Loading...
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30#include <net/ip6_checksum.h>
31#include <linux/io.h>
32#include <linux/prefetch.h>
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
35
36char e1000_driver_name[] = "e1000";
37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38#define DRV_VERSION "7.3.21-k8-NAPI"
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109void e1000_update_stats(struct e1000_adapter *adapter);
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114static void __devexit e1000_remove(struct pci_dev *pdev);
115static int e1000_alloc_queues(struct e1000_adapter *adapter);
116static int e1000_sw_init(struct e1000_adapter *adapter);
117static int e1000_open(struct net_device *netdev);
118static int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128static void e1000_set_rx_mode(struct net_device *netdev);
129static void e1000_update_phy_info_task(struct work_struct *work);
130static void e1000_watchdog(struct work_struct *work);
131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count);
150static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int cleaned_count);
153static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 int cmd);
156static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158static void e1000_tx_timeout(struct net_device *dev);
159static void e1000_reset_task(struct work_struct *work);
160static void e1000_smartspeed(struct e1000_adapter *adapter);
161static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162 struct sk_buff *skb);
163
164static bool e1000_vlan_used(struct e1000_adapter *adapter);
165static void e1000_vlan_mode(struct net_device *netdev,
166 netdev_features_t features);
167static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 bool filter_on);
169static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
170static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
171static void e1000_restore_vlan(struct e1000_adapter *adapter);
172
173#ifdef CONFIG_PM
174static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
175static int e1000_resume(struct pci_dev *pdev);
176#endif
177static void e1000_shutdown(struct pci_dev *pdev);
178
179#ifdef CONFIG_NET_POLL_CONTROLLER
180/* for netdump / net console */
181static void e1000_netpoll (struct net_device *netdev);
182#endif
183
184#define COPYBREAK_DEFAULT 256
185static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
186module_param(copybreak, uint, 0644);
187MODULE_PARM_DESC(copybreak,
188 "Maximum size of packet that is copied to a new buffer on receive");
189
190static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
191 pci_channel_state_t state);
192static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
193static void e1000_io_resume(struct pci_dev *pdev);
194
195static struct pci_error_handlers e1000_err_handler = {
196 .error_detected = e1000_io_error_detected,
197 .slot_reset = e1000_io_slot_reset,
198 .resume = e1000_io_resume,
199};
200
201static struct pci_driver e1000_driver = {
202 .name = e1000_driver_name,
203 .id_table = e1000_pci_tbl,
204 .probe = e1000_probe,
205 .remove = __devexit_p(e1000_remove),
206#ifdef CONFIG_PM
207 /* Power Management Hooks */
208 .suspend = e1000_suspend,
209 .resume = e1000_resume,
210#endif
211 .shutdown = e1000_shutdown,
212 .err_handler = &e1000_err_handler
213};
214
215MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
216MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
217MODULE_LICENSE("GPL");
218MODULE_VERSION(DRV_VERSION);
219
220#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
221static int debug = -1;
222module_param(debug, int, 0);
223MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224
225/**
226 * e1000_get_hw_dev - return device
227 * used by hardware layer to print debugging information
228 *
229 **/
230struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
231{
232 struct e1000_adapter *adapter = hw->back;
233 return adapter->netdev;
234}
235
236/**
237 * e1000_init_module - Driver Registration Routine
238 *
239 * e1000_init_module is the first routine called when the driver is
240 * loaded. All it does is register with the PCI subsystem.
241 **/
242
243static int __init e1000_init_module(void)
244{
245 int ret;
246 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
247
248 pr_info("%s\n", e1000_copyright);
249
250 ret = pci_register_driver(&e1000_driver);
251 if (copybreak != COPYBREAK_DEFAULT) {
252 if (copybreak == 0)
253 pr_info("copybreak disabled\n");
254 else
255 pr_info("copybreak enabled for "
256 "packets <= %u bytes\n", copybreak);
257 }
258 return ret;
259}
260
261module_init(e1000_init_module);
262
263/**
264 * e1000_exit_module - Driver Exit Cleanup Routine
265 *
266 * e1000_exit_module is called just before the driver is removed
267 * from memory.
268 **/
269
270static void __exit e1000_exit_module(void)
271{
272 pci_unregister_driver(&e1000_driver);
273}
274
275module_exit(e1000_exit_module);
276
277static int e1000_request_irq(struct e1000_adapter *adapter)
278{
279 struct net_device *netdev = adapter->netdev;
280 irq_handler_t handler = e1000_intr;
281 int irq_flags = IRQF_SHARED;
282 int err;
283
284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 netdev);
286 if (err) {
287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 }
289
290 return err;
291}
292
293static void e1000_free_irq(struct e1000_adapter *adapter)
294{
295 struct net_device *netdev = adapter->netdev;
296
297 free_irq(adapter->pdev->irq, netdev);
298}
299
300/**
301 * e1000_irq_disable - Mask off interrupt generation on the NIC
302 * @adapter: board private structure
303 **/
304
305static void e1000_irq_disable(struct e1000_adapter *adapter)
306{
307 struct e1000_hw *hw = &adapter->hw;
308
309 ew32(IMC, ~0);
310 E1000_WRITE_FLUSH();
311 synchronize_irq(adapter->pdev->irq);
312}
313
314/**
315 * e1000_irq_enable - Enable default interrupt generation settings
316 * @adapter: board private structure
317 **/
318
319static void e1000_irq_enable(struct e1000_adapter *adapter)
320{
321 struct e1000_hw *hw = &adapter->hw;
322
323 ew32(IMS, IMS_ENABLE_MASK);
324 E1000_WRITE_FLUSH();
325}
326
327static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
328{
329 struct e1000_hw *hw = &adapter->hw;
330 struct net_device *netdev = adapter->netdev;
331 u16 vid = hw->mng_cookie.vlan_id;
332 u16 old_vid = adapter->mng_vlan_id;
333
334 if (!e1000_vlan_used(adapter))
335 return;
336
337 if (!test_bit(vid, adapter->active_vlans)) {
338 if (hw->mng_cookie.status &
339 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
340 e1000_vlan_rx_add_vid(netdev, vid);
341 adapter->mng_vlan_id = vid;
342 } else {
343 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
344 }
345 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
346 (vid != old_vid) &&
347 !test_bit(old_vid, adapter->active_vlans))
348 e1000_vlan_rx_kill_vid(netdev, old_vid);
349 } else {
350 adapter->mng_vlan_id = vid;
351 }
352}
353
354static void e1000_init_manageability(struct e1000_adapter *adapter)
355{
356 struct e1000_hw *hw = &adapter->hw;
357
358 if (adapter->en_mng_pt) {
359 u32 manc = er32(MANC);
360
361 /* disable hardware interception of ARP */
362 manc &= ~(E1000_MANC_ARP_EN);
363
364 ew32(MANC, manc);
365 }
366}
367
368static void e1000_release_manageability(struct e1000_adapter *adapter)
369{
370 struct e1000_hw *hw = &adapter->hw;
371
372 if (adapter->en_mng_pt) {
373 u32 manc = er32(MANC);
374
375 /* re-enable hardware interception of ARP */
376 manc |= E1000_MANC_ARP_EN;
377
378 ew32(MANC, manc);
379 }
380}
381
382/**
383 * e1000_configure - configure the hardware for RX and TX
384 * @adapter = private board structure
385 **/
386static void e1000_configure(struct e1000_adapter *adapter)
387{
388 struct net_device *netdev = adapter->netdev;
389 int i;
390
391 e1000_set_rx_mode(netdev);
392
393 e1000_restore_vlan(adapter);
394 e1000_init_manageability(adapter);
395
396 e1000_configure_tx(adapter);
397 e1000_setup_rctl(adapter);
398 e1000_configure_rx(adapter);
399 /* call E1000_DESC_UNUSED which always leaves
400 * at least 1 descriptor unused to make sure
401 * next_to_use != next_to_clean */
402 for (i = 0; i < adapter->num_rx_queues; i++) {
403 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 adapter->alloc_rx_buf(adapter, ring,
405 E1000_DESC_UNUSED(ring));
406 }
407}
408
409int e1000_up(struct e1000_adapter *adapter)
410{
411 struct e1000_hw *hw = &adapter->hw;
412
413 /* hardware has been reset, we need to reload some things */
414 e1000_configure(adapter);
415
416 clear_bit(__E1000_DOWN, &adapter->flags);
417
418 napi_enable(&adapter->napi);
419
420 e1000_irq_enable(adapter);
421
422 netif_wake_queue(adapter->netdev);
423
424 /* fire a link change interrupt to start the watchdog */
425 ew32(ICS, E1000_ICS_LSC);
426 return 0;
427}
428
429/**
430 * e1000_power_up_phy - restore link in case the phy was powered down
431 * @adapter: address of board private structure
432 *
433 * The phy may be powered down to save power and turn off link when the
434 * driver is unloaded and wake on lan is not enabled (among others)
435 * *** this routine MUST be followed by a call to e1000_reset ***
436 *
437 **/
438
439void e1000_power_up_phy(struct e1000_adapter *adapter)
440{
441 struct e1000_hw *hw = &adapter->hw;
442 u16 mii_reg = 0;
443
444 /* Just clear the power down bit to wake the phy back up */
445 if (hw->media_type == e1000_media_type_copper) {
446 /* according to the manual, the phy will retain its
447 * settings across a power-down/up cycle */
448 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
449 mii_reg &= ~MII_CR_POWER_DOWN;
450 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
451 }
452}
453
454static void e1000_power_down_phy(struct e1000_adapter *adapter)
455{
456 struct e1000_hw *hw = &adapter->hw;
457
458 /* Power down the PHY so no link is implied when interface is down *
459 * The PHY cannot be powered down if any of the following is true *
460 * (a) WoL is enabled
461 * (b) AMT is active
462 * (c) SoL/IDER session is active */
463 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 hw->media_type == e1000_media_type_copper) {
465 u16 mii_reg = 0;
466
467 switch (hw->mac_type) {
468 case e1000_82540:
469 case e1000_82545:
470 case e1000_82545_rev_3:
471 case e1000_82546:
472 case e1000_ce4100:
473 case e1000_82546_rev_3:
474 case e1000_82541:
475 case e1000_82541_rev_2:
476 case e1000_82547:
477 case e1000_82547_rev_2:
478 if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 goto out;
480 break;
481 default:
482 goto out;
483 }
484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 mii_reg |= MII_CR_POWER_DOWN;
486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 msleep(1);
488 }
489out:
490 return;
491}
492
493static void e1000_down_and_stop(struct e1000_adapter *adapter)
494{
495 set_bit(__E1000_DOWN, &adapter->flags);
496
497 /* Only kill reset task if adapter is not resetting */
498 if (!test_bit(__E1000_RESETTING, &adapter->flags))
499 cancel_work_sync(&adapter->reset_task);
500
501 cancel_delayed_work_sync(&adapter->watchdog_task);
502 cancel_delayed_work_sync(&adapter->phy_info_task);
503 cancel_delayed_work_sync(&adapter->fifo_stall_task);
504}
505
506void e1000_down(struct e1000_adapter *adapter)
507{
508 struct e1000_hw *hw = &adapter->hw;
509 struct net_device *netdev = adapter->netdev;
510 u32 rctl, tctl;
511
512
513 /* disable receives in the hardware */
514 rctl = er32(RCTL);
515 ew32(RCTL, rctl & ~E1000_RCTL_EN);
516 /* flush and sleep below */
517
518 netif_tx_disable(netdev);
519
520 /* disable transmits in the hardware */
521 tctl = er32(TCTL);
522 tctl &= ~E1000_TCTL_EN;
523 ew32(TCTL, tctl);
524 /* flush both disables and wait for them to finish */
525 E1000_WRITE_FLUSH();
526 msleep(10);
527
528 napi_disable(&adapter->napi);
529
530 e1000_irq_disable(adapter);
531
532 /*
533 * Setting DOWN must be after irq_disable to prevent
534 * a screaming interrupt. Setting DOWN also prevents
535 * tasks from rescheduling.
536 */
537 e1000_down_and_stop(adapter);
538
539 adapter->link_speed = 0;
540 adapter->link_duplex = 0;
541 netif_carrier_off(netdev);
542
543 e1000_reset(adapter);
544 e1000_clean_all_tx_rings(adapter);
545 e1000_clean_all_rx_rings(adapter);
546}
547
548static void e1000_reinit_safe(struct e1000_adapter *adapter)
549{
550 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
551 msleep(1);
552 mutex_lock(&adapter->mutex);
553 e1000_down(adapter);
554 e1000_up(adapter);
555 mutex_unlock(&adapter->mutex);
556 clear_bit(__E1000_RESETTING, &adapter->flags);
557}
558
559void e1000_reinit_locked(struct e1000_adapter *adapter)
560{
561 /* if rtnl_lock is not held the call path is bogus */
562 ASSERT_RTNL();
563 WARN_ON(in_interrupt());
564 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
565 msleep(1);
566 e1000_down(adapter);
567 e1000_up(adapter);
568 clear_bit(__E1000_RESETTING, &adapter->flags);
569}
570
571void e1000_reset(struct e1000_adapter *adapter)
572{
573 struct e1000_hw *hw = &adapter->hw;
574 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
575 bool legacy_pba_adjust = false;
576 u16 hwm;
577
578 /* Repartition Pba for greater than 9k mtu
579 * To take effect CTRL.RST is required.
580 */
581
582 switch (hw->mac_type) {
583 case e1000_82542_rev2_0:
584 case e1000_82542_rev2_1:
585 case e1000_82543:
586 case e1000_82544:
587 case e1000_82540:
588 case e1000_82541:
589 case e1000_82541_rev_2:
590 legacy_pba_adjust = true;
591 pba = E1000_PBA_48K;
592 break;
593 case e1000_82545:
594 case e1000_82545_rev_3:
595 case e1000_82546:
596 case e1000_ce4100:
597 case e1000_82546_rev_3:
598 pba = E1000_PBA_48K;
599 break;
600 case e1000_82547:
601 case e1000_82547_rev_2:
602 legacy_pba_adjust = true;
603 pba = E1000_PBA_30K;
604 break;
605 case e1000_undefined:
606 case e1000_num_macs:
607 break;
608 }
609
610 if (legacy_pba_adjust) {
611 if (hw->max_frame_size > E1000_RXBUFFER_8192)
612 pba -= 8; /* allocate more FIFO for Tx */
613
614 if (hw->mac_type == e1000_82547) {
615 adapter->tx_fifo_head = 0;
616 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
617 adapter->tx_fifo_size =
618 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
619 atomic_set(&adapter->tx_fifo_stall, 0);
620 }
621 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
622 /* adjust PBA for jumbo frames */
623 ew32(PBA, pba);
624
625 /* To maintain wire speed transmits, the Tx FIFO should be
626 * large enough to accommodate two full transmit packets,
627 * rounded up to the next 1KB and expressed in KB. Likewise,
628 * the Rx FIFO should be large enough to accommodate at least
629 * one full receive packet and is similarly rounded up and
630 * expressed in KB. */
631 pba = er32(PBA);
632 /* upper 16 bits has Tx packet buffer allocation size in KB */
633 tx_space = pba >> 16;
634 /* lower 16 bits has Rx packet buffer allocation size in KB */
635 pba &= 0xffff;
636 /*
637 * the tx fifo also stores 16 bytes of information about the tx
638 * but don't include ethernet FCS because hardware appends it
639 */
640 min_tx_space = (hw->max_frame_size +
641 sizeof(struct e1000_tx_desc) -
642 ETH_FCS_LEN) * 2;
643 min_tx_space = ALIGN(min_tx_space, 1024);
644 min_tx_space >>= 10;
645 /* software strips receive CRC, so leave room for it */
646 min_rx_space = hw->max_frame_size;
647 min_rx_space = ALIGN(min_rx_space, 1024);
648 min_rx_space >>= 10;
649
650 /* If current Tx allocation is less than the min Tx FIFO size,
651 * and the min Tx FIFO size is less than the current Rx FIFO
652 * allocation, take space away from current Rx allocation */
653 if (tx_space < min_tx_space &&
654 ((min_tx_space - tx_space) < pba)) {
655 pba = pba - (min_tx_space - tx_space);
656
657 /* PCI/PCIx hardware has PBA alignment constraints */
658 switch (hw->mac_type) {
659 case e1000_82545 ... e1000_82546_rev_3:
660 pba &= ~(E1000_PBA_8K - 1);
661 break;
662 default:
663 break;
664 }
665
666 /* if short on rx space, rx wins and must trump tx
667 * adjustment or use Early Receive if available */
668 if (pba < min_rx_space)
669 pba = min_rx_space;
670 }
671 }
672
673 ew32(PBA, pba);
674
675 /*
676 * flow control settings:
677 * The high water mark must be low enough to fit one full frame
678 * (or the size used for early receive) above it in the Rx FIFO.
679 * Set it to the lower of:
680 * - 90% of the Rx FIFO size, and
681 * - the full Rx FIFO size minus the early receive size (for parts
682 * with ERT support assuming ERT set to E1000_ERT_2048), or
683 * - the full Rx FIFO size minus one full frame
684 */
685 hwm = min(((pba << 10) * 9 / 10),
686 ((pba << 10) - hw->max_frame_size));
687
688 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
689 hw->fc_low_water = hw->fc_high_water - 8;
690 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
691 hw->fc_send_xon = 1;
692 hw->fc = hw->original_fc;
693
694 /* Allow time for pending master requests to run */
695 e1000_reset_hw(hw);
696 if (hw->mac_type >= e1000_82544)
697 ew32(WUC, 0);
698
699 if (e1000_init_hw(hw))
700 e_dev_err("Hardware Error\n");
701 e1000_update_mng_vlan(adapter);
702
703 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
704 if (hw->mac_type >= e1000_82544 &&
705 hw->autoneg == 1 &&
706 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
707 u32 ctrl = er32(CTRL);
708 /* clear phy power management bit if we are in gig only mode,
709 * which if enabled will attempt negotiation to 100Mb, which
710 * can cause a loss of link at power off or driver unload */
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
713 }
714
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
720
721 e1000_release_manageability(adapter);
722}
723
724/**
725 * Dump the eeprom for users having checksum issues
726 **/
727static void e1000_dump_eeprom(struct e1000_adapter *adapter)
728{
729 struct net_device *netdev = adapter->netdev;
730 struct ethtool_eeprom eeprom;
731 const struct ethtool_ops *ops = netdev->ethtool_ops;
732 u8 *data;
733 int i;
734 u16 csum_old, csum_new = 0;
735
736 eeprom.len = ops->get_eeprom_len(netdev);
737 eeprom.offset = 0;
738
739 data = kmalloc(eeprom.len, GFP_KERNEL);
740 if (!data)
741 return;
742
743 ops->get_eeprom(netdev, &eeprom, data);
744
745 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
746 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
747 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
748 csum_new += data[i] + (data[i + 1] << 8);
749 csum_new = EEPROM_SUM - csum_new;
750
751 pr_err("/*********************/\n");
752 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
753 pr_err("Calculated : 0x%04x\n", csum_new);
754
755 pr_err("Offset Values\n");
756 pr_err("======== ======\n");
757 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
758
759 pr_err("Include this output when contacting your support provider.\n");
760 pr_err("This is not a software error! Something bad happened to\n");
761 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
762 pr_err("result in further problems, possibly loss of data,\n");
763 pr_err("corruption or system hangs!\n");
764 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
765 pr_err("which is invalid and requires you to set the proper MAC\n");
766 pr_err("address manually before continuing to enable this network\n");
767 pr_err("device. Please inspect the EEPROM dump and report the\n");
768 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
769 pr_err("/*********************/\n");
770
771 kfree(data);
772}
773
774/**
775 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
776 * @pdev: PCI device information struct
777 *
778 * Return true if an adapter needs ioport resources
779 **/
780static int e1000_is_need_ioport(struct pci_dev *pdev)
781{
782 switch (pdev->device) {
783 case E1000_DEV_ID_82540EM:
784 case E1000_DEV_ID_82540EM_LOM:
785 case E1000_DEV_ID_82540EP:
786 case E1000_DEV_ID_82540EP_LOM:
787 case E1000_DEV_ID_82540EP_LP:
788 case E1000_DEV_ID_82541EI:
789 case E1000_DEV_ID_82541EI_MOBILE:
790 case E1000_DEV_ID_82541ER:
791 case E1000_DEV_ID_82541ER_LOM:
792 case E1000_DEV_ID_82541GI:
793 case E1000_DEV_ID_82541GI_LF:
794 case E1000_DEV_ID_82541GI_MOBILE:
795 case E1000_DEV_ID_82544EI_COPPER:
796 case E1000_DEV_ID_82544EI_FIBER:
797 case E1000_DEV_ID_82544GC_COPPER:
798 case E1000_DEV_ID_82544GC_LOM:
799 case E1000_DEV_ID_82545EM_COPPER:
800 case E1000_DEV_ID_82545EM_FIBER:
801 case E1000_DEV_ID_82546EB_COPPER:
802 case E1000_DEV_ID_82546EB_FIBER:
803 case E1000_DEV_ID_82546EB_QUAD_COPPER:
804 return true;
805 default:
806 return false;
807 }
808}
809
810static netdev_features_t e1000_fix_features(struct net_device *netdev,
811 netdev_features_t features)
812{
813 /*
814 * Since there is no support for separate rx/tx vlan accel
815 * enable/disable make sure tx flag is always in same state as rx.
816 */
817 if (features & NETIF_F_HW_VLAN_RX)
818 features |= NETIF_F_HW_VLAN_TX;
819 else
820 features &= ~NETIF_F_HW_VLAN_TX;
821
822 return features;
823}
824
825static int e1000_set_features(struct net_device *netdev,
826 netdev_features_t features)
827{
828 struct e1000_adapter *adapter = netdev_priv(netdev);
829 netdev_features_t changed = features ^ netdev->features;
830
831 if (changed & NETIF_F_HW_VLAN_RX)
832 e1000_vlan_mode(netdev, features);
833
834 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
835 return 0;
836
837 netdev->features = features;
838 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
839
840 if (netif_running(netdev))
841 e1000_reinit_locked(adapter);
842 else
843 e1000_reset(adapter);
844
845 return 0;
846}
847
848static const struct net_device_ops e1000_netdev_ops = {
849 .ndo_open = e1000_open,
850 .ndo_stop = e1000_close,
851 .ndo_start_xmit = e1000_xmit_frame,
852 .ndo_get_stats = e1000_get_stats,
853 .ndo_set_rx_mode = e1000_set_rx_mode,
854 .ndo_set_mac_address = e1000_set_mac,
855 .ndo_tx_timeout = e1000_tx_timeout,
856 .ndo_change_mtu = e1000_change_mtu,
857 .ndo_do_ioctl = e1000_ioctl,
858 .ndo_validate_addr = eth_validate_addr,
859 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
860 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
861#ifdef CONFIG_NET_POLL_CONTROLLER
862 .ndo_poll_controller = e1000_netpoll,
863#endif
864 .ndo_fix_features = e1000_fix_features,
865 .ndo_set_features = e1000_set_features,
866};
867
868/**
869 * e1000_init_hw_struct - initialize members of hw struct
870 * @adapter: board private struct
871 * @hw: structure used by e1000_hw.c
872 *
873 * Factors out initialization of the e1000_hw struct to its own function
874 * that can be called very early at init (just after struct allocation).
875 * Fields are initialized based on PCI device information and
876 * OS network device settings (MTU size).
877 * Returns negative error codes if MAC type setup fails.
878 */
879static int e1000_init_hw_struct(struct e1000_adapter *adapter,
880 struct e1000_hw *hw)
881{
882 struct pci_dev *pdev = adapter->pdev;
883
884 /* PCI config space info */
885 hw->vendor_id = pdev->vendor;
886 hw->device_id = pdev->device;
887 hw->subsystem_vendor_id = pdev->subsystem_vendor;
888 hw->subsystem_id = pdev->subsystem_device;
889 hw->revision_id = pdev->revision;
890
891 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
892
893 hw->max_frame_size = adapter->netdev->mtu +
894 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
895 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
896
897 /* identify the MAC */
898 if (e1000_set_mac_type(hw)) {
899 e_err(probe, "Unknown MAC Type\n");
900 return -EIO;
901 }
902
903 switch (hw->mac_type) {
904 default:
905 break;
906 case e1000_82541:
907 case e1000_82547:
908 case e1000_82541_rev_2:
909 case e1000_82547_rev_2:
910 hw->phy_init_script = 1;
911 break;
912 }
913
914 e1000_set_media_type(hw);
915 e1000_get_bus_info(hw);
916
917 hw->wait_autoneg_complete = false;
918 hw->tbi_compatibility_en = true;
919 hw->adaptive_ifs = true;
920
921 /* Copper options */
922
923 if (hw->media_type == e1000_media_type_copper) {
924 hw->mdix = AUTO_ALL_MODES;
925 hw->disable_polarity_correction = false;
926 hw->master_slave = E1000_MASTER_SLAVE;
927 }
928
929 return 0;
930}
931
932/**
933 * e1000_probe - Device Initialization Routine
934 * @pdev: PCI device information struct
935 * @ent: entry in e1000_pci_tbl
936 *
937 * Returns 0 on success, negative on failure
938 *
939 * e1000_probe initializes an adapter identified by a pci_dev structure.
940 * The OS initialization, configuring of the adapter private structure,
941 * and a hardware reset occur.
942 **/
943static int __devinit e1000_probe(struct pci_dev *pdev,
944 const struct pci_device_id *ent)
945{
946 struct net_device *netdev;
947 struct e1000_adapter *adapter;
948 struct e1000_hw *hw;
949
950 static int cards_found = 0;
951 static int global_quad_port_a = 0; /* global ksp3 port a indication */
952 int i, err, pci_using_dac;
953 u16 eeprom_data = 0;
954 u16 tmp = 0;
955 u16 eeprom_apme_mask = E1000_EEPROM_APME;
956 int bars, need_ioport;
957
958 /* do not allocate ioport bars when not needed */
959 need_ioport = e1000_is_need_ioport(pdev);
960 if (need_ioport) {
961 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
962 err = pci_enable_device(pdev);
963 } else {
964 bars = pci_select_bars(pdev, IORESOURCE_MEM);
965 err = pci_enable_device_mem(pdev);
966 }
967 if (err)
968 return err;
969
970 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
971 if (err)
972 goto err_pci_reg;
973
974 pci_set_master(pdev);
975 err = pci_save_state(pdev);
976 if (err)
977 goto err_alloc_etherdev;
978
979 err = -ENOMEM;
980 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
981 if (!netdev)
982 goto err_alloc_etherdev;
983
984 SET_NETDEV_DEV(netdev, &pdev->dev);
985
986 pci_set_drvdata(pdev, netdev);
987 adapter = netdev_priv(netdev);
988 adapter->netdev = netdev;
989 adapter->pdev = pdev;
990 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
991 adapter->bars = bars;
992 adapter->need_ioport = need_ioport;
993
994 hw = &adapter->hw;
995 hw->back = adapter;
996
997 err = -EIO;
998 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
999 if (!hw->hw_addr)
1000 goto err_ioremap;
1001
1002 if (adapter->need_ioport) {
1003 for (i = BAR_1; i <= BAR_5; i++) {
1004 if (pci_resource_len(pdev, i) == 0)
1005 continue;
1006 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1007 hw->io_base = pci_resource_start(pdev, i);
1008 break;
1009 }
1010 }
1011 }
1012
1013 /* make ready for any if (hw->...) below */
1014 err = e1000_init_hw_struct(adapter, hw);
1015 if (err)
1016 goto err_sw_init;
1017
1018 /*
1019 * there is a workaround being applied below that limits
1020 * 64-bit DMA addresses to 64-bit hardware. There are some
1021 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1022 */
1023 pci_using_dac = 0;
1024 if ((hw->bus_type == e1000_bus_type_pcix) &&
1025 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1026 /*
1027 * according to DMA-API-HOWTO, coherent calls will always
1028 * succeed if the set call did
1029 */
1030 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1031 pci_using_dac = 1;
1032 } else {
1033 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1034 if (err) {
1035 pr_err("No usable DMA config, aborting\n");
1036 goto err_dma;
1037 }
1038 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1039 }
1040
1041 netdev->netdev_ops = &e1000_netdev_ops;
1042 e1000_set_ethtool_ops(netdev);
1043 netdev->watchdog_timeo = 5 * HZ;
1044 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1045
1046 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1047
1048 adapter->bd_number = cards_found;
1049
1050 /* setup the private structure */
1051
1052 err = e1000_sw_init(adapter);
1053 if (err)
1054 goto err_sw_init;
1055
1056 err = -EIO;
1057 if (hw->mac_type == e1000_ce4100) {
1058 hw->ce4100_gbe_mdio_base_virt =
1059 ioremap(pci_resource_start(pdev, BAR_1),
1060 pci_resource_len(pdev, BAR_1));
1061
1062 if (!hw->ce4100_gbe_mdio_base_virt)
1063 goto err_mdio_ioremap;
1064 }
1065
1066 if (hw->mac_type >= e1000_82543) {
1067 netdev->hw_features = NETIF_F_SG |
1068 NETIF_F_HW_CSUM |
1069 NETIF_F_HW_VLAN_RX;
1070 netdev->features = NETIF_F_HW_VLAN_TX |
1071 NETIF_F_HW_VLAN_FILTER;
1072 }
1073
1074 if ((hw->mac_type >= e1000_82544) &&
1075 (hw->mac_type != e1000_82547))
1076 netdev->hw_features |= NETIF_F_TSO;
1077
1078 netdev->priv_flags |= IFF_SUPP_NOFCS;
1079
1080 netdev->features |= netdev->hw_features;
1081 netdev->hw_features |= NETIF_F_RXCSUM;
1082 netdev->hw_features |= NETIF_F_RXALL;
1083 netdev->hw_features |= NETIF_F_RXFCS;
1084
1085 if (pci_using_dac) {
1086 netdev->features |= NETIF_F_HIGHDMA;
1087 netdev->vlan_features |= NETIF_F_HIGHDMA;
1088 }
1089
1090 netdev->vlan_features |= NETIF_F_TSO;
1091 netdev->vlan_features |= NETIF_F_HW_CSUM;
1092 netdev->vlan_features |= NETIF_F_SG;
1093
1094 netdev->priv_flags |= IFF_UNICAST_FLT;
1095
1096 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1097
1098 /* initialize eeprom parameters */
1099 if (e1000_init_eeprom_params(hw)) {
1100 e_err(probe, "EEPROM initialization failed\n");
1101 goto err_eeprom;
1102 }
1103
1104 /* before reading the EEPROM, reset the controller to
1105 * put the device in a known good starting state */
1106
1107 e1000_reset_hw(hw);
1108
1109 /* make sure the EEPROM is good */
1110 if (e1000_validate_eeprom_checksum(hw) < 0) {
1111 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1112 e1000_dump_eeprom(adapter);
1113 /*
1114 * set MAC address to all zeroes to invalidate and temporary
1115 * disable this device for the user. This blocks regular
1116 * traffic while still permitting ethtool ioctls from reaching
1117 * the hardware as well as allowing the user to run the
1118 * interface after manually setting a hw addr using
1119 * `ip set address`
1120 */
1121 memset(hw->mac_addr, 0, netdev->addr_len);
1122 } else {
1123 /* copy the MAC address out of the EEPROM */
1124 if (e1000_read_mac_addr(hw))
1125 e_err(probe, "EEPROM Read Error\n");
1126 }
1127 /* don't block initalization here due to bad MAC address */
1128 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1129 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1130
1131 if (!is_valid_ether_addr(netdev->perm_addr))
1132 e_err(probe, "Invalid MAC Address\n");
1133
1134
1135 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1136 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1137 e1000_82547_tx_fifo_stall_task);
1138 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1139 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1140
1141 e1000_check_options(adapter);
1142
1143 /* Initial Wake on LAN setting
1144 * If APM wake is enabled in the EEPROM,
1145 * enable the ACPI Magic Packet filter
1146 */
1147
1148 switch (hw->mac_type) {
1149 case e1000_82542_rev2_0:
1150 case e1000_82542_rev2_1:
1151 case e1000_82543:
1152 break;
1153 case e1000_82544:
1154 e1000_read_eeprom(hw,
1155 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1156 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1157 break;
1158 case e1000_82546:
1159 case e1000_82546_rev_3:
1160 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1161 e1000_read_eeprom(hw,
1162 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1163 break;
1164 }
1165 /* Fall Through */
1166 default:
1167 e1000_read_eeprom(hw,
1168 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1169 break;
1170 }
1171 if (eeprom_data & eeprom_apme_mask)
1172 adapter->eeprom_wol |= E1000_WUFC_MAG;
1173
1174 /* now that we have the eeprom settings, apply the special cases
1175 * where the eeprom may be wrong or the board simply won't support
1176 * wake on lan on a particular port */
1177 switch (pdev->device) {
1178 case E1000_DEV_ID_82546GB_PCIE:
1179 adapter->eeprom_wol = 0;
1180 break;
1181 case E1000_DEV_ID_82546EB_FIBER:
1182 case E1000_DEV_ID_82546GB_FIBER:
1183 /* Wake events only supported on port A for dual fiber
1184 * regardless of eeprom setting */
1185 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1186 adapter->eeprom_wol = 0;
1187 break;
1188 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1189 /* if quad port adapter, disable WoL on all but port A */
1190 if (global_quad_port_a != 0)
1191 adapter->eeprom_wol = 0;
1192 else
1193 adapter->quad_port_a = true;
1194 /* Reset for multiple quad port adapters */
1195 if (++global_quad_port_a == 4)
1196 global_quad_port_a = 0;
1197 break;
1198 }
1199
1200 /* initialize the wol settings based on the eeprom settings */
1201 adapter->wol = adapter->eeprom_wol;
1202 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1203
1204 /* Auto detect PHY address */
1205 if (hw->mac_type == e1000_ce4100) {
1206 for (i = 0; i < 32; i++) {
1207 hw->phy_addr = i;
1208 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1209 if (tmp == 0 || tmp == 0xFF) {
1210 if (i == 31)
1211 goto err_eeprom;
1212 continue;
1213 } else
1214 break;
1215 }
1216 }
1217
1218 /* reset the hardware with the new settings */
1219 e1000_reset(adapter);
1220
1221 strcpy(netdev->name, "eth%d");
1222 err = register_netdev(netdev);
1223 if (err)
1224 goto err_register;
1225
1226 e1000_vlan_filter_on_off(adapter, false);
1227
1228 /* print bus type/speed/width info */
1229 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1230 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1231 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1232 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1233 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1234 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1235 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1236 netdev->dev_addr);
1237
1238 /* carrier off reporting is important to ethtool even BEFORE open */
1239 netif_carrier_off(netdev);
1240
1241 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1242
1243 cards_found++;
1244 return 0;
1245
1246err_register:
1247err_eeprom:
1248 e1000_phy_hw_reset(hw);
1249
1250 if (hw->flash_address)
1251 iounmap(hw->flash_address);
1252 kfree(adapter->tx_ring);
1253 kfree(adapter->rx_ring);
1254err_dma:
1255err_sw_init:
1256err_mdio_ioremap:
1257 iounmap(hw->ce4100_gbe_mdio_base_virt);
1258 iounmap(hw->hw_addr);
1259err_ioremap:
1260 free_netdev(netdev);
1261err_alloc_etherdev:
1262 pci_release_selected_regions(pdev, bars);
1263err_pci_reg:
1264 pci_disable_device(pdev);
1265 return err;
1266}
1267
1268/**
1269 * e1000_remove - Device Removal Routine
1270 * @pdev: PCI device information struct
1271 *
1272 * e1000_remove is called by the PCI subsystem to alert the driver
1273 * that it should release a PCI device. The could be caused by a
1274 * Hot-Plug event, or because the driver is going to be removed from
1275 * memory.
1276 **/
1277
1278static void __devexit e1000_remove(struct pci_dev *pdev)
1279{
1280 struct net_device *netdev = pci_get_drvdata(pdev);
1281 struct e1000_adapter *adapter = netdev_priv(netdev);
1282 struct e1000_hw *hw = &adapter->hw;
1283
1284 e1000_down_and_stop(adapter);
1285 e1000_release_manageability(adapter);
1286
1287 unregister_netdev(netdev);
1288
1289 e1000_phy_hw_reset(hw);
1290
1291 kfree(adapter->tx_ring);
1292 kfree(adapter->rx_ring);
1293
1294 if (hw->mac_type == e1000_ce4100)
1295 iounmap(hw->ce4100_gbe_mdio_base_virt);
1296 iounmap(hw->hw_addr);
1297 if (hw->flash_address)
1298 iounmap(hw->flash_address);
1299 pci_release_selected_regions(pdev, adapter->bars);
1300
1301 free_netdev(netdev);
1302
1303 pci_disable_device(pdev);
1304}
1305
1306/**
1307 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1308 * @adapter: board private structure to initialize
1309 *
1310 * e1000_sw_init initializes the Adapter private data structure.
1311 * e1000_init_hw_struct MUST be called before this function
1312 **/
1313
1314static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1315{
1316 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1317
1318 adapter->num_tx_queues = 1;
1319 adapter->num_rx_queues = 1;
1320
1321 if (e1000_alloc_queues(adapter)) {
1322 e_err(probe, "Unable to allocate memory for queues\n");
1323 return -ENOMEM;
1324 }
1325
1326 /* Explicitly disable IRQ since the NIC can be in any state. */
1327 e1000_irq_disable(adapter);
1328
1329 spin_lock_init(&adapter->stats_lock);
1330 mutex_init(&adapter->mutex);
1331
1332 set_bit(__E1000_DOWN, &adapter->flags);
1333
1334 return 0;
1335}
1336
1337/**
1338 * e1000_alloc_queues - Allocate memory for all rings
1339 * @adapter: board private structure to initialize
1340 *
1341 * We allocate one ring per queue at run-time since we don't know the
1342 * number of queues at compile-time.
1343 **/
1344
1345static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1346{
1347 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1348 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1349 if (!adapter->tx_ring)
1350 return -ENOMEM;
1351
1352 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1353 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1354 if (!adapter->rx_ring) {
1355 kfree(adapter->tx_ring);
1356 return -ENOMEM;
1357 }
1358
1359 return E1000_SUCCESS;
1360}
1361
1362/**
1363 * e1000_open - Called when a network interface is made active
1364 * @netdev: network interface device structure
1365 *
1366 * Returns 0 on success, negative value on failure
1367 *
1368 * The open entry point is called when a network interface is made
1369 * active by the system (IFF_UP). At this point all resources needed
1370 * for transmit and receive operations are allocated, the interrupt
1371 * handler is registered with the OS, the watchdog task is started,
1372 * and the stack is notified that the interface is ready.
1373 **/
1374
1375static int e1000_open(struct net_device *netdev)
1376{
1377 struct e1000_adapter *adapter = netdev_priv(netdev);
1378 struct e1000_hw *hw = &adapter->hw;
1379 int err;
1380
1381 /* disallow open during test */
1382 if (test_bit(__E1000_TESTING, &adapter->flags))
1383 return -EBUSY;
1384
1385 netif_carrier_off(netdev);
1386
1387 /* allocate transmit descriptors */
1388 err = e1000_setup_all_tx_resources(adapter);
1389 if (err)
1390 goto err_setup_tx;
1391
1392 /* allocate receive descriptors */
1393 err = e1000_setup_all_rx_resources(adapter);
1394 if (err)
1395 goto err_setup_rx;
1396
1397 e1000_power_up_phy(adapter);
1398
1399 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1400 if ((hw->mng_cookie.status &
1401 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1402 e1000_update_mng_vlan(adapter);
1403 }
1404
1405 /* before we allocate an interrupt, we must be ready to handle it.
