Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include "e1000.h"
  30#include <net/ip6_checksum.h>
  31#include <linux/io.h>
  32#include <linux/prefetch.h>
  33#include <linux/bitops.h>
  34#include <linux/if_vlan.h>
  35
  36char e1000_driver_name[] = "e1000";
  37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  38#define DRV_VERSION "7.3.21-k8-NAPI"
  39const char e1000_driver_version[] = DRV_VERSION;
  40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  41
  42/* e1000_pci_tbl - PCI Device ID Table
  43 *
  44 * Last entry must be all 0s
  45 *
  46 * Macro expands to...
  47 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  48 */
  49static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
  50	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  53	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  54	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  55	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  57	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  58	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  59	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  60	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  61	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  62	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  63	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  64	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  65	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  66	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  67	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  68	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  69	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  70	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  71	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  72	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  73	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  74	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  75	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  76	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  77	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  78	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  79	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  80	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  81	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  82	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  83	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  84	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  85	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  86	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  87	/* required last entry */
  88	{0,}
  89};
  90
  91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  92
  93int e1000_up(struct e1000_adapter *adapter);
  94void e1000_down(struct e1000_adapter *adapter);
  95void e1000_reinit_locked(struct e1000_adapter *adapter);
  96void e1000_reset(struct e1000_adapter *adapter);
  97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
 101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 102                             struct e1000_tx_ring *txdr);
 103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 104                             struct e1000_rx_ring *rxdr);
 105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 106                             struct e1000_tx_ring *tx_ring);
 107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 108                             struct e1000_rx_ring *rx_ring);
 109void e1000_update_stats(struct e1000_adapter *adapter);
 110
 111static int e1000_init_module(void);
 112static void e1000_exit_module(void);
 113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 114static void __devexit e1000_remove(struct pci_dev *pdev);
 115static int e1000_alloc_queues(struct e1000_adapter *adapter);
 116static int e1000_sw_init(struct e1000_adapter *adapter);
 117static int e1000_open(struct net_device *netdev);
 118static int e1000_close(struct net_device *netdev);
 119static void e1000_configure_tx(struct e1000_adapter *adapter);
 120static void e1000_configure_rx(struct e1000_adapter *adapter);
 121static void e1000_setup_rctl(struct e1000_adapter *adapter);
 122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 125                                struct e1000_tx_ring *tx_ring);
 126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 127                                struct e1000_rx_ring *rx_ring);
 128static void e1000_set_rx_mode(struct net_device *netdev);
 129static void e1000_update_phy_info_task(struct work_struct *work);
 130static void e1000_watchdog(struct work_struct *work);
 131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 133				    struct net_device *netdev);
 134static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
 135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 136static int e1000_set_mac(struct net_device *netdev, void *p);
 137static irqreturn_t e1000_intr(int irq, void *data);
 138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 139			       struct e1000_tx_ring *tx_ring);
 140static int e1000_clean(struct napi_struct *napi, int budget);
 141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 142			       struct e1000_rx_ring *rx_ring,
 143			       int *work_done, int work_to_do);
 144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 145				     struct e1000_rx_ring *rx_ring,
 146				     int *work_done, int work_to_do);
 
 
 
 
 
 147static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 148				   struct e1000_rx_ring *rx_ring,
 149				   int cleaned_count);
 150static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 151					 struct e1000_rx_ring *rx_ring,
 152					 int cleaned_count);
 153static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 154static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 155			   int cmd);
 156static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 157static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 158static void e1000_tx_timeout(struct net_device *dev);
 159static void e1000_reset_task(struct work_struct *work);
 160static void e1000_smartspeed(struct e1000_adapter *adapter);
 161static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 162                                       struct sk_buff *skb);
 163
 164static bool e1000_vlan_used(struct e1000_adapter *adapter);
 165static void e1000_vlan_mode(struct net_device *netdev,
 166			    netdev_features_t features);
 167static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 168				     bool filter_on);
 169static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
 170static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
 
