
2942			/* Workaround for potential 82544 hang in PCI-X.
2943			 * Avoid terminating buffers within evenly-aligned
2944			 * dwords. */
2945			bufend = (unsigned long)
2946				page_to_phys(skb_frag_page(frag));
2947			bufend += offset + size - 1;
2948			if (unlikely(adapter->pcix_82544 &&
2949				     !(bufend & 4) &&
2950				     size > 4))
2951				size -= 4;
2952
2953			buffer_info->length = size;
2954			buffer_info->time_stamp = jiffies;
2955			buffer_info->mapped_as_page = true;
2956			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2957						offset, size, DMA_TO_DEVICE);
2958			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2959				goto dma_error;
2960			buffer_info->next_to_watch = i;
2961
2962			len -= size;
2963			offset += size;
2964			count++;
2965		}
2966	}
2967
2968	segs = skb_shinfo(skb)->gso_segs ?: 1;
2969	/* multiply data chunks by size of headers */
2970	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2971
2972	tx_ring->buffer_info[i].skb = skb;
2973	tx_ring->buffer_info[i].segs = segs;
2974	tx_ring->buffer_info[i].bytecount = bytecount;
2975	tx_ring->buffer_info[first].next_to_watch = i;
2976
2977	return count;
2978
2979dma_error:
2980	dev_err(&pdev->dev, "TX DMA map failed\n");
2981	buffer_info->dma = 0;
2982	if (count)
2983		count--;
2984
2985	while (count--) {
2986		if (i==0)
2987			i += tx_ring->count;
2988		i--;
2989		buffer_info = &tx_ring->buffer_info[i];
2990		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2991	}
2992
2993	return 0;
2994}
2995
2996static void e1000_tx_queue(struct e1000_adapter *adapter,
2997			   struct e1000_tx_ring *tx_ring, int tx_flags,
2998			   int count)
2999{
3000	struct e1000_hw *hw = &adapter->hw;
3001	struct e1000_tx_desc *tx_desc = NULL;
3002	struct e1000_buffer *buffer_info;
3003	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3004	unsigned int i;
3005
3006	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3007		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3008		             E1000_TXD_CMD_TSE;
3009		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3010
3011		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3012			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3013	}
3014
3015	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3016		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3017		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3018	}
3019
3020	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3021		txd_lower |= E1000_TXD_CMD_VLE;
3022		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3023	}
3024
3025	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3026		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3027
3028	i = tx_ring->next_to_use;
3029
3030	while (count--) {
3031		buffer_info = &tx_ring->buffer_info[i];
3032		tx_desc = E1000_TX_DESC(*tx_ring, i);
3033		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3034		tx_desc->lower.data =
3035			cpu_to_le32(txd_lower | buffer_info->length);
3036		tx_desc->upper.data = cpu_to_le32(txd_upper);
3037		if (unlikely(++i == tx_ring->count)) i = 0;
3038	}
3039
3040	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3041
3042	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3043	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3044		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3045
3046	/* Force memory writes to complete before letting h/w
3047	 * know there are new descriptors to fetch.  (Only
3048	 * applicable for weak-ordered memory model archs,
3049	 * such as IA-64). */
3050	wmb();
3051
3052	tx_ring->next_to_use = i;
3053	writel(i, hw->hw_addr + tx_ring->tdt);
3054	/* we need this if more than one processor can write to our tail
3055	 * at a time, it syncronizes IO on IA64/Altix systems */
3056	mmiowb();
3057}
3058
3059/**
3060 * 82547 workaround to avoid controller hang in half-duplex environment.
3061 * The workaround is to avoid queuing a large packet that would span
3062 * the internal Tx FIFO ring boundary by notifying the stack to resend
3063 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3064 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3065 * to the beginning of the Tx FIFO.
3066 **/
3067
3068#define E1000_FIFO_HDR			0x10
3069#define E1000_82547_PAD_LEN		0x3E0
3070
3071static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3072				       struct sk_buff *skb)
3073{
3074	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3075	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3076
3077	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3078
3079	if (adapter->link_duplex != HALF_DUPLEX)
3080		goto no_fifo_stall_required;
3081
3082	if (atomic_read(&adapter->tx_fifo_stall))
3083		return 1;
3084
3085	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3086		atomic_set(&adapter->tx_fifo_stall, 1);
3087		return 1;
3088	}
3089
3090no_fifo_stall_required:
3091	adapter->tx_fifo_head += skb_fifo_len;
3092	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3093		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3094	return 0;
3095}
3096
3097static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3098{
3099	struct e1000_adapter *adapter = netdev_priv(netdev);
3100	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3101
3102	netif_stop_queue(netdev);
3103	/* Herbert's original patch had:
3104	 *  smp_mb__after_netif_stop_queue();
3105	 * but since that doesn't exist yet, just open code it. */
3106	smp_mb();
3107
3108	/* We need to check again in a case another CPU has just
3109	 * made room available. */
3110	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3111		return -EBUSY;
3112
3113	/* A reprieve! */
3114	netif_start_queue(netdev);
3115	++adapter->restart_queue;
3116	return 0;
3117}
3118
3119static int e1000_maybe_stop_tx(struct net_device *netdev,
3120                               struct e1000_tx_ring *tx_ring, int size)
3121{
3122	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3123		return 0;
3124	return __e1000_maybe_stop_tx(netdev, size);
3125}
3126
3127#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3128static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3129				    struct net_device *netdev)
3130{
3131	struct e1000_adapter *adapter = netdev_priv(netdev);
3132	struct e1000_hw *hw = &adapter->hw;
3133	struct e1000_tx_ring *tx_ring;
3134	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3135	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3136	unsigned int tx_flags = 0;
3137	unsigned int len = skb_headlen(skb);
3138	unsigned int nr_frags;
3139	unsigned int mss;
3140	int count = 0;
3141	int tso;
3142	unsigned int f;
3143
3144	/* This goes back to the question of how to logically map a tx queue
3145	 * to a flow.  Right now, performance is impacted slightly negatively
3146	 * if using multiple tx queues.  If the stack breaks away from a
3147	 * single qdisc implementation, we can look at this again. */
3148	tx_ring = adapter->tx_ring;
3149
3150	if (unlikely(skb->len <= 0)) {
3151		dev_kfree_skb_any(skb);
3152		return NETDEV_TX_OK;
3153	}
3154
3155	mss = skb_shinfo(skb)->gso_size;
3156	/* The controller does a simple calculation to
3157	 * make sure there is enough room in the FIFO before
3158	 * initiating the DMA for each buffer.  The calc is:
3159	 * 4 = ceil(buffer len/mss).  To make sure we don't
3160	 * overrun the FIFO, adjust the max buffer len if mss
3161	 * drops. */
3162	if (mss) {
3163		u8 hdr_len;
3164		max_per_txd = min(mss << 2, max_per_txd);
3165		max_txd_pwr = fls(max_per_txd) - 1;
3166
3167		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3168		if (skb->data_len && hdr_len == len) {
3169			switch (hw->mac_type) {
3170				unsigned int pull_size;
3171			case e1000_82544:
3172				/* Make sure we have room to chop off 4 bytes,
3173				 * and that the end alignment will work out to
3174				 * this hardware's requirements
3175				 * NOTE: this is a TSO only workaround
3176				 * if end byte alignment not correct move us
3177				 * into the next dword */
3178				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3179					break;
3180				/* fall through */
3181				pull_size = min((unsigned int)4, skb->data_len);
3182				if (!__pskb_pull_tail(skb, pull_size)) {
3183					e_err(drv, "__pskb_pull_tail "
3184					      "failed.\n");
3185					dev_kfree_skb_any(skb);
3186					return NETDEV_TX_OK;
3187				}
3188				len = skb_headlen(skb);
3189				break;
3190			default:
3191				/* do nothing */
3192				break;
3193			}
3194		}
3195	}
3196
3197	/* reserve a descriptor for the offload context */
3198	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3199		count++;
3200	count++;
3201
3202	/* Controller Erratum workaround */
3203	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3204		count++;
3205
3206	count += TXD_USE_COUNT(len, max_txd_pwr);
3207
3208	if (adapter->pcix_82544)
3209		count++;
3210
3211	/* work-around for errata 10 and it applies to all controllers
3212	 * in PCI-X mode, so add one more descriptor to the count
3213	 */
3214	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3215			(len > 2015)))
3216		count++;
3217
3218	nr_frags = skb_shinfo(skb)->nr_frags;
3219	for (f = 0; f < nr_frags; f++)
3220		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3221				       max_txd_pwr);
3222	if (adapter->pcix_82544)
3223		count += nr_frags;
3224
3225	/* need: count + 2 desc gap to keep tail from touching
3226	 * head, otherwise try next time */
3227	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3228		return NETDEV_TX_BUSY;
3229
3230	if (unlikely((hw->mac_type == e1000_82547) &&
3231		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3232		netif_stop_queue(netdev);
3233		if (!test_bit(__E1000_DOWN, &adapter->flags))
3234			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3235		return NETDEV_TX_BUSY;
3236	}
3237
3238	if (vlan_tx_tag_present(skb)) {
3239		tx_flags |= E1000_TX_FLAGS_VLAN;
3240		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3241	}
3242
3243	first = tx_ring->next_to_use;
3244
3245	tso = e1000_tso(adapter, tx_ring, skb);
3246	if (tso < 0) {
3247		dev_kfree_skb_any(skb);
3248		return NETDEV_TX_OK;
3249	}
3250
3251	if (likely(tso)) {
3252		if (likely(hw->mac_type != e1000_82544))
3253			tx_ring->last_tx_tso = true;
3254		tx_flags |= E1000_TX_FLAGS_TSO;
3255	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3256		tx_flags |= E1000_TX_FLAGS_CSUM;