1406 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1407 * as soon as we call pci_request_irq, so we have to setup our
1408 * clean_rx handler before we do so. */
1409 e1000_configure(adapter);
1410
1411 err = e1000_request_irq(adapter);
1412 if (err)
1413 goto err_req_irq;
1414
1415 /* From here on the code is the same as e1000_up() */
1416 clear_bit(__E1000_DOWN, &adapter->flags);
1417
1418 napi_enable(&adapter->napi);
1419
1420 e1000_irq_enable(adapter);
1421
1422 netif_start_queue(netdev);
1423
1424 /* fire a link status change interrupt to start the watchdog */
1425 ew32(ICS, E1000_ICS_LSC);
1426
1427 return E1000_SUCCESS;
1428
1429err_req_irq:
1430 e1000_power_down_phy(adapter);
1431 e1000_free_all_rx_resources(adapter);
1432err_setup_rx:
1433 e1000_free_all_tx_resources(adapter);
1434err_setup_tx:
1435 e1000_reset(adapter);
1436
1437 return err;
1438}
1439
1440/**
1441 * e1000_close - Disables a network interface
1442 * @netdev: network interface device structure
1443 *
1444 * Returns 0, this is not allowed to fail
1445 *
1446 * The close entry point is called when an interface is de-activated
1447 * by the OS. The hardware is still under the drivers control, but
1448 * needs to be disabled. A global MAC reset is issued to stop the
1449 * hardware, and all transmit and receive resources are freed.
1450 **/
1451
1452static int e1000_close(struct net_device *netdev)
1453{
1454 struct e1000_adapter *adapter = netdev_priv(netdev);
1455 struct e1000_hw *hw = &adapter->hw;
1456
1457 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1458 e1000_down(adapter);
1459 e1000_power_down_phy(adapter);
1460 e1000_free_irq(adapter);
1461
1462 e1000_free_all_tx_resources(adapter);
1463 e1000_free_all_rx_resources(adapter);
1464
1465 /* kill manageability vlan ID if supported, but not if a vlan with
1466 * the same ID is registered on the host OS (let 8021q kill it) */
1467 if ((hw->mng_cookie.status &
1468 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1469 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1470 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1471 }
1472
1473 return 0;
1474}
1475
1476/**
1477 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1478 * @adapter: address of board private structure
1479 * @start: address of beginning of memory
1480 * @len: length of memory
1481 **/
1482static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1483 unsigned long len)
1484{
1485 struct e1000_hw *hw = &adapter->hw;
1486 unsigned long begin = (unsigned long)start;
1487 unsigned long end = begin + len;
1488
1489 /* First rev 82545 and 82546 need to not allow any memory
1490 * write location to cross 64k boundary due to errata 23 */
1491 if (hw->mac_type == e1000_82545 ||
1492 hw->mac_type == e1000_ce4100 ||
1493 hw->mac_type == e1000_82546) {
1494 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1495 }
1496
1497 return true;
1498}
1499
1500/**
1501 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1502 * @adapter: board private structure
1503 * @txdr: tx descriptor ring (for a specific queue) to setup
1504 *
1505 * Return 0 on success, negative on failure
1506 **/
1507
1508static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1509 struct e1000_tx_ring *txdr)
1510{
1511 struct pci_dev *pdev = adapter->pdev;
1512 int size;
1513
1514 size = sizeof(struct e1000_buffer) * txdr->count;
1515 txdr->buffer_info = vzalloc(size);
1516 if (!txdr->buffer_info) {
1517 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1518 "ring\n");
1519 return -ENOMEM;
1520 }
1521
1522 /* round up to nearest 4K */
1523
1524 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1525 txdr->size = ALIGN(txdr->size, 4096);
1526
1527 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1528 GFP_KERNEL);
1529 if (!txdr->desc) {
1530setup_tx_desc_die:
1531 vfree(txdr->buffer_info);
1532 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1533 "ring\n");
1534 return -ENOMEM;
1535 }
1536
1537 /* Fix for errata 23, can't cross 64kB boundary */
1538 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539 void *olddesc = txdr->desc;
1540 dma_addr_t olddma = txdr->dma;
1541 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1542 txdr->size, txdr->desc);
1543 /* Try again, without freeing the previous */
1544 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1545 &txdr->dma, GFP_KERNEL);
1546 /* Failed allocation, critical failure */
1547 if (!txdr->desc) {
1548 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1549 olddma);
1550 goto setup_tx_desc_die;
1551 }
1552
1553 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1554 /* give up */
1555 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1556 txdr->dma);
1557 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1558 olddma);
1559 e_err(probe, "Unable to allocate aligned memory "
1560 "for the transmit descriptor ring\n");
1561 vfree(txdr->buffer_info);
1562 return -ENOMEM;
1563 } else {
1564 /* Free old allocation, new allocation was successful */
1565 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1566 olddma);
1567 }
1568 }
1569 memset(txdr->desc, 0, txdr->size);
1570
1571 txdr->next_to_use = 0;
1572 txdr->next_to_clean = 0;
1573
1574 return 0;
1575}
1576
1577/**
1578 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1579 * (Descriptors) for all queues
1580 * @adapter: board private structure
1581 *
1582 * Return 0 on success, negative on failure
1583 **/
1584
1585int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1586{
1587 int i, err = 0;
1588
1589 for (i = 0; i < adapter->num_tx_queues; i++) {
1590 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1591 if (err) {
1592 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1593 for (i-- ; i >= 0; i--)
1594 e1000_free_tx_resources(adapter,
1595 &adapter->tx_ring[i]);
1596 break;
1597 }
1598 }
1599
1600 return err;
1601}
1602
1603/**
1604 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1605 * @adapter: board private structure
1606 *
1607 * Configure the Tx unit of the MAC after a reset.
1608 **/
1609
1610static void e1000_configure_tx(struct e1000_adapter *adapter)
1611{
1612 u64 tdba;
1613 struct e1000_hw *hw = &adapter->hw;
1614 u32 tdlen, tctl, tipg;
1615 u32 ipgr1, ipgr2;
1616
1617 /* Setup the HW Tx Head and Tail descriptor pointers */
1618
1619 switch (adapter->num_tx_queues) {
1620 case 1:
1621 default:
1622 tdba = adapter->tx_ring[0].dma;
1623 tdlen = adapter->tx_ring[0].count *
1624 sizeof(struct e1000_tx_desc);
1625 ew32(TDLEN, tdlen);
1626 ew32(TDBAH, (tdba >> 32));
1627 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1628 ew32(TDT, 0);
1629 ew32(TDH, 0);
1630 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1631 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1632 break;
1633 }
1634
1635 /* Set the default values for the Tx Inter Packet Gap timer */
1636 if ((hw->media_type == e1000_media_type_fiber ||
1637 hw->media_type == e1000_media_type_internal_serdes))
1638 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1639 else
1640 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1641
1642 switch (hw->mac_type) {
1643 case e1000_82542_rev2_0:
1644 case e1000_82542_rev2_1:
1645 tipg = DEFAULT_82542_TIPG_IPGT;
1646 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1647 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1648 break;
1649 default:
1650 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1651 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1652 break;
1653 }
1654 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1655 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1656 ew32(TIPG, tipg);
1657
1658 /* Set the Tx Interrupt Delay register */
1659
1660 ew32(TIDV, adapter->tx_int_delay);
1661 if (hw->mac_type >= e1000_82540)
1662 ew32(TADV, adapter->tx_abs_int_delay);
1663
1664 /* Program the Transmit Control Register */
1665
1666 tctl = er32(TCTL);
1667 tctl &= ~E1000_TCTL_CT;
1668 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1669 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1670
1671 e1000_config_collision_dist(hw);
1672
1673 /* Setup Transmit Descriptor Settings for eop descriptor */
1674 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1675
1676 /* only set IDE if we are delaying interrupts using the timers */
1677 if (adapter->tx_int_delay)
1678 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1679
1680 if (hw->mac_type < e1000_82543)
1681 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1682 else
1683 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1684
1685 /* Cache if we're 82544 running in PCI-X because we'll
1686 * need this to apply a workaround later in the send path. */
1687 if (hw->mac_type == e1000_82544 &&
1688 hw->bus_type == e1000_bus_type_pcix)
1689 adapter->pcix_82544 = true;
1690
1691 ew32(TCTL, tctl);
1692
1693}
1694
1695/**
1696 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1697 * @adapter: board private structure
1698 * @rxdr: rx descriptor ring (for a specific queue) to setup
1699 *
1700 * Returns 0 on success, negative on failure
1701 **/
1702
1703static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1704 struct e1000_rx_ring *rxdr)
1705{
1706 struct pci_dev *pdev = adapter->pdev;
1707 int size, desc_len;
1708
1709 size = sizeof(struct e1000_buffer) * rxdr->count;
1710 rxdr->buffer_info = vzalloc(size);
1711 if (!rxdr->buffer_info) {
1712 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1713 "ring\n");
1714 return -ENOMEM;
1715 }
1716
1717 desc_len = sizeof(struct e1000_rx_desc);
1718
1719 /* Round up to nearest 4K */
1720
1721 rxdr->size = rxdr->count * desc_len;
1722 rxdr->size = ALIGN(rxdr->size, 4096);
1723
1724 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1725 GFP_KERNEL);
1726
1727 if (!rxdr->desc) {
1728 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1729 "ring\n");
1730setup_rx_desc_die:
1731 vfree(rxdr->buffer_info);
1732 return -ENOMEM;
1733 }
1734
1735 /* Fix for errata 23, can't cross 64kB boundary */
1736 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1737 void *olddesc = rxdr->desc;
1738 dma_addr_t olddma = rxdr->dma;
1739 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1740 rxdr->size, rxdr->desc);
1741 /* Try again, without freeing the previous */
1742 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1743 &rxdr->dma, GFP_KERNEL);
1744 /* Failed allocation, critical failure */
1745 if (!rxdr->desc) {
1746 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1747 olddma);
1748 e_err(probe, "Unable to allocate memory for the Rx "
1749 "descriptor ring\n");
1750 goto setup_rx_desc_die;
1751 }
1752
1753 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1754 /* give up */
1755 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1756 rxdr->dma);
1757 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1758 olddma);
1759 e_err(probe, "Unable to allocate aligned memory for "
1760 "the Rx descriptor ring\n");
1761 goto setup_rx_desc_die;
1762 } else {
1763 /* Free old allocation, new allocation was successful */
1764 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1765 olddma);
1766 }
1767 }
1768 memset(rxdr->desc, 0, rxdr->size);
1769
1770 rxdr->next_to_clean = 0;
1771 rxdr->next_to_use = 0;
1772 rxdr->rx_skb_top = NULL;
1773
1774 return 0;
1775}
1776
1777/**
1778 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1779 * (Descriptors) for all queues
1780 * @adapter: board private structure
1781 *
1782 * Return 0 on success, negative on failure
1783 **/
1784
1785int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1786{
1787 int i, err = 0;
1788
1789 for (i = 0; i < adapter->num_rx_queues; i++) {
1790 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1791 if (err) {
1792 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1793 for (i-- ; i >= 0; i--)
1794 e1000_free_rx_resources(adapter,
1795 &adapter->rx_ring[i]);
1796 break;
1797 }
1798 }
1799
1800 return err;
1801}
1802
1803/**
1804 * e1000_setup_rctl - configure the receive control registers
1805 * @adapter: Board private structure
1806 **/
1807static void e1000_setup_rctl(struct e1000_adapter *adapter)
1808{
1809 struct e1000_hw *hw = &adapter->hw;
1810 u32 rctl;
1811
1812 rctl = er32(RCTL);
1813
1814 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1815
1816 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1817 E1000_RCTL_RDMTS_HALF |
1818 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1819
1820 if (hw->tbi_compatibility_on == 1)
1821 rctl |= E1000_RCTL_SBP;
1822 else
1823 rctl &= ~E1000_RCTL_SBP;
1824
1825 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1826 rctl &= ~E1000_RCTL_LPE;
1827 else
1828 rctl |= E1000_RCTL_LPE;
1829
1830 /* Setup buffer sizes */
1831 rctl &= ~E1000_RCTL_SZ_4096;
1832 rctl |= E1000_RCTL_BSEX;
1833 switch (adapter->rx_buffer_len) {
1834 case E1000_RXBUFFER_2048:
1835 default:
1836 rctl |= E1000_RCTL_SZ_2048;
1837 rctl &= ~E1000_RCTL_BSEX;
1838 break;
1839 case E1000_RXBUFFER_4096:
1840 rctl |= E1000_RCTL_SZ_4096;
1841 break;
1842 case E1000_RXBUFFER_8192:
1843 rctl |= E1000_RCTL_SZ_8192;
1844 break;
1845 case E1000_RXBUFFER_16384:
1846 rctl |= E1000_RCTL_SZ_16384;
1847 break;
1848 }
1849
1850 /* This is useful for sniffing bad packets. */
1851 if (adapter->netdev->features & NETIF_F_RXALL) {
1852 /* UPE and MPE will be handled by normal PROMISC logic
1853 * in e1000e_set_rx_mode */
1854 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1855 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1856 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1857
1858 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1859 E1000_RCTL_DPF | /* Allow filtered pause */
1860 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1861 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1862 * and that breaks VLANs.
1863 */
1864 }
1865
1866 ew32(RCTL, rctl);
1867}
1868
1869/**
1870 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1871 * @adapter: board private structure
1872 *
1873 * Configure the Rx unit of the MAC after a reset.
1874 **/
1875
1876static void e1000_configure_rx(struct e1000_adapter *adapter)
1877{
1878 u64 rdba;
1879 struct e1000_hw *hw = &adapter->hw;
1880 u32 rdlen, rctl, rxcsum;
1881
1882 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1883 rdlen = adapter->rx_ring[0].count *
1884 sizeof(struct e1000_rx_desc);
1885 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1886 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1887 } else {
1888 rdlen = adapter->rx_ring[0].count *
1889 sizeof(struct e1000_rx_desc);
1890 adapter->clean_rx = e1000_clean_rx_irq;
1891 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1892 }
1893
1894 /* disable receives while setting up the descriptors */
1895 rctl = er32(RCTL);
1896 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1897
1898 /* set the Receive Delay Timer Register */
1899 ew32(RDTR, adapter->rx_int_delay);
1900
1901 if (hw->mac_type >= e1000_82540) {
1902 ew32(RADV, adapter->rx_abs_int_delay);
1903 if (adapter->itr_setting != 0)
1904 ew32(ITR, 1000000000 / (adapter->itr * 256));
1905 }
1906
1907 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1908 * the Base and Length of the Rx Descriptor Ring */
1909 switch (adapter->num_rx_queues) {
1910 case 1:
1911 default:
1912 rdba = adapter->rx_ring[0].dma;
1913 ew32(RDLEN, rdlen);
1914 ew32(RDBAH, (rdba >> 32));
1915 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1916 ew32(RDT, 0);
1917 ew32(RDH, 0);
1918 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1919 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1920 break;
1921 }
1922
1923 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1924 if (hw->mac_type >= e1000_82543) {
1925 rxcsum = er32(RXCSUM);
1926 if (adapter->rx_csum)
1927 rxcsum |= E1000_RXCSUM_TUOFL;
1928 else
1929 /* don't need to clear IPPCSE as it defaults to 0 */
1930 rxcsum &= ~E1000_RXCSUM_TUOFL;
1931 ew32(RXCSUM, rxcsum);
1932 }
1933
1934 /* Enable Receives */
1935 ew32(RCTL, rctl | E1000_RCTL_EN);
1936}
1937
1938/**
1939 * e1000_free_tx_resources - Free Tx Resources per Queue
1940 * @adapter: board private structure
1941 * @tx_ring: Tx descriptor ring for a specific queue
1942 *
1943 * Free all transmit software resources
1944 **/
1945
1946static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1947 struct e1000_tx_ring *tx_ring)
1948{
1949 struct pci_dev *pdev = adapter->pdev;
1950
1951 e1000_clean_tx_ring(adapter, tx_ring);
1952
1953 vfree(tx_ring->buffer_info);
1954 tx_ring->buffer_info = NULL;
1955
1956 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1957 tx_ring->dma);
1958
1959 tx_ring->desc = NULL;
1960}
1961
1962/**
1963 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1964 * @adapter: board private structure
1965 *
1966 * Free all transmit software resources
1967 **/
1968
1969void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1970{
1971 int i;
1972
1973 for (i = 0; i < adapter->num_tx_queues; i++)
1974 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1975}
1976
1977static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1978 struct e1000_buffer *buffer_info)
1979{
1980 if (buffer_info->dma) {
1981 if (buffer_info->mapped_as_page)
1982 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1983 buffer_info->length, DMA_TO_DEVICE);
1984 else
1985 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1986 buffer_info->length,
1987 DMA_TO_DEVICE);
1988 buffer_info->dma = 0;
1989 }
1990 if (buffer_info->skb) {
1991 dev_kfree_skb_any(buffer_info->skb);
1992 buffer_info->skb = NULL;
1993 }
1994 buffer_info->time_stamp = 0;
1995 /* buffer_info must be completely set up in the transmit path */
1996}
1997
1998/**
1999 * e1000_clean_tx_ring - Free Tx Buffers
2000 * @adapter: board private structure
2001 * @tx_ring: ring to be cleaned
2002 **/
2003
2004static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2005 struct e1000_tx_ring *tx_ring)
2006{
2007 struct e1000_hw *hw = &adapter->hw;
2008 struct e1000_buffer *buffer_info;
2009 unsigned long size;
2010 unsigned int i;
2011
2012 /* Free all the Tx ring sk_buffs */
2013
2014 for (i = 0; i < tx_ring->count; i++) {
2015 buffer_info = &tx_ring->buffer_info[i];
2016 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2017 }
2018
2019 size = sizeof(struct e1000_buffer) * tx_ring->count;
2020 memset(tx_ring->buffer_info, 0, size);
2021
2022 /* Zero out the descriptor ring */
2023
2024 memset(tx_ring->desc, 0, tx_ring->size);
2025
2026 tx_ring->next_to_use = 0;
2027 tx_ring->next_to_clean = 0;
2028 tx_ring->last_tx_tso = false;
2029
2030 writel(0, hw->hw_addr + tx_ring->tdh);
2031 writel(0, hw->hw_addr + tx_ring->tdt);
2032}
2033
2034/**
2035 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2036 * @adapter: board private structure
2037 **/
2038
2039static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2040{
2041 int i;
2042
2043 for (i = 0; i < adapter->num_tx_queues; i++)
2044 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2045}
2046
2047/**
2048 * e1000_free_rx_resources - Free Rx Resources
2049 * @adapter: board private structure
2050 * @rx_ring: ring to clean the resources from
2051 *
2052 * Free all receive software resources
2053 **/
2054
2055static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2056 struct e1000_rx_ring *rx_ring)
2057{
2058 struct pci_dev *pdev = adapter->pdev;
2059
2060 e1000_clean_rx_ring(adapter, rx_ring);
2061
2062 vfree(rx_ring->buffer_info);
2063 rx_ring->buffer_info = NULL;
2064
2065 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2066 rx_ring->dma);
2067
2068 rx_ring->desc = NULL;
2069}
2070
2071/**
2072 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2073 * @adapter: board private structure
2074 *
2075 * Free all receive software resources
2076 **/
2077
2078void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2079{
2080 int i;
2081
2082 for (i = 0; i < adapter->num_rx_queues; i++)
2083 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2084}
2085
2086/**
2087 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2088 * @adapter: board private structure
2089 * @rx_ring: ring to free buffers from
2090 **/
2091
2092static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2093 struct e1000_rx_ring *rx_ring)
2094{
2095 struct e1000_hw *hw = &adapter->hw;
2096 struct e1000_buffer *buffer_info;
2097 struct pci_dev *pdev = adapter->pdev;
2098 unsigned long size;
2099 unsigned int i;
2100
2101 /* Free all the Rx ring sk_buffs */
2102 for (i = 0; i < rx_ring->count; i++) {
2103 buffer_info = &rx_ring->buffer_info[i];
2104 if (buffer_info->dma &&
2105 adapter->clean_rx == e1000_clean_rx_irq) {
2106 dma_unmap_single(&pdev->dev, buffer_info->dma,
2107 buffer_info->length,
2108 DMA_FROM_DEVICE);
2109 } else if (buffer_info->dma &&
2110 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2111 dma_unmap_page(&pdev->dev, buffer_info->dma,
2112 buffer_info->length,
2113 DMA_FROM_DEVICE);
2114 }
2115
2116 buffer_info->dma = 0;
2117 if (buffer_info->page) {
2118 put_page(buffer_info->page);
2119 buffer_info->page = NULL;
2120 }
2121 if (buffer_info->skb) {
2122 dev_kfree_skb(buffer_info->skb);
2123 buffer_info->skb = NULL;
2124 }
2125 }
2126
2127 /* there also may be some cached data from a chained receive */
2128 if (rx_ring->rx_skb_top) {
2129 dev_kfree_skb(rx_ring->rx_skb_top);
2130 rx_ring->rx_skb_top = NULL;
2131 }
2132
2133 size = sizeof(struct e1000_buffer) * rx_ring->count;
2134 memset(rx_ring->buffer_info, 0, size);
2135
2136 /* Zero out the descriptor ring */
2137 memset(rx_ring->desc, 0, rx_ring->size);
2138
2139 rx_ring->next_to_clean = 0;
2140 rx_ring->next_to_use = 0;
2141
2142 writel(0, hw->hw_addr + rx_ring->rdh);
2143 writel(0, hw->hw_addr + rx_ring->rdt);
2144}
2145
2146/**
2147 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2148 * @adapter: board private structure
2149 **/
2150
2151static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2152{
2153 int i;
2154
2155 for (i = 0; i < adapter->num_rx_queues; i++)
2156 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2157}
2158
2159/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2160 * and memory write and invalidate disabled for certain operations
2161 */
2162static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2163{
2164 struct e1000_hw *hw = &adapter->hw;
2165 struct net_device *netdev = adapter->netdev;
2166 u32 rctl;
2167
2168 e1000_pci_clear_mwi(hw);
2169
2170 rctl = er32(RCTL);
2171 rctl |= E1000_RCTL_RST;
2172 ew32(RCTL, rctl);
2173 E1000_WRITE_FLUSH();
2174 mdelay(5);
2175
2176 if (netif_running(netdev))
2177 e1000_clean_all_rx_rings(adapter);
2178}
2179
2180static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2181{
2182 struct e1000_hw *hw = &adapter->hw;
2183 struct net_device *netdev = adapter->netdev;
2184 u32 rctl;
2185
2186 rctl = er32(RCTL);
2187 rctl &= ~E1000_RCTL_RST;
2188 ew32(RCTL, rctl);
2189 E1000_WRITE_FLUSH();
2190 mdelay(5);
2191
2192 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2193 e1000_pci_set_mwi(hw);
2194
2195 if (netif_running(netdev)) {
2196 /* No need to loop, because 82542 supports only 1 queue */
2197 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2198 e1000_configure_rx(adapter);
2199 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2200 }
2201}
2202
2203/**
2204 * e1000_set_mac - Change the Ethernet Address of the NIC
2205 * @netdev: network interface device structure
2206 * @p: pointer to an address structure
2207 *
2208 * Returns 0 on success, negative on failure
2209 **/
2210
2211static int e1000_set_mac(struct net_device *netdev, void *p)
2212{
2213 struct e1000_adapter *adapter = netdev_priv(netdev);
2214 struct e1000_hw *hw = &adapter->hw;
2215 struct sockaddr *addr = p;
2216
2217 if (!is_valid_ether_addr(addr->sa_data))
2218 return -EADDRNOTAVAIL;
2219
2220 /* 82542 2.0 needs to be in reset to write receive address registers */
2221
2222 if (hw->mac_type == e1000_82542_rev2_0)
2223 e1000_enter_82542_rst(adapter);
2224
2225 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2226 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2227
2228 e1000_rar_set(hw, hw->mac_addr, 0);
2229
2230 if (hw->mac_type == e1000_82542_rev2_0)
2231 e1000_leave_82542_rst(adapter);
2232
2233 return 0;
2234}
2235
2236/**
2237 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2238 * @netdev: network interface device structure
2239 *
2240 * The set_rx_mode entry point is called whenever the unicast or multicast
2241 * address lists or the network interface flags are updated. This routine is
2242 * responsible for configuring the hardware for proper unicast, multicast,
2243 * promiscuous mode, and all-multi behavior.
2244 **/
2245
2246static void e1000_set_rx_mode(struct net_device *netdev)
2247{
2248 struct e1000_adapter *adapter = netdev_priv(netdev);
2249 struct e1000_hw *hw = &adapter->hw;
2250 struct netdev_hw_addr *ha;
2251 bool use_uc = false;
2252 u32 rctl;
2253 u32 hash_value;
2254 int i, rar_entries = E1000_RAR_ENTRIES;
2255 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2256 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2257
2258 if (!mcarray) {
2259 e_err(probe, "memory allocation failed\n");
2260 return;
2261 }
2262
2263 /* Check for Promiscuous and All Multicast modes */
2264
2265 rctl = er32(RCTL);
2266
2267 if (netdev->flags & IFF_PROMISC) {
2268 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2269 rctl &= ~E1000_RCTL_VFE;
2270 } else {
2271 if (netdev->flags & IFF_ALLMULTI)
2272 rctl |= E1000_RCTL_MPE;
2273 else
2274 rctl &= ~E1000_RCTL_MPE;
2275 /* Enable VLAN filter if there is a VLAN */
2276 if (e1000_vlan_used(adapter))
2277 rctl |= E1000_RCTL_VFE;
2278 }
2279
2280 if (netdev_uc_count(netdev) > rar_entries - 1) {
2281 rctl |= E1000_RCTL_UPE;
2282 } else if (!(netdev->flags & IFF_PROMISC)) {
2283 rctl &= ~E1000_RCTL_UPE;
2284 use_uc = true;
2285 }
2286
2287 ew32(RCTL, rctl);
2288
2289 /* 82542 2.0 needs to be in reset to write receive address registers */
2290
2291 if (hw->mac_type == e1000_82542_rev2_0)
2292 e1000_enter_82542_rst(adapter);
2293
2294 /* load the first 14 addresses into the exact filters 1-14. Unicast
2295 * addresses take precedence to avoid disabling unicast filtering
2296 * when possible.
2297 *
2298 * RAR 0 is used for the station MAC address
2299 * if there are not 14 addresses, go ahead and clear the filters
2300 */
2301 i = 1;
2302 if (use_uc)
2303 netdev_for_each_uc_addr(ha, netdev) {
2304 if (i == rar_entries)
2305 break;
2306 e1000_rar_set(hw, ha->addr, i++);
2307 }
2308
2309 netdev_for_each_mc_addr(ha, netdev) {
2310 if (i == rar_entries) {
2311 /* load any remaining addresses into the hash table */
2312 u32 hash_reg, hash_bit, mta;
2313 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2314 hash_reg = (hash_value >> 5) & 0x7F;
2315 hash_bit = hash_value & 0x1F;
2316 mta = (1 << hash_bit);
2317 mcarray[hash_reg] |= mta;
2318 } else {
2319 e1000_rar_set(hw, ha->addr, i++);
2320 }
2321 }
2322
2323 for (; i < rar_entries; i++) {
2324 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2325 E1000_WRITE_FLUSH();
2326 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2327 E1000_WRITE_FLUSH();
2328 }
2329
2330 /* write the hash table completely, write from bottom to avoid
2331 * both stupid write combining chipsets, and flushing each write */
2332 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2333 /*
2334 * If we are on an 82544 has an errata where writing odd
2335 * offsets overwrites the previous even offset, but writing
2336 * backwards over the range solves the issue by always
2337 * writing the odd offset first
2338 */
2339 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2340 }
2341 E1000_WRITE_FLUSH();
2342
2343 if (hw->mac_type == e1000_82542_rev2_0)
2344 e1000_leave_82542_rst(adapter);
2345
2346 kfree(mcarray);
2347}
2348
2349/**
2350 * e1000_update_phy_info_task - get phy info
2351 * @work: work struct contained inside adapter struct
2352 *
2353 * Need to wait a few seconds after link up to get diagnostic information from
2354 * the phy
2355 */
2356static void e1000_update_phy_info_task(struct work_struct *work)
2357{
2358 struct e1000_adapter *adapter = container_of(work,
2359 struct e1000_adapter,
2360 phy_info_task.work);
2361 if (test_bit(__E1000_DOWN, &adapter->flags))
2362 return;
2363 mutex_lock(&adapter->mutex);
2364 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2365 mutex_unlock(&adapter->mutex);
2366}
2367
2368/**
2369 * e1000_82547_tx_fifo_stall_task - task to complete work
2370 * @work: work struct contained inside adapter struct
2371 **/
2372static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2373{
2374 struct e1000_adapter *adapter = container_of(work,
2375 struct e1000_adapter,
2376 fifo_stall_task.work);
2377 struct e1000_hw *hw = &adapter->hw;
2378 struct net_device *netdev = adapter->netdev;
2379 u32 tctl;
2380
2381 if (test_bit(__E1000_DOWN, &adapter->flags))
2382 return;
2383 mutex_lock(&adapter->mutex);
2384 if (atomic_read(&adapter->tx_fifo_stall)) {
2385 if ((er32(TDT) == er32(TDH)) &&
2386 (er32(TDFT) == er32(TDFH)) &&
2387 (er32(TDFTS) == er32(TDFHS))) {
2388 tctl = er32(TCTL);
2389 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2390 ew32(TDFT, adapter->tx_head_addr);
2391 ew32(TDFH, adapter->tx_head_addr);
2392 ew32(TDFTS, adapter->tx_head_addr);
2393 ew32(TDFHS, adapter->tx_head_addr);
2394 ew32(TCTL, tctl);
2395 E1000_WRITE_FLUSH();
2396
2397 adapter->tx_fifo_head = 0;
2398 atomic_set(&adapter->tx_fifo_stall, 0);
2399 netif_wake_queue(netdev);
2400 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2401 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2402 }
2403 }
2404 mutex_unlock(&adapter->mutex);
2405}
2406
2407bool e1000_has_link(struct e1000_adapter *adapter)
2408{
2409 struct e1000_hw *hw = &adapter->hw;
2410 bool link_active = false;
2411
2412 /* get_link_status is set on LSC (link status) interrupt or rx
2413 * sequence error interrupt (except on intel ce4100).
2414 * get_link_status will stay false until the
2415 * e1000_check_for_link establishes link for copper adapters
2416 * ONLY
2417 */
2418 switch (hw->media_type) {
2419 case e1000_media_type_copper:
2420 if (hw->mac_type == e1000_ce4100)
2421 hw->get_link_status = 1;
2422 if (hw->get_link_status) {
2423 e1000_check_for_link(hw);
2424 link_active = !hw->get_link_status;
2425 } else {
2426 link_active = true;
2427 }
2428 break;
2429 case e1000_media_type_fiber:
2430 e1000_check_for_link(hw);
2431 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2432 break;
2433 case e1000_media_type_internal_serdes:
2434 e1000_check_for_link(hw);
2435 link_active = hw->serdes_has_link;
2436 break;
2437 default:
2438 break;
2439 }
2440
2441 return link_active;
2442}
2443
2444/**
2445 * e1000_watchdog - work function
2446 * @work: work struct contained inside adapter struct
2447 **/
2448static void e1000_watchdog(struct work_struct *work)
2449{
2450 struct e1000_adapter *adapter = container_of(work,
2451 struct e1000_adapter,
2452 watchdog_task.work);
2453 struct e1000_hw *hw = &adapter->hw;
2454 struct net_device *netdev = adapter->netdev;
2455 struct e1000_tx_ring *txdr = adapter->tx_ring;
2456 u32 link, tctl;
2457
2458 if (test_bit(__E1000_DOWN, &adapter->flags))
2459 return;
2460
2461 mutex_lock(&adapter->mutex);
2462 link = e1000_has_link(adapter);
2463 if ((netif_carrier_ok(netdev)) && link)
2464 goto link_up;
2465
2466 if (link) {
2467 if (!netif_carrier_ok(netdev)) {
2468 u32 ctrl;
2469 bool txb2b = true;
2470 /* update snapshot of PHY registers on LSC */
2471 e1000_get_speed_and_duplex(hw,
2472 &adapter->link_speed,
2473 &adapter->link_duplex);
2474
2475 ctrl = er32(CTRL);
2476 pr_info("%s NIC Link is Up %d Mbps %s, "
2477 "Flow Control: %s\n",
2478 netdev->name,
2479 adapter->link_speed,
2480 adapter->link_duplex == FULL_DUPLEX ?
2481 "Full Duplex" : "Half Duplex",
2482 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2483 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2484 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2485 E1000_CTRL_TFCE) ? "TX" : "None")));
2486
2487 /* adjust timeout factor according to speed/duplex */
2488 adapter->tx_timeout_factor = 1;
2489 switch (adapter->link_speed) {
2490 case SPEED_10:
2491 txb2b = false;
2492 adapter->tx_timeout_factor = 16;
2493 break;
2494 case SPEED_100:
2495 txb2b = false;
2496 /* maybe add some timeout factor ? */
2497 break;
2498 }
2499
2500 /* enable transmits in the hardware */
2501 tctl = er32(TCTL);
2502 tctl |= E1000_TCTL_EN;
2503 ew32(TCTL, tctl);
2504
2505 netif_carrier_on(netdev);
2506 if (!test_bit(__E1000_DOWN, &adapter->flags))
2507 schedule_delayed_work(&adapter->phy_info_task,
2508 2 * HZ);
2509 adapter->smartspeed = 0;
2510 }
2511 } else {
2512 if (netif_carrier_ok(netdev)) {
2513 adapter->link_speed = 0;
2514 adapter->link_duplex = 0;
2515 pr_info("%s NIC Link is Down\n",
2516 netdev->name);
2517 netif_carrier_off(netdev);
2518
2519 if (!test_bit(__E1000_DOWN, &adapter->flags))
2520 schedule_delayed_work(&adapter->phy_info_task,
2521 2 * HZ);
2522 }
2523
2524 e1000_smartspeed(adapter);
2525 }
2526
2527link_up:
2528 e1000_update_stats(adapter);
2529
2530 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2531 adapter->tpt_old = adapter->stats.tpt;
2532 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2533 adapter->colc_old = adapter->stats.colc;
2534
2535 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2536 adapter->gorcl_old = adapter->stats.gorcl;
2537 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2538 adapter->gotcl_old = adapter->stats.gotcl;
2539
2540 e1000_update_adaptive(hw);
2541
2542 if (!netif_carrier_ok(netdev)) {
2543 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2544 /* We've lost link, so the controller stops DMA,
2545 * but we've got queued Tx work that's never going
2546 * to get done, so reset controller to flush Tx.
2547 * (Do the reset outside of interrupt context). */
2548 adapter->tx_timeout_count++;
2549 schedule_work(&adapter->reset_task);
2550 /* exit immediately since reset is imminent */
2551 goto unlock;
2552 }
2553 }
2554
2555 /* Simple mode for Interrupt Throttle Rate (ITR) */
2556 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2557 /*
2558 * Symmetric Tx/Rx gets a reduced ITR=2000;
2559 * Total asymmetrical Tx or Rx gets ITR=8000;
2560 * everyone else is between 2000-8000.
2561 */
2562 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2563 u32 dif = (adapter->gotcl > adapter->gorcl ?
2564 adapter->gotcl - adapter->gorcl :
2565 adapter->gorcl - adapter->gotcl) / 10000;
2566 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2567
2568 ew32(ITR, 1000000000 / (itr * 256));
2569 }
2570
2571 /* Cause software interrupt to ensure rx ring is cleaned */
2572 ew32(ICS, E1000_ICS_RXDMT0);
2573
2574 /* Force detection of hung controller every watchdog period */
2575 adapter->detect_tx_hung = true;
2576
2577 /* Reschedule the task */
2578 if (!test_bit(__E1000_DOWN, &adapter->flags))
2579 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2580
2581unlock:
2582 mutex_unlock(&adapter->mutex);
2583}
2584
2585enum latency_range {
2586 lowest_latency = 0,
2587 low_latency = 1,
2588 bulk_latency = 2,
2589 latency_invalid = 255
2590};
2591
2592/**
2593 * e1000_update_itr - update the dynamic ITR value based on statistics
2594 * @adapter: pointer to adapter
2595 * @itr_setting: current adapter->itr
2596 * @packets: the number of packets during this measurement interval
2597 * @bytes: the number of bytes during this measurement interval
2598 *
2599 * Stores a new ITR value based on packets and byte
2600 * counts during the last interrupt. The advantage of per interrupt
2601 * computation is faster updates and more accurate ITR for the current
2602 * traffic pattern. Constants in this function were computed
2603 * based on theoretical maximum wire speed and thresholds were set based
2604 * on testing data as well as attempting to minimize response time
2605 * while increasing bulk throughput.
2606 * this functionality is controlled by the InterruptThrottleRate module
2607 * parameter (see e1000_param.c)
2608 **/
2609static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2610 u16 itr_setting, int packets, int bytes)
2611{
2612 unsigned int retval = itr_setting;
2613 struct e1000_hw *hw = &adapter->hw;
2614
2615 if (unlikely(hw->mac_type < e1000_82540))
2616 goto update_itr_done;
2617
2618 if (packets == 0)
2619 goto update_itr_done;
2620
2621 switch (itr_setting) {
2622 case lowest_latency:
2623 /* jumbo frames get bulk treatment*/
2624 if (bytes/packets > 8000)
2625 retval = bulk_latency;
2626 else if ((packets < 5) && (bytes > 512))
2627 retval = low_latency;
2628 break;
2629 case low_latency: /* 50 usec aka 20000 ints/s */
2630 if (bytes > 10000) {
2631 /* jumbo frames need bulk latency setting */
2632 if (bytes/packets > 8000)
2633 retval = bulk_latency;
2634 else if ((packets < 10) || ((bytes/packets) > 1200))
2635 retval = bulk_latency;
2636 else if ((packets > 35))
2637 retval = lowest_latency;
2638 } else if (bytes/packets > 2000)
2639 retval = bulk_latency;
2640 else if (packets <= 2 && bytes < 512)
2641 retval = lowest_latency;
2642 break;
2643 case bulk_latency: /* 250 usec aka 4000 ints/s */
2644 if (bytes > 25000) {
2645 if (packets > 35)
2646 retval = low_latency;
2647 } else if (bytes < 6000) {
2648 retval = low_latency;
2649 }
2650 break;
2651 }
2652
2653update_itr_done:
2654 return retval;
2655}
2656
2657static void e1000_set_itr(struct e1000_adapter *adapter)
2658{
2659 struct e1000_hw *hw = &adapter->hw;
2660 u16 current_itr;
2661 u32 new_itr = adapter->itr;
2662
2663 if (unlikely(hw->mac_type < e1000_82540))
2664 return;
2665
2666 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2667 if (unlikely(adapter->link_speed != SPEED_1000)) {
2668 current_itr = 0;
2669 new_itr = 4000;
2670 goto set_itr_now;
2671 }
2672
2673 adapter->tx_itr = e1000_update_itr(adapter,
2674 adapter->tx_itr,
2675 adapter->total_tx_packets,
2676 adapter->total_tx_bytes);
2677 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2678 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2679 adapter->tx_itr = low_latency;
2680
2681 adapter->rx_itr = e1000_update_itr(adapter,
2682 adapter->rx_itr,
2683 adapter->total_rx_packets,
2684 adapter->total_rx_bytes);
2685 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2686 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2687 adapter->rx_itr = low_latency;
2688
2689 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2690
2691 switch (current_itr) {
2692 /* counts and packets in update_itr are dependent on these numbers */
2693 case lowest_latency:
2694 new_itr = 70000;
2695 break;
2696 case low_latency:
2697 new_itr = 20000; /* aka hwitr = ~200 */
2698 break;
2699 case bulk_latency:
2700 new_itr = 4000;
2701 break;
2702 default:
2703 break;
2704 }
2705
2706set_itr_now:
2707 if (new_itr != adapter->itr) {
2708 /* this attempts to bias the interrupt rate towards Bulk
2709 * by adding intermediate steps when interrupt rate is
2710 * increasing */
2711 new_itr = new_itr > adapter->itr ?