 
 171static void e1000_restore_vlan(struct e1000_adapter *adapter);
 172
 173#ifdef CONFIG_PM
 174static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 175static int e1000_resume(struct pci_dev *pdev);
 176#endif
 177static void e1000_shutdown(struct pci_dev *pdev);
 178
 179#ifdef CONFIG_NET_POLL_CONTROLLER
 180/* for netdump / net console */
 181static void e1000_netpoll (struct net_device *netdev);
 182#endif
 183
 184#define COPYBREAK_DEFAULT 256
 185static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 186module_param(copybreak, uint, 0644);
 187MODULE_PARM_DESC(copybreak,
 188	"Maximum size of packet that is copied to a new buffer on receive");
 189
 190static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 191                     pci_channel_state_t state);
 192static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 193static void e1000_io_resume(struct pci_dev *pdev);
 194
 195static struct pci_error_handlers e1000_err_handler = {
 196	.error_detected = e1000_io_error_detected,
 197	.slot_reset = e1000_io_slot_reset,
 198	.resume = e1000_io_resume,
 199};
 200
 
 
 201static struct pci_driver e1000_driver = {
 202	.name     = e1000_driver_name,
 203	.id_table = e1000_pci_tbl,
 204	.probe    = e1000_probe,
 205	.remove   = __devexit_p(e1000_remove),
 206#ifdef CONFIG_PM
 207	/* Power Management Hooks */
 208	.suspend  = e1000_suspend,
 209	.resume   = e1000_resume,
 210#endif
 211	.shutdown = e1000_shutdown,
 212	.err_handler = &e1000_err_handler
 213};
 214
 215MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 216MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 217MODULE_LICENSE("GPL");
 218MODULE_VERSION(DRV_VERSION);
 219
 220#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 221static int debug = -1;
 222module_param(debug, int, 0);
 223MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 224
 225/**
 226 * e1000_get_hw_dev - return device
 227 * used by hardware layer to print debugging information
 
 
 228 *
 229 **/
 230struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 231{
 232	struct e1000_adapter *adapter = hw->back;
 233	return adapter->netdev;
 234}
 235
 236/**
 237 * e1000_init_module - Driver Registration Routine
 238 *
 239 * e1000_init_module is the first routine called when the driver is
 240 * loaded. All it does is register with the PCI subsystem.
 241 **/
 242
 243static int __init e1000_init_module(void)
 244{
 245	int ret;
 246	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 247
 248	pr_info("%s\n", e1000_copyright);
 249
 250	ret = pci_register_driver(&e1000_driver);
 251	if (copybreak != COPYBREAK_DEFAULT) {
 252		if (copybreak == 0)
 253			pr_info("copybreak disabled\n");
 254		else
 255			pr_info("copybreak enabled for "
 256				   "packets <= %u bytes\n", copybreak);
 257	}
 258	return ret;
 259}
 260
 261module_init(e1000_init_module);
 262
 263/**
 264 * e1000_exit_module - Driver Exit Cleanup Routine
 265 *
 266 * e1000_exit_module is called just before the driver is removed
 267 * from memory.
 268 **/
 269
 270static void __exit e1000_exit_module(void)
 271{
 272	pci_unregister_driver(&e1000_driver);
 273}
 274
 275module_exit(e1000_exit_module);
 276
 277static int e1000_request_irq(struct e1000_adapter *adapter)
 278{
 279	struct net_device *netdev = adapter->netdev;
 280	irq_handler_t handler = e1000_intr;
 281	int irq_flags = IRQF_SHARED;
 282	int err;
 283
 284	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 285	                  netdev);
 286	if (err) {
 287		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 288	}
 289
 290	return err;
 291}
 292
 293static void e1000_free_irq(struct e1000_adapter *adapter)
 294{
 295	struct net_device *netdev = adapter->netdev;
 296
 297	free_irq(adapter->pdev->irq, netdev);
 298}
 299
 300/**
 301 * e1000_irq_disable - Mask off interrupt generation on the NIC
 302 * @adapter: board private structure
 303 **/
 304
 305static void e1000_irq_disable(struct e1000_adapter *adapter)
 306{
 307	struct e1000_hw *hw = &adapter->hw;
 308
 309	ew32(IMC, ~0);
 310	E1000_WRITE_FLUSH();
 311	synchronize_irq(adapter->pdev->irq);
 312}
 313
 314/**
 315 * e1000_irq_enable - Enable default interrupt generation settings
 316 * @adapter: board private structure
 317 **/
 318
 319static void e1000_irq_enable(struct e1000_adapter *adapter)
 320{
 321	struct e1000_hw *hw = &adapter->hw;
 322
 323	ew32(IMS, IMS_ENABLE_MASK);
 324	E1000_WRITE_FLUSH();
 325}
 326
 327static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 328{
 329	struct e1000_hw *hw = &adapter->hw;
 330	struct net_device *netdev = adapter->netdev;
 331	u16 vid = hw->mng_cookie.vlan_id;
 332	u16 old_vid = adapter->mng_vlan_id;
 333
 334	if (!e1000_vlan_used(adapter))
 335		return;
 336
 337	if (!test_bit(vid, adapter->active_vlans)) {
 338		if (hw->mng_cookie.status &
 339		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 340			e1000_vlan_rx_add_vid(netdev, vid);
 341			adapter->mng_vlan_id = vid;
 342		} else {
 343			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 344		}
 345		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 346		    (vid != old_vid) &&
 347		    !test_bit(old_vid, adapter->active_vlans))
 348			e1000_vlan_rx_kill_vid(netdev, old_vid);
 