3257
3258	if (likely(skb->protocol == htons(ETH_P_IP)))
3259		tx_flags |= E1000_TX_FLAGS_IPV4;
3260
3261	if (unlikely(skb->no_fcs))
3262		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3263
3264	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3265	                     nr_frags, mss);
3266
3267	if (count) {
3268		skb_tx_timestamp(skb);
3269
3270		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3271		/* Make sure there is space in the ring for the next send. */
3272		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3273
3274	} else {
3275		dev_kfree_skb_any(skb);
3276		tx_ring->buffer_info[first].time_stamp = 0;
3277		tx_ring->next_to_use = first;
3278	}
3279
3280	return NETDEV_TX_OK;
3281}
3282
3283#define NUM_REGS 38 /* 1 based count */
3284static void e1000_regdump(struct e1000_adapter *adapter)
3285{
3286	struct e1000_hw *hw = &adapter->hw;
3287	u32 regs[NUM_REGS];
3288	u32 *regs_buff = regs;
3289	int i = 0;
3290
3291	static const char * const reg_name[] = {
3292		"CTRL",  "STATUS",
3293		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3294		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3295		"TIDV", "TXDCTL", "TADV", "TARC0",
3296		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3297		"TXDCTL1", "TARC1",
3298		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3299		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3300		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3301	};
3302
3303	regs_buff[0]  = er32(CTRL);
3304	regs_buff[1]  = er32(STATUS);
3305
3306	regs_buff[2]  = er32(RCTL);
3307	regs_buff[3]  = er32(RDLEN);
3308	regs_buff[4]  = er32(RDH);
3309	regs_buff[5]  = er32(RDT);
3310	regs_buff[6]  = er32(RDTR);
3311
3312	regs_buff[7]  = er32(TCTL);
3313	regs_buff[8]  = er32(TDBAL);
3314	regs_buff[9]  = er32(TDBAH);
3315	regs_buff[10] = er32(TDLEN);
3316	regs_buff[11] = er32(TDH);
3317	regs_buff[12] = er32(TDT);
3318	regs_buff[13] = er32(TIDV);
3319	regs_buff[14] = er32(TXDCTL);
3320	regs_buff[15] = er32(TADV);
3321	regs_buff[16] = er32(TARC0);
3322
3323	regs_buff[17] = er32(TDBAL1);
3324	regs_buff[18] = er32(TDBAH1);
3325	regs_buff[19] = er32(TDLEN1);
3326	regs_buff[20] = er32(TDH1);
3327	regs_buff[21] = er32(TDT1);
3328	regs_buff[22] = er32(TXDCTL1);
3329	regs_buff[23] = er32(TARC1);
3330	regs_buff[24] = er32(CTRL_EXT);
3331	regs_buff[25] = er32(ERT);
3332	regs_buff[26] = er32(RDBAL0);
3333	regs_buff[27] = er32(RDBAH0);
3334	regs_buff[28] = er32(TDFH);
3335	regs_buff[29] = er32(TDFT);
3336	regs_buff[30] = er32(TDFHS);
3337	regs_buff[31] = er32(TDFTS);
3338	regs_buff[32] = er32(TDFPC);
3339	regs_buff[33] = er32(RDFH);
3340	regs_buff[34] = er32(RDFT);
3341	regs_buff[35] = er32(RDFHS);
3342	regs_buff[36] = er32(RDFTS);
3343	regs_buff[37] = er32(RDFPC);
3344
3345	pr_info("Register dump\n");
3346	for (i = 0; i < NUM_REGS; i++)
3347		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3348}
3349
3350/*
3351 * e1000_dump: Print registers, tx ring and rx ring
3352 */
3353static void e1000_dump(struct e1000_adapter *adapter)
3354{
3355	/* this code doesn't handle multiple rings */
3356	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3357	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3358	int i;
3359
3360	if (!netif_msg_hw(adapter))
3361		return;
3362
3363	/* Print Registers */
3364	e1000_regdump(adapter);
3365
3366	/*
3367	 * transmit dump
3368	 */
3369	pr_info("TX Desc ring0 dump\n");
3370
3371	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372	 *
3373	 * Legacy Transmit Descriptor
3374	 *   +--------------------------------------------------------------+
3375	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3376	 *   +--------------------------------------------------------------+
3377	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3378	 *   +--------------------------------------------------------------+
3379	 *   63       48 47        36 35    32 31     24 23    16 15        0
3380	 *
3381	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382	 *   63      48 47    40 39       32 31             16 15    8 7      0
3383	 *   +----------------------------------------------------------------+
3384	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3385	 *   +----------------------------------------------------------------+
3386	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3387	 *   +----------------------------------------------------------------+
3388	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3389	 *
3390	 * Extended Data Descriptor (DTYP=0x1)
3391	 *   +----------------------------------------------------------------+
3392	 * 0 |                     Buffer Address [63:0]                      |
3393	 *   +----------------------------------------------------------------+
3394	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3395	 *   +----------------------------------------------------------------+
3396	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3397	 */
3398	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3399	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3400
3401	if (!netif_msg_tx_done(adapter))
3402		goto rx_ring_summary;
3403
3404	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406		struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3407		struct my_u { __le64 a; __le64 b; };
3408		struct my_u *u = (struct my_u *)tx_desc;
3409		const char *type;
3410
3411		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412			type = "NTC/U";
3413		else if (i == tx_ring->next_to_use)
3414			type = "NTU";
3415		else if (i == tx_ring->next_to_clean)
3416			type = "NTC";
3417		else
3418			type = "";
3419
3420		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3421			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422			le64_to_cpu(u->a), le64_to_cpu(u->b),
3423			(u64)buffer_info->dma, buffer_info->length,
3424			buffer_info->next_to_watch,
3425			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3426	}
3427
3428rx_ring_summary:
3429	/*
3430	 * receive dump
3431	 */
3432	pr_info("\nRX Desc ring dump\n");
3433
3434	/* Legacy Receive Descriptor Format
3435	 *
3436	 * +-----------------------------------------------------+
3437	 * |                Buffer Address [63:0]                |
3438	 * +-----------------------------------------------------+
3439	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440	 * +-----------------------------------------------------+
3441	 * 63       48 47    40 39      32 31         16 15      0
3442	 */
3443	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3444
3445	if (!netif_msg_rx_status(adapter))
3446		goto exit;
3447
3448	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450		struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3451		struct my_u { __le64 a; __le64 b; };
3452		struct my_u *u = (struct my_u *)rx_desc;
3453		const char *type;
3454
3455		if (i == rx_ring->next_to_use)
3456			type = "NTU";
3457		else if (i == rx_ring->next_to_clean)
3458			type = "NTC";
3459		else
3460			type = "";
3461
3462		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3463			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464			(u64)buffer_info->dma, buffer_info->skb, type);
3465	} /* for */
3466
3467	/* dump the descriptor caches */
3468	/* rx */
3469	pr_info("Rx descriptor cache in 64bit format\n");
3470	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472			i,
3473			readl(adapter->hw.hw_addr + i+4),
3474			readl(adapter->hw.hw_addr + i),
3475			readl(adapter->hw.hw_addr + i+12),
3476			readl(adapter->hw.hw_addr + i+8));
3477	}
3478	/* tx */
3479	pr_info("Tx descriptor cache in 64bit format\n");
3480	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482			i,
3483			readl(adapter->hw.hw_addr + i+4),
3484			readl(adapter->hw.hw_addr + i),
3485			readl(adapter->hw.hw_addr + i+12),
3486			readl(adapter->hw.hw_addr + i+8));
3487	}
3488exit:
3489	return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 **/
3496
3497static void e1000_tx_timeout(struct net_device *netdev)
3498{
3499	struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501	/* Do the reset outside of interrupt context */
3502	adapter->tx_timeout_count++;
3503	schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508	struct e1000_adapter *adapter =
3509		container_of(work, struct e1000_adapter, reset_task);
3510
3511	if (test_bit(__E1000_DOWN, &adapter->flags))
3512		return;
3513	e_err(drv, "Reset adapter\n");
3514	e1000_reinit_safe(adapter);
3515}
3516
3517/**
3518 * e1000_get_stats - Get System Network Statistics
3519 * @netdev: network interface device structure
3520 *
3521 * Returns the address of the device statistics structure.
3522 * The statistics are actually updated from the watchdog.
3523 **/
3524
3525static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3526{
3527	/* only return the current stats */
3528	return &netdev->stats;
3529}
3530
3531/**
3532 * e1000_change_mtu - Change the Maximum Transfer Unit
3533 * @netdev: network interface device structure
3534 * @new_mtu: new value for maximum frame size
3535 *
3536 * Returns 0 on success, negative on failure
3537 **/
3538
3539static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3540{
3541	struct e1000_adapter *adapter = netdev_priv(netdev);
3542	struct e1000_hw *hw = &adapter->hw;
3543	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3544
3545	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3546	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3547		e_err(probe, "Invalid MTU setting\n");
3548		return -EINVAL;
3549	}
3550
3551	/* Adapter-specific max frame size limits. */
3552	switch (hw->mac_type) {
3553	case e1000_undefined ... e1000_82542_rev2_1:
3554		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3555			e_err(probe, "Jumbo Frames not supported.\n");
3556			return -EINVAL;
3557		}
3558		break;
3559	default:
3560		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3561		break;
3562	}
3563
3564	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3565		msleep(1);
3566	/* e1000_down has a dependency on max_frame_size */
3567	hw->max_frame_size = max_frame;
3568	if (netif_running(netdev))
3569		e1000_down(adapter);
3570
3571	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3572	 * means we reserve 2 more, this pushes us to allocate from the next
3573	 * larger slab size.