2712 min(adapter->itr + (new_itr >> 2), new_itr) :
2713 new_itr;
2714 adapter->itr = new_itr;
2715 ew32(ITR, 1000000000 / (new_itr * 256));
2716 }
2717}
2718
2719#define E1000_TX_FLAGS_CSUM 0x00000001
2720#define E1000_TX_FLAGS_VLAN 0x00000002
2721#define E1000_TX_FLAGS_TSO 0x00000004
2722#define E1000_TX_FLAGS_IPV4 0x00000008
2723#define E1000_TX_FLAGS_NO_FCS 0x00000010
2724#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2725#define E1000_TX_FLAGS_VLAN_SHIFT 16
2726
2727static int e1000_tso(struct e1000_adapter *adapter,
2728 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2729{
2730 struct e1000_context_desc *context_desc;
2731 struct e1000_buffer *buffer_info;
2732 unsigned int i;
2733 u32 cmd_length = 0;
2734 u16 ipcse = 0, tucse, mss;
2735 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2736 int err;
2737
2738 if (skb_is_gso(skb)) {
2739 if (skb_header_cloned(skb)) {
2740 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2741 if (err)
2742 return err;
2743 }
2744
2745 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2746 mss = skb_shinfo(skb)->gso_size;
2747 if (skb->protocol == htons(ETH_P_IP)) {
2748 struct iphdr *iph = ip_hdr(skb);
2749 iph->tot_len = 0;
2750 iph->check = 0;
2751 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2752 iph->daddr, 0,
2753 IPPROTO_TCP,
2754 0);
2755 cmd_length = E1000_TXD_CMD_IP;
2756 ipcse = skb_transport_offset(skb) - 1;
2757 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2758 ipv6_hdr(skb)->payload_len = 0;
2759 tcp_hdr(skb)->check =
2760 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2761 &ipv6_hdr(skb)->daddr,
2762 0, IPPROTO_TCP, 0);
2763 ipcse = 0;
2764 }
2765 ipcss = skb_network_offset(skb);
2766 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2767 tucss = skb_transport_offset(skb);
2768 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2769 tucse = 0;
2770
2771 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2772 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2773
2774 i = tx_ring->next_to_use;
2775 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2776 buffer_info = &tx_ring->buffer_info[i];
2777
2778 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2779 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2780 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2781 context_desc->upper_setup.tcp_fields.tucss = tucss;
2782 context_desc->upper_setup.tcp_fields.tucso = tucso;
2783 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2784 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2785 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2786 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2787
2788 buffer_info->time_stamp = jiffies;
2789 buffer_info->next_to_watch = i;
2790
2791 if (++i == tx_ring->count) i = 0;
2792 tx_ring->next_to_use = i;
2793
2794 return true;
2795 }
2796 return false;
2797}
2798
2799static bool e1000_tx_csum(struct e1000_adapter *adapter,
2800 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2801{
2802 struct e1000_context_desc *context_desc;
2803 struct e1000_buffer *buffer_info;
2804 unsigned int i;
2805 u8 css;
2806 u32 cmd_len = E1000_TXD_CMD_DEXT;
2807
2808 if (skb->ip_summed != CHECKSUM_PARTIAL)
2809 return false;
2810
2811 switch (skb->protocol) {
2812 case cpu_to_be16(ETH_P_IP):
2813 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2814 cmd_len |= E1000_TXD_CMD_TCP;
2815 break;
2816 case cpu_to_be16(ETH_P_IPV6):
2817 /* XXX not handling all IPV6 headers */
2818 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2819 cmd_len |= E1000_TXD_CMD_TCP;
2820 break;
2821 default:
2822 if (unlikely(net_ratelimit()))
2823 e_warn(drv, "checksum_partial proto=%x!\n",
2824 skb->protocol);
2825 break;
2826 }
2827
2828 css = skb_checksum_start_offset(skb);
2829
2830 i = tx_ring->next_to_use;
2831 buffer_info = &tx_ring->buffer_info[i];
2832 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2833
2834 context_desc->lower_setup.ip_config = 0;
2835 context_desc->upper_setup.tcp_fields.tucss = css;
2836 context_desc->upper_setup.tcp_fields.tucso =
2837 css + skb->csum_offset;
2838 context_desc->upper_setup.tcp_fields.tucse = 0;
2839 context_desc->tcp_seg_setup.data = 0;
2840 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2841
2842 buffer_info->time_stamp = jiffies;
2843 buffer_info->next_to_watch = i;
2844
2845 if (unlikely(++i == tx_ring->count)) i = 0;
2846 tx_ring->next_to_use = i;
2847
2848 return true;
2849}
2850
2851#define E1000_MAX_TXD_PWR 12
2852#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2853
2854static int e1000_tx_map(struct e1000_adapter *adapter,
2855 struct e1000_tx_ring *tx_ring,
2856 struct sk_buff *skb, unsigned int first,
2857 unsigned int max_per_txd, unsigned int nr_frags,
2858 unsigned int mss)
2859{
2860 struct e1000_hw *hw = &adapter->hw;
2861 struct pci_dev *pdev = adapter->pdev;
2862 struct e1000_buffer *buffer_info;
2863 unsigned int len = skb_headlen(skb);
2864 unsigned int offset = 0, size, count = 0, i;
2865 unsigned int f, bytecount, segs;
2866
2867 i = tx_ring->next_to_use;
2868
2869 while (len) {
2870 buffer_info = &tx_ring->buffer_info[i];
2871 size = min(len, max_per_txd);
2872 /* Workaround for Controller erratum --
2873 * descriptor for non-tso packet in a linear SKB that follows a
2874 * tso gets written back prematurely before the data is fully
2875 * DMA'd to the controller */
2876 if (!skb->data_len && tx_ring->last_tx_tso &&
2877 !skb_is_gso(skb)) {
2878 tx_ring->last_tx_tso = false;
2879 size -= 4;
2880 }
2881
2882 /* Workaround for premature desc write-backs
2883 * in TSO mode. Append 4-byte sentinel desc */
2884 if (unlikely(mss && !nr_frags && size == len && size > 8))
2885 size -= 4;
2886 /* work-around for errata 10 and it applies
2887 * to all controllers in PCI-X mode
2888 * The fix is to make sure that the first descriptor of a
2889 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2890 */
2891 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2892 (size > 2015) && count == 0))
2893 size = 2015;
2894
2895 /* Workaround for potential 82544 hang in PCI-X. Avoid
2896 * terminating buffers within evenly-aligned dwords. */
2897 if (unlikely(adapter->pcix_82544 &&
2898 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2899 size > 4))
2900 size -= 4;
2901
2902 buffer_info->length = size;
2903 /* set time_stamp *before* dma to help avoid a possible race */
2904 buffer_info->time_stamp = jiffies;
2905 buffer_info->mapped_as_page = false;
2906 buffer_info->dma = dma_map_single(&pdev->dev,
2907 skb->data + offset,
2908 size, DMA_TO_DEVICE);
2909 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2910 goto dma_error;
2911 buffer_info->next_to_watch = i;
2912
2913 len -= size;
2914 offset += size;
2915 count++;
2916 if (len) {
2917 i++;
2918 if (unlikely(i == tx_ring->count))
2919 i = 0;
2920 }
2921 }
2922
2923 for (f = 0; f < nr_frags; f++) {
2924 const struct skb_frag_struct *frag;
2925
2926 frag = &skb_shinfo(skb)->frags[f];
2927 len = skb_frag_size(frag);
2928 offset = 0;
2929
2930 while (len) {
2931 unsigned long bufend;
2932 i++;
2933 if (unlikely(i == tx_ring->count))
2934 i = 0;
2935
2936 buffer_info = &tx_ring->buffer_info[i];
2937 size = min(len, max_per_txd);
2938 /* Workaround for premature desc write-backs
2939 * in TSO mode. Append 4-byte sentinel desc */
2940 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2941 size -= 4;
2942 /* Workaround for potential 82544 hang in PCI-X.
2943 * Avoid terminating buffers within evenly-aligned
2944 * dwords. */
2945 bufend = (unsigned long)
2946 page_to_phys(skb_frag_page(frag));
2947 bufend += offset + size - 1;
2948 if (unlikely(adapter->pcix_82544 &&
2949 !(bufend & 4) &&
2950 size > 4))
2951 size -= 4;
2952
2953 buffer_info->length = size;
2954 buffer_info->time_stamp = jiffies;
2955 buffer_info->mapped_as_page = true;
2956 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2957 offset, size, DMA_TO_DEVICE);
2958 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2959 goto dma_error;
2960 buffer_info->next_to_watch = i;
2961
2962 len -= size;
2963 offset += size;
2964 count++;
2965 }
2966 }
2967
2968 segs = skb_shinfo(skb)->gso_segs ?: 1;
2969 /* multiply data chunks by size of headers */
2970 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2971
2972 tx_ring->buffer_info[i].skb = skb;
2973 tx_ring->buffer_info[i].segs = segs;
2974 tx_ring->buffer_info[i].bytecount = bytecount;
2975 tx_ring->buffer_info[first].next_to_watch = i;
2976
2977 return count;
2978
2979dma_error:
2980 dev_err(&pdev->dev, "TX DMA map failed\n");
2981 buffer_info->dma = 0;
2982 if (count)
2983 count--;
2984
2985 while (count--) {
2986 if (i==0)
2987 i += tx_ring->count;
2988 i--;
2989 buffer_info = &tx_ring->buffer_info[i];
2990 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2991 }
2992
2993 return 0;
2994}
2995
2996static void e1000_tx_queue(struct e1000_adapter *adapter,
2997 struct e1000_tx_ring *tx_ring, int tx_flags,
2998 int count)
2999{
3000 struct e1000_hw *hw = &adapter->hw;
3001 struct e1000_tx_desc *tx_desc = NULL;
3002 struct e1000_buffer *buffer_info;
3003 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3004 unsigned int i;
3005
3006 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3007 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3008 E1000_TXD_CMD_TSE;
3009 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3010
3011 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3012 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3013 }
3014
3015 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3016 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3017 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3018 }
3019
3020 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3021 txd_lower |= E1000_TXD_CMD_VLE;
3022 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3023 }
3024
3025 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3026 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3027
3028 i = tx_ring->next_to_use;
3029
3030 while (count--) {
3031 buffer_info = &tx_ring->buffer_info[i];
3032 tx_desc = E1000_TX_DESC(*tx_ring, i);
3033 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3034 tx_desc->lower.data =
3035 cpu_to_le32(txd_lower | buffer_info->length);
3036 tx_desc->upper.data = cpu_to_le32(txd_upper);
3037 if (unlikely(++i == tx_ring->count)) i = 0;
3038 }
3039
3040 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3041
3042 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3043 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3044 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3045
3046 /* Force memory writes to complete before letting h/w
3047 * know there are new descriptors to fetch. (Only
3048 * applicable for weak-ordered memory model archs,
3049 * such as IA-64). */
3050 wmb();
3051
3052 tx_ring->next_to_use = i;
3053 writel(i, hw->hw_addr + tx_ring->tdt);
3054 /* we need this if more than one processor can write to our tail
3055 * at a time, it syncronizes IO on IA64/Altix systems */
3056 mmiowb();
3057}
3058
3059/**
3060 * 82547 workaround to avoid controller hang in half-duplex environment.
3061 * The workaround is to avoid queuing a large packet that would span
3062 * the internal Tx FIFO ring boundary by notifying the stack to resend
3063 * the packet at a later time. This gives the Tx FIFO an opportunity to
3064 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3065 * to the beginning of the Tx FIFO.
3066 **/
3067
3068#define E1000_FIFO_HDR 0x10
3069#define E1000_82547_PAD_LEN 0x3E0
3070
3071static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3072 struct sk_buff *skb)
3073{
3074 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3075 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3076
3077 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3078
3079 if (adapter->link_duplex != HALF_DUPLEX)
3080 goto no_fifo_stall_required;
3081
3082 if (atomic_read(&adapter->tx_fifo_stall))
3083 return 1;
3084
3085 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3086 atomic_set(&adapter->tx_fifo_stall, 1);
3087 return 1;
3088 }
3089
3090no_fifo_stall_required:
3091 adapter->tx_fifo_head += skb_fifo_len;
3092 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3093 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3094 return 0;
3095}
3096
3097static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3098{
3099 struct e1000_adapter *adapter = netdev_priv(netdev);
3100 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3101
3102 netif_stop_queue(netdev);
3103 /* Herbert's original patch had:
3104 * smp_mb__after_netif_stop_queue();
3105 * but since that doesn't exist yet, just open code it. */
3106 smp_mb();
3107
3108 /* We need to check again in a case another CPU has just
3109 * made room available. */
3110 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3111 return -EBUSY;
3112
3113 /* A reprieve! */
3114 netif_start_queue(netdev);
3115 ++adapter->restart_queue;
3116 return 0;
3117}
3118
3119static int e1000_maybe_stop_tx(struct net_device *netdev,
3120 struct e1000_tx_ring *tx_ring, int size)
3121{
3122 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3123 return 0;
3124 return __e1000_maybe_stop_tx(netdev, size);
3125}
3126
3127#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3128static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3129 struct net_device *netdev)
3130{
3131 struct e1000_adapter *adapter = netdev_priv(netdev);
3132 struct e1000_hw *hw = &adapter->hw;
3133 struct e1000_tx_ring *tx_ring;
3134 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3135 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3136 unsigned int tx_flags = 0;
3137 unsigned int len = skb_headlen(skb);
3138 unsigned int nr_frags;
3139 unsigned int mss;
3140 int count = 0;
3141 int tso;
3142 unsigned int f;
3143
3144 /* This goes back to the question of how to logically map a tx queue
3145 * to a flow. Right now, performance is impacted slightly negatively
3146 * if using multiple tx queues. If the stack breaks away from a
3147 * single qdisc implementation, we can look at this again. */
3148 tx_ring = adapter->tx_ring;
3149
3150 if (unlikely(skb->len <= 0)) {
3151 dev_kfree_skb_any(skb);
3152 return NETDEV_TX_OK;
3153 }
3154
3155 mss = skb_shinfo(skb)->gso_size;
3156 /* The controller does a simple calculation to
3157 * make sure there is enough room in the FIFO before
3158 * initiating the DMA for each buffer. The calc is:
3159 * 4 = ceil(buffer len/mss). To make sure we don't
3160 * overrun the FIFO, adjust the max buffer len if mss
3161 * drops. */
3162 if (mss) {
3163 u8 hdr_len;
3164 max_per_txd = min(mss << 2, max_per_txd);
3165 max_txd_pwr = fls(max_per_txd) - 1;
3166
3167 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3168 if (skb->data_len && hdr_len == len) {
3169 switch (hw->mac_type) {
3170 unsigned int pull_size;
3171 case e1000_82544:
3172 /* Make sure we have room to chop off 4 bytes,
3173 * and that the end alignment will work out to
3174 * this hardware's requirements
3175 * NOTE: this is a TSO only workaround
3176 * if end byte alignment not correct move us
3177 * into the next dword */
3178 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3179 break;
3180 /* fall through */
3181 pull_size = min((unsigned int)4, skb->data_len);
3182 if (!__pskb_pull_tail(skb, pull_size)) {
3183 e_err(drv, "__pskb_pull_tail "
3184 "failed.\n");
3185 dev_kfree_skb_any(skb);
3186 return NETDEV_TX_OK;
3187 }
3188 len = skb_headlen(skb);
3189 break;
3190 default:
3191 /* do nothing */
3192 break;
3193 }
3194 }
3195 }
3196
3197 /* reserve a descriptor for the offload context */
3198 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3199 count++;
3200 count++;
3201
3202 /* Controller Erratum workaround */
3203 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3204 count++;
3205
3206 count += TXD_USE_COUNT(len, max_txd_pwr);
3207
3208 if (adapter->pcix_82544)
3209 count++;
3210
3211 /* work-around for errata 10 and it applies to all controllers
3212 * in PCI-X mode, so add one more descriptor to the count
3213 */
3214 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3215 (len > 2015)))
3216 count++;
3217
3218 nr_frags = skb_shinfo(skb)->nr_frags;
3219 for (f = 0; f < nr_frags; f++)
3220 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3221 max_txd_pwr);
3222 if (adapter->pcix_82544)
3223 count += nr_frags;
3224
3225 /* need: count + 2 desc gap to keep tail from touching
3226 * head, otherwise try next time */
3227 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3228 return NETDEV_TX_BUSY;
3229
3230 if (unlikely((hw->mac_type == e1000_82547) &&
3231 (e1000_82547_fifo_workaround(adapter, skb)))) {
3232 netif_stop_queue(netdev);
3233 if (!test_bit(__E1000_DOWN, &adapter->flags))
3234 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3235 return NETDEV_TX_BUSY;
3236 }
3237
3238 if (vlan_tx_tag_present(skb)) {
3239 tx_flags |= E1000_TX_FLAGS_VLAN;
3240 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3241 }
3242
3243 first = tx_ring->next_to_use;
3244
3245 tso = e1000_tso(adapter, tx_ring, skb);
3246 if (tso < 0) {
3247 dev_kfree_skb_any(skb);
3248 return NETDEV_TX_OK;
3249 }
3250
3251 if (likely(tso)) {
3252 if (likely(hw->mac_type != e1000_82544))
3253 tx_ring->last_tx_tso = true;
3254 tx_flags |= E1000_TX_FLAGS_TSO;
3255 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3256 tx_flags |= E1000_TX_FLAGS_CSUM;
3257
3258 if (likely(skb->protocol == htons(ETH_P_IP)))
3259 tx_flags |= E1000_TX_FLAGS_IPV4;
3260
3261 if (unlikely(skb->no_fcs))
3262 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3263
3264 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3265 nr_frags, mss);
3266
3267 if (count) {
3268 skb_tx_timestamp(skb);
3269
3270 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3271 /* Make sure there is space in the ring for the next send. */
3272 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3273
3274 } else {
3275 dev_kfree_skb_any(skb);
3276 tx_ring->buffer_info[first].time_stamp = 0;
3277 tx_ring->next_to_use = first;
3278 }
3279
3280 return NETDEV_TX_OK;
3281}
3282
3283#define NUM_REGS 38 /* 1 based count */
3284static void e1000_regdump(struct e1000_adapter *adapter)
3285{
3286 struct e1000_hw *hw = &adapter->hw;
3287 u32 regs[NUM_REGS];
3288 u32 *regs_buff = regs;
3289 int i = 0;
3290
3291 static const char * const reg_name[] = {
3292 "CTRL", "STATUS",
3293 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3294 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3295 "TIDV", "TXDCTL", "TADV", "TARC0",
3296 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3297 "TXDCTL1", "TARC1",
3298 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3299 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3300 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3301 };
3302
3303 regs_buff[0] = er32(CTRL);
3304 regs_buff[1] = er32(STATUS);
3305
3306 regs_buff[2] = er32(RCTL);
3307 regs_buff[3] = er32(RDLEN);
3308 regs_buff[4] = er32(RDH);
3309 regs_buff[5] = er32(RDT);
3310 regs_buff[6] = er32(RDTR);
3311
3312 regs_buff[7] = er32(TCTL);
3313 regs_buff[8] = er32(TDBAL);
3314 regs_buff[9] = er32(TDBAH);
3315 regs_buff[10] = er32(TDLEN);
3316 regs_buff[11] = er32(TDH);
3317 regs_buff[12] = er32(TDT);
3318 regs_buff[13] = er32(TIDV);
3319 regs_buff[14] = er32(TXDCTL);
3320 regs_buff[15] = er32(TADV);
3321 regs_buff[16] = er32(TARC0);
3322
3323 regs_buff[17] = er32(TDBAL1);
3324 regs_buff[18] = er32(TDBAH1);
3325 regs_buff[19] = er32(TDLEN1);
3326 regs_buff[20] = er32(TDH1);
3327 regs_buff[21] = er32(TDT1);
3328 regs_buff[22] = er32(TXDCTL1);
3329 regs_buff[23] = er32(TARC1);
3330 regs_buff[24] = er32(CTRL_EXT);
3331 regs_buff[25] = er32(ERT);
3332 regs_buff[26] = er32(RDBAL0);
3333 regs_buff[27] = er32(RDBAH0);
3334 regs_buff[28] = er32(TDFH);
3335 regs_buff[29] = er32(TDFT);
3336 regs_buff[30] = er32(TDFHS);
3337 regs_buff[31] = er32(TDFTS);
3338 regs_buff[32] = er32(TDFPC);
3339 regs_buff[33] = er32(RDFH);
3340 regs_buff[34] = er32(RDFT);
3341 regs_buff[35] = er32(RDFHS);
3342 regs_buff[36] = er32(RDFTS);
3343 regs_buff[37] = er32(RDFPC);
3344
3345 pr_info("Register dump\n");
3346 for (i = 0; i < NUM_REGS; i++)
3347 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3348}
3349
3350/*
3351 * e1000_dump: Print registers, tx ring and rx ring
3352 */
3353static void e1000_dump(struct e1000_adapter *adapter)
3354{
3355 /* this code doesn't handle multiple rings */
3356 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3357 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3358 int i;
3359
3360 if (!netif_msg_hw(adapter))
3361 return;
3362
3363 /* Print Registers */
3364 e1000_regdump(adapter);
3365
3366 /*
3367 * transmit dump
3368 */
3369 pr_info("TX Desc ring0 dump\n");
3370
3371 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372 *
3373 * Legacy Transmit Descriptor
3374 * +--------------------------------------------------------------+
3375 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3376 * +--------------------------------------------------------------+
3377 * 8 | Special | CSS | Status | CMD | CSO | Length |
3378 * +--------------------------------------------------------------+
3379 * 63 48 47 36 35 32 31 24 23 16 15 0
3380 *
3381 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382 * 63 48 47 40 39 32 31 16 15 8 7 0
3383 * +----------------------------------------------------------------+
3384 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3385 * +----------------------------------------------------------------+
3386 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3387 * +----------------------------------------------------------------+
3388 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3389 *
3390 * Extended Data Descriptor (DTYP=0x1)
3391 * +----------------------------------------------------------------+
3392 * 0 | Buffer Address [63:0] |
3393 * +----------------------------------------------------------------+
3394 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3395 * +----------------------------------------------------------------+
3396 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3397 */
3398 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3399 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3400
3401 if (!netif_msg_tx_done(adapter))
3402 goto rx_ring_summary;
3403
3404 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3407 struct my_u { __le64 a; __le64 b; };
3408 struct my_u *u = (struct my_u *)tx_desc;
3409 const char *type;
3410
3411 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412 type = "NTC/U";
3413 else if (i == tx_ring->next_to_use)
3414 type = "NTU";
3415 else if (i == tx_ring->next_to_clean)
3416 type = "NTC";
3417 else
3418 type = "";
3419
3420 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3421 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422 le64_to_cpu(u->a), le64_to_cpu(u->b),
3423 (u64)buffer_info->dma, buffer_info->length,
3424 buffer_info->next_to_watch,
3425 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3426 }
3427
3428rx_ring_summary:
3429 /*
3430 * receive dump
3431 */
3432 pr_info("\nRX Desc ring dump\n");
3433
3434 /* Legacy Receive Descriptor Format
3435 *
3436 * +-----------------------------------------------------+
3437 * | Buffer Address [63:0] |
3438 * +-----------------------------------------------------+
3439 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440 * +-----------------------------------------------------+
3441 * 63 48 47 40 39 32 31 16 15 0
3442 */
3443 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3444
3445 if (!netif_msg_rx_status(adapter))
3446 goto exit;
3447
3448 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3451 struct my_u { __le64 a; __le64 b; };
3452 struct my_u *u = (struct my_u *)rx_desc;
3453 const char *type;
3454
3455 if (i == rx_ring->next_to_use)
3456 type = "NTU";
3457 else if (i == rx_ring->next_to_clean)
3458 type = "NTC";
3459 else
3460 type = "";
3461
3462 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3463 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464 (u64)buffer_info->dma, buffer_info->skb, type);
3465 } /* for */
3466
3467 /* dump the descriptor caches */
3468 /* rx */
3469 pr_info("Rx descriptor cache in 64bit format\n");
3470 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472 i,
3473 readl(adapter->hw.hw_addr + i+4),
3474 readl(adapter->hw.hw_addr + i),
3475 readl(adapter->hw.hw_addr + i+12),
3476 readl(adapter->hw.hw_addr + i+8));
3477 }
3478 /* tx */
3479 pr_info("Tx descriptor cache in 64bit format\n");
3480 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482 i,
3483 readl(adapter->hw.hw_addr + i+4),
3484 readl(adapter->hw.hw_addr + i),
3485 readl(adapter->hw.hw_addr + i+12),
3486 readl(adapter->hw.hw_addr + i+8));
3487 }
3488exit:
3489 return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 **/
3496
3497static void e1000_tx_timeout(struct net_device *netdev)
3498{
3499 struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501 /* Do the reset outside of interrupt context */
3502 adapter->tx_timeout_count++;
3503 schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508 struct e1000_adapter *adapter =
3509 container_of(work, struct e1000_adapter, reset_task);
3510
3511 if (test_bit(__E1000_DOWN, &adapter->flags))
3512 return;
3513 e_err(drv, "Reset adapter\n");
3514 e1000_reinit_safe(adapter);
3515}
3516
3517/**
3518 * e1000_get_stats - Get System Network Statistics
3519 * @netdev: network interface device structure
3520 *
3521 * Returns the address of the device statistics structure.
3522 * The statistics are actually updated from the watchdog.
3523 **/
3524
3525static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3526{
3527 /* only return the current stats */
3528 return &netdev->stats;
3529}
3530
3531/**
3532 * e1000_change_mtu - Change the Maximum Transfer Unit
3533 * @netdev: network interface device structure
3534 * @new_mtu: new value for maximum frame size
3535 *
3536 * Returns 0 on success, negative on failure
3537 **/
3538
3539static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3540{
3541 struct e1000_adapter *adapter = netdev_priv(netdev);
3542 struct e1000_hw *hw = &adapter->hw;
3543 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3544
3545 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3546 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3547 e_err(probe, "Invalid MTU setting\n");
3548 return -EINVAL;
3549 }
3550
3551 /* Adapter-specific max frame size limits. */
3552 switch (hw->mac_type) {
3553 case e1000_undefined ... e1000_82542_rev2_1:
3554 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3555 e_err(probe, "Jumbo Frames not supported.\n");
3556 return -EINVAL;
3557 }
3558 break;
3559 default:
3560 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3561 break;
3562 }
3563
3564 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3565 msleep(1);
3566 /* e1000_down has a dependency on max_frame_size */
3567 hw->max_frame_size = max_frame;
3568 if (netif_running(netdev))
3569 e1000_down(adapter);
3570
3571 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3572 * means we reserve 2 more, this pushes us to allocate from the next
3573 * larger slab size.
3574 * i.e. RXBUFFER_2048 --> size-4096 slab
3575 * however with the new *_jumbo_rx* routines, jumbo receives will use
3576 * fragmented skbs */
3577
3578 if (max_frame <= E1000_RXBUFFER_2048)
3579 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3580 else
3581#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3582 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3583#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3584 adapter->rx_buffer_len = PAGE_SIZE;
3585#endif
3586
3587 /* adjust allocation if LPE protects us, and we aren't using SBP */
3588 if (!hw->tbi_compatibility_on &&
3589 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3590 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3591 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3592
3593 pr_info("%s changing MTU from %d to %d\n",
3594 netdev->name, netdev->mtu, new_mtu);
3595 netdev->mtu = new_mtu;
3596
3597 if (netif_running(netdev))
3598 e1000_up(adapter);
3599 else
3600 e1000_reset(adapter);
3601
3602 clear_bit(__E1000_RESETTING, &adapter->flags);
3603
3604 return 0;
3605}
3606
3607/**
3608 * e1000_update_stats - Update the board statistics counters
3609 * @adapter: board private structure
3610 **/
3611
3612void e1000_update_stats(struct e1000_adapter *adapter)
3613{
3614 struct net_device *netdev = adapter->netdev;
3615 struct e1000_hw *hw = &adapter->hw;
3616 struct pci_dev *pdev = adapter->pdev;
3617 unsigned long flags;
3618 u16 phy_tmp;
3619
3620#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3621
3622 /*
3623 * Prevent stats update while adapter is being reset, or if the pci
3624 * connection is down.
3625 */
3626 if (adapter->link_speed == 0)
3627 return;
3628 if (pci_channel_offline(pdev))
3629 return;
3630
3631 spin_lock_irqsave(&adapter->stats_lock, flags);
3632
3633 /* these counters are modified from e1000_tbi_adjust_stats,
3634 * called from the interrupt context, so they must only
3635 * be written while holding adapter->stats_lock
3636 */
3637
3638 adapter->stats.crcerrs += er32(CRCERRS);
3639 adapter->stats.gprc += er32(GPRC);
3640 adapter->stats.gorcl += er32(GORCL);
3641 adapter->stats.gorch += er32(GORCH);
3642 adapter->stats.bprc += er32(BPRC);
3643 adapter->stats.mprc += er32(MPRC);
3644 adapter->stats.roc += er32(ROC);
3645
3646 adapter->stats.prc64 += er32(PRC64);
3647 adapter->stats.prc127 += er32(PRC127);
3648 adapter->stats.prc255 += er32(PRC255);
3649 adapter->stats.prc511 += er32(PRC511);
3650 adapter->stats.prc1023 += er32(PRC1023);
3651 adapter->stats.prc1522 += er32(PRC1522);
3652
3653 adapter->stats.symerrs += er32(SYMERRS);
3654 adapter->stats.mpc += er32(MPC);
3655 adapter->stats.scc += er32(SCC);
3656 adapter->stats.ecol += er32(ECOL);
3657 adapter->stats.mcc += er32(MCC);
3658 adapter->stats.latecol += er32(LATECOL);
3659 adapter->stats.dc += er32(DC);
3660 adapter->stats.sec += er32(SEC);
3661 adapter->stats.rlec += er32(RLEC);
3662 adapter->stats.xonrxc += er32(XONRXC);
3663 adapter->stats.xontxc += er32(XONTXC);
3664 adapter->stats.xoffrxc += er32(XOFFRXC);
3665 adapter->stats.xofftxc += er32(XOFFTXC);
3666 adapter->stats.fcruc += er32(FCRUC);
3667 adapter->stats.gptc += er32(GPTC);
3668 adapter->stats.gotcl += er32(GOTCL);
3669 adapter->stats.gotch += er32(GOTCH);
3670 adapter->stats.rnbc += er32(RNBC);
3671 adapter->stats.ruc += er32(RUC);
3672 adapter->stats.rfc += er32(RFC);
3673 adapter->stats.rjc += er32(RJC);
3674 adapter->stats.torl += er32(TORL);
3675 adapter->stats.torh += er32(TORH);
3676 adapter->stats.totl += er32(TOTL);
3677 adapter->stats.toth += er32(TOTH);
3678 adapter->stats.tpr += er32(TPR);
3679
3680 adapter->stats.ptc64 += er32(PTC64);
3681 adapter->stats.ptc127 += er32(PTC127);
3682 adapter->stats.ptc255 += er32(PTC255);
3683 adapter->stats.ptc511 += er32(PTC511);
3684 adapter->stats.ptc1023 += er32(PTC1023);
3685 adapter->stats.ptc1522 += er32(PTC1522);
3686
3687 adapter->stats.mptc += er32(MPTC);
3688 adapter->stats.bptc += er32(BPTC);
3689
3690 /* used for adaptive IFS */
3691
3692 hw->tx_packet_delta = er32(TPT);
3693 adapter->stats.tpt += hw->tx_packet_delta;
3694 hw->collision_delta = er32(COLC);
3695 adapter->stats.colc += hw->collision_delta;
3696
3697 if (hw->mac_type >= e1000_82543) {
3698 adapter->stats.algnerrc += er32(ALGNERRC);
3699 adapter->stats.rxerrc += er32(RXERRC);
3700 adapter->stats.tncrs += er32(TNCRS);
3701 adapter->stats.cexterr += er32(CEXTERR);
3702 adapter->stats.tsctc += er32(TSCTC);
3703 adapter->stats.tsctfc += er32(TSCTFC);
3704 }
3705
3706 /* Fill out the OS statistics structure */
3707 netdev->stats.multicast = adapter->stats.mprc;
3708 netdev->stats.collisions = adapter->stats.colc;
3709
3710 /* Rx Errors */
3711
3712 /* RLEC on some newer hardware can be incorrect so build
3713 * our own version based on RUC and ROC */
3714 netdev->stats.rx_errors = adapter->stats.rxerrc +
3715 adapter->stats.crcerrs + adapter->stats.algnerrc +
3716 adapter->stats.ruc + adapter->stats.roc +
3717 adapter->stats.cexterr;
3718 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3719 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3720 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3721 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3722 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3723
3724 /* Tx Errors */
3725 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3726 netdev->stats.tx_errors = adapter->stats.txerrc;
3727 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3728 netdev->stats.tx_window_errors = adapter->stats.latecol;
3729 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3730 if (hw->bad_tx_carr_stats_fd &&
3731 adapter->link_duplex == FULL_DUPLEX) {
3732 netdev->stats.tx_carrier_errors = 0;
3733 adapter->stats.tncrs = 0;
3734 }
3735
3736 /* Tx Dropped needs to be maintained elsewhere */
3737
3738 /* Phy Stats */
3739 if (hw->media_type == e1000_media_type_copper) {
3740 if ((adapter->link_speed == SPEED_1000) &&
3741 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3742 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3743 adapter->phy_stats.idle_errors += phy_tmp;
3744 }
3745
3746 if ((hw->mac_type <= e1000_82546) &&
3747 (hw->phy_type == e1000_phy_m88) &&
3748 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3749 adapter->phy_stats.receive_errors += phy_tmp;
3750 }
3751
3752 /* Management Stats */
3753 if (hw->has_smbus) {
3754 adapter->stats.mgptc += er32(MGTPTC);
3755 adapter->stats.mgprc += er32(MGTPRC);
3756 adapter->stats.mgpdc += er32(MGTPDC);
3757 }
3758
3759 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3760}
3761
3762/**
3763 * e1000_intr - Interrupt Handler
3764 * @irq: interrupt number
3765 * @data: pointer to a network interface device structure
3766 **/
3767
3768static irqreturn_t e1000_intr(int irq, void *data)
3769{
3770 struct net_device *netdev = data;
3771 struct e1000_adapter *adapter = netdev_priv(netdev);
3772 struct e1000_hw *hw = &adapter->hw;
3773 u32 icr = er32(ICR);
3774
3775 if (unlikely((!icr)))
3776 return IRQ_NONE; /* Not our interrupt */
3777
3778 /*
3779 * we might have caused the interrupt, but the above
3780 * read cleared it, and just in case the driver is
3781 * down there is nothing to do so return handled
3782 */
3783 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3784 return IRQ_HANDLED;
3785
3786 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3787 hw->get_link_status = 1;
3788 /* guard against interrupt when we're going down */
3789 if (!test_bit(__E1000_DOWN, &adapter->flags))
3790 schedule_delayed_work(&adapter->watchdog_task, 1);
3791 }
3792
3793 /* disable interrupts, without the synchronize_irq bit */
3794 ew32(IMC, ~0);
3795 E1000_WRITE_FLUSH();
3796
3797 if (likely(napi_schedule_prep(&adapter->napi))) {
3798 adapter->total_tx_bytes = 0;
3799 adapter->total_tx_packets = 0;
3800 adapter->total_rx_bytes = 0;
3801 adapter->total_rx_packets = 0;
3802 __napi_schedule(&adapter->napi);
3803 } else {
3804 /* this really should not happen! if it does it is basically a
3805 * bug, but not a hard error, so enable ints and continue */
3806 if (!test_bit(__E1000_DOWN, &adapter->flags))
3807 e1000_irq_enable(adapter);
3808 }
3809
3810 return IRQ_HANDLED;
3811}
3812
3813/**
3814 * e1000_clean - NAPI Rx polling callback
3815 * @adapter: board private structure
3816 **/
3817static int e1000_clean(struct napi_struct *napi, int budget)
3818{
3819 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3820 int tx_clean_complete = 0, work_done = 0;
3821
3822 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3823
3824 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3825
3826 if (!tx_clean_complete)
3827 work_done = budget;
3828
3829 /* If budget not fully consumed, exit the polling mode */
3830 if (work_done < budget) {
3831 if (likely(adapter->itr_setting & 3))
3832 e1000_set_itr(adapter);
3833 napi_complete(napi);
3834 if (!test_bit(__E1000_DOWN, &adapter->flags))
3835 e1000_irq_enable(adapter);
3836 }
3837
3838 return work_done;
3839}
3840
3841/**
3842 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3843 * @adapter: board private structure
3844 **/
3845static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3846 struct e1000_tx_ring *tx_ring)
3847{
3848 struct e1000_hw *hw = &adapter->hw;
3849 struct net_device *netdev = adapter->netdev;
3850 struct e1000_tx_desc *tx_desc, *eop_desc;
3851 struct e1000_buffer *buffer_info;
3852 unsigned int i, eop;
3853 unsigned int count = 0;
3854 unsigned int total_tx_bytes=0, total_tx_packets=0;
3855
3856 i = tx_ring->next_to_clean;
3857 eop = tx_ring->buffer_info[i].next_to_watch;
3858 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3859
3860 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3861 (count < tx_ring->count)) {
3862 bool cleaned = false;
3863 rmb(); /* read buffer_info after eop_desc */
3864 for ( ; !cleaned; count++) {
3865 tx_desc = E1000_TX_DESC(*tx_ring, i);
3866 buffer_info = &tx_ring->buffer_info[i];
3867 cleaned = (i == eop);
3868
3869 if (cleaned) {
3870 total_tx_packets += buffer_info->segs;
3871 total_tx_bytes += buffer_info->bytecount;
3872 }
3873 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3874 tx_desc->upper.data = 0;
3875
3876 if (unlikely(++i == tx_ring->count)) i = 0;
3877 }
3878
3879 eop = tx_ring->buffer_info[i].next_to_watch;
3880 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3881 }
3882
3883 tx_ring->next_to_clean = i;
3884
3885#define TX_WAKE_THRESHOLD 32
3886 if (unlikely(count && netif_carrier_ok(netdev) &&
3887 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3888 /* Make sure that anybody stopping the queue after this
3889 * sees the new next_to_clean.