3574	 * i.e. RXBUFFER_2048 --> size-4096 slab
3575	 *  however with the new *_jumbo_rx* routines, jumbo receives will use
3576	 *  fragmented skbs */
3577
3578	if (max_frame <= E1000_RXBUFFER_2048)
3579		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3580	else
3581#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3582		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3583#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3584		adapter->rx_buffer_len = PAGE_SIZE;
3585#endif
3586
3587	/* adjust allocation if LPE protects us, and we aren't using SBP */
3588	if (!hw->tbi_compatibility_on &&
3589	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3590	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3591		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3592
3593	pr_info("%s changing MTU from %d to %d\n",
3594		netdev->name, netdev->mtu, new_mtu);
3595	netdev->mtu = new_mtu;
3596
3597	if (netif_running(netdev))
3598		e1000_up(adapter);
3599	else
3600		e1000_reset(adapter);
3601
3602	clear_bit(__E1000_RESETTING, &adapter->flags);
3603
3604	return 0;
3605}
3606
3607/**
3608 * e1000_update_stats - Update the board statistics counters
3609 * @adapter: board private structure
3610 **/
3611
3612void e1000_update_stats(struct e1000_adapter *adapter)
3613{
3614	struct net_device *netdev = adapter->netdev;
3615	struct e1000_hw *hw = &adapter->hw;
3616	struct pci_dev *pdev = adapter->pdev;
3617	unsigned long flags;
3618	u16 phy_tmp;
3619
3620#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3621
3622	/*
3623	 * Prevent stats update while adapter is being reset, or if the pci
3624	 * connection is down.
3625	 */
3626	if (adapter->link_speed == 0)
3627		return;
3628	if (pci_channel_offline(pdev))
3629		return;
3630
3631	spin_lock_irqsave(&adapter->stats_lock, flags);
3632
3633	/* these counters are modified from e1000_tbi_adjust_stats,
3634	 * called from the interrupt context, so they must only
3635	 * be written while holding adapter->stats_lock
3636	 */
3637
3638	adapter->stats.crcerrs += er32(CRCERRS);
3639	adapter->stats.gprc += er32(GPRC);
3640	adapter->stats.gorcl += er32(GORCL);
3641	adapter->stats.gorch += er32(GORCH);
3642	adapter->stats.bprc += er32(BPRC);
3643	adapter->stats.mprc += er32(MPRC);
3644	adapter->stats.roc += er32(ROC);
3645
3646	adapter->stats.prc64 += er32(PRC64);
3647	adapter->stats.prc127 += er32(PRC127);
3648	adapter->stats.prc255 += er32(PRC255);
3649	adapter->stats.prc511 += er32(PRC511);
3650	adapter->stats.prc1023 += er32(PRC1023);
3651	adapter->stats.prc1522 += er32(PRC1522);
3652
3653	adapter->stats.symerrs += er32(SYMERRS);
3654	adapter->stats.mpc += er32(MPC);
3655	adapter->stats.scc += er32(SCC);
3656	adapter->stats.ecol += er32(ECOL);
3657	adapter->stats.mcc += er32(MCC);
3658	adapter->stats.latecol += er32(LATECOL);
3659	adapter->stats.dc += er32(DC);
3660	adapter->stats.sec += er32(SEC);
3661	adapter->stats.rlec += er32(RLEC);
3662	adapter->stats.xonrxc += er32(XONRXC);
3663	adapter->stats.xontxc += er32(XONTXC);
3664	adapter->stats.xoffrxc += er32(XOFFRXC);
3665	adapter->stats.xofftxc += er32(XOFFTXC);
3666	adapter->stats.fcruc += er32(FCRUC);
3667	adapter->stats.gptc += er32(GPTC);
3668	adapter->stats.gotcl += er32(GOTCL);
3669	adapter->stats.gotch += er32(GOTCH);
3670	adapter->stats.rnbc += er32(RNBC);
3671	adapter->stats.ruc += er32(RUC);
3672	adapter->stats.rfc += er32(RFC);
3673	adapter->stats.rjc += er32(RJC);
3674	adapter->stats.torl += er32(TORL);
3675	adapter->stats.torh += er32(TORH);
3676	adapter->stats.totl += er32(TOTL);
3677	adapter->stats.toth += er32(TOTH);
3678	adapter->stats.tpr += er32(TPR);
3679
3680	adapter->stats.ptc64 += er32(PTC64);
3681	adapter->stats.ptc127 += er32(PTC127);
3682	adapter->stats.ptc255 += er32(PTC255);
3683	adapter->stats.ptc511 += er32(PTC511);
3684	adapter->stats.ptc1023 += er32(PTC1023);
3685	adapter->stats.ptc1522 += er32(PTC1522);
3686
3687	adapter->stats.mptc += er32(MPTC);
3688	adapter->stats.bptc += er32(BPTC);
3689
3690	/* used for adaptive IFS */
3691
3692	hw->tx_packet_delta = er32(TPT);
3693	adapter->stats.tpt += hw->tx_packet_delta;
3694	hw->collision_delta = er32(COLC);
3695	adapter->stats.colc += hw->collision_delta;
3696
3697	if (hw->mac_type >= e1000_82543) {
3698		adapter->stats.algnerrc += er32(ALGNERRC);
3699		adapter->stats.rxerrc += er32(RXERRC);
3700		adapter->stats.tncrs += er32(TNCRS);
3701		adapter->stats.cexterr += er32(CEXTERR);
3702		adapter->stats.tsctc += er32(TSCTC);
3703		adapter->stats.tsctfc += er32(TSCTFC);
3704	}
3705
3706	/* Fill out the OS statistics structure */
3707	netdev->stats.multicast = adapter->stats.mprc;
3708	netdev->stats.collisions = adapter->stats.colc;
3709
3710	/* Rx Errors */
3711
3712	/* RLEC on some newer hardware can be incorrect so build
3713	* our own version based on RUC and ROC */
3714	netdev->stats.rx_errors = adapter->stats.rxerrc +
3715		adapter->stats.crcerrs + adapter->stats.algnerrc +
3716		adapter->stats.ruc + adapter->stats.roc +
3717		adapter->stats.cexterr;
3718	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3719	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3720	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3721	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3722	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3723
3724	/* Tx Errors */
3725	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3726	netdev->stats.tx_errors = adapter->stats.txerrc;
3727	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3728	netdev->stats.tx_window_errors = adapter->stats.latecol;
3729	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3730	if (hw->bad_tx_carr_stats_fd &&
3731	    adapter->link_duplex == FULL_DUPLEX) {
3732		netdev->stats.tx_carrier_errors = 0;
3733		adapter->stats.tncrs = 0;
3734	}
3735
3736	/* Tx Dropped needs to be maintained elsewhere */
3737
3738	/* Phy Stats */
3739	if (hw->media_type == e1000_media_type_copper) {
3740		if ((adapter->link_speed == SPEED_1000) &&
3741		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3742			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3743			adapter->phy_stats.idle_errors += phy_tmp;
3744		}
3745
3746		if ((hw->mac_type <= e1000_82546) &&
3747		   (hw->phy_type == e1000_phy_m88) &&
3748		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3749			adapter->phy_stats.receive_errors += phy_tmp;
3750	}
3751
3752	/* Management Stats */
3753	if (hw->has_smbus) {
3754		adapter->stats.mgptc += er32(MGTPTC);
3755		adapter->stats.mgprc += er32(MGTPRC);
3756		adapter->stats.mgpdc += er32(MGTPDC);
3757	}
3758
3759	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3760}
3761
3762/**
3763 * e1000_intr - Interrupt Handler
3764 * @irq: interrupt number
3765 * @data: pointer to a network interface device structure
3766 **/
3767
3768static irqreturn_t e1000_intr(int irq, void *data)
3769{
3770	struct net_device *netdev = data;
3771	struct e1000_adapter *adapter = netdev_priv(netdev);
3772	struct e1000_hw *hw = &adapter->hw;
3773	u32 icr = er32(ICR);
3774
3775	if (unlikely((!icr)))
3776		return IRQ_NONE;  /* Not our interrupt */
3777
3778	/*
3779	 * we might have caused the interrupt, but the above
3780	 * read cleared it, and just in case the driver is
3781	 * down there is nothing to do so return handled
3782	 */
3783	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3784		return IRQ_HANDLED;
3785
3786	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3787		hw->get_link_status = 1;
3788		/* guard against interrupt when we're going down */
3789		if (!test_bit(__E1000_DOWN, &adapter->flags))
3790			schedule_delayed_work(&adapter->watchdog_task, 1);
3791	}
3792
3793	/* disable interrupts, without the synchronize_irq bit */
3794	ew32(IMC, ~0);
3795	E1000_WRITE_FLUSH();
3796
3797	if (likely(napi_schedule_prep(&adapter->napi))) {
3798		adapter->total_tx_bytes = 0;
3799		adapter->total_tx_packets = 0;
3800		adapter->total_rx_bytes = 0;
3801		adapter->total_rx_packets = 0;
3802		__napi_schedule(&adapter->napi);
3803	} else {
3804		/* this really should not happen! if it does it is basically a
3805		 * bug, but not a hard error, so enable ints and continue */
3806		if (!test_bit(__E1000_DOWN, &adapter->flags))
3807			e1000_irq_enable(adapter);
3808	}
3809
3810	return IRQ_HANDLED;
3811}
3812
3813/**
3814 * e1000_clean - NAPI Rx polling callback
3815 * @adapter: board private structure
3816 **/
3817static int e1000_clean(struct napi_struct *napi, int budget)
3818{
3819	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3820	int tx_clean_complete = 0, work_done = 0;
3821
3822	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3823
3824	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3825
3826	if (!tx_clean_complete)
3827		work_done = budget;
3828
3829	/* If budget not fully consumed, exit the polling mode */
3830	if (work_done < budget) {
3831		if (likely(adapter->itr_setting & 3))
3832			e1000_set_itr(adapter);
3833		napi_complete(napi);
3834		if (!test_bit(__E1000_DOWN, &adapter->flags))
3835			e1000_irq_enable(adapter);
3836	}
3837
3838	return work_done;
3839}
3840
3841/**
3842 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3843 * @adapter: board private structure
3844 **/
3845static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3846			       struct e1000_tx_ring *tx_ring)
3847{
3848	struct e1000_hw *hw = &adapter->hw;
3849	struct net_device *netdev = adapter->netdev;
3850	struct e1000_tx_desc *tx_desc, *eop_desc;
3851	struct e1000_buffer *buffer_info;
3852	unsigned int i, eop;
3853	unsigned int count = 0;
3854	unsigned int total_tx_bytes=0, total_tx_packets=0;
3855
3856	i = tx_ring->next_to_clean;
3857	eop = tx_ring->buffer_info[i].next_to_watch;
3858	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3859
3860	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3861	       (count < tx_ring->count)) {
3862		bool cleaned = false;
3863		rmb();	/* read buffer_info after eop_desc */
3864		for ( ; !cleaned; count++) {
3865			tx_desc = E1000_TX_DESC(*tx_ring, i);
3866			buffer_info = &tx_ring->buffer_info[i];
3867			cleaned = (i == eop);
3868
3869			if (cleaned) {
3870				total_tx_packets += buffer_info->segs;
3871				total_tx_bytes += buffer_info->bytecount;
3872			}
3873			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3874			tx_desc->upper.data = 0;
3875
3876			if (unlikely(++i == tx_ring->count)) i = 0;
3877		}
3878
3879		eop = tx_ring->buffer_info[i].next_to_watch;
3880		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3881	}
3882
3883	tx_ring->next_to_clean = i;
3884
3885#define TX_WAKE_THRESHOLD 32
3886	if (unlikely(count && netif_carrier_ok(netdev) &&
3887		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3888		/* Make sure that anybody stopping the queue after this
3889		 * sees the new next_to_clean.
3890		 */
3891		smp_mb();
3892
3893		if (netif_queue_stopped(netdev) &&
3894		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3895			netif_wake_queue(netdev);
3896			++adapter->restart_queue;
3897		}
3898	}
3899
3900	if (adapter->detect_tx_hung) {
3901		/* Detect a transmit hang in hardware, this serializes the
3902		 * check with the clearing of time_stamp and movement of i */
3903		adapter->detect_tx_hung = false;
3904		if (tx_ring->buffer_info[eop].time_stamp &&
3905		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3906		               (adapter->tx_timeout_factor * HZ)) &&
3907		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3908
3909			/* detected Tx unit hang */
3910			e_err(drv, "Detected Tx Unit Hang\n"
3911			      "  Tx Queue             <%lu>\n"
3912			      "  TDH                  <%x>\n"
3913			      "  TDT                  <%x>\n"
3914			      "  next_to_use          <%x>\n"
3915			      "  next_to_clean        <%x>\n"
3916			      "buffer_info[next_to_clean]\n"
3917			      "  time_stamp           <%lx>\n"
3918			      "  next_to_watch        <%x>\n"
3919			      "  jiffies              <%lx>\n"
3920			      "  next_to_watch.status <%x>\n",
3921				(unsigned long)((tx_ring - adapter->tx_ring) /
3922					sizeof(struct e1000_tx_ring)),
3923				readl(hw->hw_addr + tx_ring->tdh),
3924				readl(hw->hw_addr + tx_ring->tdt),
3925				tx_ring->next_to_use,
3926				tx_ring->next_to_clean,
3927				tx_ring->buffer_info[eop].time_stamp,
3928				eop,
3929				jiffies,
3930				eop_desc->upper.fields.status);
3931			e1000_dump(adapter);
3932			netif_stop_queue(netdev);
3933		}
3934	}
3935	adapter->total_tx_bytes += total_tx_bytes;
3936	adapter->total_tx_packets += total_tx_packets;
3937	netdev->stats.tx_bytes += total_tx_bytes;
3938	netdev->stats.tx_packets += total_tx_packets;
3939	return count < tx_ring->count;
3940}
3941
3942/**
3943 * e1000_rx_checksum - Receive Checksum Offload for 82543
3944 * @adapter:     board private structure
3945 * @status_err:  receive descriptor status and error fields
3946 * @csum:        receive descriptor csum field
3947 * @sk_buff:     socket buffer with received data
3948 **/
3949
3950static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3951			      u32 csum, struct sk_buff *skb)
3952{
3953	struct e1000_hw *hw = &adapter->hw;
3954	u16 status = (u16)status_err;
3955	u8 errors = (u8)(status_err >> 24);
3956
3957	skb_checksum_none_assert(skb);
3958
3959	/* 82543 or newer only */
3960	if (unlikely(hw->mac_type < e1000_82543)) return;
3961	/* Ignore Checksum bit is set */
3962	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3963	/* TCP/UDP checksum error bit is set */
3964	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3965		/* let the stack verify checksum errors */
3966		adapter->hw_csum_err++;
3967		return;
3968	}
3969	/* TCP/UDP Checksum has not been calculated */
3970	if (!(status & E1000_RXD_STAT_TCPCS))
3971		return;
3972
3973	/* It must be a TCP or UDP packet with a valid checksum */
3974	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3975		/* TCP checksum is good */
3976		skb->ip_summed = CHECKSUM_UNNECESSARY;
3977	}
3978	adapter->hw_csum_good++;
3979}
3980
3981/**
3982 * e1000_consume_page - helper function
3983 **/
3984static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3985                               u16 length)
3986{
3987	bi->page = NULL;
3988	skb->len += length;
3989	skb->data_len += length;
3990	skb->truesize += PAGE_SIZE;
3991}
3992
3993/**
3994 * e1000_receive_skb - helper function to handle rx indications
3995 * @adapter: board private structure
3996 * @status: descriptor status field as written by hardware
3997 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3998 * @skb: pointer to sk_buff to be indicated to stack
3999 */
4000static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4001			      __le16 vlan, struct sk_buff *skb)
4002{
4003	skb->protocol = eth_type_trans(skb, adapter->netdev);
4004
4005	if (status & E1000_RXD_STAT_VP) {
4006		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4007
4008		__vlan_hwaccel_put_tag(skb, vid);
4009	}
4010	napi_gro_receive(&adapter->napi, skb);
4011}
4012
4013/**
4014 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4015 * @adapter: board private structure
4016 * @rx_ring: ring to clean
4017 * @work_done: amount of napi work completed this call
4018 * @work_to_do: max amount of work allowed for this call to do
4019 *
4020 * the return value indicates whether actual cleaning was done, there
4021 * is no guarantee that everything was cleaned
4022 */
4023static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4024				     struct e1000_rx_ring *rx_ring,
4025				     int *work_done, int work_to_do)
4026{
4027	struct e1000_hw *hw = &adapter->hw;
4028	struct net_device *netdev = adapter->netdev;
4029	struct pci_dev *pdev = adapter->pdev;
4030	struct e1000_rx_desc *rx_desc, *next_rxd;
4031	struct e1000_buffer *buffer_info, *next_buffer;
4032	unsigned long irq_flags;
4033	u32 length;
4034	unsigned int i;
4035	int cleaned_count = 0;
4036	bool cleaned = false;
4037	unsigned int total_rx_bytes=0, total_rx_packets=0;
4038
4039	i = rx_ring->next_to_clean;
4040	rx_desc = E1000_RX_DESC(*rx_ring, i);
4041	buffer_info = &rx_ring->buffer_info[i];
4042
4043	while (rx_desc->status & E1000_RXD_STAT_DD) {
4044		struct sk_buff *skb;
4045		u8 status;
4046
4047		if (*work_done >= work_to_do)
4048			break;
4049		(*work_done)++;
4050		rmb(); /* read descriptor and rx_buffer_info after status DD */
4051
4052		status = rx_desc->status;
4053		skb = buffer_info->skb;
4054		buffer_info->skb = NULL;
4055
4056		if (++i == rx_ring->count) i = 0;
4057		next_rxd = E1000_RX_DESC(*rx_ring, i);
4058		prefetch(next_rxd);
4059
4060		next_buffer = &rx_ring->buffer_info[i];
4061
4062		cleaned = true;
4063		cleaned_count++;
4064		dma_unmap_page(&pdev->dev, buffer_info->dma,
4065			       buffer_info->length, DMA_FROM_DEVICE);
4066		buffer_info->dma = 0;
4067
4068		length = le16_to_cpu(rx_desc->length);
4069
4070		/* errors is only valid for DD + EOP descriptors */