3890 */
3891 smp_mb();
3892
3893 if (netif_queue_stopped(netdev) &&
3894 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3895 netif_wake_queue(netdev);
3896 ++adapter->restart_queue;
3897 }
3898 }
3899
3900 if (adapter->detect_tx_hung) {
3901 /* Detect a transmit hang in hardware, this serializes the
3902 * check with the clearing of time_stamp and movement of i */
3903 adapter->detect_tx_hung = false;
3904 if (tx_ring->buffer_info[eop].time_stamp &&
3905 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3906 (adapter->tx_timeout_factor * HZ)) &&
3907 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3908
3909 /* detected Tx unit hang */
3910 e_err(drv, "Detected Tx Unit Hang\n"
3911 " Tx Queue <%lu>\n"
3912 " TDH <%x>\n"
3913 " TDT <%x>\n"
3914 " next_to_use <%x>\n"
3915 " next_to_clean <%x>\n"
3916 "buffer_info[next_to_clean]\n"
3917 " time_stamp <%lx>\n"
3918 " next_to_watch <%x>\n"
3919 " jiffies <%lx>\n"
3920 " next_to_watch.status <%x>\n",
3921 (unsigned long)((tx_ring - adapter->tx_ring) /
3922 sizeof(struct e1000_tx_ring)),
3923 readl(hw->hw_addr + tx_ring->tdh),
3924 readl(hw->hw_addr + tx_ring->tdt),
3925 tx_ring->next_to_use,
3926 tx_ring->next_to_clean,
3927 tx_ring->buffer_info[eop].time_stamp,
3928 eop,
3929 jiffies,
3930 eop_desc->upper.fields.status);
3931 e1000_dump(adapter);
3932 netif_stop_queue(netdev);
3933 }
3934 }
3935 adapter->total_tx_bytes += total_tx_bytes;
3936 adapter->total_tx_packets += total_tx_packets;
3937 netdev->stats.tx_bytes += total_tx_bytes;
3938 netdev->stats.tx_packets += total_tx_packets;
3939 return count < tx_ring->count;
3940}
3941
3942/**
3943 * e1000_rx_checksum - Receive Checksum Offload for 82543
3944 * @adapter: board private structure
3945 * @status_err: receive descriptor status and error fields
3946 * @csum: receive descriptor csum field
3947 * @sk_buff: socket buffer with received data
3948 **/
3949
3950static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3951 u32 csum, struct sk_buff *skb)
3952{
3953 struct e1000_hw *hw = &adapter->hw;
3954 u16 status = (u16)status_err;
3955 u8 errors = (u8)(status_err >> 24);
3956
3957 skb_checksum_none_assert(skb);
3958
3959 /* 82543 or newer only */
3960 if (unlikely(hw->mac_type < e1000_82543)) return;
3961 /* Ignore Checksum bit is set */
3962 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3963 /* TCP/UDP checksum error bit is set */
3964 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3965 /* let the stack verify checksum errors */
3966 adapter->hw_csum_err++;
3967 return;
3968 }
3969 /* TCP/UDP Checksum has not been calculated */
3970 if (!(status & E1000_RXD_STAT_TCPCS))
3971 return;
3972
3973 /* It must be a TCP or UDP packet with a valid checksum */
3974 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3975 /* TCP checksum is good */
3976 skb->ip_summed = CHECKSUM_UNNECESSARY;
3977 }
3978 adapter->hw_csum_good++;
3979}
3980
3981/**
3982 * e1000_consume_page - helper function
3983 **/
3984static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3985 u16 length)
3986{
3987 bi->page = NULL;
3988 skb->len += length;
3989 skb->data_len += length;
3990 skb->truesize += PAGE_SIZE;
3991}
3992
3993/**
3994 * e1000_receive_skb - helper function to handle rx indications
3995 * @adapter: board private structure
3996 * @status: descriptor status field as written by hardware
3997 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3998 * @skb: pointer to sk_buff to be indicated to stack
3999 */
4000static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4001 __le16 vlan, struct sk_buff *skb)
4002{
4003 skb->protocol = eth_type_trans(skb, adapter->netdev);
4004
4005 if (status & E1000_RXD_STAT_VP) {
4006 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4007
4008 __vlan_hwaccel_put_tag(skb, vid);
4009 }
4010 napi_gro_receive(&adapter->napi, skb);
4011}
4012
4013/**
4014 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4015 * @adapter: board private structure
4016 * @rx_ring: ring to clean
4017 * @work_done: amount of napi work completed this call
4018 * @work_to_do: max amount of work allowed for this call to do
4019 *
4020 * the return value indicates whether actual cleaning was done, there
4021 * is no guarantee that everything was cleaned
4022 */
4023static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4024 struct e1000_rx_ring *rx_ring,
4025 int *work_done, int work_to_do)
4026{
4027 struct e1000_hw *hw = &adapter->hw;
4028 struct net_device *netdev = adapter->netdev;
4029 struct pci_dev *pdev = adapter->pdev;
4030 struct e1000_rx_desc *rx_desc, *next_rxd;
4031 struct e1000_buffer *buffer_info, *next_buffer;
4032 unsigned long irq_flags;
4033 u32 length;
4034 unsigned int i;
4035 int cleaned_count = 0;
4036 bool cleaned = false;
4037 unsigned int total_rx_bytes=0, total_rx_packets=0;
4038
4039 i = rx_ring->next_to_clean;
4040 rx_desc = E1000_RX_DESC(*rx_ring, i);
4041 buffer_info = &rx_ring->buffer_info[i];
4042
4043 while (rx_desc->status & E1000_RXD_STAT_DD) {
4044 struct sk_buff *skb;
4045 u8 status;
4046
4047 if (*work_done >= work_to_do)
4048 break;
4049 (*work_done)++;
4050 rmb(); /* read descriptor and rx_buffer_info after status DD */
4051
4052 status = rx_desc->status;
4053 skb = buffer_info->skb;
4054 buffer_info->skb = NULL;
4055
4056 if (++i == rx_ring->count) i = 0;
4057 next_rxd = E1000_RX_DESC(*rx_ring, i);
4058 prefetch(next_rxd);
4059
4060 next_buffer = &rx_ring->buffer_info[i];
4061
4062 cleaned = true;
4063 cleaned_count++;
4064 dma_unmap_page(&pdev->dev, buffer_info->dma,
4065 buffer_info->length, DMA_FROM_DEVICE);
4066 buffer_info->dma = 0;
4067
4068 length = le16_to_cpu(rx_desc->length);
4069
4070 /* errors is only valid for DD + EOP descriptors */
4071 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4072 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4073 u8 *mapped;
4074 u8 last_byte;
4075
4076 mapped = page_address(buffer_info->page);
4077 last_byte = *(mapped + length - 1);
4078 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4079 last_byte)) {
4080 spin_lock_irqsave(&adapter->stats_lock,
4081 irq_flags);
4082 e1000_tbi_adjust_stats(hw, &adapter->stats,
4083 length, mapped);
4084 spin_unlock_irqrestore(&adapter->stats_lock,
4085 irq_flags);
4086 length--;
4087 } else {
4088 if (netdev->features & NETIF_F_RXALL)
4089 goto process_skb;
4090 /* recycle both page and skb */
4091 buffer_info->skb = skb;
4092 /* an error means any chain goes out the window
4093 * too */
4094 if (rx_ring->rx_skb_top)
4095 dev_kfree_skb(rx_ring->rx_skb_top);
4096 rx_ring->rx_skb_top = NULL;
4097 goto next_desc;
4098 }
4099 }
4100
4101#define rxtop rx_ring->rx_skb_top
4102process_skb:
4103 if (!(status & E1000_RXD_STAT_EOP)) {
4104 /* this descriptor is only the beginning (or middle) */
4105 if (!rxtop) {
4106 /* this is the beginning of a chain */
4107 rxtop = skb;
4108 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4109 0, length);
4110 } else {
4111 /* this is the middle of a chain */
4112 skb_fill_page_desc(rxtop,
4113 skb_shinfo(rxtop)->nr_frags,
4114 buffer_info->page, 0, length);
4115 /* re-use the skb, only consumed the page */
4116 buffer_info->skb = skb;
4117 }
4118 e1000_consume_page(buffer_info, rxtop, length);
4119 goto next_desc;
4120 } else {
4121 if (rxtop) {
4122 /* end of the chain */
4123 skb_fill_page_desc(rxtop,
4124 skb_shinfo(rxtop)->nr_frags,
4125 buffer_info->page, 0, length);
4126 /* re-use the current skb, we only consumed the
4127 * page */
4128 buffer_info->skb = skb;
4129 skb = rxtop;
4130 rxtop = NULL;
4131 e1000_consume_page(buffer_info, skb, length);
4132 } else {
4133 /* no chain, got EOP, this buf is the packet
4134 * copybreak to save the put_page/alloc_page */
4135 if (length <= copybreak &&
4136 skb_tailroom(skb) >= length) {
4137 u8 *vaddr;
4138 vaddr = kmap_atomic(buffer_info->page);
4139 memcpy(skb_tail_pointer(skb), vaddr, length);
4140 kunmap_atomic(vaddr);
4141 /* re-use the page, so don't erase
4142 * buffer_info->page */
4143 skb_put(skb, length);
4144 } else {
4145 skb_fill_page_desc(skb, 0,
4146 buffer_info->page, 0,
4147 length);
4148 e1000_consume_page(buffer_info, skb,
4149 length);
4150 }
4151 }
4152 }
4153
4154 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4155 e1000_rx_checksum(adapter,
4156 (u32)(status) |
4157 ((u32)(rx_desc->errors) << 24),
4158 le16_to_cpu(rx_desc->csum), skb);
4159
4160 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4161 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4162 pskb_trim(skb, skb->len - 4);
4163 total_rx_packets++;
4164
4165 /* eth type trans needs skb->data to point to something */
4166 if (!pskb_may_pull(skb, ETH_HLEN)) {
4167 e_err(drv, "pskb_may_pull failed.\n");
4168 dev_kfree_skb(skb);
4169 goto next_desc;
4170 }
4171
4172 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4173
4174next_desc:
4175 rx_desc->status = 0;
4176
4177 /* return some buffers to hardware, one at a time is too slow */
4178 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4179 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4180 cleaned_count = 0;
4181 }
4182
4183 /* use prefetched values */
4184 rx_desc = next_rxd;
4185 buffer_info = next_buffer;
4186 }
4187 rx_ring->next_to_clean = i;
4188
4189 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4190 if (cleaned_count)
4191 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4192
4193 adapter->total_rx_packets += total_rx_packets;
4194 adapter->total_rx_bytes += total_rx_bytes;
4195 netdev->stats.rx_bytes += total_rx_bytes;
4196 netdev->stats.rx_packets += total_rx_packets;
4197 return cleaned;
4198}
4199
4200/*
4201 * this should improve performance for small packets with large amounts
4202 * of reassembly being done in the stack
4203 */
4204static void e1000_check_copybreak(struct net_device *netdev,
4205 struct e1000_buffer *buffer_info,
4206 u32 length, struct sk_buff **skb)
4207{
4208 struct sk_buff *new_skb;
4209
4210 if (length > copybreak)
4211 return;
4212
4213 new_skb = netdev_alloc_skb_ip_align(netdev, length);
4214 if (!new_skb)
4215 return;
4216
4217 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4218 (*skb)->data - NET_IP_ALIGN,
4219 length + NET_IP_ALIGN);
4220 /* save the skb in buffer_info as good */
4221 buffer_info->skb = *skb;
4222 *skb = new_skb;
4223}
4224
4225/**
4226 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4227 * @adapter: board private structure
4228 * @rx_ring: ring to clean
4229 * @work_done: amount of napi work completed this call
4230 * @work_to_do: max amount of work allowed for this call to do
4231 */
4232static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4233 struct e1000_rx_ring *rx_ring,
4234 int *work_done, int work_to_do)
4235{
4236 struct e1000_hw *hw = &adapter->hw;
4237 struct net_device *netdev = adapter->netdev;
4238 struct pci_dev *pdev = adapter->pdev;
4239 struct e1000_rx_desc *rx_desc, *next_rxd;
4240 struct e1000_buffer *buffer_info, *next_buffer;
4241 unsigned long flags;
4242 u32 length;
4243 unsigned int i;
4244 int cleaned_count = 0;
4245 bool cleaned = false;
4246 unsigned int total_rx_bytes=0, total_rx_packets=0;
4247
4248 i = rx_ring->next_to_clean;
4249 rx_desc = E1000_RX_DESC(*rx_ring, i);
4250 buffer_info = &rx_ring->buffer_info[i];
4251
4252 while (rx_desc->status & E1000_RXD_STAT_DD) {
4253 struct sk_buff *skb;
4254 u8 status;
4255
4256 if (*work_done >= work_to_do)
4257 break;
4258 (*work_done)++;
4259 rmb(); /* read descriptor and rx_buffer_info after status DD */
4260
4261 status = rx_desc->status;
4262 skb = buffer_info->skb;
4263 buffer_info->skb = NULL;
4264
4265 prefetch(skb->data - NET_IP_ALIGN);
4266
4267 if (++i == rx_ring->count) i = 0;
4268 next_rxd = E1000_RX_DESC(*rx_ring, i);
4269 prefetch(next_rxd);
4270
4271 next_buffer = &rx_ring->buffer_info[i];
4272
4273 cleaned = true;
4274 cleaned_count++;
4275 dma_unmap_single(&pdev->dev, buffer_info->dma,
4276 buffer_info->length, DMA_FROM_DEVICE);
4277 buffer_info->dma = 0;
4278
4279 length = le16_to_cpu(rx_desc->length);
4280 /* !EOP means multiple descriptors were used to store a single
4281 * packet, if thats the case we need to toss it. In fact, we
4282 * to toss every packet with the EOP bit clear and the next
4283 * frame that _does_ have the EOP bit set, as it is by
4284 * definition only a frame fragment
4285 */
4286 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4287 adapter->discarding = true;
4288
4289 if (adapter->discarding) {
4290 /* All receives must fit into a single buffer */
4291 e_dbg("Receive packet consumed multiple buffers\n");
4292 /* recycle */
4293 buffer_info->skb = skb;
4294 if (status & E1000_RXD_STAT_EOP)
4295 adapter->discarding = false;
4296 goto next_desc;
4297 }
4298
4299 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4300 u8 last_byte = *(skb->data + length - 1);
4301 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4302 last_byte)) {
4303 spin_lock_irqsave(&adapter->stats_lock, flags);
4304 e1000_tbi_adjust_stats(hw, &adapter->stats,
4305 length, skb->data);
4306 spin_unlock_irqrestore(&adapter->stats_lock,
4307 flags);
4308 length--;
4309 } else {
4310 if (netdev->features & NETIF_F_RXALL)
4311 goto process_skb;
4312 /* recycle */
4313 buffer_info->skb = skb;
4314 goto next_desc;
4315 }
4316 }
4317
4318process_skb:
4319 total_rx_bytes += (length - 4); /* don't count FCS */
4320 total_rx_packets++;
4321
4322 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4323 /* adjust length to remove Ethernet CRC, this must be
4324 * done after the TBI_ACCEPT workaround above
4325 */
4326 length -= 4;
4327
4328 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4329
4330 skb_put(skb, length);
4331
4332 /* Receive Checksum Offload */
4333 e1000_rx_checksum(adapter,
4334 (u32)(status) |
4335 ((u32)(rx_desc->errors) << 24),
4336 le16_to_cpu(rx_desc->csum), skb);
4337
4338 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4339
4340next_desc:
4341 rx_desc->status = 0;
4342
4343 /* return some buffers to hardware, one at a time is too slow */
4344 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4345 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4346 cleaned_count = 0;
4347 }
4348
4349 /* use prefetched values */
4350 rx_desc = next_rxd;
4351 buffer_info = next_buffer;
4352 }
4353 rx_ring->next_to_clean = i;
4354
4355 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4356 if (cleaned_count)
4357 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4358
4359 adapter->total_rx_packets += total_rx_packets;
4360 adapter->total_rx_bytes += total_rx_bytes;
4361 netdev->stats.rx_bytes += total_rx_bytes;
4362 netdev->stats.rx_packets += total_rx_packets;
4363 return cleaned;
4364}
4365
4366/**
4367 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4368 * @adapter: address of board private structure
4369 * @rx_ring: pointer to receive ring structure
4370 * @cleaned_count: number of buffers to allocate this pass
4371 **/
4372
4373static void
4374e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4375 struct e1000_rx_ring *rx_ring, int cleaned_count)
4376{
4377 struct net_device *netdev = adapter->netdev;
4378 struct pci_dev *pdev = adapter->pdev;
4379 struct e1000_rx_desc *rx_desc;
4380 struct e1000_buffer *buffer_info;
4381 struct sk_buff *skb;
4382 unsigned int i;
4383 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4384
4385 i = rx_ring->next_to_use;
4386 buffer_info = &rx_ring->buffer_info[i];
4387
4388 while (cleaned_count--) {
4389 skb = buffer_info->skb;
4390 if (skb) {
4391 skb_trim(skb, 0);
4392 goto check_page;
4393 }
4394
4395 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4396 if (unlikely(!skb)) {
4397 /* Better luck next round */
4398 adapter->alloc_rx_buff_failed++;
4399 break;
4400 }
4401
4402 buffer_info->skb = skb;
4403 buffer_info->length = adapter->rx_buffer_len;
4404check_page:
4405 /* allocate a new page if necessary */
4406 if (!buffer_info->page) {
4407 buffer_info->page = alloc_page(GFP_ATOMIC);
4408 if (unlikely(!buffer_info->page)) {
4409 adapter->alloc_rx_buff_failed++;
4410 break;
4411 }
4412 }
4413
4414 if (!buffer_info->dma) {
4415 buffer_info->dma = dma_map_page(&pdev->dev,
4416 buffer_info->page, 0,
4417 buffer_info->length,
4418 DMA_FROM_DEVICE);
4419 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4420 put_page(buffer_info->page);
4421 dev_kfree_skb(skb);
4422 buffer_info->page = NULL;
4423 buffer_info->skb = NULL;
4424 buffer_info->dma = 0;
4425 adapter->alloc_rx_buff_failed++;
4426 break; /* while !buffer_info->skb */
4427 }
4428 }
4429
4430 rx_desc = E1000_RX_DESC(*rx_ring, i);
4431 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4432
4433 if (unlikely(++i == rx_ring->count))
4434 i = 0;
4435 buffer_info = &rx_ring->buffer_info[i];
4436 }
4437
4438 if (likely(rx_ring->next_to_use != i)) {
4439 rx_ring->next_to_use = i;
4440 if (unlikely(i-- == 0))
4441 i = (rx_ring->count - 1);
4442
4443 /* Force memory writes to complete before letting h/w
4444 * know there are new descriptors to fetch. (Only
4445 * applicable for weak-ordered memory model archs,
4446 * such as IA-64). */
4447 wmb();
4448 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4449 }
4450}
4451
4452/**
4453 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4454 * @adapter: address of board private structure
4455 **/
4456
4457static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4458 struct e1000_rx_ring *rx_ring,
4459 int cleaned_count)
4460{
4461 struct e1000_hw *hw = &adapter->hw;
4462 struct net_device *netdev = adapter->netdev;
4463 struct pci_dev *pdev = adapter->pdev;
4464 struct e1000_rx_desc *rx_desc;
4465 struct e1000_buffer *buffer_info;
4466 struct sk_buff *skb;
4467 unsigned int i;
4468 unsigned int bufsz = adapter->rx_buffer_len;
4469
4470 i = rx_ring->next_to_use;
4471 buffer_info = &rx_ring->buffer_info[i];
4472
4473 while (cleaned_count--) {
4474 skb = buffer_info->skb;
4475 if (skb) {
4476 skb_trim(skb, 0);
4477 goto map_skb;
4478 }
4479
4480 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4481 if (unlikely(!skb)) {
4482 /* Better luck next round */
4483 adapter->alloc_rx_buff_failed++;
4484 break;
4485 }
4486
4487 /* Fix for errata 23, can't cross 64kB boundary */
4488 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4489 struct sk_buff *oldskb = skb;
4490 e_err(rx_err, "skb align check failed: %u bytes at "
4491 "%p\n", bufsz, skb->data);
4492 /* Try again, without freeing the previous */
4493 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4494 /* Failed allocation, critical failure */
4495 if (!skb) {
4496 dev_kfree_skb(oldskb);
4497 adapter->alloc_rx_buff_failed++;
4498 break;
4499 }
4500
4501 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4502 /* give up */
4503 dev_kfree_skb(skb);
4504 dev_kfree_skb(oldskb);
4505 adapter->alloc_rx_buff_failed++;
4506 break; /* while !buffer_info->skb */
4507 }
4508
4509 /* Use new allocation */
4510 dev_kfree_skb(oldskb);
4511 }
4512 buffer_info->skb = skb;
4513 buffer_info->length = adapter->rx_buffer_len;
4514map_skb:
4515 buffer_info->dma = dma_map_single(&pdev->dev,
4516 skb->data,
4517 buffer_info->length,
4518 DMA_FROM_DEVICE);
4519 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4520 dev_kfree_skb(skb);
4521 buffer_info->skb = NULL;
4522 buffer_info->dma = 0;
4523 adapter->alloc_rx_buff_failed++;
4524 break; /* while !buffer_info->skb */
4525 }
4526
4527 /*
4528 * XXX if it was allocated cleanly it will never map to a
4529 * boundary crossing
4530 */
4531
4532 /* Fix for errata 23, can't cross 64kB boundary */
4533 if (!e1000_check_64k_bound(adapter,
4534 (void *)(unsigned long)buffer_info->dma,
4535 adapter->rx_buffer_len)) {
4536 e_err(rx_err, "dma align check failed: %u bytes at "
4537 "%p\n", adapter->rx_buffer_len,
4538 (void *)(unsigned long)buffer_info->dma);
4539 dev_kfree_skb(skb);
4540 buffer_info->skb = NULL;
4541
4542 dma_unmap_single(&pdev->dev, buffer_info->dma,
4543 adapter->rx_buffer_len,
4544 DMA_FROM_DEVICE);
4545 buffer_info->dma = 0;
4546
4547 adapter->alloc_rx_buff_failed++;
4548 break; /* while !buffer_info->skb */
4549 }
4550 rx_desc = E1000_RX_DESC(*rx_ring, i);
4551 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4552
4553 if (unlikely(++i == rx_ring->count))
4554 i = 0;
4555 buffer_info = &rx_ring->buffer_info[i];
4556 }
4557
4558 if (likely(rx_ring->next_to_use != i)) {
4559 rx_ring->next_to_use = i;
4560 if (unlikely(i-- == 0))
4561 i = (rx_ring->count - 1);
4562
4563 /* Force memory writes to complete before letting h/w
4564 * know there are new descriptors to fetch. (Only
4565 * applicable for weak-ordered memory model archs,
4566 * such as IA-64). */
4567 wmb();
4568 writel(i, hw->hw_addr + rx_ring->rdt);
4569 }
4570}
4571
4572/**
4573 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4574 * @adapter:
4575 **/
4576
4577static void e1000_smartspeed(struct e1000_adapter *adapter)
4578{
4579 struct e1000_hw *hw = &adapter->hw;
4580 u16 phy_status;
4581 u16 phy_ctrl;
4582
4583 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4584 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4585 return;
4586
4587 if (adapter->smartspeed == 0) {
4588 /* If Master/Slave config fault is asserted twice,
4589 * we assume back-to-back */
4590 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4591 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4592 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4593 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4594 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4595 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4596 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4597 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4598 phy_ctrl);
4599 adapter->smartspeed++;
4600 if (!e1000_phy_setup_autoneg(hw) &&
4601 !e1000_read_phy_reg(hw, PHY_CTRL,
4602 &phy_ctrl)) {
4603 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4604 MII_CR_RESTART_AUTO_NEG);
4605 e1000_write_phy_reg(hw, PHY_CTRL,
4606 phy_ctrl);
4607 }
4608 }
4609 return;
4610 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4611 /* If still no link, perhaps using 2/3 pair cable */
4612 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4613 phy_ctrl |= CR_1000T_MS_ENABLE;
4614 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4615 if (!e1000_phy_setup_autoneg(hw) &&
4616 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4617 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4618 MII_CR_RESTART_AUTO_NEG);
4619 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4620 }
4621 }
4622 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4623 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4624 adapter->smartspeed = 0;
4625}
4626
4627/**
4628 * e1000_ioctl -
4629 * @netdev:
4630 * @ifreq:
4631 * @cmd:
4632 **/
4633
4634static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4635{
4636 switch (cmd) {
4637 case SIOCGMIIPHY:
4638 case SIOCGMIIREG:
4639 case SIOCSMIIREG:
4640 return e1000_mii_ioctl(netdev, ifr, cmd);
4641 default:
4642 return -EOPNOTSUPP;
4643 }
4644}
4645
4646/**
4647 * e1000_mii_ioctl -
4648 * @netdev:
4649 * @ifreq:
4650 * @cmd:
4651 **/
4652
4653static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4654 int cmd)
4655{
4656 struct e1000_adapter *adapter = netdev_priv(netdev);
4657 struct e1000_hw *hw = &adapter->hw;
4658 struct mii_ioctl_data *data = if_mii(ifr);
4659 int retval;
4660 u16 mii_reg;
4661 unsigned long flags;
4662
4663 if (hw->media_type != e1000_media_type_copper)
4664 return -EOPNOTSUPP;
4665
4666 switch (cmd) {
4667 case SIOCGMIIPHY:
4668 data->phy_id = hw->phy_addr;
4669 break;
4670 case SIOCGMIIREG:
4671 spin_lock_irqsave(&adapter->stats_lock, flags);
4672 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4673 &data->val_out)) {
4674 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4675 return -EIO;
4676 }
4677 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4678 break;
4679 case SIOCSMIIREG:
4680 if (data->reg_num & ~(0x1F))
4681 return -EFAULT;
4682 mii_reg = data->val_in;
4683 spin_lock_irqsave(&adapter->stats_lock, flags);
4684 if (e1000_write_phy_reg(hw, data->reg_num,
4685 mii_reg)) {
4686 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4687 return -EIO;
4688 }
4689 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4690 if (hw->media_type == e1000_media_type_copper) {
4691 switch (data->reg_num) {
4692 case PHY_CTRL:
4693 if (mii_reg & MII_CR_POWER_DOWN)
4694 break;
4695 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4696 hw->autoneg = 1;
4697 hw->autoneg_advertised = 0x2F;
4698 } else {
4699 u32 speed;
4700 if (mii_reg & 0x40)
4701 speed = SPEED_1000;
4702 else if (mii_reg & 0x2000)
4703 speed = SPEED_100;
4704 else
4705 speed = SPEED_10;
4706 retval = e1000_set_spd_dplx(
4707 adapter, speed,
4708 ((mii_reg & 0x100)
4709 ? DUPLEX_FULL :
4710 DUPLEX_HALF));
4711 if (retval)
4712 return retval;
4713 }
4714 if (netif_running(adapter->netdev))
4715 e1000_reinit_locked(adapter);
4716 else
4717 e1000_reset(adapter);
4718 break;
4719 case M88E1000_PHY_SPEC_CTRL:
4720 case M88E1000_EXT_PHY_SPEC_CTRL:
4721 if (e1000_phy_reset(hw))
4722 return -EIO;
4723 break;
4724 }
4725 } else {
4726 switch (data->reg_num) {
4727 case PHY_CTRL:
4728 if (mii_reg & MII_CR_POWER_DOWN)
4729 break;
4730 if (netif_running(adapter->netdev))
4731 e1000_reinit_locked(adapter);
4732 else
4733 e1000_reset(adapter);
4734 break;
4735 }
4736 }
4737 break;
4738 default:
4739 return -EOPNOTSUPP;
4740 }
4741 return E1000_SUCCESS;
4742}
4743
4744void e1000_pci_set_mwi(struct e1000_hw *hw)
4745{
4746 struct e1000_adapter *adapter = hw->back;
4747 int ret_val = pci_set_mwi(adapter->pdev);
4748
4749 if (ret_val)
4750 e_err(probe, "Error in setting MWI\n");
4751}
4752
4753void e1000_pci_clear_mwi(struct e1000_hw *hw)
4754{
4755 struct e1000_adapter *adapter = hw->back;
4756
4757 pci_clear_mwi(adapter->pdev);
4758}
4759
4760int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4761{
4762 struct e1000_adapter *adapter = hw->back;
4763 return pcix_get_mmrbc(adapter->pdev);
4764}
4765
4766void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4767{
4768 struct e1000_adapter *adapter = hw->back;
4769 pcix_set_mmrbc(adapter->pdev, mmrbc);
4770}
4771
4772void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4773{
4774 outl(value, port);
4775}
4776
4777static bool e1000_vlan_used(struct e1000_adapter *adapter)
4778{
4779 u16 vid;
4780
4781 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4782 return true;
4783 return false;
4784}
4785
4786static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4787 netdev_features_t features)
4788{
4789 struct e1000_hw *hw = &adapter->hw;
4790 u32 ctrl;
4791
4792 ctrl = er32(CTRL);
4793 if (features & NETIF_F_HW_VLAN_RX) {
4794 /* enable VLAN tag insert/strip */
4795 ctrl |= E1000_CTRL_VME;
4796 } else {
4797 /* disable VLAN tag insert/strip */
4798 ctrl &= ~E1000_CTRL_VME;
4799 }
4800 ew32(CTRL, ctrl);
4801}
4802static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4803 bool filter_on)
4804{
4805 struct e1000_hw *hw = &adapter->hw;
4806 u32 rctl;
4807
4808 if (!test_bit(__E1000_DOWN, &adapter->flags))
4809 e1000_irq_disable(adapter);
4810
4811 __e1000_vlan_mode(adapter, adapter->netdev->features);
4812 if (filter_on) {
4813 /* enable VLAN receive filtering */
4814 rctl = er32(RCTL);
4815 rctl &= ~E1000_RCTL_CFIEN;
4816 if (!(adapter->netdev->flags & IFF_PROMISC))
4817 rctl |= E1000_RCTL_VFE;
4818 ew32(RCTL, rctl);
4819 e1000_update_mng_vlan(adapter);
4820 } else {
4821 /* disable VLAN receive filtering */
4822 rctl = er32(RCTL);
4823 rctl &= ~E1000_RCTL_VFE;
4824 ew32(RCTL, rctl);
4825 }
4826
4827 if (!test_bit(__E1000_DOWN, &adapter->flags))
4828 e1000_irq_enable(adapter);
4829}
4830
4831static void e1000_vlan_mode(struct net_device *netdev,
4832 netdev_features_t features)
4833{
4834 struct e1000_adapter *adapter = netdev_priv(netdev);
4835
4836 if (!test_bit(__E1000_DOWN, &adapter->flags))
4837 e1000_irq_disable(adapter);
4838
4839 __e1000_vlan_mode(adapter, features);
4840
4841 if (!test_bit(__E1000_DOWN, &adapter->flags))
4842 e1000_irq_enable(adapter);
4843}
4844
4845static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4846{
4847 struct e1000_adapter *adapter = netdev_priv(netdev);
4848 struct e1000_hw *hw = &adapter->hw;
4849 u32 vfta, index;
4850
4851 if ((hw->mng_cookie.status &
4852 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4853 (vid == adapter->mng_vlan_id))
4854 return 0;
4855
4856 if (!e1000_vlan_used(adapter))
4857 e1000_vlan_filter_on_off(adapter, true);
4858
4859 /* add VID to filter table */
4860 index = (vid >> 5) & 0x7F;
4861 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4862 vfta |= (1 << (vid & 0x1F));
4863 e1000_write_vfta(hw, index, vfta);
4864
4865 set_bit(vid, adapter->active_vlans);
4866
4867 return 0;
4868}
4869
4870static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4871{
4872 struct e1000_adapter *adapter = netdev_priv(netdev);
4873 struct e1000_hw *hw = &adapter->hw;
4874 u32 vfta, index;
4875
4876 if (!test_bit(__E1000_DOWN, &adapter->flags))
4877 e1000_irq_disable(adapter);
4878 if (!test_bit(__E1000_DOWN, &adapter->flags))
4879 e1000_irq_enable(adapter);
4880
4881 /* remove VID from filter table */
4882 index = (vid >> 5) & 0x7F;
4883 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4884 vfta &= ~(1 << (vid & 0x1F));
4885 e1000_write_vfta(hw, index, vfta);
4886
4887 clear_bit(vid, adapter->active_vlans);
4888
4889 if (!e1000_vlan_used(adapter))
4890 e1000_vlan_filter_on_off(adapter, false);
4891
4892 return 0;
4893}
4894
4895static void e1000_restore_vlan(struct e1000_adapter *adapter)
4896{
4897 u16 vid;
4898
4899 if (!e1000_vlan_used(adapter))
4900 return;
4901
4902 e1000_vlan_filter_on_off(adapter, true);
4903 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4904 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4905}
4906
4907int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4908{
4909 struct e1000_hw *hw = &adapter->hw;
4910
4911 hw->autoneg = 0;
4912
4913 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4914 * for the switch() below to work */
4915 if ((spd & 1) || (dplx & ~1))
4916 goto err_inval;
4917
4918 /* Fiber NICs only allow 1000 gbps Full duplex */
4919 if ((hw->media_type == e1000_media_type_fiber) &&
4920 spd != SPEED_1000 &&
4921 dplx != DUPLEX_FULL)
4922 goto err_inval;
4923
4924 switch (spd + dplx) {
4925 case SPEED_10 + DUPLEX_HALF:
4926 hw->forced_speed_duplex = e1000_10_half;
4927 break;
4928 case SPEED_10 + DUPLEX_FULL:
4929 hw->forced_speed_duplex = e1000_10_full;
4930 break;
4931 case SPEED_100 + DUPLEX_HALF:
4932 hw->forced_speed_duplex = e1000_100_half;
4933 break;
4934 case SPEED_100 + DUPLEX_FULL:
4935 hw->forced_speed_duplex = e1000_100_full;
4936 break;
4937 case SPEED_1000 + DUPLEX_FULL:
4938 hw->autoneg = 1;
4939 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4940 break;
4941 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4942 default:
4943 goto err_inval;
4944 }
4945 return 0;
4946
4947err_inval:
4948 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4949 return -EINVAL;
4950}
4951
4952static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4953{
4954 struct net_device *netdev = pci_get_drvdata(pdev);
4955 struct e1000_adapter *adapter = netdev_priv(netdev);
4956 struct e1000_hw *hw = &adapter->hw;
4957 u32 ctrl, ctrl_ext, rctl, status;
4958 u32 wufc = adapter->wol;
4959#ifdef CONFIG_PM
4960 int retval = 0;
4961#endif
4962
4963 netif_device_detach(netdev);
4964
4965 if (netif_running(netdev)) {
4966 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4967 e1000_down(adapter);
4968 }
4969
4970#ifdef CONFIG_PM
4971 retval = pci_save_state(pdev);
4972 if (retval)
4973 return retval;
4974#endif
4975
4976 status = er32(STATUS);
4977 if (status & E1000_STATUS_LU)
4978 wufc &= ~E1000_WUFC_LNKC;
4979
4980 if (wufc) {
4981 e1000_setup_rctl(adapter);
4982 e1000_set_rx_mode(netdev);
4983
4984 rctl = er32(RCTL);
4985
4986 /* turn on all-multi mode if wake on multicast is enabled */
4987 if (wufc & E1000_WUFC_MC)
4988 rctl |= E1000_RCTL_MPE;
4989
4990 /* enable receives in the hardware */
4991 ew32(RCTL, rctl | E1000_RCTL_EN);
4992
4993 if (hw->mac_type >= e1000_82540) {
4994 ctrl = er32(CTRL);
4995 /* advertise wake from D3Cold */
4996 #define E1000_CTRL_ADVD3WUC 0x00100000
4997 /* phy power management enable */
4998 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4999 ctrl |= E1000_CTRL_ADVD3WUC |
5000 E1000_CTRL_EN_PHY_PWR_MGMT;
5001 ew32(CTRL, ctrl);
5002 }
5003
5004 if (hw->media_type == e1000_media_type_fiber ||
5005 hw->media_type == e1000_media_type_internal_serdes) {
5006 /* keep the laser running in D3 */
5007 ctrl_ext = er32(CTRL_EXT);
5008 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5009 ew32(CTRL_EXT, ctrl_ext);
5010 }
5011
5012 ew32(WUC, E1000_WUC_PME_EN);
5013 ew32(WUFC, wufc);
5014 } else {
5015 ew32(WUC, 0);
5016 ew32(WUFC, 0);
5017 }
5018
5019 e1000_release_manageability(adapter);
5020
5021 *enable_wake = !!wufc;
5022
5023 /* make sure adapter isn't asleep if manageability is enabled */
5024 if (adapter->en_mng_pt)
5025 *enable_wake = true;
5026
5027 if (netif_running(netdev))
5028 e1000_free_irq(adapter);
5029
5030 pci_disable_device(pdev);
5031
5032 return 0;
5033}
5034
5035#ifdef CONFIG_PM
5036static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5037{
5038 int retval;
5039 bool wake;
5040
5041 retval = __e1000_shutdown(pdev, &wake);
5042 if (retval)
5043 return retval;
5044
5045 if (wake) {
5046 pci_prepare_to_sleep(pdev);
5047 } else {
5048 pci_wake_from_d3(pdev, false);
5049 pci_set_power_state(pdev, PCI_D3hot);
5050 }
5051
5052 return 0;
5053}
5054
5055static int e1000_resume(struct pci_dev *pdev)
5056{
5057 struct net_device *netdev = pci_get_drvdata(pdev);
5058 struct e1000_adapter *adapter = netdev_priv(netdev);
5059 struct e1000_hw *hw = &adapter->hw;
5060 u32 err;
5061
5062 pci_set_power_state(pdev, PCI_D0);
5063 pci_restore_state(pdev);
5064 pci_save_state(pdev);
5065
5066 if (adapter->need_ioport)
5067 err = pci_enable_device(pdev);
5068 else
5069 err = pci_enable_device_mem(pdev);
5070 if (err) {
5071 pr_err("Cannot enable PCI device from suspend\n");
5072 return err;
5073 }
5074 pci_set_master(pdev);
5075
5076 pci_enable_wake(pdev, PCI_D3hot, 0);
5077 pci_enable_wake(pdev, PCI_D3cold, 0);
5078
5079 if (netif_running(netdev)) {
5080 err = e1000_request_irq(adapter);
5081 if (err)
5082 return err;
5083 }
5084
5085 e1000_power_up_phy(adapter);
5086 e1000_reset(adapter);
5087 ew32(WUS, ~0);
5088
5089 e1000_init_manageability(adapter);
5090
5091 if (netif_running(netdev))
5092 e1000_up(adapter);
5093
5094 netif_device_attach(netdev);
5095
5096 return 0;
5097}
5098#endif
5099
5100static void e1000_shutdown(struct pci_dev *pdev)
5101{
5102 bool wake;
5103
5104 __e1000_shutdown(pdev, &wake);
5105
5106 if (system_state == SYSTEM_POWER_OFF) {
5107 pci_wake_from_d3(pdev, wake);
5108 pci_set_power_state(pdev, PCI_D3hot);
5109 }
5110}
5111
5112#ifdef CONFIG_NET_POLL_CONTROLLER
5113/*
5114 * Polling 'interrupt' - used by things like netconsole to send skbs
5115 * without having to re-enable interrupts. It's not called while
5116 * the interrupt routine is executing.
5117 */
5118static void e1000_netpoll(struct net_device *netdev)
5119{
5120 struct e1000_adapter *adapter = netdev_priv(netdev);
5121
5122 disable_irq(adapter->pdev->irq);
5123 e1000_intr(adapter->pdev->irq, netdev);
5124 enable_irq(adapter->pdev->irq);
5125}
5126#endif
5127
5128/**
5129 * e1000_io_error_detected - called when PCI error is detected
5130 * @pdev: Pointer to PCI device
5131 * @state: The current pci connection state
5132 *
5133 * This function is called after a PCI bus error affecting
5134 * this device has been detected.
5135 */
5136static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5137 pci_channel_state_t state)
5138{
5139 struct net_device *netdev = pci_get_drvdata(pdev);
5140 struct e1000_adapter *adapter = netdev_priv(netdev);
5141
5142 netif_device_detach(netdev);
5143
5144 if (state == pci_channel_io_perm_failure)
5145 return PCI_ERS_RESULT_DISCONNECT;
5146
5147 if (netif_running(netdev))
5148 e1000_down(adapter);
5149 pci_disable_device(pdev);
5150
5151 /* Request a slot slot reset. */
5152 return PCI_ERS_RESULT_NEED_RESET;
5153}
5154
5155/**
5156 * e1000_io_slot_reset - called after the pci bus has been reset.
5157 * @pdev: Pointer to PCI device
5158 *
5159 * Restart the card from scratch, as if from a cold-boot. Implementation
5160 * resembles the first-half of the e1000_resume routine.