4071		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4072		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4073			u8 *mapped;
4074			u8 last_byte;
4075
4076			mapped = page_address(buffer_info->page);
4077			last_byte = *(mapped + length - 1);
4078			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4079				       last_byte)) {
4080				spin_lock_irqsave(&adapter->stats_lock,
4081				                  irq_flags);
4082				e1000_tbi_adjust_stats(hw, &adapter->stats,
4083						       length, mapped);
4084				spin_unlock_irqrestore(&adapter->stats_lock,
4085				                       irq_flags);
4086				length--;
4087			} else {
4088				if (netdev->features & NETIF_F_RXALL)
4089					goto process_skb;
4090				/* recycle both page and skb */
4091				buffer_info->skb = skb;
4092				/* an error means any chain goes out the window
4093				 * too */
4094				if (rx_ring->rx_skb_top)
4095					dev_kfree_skb(rx_ring->rx_skb_top);
4096				rx_ring->rx_skb_top = NULL;
4097				goto next_desc;
4098			}
4099		}
4100
4101#define rxtop rx_ring->rx_skb_top
4102process_skb:
4103		if (!(status & E1000_RXD_STAT_EOP)) {
4104			/* this descriptor is only the beginning (or middle) */
4105			if (!rxtop) {
4106				/* this is the beginning of a chain */
4107				rxtop = skb;
4108				skb_fill_page_desc(rxtop, 0, buffer_info->page,
4109				                   0, length);
4110			} else {
4111				/* this is the middle of a chain */
4112				skb_fill_page_desc(rxtop,
4113				    skb_shinfo(rxtop)->nr_frags,
4114				    buffer_info->page, 0, length);
4115				/* re-use the skb, only consumed the page */
4116				buffer_info->skb = skb;
4117			}
4118			e1000_consume_page(buffer_info, rxtop, length);
4119			goto next_desc;
4120		} else {
4121			if (rxtop) {
4122				/* end of the chain */
4123				skb_fill_page_desc(rxtop,
4124				    skb_shinfo(rxtop)->nr_frags,
4125				    buffer_info->page, 0, length);
4126				/* re-use the current skb, we only consumed the
4127				 * page */
4128				buffer_info->skb = skb;
4129				skb = rxtop;
4130				rxtop = NULL;
4131				e1000_consume_page(buffer_info, skb, length);
4132			} else {
4133				/* no chain, got EOP, this buf is the packet
4134				 * copybreak to save the put_page/alloc_page */
4135				if (length <= copybreak &&
4136				    skb_tailroom(skb) >= length) {
4137					u8 *vaddr;
4138					vaddr = kmap_atomic(buffer_info->page);
4139					memcpy(skb_tail_pointer(skb), vaddr, length);
4140					kunmap_atomic(vaddr);
4141					/* re-use the page, so don't erase
4142					 * buffer_info->page */
4143					skb_put(skb, length);
4144				} else {
4145					skb_fill_page_desc(skb, 0,
4146					                   buffer_info->page, 0,
4147				                           length);
4148					e1000_consume_page(buffer_info, skb,
4149					                   length);
4150				}
4151			}
4152		}
4153
4154		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4155		e1000_rx_checksum(adapter,
4156		                  (u32)(status) |
4157		                  ((u32)(rx_desc->errors) << 24),
4158		                  le16_to_cpu(rx_desc->csum), skb);
4159
4160		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4161		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4162			pskb_trim(skb, skb->len - 4);
4163		total_rx_packets++;
4164
4165		/* eth type trans needs skb->data to point to something */
4166		if (!pskb_may_pull(skb, ETH_HLEN)) {
4167			e_err(drv, "pskb_may_pull failed.\n");
4168			dev_kfree_skb(skb);
4169			goto next_desc;
4170		}
4171
4172		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4173
4174next_desc:
4175		rx_desc->status = 0;
4176
4177		/* return some buffers to hardware, one at a time is too slow */
4178		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4179			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4180			cleaned_count = 0;
4181		}
4182
4183		/* use prefetched values */
4184		rx_desc = next_rxd;
4185		buffer_info = next_buffer;
4186	}
4187	rx_ring->next_to_clean = i;
4188
4189	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4190	if (cleaned_count)
4191		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4192
4193	adapter->total_rx_packets += total_rx_packets;
4194	adapter->total_rx_bytes += total_rx_bytes;
4195	netdev->stats.rx_bytes += total_rx_bytes;
4196	netdev->stats.rx_packets += total_rx_packets;
4197	return cleaned;
4198}
4199
4200/*
4201 * this should improve performance for small packets with large amounts
4202 * of reassembly being done in the stack
4203 */
4204static void e1000_check_copybreak(struct net_device *netdev,
4205				 struct e1000_buffer *buffer_info,
4206				 u32 length, struct sk_buff **skb)
4207{
4208	struct sk_buff *new_skb;
4209
4210	if (length > copybreak)
4211		return;
4212
4213	new_skb = netdev_alloc_skb_ip_align(netdev, length);
4214	if (!new_skb)
4215		return;
4216
4217	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4218				       (*skb)->data - NET_IP_ALIGN,
4219				       length + NET_IP_ALIGN);
4220	/* save the skb in buffer_info as good */
4221	buffer_info->skb = *skb;
4222	*skb = new_skb;
4223}
4224
4225/**
4226 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4227 * @adapter: board private structure
4228 * @rx_ring: ring to clean
4229 * @work_done: amount of napi work completed this call
4230 * @work_to_do: max amount of work allowed for this call to do
4231 */
4232static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4233			       struct e1000_rx_ring *rx_ring,
4234			       int *work_done, int work_to_do)
4235{
4236	struct e1000_hw *hw = &adapter->hw;
4237	struct net_device *netdev = adapter->netdev;
4238	struct pci_dev *pdev = adapter->pdev;
4239	struct e1000_rx_desc *rx_desc, *next_rxd;
4240	struct e1000_buffer *buffer_info, *next_buffer;
4241	unsigned long flags;
4242	u32 length;
4243	unsigned int i;
4244	int cleaned_count = 0;
4245	bool cleaned = false;
4246	unsigned int total_rx_bytes=0, total_rx_packets=0;
4247
4248	i = rx_ring->next_to_clean;
4249	rx_desc = E1000_RX_DESC(*rx_ring, i);
4250	buffer_info = &rx_ring->buffer_info[i];
4251
4252	while (rx_desc->status & E1000_RXD_STAT_DD) {
4253		struct sk_buff *skb;
4254		u8 status;
4255
4256		if (*work_done >= work_to_do)
4257			break;
4258		(*work_done)++;
4259		rmb(); /* read descriptor and rx_buffer_info after status DD */
4260
4261		status = rx_desc->status;
4262		skb = buffer_info->skb;
4263		buffer_info->skb = NULL;
4264
4265		prefetch(skb->data - NET_IP_ALIGN);
4266
4267		if (++i == rx_ring->count) i = 0;
4268		next_rxd = E1000_RX_DESC(*rx_ring, i);
4269		prefetch(next_rxd);
4270
4271		next_buffer = &rx_ring->buffer_info[i];
4272
4273		cleaned = true;
4274		cleaned_count++;
4275		dma_unmap_single(&pdev->dev, buffer_info->dma,
4276				 buffer_info->length, DMA_FROM_DEVICE);
4277		buffer_info->dma = 0;
4278
4279		length = le16_to_cpu(rx_desc->length);
4280		/* !EOP means multiple descriptors were used to store a single
4281		 * packet, if thats the case we need to toss it.  In fact, we
4282		 * to toss every packet with the EOP bit clear and the next
4283		 * frame that _does_ have the EOP bit set, as it is by
4284		 * definition only a frame fragment
4285		 */
4286		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4287			adapter->discarding = true;
4288
4289		if (adapter->discarding) {
4290			/* All receives must fit into a single buffer */
4291			e_dbg("Receive packet consumed multiple buffers\n");
4292			/* recycle */
4293			buffer_info->skb = skb;
4294			if (status & E1000_RXD_STAT_EOP)
4295				adapter->discarding = false;
4296			goto next_desc;
4297		}
4298
4299		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4300			u8 last_byte = *(skb->data + length - 1);
4301			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4302				       last_byte)) {
4303				spin_lock_irqsave(&adapter->stats_lock, flags);
4304				e1000_tbi_adjust_stats(hw, &adapter->stats,
4305				                       length, skb->data);
4306				spin_unlock_irqrestore(&adapter->stats_lock,
4307				                       flags);
4308				length--;
4309			} else {
4310				if (netdev->features & NETIF_F_RXALL)
4311					goto process_skb;
4312				/* recycle */
4313				buffer_info->skb = skb;
4314				goto next_desc;
4315			}
4316		}
4317
4318process_skb:
4319		total_rx_bytes += (length - 4); /* don't count FCS */
4320		total_rx_packets++;
4321
4322		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4323			/* adjust length to remove Ethernet CRC, this must be
4324			 * done after the TBI_ACCEPT workaround above
4325			 */
4326			length -= 4;
4327
4328		e1000_check_copybreak(netdev, buffer_info, length, &skb);
4329
4330		skb_put(skb, length);
4331
4332		/* Receive Checksum Offload */
4333		e1000_rx_checksum(adapter,
4334				  (u32)(status) |
4335				  ((u32)(rx_desc->errors) << 24),
4336				  le16_to_cpu(rx_desc->csum), skb);
4337
4338		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4339
4340next_desc:
4341		rx_desc->status = 0;
4342
4343		/* return some buffers to hardware, one at a time is too slow */
4344		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4345			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4346			cleaned_count = 0;
4347		}
4348
4349		/* use prefetched values */
4350		rx_desc = next_rxd;
4351		buffer_info = next_buffer;
4352	}
4353	rx_ring->next_to_clean = i;
4354
4355	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4356	if (cleaned_count)
4357		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4358
4359	adapter->total_rx_packets += total_rx_packets;
4360	adapter->total_rx_bytes += total_rx_bytes;
4361	netdev->stats.rx_bytes += total_rx_bytes;
4362	netdev->stats.rx_packets += total_rx_packets;
4363	return cleaned;
4364}
4365
4366/**
4367 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4368 * @adapter: address of board private structure
4369 * @rx_ring: pointer to receive ring structure
4370 * @cleaned_count: number of buffers to allocate this pass
4371 **/
4372
4373static void
4374e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4375                             struct e1000_rx_ring *rx_ring, int cleaned_count)
4376{
4377	struct net_device *netdev = adapter->netdev;
4378	struct pci_dev *pdev = adapter->pdev;
4379	struct e1000_rx_desc *rx_desc;
4380	struct e1000_buffer *buffer_info;
4381	struct sk_buff *skb;
4382	unsigned int i;
4383	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4384
4385	i = rx_ring->next_to_use;
4386	buffer_info = &rx_ring->buffer_info[i];
4387
4388	while (cleaned_count--) {
4389		skb = buffer_info->skb;
4390		if (skb) {
4391			skb_trim(skb, 0);
4392			goto check_page;
4393		}
4394
4395		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4396		if (unlikely(!skb)) {
4397			/* Better luck next round */
4398			adapter->alloc_rx_buff_failed++;
4399			break;
4400		}
4401
4402		buffer_info->skb = skb;
4403		buffer_info->length = adapter->rx_buffer_len;
4404check_page:
4405		/* allocate a new page if necessary */
4406		if (!buffer_info->page) {
4407			buffer_info->page = alloc_page(GFP_ATOMIC);
4408			if (unlikely(!buffer_info->page)) {
4409				adapter->alloc_rx_buff_failed++;
4410				break;
4411			}
4412		}
4413
4414		if (!buffer_info->dma) {
4415			buffer_info->dma = dma_map_page(&pdev->dev,
4416			                                buffer_info->page, 0,
4417							buffer_info->length,
4418							DMA_FROM_DEVICE);
4419			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4420				put_page(buffer_info->page);
4421				dev_kfree_skb(skb);
4422				buffer_info->page = NULL;
4423				buffer_info->skb = NULL;
4424				buffer_info->dma = 0;
4425				adapter->alloc_rx_buff_failed++;
4426				break; /* while !buffer_info->skb */
4427			}
4428		}
4429
4430		rx_desc = E1000_RX_DESC(*rx_ring, i);
4431		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4432
4433		if (unlikely(++i == rx_ring->count))
4434			i = 0;
4435		buffer_info = &rx_ring->buffer_info[i];
4436	}
4437
4438	if (likely(rx_ring->next_to_use != i)) {
4439		rx_ring->next_to_use = i;
4440		if (unlikely(i-- == 0))
4441			i = (rx_ring->count - 1);
4442
4443		/* Force memory writes to complete before letting h/w
4444		 * know there are new descriptors to fetch.  (Only
4445		 * applicable for weak-ordered memory model archs,
4446		 * such as IA-64). */
4447		wmb();
4448		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4449	}
4450}
4451
4452/**
4453 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4454 * @adapter: address of board private structure
4455 **/
4456
4457static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4458				   struct e1000_rx_ring *rx_ring,
4459				   int cleaned_count)
4460{
4461	struct e1000_hw *hw = &adapter->hw;
4462	struct net_device *netdev = adapter->netdev;
4463	struct pci_dev *pdev = adapter->pdev;
4464	struct e1000_rx_desc *rx_desc;
4465	struct e1000_buffer *buffer_info;
4466	struct sk_buff *skb;
4467	unsigned int i;
4468	unsigned int bufsz = adapter->rx_buffer_len;
4469
4470	i = rx_ring->next_to_use;
4471	buffer_info = &rx_ring->buffer_info[i];
4472
4473	while (cleaned_count--) {
4474		skb = buffer_info->skb;
4475		if (skb) {
4476			skb_trim(skb, 0);
4477			goto map_skb;
4478		}
4479
4480		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4481		if (unlikely(!skb)) {
4482			/* Better luck next round */
4483			adapter->alloc_rx_buff_failed++;
4484			break;
4485		}
4486
4487		/* Fix for errata 23, can't cross 64kB boundary */
4488		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4489			struct sk_buff *oldskb = skb;
4490			e_err(rx_err, "skb align check failed: %u bytes at "
4491			      "%p\n", bufsz, skb->data);
4492			/* Try again, without freeing the previous */
4493			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4494			/* Failed allocation, critical failure */
4495			if (!skb) {
4496				dev_kfree_skb(oldskb);
4497				adapter->alloc_rx_buff_failed++;
4498				break;
4499			}
4500
4501			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4502				/* give up */
4503				dev_kfree_skb(skb);
4504				dev_kfree_skb(oldskb);
4505				adapter->alloc_rx_buff_failed++;
4506				break; /* while !buffer_info->skb */
4507			}
4508
4509			/* Use new allocation */
4510			dev_kfree_skb(oldskb);
4511		}
4512		buffer_info->skb = skb;
4513		buffer_info->length = adapter->rx_buffer_len;
4514map_skb:
4515		buffer_info->dma = dma_map_single(&pdev->dev,
4516						  skb->data,
4517						  buffer_info->length,
4518						  DMA_FROM_DEVICE);
4519		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4520			dev_kfree_skb(skb);
4521			buffer_info->skb = NULL;
4522			buffer_info->dma = 0;
4523			adapter->alloc_rx_buff_failed++;
4524			break; /* while !buffer_info->skb */
4525		}
4526
4527		/*
4528		 * XXX if it was allocated cleanly it will never map to a
4529		 * boundary crossing
4530		 */
4531
4532		/* Fix for errata 23, can't cross 64kB boundary */
4533		if (!e1000_check_64k_bound(adapter,
4534					(void *)(unsigned long)buffer_info->dma,
4535					adapter->rx_buffer_len)) {
4536			e_err(rx_err, "dma align check failed: %u bytes at "
4537			      "%p\n", adapter->rx_buffer_len,
4538			      (void *)(unsigned long)buffer_info->dma);
4539			dev_kfree_skb(skb);
4540			buffer_info->skb = NULL;
4541
4542			dma_unmap_single(&pdev->dev, buffer_info->dma,
4543					 adapter->rx_buffer_len,
4544					 DMA_FROM_DEVICE);
4545			buffer_info->dma = 0;
4546
4547			adapter->alloc_rx_buff_failed++;
4548			break; /* while !buffer_info->skb */
4549		}
4550		rx_desc = E1000_RX_DESC(*rx_ring, i);
4551		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4552
4553		if (unlikely(++i == rx_ring->count))
4554			i = 0;
4555		buffer_info = &rx_ring->buffer_info[i];
4556	}
4557
4558	if (likely(rx_ring->next_to_use != i)) {
4559		rx_ring->next_to_use = i;
4560		if (unlikely(i-- == 0))
4561			i = (rx_ring->count - 1);
4562
4563		/* Force memory writes to complete before letting h/w
4564		 * know there are new descriptors to fetch.  (Only
4565		 * applicable for weak-ordered memory model archs,
4566		 * such as IA-64). */
4567		wmb();
4568		writel(i, hw->hw_addr + rx_ring->rdt);
4569	}
4570}
4571
4572/**
4573 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4574 * @adapter:
4575 **/
4576
4577static void e1000_smartspeed(struct e1000_adapter *adapter)
4578{
4579	struct e1000_hw *hw = &adapter->hw;
4580	u16 phy_status;
4581	u16 phy_ctrl;
4582
4583	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4584	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4585		return;
4586
4587	if (adapter->smartspeed == 0) {
4588		/* If Master/Slave config fault is asserted twice,
4589		 * we assume back-to-back */
4590		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4591		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4592		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4593		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4594		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4595		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4596			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4597			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4598					    phy_ctrl);