5161 */
5162static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5163{
5164 struct net_device *netdev = pci_get_drvdata(pdev);
5165 struct e1000_adapter *adapter = netdev_priv(netdev);
5166 struct e1000_hw *hw = &adapter->hw;
5167 int err;
5168
5169 if (adapter->need_ioport)
5170 err = pci_enable_device(pdev);
5171 else
5172 err = pci_enable_device_mem(pdev);
5173 if (err) {
5174 pr_err("Cannot re-enable PCI device after reset.\n");
5175 return PCI_ERS_RESULT_DISCONNECT;
5176 }
5177 pci_set_master(pdev);
5178
5179 pci_enable_wake(pdev, PCI_D3hot, 0);
5180 pci_enable_wake(pdev, PCI_D3cold, 0);
5181
5182 e1000_reset(adapter);
5183 ew32(WUS, ~0);
5184
5185 return PCI_ERS_RESULT_RECOVERED;
5186}
5187
5188/**
5189 * e1000_io_resume - called when traffic can start flowing again.
5190 * @pdev: Pointer to PCI device
5191 *
5192 * This callback is called when the error recovery driver tells us that
5193 * its OK to resume normal operation. Implementation resembles the
5194 * second-half of the e1000_resume routine.
5195 */
5196static void e1000_io_resume(struct pci_dev *pdev)
5197{
5198 struct net_device *netdev = pci_get_drvdata(pdev);
5199 struct e1000_adapter *adapter = netdev_priv(netdev);
5200
5201 e1000_init_manageability(adapter);
5202
5203 if (netif_running(netdev)) {
5204 if (e1000_up(adapter)) {
5205 pr_info("can't bring device back up after reset\n");
5206 return;
5207 }
5208 }
5209
5210 netif_device_attach(netdev);
5211}
5212
5213/* e1000_main.c */
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
30#include <net/ip6_checksum.h>
31#include <linux/io.h>
32#include <linux/prefetch.h>
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
35
36char e1000_driver_name[] = "e1000";
37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38#define DRV_VERSION "7.3.21-k8-NAPI"
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49static const struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109void e1000_update_stats(struct e1000_adapter *adapter);
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114static void e1000_remove(struct pci_dev *pdev);
115static int e1000_alloc_queues(struct e1000_adapter *adapter);
116static int e1000_sw_init(struct e1000_adapter *adapter);
117static int e1000_open(struct net_device *netdev);
118static int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128static void e1000_set_rx_mode(struct net_device *netdev);
129static void e1000_update_phy_info_task(struct work_struct *work);
130static void e1000_watchdog(struct work_struct *work);
131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count)
150{
151}
152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 struct e1000_rx_ring *rx_ring,
154 int cleaned_count);
155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int cleaned_count);
158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 int cmd);
161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163static void e1000_tx_timeout(struct net_device *dev);
164static void e1000_reset_task(struct work_struct *work);
165static void e1000_smartspeed(struct e1000_adapter *adapter);
166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 struct sk_buff *skb);
168
169static bool e1000_vlan_used(struct e1000_adapter *adapter);
170static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 bool filter_on);
174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
178static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
180#ifdef CONFIG_PM
181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182static int e1000_resume(struct pci_dev *pdev);
183#endif
184static void e1000_shutdown(struct pci_dev *pdev);
185
186#ifdef CONFIG_NET_POLL_CONTROLLER
187/* for netdump / net console */
188static void e1000_netpoll (struct net_device *netdev);
189#endif
190
191#define COPYBREAK_DEFAULT 256
192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193module_param(copybreak, uint, 0644);
194MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
196
197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 pci_channel_state_t state);
199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200static void e1000_io_resume(struct pci_dev *pdev);
201
202static const struct pci_error_handlers e1000_err_handler = {
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
206};
207
208static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
212 .remove = e1000_remove,
213#ifdef CONFIG_PM
214 /* Power Management Hooks */
215 .suspend = e1000_suspend,
216 .resume = e1000_resume,
217#endif
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
220};
221
222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224MODULE_LICENSE("GPL");
225MODULE_VERSION(DRV_VERSION);
226
227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228static int debug = -1;
229module_param(debug, int, 0);
230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232/**
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
235 *
236 **/
237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238{
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
241}
242
243/**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
249static int __init e1000_init_module(void)
250{
251 int ret;
252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253
254 pr_info("%s\n", e1000_copyright);
255
256 ret = pci_register_driver(&e1000_driver);
257 if (copybreak != COPYBREAK_DEFAULT) {
258 if (copybreak == 0)
259 pr_info("copybreak disabled\n");
260 else
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
263 }
264 return ret;
265}
266
267module_init(e1000_init_module);
268
269/**
270 * e1000_exit_module - Driver Exit Cleanup Routine
271 *
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
274 **/
275static void __exit e1000_exit_module(void)
276{
277 pci_unregister_driver(&e1000_driver);
278}
279
280module_exit(e1000_exit_module);
281
282static int e1000_request_irq(struct e1000_adapter *adapter)
283{
284 struct net_device *netdev = adapter->netdev;
285 irq_handler_t handler = e1000_intr;
286 int irq_flags = IRQF_SHARED;
287 int err;
288
289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 netdev);
291 if (err) {
292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 }
294
295 return err;
296}
297
298static void e1000_free_irq(struct e1000_adapter *adapter)
299{
300 struct net_device *netdev = adapter->netdev;
301
302 free_irq(adapter->pdev->irq, netdev);
303}
304
305/**
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
308 **/
309static void e1000_irq_disable(struct e1000_adapter *adapter)
310{
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMC, ~0);
314 E1000_WRITE_FLUSH();
315 synchronize_irq(adapter->pdev->irq);
316}
317
318/**
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
321 **/
322static void e1000_irq_enable(struct e1000_adapter *adapter)
323{
324 struct e1000_hw *hw = &adapter->hw;
325
326 ew32(IMS, IMS_ENABLE_MASK);
327 E1000_WRITE_FLUSH();
328}
329
330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331{
332 struct e1000_hw *hw = &adapter->hw;
333 struct net_device *netdev = adapter->netdev;
334 u16 vid = hw->mng_cookie.vlan_id;
335 u16 old_vid = adapter->mng_vlan_id;
336
337 if (!e1000_vlan_used(adapter))
338 return;
339
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 adapter->mng_vlan_id = vid;
345 } else {
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 }
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 (vid != old_vid) &&
350 !test_bit(old_vid, adapter->active_vlans))
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 old_vid);
353 } else {
354 adapter->mng_vlan_id = vid;
355 }
356}
357
358static void e1000_init_manageability(struct e1000_adapter *adapter)
359{
360 struct e1000_hw *hw = &adapter->hw;
361
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
364
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
367
368 ew32(MANC, manc);
369 }
370}
371
372static void e1000_release_manageability(struct e1000_adapter *adapter)
373{
374 struct e1000_hw *hw = &adapter->hw;
375
376 if (adapter->en_mng_pt) {
377 u32 manc = er32(MANC);
378
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
381
382 ew32(MANC, manc);
383 }
384}
385
386/**
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
389 **/
390static void e1000_configure(struct e1000_adapter *adapter)
391{
392 struct net_device *netdev = adapter->netdev;
393 int i;
394
395 e1000_set_rx_mode(netdev);
396
397 e1000_restore_vlan(adapter);
398 e1000_init_manageability(adapter);
399
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
405 * next_to_use != next_to_clean
406 */
407 for (i = 0; i < adapter->num_rx_queues; i++) {
408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 adapter->alloc_rx_buf(adapter, ring,
410 E1000_DESC_UNUSED(ring));
411 }
412}
413
414int e1000_up(struct e1000_adapter *adapter)
415{
416 struct e1000_hw *hw = &adapter->hw;
417
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
420
421 clear_bit(__E1000_DOWN, &adapter->flags);
422
423 napi_enable(&adapter->napi);
424
425 e1000_irq_enable(adapter);
426
427 netif_wake_queue(adapter->netdev);
428
429 /* fire a link change interrupt to start the watchdog */
430 ew32(ICS, E1000_ICS_LSC);
431 return 0;
432}
433
434/**
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
437 *
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
441 **/
442void e1000_power_up_phy(struct e1000_adapter *adapter)
443{
444 struct e1000_hw *hw = &adapter->hw;
445 u16 mii_reg = 0;
446
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw->media_type == e1000_media_type_copper) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle
451 */
452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 mii_reg &= ~MII_CR_POWER_DOWN;
454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 }
456}
457
458static void e1000_power_down_phy(struct e1000_adapter *adapter)
459{
460 struct e1000_hw *hw = &adapter->hw;
461
462 /* Power down the PHY so no link is implied when interface is down *
463 * The PHY cannot be powered down if any of the following is true *
464 * (a) WoL is enabled
465 * (b) AMT is active
466 * (c) SoL/IDER session is active
467 */
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
470 u16 mii_reg = 0;
471
472 switch (hw->mac_type) {
473 case e1000_82540:
474 case e1000_82545:
475 case e1000_82545_rev_3:
476 case e1000_82546:
477 case e1000_ce4100:
478 case e1000_82546_rev_3:
479 case e1000_82541:
480 case e1000_82541_rev_2:
481 case e1000_82547:
482 case e1000_82547_rev_2:
483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 goto out;
485 break;
486 default:
487 goto out;
488 }
489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 mii_reg |= MII_CR_POWER_DOWN;
491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 msleep(1);
493 }
494out:
495 return;
496}
497
498static void e1000_down_and_stop(struct e1000_adapter *adapter)
499{
500 set_bit(__E1000_DOWN, &adapter->flags);
501
502 cancel_delayed_work_sync(&adapter->watchdog_task);
503
504 /*
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
508 */
509
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
512
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
516}
517
518void e1000_down(struct e1000_adapter *adapter)
519{
520 struct e1000_hw *hw = &adapter->hw;
521 struct net_device *netdev = adapter->netdev;
522 u32 rctl, tctl;
523
524 netif_carrier_off(netdev);
525
526 /* disable receives in the hardware */
527 rctl = er32(RCTL);
528 ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 /* flush and sleep below */
530
531 netif_tx_disable(netdev);
532
533 /* disable transmits in the hardware */
534 tctl = er32(TCTL);
535 tctl &= ~E1000_TCTL_EN;
536 ew32(TCTL, tctl);
537 /* flush both disables and wait for them to finish */
538 E1000_WRITE_FLUSH();
539 msleep(10);
540
541 napi_disable(&adapter->napi);
542
543 e1000_irq_disable(adapter);
544
545 /* Setting DOWN must be after irq_disable to prevent
546 * a screaming interrupt. Setting DOWN also prevents
547 * tasks from rescheduling.
548 */
549 e1000_down_and_stop(adapter);
550
551 adapter->link_speed = 0;
552 adapter->link_duplex = 0;
553
554 e1000_reset(adapter);
555 e1000_clean_all_tx_rings(adapter);
556 e1000_clean_all_rx_rings(adapter);
557}
558
559void e1000_reinit_locked(struct e1000_adapter *adapter)
560{
561 WARN_ON(in_interrupt());
562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563 msleep(1);
564 e1000_down(adapter);
565 e1000_up(adapter);
566 clear_bit(__E1000_RESETTING, &adapter->flags);
567}
568
569void e1000_reset(struct e1000_adapter *adapter)
570{
571 struct e1000_hw *hw = &adapter->hw;
572 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573 bool legacy_pba_adjust = false;
574 u16 hwm;
575
576 /* Repartition Pba for greater than 9k mtu
577 * To take effect CTRL.RST is required.
578 */
579
580 switch (hw->mac_type) {
581 case e1000_82542_rev2_0:
582 case e1000_82542_rev2_1:
583 case e1000_82543:
584 case e1000_82544:
585 case e1000_82540:
586 case e1000_82541:
587 case e1000_82541_rev_2:
588 legacy_pba_adjust = true;
589 pba = E1000_PBA_48K;
590 break;
591 case e1000_82545:
592 case e1000_82545_rev_3:
593 case e1000_82546:
594 case e1000_ce4100:
595 case e1000_82546_rev_3:
596 pba = E1000_PBA_48K;
597 break;
598 case e1000_82547:
599 case e1000_82547_rev_2:
600 legacy_pba_adjust = true;
601 pba = E1000_PBA_30K;
602 break;
603 case e1000_undefined:
604 case e1000_num_macs:
605 break;
606 }
607
608 if (legacy_pba_adjust) {
609 if (hw->max_frame_size > E1000_RXBUFFER_8192)
610 pba -= 8; /* allocate more FIFO for Tx */
611
612 if (hw->mac_type == e1000_82547) {
613 adapter->tx_fifo_head = 0;
614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 adapter->tx_fifo_size =
616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 atomic_set(&adapter->tx_fifo_stall, 0);
618 }
619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
620 /* adjust PBA for jumbo frames */
621 ew32(PBA, pba);
622
623 /* To maintain wire speed transmits, the Tx FIFO should be
624 * large enough to accommodate two full transmit packets,
625 * rounded up to the next 1KB and expressed in KB. Likewise,
626 * the Rx FIFO should be large enough to accommodate at least
627 * one full receive packet and is similarly rounded up and
628 * expressed in KB.
629 */
630 pba = er32(PBA);
631 /* upper 16 bits has Tx packet buffer allocation size in KB */
632 tx_space = pba >> 16;
633 /* lower 16 bits has Rx packet buffer allocation size in KB */
634 pba &= 0xffff;
635 /* the Tx fifo also stores 16 bytes of information about the Tx
636 * but don't include ethernet FCS because hardware appends it
637 */
638 min_tx_space = (hw->max_frame_size +
639 sizeof(struct e1000_tx_desc) -
640 ETH_FCS_LEN) * 2;
641 min_tx_space = ALIGN(min_tx_space, 1024);
642 min_tx_space >>= 10;
643 /* software strips receive CRC, so leave room for it */
644 min_rx_space = hw->max_frame_size;
645 min_rx_space = ALIGN(min_rx_space, 1024);
646 min_rx_space >>= 10;
647
648 /* If current Tx allocation is less than the min Tx FIFO size,
649 * and the min Tx FIFO size is less than the current Rx FIFO
650 * allocation, take space away from current Rx allocation
651 */
652 if (tx_space < min_tx_space &&
653 ((min_tx_space - tx_space) < pba)) {
654 pba = pba - (min_tx_space - tx_space);
655
656 /* PCI/PCIx hardware has PBA alignment constraints */
657 switch (hw->mac_type) {
658 case e1000_82545 ... e1000_82546_rev_3:
659 pba &= ~(E1000_PBA_8K - 1);
660 break;
661 default:
662 break;
663 }
664
665 /* if short on Rx space, Rx wins and must trump Tx
666 * adjustment or use Early Receive if available
667 */
668 if (pba < min_rx_space)
669 pba = min_rx_space;
670 }
671 }
672
673 ew32(PBA, pba);
674
675 /* flow control settings:
676 * The high water mark must be low enough to fit one full frame
677 * (or the size used for early receive) above it in the Rx FIFO.
678 * Set it to the lower of:
679 * - 90% of the Rx FIFO size, and
680 * - the full Rx FIFO size minus the early receive size (for parts
681 * with ERT support assuming ERT set to E1000_ERT_2048), or
682 * - the full Rx FIFO size minus one full frame
683 */
684 hwm = min(((pba << 10) * 9 / 10),
685 ((pba << 10) - hw->max_frame_size));
686
687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
688 hw->fc_low_water = hw->fc_high_water - 8;
689 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
690 hw->fc_send_xon = 1;
691 hw->fc = hw->original_fc;
692
693 /* Allow time for pending master requests to run */
694 e1000_reset_hw(hw);
695 if (hw->mac_type >= e1000_82544)
696 ew32(WUC, 0);
697
698 if (e1000_init_hw(hw))
699 e_dev_err("Hardware Error\n");
700 e1000_update_mng_vlan(adapter);
701
702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 if (hw->mac_type >= e1000_82544 &&
704 hw->autoneg == 1 &&
705 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 u32 ctrl = er32(CTRL);
707 /* clear phy power management bit if we are in gig only mode,
708 * which if enabled will attempt negotiation to 100Mb, which
709 * can cause a loss of link at power off or driver unload
710 */
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
713 }
714
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
720
721 e1000_release_manageability(adapter);
722}
723
724/* Dump the eeprom for users having checksum issues */
725static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726{
727 struct net_device *netdev = adapter->netdev;
728 struct ethtool_eeprom eeprom;
729 const struct ethtool_ops *ops = netdev->ethtool_ops;
730 u8 *data;
731 int i;
732 u16 csum_old, csum_new = 0;
733
734 eeprom.len = ops->get_eeprom_len(netdev);
735 eeprom.offset = 0;
736
737 data = kmalloc(eeprom.len, GFP_KERNEL);
738 if (!data)
739 return;
740
741 ops->get_eeprom(netdev, &eeprom, data);
742
743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 csum_new += data[i] + (data[i + 1] << 8);
747 csum_new = EEPROM_SUM - csum_new;
748
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 pr_err("Calculated : 0x%04x\n", csum_new);
752
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
768
769 kfree(data);
770}
771
772/**
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
775 *
776 * Return true if an adapter needs ioport resources
777 **/
778static int e1000_is_need_ioport(struct pci_dev *pdev)
779{
780 switch (pdev->device) {
781 case E1000_DEV_ID_82540EM:
782 case E1000_DEV_ID_82540EM_LOM:
783 case E1000_DEV_ID_82540EP:
784 case E1000_DEV_ID_82540EP_LOM:
785 case E1000_DEV_ID_82540EP_LP:
786 case E1000_DEV_ID_82541EI:
787 case E1000_DEV_ID_82541EI_MOBILE:
788 case E1000_DEV_ID_82541ER:
789 case E1000_DEV_ID_82541ER_LOM:
790 case E1000_DEV_ID_82541GI:
791 case E1000_DEV_ID_82541GI_LF:
792 case E1000_DEV_ID_82541GI_MOBILE:
793 case E1000_DEV_ID_82544EI_COPPER:
794 case E1000_DEV_ID_82544EI_FIBER:
795 case E1000_DEV_ID_82544GC_COPPER:
796 case E1000_DEV_ID_82544GC_LOM:
797 case E1000_DEV_ID_82545EM_COPPER:
798 case E1000_DEV_ID_82545EM_FIBER:
799 case E1000_DEV_ID_82546EB_COPPER:
800 case E1000_DEV_ID_82546EB_FIBER:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 return true;
803 default:
804 return false;
805 }
806}
807
808static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 netdev_features_t features)
810{
811 /* Since there is no support for separate Rx/Tx vlan accel
812 * enable/disable make sure Tx flag is always in same state as Rx.
813 */
814 if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 features |= NETIF_F_HW_VLAN_CTAG_TX;
816 else
817 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
818
819 return features;
820}
821
822static int e1000_set_features(struct net_device *netdev,
823 netdev_features_t features)
824{
825 struct e1000_adapter *adapter = netdev_priv(netdev);
826 netdev_features_t changed = features ^ netdev->features;
827
828 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829 e1000_vlan_mode(netdev, features);
830
831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
832 return 0;
833
834 netdev->features = features;
835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836
837 if (netif_running(netdev))
838 e1000_reinit_locked(adapter);
839 else
840 e1000_reset(adapter);
841
842 return 0;
843}
844
845static const struct net_device_ops e1000_netdev_ops = {
846 .ndo_open = e1000_open,
847 .ndo_stop = e1000_close,
848 .ndo_start_xmit = e1000_xmit_frame,
849 .ndo_get_stats = e1000_get_stats,
850 .ndo_set_rx_mode = e1000_set_rx_mode,
851 .ndo_set_mac_address = e1000_set_mac,
852 .ndo_tx_timeout = e1000_tx_timeout,
853 .ndo_change_mtu = e1000_change_mtu,
854 .ndo_do_ioctl = e1000_ioctl,
855 .ndo_validate_addr = eth_validate_addr,
856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
858#ifdef CONFIG_NET_POLL_CONTROLLER
859 .ndo_poll_controller = e1000_netpoll,
860#endif
861 .ndo_fix_features = e1000_fix_features,
862 .ndo_set_features = e1000_set_features,
863};
864
865/**
866 * e1000_init_hw_struct - initialize members of hw struct
867 * @adapter: board private struct
868 * @hw: structure used by e1000_hw.c
869 *
870 * Factors out initialization of the e1000_hw struct to its own function
871 * that can be called very early at init (just after struct allocation).
872 * Fields are initialized based on PCI device information and
873 * OS network device settings (MTU size).
874 * Returns negative error codes if MAC type setup fails.
875 */
876static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877 struct e1000_hw *hw)
878{
879 struct pci_dev *pdev = adapter->pdev;
880
881 /* PCI config space info */
882 hw->vendor_id = pdev->vendor;
883 hw->device_id = pdev->device;
884 hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 hw->subsystem_id = pdev->subsystem_device;
886 hw->revision_id = pdev->revision;
887
888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889
890 hw->max_frame_size = adapter->netdev->mtu +
891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893
894 /* identify the MAC */
895 if (e1000_set_mac_type(hw)) {
896 e_err(probe, "Unknown MAC Type\n");
897 return -EIO;
898 }
899
900 switch (hw->mac_type) {
901 default:
902 break;
903 case e1000_82541:
904 case e1000_82547:
905 case e1000_82541_rev_2:
906 case e1000_82547_rev_2:
907 hw->phy_init_script = 1;
908 break;
909 }
910
911 e1000_set_media_type(hw);
912 e1000_get_bus_info(hw);
913
914 hw->wait_autoneg_complete = false;
915 hw->tbi_compatibility_en = true;
916 hw->adaptive_ifs = true;
917
918 /* Copper options */
919
920 if (hw->media_type == e1000_media_type_copper) {
921 hw->mdix = AUTO_ALL_MODES;
922 hw->disable_polarity_correction = false;
923 hw->master_slave = E1000_MASTER_SLAVE;
924 }
925
926 return 0;
927}
928
929/**
930 * e1000_probe - Device Initialization Routine
931 * @pdev: PCI device information struct
932 * @ent: entry in e1000_pci_tbl
933 *
934 * Returns 0 on success, negative on failure
935 *
936 * e1000_probe initializes an adapter identified by a pci_dev structure.
937 * The OS initialization, configuring of the adapter private structure,
938 * and a hardware reset occur.
939 **/
940static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
941{
942 struct net_device *netdev;
943 struct e1000_adapter *adapter;
944 struct e1000_hw *hw;
945
946 static int cards_found;
947 static int global_quad_port_a; /* global ksp3 port a indication */
948 int i, err, pci_using_dac;
949 u16 eeprom_data = 0;
950 u16 tmp = 0;
951 u16 eeprom_apme_mask = E1000_EEPROM_APME;
952 int bars, need_ioport;
953
954 /* do not allocate ioport bars when not needed */
955 need_ioport = e1000_is_need_ioport(pdev);
956 if (need_ioport) {
957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 err = pci_enable_device(pdev);
959 } else {
960 bars = pci_select_bars(pdev, IORESOURCE_MEM);
961 err = pci_enable_device_mem(pdev);
962 }
963 if (err)
964 return err;
965
966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967 if (err)
968 goto err_pci_reg;
969
970 pci_set_master(pdev);
971 err = pci_save_state(pdev);
972 if (err)
973 goto err_alloc_etherdev;
974
975 err = -ENOMEM;
976 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977 if (!netdev)
978 goto err_alloc_etherdev;
979
980 SET_NETDEV_DEV(netdev, &pdev->dev);
981
982 pci_set_drvdata(pdev, netdev);
983 adapter = netdev_priv(netdev);
984 adapter->netdev = netdev;
985 adapter->pdev = pdev;
986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987 adapter->bars = bars;
988 adapter->need_ioport = need_ioport;
989
990 hw = &adapter->hw;
991 hw->back = adapter;
992
993 err = -EIO;
994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995 if (!hw->hw_addr)
996 goto err_ioremap;
997
998 if (adapter->need_ioport) {
999 for (i = BAR_1; i <= BAR_5; i++) {
1000 if (pci_resource_len(pdev, i) == 0)
1001 continue;
1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 hw->io_base = pci_resource_start(pdev, i);
1004 break;
1005 }
1006 }
1007 }
1008
1009 /* make ready for any if (hw->...) below */
1010 err = e1000_init_hw_struct(adapter, hw);
1011 if (err)
1012 goto err_sw_init;
1013
1014 /* there is a workaround being applied below that limits
1015 * 64-bit DMA addresses to 64-bit hardware. There are some
1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 */
1018 pci_using_dac = 0;
1019 if ((hw->bus_type == e1000_bus_type_pcix) &&
1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021 pci_using_dac = 1;
1022 } else {
1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024 if (err) {
1025 pr_err("No usable DMA config, aborting\n");
1026 goto err_dma;
1027 }
1028 }
1029
1030 netdev->netdev_ops = &e1000_netdev_ops;
1031 e1000_set_ethtool_ops(netdev);
1032 netdev->watchdog_timeo = 5 * HZ;
1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034
1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036
1037 adapter->bd_number = cards_found;
1038
1039 /* setup the private structure */
1040
1041 err = e1000_sw_init(adapter);
1042 if (err)
1043 goto err_sw_init;
1044
1045 err = -EIO;
1046 if (hw->mac_type == e1000_ce4100) {
1047 hw->ce4100_gbe_mdio_base_virt =
1048 ioremap(pci_resource_start(pdev, BAR_1),
1049 pci_resource_len(pdev, BAR_1));
1050
1051 if (!hw->ce4100_gbe_mdio_base_virt)
1052 goto err_mdio_ioremap;
1053 }
1054
1055 if (hw->mac_type >= e1000_82543) {
1056 netdev->hw_features = NETIF_F_SG |
1057 NETIF_F_HW_CSUM |
1058 NETIF_F_HW_VLAN_CTAG_RX;
1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 NETIF_F_HW_VLAN_CTAG_FILTER;
1061 }
1062
1063 if ((hw->mac_type >= e1000_82544) &&
1064 (hw->mac_type != e1000_82547))
1065 netdev->hw_features |= NETIF_F_TSO;
1066
1067 netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
1069 netdev->features |= netdev->hw_features;
1070 netdev->hw_features |= (NETIF_F_RXCSUM |
1071 NETIF_F_RXALL |
1072 NETIF_F_RXFCS);
1073
1074 if (pci_using_dac) {
1075 netdev->features |= NETIF_F_HIGHDMA;
1076 netdev->vlan_features |= NETIF_F_HIGHDMA;
1077 }
1078
1079 netdev->vlan_features |= (NETIF_F_TSO |
1080 NETIF_F_HW_CSUM |
1081 NETIF_F_SG);
1082
1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089
1090 /* initialize eeprom parameters */
1091 if (e1000_init_eeprom_params(hw)) {
1092 e_err(probe, "EEPROM initialization failed\n");
1093 goto err_eeprom;
1094 }
1095
1096 /* before reading the EEPROM, reset the controller to
1097 * put the device in a known good starting state
1098 */
1099
1100 e1000_reset_hw(hw);
1101
1102 /* make sure the EEPROM is good */
1103 if (e1000_validate_eeprom_checksum(hw) < 0) {
1104 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105 e1000_dump_eeprom(adapter);
1106 /* set MAC address to all zeroes to invalidate and temporary
1107 * disable this device for the user. This blocks regular
1108 * traffic while still permitting ethtool ioctls from reaching
1109 * the hardware as well as allowing the user to run the
1110 * interface after manually setting a hw addr using
1111 * `ip set address`
1112 */
1113 memset(hw->mac_addr, 0, netdev->addr_len);
1114 } else {
1115 /* copy the MAC address out of the EEPROM */
1116 if (e1000_read_mac_addr(hw))
1117 e_err(probe, "EEPROM Read Error\n");
1118 }
1119 /* don't block initialization here due to bad MAC address */
1120 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121
1122 if (!is_valid_ether_addr(netdev->dev_addr))
1123 e_err(probe, "Invalid MAC Address\n");
1124
1125
1126 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128 e1000_82547_tx_fifo_stall_task);
1129 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1131
1132 e1000_check_options(adapter);
1133
1134 /* Initial Wake on LAN setting
1135 * If APM wake is enabled in the EEPROM,
1136 * enable the ACPI Magic Packet filter
1137 */
1138
1139 switch (hw->mac_type) {
1140 case e1000_82542_rev2_0:
1141 case e1000_82542_rev2_1:
1142 case e1000_82543:
1143 break;
1144 case e1000_82544:
1145 e1000_read_eeprom(hw,
1146 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148 break;
1149 case e1000_82546:
1150 case e1000_82546_rev_3:
1151 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1152 e1000_read_eeprom(hw,
1153 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154 break;
1155 }
1156 /* Fall Through */
1157 default:
1158 e1000_read_eeprom(hw,
1159 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160 break;
1161 }
1162 if (eeprom_data & eeprom_apme_mask)
1163 adapter->eeprom_wol |= E1000_WUFC_MAG;
1164
1165 /* now that we have the eeprom settings, apply the special cases
1166 * where the eeprom may be wrong or the board simply won't support
1167 * wake on lan on a particular port
1168 */
1169 switch (pdev->device) {
1170 case E1000_DEV_ID_82546GB_PCIE:
1171 adapter->eeprom_wol = 0;
1172 break;
1173 case E1000_DEV_ID_82546EB_FIBER:
1174 case E1000_DEV_ID_82546GB_FIBER:
1175 /* Wake events only supported on port A for dual fiber
1176 * regardless of eeprom setting
1177 */
1178 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179 adapter->eeprom_wol = 0;
1180 break;
1181 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182 /* if quad port adapter, disable WoL on all but port A */
1183 if (global_quad_port_a != 0)
1184 adapter->eeprom_wol = 0;
1185 else
1186 adapter->quad_port_a = true;
1187 /* Reset for multiple quad port adapters */
1188 if (++global_quad_port_a == 4)
1189 global_quad_port_a = 0;
1190 break;
1191 }
1192
1193 /* initialize the wol settings based on the eeprom settings */
1194 adapter->wol = adapter->eeprom_wol;
1195 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1196
1197 /* Auto detect PHY address */
1198 if (hw->mac_type == e1000_ce4100) {
1199 for (i = 0; i < 32; i++) {
1200 hw->phy_addr = i;
1201 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202
1203 if (tmp != 0 && tmp != 0xFF)
1204 break;
1205 }
1206
1207 if (i >= 32)
1208 goto err_eeprom;
1209 }
1210
1211 /* reset the hardware with the new settings */
1212 e1000_reset(adapter);
1213
1214 strcpy(netdev->name, "eth%d");
1215 err = register_netdev(netdev);
1216 if (err)
1217 goto err_register;
1218
1219 e1000_vlan_filter_on_off(adapter, false);
1220
1221 /* print bus type/speed/width info */
1222 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229 netdev->dev_addr);
1230
1231 /* carrier off reporting is important to ethtool even BEFORE open */
1232 netif_carrier_off(netdev);
1233
1234 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1235
1236 cards_found++;
1237 return 0;
1238
1239err_register:
1240err_eeprom:
1241 e1000_phy_hw_reset(hw);
1242
1243 if (hw->flash_address)
1244 iounmap(hw->flash_address);
1245 kfree(adapter->tx_ring);
1246 kfree(adapter->rx_ring);
1247err_dma:
1248err_sw_init:
1249err_mdio_ioremap:
1250 iounmap(hw->ce4100_gbe_mdio_base_virt);
1251 iounmap(hw->hw_addr);
1252err_ioremap:
1253 free_netdev(netdev);
1254err_alloc_etherdev:
1255 pci_release_selected_regions(pdev, bars);
1256err_pci_reg:
1257 pci_disable_device(pdev);
1258 return err;
1259}
1260
1261/**
1262 * e1000_remove - Device Removal Routine
1263 * @pdev: PCI device information struct
1264 *
1265 * e1000_remove is called by the PCI subsystem to alert the driver
1266 * that it should release a PCI device. That could be caused by a
1267 * Hot-Plug event, or because the driver is going to be removed from
1268 * memory.
1269 **/
1270static void e1000_remove(struct pci_dev *pdev)
1271{
1272 struct net_device *netdev = pci_get_drvdata(pdev);
1273 struct e1000_adapter *adapter = netdev_priv(netdev);
1274 struct e1000_hw *hw = &adapter->hw;
1275
1276 e1000_down_and_stop(adapter);
1277 e1000_release_manageability(adapter);
1278
1279 unregister_netdev(netdev);
1280
1281 e1000_phy_hw_reset(hw);
1282
1283 kfree(adapter->tx_ring);
1284 kfree(adapter->rx_ring);
1285
1286 if (hw->mac_type == e1000_ce4100)
1287 iounmap(hw->ce4100_gbe_mdio_base_virt);
1288 iounmap(hw->hw_addr);
1289 if (hw->flash_address)
1290 iounmap(hw->flash_address);
1291 pci_release_selected_regions(pdev, adapter->bars);
1292
1293 free_netdev(netdev);
1294
1295 pci_disable_device(pdev);
1296}
1297
1298/**
1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300 * @adapter: board private structure to initialize
1301 *
1302 * e1000_sw_init initializes the Adapter private data structure.
1303 * e1000_init_hw_struct MUST be called before this function
1304 **/
1305static int e1000_sw_init(struct e1000_adapter *adapter)
1306{
1307 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1308
1309 adapter->num_tx_queues = 1;
1310 adapter->num_rx_queues = 1;
1311
1312 if (e1000_alloc_queues(adapter)) {
1313 e_err(probe, "Unable to allocate memory for queues\n");
1314 return -ENOMEM;
1315 }
1316
1317 /* Explicitly disable IRQ since the NIC can be in any state. */
1318 e1000_irq_disable(adapter);
1319
1320 spin_lock_init(&adapter->stats_lock);
1321
1322 set_bit(__E1000_DOWN, &adapter->flags);
1323
1324 return 0;
1325}
1326
1327/**
1328 * e1000_alloc_queues - Allocate memory for all rings
1329 * @adapter: board private structure to initialize
1330 *
1331 * We allocate one ring per queue at run-time since we don't know the
1332 * number of queues at compile-time.
1333 **/
1334static int e1000_alloc_queues(struct e1000_adapter *adapter)
1335{
1336 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1337 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1338 if (!adapter->tx_ring)
1339 return -ENOMEM;
1340
1341 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1342 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1343 if (!adapter->rx_ring) {
1344 kfree(adapter->tx_ring);
1345 return -ENOMEM;
1346 }
1347
1348 return E1000_SUCCESS;
1349}
1350
1351/**
1352 * e1000_open - Called when a network interface is made active
1353 * @netdev: network interface device structure
1354 *
1355 * Returns 0 on success, negative value on failure
1356 *
1357 * The open entry point is called when a network interface is made
1358 * active by the system (IFF_UP). At this point all resources needed
1359 * for transmit and receive operations are allocated, the interrupt
1360 * handler is registered with the OS, the watchdog task is started,
1361 * and the stack is notified that the interface is ready.
1362 **/
1363static int e1000_open(struct net_device *netdev)
1364{
1365 struct e1000_adapter *adapter = netdev_priv(netdev);
1366 struct e1000_hw *hw = &adapter->hw;
1367 int err;
1368
1369 /* disallow open during test */
1370 if (test_bit(__E1000_TESTING, &adapter->flags))
1371 return -EBUSY;
1372
1373 netif_carrier_off(netdev);
1374
1375 /* allocate transmit descriptors */
1376 err = e1000_setup_all_tx_resources(adapter);
1377 if (err)
1378 goto err_setup_tx;
1379
1380 /* allocate receive descriptors */
1381 err = e1000_setup_all_rx_resources(adapter);
1382 if (err)
1383 goto err_setup_rx;
1384
1385 e1000_power_up_phy(adapter);
1386
1387 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1388 if ((hw->mng_cookie.status &
1389 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390 e1000_update_mng_vlan(adapter);
1391 }
1392
1393 /* before we allocate an interrupt, we must be ready to handle it.
1394 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395 * as soon as we call pci_request_irq, so we have to setup our
1396 * clean_rx handler before we do so.
1397 */
1398 e1000_configure(adapter);
1399
1400 err = e1000_request_irq(adapter);
1401 if (err)
1402 goto err_req_irq;
1403
1404 /* From here on the code is the same as e1000_up() */
1405 clear_bit(__E1000_DOWN, &adapter->flags);
1406
1407 napi_enable(&adapter->napi);
1408
1409 e1000_irq_enable(adapter);
1410
1411 netif_start_queue(netdev);
1412
1413 /* fire a link status change interrupt to start the watchdog */
1414 ew32(ICS, E1000_ICS_LSC);
1415
1416 return E1000_SUCCESS;
1417
1418err_req_irq:
1419 e1000_power_down_phy(adapter);
1420 e1000_free_all_rx_resources(adapter);
1421err_setup_rx:
1422 e1000_free_all_tx_resources(adapter);
1423err_setup_tx:
1424 e1000_reset(adapter);
1425
1426 return err;
1427}
1428
1429/**
1430 * e1000_close - Disables a network interface
1431 * @netdev: network interface device structure
1432 *
1433 * Returns 0, this is not allowed to fail
1434 *
1435 * The close entry point is called when an interface is de-activated
1436 * by the OS. The hardware is still under the drivers control, but
1437 * needs to be disabled. A global MAC reset is issued to stop the
1438 * hardware, and all transmit and receive resources are freed.
1439 **/
1440static int e1000_close(struct net_device *netdev)
1441{
1442 struct e1000_adapter *adapter = netdev_priv(netdev);
1443 struct e1000_hw *hw = &adapter->hw;
1444 int count = E1000_CHECK_RESET_COUNT;
1445
1446 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447 usleep_range(10000, 20000);
1448
1449 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1450 e1000_down(adapter);
1451 e1000_power_down_phy(adapter);
1452 e1000_free_irq(adapter);
1453
1454 e1000_free_all_tx_resources(adapter);
1455 e1000_free_all_rx_resources(adapter);
1456
1457 /* kill manageability vlan ID if supported, but not if a vlan with
1458 * the same ID is registered on the host OS (let 8021q kill it)
1459 */
1460 if ((hw->mng_cookie.status &
1461 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464 adapter->mng_vlan_id);
1465 }
1466
1467 return 0;
1468}
1469
1470/**
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472 * @adapter: address of board private structure
1473 * @start: address of beginning of memory
1474 * @len: length of memory
1475 **/
1476static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477 unsigned long len)
1478{
1479 struct e1000_hw *hw = &adapter->hw;
1480 unsigned long begin = (unsigned long)start;
1481 unsigned long end = begin + len;
1482
1483 /* First rev 82545 and 82546 need to not allow any memory
1484 * write location to cross 64k boundary due to errata 23
1485 */
1486 if (hw->mac_type == e1000_82545 ||
1487 hw->mac_type == e1000_ce4100 ||
1488 hw->mac_type == e1000_82546) {
1489 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1490 }
1491
1492 return true;
1493}
1494
1495/**
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497 * @adapter: board private structure
1498 * @txdr: tx descriptor ring (for a specific queue) to setup
1499 *
1500 * Return 0 on success, negative on failure
1501 **/
1502static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503 struct e1000_tx_ring *txdr)
1504{
1505 struct pci_dev *pdev = adapter->pdev;
1506 int size;
1507
1508 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1509 txdr->buffer_info = vzalloc(size);
1510 if (!txdr->buffer_info)
1511 return -ENOMEM;
1512
1513 /* round up to nearest 4K */
1514
1515 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516 txdr->size = ALIGN(txdr->size, 4096);
1517
1518 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519 GFP_KERNEL);
1520 if (!txdr->desc) {
1521setup_tx_desc_die:
1522 vfree(txdr->buffer_info);
1523 return -ENOMEM;
1524 }
1525
1526 /* Fix for errata 23, can't cross 64kB boundary */
1527 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528 void *olddesc = txdr->desc;
1529 dma_addr_t olddma = txdr->dma;
1530 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531 txdr->size, txdr->desc);
1532 /* Try again, without freeing the previous */
1533 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534 &txdr->dma, GFP_KERNEL);
1535 /* Failed allocation, critical failure */
1536 if (!txdr->desc) {
1537 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538 olddma);
1539 goto setup_tx_desc_die;
1540 }
1541
1542 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543 /* give up */
1544 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545 txdr->dma);
1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 olddma);
1548 e_err(probe, "Unable to allocate aligned memory "
1549 "for the transmit descriptor ring\n");
1550 vfree(txdr->buffer_info);
1551 return -ENOMEM;
1552 } else {
1553 /* Free old allocation, new allocation was successful */
1554 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555 olddma);
1556 }
1557 }
1558 memset(txdr->desc, 0, txdr->size);
1559
1560 txdr->next_to_use = 0;
1561 txdr->next_to_clean = 0;
1562
1563 return 0;
1564}
1565
1566/**
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568 * (Descriptors) for all queues
1569 * @adapter: board private structure
1570 *
1571 * Return 0 on success, negative on failure
1572 **/
1573int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574{
1575 int i, err = 0;
1576
1577 for (i = 0; i < adapter->num_tx_queues; i++) {
1578 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579 if (err) {
1580 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581 for (i-- ; i >= 0; i--)
1582 e1000_free_tx_resources(adapter,
1583 &adapter->tx_ring[i]);
1584 break;
1585 }
1586 }
1587
1588 return err;
1589}
1590
1591/**
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593 * @adapter: board private structure
1594 *
1595 * Configure the Tx unit of the MAC after a reset.
1596 **/
1597static void e1000_configure_tx(struct e1000_adapter *adapter)
1598{
1599 u64 tdba;
1600 struct e1000_hw *hw = &adapter->hw;
1601 u32 tdlen, tctl, tipg;
1602 u32 ipgr1, ipgr2;
1603
1604 /* Setup the HW Tx Head and Tail descriptor pointers */
1605
1606 switch (adapter->num_tx_queues) {
1607 case 1:
1608 default:
1609 tdba = adapter->tx_ring[0].dma;
1610 tdlen = adapter->tx_ring[0].count *
1611 sizeof(struct e1000_tx_desc);
1612 ew32(TDLEN, tdlen);
1613 ew32(TDBAH, (tdba >> 32));
1614 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615 ew32(TDT, 0);
1616 ew32(TDH, 0);
1617 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618 E1000_TDH : E1000_82542_TDH);
1619 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620 E1000_TDT : E1000_82542_TDT);
1621 break;
1622 }
1623
1624 /* Set the default values for the Tx Inter Packet Gap timer */
1625 if ((hw->media_type == e1000_media_type_fiber ||
1626 hw->media_type == e1000_media_type_internal_serdes))
1627 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628 else
1629 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630
1631 switch (hw->mac_type) {
1632 case e1000_82542_rev2_0:
1633 case e1000_82542_rev2_1:
1634 tipg = DEFAULT_82542_TIPG_IPGT;
1635 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637 break;
1638 default:
1639 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641 break;
1642 }
1643 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645 ew32(TIPG, tipg);
1646
1647 /* Set the Tx Interrupt Delay register */
1648
1649 ew32(TIDV, adapter->tx_int_delay);
1650 if (hw->mac_type >= e1000_82540)
1651 ew32(TADV, adapter->tx_abs_int_delay);
1652
1653 /* Program the Transmit Control Register */
1654
1655 tctl = er32(TCTL);
1656 tctl &= ~E1000_TCTL_CT;
1657 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659
1660 e1000_config_collision_dist(hw);
1661
1662 /* Setup Transmit Descriptor Settings for eop descriptor */
1663 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664
1665 /* only set IDE if we are delaying interrupts using the timers */
1666 if (adapter->tx_int_delay)
1667 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668
1669 if (hw->mac_type < e1000_82543)
1670 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671 else
1672 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674 /* Cache if we're 82544 running in PCI-X because we'll
1675 * need this to apply a workaround later in the send path.
1676 */
1677 if (hw->mac_type == e1000_82544 &&
1678 hw->bus_type == e1000_bus_type_pcix)
1679 adapter->pcix_82544 = true;
1680
1681 ew32(TCTL, tctl);
1682
1683}
1684
1685/**
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
1688 * @rxdr: rx descriptor ring (for a specific queue) to setup
1689 *
1690 * Returns 0 on success, negative on failure
1691 **/
1692static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693 struct e1000_rx_ring *rxdr)
1694{
1695 struct pci_dev *pdev = adapter->pdev;
1696 int size, desc_len;
1697
1698 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1699 rxdr->buffer_info = vzalloc(size);
1700 if (!rxdr->buffer_info)
1701 return -ENOMEM;
1702
1703 desc_len = sizeof(struct e1000_rx_desc);
1704
1705 /* Round up to nearest 4K */
1706
1707 rxdr->size = rxdr->count * desc_len;
1708 rxdr->size = ALIGN(rxdr->size, 4096);
1709
1710 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711 GFP_KERNEL);
1712 if (!rxdr->desc) {
1713setup_rx_desc_die:
1714 vfree(rxdr->buffer_info);
1715 return -ENOMEM;
1716 }
1717
1718 /* Fix for errata 23, can't cross 64kB boundary */
1719 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720 void *olddesc = rxdr->desc;
1721 dma_addr_t olddma = rxdr->dma;
1722 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723 rxdr->size, rxdr->desc);
1724 /* Try again, without freeing the previous */
1725 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726 &rxdr->dma, GFP_KERNEL);
1727 /* Failed allocation, critical failure */
1728 if (!rxdr->desc) {
1729 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730 olddma);
1731 goto setup_rx_desc_die;
1732 }
1733
1734 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735 /* give up */
1736 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737 rxdr->dma);
1738 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739 olddma);
1740 e_err(probe, "Unable to allocate aligned memory for "
1741 "the Rx descriptor ring\n");
1742 goto setup_rx_desc_die;
1743 } else {
1744 /* Free old allocation, new allocation was successful */
1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746 olddma);
1747 }
1748 }
1749 memset(rxdr->desc, 0, rxdr->size);
1750
1751 rxdr->next_to_clean = 0;
1752 rxdr->next_to_use = 0;
1753 rxdr->rx_skb_top = NULL;
1754
1755 return 0;
1756}
1757
1758/**
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760 * (Descriptors) for all queues
1761 * @adapter: board private structure
1762 *
1763 * Return 0 on success, negative on failure
1764 **/
1765int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1766{
1767 int i, err = 0;
1768
1769 for (i = 0; i < adapter->num_rx_queues; i++) {
1770 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771 if (err) {
1772 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773 for (i-- ; i >= 0; i--)
1774 e1000_free_rx_resources(adapter,
1775 &adapter->rx_ring[i]);
1776 break;
1777 }
1778 }
1779
1780 return err;
1781}
1782
1783/**
1784 * e1000_setup_rctl - configure the receive control registers
1785 * @adapter: Board private structure
1786 **/
1787static void e1000_setup_rctl(struct e1000_adapter *adapter)
1788{
1789 struct e1000_hw *hw = &adapter->hw;
1790 u32 rctl;
1791
1792 rctl = er32(RCTL);
1793
1794 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795
1796 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797 E1000_RCTL_RDMTS_HALF |
1798 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1799
1800 if (hw->tbi_compatibility_on == 1)
1801 rctl |= E1000_RCTL_SBP;
1802 else
1803 rctl &= ~E1000_RCTL_SBP;
1804
1805 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806 rctl &= ~E1000_RCTL_LPE;
1807 else
1808 rctl |= E1000_RCTL_LPE;
1809
1810 /* Setup buffer sizes */
1811 rctl &= ~E1000_RCTL_SZ_4096;
1812 rctl |= E1000_RCTL_BSEX;
1813 switch (adapter->rx_buffer_len) {
1814 case E1000_RXBUFFER_2048:
1815 default:
1816 rctl |= E1000_RCTL_SZ_2048;
1817 rctl &= ~E1000_RCTL_BSEX;
1818 break;
1819 case E1000_RXBUFFER_4096:
1820 rctl |= E1000_RCTL_SZ_4096;
1821 break;
1822 case E1000_RXBUFFER_8192:
1823 rctl |= E1000_RCTL_SZ_8192;
1824 break;
1825 case E1000_RXBUFFER_16384:
1826 rctl |= E1000_RCTL_SZ_16384;
1827 break;
1828 }
1829
1830 /* This is useful for sniffing bad packets. */
1831 if (adapter->netdev->features & NETIF_F_RXALL) {
1832 /* UPE and MPE will be handled by normal PROMISC logic
1833 * in e1000e_set_rx_mode
1834 */
1835 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838
1839 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840 E1000_RCTL_DPF | /* Allow filtered pause */
1841 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843 * and that breaks VLANs.
1844 */
1845 }
1846
1847 ew32(RCTL, rctl);
1848}
1849
1850/**
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1853 *
1854 * Configure the Rx unit of the MAC after a reset.
1855 **/
1856static void e1000_configure_rx(struct e1000_adapter *adapter)
1857{
1858 u64 rdba;
1859 struct e1000_hw *hw = &adapter->hw;
1860 u32 rdlen, rctl, rxcsum;
1861
1862 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863 rdlen = adapter->rx_ring[0].count *
1864 sizeof(struct e1000_rx_desc);
1865 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867 } else {
1868 rdlen = adapter->rx_ring[0].count *
1869 sizeof(struct e1000_rx_desc);
1870 adapter->clean_rx = e1000_clean_rx_irq;
1871 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872 }
1873
1874 /* disable receives while setting up the descriptors */
1875 rctl = er32(RCTL);
1876 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877
1878 /* set the Receive Delay Timer Register */
1879 ew32(RDTR, adapter->rx_int_delay);
1880
1881 if (hw->mac_type >= e1000_82540) {
1882 ew32(RADV, adapter->rx_abs_int_delay);
1883 if (adapter->itr_setting != 0)
1884 ew32(ITR, 1000000000 / (adapter->itr * 256));
1885 }
1886
1887 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1888 * the Base and Length of the Rx Descriptor Ring
1889 */
1890 switch (adapter->num_rx_queues) {
1891 case 1:
1892 default:
1893 rdba = adapter->rx_ring[0].dma;
1894 ew32(RDLEN, rdlen);
1895 ew32(RDBAH, (rdba >> 32));
1896 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897 ew32(RDT, 0);
1898 ew32(RDH, 0);
1899 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900 E1000_RDH : E1000_82542_RDH);
1901 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902 E1000_RDT : E1000_82542_RDT);
1903 break;
1904 }
1905
1906 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907 if (hw->mac_type >= e1000_82543) {
1908 rxcsum = er32(RXCSUM);
1909 if (adapter->rx_csum)
1910 rxcsum |= E1000_RXCSUM_TUOFL;
1911 else
1912 /* don't need to clear IPPCSE as it defaults to 0 */
1913 rxcsum &= ~E1000_RXCSUM_TUOFL;
1914 ew32(RXCSUM, rxcsum);
1915 }
1916
1917 /* Enable Receives */
1918 ew32(RCTL, rctl | E1000_RCTL_EN);
1919}
1920
1921/**
1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1923 * @adapter: board private structure
1924 * @tx_ring: Tx descriptor ring for a specific queue
1925 *
1926 * Free all transmit software resources
1927 **/
1928static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929 struct e1000_tx_ring *tx_ring)
1930{
1931 struct pci_dev *pdev = adapter->pdev;
1932
1933 e1000_clean_tx_ring(adapter, tx_ring);
1934
1935 vfree(tx_ring->buffer_info);
1936 tx_ring->buffer_info = NULL;
1937
1938 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939 tx_ring->dma);
1940
1941 tx_ring->desc = NULL;
1942}
1943
1944/**
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946 * @adapter: board private structure
1947 *
1948 * Free all transmit software resources
1949 **/
1950void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1951{
1952 int i;
1953
1954 for (i = 0; i < adapter->num_tx_queues; i++)
1955 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1956}
1957
1958static void
1959e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960 struct e1000_tx_buffer *buffer_info)
1961{
1962 if (buffer_info->dma) {
1963 if (buffer_info->mapped_as_page)
1964 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965 buffer_info->length, DMA_TO_DEVICE);
1966 else
1967 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968 buffer_info->length,
1969 DMA_TO_DEVICE);
1970 buffer_info->dma = 0;
1971 }
1972 if (buffer_info->skb) {
1973 dev_kfree_skb_any(buffer_info->skb);
1974 buffer_info->skb = NULL;
1975 }
1976 buffer_info->time_stamp = 0;
1977 /* buffer_info must be completely set up in the transmit path */
1978}
1979
1980/**
1981 * e1000_clean_tx_ring - Free Tx Buffers
1982 * @adapter: board private structure
1983 * @tx_ring: ring to be cleaned
1984 **/
1985static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986 struct e1000_tx_ring *tx_ring)
1987{
1988 struct e1000_hw *hw = &adapter->hw;
1989 struct e1000_tx_buffer *buffer_info;
1990 unsigned long size;
1991 unsigned int i;
1992
1993 /* Free all the Tx ring sk_buffs */
1994
1995 for (i = 0; i < tx_ring->count; i++) {
1996 buffer_info = &tx_ring->buffer_info[i];
1997 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998 }
1999
2000 netdev_reset_queue(adapter->netdev);
2001 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2002 memset(tx_ring->buffer_info, 0, size);
2003
2004 /* Zero out the descriptor ring */
2005
2006 memset(tx_ring->desc, 0, tx_ring->size);
2007
2008 tx_ring->next_to_use = 0;
2009 tx_ring->next_to_clean = 0;
2010 tx_ring->last_tx_tso = false;
2011
2012 writel(0, hw->hw_addr + tx_ring->tdh);
2013 writel(0, hw->hw_addr + tx_ring->tdt);
2014}
2015
2016/**
2017 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018 * @adapter: board private structure
2019 **/
2020static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2021{
2022 int i;
2023
2024 for (i = 0; i < adapter->num_tx_queues; i++)
2025 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2026}
2027
2028/**
2029 * e1000_free_rx_resources - Free Rx Resources
2030 * @adapter: board private structure
2031 * @rx_ring: ring to clean the resources from
2032 *
2033 * Free all receive software resources
2034 **/
2035static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036 struct e1000_rx_ring *rx_ring)
2037{
2038 struct pci_dev *pdev = adapter->pdev;
2039
2040 e1000_clean_rx_ring(adapter, rx_ring);
2041
2042 vfree(rx_ring->buffer_info);
2043 rx_ring->buffer_info = NULL;
2044
2045 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046 rx_ring->dma);
2047
2048 rx_ring->desc = NULL;
2049}
2050
2051/**
2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053 * @adapter: board private structure
2054 *
2055 * Free all receive software resources
2056 **/
2057void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2058{
2059 int i;
2060
2061 for (i = 0; i < adapter->num_rx_queues; i++)
2062 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063}
2064
2065#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067{
2068 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070}
2071
2072static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073{
2074 unsigned int len = e1000_frag_len(a);
2075 u8 *data = netdev_alloc_frag(len);
2076
2077 if (likely(data))
2078 data += E1000_HEADROOM;
2079 return data;
2080}
2081
2082/**
2083 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2084 * @adapter: board private structure
2085 * @rx_ring: ring to free buffers from
2086 **/
2087static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2088 struct e1000_rx_ring *rx_ring)
2089{
2090 struct e1000_hw *hw = &adapter->hw;
2091 struct e1000_rx_buffer *buffer_info;
2092 struct pci_dev *pdev = adapter->pdev;
2093 unsigned long size;
2094 unsigned int i;
2095
2096 /* Free all the Rx netfrags */
2097 for (i = 0; i < rx_ring->count; i++) {
2098 buffer_info = &rx_ring->buffer_info[i];
2099 if (adapter->clean_rx == e1000_clean_rx_irq) {
2100 if (buffer_info->dma)
2101 dma_unmap_single(&pdev->dev, buffer_info->dma,
2102 adapter->rx_buffer_len,
2103 DMA_FROM_DEVICE);
2104 if (buffer_info->rxbuf.data) {
2105 skb_free_frag(buffer_info->rxbuf.data);
2106 buffer_info->rxbuf.data = NULL;
2107 }
2108 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109 if (buffer_info->dma)
2110 dma_unmap_page(&pdev->dev, buffer_info->dma,
2111 adapter->rx_buffer_len,
2112 DMA_FROM_DEVICE);
2113 if (buffer_info->rxbuf.page) {
2114 put_page(buffer_info->rxbuf.page);
2115 buffer_info->rxbuf.page = NULL;
2116 }
2117 }
2118
2119 buffer_info->dma = 0;
2120 }
2121
2122 /* there also may be some cached data from a chained receive */
2123 napi_free_frags(&adapter->napi);
2124 rx_ring->rx_skb_top = NULL;
2125
2126 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2127 memset(rx_ring->buffer_info, 0, size);
2128
2129 /* Zero out the descriptor ring */
2130 memset(rx_ring->desc, 0, rx_ring->size);
2131
2132 rx_ring->next_to_clean = 0;
2133 rx_ring->next_to_use = 0;
2134
2135 writel(0, hw->hw_addr + rx_ring->rdh);
2136 writel(0, hw->hw_addr + rx_ring->rdt);
2137}
2138
2139/**
2140 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2141 * @adapter: board private structure
2142 **/
2143static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2144{
2145 int i;
2146
2147 for (i = 0; i < adapter->num_rx_queues; i++)
2148 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2149}
2150
2151/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2152 * and memory write and invalidate disabled for certain operations
2153 */
2154static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2155{
2156 struct e1000_hw *hw = &adapter->hw;
2157 struct net_device *netdev = adapter->netdev;
2158 u32 rctl;
2159
2160 e1000_pci_clear_mwi(hw);
2161
2162 rctl = er32(RCTL);
2163 rctl |= E1000_RCTL_RST;
2164 ew32(RCTL, rctl);
2165 E1000_WRITE_FLUSH();
2166 mdelay(5);
2167
2168 if (netif_running(netdev))
2169 e1000_clean_all_rx_rings(adapter);
2170}
2171
2172static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2173{
2174 struct e1000_hw *hw = &adapter->hw;
2175 struct net_device *netdev = adapter->netdev;
2176 u32 rctl;
2177
2178 rctl = er32(RCTL);
2179 rctl &= ~E1000_RCTL_RST;
2180 ew32(RCTL, rctl);
2181 E1000_WRITE_FLUSH();
2182 mdelay(5);
2183
2184 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2185 e1000_pci_set_mwi(hw);
2186
2187 if (netif_running(netdev)) {
2188 /* No need to loop, because 82542 supports only 1 queue */
2189 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2190 e1000_configure_rx(adapter);
2191 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2192 }
2193}
2194
2195/**
2196 * e1000_set_mac - Change the Ethernet Address of the NIC
2197 * @netdev: network interface device structure
2198 * @p: pointer to an address structure
2199 *
2200 * Returns 0 on success, negative on failure
2201 **/
2202static int e1000_set_mac(struct net_device *netdev, void *p)
2203{
2204 struct e1000_adapter *adapter = netdev_priv(netdev);
2205 struct e1000_hw *hw = &adapter->hw;
2206 struct sockaddr *addr = p;
2207
2208 if (!is_valid_ether_addr(addr->sa_data))
2209 return -EADDRNOTAVAIL;
2210
2211 /* 82542 2.0 needs to be in reset to write receive address registers */
2212
2213 if (hw->mac_type == e1000_82542_rev2_0)
2214 e1000_enter_82542_rst(adapter);
2215
2216 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2217 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2218
2219 e1000_rar_set(hw, hw->mac_addr, 0);
2220
2221 if (hw->mac_type == e1000_82542_rev2_0)
2222 e1000_leave_82542_rst(adapter);
2223
2224 return 0;
2225}
2226
2227/**
2228 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2229 * @netdev: network interface device structure
2230 *
2231 * The set_rx_mode entry point is called whenever the unicast or multicast
2232 * address lists or the network interface flags are updated. This routine is
2233 * responsible for configuring the hardware for proper unicast, multicast,
2234 * promiscuous mode, and all-multi behavior.
2235 **/
2236static void e1000_set_rx_mode(struct net_device *netdev)
2237{
2238 struct e1000_adapter *adapter = netdev_priv(netdev);
2239 struct e1000_hw *hw = &adapter->hw;
2240 struct netdev_hw_addr *ha;
2241 bool use_uc = false;
2242 u32 rctl;
2243 u32 hash_value;
2244 int i, rar_entries = E1000_RAR_ENTRIES;
2245 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2246 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2247
2248 if (!mcarray)
2249 return;
2250
2251 /* Check for Promiscuous and All Multicast modes */
2252
2253 rctl = er32(RCTL);
2254
2255 if (netdev->flags & IFF_PROMISC) {
2256 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2257 rctl &= ~E1000_RCTL_VFE;
2258 } else {
2259 if (netdev->flags & IFF_ALLMULTI)
2260 rctl |= E1000_RCTL_MPE;
2261 else
2262 rctl &= ~E1000_RCTL_MPE;
2263 /* Enable VLAN filter if there is a VLAN */
2264 if (e1000_vlan_used(adapter))
2265 rctl |= E1000_RCTL_VFE;
2266 }
2267
2268 if (netdev_uc_count(netdev) > rar_entries - 1) {
2269 rctl |= E1000_RCTL_UPE;
2270 } else if (!(netdev->flags & IFF_PROMISC)) {
2271 rctl &= ~E1000_RCTL_UPE;
2272 use_uc = true;
2273 }
2274
2275 ew32(RCTL, rctl);
2276
2277 /* 82542 2.0 needs to be in reset to write receive address registers */
2278
2279 if (hw->mac_type == e1000_82542_rev2_0)
2280 e1000_enter_82542_rst(adapter);
2281
2282 /* load the first 14 addresses into the exact filters 1-14. Unicast
2283 * addresses take precedence to avoid disabling unicast filtering
2284 * when possible.
2285 *
2286 * RAR 0 is used for the station MAC address
2287 * if there are not 14 addresses, go ahead and clear the filters
2288 */
2289 i = 1;
2290 if (use_uc)
2291 netdev_for_each_uc_addr(ha, netdev) {
2292 if (i == rar_entries)
2293 break;
2294 e1000_rar_set(hw, ha->addr, i++);
2295 }
2296
2297 netdev_for_each_mc_addr(ha, netdev) {
2298 if (i == rar_entries) {
2299 /* load any remaining addresses into the hash table */
2300 u32 hash_reg, hash_bit, mta;
2301 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2302 hash_reg = (hash_value >> 5) & 0x7F;
2303 hash_bit = hash_value & 0x1F;
2304 mta = (1 << hash_bit);
2305 mcarray[hash_reg] |= mta;
2306 } else {
2307 e1000_rar_set(hw, ha->addr, i++);
2308 }
2309 }
2310
2311 for (; i < rar_entries; i++) {
2312 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2313 E1000_WRITE_FLUSH();
2314 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2315 E1000_WRITE_FLUSH();
2316 }
2317
2318 /* write the hash table completely, write from bottom to avoid
2319 * both stupid write combining chipsets, and flushing each write
2320 */
2321 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2322 /* If we are on an 82544 has an errata where writing odd
2323 * offsets overwrites the previous even offset, but writing
2324 * backwards over the range solves the issue by always
2325 * writing the odd offset first
2326 */
2327 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2328 }
2329 E1000_WRITE_FLUSH();
2330
2331 if (hw->mac_type == e1000_82542_rev2_0)
2332 e1000_leave_82542_rst(adapter);
2333
2334 kfree(mcarray);
2335}
2336
2337/**
2338 * e1000_update_phy_info_task - get phy info
2339 * @work: work struct contained inside adapter struct
2340 *
2341 * Need to wait a few seconds after link up to get diagnostic information from
2342 * the phy
2343 */
2344static void e1000_update_phy_info_task(struct work_struct *work)
2345{
2346 struct e1000_adapter *adapter = container_of(work,
2347 struct e1000_adapter,
2348 phy_info_task.work);
2349
2350 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2351}
2352
2353/**
2354 * e1000_82547_tx_fifo_stall_task - task to complete work
2355 * @work: work struct contained inside adapter struct
2356 **/
2357static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2358{
2359 struct e1000_adapter *adapter = container_of(work,
2360 struct e1000_adapter,
2361 fifo_stall_task.work);
2362 struct e1000_hw *hw = &adapter->hw;
2363 struct net_device *netdev = adapter->netdev;
2364 u32 tctl;
2365
2366 if (atomic_read(&adapter->tx_fifo_stall)) {
2367 if ((er32(TDT) == er32(TDH)) &&
2368 (er32(TDFT) == er32(TDFH)) &&
2369 (er32(TDFTS) == er32(TDFHS))) {
2370 tctl = er32(TCTL);
2371 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2372 ew32(TDFT, adapter->tx_head_addr);
2373 ew32(TDFH, adapter->tx_head_addr);
2374 ew32(TDFTS, adapter->tx_head_addr);
2375 ew32(TDFHS, adapter->tx_head_addr);
2376 ew32(TCTL, tctl);
2377 E1000_WRITE_FLUSH();
2378
2379 adapter->tx_fifo_head = 0;
2380 atomic_set(&adapter->tx_fifo_stall, 0);
2381 netif_wake_queue(netdev);
2382 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2383 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2384 }
2385 }
2386}
2387
2388bool e1000_has_link(struct e1000_adapter *adapter)
2389{
2390 struct e1000_hw *hw = &adapter->hw;
2391 bool link_active = false;
2392
2393 /* get_link_status is set on LSC (link status) interrupt or rx
2394 * sequence error interrupt (except on intel ce4100).
2395 * get_link_status will stay false until the
2396 * e1000_check_for_link establishes link for copper adapters
2397 * ONLY
2398 */
2399 switch (hw->media_type) {
2400 case e1000_media_type_copper:
2401 if (hw->mac_type == e1000_ce4100)
2402 hw->get_link_status = 1;
2403 if (hw->get_link_status) {
2404 e1000_check_for_link(hw);
2405 link_active = !hw->get_link_status;
2406 } else {
2407 link_active = true;
2408 }
2409 break;
2410 case e1000_media_type_fiber:
2411 e1000_check_for_link(hw);
2412 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2413 break;
2414 case e1000_media_type_internal_serdes:
2415 e1000_check_for_link(hw);
2416 link_active = hw->serdes_has_link;
2417 break;
2418 default:
2419 break;
2420 }
2421
2422 return link_active;
2423}
2424
2425/**
2426 * e1000_watchdog - work function
2427 * @work: work struct contained inside adapter struct
2428 **/
2429static void e1000_watchdog(struct work_struct *work)
2430{
2431 struct e1000_adapter *adapter = container_of(work,
2432 struct e1000_adapter,
2433 watchdog_task.work);
2434 struct e1000_hw *hw = &adapter->hw;
2435 struct net_device *netdev = adapter->netdev;
2436 struct e1000_tx_ring *txdr = adapter->tx_ring;
2437 u32 link, tctl;
2438
2439 link = e1000_has_link(adapter);
2440 if ((netif_carrier_ok(netdev)) && link)
2441 goto link_up;
2442
2443 if (link) {
2444 if (!netif_carrier_ok(netdev)) {
2445 u32 ctrl;
2446 bool txb2b = true;
2447 /* update snapshot of PHY registers on LSC */
2448 e1000_get_speed_and_duplex(hw,
2449 &adapter->link_speed,
2450 &adapter->link_duplex);
2451
2452 ctrl = er32(CTRL);
2453 pr_info("%s NIC Link is Up %d Mbps %s, "
2454 "Flow Control: %s\n",
2455 netdev->name,
2456 adapter->link_speed,
2457 adapter->link_duplex == FULL_DUPLEX ?
2458 "Full Duplex" : "Half Duplex",
2459 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2460 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2461 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2462 E1000_CTRL_TFCE) ? "TX" : "None")));
2463
2464 /* adjust timeout factor according to speed/duplex */
2465 adapter->tx_timeout_factor = 1;
2466 switch (adapter->link_speed) {
2467 case SPEED_10:
2468 txb2b = false;
2469 adapter->tx_timeout_factor = 16;
2470 break;
2471 case SPEED_100:
2472 txb2b = false;
2473 /* maybe add some timeout factor ? */
2474 break;
2475 }
2476
2477 /* enable transmits in the hardware */
2478 tctl = er32(TCTL);
2479 tctl |= E1000_TCTL_EN;
2480 ew32(TCTL, tctl);
2481
2482 netif_carrier_on(netdev);
2483 if (!test_bit(__E1000_DOWN, &adapter->flags))
2484 schedule_delayed_work(&adapter->phy_info_task,
2485 2 * HZ);
2486 adapter->smartspeed = 0;
2487 }
2488 } else {
2489 if (netif_carrier_ok(netdev)) {
2490 adapter->link_speed = 0;
2491 adapter->link_duplex = 0;
2492 pr_info("%s NIC Link is Down\n",
2493 netdev->name);
2494 netif_carrier_off(netdev);
2495
2496 if (!test_bit(__E1000_DOWN, &adapter->flags))
2497 schedule_delayed_work(&adapter->phy_info_task,
2498 2 * HZ);
2499 }
2500
2501 e1000_smartspeed(adapter);
2502 }
2503
2504link_up:
2505 e1000_update_stats(adapter);
2506
2507 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2508 adapter->tpt_old = adapter->stats.tpt;
2509 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2510 adapter->colc_old = adapter->stats.colc;
2511
2512 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2513 adapter->gorcl_old = adapter->stats.gorcl;
2514 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2515 adapter->gotcl_old = adapter->stats.gotcl;
2516
2517 e1000_update_adaptive(hw);
2518
2519 if (!netif_carrier_ok(netdev)) {
2520 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2521 /* We've lost link, so the controller stops DMA,
2522 * but we've got queued Tx work that's never going
2523 * to get done, so reset controller to flush Tx.
2524 * (Do the reset outside of interrupt context).
2525 */
2526 adapter->tx_timeout_count++;
2527 schedule_work(&adapter->reset_task);
2528 /* exit immediately since reset is imminent */
2529 return;
2530 }
2531 }
2532
2533 /* Simple mode for Interrupt Throttle Rate (ITR) */
2534 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2535 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2536 * Total asymmetrical Tx or Rx gets ITR=8000;
2537 * everyone else is between 2000-8000.
2538 */
2539 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2540 u32 dif = (adapter->gotcl > adapter->gorcl ?
2541 adapter->gotcl - adapter->gorcl :
2542 adapter->gorcl - adapter->gotcl) / 10000;
2543 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2544
2545 ew32(ITR, 1000000000 / (itr * 256));
2546 }
2547
2548 /* Cause software interrupt to ensure rx ring is cleaned */
2549 ew32(ICS, E1000_ICS_RXDMT0);
2550
2551 /* Force detection of hung controller every watchdog period */
2552 adapter->detect_tx_hung = true;
2553
2554 /* Reschedule the task */
2555 if (!test_bit(__E1000_DOWN, &adapter->flags))
2556 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2557}
2558
2559enum latency_range {
2560 lowest_latency = 0,
2561 low_latency = 1,
2562 bulk_latency = 2,
2563 latency_invalid = 255
2564};
2565
2566/**
2567 * e1000_update_itr - update the dynamic ITR value based on statistics
2568 * @adapter: pointer to adapter
2569 * @itr_setting: current adapter->itr
2570 * @packets: the number of packets during this measurement interval
2571 * @bytes: the number of bytes during this measurement interval
2572 *
2573 * Stores a new ITR value based on packets and byte
2574 * counts during the last interrupt. The advantage of per interrupt
2575 * computation is faster updates and more accurate ITR for the current
2576 * traffic pattern. Constants in this function were computed
2577 * based on theoretical maximum wire speed and thresholds were set based
2578 * on testing data as well as attempting to minimize response time
2579 * while increasing bulk throughput.
2580 * this functionality is controlled by the InterruptThrottleRate module
2581 * parameter (see e1000_param.c)
2582 **/
2583static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2584 u16 itr_setting, int packets, int bytes)
2585{
2586 unsigned int retval = itr_setting;
2587 struct e1000_hw *hw = &adapter->hw;
2588
2589 if (unlikely(hw->mac_type < e1000_82540))
2590 goto update_itr_done;
2591
2592 if (packets == 0)
2593 goto update_itr_done;
2594
2595 switch (itr_setting) {
2596 case lowest_latency:
2597 /* jumbo frames get bulk treatment*/
2598 if (bytes/packets > 8000)
2599 retval = bulk_latency;
2600 else if ((packets < 5) && (bytes > 512))
2601 retval = low_latency;
2602 break;
2603 case low_latency: /* 50 usec aka 20000 ints/s */
2604 if (bytes > 10000) {
2605 /* jumbo frames need bulk latency setting */
2606 if (bytes/packets > 8000)
2607 retval = bulk_latency;
2608 else if ((packets < 10) || ((bytes/packets) > 1200))
2609 retval = bulk_latency;
2610 else if ((packets > 35))
2611 retval = lowest_latency;
2612 } else if (bytes/packets > 2000)
2613 retval = bulk_latency;
2614 else if (packets <= 2 && bytes < 512)
2615 retval = lowest_latency;
2616 break;
2617 case bulk_latency: /* 250 usec aka 4000 ints/s */
2618 if (bytes > 25000) {
2619 if (packets > 35)
2620 retval = low_latency;
2621 } else if (bytes < 6000) {
2622 retval = low_latency;
2623 }
2624 break;
2625 }
2626
2627update_itr_done:
2628 return retval;
2629}
2630
2631static void e1000_set_itr(struct e1000_adapter *adapter)
2632{
2633 struct e1000_hw *hw = &adapter->hw;
2634 u16 current_itr;
2635 u32 new_itr = adapter->itr;
2636
2637 if (unlikely(hw->mac_type < e1000_82540))
2638 return;
2639
2640 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641 if (unlikely(adapter->link_speed != SPEED_1000)) {
2642 current_itr = 0;
2643 new_itr = 4000;
2644 goto set_itr_now;
2645 }
2646
2647 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2648 adapter->total_tx_packets,
2649 adapter->total_tx_bytes);
2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2652 adapter->tx_itr = low_latency;
2653
2654 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2655 adapter->total_rx_packets,
2656 adapter->total_rx_bytes);
2657 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2658 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2659 adapter->rx_itr = low_latency;
2660
2661 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2662
2663 switch (current_itr) {
2664 /* counts and packets in update_itr are dependent on these numbers */
2665 case lowest_latency:
2666 new_itr = 70000;
2667 break;
2668 case low_latency:
2669 new_itr = 20000; /* aka hwitr = ~200 */
2670 break;
2671 case bulk_latency:
2672 new_itr = 4000;
2673 break;
2674 default:
2675 break;
2676 }
2677
2678set_itr_now:
2679 if (new_itr != adapter->itr) {
2680 /* this attempts to bias the interrupt rate towards Bulk
2681 * by adding intermediate steps when interrupt rate is
2682 * increasing
2683 */
2684 new_itr = new_itr > adapter->itr ?
2685 min(adapter->itr + (new_itr >> 2), new_itr) :
2686 new_itr;
2687 adapter->itr = new_itr;
2688 ew32(ITR, 1000000000 / (new_itr * 256));
2689 }
2690}
2691
2692#define E1000_TX_FLAGS_CSUM 0x00000001
2693#define E1000_TX_FLAGS_VLAN 0x00000002
2694#define E1000_TX_FLAGS_TSO 0x00000004
2695#define E1000_TX_FLAGS_IPV4 0x00000008
2696#define E1000_TX_FLAGS_NO_FCS 0x00000010
2697#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2698#define E1000_TX_FLAGS_VLAN_SHIFT 16
2699
2700static int e1000_tso(struct e1000_adapter *adapter,
2701 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2702 __be16 protocol)
2703{
2704 struct e1000_context_desc *context_desc;
2705 struct e1000_tx_buffer *buffer_info;
2706 unsigned int i;
2707 u32 cmd_length = 0;
2708 u16 ipcse = 0, tucse, mss;
2709 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2710
2711 if (skb_is_gso(skb)) {
2712 int err;
2713
2714 err = skb_cow_head(skb, 0);
2715 if (err < 0)
2716 return err;
2717
2718 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2719 mss = skb_shinfo(skb)->gso_size;
2720 if (protocol == htons(ETH_P_IP)) {
2721 struct iphdr *iph = ip_hdr(skb);
2722 iph->tot_len = 0;
2723 iph->check = 0;
2724 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725 iph->daddr, 0,
2726 IPPROTO_TCP,
2727 0);
2728 cmd_length = E1000_TXD_CMD_IP;
2729 ipcse = skb_transport_offset(skb) - 1;
2730 } else if (skb_is_gso_v6(skb)) {
2731 ipv6_hdr(skb)->payload_len = 0;
2732 tcp_hdr(skb)->check =
2733 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734 &ipv6_hdr(skb)->daddr,
2735 0, IPPROTO_TCP, 0);
2736 ipcse = 0;
2737 }
2738 ipcss = skb_network_offset(skb);
2739 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2740 tucss = skb_transport_offset(skb);
2741 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2742 tucse = 0;
2743
2744 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2745 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2746
2747 i = tx_ring->next_to_use;
2748 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2749 buffer_info = &tx_ring->buffer_info[i];
2750
2751 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2752 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2753 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2754 context_desc->upper_setup.tcp_fields.tucss = tucss;
2755 context_desc->upper_setup.tcp_fields.tucso = tucso;
2756 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2758 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760
2761 buffer_info->time_stamp = jiffies;
2762 buffer_info->next_to_watch = i;
2763
2764 if (++i == tx_ring->count)
2765 i = 0;
2766
2767 tx_ring->next_to_use = i;
2768
2769 return true;
2770 }
2771 return false;
2772}
2773
2774static bool e1000_tx_csum(struct e1000_adapter *adapter,
2775 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2776 __be16 protocol)
2777{
2778 struct e1000_context_desc *context_desc;
2779 struct e1000_tx_buffer *buffer_info;
2780 unsigned int i;
2781 u8 css;
2782 u32 cmd_len = E1000_TXD_CMD_DEXT;
2783
2784 if (skb->ip_summed != CHECKSUM_PARTIAL)
2785 return false;
2786
2787 switch (protocol) {
2788 case cpu_to_be16(ETH_P_IP):
2789 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2790 cmd_len |= E1000_TXD_CMD_TCP;
2791 break;
2792 case cpu_to_be16(ETH_P_IPV6):
2793 /* XXX not handling all IPV6 headers */
2794 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2795 cmd_len |= E1000_TXD_CMD_TCP;
2796 break;
2797 default:
2798 if (unlikely(net_ratelimit()))
2799 e_warn(drv, "checksum_partial proto=%x!\n",
2800 skb->protocol);
2801 break;
2802 }
2803
2804 css = skb_checksum_start_offset(skb);
2805
2806 i = tx_ring->next_to_use;
2807 buffer_info = &tx_ring->buffer_info[i];
2808 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2809
2810 context_desc->lower_setup.ip_config = 0;
2811 context_desc->upper_setup.tcp_fields.tucss = css;
2812 context_desc->upper_setup.tcp_fields.tucso =
2813 css + skb->csum_offset;
2814 context_desc->upper_setup.tcp_fields.tucse = 0;
2815 context_desc->tcp_seg_setup.data = 0;
2816 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2817
2818 buffer_info->time_stamp = jiffies;
2819 buffer_info->next_to_watch = i;
2820
2821 if (unlikely(++i == tx_ring->count))
2822 i = 0;
2823
2824 tx_ring->next_to_use = i;
2825
2826 return true;
2827}
2828
2829#define E1000_MAX_TXD_PWR 12
2830#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2831
2832static int e1000_tx_map(struct e1000_adapter *adapter,
2833 struct e1000_tx_ring *tx_ring,
2834 struct sk_buff *skb, unsigned int first,
2835 unsigned int max_per_txd, unsigned int nr_frags,
2836 unsigned int mss)
2837{
2838 struct e1000_hw *hw = &adapter->hw;
2839 struct pci_dev *pdev = adapter->pdev;
2840 struct e1000_tx_buffer *buffer_info;
2841 unsigned int len = skb_headlen(skb);
2842 unsigned int offset = 0, size, count = 0, i;
2843 unsigned int f, bytecount, segs;
2844
2845 i = tx_ring->next_to_use;
2846
2847 while (len) {
2848 buffer_info = &tx_ring->buffer_info[i];
2849 size = min(len, max_per_txd);
2850 /* Workaround for Controller erratum --
2851 * descriptor for non-tso packet in a linear SKB that follows a
2852 * tso gets written back prematurely before the data is fully
2853 * DMA'd to the controller
2854 */
2855 if (!skb->data_len && tx_ring->last_tx_tso &&
2856 !skb_is_gso(skb)) {
2857 tx_ring->last_tx_tso = false;
2858 size -= 4;
2859 }
2860
2861 /* Workaround for premature desc write-backs
2862 * in TSO mode. Append 4-byte sentinel desc
2863 */
2864 if (unlikely(mss && !nr_frags && size == len && size > 8))
2865 size -= 4;
2866 /* work-around for errata 10 and it applies
2867 * to all controllers in PCI-X mode
2868 * The fix is to make sure that the first descriptor of a
2869 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2870 */
2871 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2872 (size > 2015) && count == 0))
2873 size = 2015;
2874
2875 /* Workaround for potential 82544 hang in PCI-X. Avoid
2876 * terminating buffers within evenly-aligned dwords.