4599			adapter->smartspeed++;
4600			if (!e1000_phy_setup_autoneg(hw) &&
4601			   !e1000_read_phy_reg(hw, PHY_CTRL,
4602				   	       &phy_ctrl)) {
4603				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4604					     MII_CR_RESTART_AUTO_NEG);
4605				e1000_write_phy_reg(hw, PHY_CTRL,
4606						    phy_ctrl);
4607			}
4608		}
4609		return;
4610	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4611		/* If still no link, perhaps using 2/3 pair cable */
4612		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4613		phy_ctrl |= CR_1000T_MS_ENABLE;
4614		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4615		if (!e1000_phy_setup_autoneg(hw) &&
4616		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4617			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4618				     MII_CR_RESTART_AUTO_NEG);
4619			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4620		}
4621	}
4622	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4623	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4624		adapter->smartspeed = 0;
4625}
4626
4627/**
4628 * e1000_ioctl -
4629 * @netdev:
4630 * @ifreq:
4631 * @cmd:
4632 **/
4633
4634static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4635{
4636	switch (cmd) {
4637	case SIOCGMIIPHY:
4638	case SIOCGMIIREG:
4639	case SIOCSMIIREG:
4640		return e1000_mii_ioctl(netdev, ifr, cmd);
4641	default:
4642		return -EOPNOTSUPP;
4643	}
4644}
4645
4646/**
4647 * e1000_mii_ioctl -
4648 * @netdev:
4649 * @ifreq:
4650 * @cmd:
4651 **/
4652
4653static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4654			   int cmd)
4655{
4656	struct e1000_adapter *adapter = netdev_priv(netdev);
4657	struct e1000_hw *hw = &adapter->hw;
4658	struct mii_ioctl_data *data = if_mii(ifr);
4659	int retval;
4660	u16 mii_reg;
4661	unsigned long flags;
4662
4663	if (hw->media_type != e1000_media_type_copper)
4664		return -EOPNOTSUPP;
4665
4666	switch (cmd) {
4667	case SIOCGMIIPHY:
4668		data->phy_id = hw->phy_addr;
4669		break;
4670	case SIOCGMIIREG:
4671		spin_lock_irqsave(&adapter->stats_lock, flags);
4672		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4673				   &data->val_out)) {
4674			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4675			return -EIO;
4676		}
4677		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4678		break;
4679	case SIOCSMIIREG:
4680		if (data->reg_num & ~(0x1F))
4681			return -EFAULT;
4682		mii_reg = data->val_in;
4683		spin_lock_irqsave(&adapter->stats_lock, flags);
4684		if (e1000_write_phy_reg(hw, data->reg_num,
4685					mii_reg)) {
4686			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4687			return -EIO;
4688		}
4689		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4690		if (hw->media_type == e1000_media_type_copper) {
4691			switch (data->reg_num) {
4692			case PHY_CTRL:
4693				if (mii_reg & MII_CR_POWER_DOWN)
4694					break;
4695				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4696					hw->autoneg = 1;
4697					hw->autoneg_advertised = 0x2F;
4698				} else {
4699					u32 speed;
4700					if (mii_reg & 0x40)
4701						speed = SPEED_1000;
4702					else if (mii_reg & 0x2000)
4703						speed = SPEED_100;
4704					else
4705						speed = SPEED_10;
4706					retval = e1000_set_spd_dplx(
4707						adapter, speed,
4708						((mii_reg & 0x100)
4709						 ? DUPLEX_FULL :
4710						 DUPLEX_HALF));
4711					if (retval)
4712						return retval;
4713				}
4714				if (netif_running(adapter->netdev))
4715					e1000_reinit_locked(adapter);
4716				else
4717					e1000_reset(adapter);
4718				break;
4719			case M88E1000_PHY_SPEC_CTRL:
4720			case M88E1000_EXT_PHY_SPEC_CTRL:
4721				if (e1000_phy_reset(hw))
4722					return -EIO;
4723				break;
4724			}
4725		} else {
4726			switch (data->reg_num) {
4727			case PHY_CTRL:
4728				if (mii_reg & MII_CR_POWER_DOWN)
4729					break;
4730				if (netif_running(adapter->netdev))
4731					e1000_reinit_locked(adapter);
4732				else
4733					e1000_reset(adapter);
4734				break;
4735			}
4736		}
4737		break;
4738	default:
4739		return -EOPNOTSUPP;
4740	}
4741	return E1000_SUCCESS;
4742}
4743
4744void e1000_pci_set_mwi(struct e1000_hw *hw)
4745{
4746	struct e1000_adapter *adapter = hw->back;
4747	int ret_val = pci_set_mwi(adapter->pdev);
4748
4749	if (ret_val)
4750		e_err(probe, "Error in setting MWI\n");
4751}
4752
4753void e1000_pci_clear_mwi(struct e1000_hw *hw)
4754{
4755	struct e1000_adapter *adapter = hw->back;
4756
4757	pci_clear_mwi(adapter->pdev);
4758}
4759
4760int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4761{
4762	struct e1000_adapter *adapter = hw->back;
4763	return pcix_get_mmrbc(adapter->pdev);
4764}
4765
4766void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4767{
4768	struct e1000_adapter *adapter = hw->back;
4769	pcix_set_mmrbc(adapter->pdev, mmrbc);
4770}
4771
4772void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4773{
4774	outl(value, port);
4775}
4776
4777static bool e1000_vlan_used(struct e1000_adapter *adapter)
4778{
4779	u16 vid;
4780
4781	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4782		return true;
4783	return false;
4784}
4785
4786static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4787			      netdev_features_t features)
4788{
4789	struct e1000_hw *hw = &adapter->hw;
4790	u32 ctrl;
4791
4792	ctrl = er32(CTRL);
4793	if (features & NETIF_F_HW_VLAN_RX) {
4794		/* enable VLAN tag insert/strip */
4795		ctrl |= E1000_CTRL_VME;
4796	} else {
4797		/* disable VLAN tag insert/strip */
4798		ctrl &= ~E1000_CTRL_VME;
4799	}
4800	ew32(CTRL, ctrl);
4801}
4802static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4803				     bool filter_on)
4804{
4805	struct e1000_hw *hw = &adapter->hw;
4806	u32 rctl;
4807
4808	if (!test_bit(__E1000_DOWN, &adapter->flags))
4809		e1000_irq_disable(adapter);
4810
4811	__e1000_vlan_mode(adapter, adapter->netdev->features);
4812	if (filter_on) {
4813		/* enable VLAN receive filtering */
4814		rctl = er32(RCTL);
4815		rctl &= ~E1000_RCTL_CFIEN;
4816		if (!(adapter->netdev->flags & IFF_PROMISC))
4817			rctl |= E1000_RCTL_VFE;
4818		ew32(RCTL, rctl);
4819		e1000_update_mng_vlan(adapter);
4820	} else {
4821		/* disable VLAN receive filtering */
4822		rctl = er32(RCTL);
4823		rctl &= ~E1000_RCTL_VFE;
4824		ew32(RCTL, rctl);
4825	}
4826
4827	if (!test_bit(__E1000_DOWN, &adapter->flags))
4828		e1000_irq_enable(adapter);
4829}
4830
4831static void e1000_vlan_mode(struct net_device *netdev,
4832			    netdev_features_t features)
4833{
4834	struct e1000_adapter *adapter = netdev_priv(netdev);
4835
4836	if (!test_bit(__E1000_DOWN, &adapter->flags))
4837		e1000_irq_disable(adapter);
4838
4839	__e1000_vlan_mode(adapter, features);
4840
4841	if (!test_bit(__E1000_DOWN, &adapter->flags))
4842		e1000_irq_enable(adapter);
4843}
4844
4845static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4846{
4847	struct e1000_adapter *adapter = netdev_priv(netdev);
4848	struct e1000_hw *hw = &adapter->hw;
4849	u32 vfta, index;
4850
4851	if ((hw->mng_cookie.status &
4852	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4853	    (vid == adapter->mng_vlan_id))
4854		return 0;
4855
4856	if (!e1000_vlan_used(adapter))
4857		e1000_vlan_filter_on_off(adapter, true);
4858
4859	/* add VID to filter table */
4860	index = (vid >> 5) & 0x7F;
4861	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4862	vfta |= (1 << (vid & 0x1F));
4863	e1000_write_vfta(hw, index, vfta);
4864
4865	set_bit(vid, adapter->active_vlans);
4866
4867	return 0;
4868}
4869
4870static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4871{
4872	struct e1000_adapter *adapter = netdev_priv(netdev);
4873	struct e1000_hw *hw = &adapter->hw;
4874	u32 vfta, index;
4875
4876	if (!test_bit(__E1000_DOWN, &adapter->flags))
4877		e1000_irq_disable(adapter);
4878	if (!test_bit(__E1000_DOWN, &adapter->flags))
4879		e1000_irq_enable(adapter);
4880
4881	/* remove VID from filter table */
4882	index = (vid >> 5) & 0x7F;
4883	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4884	vfta &= ~(1 << (vid & 0x1F));
4885	e1000_write_vfta(hw, index, vfta);
4886
4887	clear_bit(vid, adapter->active_vlans);
4888
4889	if (!e1000_vlan_used(adapter))
4890		e1000_vlan_filter_on_off(adapter, false);
4891
4892	return 0;
4893}
4894
4895static void e1000_restore_vlan(struct e1000_adapter *adapter)
4896{
4897	u16 vid;
4898
4899	if (!e1000_vlan_used(adapter))