2877 */
2878 if (unlikely(adapter->pcix_82544 &&
2879 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2880 size > 4))
2881 size -= 4;
2882
2883 buffer_info->length = size;
2884 /* set time_stamp *before* dma to help avoid a possible race */
2885 buffer_info->time_stamp = jiffies;
2886 buffer_info->mapped_as_page = false;
2887 buffer_info->dma = dma_map_single(&pdev->dev,
2888 skb->data + offset,
2889 size, DMA_TO_DEVICE);
2890 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2891 goto dma_error;
2892 buffer_info->next_to_watch = i;
2893
2894 len -= size;
2895 offset += size;
2896 count++;
2897 if (len) {
2898 i++;
2899 if (unlikely(i == tx_ring->count))
2900 i = 0;
2901 }
2902 }
2903
2904 for (f = 0; f < nr_frags; f++) {
2905 const struct skb_frag_struct *frag;
2906
2907 frag = &skb_shinfo(skb)->frags[f];
2908 len = skb_frag_size(frag);
2909 offset = 0;
2910
2911 while (len) {
2912 unsigned long bufend;
2913 i++;
2914 if (unlikely(i == tx_ring->count))
2915 i = 0;
2916
2917 buffer_info = &tx_ring->buffer_info[i];
2918 size = min(len, max_per_txd);
2919 /* Workaround for premature desc write-backs
2920 * in TSO mode. Append 4-byte sentinel desc
2921 */
2922 if (unlikely(mss && f == (nr_frags-1) &&
2923 size == len && size > 8))
2924 size -= 4;
2925 /* Workaround for potential 82544 hang in PCI-X.
2926 * Avoid terminating buffers within evenly-aligned
2927 * dwords.
2928 */
2929 bufend = (unsigned long)
2930 page_to_phys(skb_frag_page(frag));
2931 bufend += offset + size - 1;
2932 if (unlikely(adapter->pcix_82544 &&
2933 !(bufend & 4) &&
2934 size > 4))
2935 size -= 4;
2936
2937 buffer_info->length = size;
2938 buffer_info->time_stamp = jiffies;
2939 buffer_info->mapped_as_page = true;
2940 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2941 offset, size, DMA_TO_DEVICE);
2942 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2943 goto dma_error;
2944 buffer_info->next_to_watch = i;
2945
2946 len -= size;
2947 offset += size;
2948 count++;
2949 }
2950 }
2951
2952 segs = skb_shinfo(skb)->gso_segs ?: 1;
2953 /* multiply data chunks by size of headers */
2954 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2955
2956 tx_ring->buffer_info[i].skb = skb;
2957 tx_ring->buffer_info[i].segs = segs;
2958 tx_ring->buffer_info[i].bytecount = bytecount;
2959 tx_ring->buffer_info[first].next_to_watch = i;
2960
2961 return count;
2962
2963dma_error:
2964 dev_err(&pdev->dev, "TX DMA map failed\n");
2965 buffer_info->dma = 0;
2966 if (count)
2967 count--;
2968
2969 while (count--) {
2970 if (i == 0)
2971 i += tx_ring->count;
2972 i--;
2973 buffer_info = &tx_ring->buffer_info[i];
2974 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2975 }
2976
2977 return 0;
2978}
2979
2980static void e1000_tx_queue(struct e1000_adapter *adapter,
2981 struct e1000_tx_ring *tx_ring, int tx_flags,
2982 int count)
2983{
2984 struct e1000_tx_desc *tx_desc = NULL;
2985 struct e1000_tx_buffer *buffer_info;
2986 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2987 unsigned int i;
2988
2989 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2990 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2991 E1000_TXD_CMD_TSE;
2992 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2993
2994 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2995 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2996 }
2997
2998 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2999 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3000 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3001 }
3002
3003 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3004 txd_lower |= E1000_TXD_CMD_VLE;
3005 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3006 }
3007
3008 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3009 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3010
3011 i = tx_ring->next_to_use;
3012
3013 while (count--) {
3014 buffer_info = &tx_ring->buffer_info[i];
3015 tx_desc = E1000_TX_DESC(*tx_ring, i);
3016 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3017 tx_desc->lower.data =
3018 cpu_to_le32(txd_lower | buffer_info->length);
3019 tx_desc->upper.data = cpu_to_le32(txd_upper);
3020 if (unlikely(++i == tx_ring->count))
3021 i = 0;
3022 }
3023
3024 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025
3026 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3027 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3028 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3029
3030 /* Force memory writes to complete before letting h/w
3031 * know there are new descriptors to fetch. (Only
3032 * applicable for weak-ordered memory model archs,
3033 * such as IA-64).
3034 */
3035 wmb();
3036
3037 tx_ring->next_to_use = i;
3038}
3039
3040/* 82547 workaround to avoid controller hang in half-duplex environment.
3041 * The workaround is to avoid queuing a large packet that would span
3042 * the internal Tx FIFO ring boundary by notifying the stack to resend
3043 * the packet at a later time. This gives the Tx FIFO an opportunity to
3044 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3045 * to the beginning of the Tx FIFO.
3046 */
3047
3048#define E1000_FIFO_HDR 0x10
3049#define E1000_82547_PAD_LEN 0x3E0
3050
3051static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3052 struct sk_buff *skb)
3053{
3054 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3055 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3056
3057 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3058
3059 if (adapter->link_duplex != HALF_DUPLEX)
3060 goto no_fifo_stall_required;
3061
3062 if (atomic_read(&adapter->tx_fifo_stall))
3063 return 1;
3064
3065 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3066 atomic_set(&adapter->tx_fifo_stall, 1);
3067 return 1;
3068 }
3069
3070no_fifo_stall_required:
3071 adapter->tx_fifo_head += skb_fifo_len;
3072 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3073 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3074 return 0;
3075}
3076
3077static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3078{
3079 struct e1000_adapter *adapter = netdev_priv(netdev);
3080 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3081
3082 netif_stop_queue(netdev);
3083 /* Herbert's original patch had:
3084 * smp_mb__after_netif_stop_queue();
3085 * but since that doesn't exist yet, just open code it.
3086 */
3087 smp_mb();
3088
3089 /* We need to check again in a case another CPU has just
3090 * made room available.
3091 */
3092 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3093 return -EBUSY;
3094
3095 /* A reprieve! */
3096 netif_start_queue(netdev);
3097 ++adapter->restart_queue;
3098 return 0;
3099}
3100
3101static int e1000_maybe_stop_tx(struct net_device *netdev,
3102 struct e1000_tx_ring *tx_ring, int size)
3103{
3104 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3105 return 0;
3106 return __e1000_maybe_stop_tx(netdev, size);
3107}
3108
3109#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3110static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3111 struct net_device *netdev)
3112{
3113 struct e1000_adapter *adapter = netdev_priv(netdev);
3114 struct e1000_hw *hw = &adapter->hw;
3115 struct e1000_tx_ring *tx_ring;
3116 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3117 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3118 unsigned int tx_flags = 0;
3119 unsigned int len = skb_headlen(skb);
3120 unsigned int nr_frags;
3121 unsigned int mss;
3122 int count = 0;
3123 int tso;
3124 unsigned int f;
3125 __be16 protocol = vlan_get_protocol(skb);
3126
3127 /* This goes back to the question of how to logically map a Tx queue
3128 * to a flow. Right now, performance is impacted slightly negatively
3129 * if using multiple Tx queues. If the stack breaks away from a
3130 * single qdisc implementation, we can look at this again.
3131 */
3132 tx_ring = adapter->tx_ring;
3133
3134 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3135 * packets may get corrupted during padding by HW.
3136 * To WA this issue, pad all small packets manually.
3137 */
3138 if (eth_skb_pad(skb))
3139 return NETDEV_TX_OK;
3140
3141 mss = skb_shinfo(skb)->gso_size;
3142 /* The controller does a simple calculation to
3143 * make sure there is enough room in the FIFO before
3144 * initiating the DMA for each buffer. The calc is:
3145 * 4 = ceil(buffer len/mss). To make sure we don't
3146 * overrun the FIFO, adjust the max buffer len if mss
3147 * drops.
3148 */
3149 if (mss) {
3150 u8 hdr_len;
3151 max_per_txd = min(mss << 2, max_per_txd);
3152 max_txd_pwr = fls(max_per_txd) - 1;
3153
3154 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3155 if (skb->data_len && hdr_len == len) {
3156 switch (hw->mac_type) {
3157 unsigned int pull_size;
3158 case e1000_82544:
3159 /* Make sure we have room to chop off 4 bytes,
3160 * and that the end alignment will work out to
3161 * this hardware's requirements
3162 * NOTE: this is a TSO only workaround
3163 * if end byte alignment not correct move us
3164 * into the next dword
3165 */
3166 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3167 & 4)
3168 break;
3169 /* fall through */
3170 pull_size = min((unsigned int)4, skb->data_len);
3171 if (!__pskb_pull_tail(skb, pull_size)) {
3172 e_err(drv, "__pskb_pull_tail "
3173 "failed.\n");
3174 dev_kfree_skb_any(skb);
3175 return NETDEV_TX_OK;
3176 }
3177 len = skb_headlen(skb);
3178 break;
3179 default:
3180 /* do nothing */
3181 break;
3182 }
3183 }
3184 }
3185
3186 /* reserve a descriptor for the offload context */
3187 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3188 count++;
3189 count++;
3190
3191 /* Controller Erratum workaround */
3192 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3193 count++;
3194
3195 count += TXD_USE_COUNT(len, max_txd_pwr);
3196
3197 if (adapter->pcix_82544)
3198 count++;
3199
3200 /* work-around for errata 10 and it applies to all controllers
3201 * in PCI-X mode, so add one more descriptor to the count
3202 */
3203 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3204 (len > 2015)))
3205 count++;
3206
3207 nr_frags = skb_shinfo(skb)->nr_frags;
3208 for (f = 0; f < nr_frags; f++)
3209 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3210 max_txd_pwr);
3211 if (adapter->pcix_82544)
3212 count += nr_frags;
3213
3214 /* need: count + 2 desc gap to keep tail from touching
3215 * head, otherwise try next time
3216 */
3217 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3218 return NETDEV_TX_BUSY;
3219
3220 if (unlikely((hw->mac_type == e1000_82547) &&
3221 (e1000_82547_fifo_workaround(adapter, skb)))) {
3222 netif_stop_queue(netdev);
3223 if (!test_bit(__E1000_DOWN, &adapter->flags))
3224 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3225 return NETDEV_TX_BUSY;
3226 }
3227
3228 if (skb_vlan_tag_present(skb)) {
3229 tx_flags |= E1000_TX_FLAGS_VLAN;
3230 tx_flags |= (skb_vlan_tag_get(skb) <<
3231 E1000_TX_FLAGS_VLAN_SHIFT);
3232 }
3233
3234 first = tx_ring->next_to_use;
3235
3236 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3237 if (tso < 0) {
3238 dev_kfree_skb_any(skb);
3239 return NETDEV_TX_OK;
3240 }
3241
3242 if (likely(tso)) {
3243 if (likely(hw->mac_type != e1000_82544))
3244 tx_ring->last_tx_tso = true;
3245 tx_flags |= E1000_TX_FLAGS_TSO;
3246 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3247 tx_flags |= E1000_TX_FLAGS_CSUM;
3248
3249 if (protocol == htons(ETH_P_IP))
3250 tx_flags |= E1000_TX_FLAGS_IPV4;
3251
3252 if (unlikely(skb->no_fcs))
3253 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254
3255 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3256 nr_frags, mss);
3257
3258 if (count) {
3259 /* The descriptors needed is higher than other Intel drivers
3260 * due to a number of workarounds. The breakdown is below:
3261 * Data descriptors: MAX_SKB_FRAGS + 1
3262 * Context Descriptor: 1
3263 * Keep head from touching tail: 2
3264 * Workarounds: 3
3265 */
3266 int desc_needed = MAX_SKB_FRAGS + 7;
3267
3268 netdev_sent_queue(netdev, skb->len);
3269 skb_tx_timestamp(skb);
3270
3271 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3272
3273 /* 82544 potentially requires twice as many data descriptors
3274 * in order to guarantee buffers don't end on evenly-aligned
3275 * dwords
3276 */
3277 if (adapter->pcix_82544)
3278 desc_needed += MAX_SKB_FRAGS + 1;
3279
3280 /* Make sure there is space in the ring for the next send. */
3281 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3282
3283 if (!skb->xmit_more ||
3284 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3285 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3286 /* we need this if more than one processor can write to
3287 * our tail at a time, it synchronizes IO on IA64/Altix
3288 * systems
3289 */
3290 mmiowb();
3291 }
3292 } else {
3293 dev_kfree_skb_any(skb);
3294 tx_ring->buffer_info[first].time_stamp = 0;
3295 tx_ring->next_to_use = first;
3296 }
3297
3298 return NETDEV_TX_OK;
3299}
3300
3301#define NUM_REGS 38 /* 1 based count */
3302static void e1000_regdump(struct e1000_adapter *adapter)
3303{
3304 struct e1000_hw *hw = &adapter->hw;
3305 u32 regs[NUM_REGS];
3306 u32 *regs_buff = regs;
3307 int i = 0;
3308
3309 static const char * const reg_name[] = {
3310 "CTRL", "STATUS",
3311 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3312 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3313 "TIDV", "TXDCTL", "TADV", "TARC0",
3314 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3315 "TXDCTL1", "TARC1",
3316 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3317 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3318 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3319 };
3320
3321 regs_buff[0] = er32(CTRL);
3322 regs_buff[1] = er32(STATUS);
3323
3324 regs_buff[2] = er32(RCTL);
3325 regs_buff[3] = er32(RDLEN);
3326 regs_buff[4] = er32(RDH);
3327 regs_buff[5] = er32(RDT);
3328 regs_buff[6] = er32(RDTR);
3329
3330 regs_buff[7] = er32(TCTL);
3331 regs_buff[8] = er32(TDBAL);
3332 regs_buff[9] = er32(TDBAH);
3333 regs_buff[10] = er32(TDLEN);
3334 regs_buff[11] = er32(TDH);
3335 regs_buff[12] = er32(TDT);
3336 regs_buff[13] = er32(TIDV);
3337 regs_buff[14] = er32(TXDCTL);
3338 regs_buff[15] = er32(TADV);
3339 regs_buff[16] = er32(TARC0);
3340
3341 regs_buff[17] = er32(TDBAL1);
3342 regs_buff[18] = er32(TDBAH1);
3343 regs_buff[19] = er32(TDLEN1);
3344 regs_buff[20] = er32(TDH1);
3345 regs_buff[21] = er32(TDT1);
3346 regs_buff[22] = er32(TXDCTL1);
3347 regs_buff[23] = er32(TARC1);
3348 regs_buff[24] = er32(CTRL_EXT);
3349 regs_buff[25] = er32(ERT);
3350 regs_buff[26] = er32(RDBAL0);
3351 regs_buff[27] = er32(RDBAH0);
3352 regs_buff[28] = er32(TDFH);
3353 regs_buff[29] = er32(TDFT);
3354 regs_buff[30] = er32(TDFHS);
3355 regs_buff[31] = er32(TDFTS);
3356 regs_buff[32] = er32(TDFPC);
3357 regs_buff[33] = er32(RDFH);
3358 regs_buff[34] = er32(RDFT);
3359 regs_buff[35] = er32(RDFHS);
3360 regs_buff[36] = er32(RDFTS);
3361 regs_buff[37] = er32(RDFPC);
3362
3363 pr_info("Register dump\n");
3364 for (i = 0; i < NUM_REGS; i++)
3365 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3366}
3367
3368/*
3369 * e1000_dump: Print registers, tx ring and rx ring
3370 */
3371static void e1000_dump(struct e1000_adapter *adapter)
3372{
3373 /* this code doesn't handle multiple rings */
3374 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3375 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3376 int i;
3377
3378 if (!netif_msg_hw(adapter))
3379 return;
3380
3381 /* Print Registers */
3382 e1000_regdump(adapter);
3383
3384 /* transmit dump */
3385 pr_info("TX Desc ring0 dump\n");
3386
3387 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3388 *
3389 * Legacy Transmit Descriptor
3390 * +--------------------------------------------------------------+
3391 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3392 * +--------------------------------------------------------------+
3393 * 8 | Special | CSS | Status | CMD | CSO | Length |
3394 * +--------------------------------------------------------------+
3395 * 63 48 47 36 35 32 31 24 23 16 15 0
3396 *
3397 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3398 * 63 48 47 40 39 32 31 16 15 8 7 0
3399 * +----------------------------------------------------------------+
3400 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3401 * +----------------------------------------------------------------+
3402 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3403 * +----------------------------------------------------------------+
3404 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3405 *
3406 * Extended Data Descriptor (DTYP=0x1)
3407 * +----------------------------------------------------------------+
3408 * 0 | Buffer Address [63:0] |
3409 * +----------------------------------------------------------------+
3410 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3411 * +----------------------------------------------------------------+
3412 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3413 */
3414 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3415 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3416
3417 if (!netif_msg_tx_done(adapter))
3418 goto rx_ring_summary;
3419
3420 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3421 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3422 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3423 struct my_u { __le64 a; __le64 b; };
3424 struct my_u *u = (struct my_u *)tx_desc;
3425 const char *type;
3426
3427 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3428 type = "NTC/U";
3429 else if (i == tx_ring->next_to_use)
3430 type = "NTU";
3431 else if (i == tx_ring->next_to_clean)
3432 type = "NTC";
3433 else
3434 type = "";
3435
3436 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3437 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3438 le64_to_cpu(u->a), le64_to_cpu(u->b),
3439 (u64)buffer_info->dma, buffer_info->length,
3440 buffer_info->next_to_watch,
3441 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3442 }
3443
3444rx_ring_summary:
3445 /* receive dump */
3446 pr_info("\nRX Desc ring dump\n");
3447
3448 /* Legacy Receive Descriptor Format
3449 *
3450 * +-----------------------------------------------------+
3451 * | Buffer Address [63:0] |
3452 * +-----------------------------------------------------+
3453 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3454 * +-----------------------------------------------------+
3455 * 63 48 47 40 39 32 31 16 15 0
3456 */
3457 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3458
3459 if (!netif_msg_rx_status(adapter))
3460 goto exit;
3461
3462 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3463 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3464 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3465 struct my_u { __le64 a; __le64 b; };
3466 struct my_u *u = (struct my_u *)rx_desc;
3467 const char *type;
3468
3469 if (i == rx_ring->next_to_use)
3470 type = "NTU";
3471 else if (i == rx_ring->next_to_clean)
3472 type = "NTC";
3473 else
3474 type = "";
3475
3476 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3477 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3478 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3479 } /* for */
3480
3481 /* dump the descriptor caches */
3482 /* rx */
3483 pr_info("Rx descriptor cache in 64bit format\n");
3484 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3485 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3486 i,
3487 readl(adapter->hw.hw_addr + i+4),
3488 readl(adapter->hw.hw_addr + i),
3489 readl(adapter->hw.hw_addr + i+12),
3490 readl(adapter->hw.hw_addr + i+8));
3491 }
3492 /* tx */
3493 pr_info("Tx descriptor cache in 64bit format\n");
3494 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3495 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3496 i,
3497 readl(adapter->hw.hw_addr + i+4),
3498 readl(adapter->hw.hw_addr + i),
3499 readl(adapter->hw.hw_addr + i+12),
3500 readl(adapter->hw.hw_addr + i+8));
3501 }
3502exit:
3503 return;
3504}
3505
3506/**
3507 * e1000_tx_timeout - Respond to a Tx Hang
3508 * @netdev: network interface device structure
3509 **/
3510static void e1000_tx_timeout(struct net_device *netdev)
3511{
3512 struct e1000_adapter *adapter = netdev_priv(netdev);
3513
3514 /* Do the reset outside of interrupt context */
3515 adapter->tx_timeout_count++;
3516 schedule_work(&adapter->reset_task);
3517}
3518
3519static void e1000_reset_task(struct work_struct *work)
3520{
3521 struct e1000_adapter *adapter =
3522 container_of(work, struct e1000_adapter, reset_task);
3523
3524 e_err(drv, "Reset adapter\n");
3525 e1000_reinit_locked(adapter);
3526}
3527
3528/**
3529 * e1000_get_stats - Get System Network Statistics
3530 * @netdev: network interface device structure
3531 *
3532 * Returns the address of the device statistics structure.
3533 * The statistics are actually updated from the watchdog.
3534 **/
3535static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3536{
3537 /* only return the current stats */
3538 return &netdev->stats;
3539}
3540
3541/**
3542 * e1000_change_mtu - Change the Maximum Transfer Unit
3543 * @netdev: network interface device structure
3544 * @new_mtu: new value for maximum frame size
3545 *
3546 * Returns 0 on success, negative on failure
3547 **/
3548static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3549{
3550 struct e1000_adapter *adapter = netdev_priv(netdev);
3551 struct e1000_hw *hw = &adapter->hw;
3552 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3553
3554 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3555 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3556 e_err(probe, "Invalid MTU setting\n");
3557 return -EINVAL;
3558 }
3559
3560 /* Adapter-specific max frame size limits. */
3561 switch (hw->mac_type) {
3562 case e1000_undefined ... e1000_82542_rev2_1:
3563 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3564 e_err(probe, "Jumbo Frames not supported.\n");
3565 return -EINVAL;
3566 }
3567 break;
3568 default:
3569 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3570 break;
3571 }
3572
3573 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3574 msleep(1);
3575 /* e1000_down has a dependency on max_frame_size */
3576 hw->max_frame_size = max_frame;
3577 if (netif_running(netdev)) {
3578 /* prevent buffers from being reallocated */
3579 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3580 e1000_down(adapter);
3581 }
3582
3583 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3584 * means we reserve 2 more, this pushes us to allocate from the next
3585 * larger slab size.
3586 * i.e. RXBUFFER_2048 --> size-4096 slab
3587 * however with the new *_jumbo_rx* routines, jumbo receives will use
3588 * fragmented skbs
3589 */
3590
3591 if (max_frame <= E1000_RXBUFFER_2048)
3592 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3593 else
3594#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3595 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3596#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3597 adapter->rx_buffer_len = PAGE_SIZE;
3598#endif
3599
3600 /* adjust allocation if LPE protects us, and we aren't using SBP */
3601 if (!hw->tbi_compatibility_on &&
3602 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3603 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3604 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3605
3606 pr_info("%s changing MTU from %d to %d\n",
3607 netdev->name, netdev->mtu, new_mtu);
3608 netdev->mtu = new_mtu;
3609
3610 if (netif_running(netdev))
3611 e1000_up(adapter);
3612 else
3613 e1000_reset(adapter);
3614
3615 clear_bit(__E1000_RESETTING, &adapter->flags);
3616
3617 return 0;
3618}
3619
3620/**
3621 * e1000_update_stats - Update the board statistics counters
3622 * @adapter: board private structure
3623 **/
3624void e1000_update_stats(struct e1000_adapter *adapter)
3625{
3626 struct net_device *netdev = adapter->netdev;
3627 struct e1000_hw *hw = &adapter->hw;
3628 struct pci_dev *pdev = adapter->pdev;
3629 unsigned long flags;
3630 u16 phy_tmp;
3631
3632#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3633
3634 /* Prevent stats update while adapter is being reset, or if the pci
3635 * connection is down.
3636 */
3637 if (adapter->link_speed == 0)
3638 return;
3639 if (pci_channel_offline(pdev))
3640 return;
3641
3642 spin_lock_irqsave(&adapter->stats_lock, flags);
3643
3644 /* these counters are modified from e1000_tbi_adjust_stats,
3645 * called from the interrupt context, so they must only
3646 * be written while holding adapter->stats_lock
3647 */
3648
3649 adapter->stats.crcerrs += er32(CRCERRS);
3650 adapter->stats.gprc += er32(GPRC);
3651 adapter->stats.gorcl += er32(GORCL);
3652 adapter->stats.gorch += er32(GORCH);
3653 adapter->stats.bprc += er32(BPRC);
3654 adapter->stats.mprc += er32(MPRC);
3655 adapter->stats.roc += er32(ROC);
3656
3657 adapter->stats.prc64 += er32(PRC64);
3658 adapter->stats.prc127 += er32(PRC127);
3659 adapter->stats.prc255 += er32(PRC255);
3660 adapter->stats.prc511 += er32(PRC511);
3661 adapter->stats.prc1023 += er32(PRC1023);
3662 adapter->stats.prc1522 += er32(PRC1522);
3663
3664 adapter->stats.symerrs += er32(SYMERRS);
3665 adapter->stats.mpc += er32(MPC);
3666 adapter->stats.scc += er32(SCC);
3667 adapter->stats.ecol += er32(ECOL);
3668 adapter->stats.mcc += er32(MCC);
3669 adapter->stats.latecol += er32(LATECOL);
3670 adapter->stats.dc += er32(DC);
3671 adapter->stats.sec += er32(SEC);
3672 adapter->stats.rlec += er32(RLEC);
3673 adapter->stats.xonrxc += er32(XONRXC);
3674 adapter->stats.xontxc += er32(XONTXC);
3675 adapter->stats.xoffrxc += er32(XOFFRXC);
3676 adapter->stats.xofftxc += er32(XOFFTXC);
3677 adapter->stats.fcruc += er32(FCRUC);
3678 adapter->stats.gptc += er32(GPTC);
3679 adapter->stats.gotcl += er32(GOTCL);
3680 adapter->stats.gotch += er32(GOTCH);
3681 adapter->stats.rnbc += er32(RNBC);
3682 adapter->stats.ruc += er32(RUC);
3683 adapter->stats.rfc += er32(RFC);
3684 adapter->stats.rjc += er32(RJC);
3685 adapter->stats.torl += er32(TORL);
3686 adapter->stats.torh += er32(TORH);
3687 adapter->stats.totl += er32(TOTL);
3688 adapter->stats.toth += er32(TOTH);
3689 adapter->stats.tpr += er32(TPR);
3690
3691 adapter->stats.ptc64 += er32(PTC64);
3692 adapter->stats.ptc127 += er32(PTC127);
3693 adapter->stats.ptc255 += er32(PTC255);
3694 adapter->stats.ptc511 += er32(PTC511);
3695 adapter->stats.ptc1023 += er32(PTC1023);
3696 adapter->stats.ptc1522 += er32(PTC1522);
3697
3698 adapter->stats.mptc += er32(MPTC);
3699 adapter->stats.bptc += er32(BPTC);
3700
3701 /* used for adaptive IFS */
3702
3703 hw->tx_packet_delta = er32(TPT);
3704 adapter->stats.tpt += hw->tx_packet_delta;
3705 hw->collision_delta = er32(COLC);
3706 adapter->stats.colc += hw->collision_delta;
3707
3708 if (hw->mac_type >= e1000_82543) {
3709 adapter->stats.algnerrc += er32(ALGNERRC);
3710 adapter->stats.rxerrc += er32(RXERRC);
3711 adapter->stats.tncrs += er32(TNCRS);
3712 adapter->stats.cexterr += er32(CEXTERR);
3713 adapter->stats.tsctc += er32(TSCTC);
3714 adapter->stats.tsctfc += er32(TSCTFC);
3715 }
3716
3717 /* Fill out the OS statistics structure */
3718 netdev->stats.multicast = adapter->stats.mprc;
3719 netdev->stats.collisions = adapter->stats.colc;
3720
3721 /* Rx Errors */
3722
3723 /* RLEC on some newer hardware can be incorrect so build
3724 * our own version based on RUC and ROC
3725 */
3726 netdev->stats.rx_errors = adapter->stats.rxerrc +
3727 adapter->stats.crcerrs + adapter->stats.algnerrc +
3728 adapter->stats.ruc + adapter->stats.roc +
3729 adapter->stats.cexterr;
3730 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3731 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3732 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3733 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3734 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3735
3736 /* Tx Errors */
3737 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3738 netdev->stats.tx_errors = adapter->stats.txerrc;
3739 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3740 netdev->stats.tx_window_errors = adapter->stats.latecol;
3741 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3742 if (hw->bad_tx_carr_stats_fd &&
3743 adapter->link_duplex == FULL_DUPLEX) {
3744 netdev->stats.tx_carrier_errors = 0;
3745 adapter->stats.tncrs = 0;
3746 }
3747
3748 /* Tx Dropped needs to be maintained elsewhere */
3749
3750 /* Phy Stats */
3751 if (hw->media_type == e1000_media_type_copper) {
3752 if ((adapter->link_speed == SPEED_1000) &&
3753 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3754 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3755 adapter->phy_stats.idle_errors += phy_tmp;
3756 }
3757
3758 if ((hw->mac_type <= e1000_82546) &&
3759 (hw->phy_type == e1000_phy_m88) &&
3760 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3761 adapter->phy_stats.receive_errors += phy_tmp;
3762 }
3763
3764 /* Management Stats */
3765 if (hw->has_smbus) {
3766 adapter->stats.mgptc += er32(MGTPTC);
3767 adapter->stats.mgprc += er32(MGTPRC);
3768 adapter->stats.mgpdc += er32(MGTPDC);
3769 }
3770
3771 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3772}
3773
3774/**
3775 * e1000_intr - Interrupt Handler
3776 * @irq: interrupt number
3777 * @data: pointer to a network interface device structure
3778 **/
3779static irqreturn_t e1000_intr(int irq, void *data)
3780{
3781 struct net_device *netdev = data;
3782 struct e1000_adapter *adapter = netdev_priv(netdev);
3783 struct e1000_hw *hw = &adapter->hw;
3784 u32 icr = er32(ICR);
3785
3786 if (unlikely((!icr)))
3787 return IRQ_NONE; /* Not our interrupt */
3788
3789 /* we might have caused the interrupt, but the above
3790 * read cleared it, and just in case the driver is
3791 * down there is nothing to do so return handled
3792 */
3793 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3794 return IRQ_HANDLED;
3795
3796 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3797 hw->get_link_status = 1;
3798 /* guard against interrupt when we're going down */
3799 if (!test_bit(__E1000_DOWN, &adapter->flags))
3800 schedule_delayed_work(&adapter->watchdog_task, 1);
3801 }
3802
3803 /* disable interrupts, without the synchronize_irq bit */
3804 ew32(IMC, ~0);
3805 E1000_WRITE_FLUSH();
3806
3807 if (likely(napi_schedule_prep(&adapter->napi))) {
3808 adapter->total_tx_bytes = 0;
3809 adapter->total_tx_packets = 0;
3810 adapter->total_rx_bytes = 0;
3811 adapter->total_rx_packets = 0;
3812 __napi_schedule(&adapter->napi);
3813 } else {
3814 /* this really should not happen! if it does it is basically a
3815 * bug, but not a hard error, so enable ints and continue
3816 */
3817 if (!test_bit(__E1000_DOWN, &adapter->flags))
3818 e1000_irq_enable(adapter);
3819 }
3820
3821 return IRQ_HANDLED;
3822}
3823
3824/**
3825 * e1000_clean - NAPI Rx polling callback
3826 * @adapter: board private structure
3827 **/
3828static int e1000_clean(struct napi_struct *napi, int budget)
3829{
3830 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3831 napi);
3832 int tx_clean_complete = 0, work_done = 0;
3833
3834 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3835
3836 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3837
3838 if (!tx_clean_complete)
3839 work_done = budget;
3840
3841 /* If budget not fully consumed, exit the polling mode */
3842 if (work_done < budget) {
3843 if (likely(adapter->itr_setting & 3))
3844 e1000_set_itr(adapter);
3845 napi_complete_done(napi, work_done);
3846 if (!test_bit(__E1000_DOWN, &adapter->flags))
3847 e1000_irq_enable(adapter);
3848 }
3849
3850 return work_done;
3851}
3852
3853/**
3854 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3855 * @adapter: board private structure
3856 **/
3857static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3858 struct e1000_tx_ring *tx_ring)
3859{
3860 struct e1000_hw *hw = &adapter->hw;
3861 struct net_device *netdev = adapter->netdev;
3862 struct e1000_tx_desc *tx_desc, *eop_desc;
3863 struct e1000_tx_buffer *buffer_info;
3864 unsigned int i, eop;
3865 unsigned int count = 0;
3866 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3867 unsigned int bytes_compl = 0, pkts_compl = 0;
3868
3869 i = tx_ring->next_to_clean;
3870 eop = tx_ring->buffer_info[i].next_to_watch;
3871 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3872
3873 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3874 (count < tx_ring->count)) {
3875 bool cleaned = false;
3876 dma_rmb(); /* read buffer_info after eop_desc */
3877 for ( ; !cleaned; count++) {
3878 tx_desc = E1000_TX_DESC(*tx_ring, i);
3879 buffer_info = &tx_ring->buffer_info[i];
3880 cleaned = (i == eop);
3881
3882 if (cleaned) {
3883 total_tx_packets += buffer_info->segs;
3884 total_tx_bytes += buffer_info->bytecount;
3885 if (buffer_info->skb) {
3886 bytes_compl += buffer_info->skb->len;
3887 pkts_compl++;
3888 }
3889
3890 }
3891 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3892 tx_desc->upper.data = 0;
3893
3894 if (unlikely(++i == tx_ring->count))
3895 i = 0;
3896 }
3897
3898 eop = tx_ring->buffer_info[i].next_to_watch;
3899 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3900 }
3901
3902 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3903 * which will reuse the cleaned buffers.
3904 */
3905 smp_store_release(&tx_ring->next_to_clean, i);
3906
3907 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3908
3909#define TX_WAKE_THRESHOLD 32
3910 if (unlikely(count && netif_carrier_ok(netdev) &&
3911 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3912 /* Make sure that anybody stopping the queue after this
3913 * sees the new next_to_clean.
3914 */
3915 smp_mb();
3916
3917 if (netif_queue_stopped(netdev) &&
3918 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3919 netif_wake_queue(netdev);
3920 ++adapter->restart_queue;
3921 }
3922 }
3923
3924 if (adapter->detect_tx_hung) {
3925 /* Detect a transmit hang in hardware, this serializes the
3926 * check with the clearing of time_stamp and movement of i
3927 */
3928 adapter->detect_tx_hung = false;
3929 if (tx_ring->buffer_info[eop].time_stamp &&
3930 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3931 (adapter->tx_timeout_factor * HZ)) &&
3932 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3933
3934 /* detected Tx unit hang */
3935 e_err(drv, "Detected Tx Unit Hang\n"
3936 " Tx Queue <%lu>\n"
3937 " TDH <%x>\n"
3938 " TDT <%x>\n"
3939 " next_to_use <%x>\n"
3940 " next_to_clean <%x>\n"
3941 "buffer_info[next_to_clean]\n"
3942 " time_stamp <%lx>\n"
3943 " next_to_watch <%x>\n"
3944 " jiffies <%lx>\n"
3945 " next_to_watch.status <%x>\n",
3946 (unsigned long)(tx_ring - adapter->tx_ring),
3947 readl(hw->hw_addr + tx_ring->tdh),
3948 readl(hw->hw_addr + tx_ring->tdt),
3949 tx_ring->next_to_use,
3950 tx_ring->next_to_clean,
3951 tx_ring->buffer_info[eop].time_stamp,
3952 eop,
3953 jiffies,
3954 eop_desc->upper.fields.status);
3955 e1000_dump(adapter);
3956 netif_stop_queue(netdev);
3957 }
3958 }
3959 adapter->total_tx_bytes += total_tx_bytes;
3960 adapter->total_tx_packets += total_tx_packets;
3961 netdev->stats.tx_bytes += total_tx_bytes;
3962 netdev->stats.tx_packets += total_tx_packets;
3963 return count < tx_ring->count;
3964}
3965
3966/**
3967 * e1000_rx_checksum - Receive Checksum Offload for 82543
3968 * @adapter: board private structure
3969 * @status_err: receive descriptor status and error fields
3970 * @csum: receive descriptor csum field
3971 * @sk_buff: socket buffer with received data
3972 **/
3973static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3974 u32 csum, struct sk_buff *skb)
3975{
3976 struct e1000_hw *hw = &adapter->hw;
3977 u16 status = (u16)status_err;
3978 u8 errors = (u8)(status_err >> 24);
3979
3980 skb_checksum_none_assert(skb);
3981
3982 /* 82543 or newer only */
3983 if (unlikely(hw->mac_type < e1000_82543))
3984 return;
3985 /* Ignore Checksum bit is set */
3986 if (unlikely(status & E1000_RXD_STAT_IXSM))
3987 return;
3988 /* TCP/UDP checksum error bit is set */
3989 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3990 /* let the stack verify checksum errors */
3991 adapter->hw_csum_err++;
3992 return;
3993 }
3994 /* TCP/UDP Checksum has not been calculated */
3995 if (!(status & E1000_RXD_STAT_TCPCS))
3996 return;
3997
3998 /* It must be a TCP or UDP packet with a valid checksum */
3999 if (likely(status & E1000_RXD_STAT_TCPCS)) {
4000 /* TCP checksum is good */
4001 skb->ip_summed = CHECKSUM_UNNECESSARY;
4002 }
4003 adapter->hw_csum_good++;
4004}
4005
4006/**
4007 * e1000_consume_page - helper function for jumbo Rx path
4008 **/
4009static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4010 u16 length)
4011{
4012 bi->rxbuf.page = NULL;
4013 skb->len += length;
4014 skb->data_len += length;
4015 skb->truesize += PAGE_SIZE;
4016}
4017
4018/**
4019 * e1000_receive_skb - helper function to handle rx indications
4020 * @adapter: board private structure
4021 * @status: descriptor status field as written by hardware
4022 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4023 * @skb: pointer to sk_buff to be indicated to stack
4024 */
4025static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4026 __le16 vlan, struct sk_buff *skb)
4027{
4028 skb->protocol = eth_type_trans(skb, adapter->netdev);
4029
4030 if (status & E1000_RXD_STAT_VP) {
4031 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4032
4033 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4034 }
4035 napi_gro_receive(&adapter->napi, skb);
4036}
4037
4038/**
4039 * e1000_tbi_adjust_stats
4040 * @hw: Struct containing variables accessed by shared code
4041 * @frame_len: The length of the frame in question
4042 * @mac_addr: The Ethernet destination address of the frame in question
4043 *
4044 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4045 */
4046static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4047 struct e1000_hw_stats *stats,
4048 u32 frame_len, const u8 *mac_addr)
4049{
4050 u64 carry_bit;
4051
4052 /* First adjust the frame length. */
4053 frame_len--;
4054 /* We need to adjust the statistics counters, since the hardware
4055 * counters overcount this packet as a CRC error and undercount
4056 * the packet as a good packet
4057 */
4058 /* This packet should not be counted as a CRC error. */
4059 stats->crcerrs--;
4060 /* This packet does count as a Good Packet Received. */
4061 stats->gprc++;
4062
4063 /* Adjust the Good Octets received counters */
4064 carry_bit = 0x80000000 & stats->gorcl;
4065 stats->gorcl += frame_len;
4066 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4067 * Received Count) was one before the addition,
4068 * AND it is zero after, then we lost the carry out,
4069 * need to add one to Gorch (Good Octets Received Count High).
4070 * This could be simplified if all environments supported
4071 * 64-bit integers.
4072 */
4073 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4074 stats->gorch++;
4075 /* Is this a broadcast or multicast? Check broadcast first,
4076 * since the test for a multicast frame will test positive on
4077 * a broadcast frame.
4078 */
4079 if (is_broadcast_ether_addr(mac_addr))
4080 stats->bprc++;
4081 else if (is_multicast_ether_addr(mac_addr))
4082 stats->mprc++;
4083
4084 if (frame_len == hw->max_frame_size) {
4085 /* In this case, the hardware has overcounted the number of
4086 * oversize frames.
4087 */
4088 if (stats->roc > 0)
4089 stats->roc--;
4090 }
4091
4092 /* Adjust the bin counters when the extra byte put the frame in the
4093 * wrong bin. Remember that the frame_len was adjusted above.
4094 */
4095 if (frame_len == 64) {
4096 stats->prc64++;
4097 stats->prc127--;
4098 } else if (frame_len == 127) {
4099 stats->prc127++;
4100 stats->prc255--;
4101 } else if (frame_len == 255) {
4102 stats->prc255++;
4103 stats->prc511--;
4104 } else if (frame_len == 511) {
4105 stats->prc511++;
4106 stats->prc1023--;
4107 } else if (frame_len == 1023) {
4108 stats->prc1023++;
4109 stats->prc1522--;
4110 } else if (frame_len == 1522) {
4111 stats->prc1522++;
4112 }
4113}
4114
4115static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4116 u8 status, u8 errors,
4117 u32 length, const u8 *data)
4118{
4119 struct e1000_hw *hw = &adapter->hw;
4120 u8 last_byte = *(data + length - 1);
4121
4122 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4123 unsigned long irq_flags;
4124
4125 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4126 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4127 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4128
4129 return true;
4130 }
4131
4132 return false;
4133}
4134
4135static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4136 unsigned int bufsz)
4137{
4138 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4139
4140 if (unlikely(!skb))
4141 adapter->alloc_rx_buff_failed++;
4142 return skb;
4143}
4144
4145/**
4146 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4147 * @adapter: board private structure
4148 * @rx_ring: ring to clean
4149 * @work_done: amount of napi work completed this call
4150 * @work_to_do: max amount of work allowed for this call to do
4151 *
4152 * the return value indicates whether actual cleaning was done, there
4153 * is no guarantee that everything was cleaned
4154 */
4155static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4156 struct e1000_rx_ring *rx_ring,
4157 int *work_done, int work_to_do)
4158{
4159 struct net_device *netdev = adapter->netdev;
4160 struct pci_dev *pdev = adapter->pdev;
4161 struct e1000_rx_desc *rx_desc, *next_rxd;
4162 struct e1000_rx_buffer *buffer_info, *next_buffer;
4163 u32 length;
4164 unsigned int i;
4165 int cleaned_count = 0;
4166 bool cleaned = false;
4167 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4168
4169 i = rx_ring->next_to_clean;
4170 rx_desc = E1000_RX_DESC(*rx_ring, i);
4171 buffer_info = &rx_ring->buffer_info[i];
4172
4173 while (rx_desc->status & E1000_RXD_STAT_DD) {
4174 struct sk_buff *skb;
4175 u8 status;
4176
4177 if (*work_done >= work_to_do)
4178 break;
4179 (*work_done)++;
4180 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4181
4182 status = rx_desc->status;
4183
4184 if (++i == rx_ring->count)
4185 i = 0;
4186
4187 next_rxd = E1000_RX_DESC(*rx_ring, i);
4188 prefetch(next_rxd);
4189
4190 next_buffer = &rx_ring->buffer_info[i];
4191
4192 cleaned = true;
4193 cleaned_count++;
4194 dma_unmap_page(&pdev->dev, buffer_info->dma,
4195 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4196 buffer_info->dma = 0;
4197
4198 length = le16_to_cpu(rx_desc->length);
4199
4200 /* errors is only valid for DD + EOP descriptors */
4201 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4202 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4203 u8 *mapped = page_address(buffer_info->rxbuf.page);
4204
4205 if (e1000_tbi_should_accept(adapter, status,
4206 rx_desc->errors,
4207 length, mapped)) {
4208 length--;
4209 } else if (netdev->features & NETIF_F_RXALL) {
4210 goto process_skb;
4211 } else {
4212 /* an error means any chain goes out the window
4213 * too
4214 */
4215 if (rx_ring->rx_skb_top)
4216 dev_kfree_skb(rx_ring->rx_skb_top);
4217 rx_ring->rx_skb_top = NULL;
4218 goto next_desc;
4219 }
4220 }
4221
4222#define rxtop rx_ring->rx_skb_top
4223process_skb:
4224 if (!(status & E1000_RXD_STAT_EOP)) {
4225 /* this descriptor is only the beginning (or middle) */
4226 if (!rxtop) {
4227 /* this is the beginning of a chain */
4228 rxtop = napi_get_frags(&adapter->napi);
4229 if (!rxtop)
4230 break;
4231
4232 skb_fill_page_desc(rxtop, 0,
4233 buffer_info->rxbuf.page,
4234 0, length);
4235 } else {
4236 /* this is the middle of a chain */
4237 skb_fill_page_desc(rxtop,
4238 skb_shinfo(rxtop)->nr_frags,
4239 buffer_info->rxbuf.page, 0, length);
4240 }
4241 e1000_consume_page(buffer_info, rxtop, length);
4242 goto next_desc;
4243 } else {
4244 if (rxtop) {
4245 /* end of the chain */
4246 skb_fill_page_desc(rxtop,
4247 skb_shinfo(rxtop)->nr_frags,
4248 buffer_info->rxbuf.page, 0, length);
4249 skb = rxtop;
4250 rxtop = NULL;
4251 e1000_consume_page(buffer_info, skb, length);
4252 } else {
4253 struct page *p;
4254 /* no chain, got EOP, this buf is the packet
4255 * copybreak to save the put_page/alloc_page
4256 */
4257 p = buffer_info->rxbuf.page;
4258 if (length <= copybreak) {
4259 u8 *vaddr;
4260
4261 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4262 length -= 4;
4263 skb = e1000_alloc_rx_skb(adapter,
4264 length);
4265 if (!skb)
4266 break;
4267
4268 vaddr = kmap_atomic(p);
4269 memcpy(skb_tail_pointer(skb), vaddr,
4270 length);
4271 kunmap_atomic(vaddr);
4272 /* re-use the page, so don't erase
4273 * buffer_info->rxbuf.page
4274 */
4275 skb_put(skb, length);
4276 e1000_rx_checksum(adapter,
4277 status | rx_desc->errors << 24,
4278 le16_to_cpu(rx_desc->csum), skb);
4279
4280 total_rx_bytes += skb->len;
4281 total_rx_packets++;
4282
4283 e1000_receive_skb(adapter, status,
4284 rx_desc->special, skb);
4285 goto next_desc;
4286 } else {
4287 skb = napi_get_frags(&adapter->napi);
4288 if (!skb) {
4289 adapter->alloc_rx_buff_failed++;
4290 break;
4291 }
4292 skb_fill_page_desc(skb, 0, p, 0,
4293 length);
4294 e1000_consume_page(buffer_info, skb,
4295 length);
4296 }
4297 }
4298 }
4299
4300 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4301 e1000_rx_checksum(adapter,
4302 (u32)(status) |
4303 ((u32)(rx_desc->errors) << 24),
4304 le16_to_cpu(rx_desc->csum), skb);
4305
4306 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4307 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4308 pskb_trim(skb, skb->len - 4);
4309 total_rx_packets++;
4310
4311 if (status & E1000_RXD_STAT_VP) {
4312 __le16 vlan = rx_desc->special;
4313 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4314
4315 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4316 }
4317
4318 napi_gro_frags(&adapter->napi);
4319
4320next_desc:
4321 rx_desc->status = 0;
4322
4323 /* return some buffers to hardware, one at a time is too slow */
4324 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4325 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4326 cleaned_count = 0;
4327 }
4328
4329 /* use prefetched values */
4330 rx_desc = next_rxd;
4331 buffer_info = next_buffer;
4332 }
4333 rx_ring->next_to_clean = i;
4334
4335 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4336 if (cleaned_count)
4337 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4338
4339 adapter->total_rx_packets += total_rx_packets;
4340 adapter->total_rx_bytes += total_rx_bytes;
4341 netdev->stats.rx_bytes += total_rx_bytes;
4342 netdev->stats.rx_packets += total_rx_packets;
4343 return cleaned;
4344}
4345
4346/* this should improve performance for small packets with large amounts
4347 * of reassembly being done in the stack
4348 */
4349static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4350 struct e1000_rx_buffer *buffer_info,
4351 u32 length, const void *data)
4352{
4353 struct sk_buff *skb;
4354
4355 if (length > copybreak)
4356 return NULL;
4357
4358 skb = e1000_alloc_rx_skb(adapter, length);
4359 if (!skb)
4360 return NULL;
4361
4362 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4363 length, DMA_FROM_DEVICE);
4364
4365 memcpy(skb_put(skb, length), data, length);
4366
4367 return skb;
4368}
4369
4370/**
4371 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4372 * @adapter: board private structure
4373 * @rx_ring: ring to clean
4374 * @work_done: amount of napi work completed this call
4375 * @work_to_do: max amount of work allowed for this call to do
4376 */
4377static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4378 struct e1000_rx_ring *rx_ring,
4379 int *work_done, int work_to_do)
4380{
4381 struct net_device *netdev = adapter->netdev;
4382 struct pci_dev *pdev = adapter->pdev;
4383 struct e1000_rx_desc *rx_desc, *next_rxd;
4384 struct e1000_rx_buffer *buffer_info, *next_buffer;
4385 u32 length;
4386 unsigned int i;
4387 int cleaned_count = 0;
4388 bool cleaned = false;
4389 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4390
4391 i = rx_ring->next_to_clean;
4392 rx_desc = E1000_RX_DESC(*rx_ring, i);
4393 buffer_info = &rx_ring->buffer_info[i];
4394
4395 while (rx_desc->status & E1000_RXD_STAT_DD) {
4396 struct sk_buff *skb;
4397 u8 *data;
4398 u8 status;
4399
4400 if (*work_done >= work_to_do)
4401 break;
4402 (*work_done)++;
4403 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4404
4405 status = rx_desc->status;
4406 length = le16_to_cpu(rx_desc->length);
4407
4408 data = buffer_info->rxbuf.data;
4409 prefetch(data);
4410 skb = e1000_copybreak(adapter, buffer_info, length, data);
4411 if (!skb) {
4412 unsigned int frag_len = e1000_frag_len(adapter);
4413
4414 skb = build_skb(data - E1000_HEADROOM, frag_len);
4415 if (!skb) {
4416 adapter->alloc_rx_buff_failed++;
4417 break;
4418 }
4419
4420 skb_reserve(skb, E1000_HEADROOM);
4421 dma_unmap_single(&pdev->dev, buffer_info->dma,
4422 adapter->rx_buffer_len,
4423 DMA_FROM_DEVICE);
4424 buffer_info->dma = 0;
4425 buffer_info->rxbuf.data = NULL;
4426 }
4427
4428 if (++i == rx_ring->count)
4429 i = 0;
4430
4431 next_rxd = E1000_RX_DESC(*rx_ring, i);
4432 prefetch(next_rxd);
4433
4434 next_buffer = &rx_ring->buffer_info[i];
4435
4436 cleaned = true;
4437 cleaned_count++;
4438
4439 /* !EOP means multiple descriptors were used to store a single
4440 * packet, if thats the case we need to toss it. In fact, we
4441 * to toss every packet with the EOP bit clear and the next
4442 * frame that _does_ have the EOP bit set, as it is by
4443 * definition only a frame fragment
4444 */
4445 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4446 adapter->discarding = true;
4447
4448 if (adapter->discarding) {
4449 /* All receives must fit into a single buffer */
4450 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4451 dev_kfree_skb(skb);
4452 if (status & E1000_RXD_STAT_EOP)
4453 adapter->discarding = false;
4454 goto next_desc;
4455 }
4456
4457 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4458 if (e1000_tbi_should_accept(adapter, status,
4459 rx_desc->errors,
4460 length, data)) {
4461 length--;
4462 } else if (netdev->features & NETIF_F_RXALL) {
4463 goto process_skb;
4464 } else {
4465 dev_kfree_skb(skb);
4466 goto next_desc;
4467 }
4468 }
4469
4470process_skb:
4471 total_rx_bytes += (length - 4); /* don't count FCS */
4472 total_rx_packets++;
4473
4474 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4475 /* adjust length to remove Ethernet CRC, this must be
4476 * done after the TBI_ACCEPT workaround above
4477 */
4478 length -= 4;
4479
4480 if (buffer_info->rxbuf.data == NULL)
4481 skb_put(skb, length);
4482 else /* copybreak skb */
4483 skb_trim(skb, length);
4484
4485 /* Receive Checksum Offload */
4486 e1000_rx_checksum(adapter,
4487 (u32)(status) |
4488 ((u32)(rx_desc->errors) << 24),
4489 le16_to_cpu(rx_desc->csum), skb);
4490
4491 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4492
4493next_desc:
4494 rx_desc->status = 0;
4495
4496 /* return some buffers to hardware, one at a time is too slow */
4497 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4498 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4499 cleaned_count = 0;
4500 }
4501
4502 /* use prefetched values */
4503 rx_desc = next_rxd;
4504 buffer_info = next_buffer;
4505 }
4506 rx_ring->next_to_clean = i;
4507
4508 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4509 if (cleaned_count)
4510 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4511
4512 adapter->total_rx_packets += total_rx_packets;
4513 adapter->total_rx_bytes += total_rx_bytes;
4514 netdev->stats.rx_bytes += total_rx_bytes;
4515 netdev->stats.rx_packets += total_rx_packets;
4516 return cleaned;
4517}
4518
4519/**
4520 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4521 * @adapter: address of board private structure
4522 * @rx_ring: pointer to receive ring structure
4523 * @cleaned_count: number of buffers to allocate this pass
4524 **/
4525static void
4526e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4527 struct e1000_rx_ring *rx_ring, int cleaned_count)
4528{
4529 struct pci_dev *pdev = adapter->pdev;
4530 struct e1000_rx_desc *rx_desc;
4531 struct e1000_rx_buffer *buffer_info;
4532 unsigned int i;
4533
4534 i = rx_ring->next_to_use;
4535 buffer_info = &rx_ring->buffer_info[i];
4536
4537 while (cleaned_count--) {
4538 /* allocate a new page if necessary */
4539 if (!buffer_info->rxbuf.page) {
4540 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4541 if (unlikely(!buffer_info->rxbuf.page)) {
4542 adapter->alloc_rx_buff_failed++;
4543 break;
4544 }
4545 }
4546
4547 if (!buffer_info->dma) {
4548 buffer_info->dma = dma_map_page(&pdev->dev,
4549 buffer_info->rxbuf.page, 0,
4550 adapter->rx_buffer_len,
4551 DMA_FROM_DEVICE);
4552 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4553 put_page(buffer_info->rxbuf.page);
4554 buffer_info->rxbuf.page = NULL;
4555 buffer_info->dma = 0;
4556 adapter->alloc_rx_buff_failed++;
4557 break;
4558 }
4559 }
4560
4561 rx_desc = E1000_RX_DESC(*rx_ring, i);
4562 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4563
4564 if (unlikely(++i == rx_ring->count))
4565 i = 0;
4566 buffer_info = &rx_ring->buffer_info[i];
4567 }
4568
4569 if (likely(rx_ring->next_to_use != i)) {
4570 rx_ring->next_to_use = i;
4571 if (unlikely(i-- == 0))
4572 i = (rx_ring->count - 1);
4573
4574 /* Force memory writes to complete before letting h/w
4575 * know there are new descriptors to fetch. (Only
4576 * applicable for weak-ordered memory model archs,
4577 * such as IA-64).
4578 */
4579 wmb();
4580 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4581 }
4582}
4583
4584/**
4585 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4586 * @adapter: address of board private structure
4587 **/
4588static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4589 struct e1000_rx_ring *rx_ring,
4590 int cleaned_count)
4591{
4592 struct e1000_hw *hw = &adapter->hw;
4593 struct pci_dev *pdev = adapter->pdev;
4594 struct e1000_rx_desc *rx_desc;
4595 struct e1000_rx_buffer *buffer_info;
4596 unsigned int i;
4597 unsigned int bufsz = adapter->rx_buffer_len;
4598
4599 i = rx_ring->next_to_use;
4600 buffer_info = &rx_ring->buffer_info[i];
4601
4602 while (cleaned_count--) {
4603 void *data;
4604
4605 if (buffer_info->rxbuf.data)
4606 goto skip;
4607
4608 data = e1000_alloc_frag(adapter);
4609 if (!data) {
4610 /* Better luck next round */
4611 adapter->alloc_rx_buff_failed++;
4612 break;
4613 }
4614
4615 /* Fix for errata 23, can't cross 64kB boundary */
4616 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4617 void *olddata = data;
4618 e_err(rx_err, "skb align check failed: %u bytes at "
4619 "%p\n", bufsz, data);
4620 /* Try again, without freeing the previous */
4621 data = e1000_alloc_frag(adapter);
4622 /* Failed allocation, critical failure */
4623 if (!data) {
4624 skb_free_frag(olddata);
4625 adapter->alloc_rx_buff_failed++;
4626 break;
4627 }
4628
4629 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4630 /* give up */
4631 skb_free_frag(data);
4632 skb_free_frag(olddata);
4633 adapter->alloc_rx_buff_failed++;
4634 break;
4635 }
4636
4637 /* Use new allocation */
4638 skb_free_frag(olddata);
4639 }
4640 buffer_info->dma = dma_map_single(&pdev->dev,
4641 data,
4642 adapter->rx_buffer_len,
4643 DMA_FROM_DEVICE);
4644 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4645 skb_free_frag(data);
4646 buffer_info->dma = 0;
4647 adapter->alloc_rx_buff_failed++;
4648 break;
4649 }
4650
4651 /* XXX if it was allocated cleanly it will never map to a
4652 * boundary crossing
4653 */
4654
4655 /* Fix for errata 23, can't cross 64kB boundary */
4656 if (!e1000_check_64k_bound(adapter,
4657 (void *)(unsigned long)buffer_info->dma,
4658 adapter->rx_buffer_len)) {
4659 e_err(rx_err, "dma align check failed: %u bytes at "
4660 "%p\n", adapter->rx_buffer_len,
4661 (void *)(unsigned long)buffer_info->dma);
4662
4663 dma_unmap_single(&pdev->dev, buffer_info->dma,
4664 adapter->rx_buffer_len,
4665 DMA_FROM_DEVICE);
4666
4667 skb_free_frag(data);
4668 buffer_info->rxbuf.data = NULL;
4669 buffer_info->dma = 0;
4670
4671 adapter->alloc_rx_buff_failed++;
4672 break;
4673 }
4674 buffer_info->rxbuf.data = data;
4675 skip:
4676 rx_desc = E1000_RX_DESC(*rx_ring, i);
4677 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4678
4679 if (unlikely(++i == rx_ring->count))
4680 i = 0;
4681 buffer_info = &rx_ring->buffer_info[i];
4682 }
4683
4684 if (likely(rx_ring->next_to_use != i)) {
4685 rx_ring->next_to_use = i;
4686 if (unlikely(i-- == 0))
4687 i = (rx_ring->count - 1);
4688
4689 /* Force memory writes to complete before letting h/w
4690 * know there are new descriptors to fetch. (Only
4691 * applicable for weak-ordered memory model archs,
4692 * such as IA-64).
4693 */
4694 wmb();
4695 writel(i, hw->hw_addr + rx_ring->rdt);
4696 }
4697}
4698
4699/**
4700 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4701 * @adapter:
4702 **/
4703static void e1000_smartspeed(struct e1000_adapter *adapter)
4704{
4705 struct e1000_hw *hw = &adapter->hw;
4706 u16 phy_status;
4707 u16 phy_ctrl;
4708
4709 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4710 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4711 return;
4712
4713 if (adapter->smartspeed == 0) {
4714 /* If Master/Slave config fault is asserted twice,
4715 * we assume back-to-back
4716 */
4717 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4718 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4719 return;
4720 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4721 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4722 return;
4723 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4724 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4725 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4726 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4727 phy_ctrl);
4728 adapter->smartspeed++;
4729 if (!e1000_phy_setup_autoneg(hw) &&
4730 !e1000_read_phy_reg(hw, PHY_CTRL,
4731 &phy_ctrl)) {
4732 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4733 MII_CR_RESTART_AUTO_NEG);
4734 e1000_write_phy_reg(hw, PHY_CTRL,
4735 phy_ctrl);
4736 }
4737 }
4738 return;
4739 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4740 /* If still no link, perhaps using 2/3 pair cable */
4741 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4742 phy_ctrl |= CR_1000T_MS_ENABLE;
4743 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4744 if (!e1000_phy_setup_autoneg(hw) &&
4745 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4746 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4747 MII_CR_RESTART_AUTO_NEG);
4748 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4749 }
4750 }
4751 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4752 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4753 adapter->smartspeed = 0;
4754}
4755
4756/**
4757 * e1000_ioctl -
4758 * @netdev:
4759 * @ifreq:
4760 * @cmd:
4761 **/
4762static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4763{
4764 switch (cmd) {
4765 case SIOCGMIIPHY:
4766 case SIOCGMIIREG:
4767 case SIOCSMIIREG:
4768 return e1000_mii_ioctl(netdev, ifr, cmd);
4769 default:
4770 return -EOPNOTSUPP;
4771 }
4772}
4773
4774/**
4775 * e1000_mii_ioctl -
4776 * @netdev:
4777 * @ifreq:
4778 * @cmd:
4779 **/
4780static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4781 int cmd)
4782{
4783 struct e1000_adapter *adapter = netdev_priv(netdev);
4784 struct e1000_hw *hw = &adapter->hw;
4785 struct mii_ioctl_data *data = if_mii(ifr);
4786 int retval;
4787 u16 mii_reg;
4788 unsigned long flags;
4789
4790 if (hw->media_type != e1000_media_type_copper)
4791 return -EOPNOTSUPP;
4792
4793 switch (cmd) {
4794 case SIOCGMIIPHY:
4795 data->phy_id = hw->phy_addr;
4796 break;
4797 case SIOCGMIIREG:
4798 spin_lock_irqsave(&adapter->stats_lock, flags);
4799 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4800 &data->val_out)) {
4801 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4802 return -EIO;
4803 }
4804 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4805 break;
4806 case SIOCSMIIREG:
4807 if (data->reg_num & ~(0x1F))
4808 return -EFAULT;
4809 mii_reg = data->val_in;
4810 spin_lock_irqsave(&adapter->stats_lock, flags);
4811 if (e1000_write_phy_reg(hw, data->reg_num,
4812 mii_reg)) {
4813 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4814 return -EIO;
4815 }
4816 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4817 if (hw->media_type == e1000_media_type_copper) {
4818 switch (data->reg_num) {
4819 case PHY_CTRL:
4820 if (mii_reg & MII_CR_POWER_DOWN)
4821 break;
4822 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4823 hw->autoneg = 1;
4824 hw->autoneg_advertised = 0x2F;
4825 } else {
4826 u32 speed;
4827 if (mii_reg & 0x40)
4828 speed = SPEED_1000;
4829 else if (mii_reg & 0x2000)
4830 speed = SPEED_100;
4831 else
4832 speed = SPEED_10;
4833 retval = e1000_set_spd_dplx(
4834 adapter, speed,
4835 ((mii_reg & 0x100)
4836 ? DUPLEX_FULL :
4837 DUPLEX_HALF));
4838 if (retval)
4839 return retval;
4840 }
4841 if (netif_running(adapter->netdev))
4842 e1000_reinit_locked(adapter);
4843 else
4844 e1000_reset(adapter);
4845 break;
4846 case M88E1000_PHY_SPEC_CTRL:
4847 case M88E1000_EXT_PHY_SPEC_CTRL:
4848 if (e1000_phy_reset(hw))
4849 return -EIO;
4850 break;
4851 }
4852 } else {
4853 switch (data->reg_num) {
4854 case PHY_CTRL:
4855 if (mii_reg & MII_CR_POWER_DOWN)
4856 break;
4857 if (netif_running(adapter->netdev))
4858 e1000_reinit_locked(adapter);
4859 else
4860 e1000_reset(adapter);
4861 break;
4862 }
4863 }
4864 break;
4865 default:
4866 return -EOPNOTSUPP;
4867 }
4868 return E1000_SUCCESS;
4869}
4870
4871void e1000_pci_set_mwi(struct e1000_hw *hw)
4872{
4873 struct e1000_adapter *adapter = hw->back;
4874 int ret_val = pci_set_mwi(adapter->pdev);
4875
4876 if (ret_val)
4877 e_err(probe, "Error in setting MWI\n");
4878}
4879
4880void e1000_pci_clear_mwi(struct e1000_hw *hw)
4881{
4882 struct e1000_adapter *adapter = hw->back;
4883
4884 pci_clear_mwi(adapter->pdev);
4885}
4886
4887int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4888{
4889 struct e1000_adapter *adapter = hw->back;
4890 return pcix_get_mmrbc(adapter->pdev);
4891}
4892
4893void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4894{
4895 struct e1000_adapter *adapter = hw->back;
4896 pcix_set_mmrbc(adapter->pdev, mmrbc);
4897}
4898
4899void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4900{
4901 outl(value, port);
4902}
4903
4904static bool e1000_vlan_used(struct e1000_adapter *adapter)
4905{
4906 u16 vid;
4907
4908 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4909 return true;
4910 return false;
4911}
4912
4913static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4914 netdev_features_t features)
4915{
4916 struct e1000_hw *hw = &adapter->hw;
4917 u32 ctrl;
4918
4919 ctrl = er32(CTRL);
4920 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4921 /* enable VLAN tag insert/strip */
4922 ctrl |= E1000_CTRL_VME;
4923 } else {
4924 /* disable VLAN tag insert/strip */
4925 ctrl &= ~E1000_CTRL_VME;
4926 }
4927 ew32(CTRL, ctrl);
4928}
4929static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4930 bool filter_on)
4931{
4932 struct e1000_hw *hw = &adapter->hw;
4933 u32 rctl;
4934
4935 if (!test_bit(__E1000_DOWN, &adapter->flags))
4936 e1000_irq_disable(adapter);
4937
4938 __e1000_vlan_mode(adapter, adapter->netdev->features);
4939 if (filter_on) {
4940 /* enable VLAN receive filtering */
4941 rctl = er32(RCTL);
4942 rctl &= ~E1000_RCTL_CFIEN;
4943 if (!(adapter->netdev->flags & IFF_PROMISC))
4944 rctl |= E1000_RCTL_VFE;
4945 ew32(RCTL, rctl);
4946 e1000_update_mng_vlan(adapter);
4947 } else {
4948 /* disable VLAN receive filtering */
4949 rctl = er32(RCTL);
4950 rctl &= ~E1000_RCTL_VFE;
4951 ew32(RCTL, rctl);
4952 }
4953
4954 if (!test_bit(__E1000_DOWN, &adapter->flags))
4955 e1000_irq_enable(adapter);
4956}
4957
4958static void e1000_vlan_mode(struct net_device *netdev,
4959 netdev_features_t features)
4960{
4961 struct e1000_adapter *adapter = netdev_priv(netdev);
4962
4963 if (!test_bit(__E1000_DOWN, &adapter->flags))
4964 e1000_irq_disable(adapter);
4965
4966 __e1000_vlan_mode(adapter, features);
4967
4968 if (!test_bit(__E1000_DOWN, &adapter->flags))
4969 e1000_irq_enable(adapter);
4970}
4971
4972static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4973 __be16 proto, u16 vid)
4974{
4975 struct e1000_adapter *adapter = netdev_priv(netdev);
4976 struct e1000_hw *hw = &adapter->hw;
4977 u32 vfta, index;
4978
4979 if ((hw->mng_cookie.status &
4980 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4981 (vid == adapter->mng_vlan_id))
4982 return 0;
4983
4984 if (!e1000_vlan_used(adapter))
4985 e1000_vlan_filter_on_off(adapter, true);
4986
4987 /* add VID to filter table */
4988 index = (vid >> 5) & 0x7F;
4989 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4990 vfta |= (1 << (vid & 0x1F));
4991 e1000_write_vfta(hw, index, vfta);
4992
4993 set_bit(vid, adapter->active_vlans);
4994
4995 return 0;
4996}
4997
4998static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4999 __be16 proto, u16 vid)
5000{
5001 struct e1000_adapter *adapter = netdev_priv(netdev);
5002 struct e1000_hw *hw = &adapter->hw;
5003 u32 vfta, index;
5004
5005 if (!test_bit(__E1000_DOWN, &adapter->flags))
5006 e1000_irq_disable(adapter);
5007 if (!test_bit(__E1000_DOWN, &adapter->flags))
5008 e1000_irq_enable(adapter);
5009
5010 /* remove VID from filter table */
5011 index = (vid >> 5) & 0x7F;
5012 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5013 vfta &= ~(1 << (vid & 0x1F));
5014 e1000_write_vfta(hw, index, vfta);
5015
5016 clear_bit(vid, adapter->active_vlans);
5017
5018 if (!e1000_vlan_used(adapter))
5019 e1000_vlan_filter_on_off(adapter, false);
5020
5021 return 0;
5022}
5023
5024static void e1000_restore_vlan(struct e1000_adapter *adapter)
5025{
5026 u16 vid;
5027
5028 if (!e1000_vlan_used(adapter))
5029 return;
5030
5031 e1000_vlan_filter_on_off(adapter, true);
5032 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5033 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5034}
5035
5036int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5037{
5038 struct e1000_hw *hw = &adapter->hw;
5039
5040 hw->autoneg = 0;
5041
5042 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5043 * for the switch() below to work
5044 */
5045 if ((spd & 1) || (dplx & ~1))
5046 goto err_inval;
5047
5048 /* Fiber NICs only allow 1000 gbps Full duplex */
5049 if ((hw->media_type == e1000_media_type_fiber) &&
5050 spd != SPEED_1000 &&
5051 dplx != DUPLEX_FULL)
5052 goto err_inval;
5053
5054 switch (spd + dplx) {
5055 case SPEED_10 + DUPLEX_HALF:
5056 hw->forced_speed_duplex = e1000_10_half;
5057 break;
5058 case SPEED_10 + DUPLEX_FULL:
5059 hw->forced_speed_duplex = e1000_10_full;
5060 break;
5061 case SPEED_100 + DUPLEX_HALF:
5062 hw->forced_speed_duplex = e1000_100_half;
5063 break;
5064 case SPEED_100 + DUPLEX_FULL:
5065 hw->forced_speed_duplex = e1000_100_full;
5066 break;
5067 case SPEED_1000 + DUPLEX_FULL:
5068 hw->autoneg = 1;
5069 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5070 break;
5071 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5072 default:
5073 goto err_inval;
5074 }
5075
5076 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5077 hw->mdix = AUTO_ALL_MODES;
5078
5079 return 0;
5080
5081err_inval:
5082 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5083 return -EINVAL;
5084}
5085
5086static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5087{
5088 struct net_device *netdev = pci_get_drvdata(pdev);
5089 struct e1000_adapter *adapter = netdev_priv(netdev);
5090 struct e1000_hw *hw = &adapter->hw;
5091 u32 ctrl, ctrl_ext, rctl, status;
5092 u32 wufc = adapter->wol;
5093#ifdef CONFIG_PM
5094 int retval = 0;
5095#endif
5096
5097 netif_device_detach(netdev);
5098
5099 if (netif_running(netdev)) {
5100 int count = E1000_CHECK_RESET_COUNT;
5101
5102 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5103 usleep_range(10000, 20000);
5104
5105 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5106 e1000_down(adapter);
5107 }
5108
5109#ifdef CONFIG_PM
5110 retval = pci_save_state(pdev);
5111 if (retval)
5112 return retval;
5113#endif
5114
5115 status = er32(STATUS);
5116 if (status & E1000_STATUS_LU)
5117 wufc &= ~E1000_WUFC_LNKC;
5118
5119 if (wufc) {
5120 e1000_setup_rctl(adapter);
5121 e1000_set_rx_mode(netdev);
5122
5123 rctl = er32(RCTL);
5124
5125 /* turn on all-multi mode if wake on multicast is enabled */
5126 if (wufc & E1000_WUFC_MC)
5127 rctl |= E1000_RCTL_MPE;
5128
5129 /* enable receives in the hardware */
5130 ew32(RCTL, rctl | E1000_RCTL_EN);
5131
5132 if (hw->mac_type >= e1000_82540) {
5133 ctrl = er32(CTRL);
5134 /* advertise wake from D3Cold */
5135 #define E1000_CTRL_ADVD3WUC 0x00100000
5136 /* phy power management enable */
5137 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5138 ctrl |= E1000_CTRL_ADVD3WUC |
5139 E1000_CTRL_EN_PHY_PWR_MGMT;
5140 ew32(CTRL, ctrl);
5141 }
5142
5143 if (hw->media_type == e1000_media_type_fiber ||
5144 hw->media_type == e1000_media_type_internal_serdes) {
5145 /* keep the laser running in D3 */
5146 ctrl_ext = er32(CTRL_EXT);
5147 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5148 ew32(CTRL_EXT, ctrl_ext);
5149 }
5150
5151 ew32(WUC, E1000_WUC_PME_EN);
5152 ew32(WUFC, wufc);
5153 } else {
5154 ew32(WUC, 0);
5155 ew32(WUFC, 0);
5156 }
5157
5158 e1000_release_manageability(adapter);
5159
5160 *enable_wake = !!wufc;
5161
5162 /* make sure adapter isn't asleep if manageability is enabled */
5163 if (adapter->en_mng_pt)
5164 *enable_wake = true;
5165
5166 if (netif_running(netdev))
5167 e1000_free_irq(adapter);
5168
5169 pci_disable_device(pdev);
5170
5171 return 0;
5172}
5173
5174#ifdef CONFIG_PM
5175static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5176{
5177 int retval;
5178 bool wake;
5179
5180 retval = __e1000_shutdown(pdev, &wake);
5181 if (retval)
5182 return retval;
5183
5184 if (wake) {
5185 pci_prepare_to_sleep(pdev);
5186 } else {
5187 pci_wake_from_d3(pdev, false);
5188 pci_set_power_state(pdev, PCI_D3hot);
5189 }
5190
5191 return 0;
5192}
5193
5194static int e1000_resume(struct pci_dev *pdev)
5195{
5196 struct net_device *netdev = pci_get_drvdata(pdev);
5197 struct e1000_adapter *adapter = netdev_priv(netdev);
5198 struct e1000_hw *hw = &adapter->hw;
5199 u32 err;
5200
5201 pci_set_power_state(pdev, PCI_D0);
5202 pci_restore_state(pdev);
5203 pci_save_state(pdev);
5204
5205 if (adapter->need_ioport)
5206 err = pci_enable_device(pdev);
5207 else
5208 err = pci_enable_device_mem(pdev);
5209 if (err) {
5210 pr_err("Cannot enable PCI device from suspend\n");
5211 return err;
5212 }
5213 pci_set_master(pdev);
5214
5215 pci_enable_wake(pdev, PCI_D3hot, 0);
5216 pci_enable_wake(pdev, PCI_D3cold, 0);
5217
5218 if (netif_running(netdev)) {
5219 err = e1000_request_irq(adapter);
5220 if (err)
5221 return err;
5222 }
5223
5224 e1000_power_up_phy(adapter);
5225 e1000_reset(adapter);
5226 ew32(WUS, ~0);
5227
5228 e1000_init_manageability(adapter);
5229
5230 if (netif_running(netdev))
5231 e1000_up(adapter);
5232
5233 netif_device_attach(netdev);
5234
5235 return 0;
5236}
5237#endif
5238
5239static void e1000_shutdown(struct pci_dev *pdev)
5240{
5241 bool wake;
5242
5243 __e1000_shutdown(pdev, &wake);
5244
5245 if (system_state == SYSTEM_POWER_OFF) {
5246 pci_wake_from_d3(pdev, wake);
5247 pci_set_power_state(pdev, PCI_D3hot);
5248 }
5249}
5250
5251#ifdef CONFIG_NET_POLL_CONTROLLER
5252/* Polling 'interrupt' - used by things like netconsole to send skbs
5253 * without having to re-enable interrupts. It's not called while
5254 * the interrupt routine is executing.
5255 */
5256static void e1000_netpoll(struct net_device *netdev)
5257{
5258 struct e1000_adapter *adapter = netdev_priv(netdev);
5259
5260 disable_irq(adapter->pdev->irq);
5261 e1000_intr(adapter->pdev->irq, netdev);
5262 enable_irq(adapter->pdev->irq);
5263}
5264#endif
5265
5266/**
5267 * e1000_io_error_detected - called when PCI error is detected
5268 * @pdev: Pointer to PCI device
5269 * @state: The current pci connection state
5270 *
5271 * This function is called after a PCI bus error affecting
5272 * this device has been detected.
5273 */
5274static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5275 pci_channel_state_t state)
5276{
5277 struct net_device *netdev = pci_get_drvdata(pdev);
5278 struct e1000_adapter *adapter = netdev_priv(netdev);
5279
5280 netif_device_detach(netdev);
5281
5282 if (state == pci_channel_io_perm_failure)
5283 return PCI_ERS_RESULT_DISCONNECT;
5284
5285 if (netif_running(netdev))
5286 e1000_down(adapter);
5287 pci_disable_device(pdev);
5288
5289 /* Request a slot slot reset. */
5290 return PCI_ERS_RESULT_NEED_RESET;
5291}
5292
5293/**
5294 * e1000_io_slot_reset - called after the pci bus has been reset.
5295 * @pdev: Pointer to PCI device
5296 *
5297 * Restart the card from scratch, as if from a cold-boot. Implementation
5298 * resembles the first-half of the e1000_resume routine.
5299 */
5300static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5301{
5302 struct net_device *netdev = pci_get_drvdata(pdev);
5303 struct e1000_adapter *adapter = netdev_priv(netdev);
5304 struct e1000_hw *hw = &adapter->hw;
5305 int err;
5306
5307 if (adapter->need_ioport)
5308 err = pci_enable_device(pdev);
5309 else
5310 err = pci_enable_device_mem(pdev);
5311 if (err) {
5312 pr_err("Cannot re-enable PCI device after reset.\n");
5313 return PCI_ERS_RESULT_DISCONNECT;
5314 }
5315 pci_set_master(pdev);
5316
5317 pci_enable_wake(pdev, PCI_D3hot, 0);
5318 pci_enable_wake(pdev, PCI_D3cold, 0);
5319
5320 e1000_reset(adapter);
5321 ew32(WUS, ~0);
5322
5323 return PCI_ERS_RESULT_RECOVERED;
5324}
5325
5326/**
5327 * e1000_io_resume - called when traffic can start flowing again.
5328 * @pdev: Pointer to PCI device
5329 *
5330 * This callback is called when the error recovery driver tells us that
5331 * its OK to resume normal operation. Implementation resembles the
5332 * second-half of the e1000_resume routine.
5333 */
5334static void e1000_io_resume(struct pci_dev *pdev)
5335{
5336 struct net_device *netdev = pci_get_drvdata(pdev);
5337 struct e1000_adapter *adapter = netdev_priv(netdev);
5338
5339 e1000_init_manageability(adapter);
5340
5341 if (netif_running(netdev)) {
5342 if (e1000_up(adapter)) {
5343 pr_info("can't bring device back up after reset\n");
5344 return;
5345 }
5346 }
5347
5348 netif_device_attach(netdev);
5349}
5350
5351/* e1000_main.c */