4900		return;
4901
4902	e1000_vlan_filter_on_off(adapter, true);
4903	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4904		e1000_vlan_rx_add_vid(adapter->netdev, vid);
4905}
4906
4907int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4908{
4909	struct e1000_hw *hw = &adapter->hw;
4910
4911	hw->autoneg = 0;
4912
4913	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4914	 * for the switch() below to work */
4915	if ((spd & 1) || (dplx & ~1))
4916		goto err_inval;
4917
4918	/* Fiber NICs only allow 1000 gbps Full duplex */
4919	if ((hw->media_type == e1000_media_type_fiber) &&
4920	    spd != SPEED_1000 &&
4921	    dplx != DUPLEX_FULL)
4922		goto err_inval;
4923
4924	switch (spd + dplx) {
4925	case SPEED_10 + DUPLEX_HALF:
4926		hw->forced_speed_duplex = e1000_10_half;
4927		break;
4928	case SPEED_10 + DUPLEX_FULL:
4929		hw->forced_speed_duplex = e1000_10_full;
4930		break;
4931	case SPEED_100 + DUPLEX_HALF:
4932		hw->forced_speed_duplex = e1000_100_half;
4933		break;
4934	case SPEED_100 + DUPLEX_FULL:
4935		hw->forced_speed_duplex = e1000_100_full;
4936		break;
4937	case SPEED_1000 + DUPLEX_FULL:
4938		hw->autoneg = 1;
4939		hw->autoneg_advertised = ADVERTISE_1000_FULL;
4940		break;
4941	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4942	default:
4943		goto err_inval;
4944	}
4945	return 0;
4946
4947err_inval:
4948	e_err(probe, "Unsupported Speed/Duplex configuration\n");
4949	return -EINVAL;
4950}
4951
4952static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4953{
4954	struct net_device *netdev = pci_get_drvdata(pdev);
4955	struct e1000_adapter *adapter = netdev_priv(netdev);
4956	struct e1000_hw *hw = &adapter->hw;
4957	u32 ctrl, ctrl_ext, rctl, status;
4958	u32 wufc = adapter->wol;
4959#ifdef CONFIG_PM
4960	int retval = 0;
4961#endif
4962
4963	netif_device_detach(netdev);
4964
4965	if (netif_running(netdev)) {
4966		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4967		e1000_down(adapter);
4968	}
4969
4970#ifdef CONFIG_PM
4971	retval = pci_save_state(pdev);
4972	if (retval)
4973		return retval;
4974#endif
4975
4976	status = er32(STATUS);
4977	if (status & E1000_STATUS_LU)
4978		wufc &= ~E1000_WUFC_LNKC;
4979
4980	if (wufc) {
4981		e1000_setup_rctl(adapter);
4982		e1000_set_rx_mode(netdev);
4983
4984		rctl = er32(RCTL);
4985
4986		/* turn on all-multi mode if wake on multicast is enabled */
4987		if (wufc & E1000_WUFC_MC)
4988			rctl |= E1000_RCTL_MPE;
4989
4990		/* enable receives in the hardware */
4991		ew32(RCTL, rctl | E1000_RCTL_EN);
4992
4993		if (hw->mac_type >= e1000_82540) {
4994			ctrl = er32(CTRL);
4995			/* advertise wake from D3Cold */
4996			#define E1000_CTRL_ADVD3WUC 0x00100000
4997			/* phy power management enable */
4998			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4999			ctrl |= E1000_CTRL_ADVD3WUC |
5000				E1000_CTRL_EN_PHY_PWR_MGMT;
5001			ew32(CTRL, ctrl);
5002		}
5003
5004		if (hw->media_type == e1000_media_type_fiber ||
5005		    hw->media_type == e1000_media_type_internal_serdes) {
5006			/* keep the laser running in D3 */
5007			ctrl_ext = er32(CTRL_EXT);
5008			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5009			ew32(CTRL_EXT, ctrl_ext);
5010		}
5011
5012		ew32(WUC, E1000_WUC_PME_EN);
5013		ew32(WUFC, wufc);
5014	} else {
5015		ew32(WUC, 0);
5016		ew32(WUFC, 0);
5017	}
5018
5019	e1000_release_manageability(adapter);
5020
5021	*enable_wake = !!wufc;
5022
5023	/* make sure adapter isn't asleep if manageability is enabled */
5024	if (adapter->en_mng_pt)
5025		*enable_wake = true;
5026
5027	if (netif_running(netdev))
5028		e1000_free_irq(adapter);
5029
5030	pci_disable_device(pdev);
5031
5032	return 0;
5033}
5034
5035#ifdef CONFIG_PM
5036static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5037{
5038	int retval;
5039	bool wake;
5040
5041	retval = __e1000_shutdown(pdev, &wake);
5042	if (retval)
5043		return retval;
5044
5045	if (wake) {
5046		pci_prepare_to_sleep(pdev);
5047	} else {
5048		pci_wake_from_d3(pdev, false);
5049		pci_set_power_state(pdev, PCI_D3hot);
5050	}
5051
5052	return 0;
5053}
5054
5055static int e1000_resume(struct pci_dev *pdev)
5056{
5057	struct net_device *netdev = pci_get_drvdata(pdev);
5058	struct e1000_adapter *adapter = netdev_priv(netdev);
5059	struct e1000_hw *hw = &adapter->hw;
5060	u32 err;
5061
5062	pci_set_power_state(pdev, PCI_D0);
5063	pci_restore_state(pdev);
5064	pci_save_state(pdev);
5065
5066	if (adapter->need_ioport)
5067		err = pci_enable_device(pdev);
5068	else
5069		err = pci_enable_device_mem(pdev);
5070	if (err) {
5071		pr_err("Cannot enable PCI device from suspend\n");
5072		return err;
5073	}
5074	pci_set_master(pdev);
5075
5076	pci_enable_wake(pdev, PCI_D3hot, 0);
5077	pci_enable_wake(pdev, PCI_D3cold, 0);
5078
5079	if (netif_running(netdev)) {
5080		err = e1000_request_irq(adapter);
5081		if (err)
5082			return err;
5083	}
5084
5085	e1000_power_up_phy(adapter);
5086	e1000_reset(adapter);
5087	ew32(WUS, ~0);
5088
5089	e1000_init_manageability(adapter);
5090
5091	if (netif_running(netdev))
5092		e1000_up(adapter);
5093
5094	netif_device_attach(netdev);
5095
5096	return 0;
5097}
5098#endif
5099
5100static void e1000_shutdown(struct pci_dev *pdev)
5101{
5102	bool wake;
5103
5104	__e1000_shutdown(pdev, &wake);
5105
5106	if (system_state == SYSTEM_POWER_OFF) {
5107		pci_wake_from_d3(pdev, wake);
5108		pci_set_power_state(pdev, PCI_D3hot);
5109	}
5110}
5111
5112#ifdef CONFIG_NET_POLL_CONTROLLER
5113/*
5114 * Polling 'interrupt' - used by things like netconsole to send skbs
5115 * without having to re-enable interrupts. It's not called while
5116 * the interrupt routine is executing.
5117 */
5118static void e1000_netpoll(struct net_device *netdev)
5119{
5120	struct e1000_adapter *adapter = netdev_priv(netdev);
5121
5122	disable_irq(adapter->pdev->irq);
5123	e1000_intr(adapter->pdev->irq, netdev);
5124	enable_irq(adapter->pdev->irq);
5125}
5126#endif
5127
5128/**
5129 * e1000_io_error_detected - called when PCI error is detected
5130 * @pdev: Pointer to PCI device
5131 * @state: The current pci connection state
5132 *
5133 * This function is called after a PCI bus error affecting
5134 * this device has been detected.
5135 */
5136static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5137						pci_channel_state_t state)
5138{
5139	struct net_device *netdev = pci_get_drvdata(pdev);
5140	struct e1000_adapter *adapter = netdev_priv(netdev);
5141
5142	netif_device_detach(netdev);
5143
5144	if (state == pci_channel_io_perm_failure)
5145		return PCI_ERS_RESULT_DISCONNECT;
5146
5147	if (netif_running(netdev))
5148		e1000_down(adapter);
5149	pci_disable_device(pdev);
5150
5151	/* Request a slot slot reset. */
5152	return PCI_ERS_RESULT_NEED_RESET;
5153}
5154
5155/**
5156 * e1000_io_slot_reset - called after the pci bus has been reset.
5157 * @pdev: Pointer to PCI device
5158 *
5159 * Restart the card from scratch, as if from a cold-boot. Implementation
5160 * resembles the first-half of the e1000_resume routine.
5161 */
5162static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5163{
5164	struct net_device *netdev = pci_get_drvdata(pdev);
5165	struct e1000_adapter *adapter = netdev_priv(netdev);
5166	struct e1000_hw *hw = &adapter->hw;
5167	int err;
5168
5169	if (adapter->need_ioport)
5170		err = pci_enable_device(pdev);
5171	else
5172		err = pci_enable_device_mem(pdev);
5173	if (err) {
5174		pr_err("Cannot re-enable PCI device after reset.\n");
5175		return PCI_ERS_RESULT_DISCONNECT;
5176	}
5177	pci_set_master(pdev);
5178
5179	pci_enable_wake(pdev, PCI_D3hot, 0);
5180	pci_enable_wake(pdev, PCI_D3cold, 0);
5181
5182	e1000_reset(adapter);
5183	ew32(WUS, ~0);
5184
5185	return PCI_ERS_RESULT_RECOVERED;
5186}
5187
5188/**
5189 * e1000_io_resume - called when traffic can start flowing again.
5190 * @pdev: Pointer to PCI device
5191 *
5192 * This callback is called when the error recovery driver tells us that
5193 * its OK to resume normal operation. Implementation resembles the
5194 * second-half of the e1000_resume routine.
5195 */
5196static void e1000_io_resume(struct pci_dev *pdev)
5197{
5198	struct net_device *netdev = pci_get_drvdata(pdev);
5199	struct e1000_adapter *adapter = netdev_priv(netdev);
5200
5201	e1000_init_manageability(adapter);
5202
5203	if (netif_running(netdev)) {
5204		if (e1000_up(adapter)) {
5205			pr_info("can't bring device back up after reset\n");
5206			return;
5207		}
5208	}
5209
5210	netif_device_attach(netdev);
5211}
5212
5213/* e1000_main.c */