 349	} else {
 350		adapter->mng_vlan_id = vid;
 351	}
 352}
 353
 354static void e1000_init_manageability(struct e1000_adapter *adapter)
 355{
 356	struct e1000_hw *hw = &adapter->hw;
 357
 358	if (adapter->en_mng_pt) {
 359		u32 manc = er32(MANC);
 360
 361		/* disable hardware interception of ARP */
 362		manc &= ~(E1000_MANC_ARP_EN);
 363
 364		ew32(MANC, manc);
 365	}
 366}
 367
 368static void e1000_release_manageability(struct e1000_adapter *adapter)
 369{
 370	struct e1000_hw *hw = &adapter->hw;
 371
 372	if (adapter->en_mng_pt) {
 373		u32 manc = er32(MANC);
 374
 375		/* re-enable hardware interception of ARP */
 376		manc |= E1000_MANC_ARP_EN;
 377
 378		ew32(MANC, manc);
 379	}
 380}
 381
 382/**
 383 * e1000_configure - configure the hardware for RX and TX
 384 * @adapter = private board structure
 385 **/
 386static void e1000_configure(struct e1000_adapter *adapter)
 387{
 388	struct net_device *netdev = adapter->netdev;
 389	int i;
 390
 391	e1000_set_rx_mode(netdev);
 392
 393	e1000_restore_vlan(adapter);
 394	e1000_init_manageability(adapter);
 395
 396	e1000_configure_tx(adapter);
 397	e1000_setup_rctl(adapter);
 398	e1000_configure_rx(adapter);
 399	/* call E1000_DESC_UNUSED which always leaves
 400	 * at least 1 descriptor unused to make sure
 401	 * next_to_use != next_to_clean */
 
 402	for (i = 0; i < adapter->num_rx_queues; i++) {
 403		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 404		adapter->alloc_rx_buf(adapter, ring,
 405		                      E1000_DESC_UNUSED(ring));
 406	}
 407}
 408
 409int e1000_up(struct e1000_adapter *adapter)
 410{
 411	struct e1000_hw *hw = &adapter->hw;
 412
 413	/* hardware has been reset, we need to reload some things */
 414	e1000_configure(adapter);
 415
 416	clear_bit(__E1000_DOWN, &adapter->flags);
 417
 418	napi_enable(&adapter->napi);
 419
 420	e1000_irq_enable(adapter);
 421
 422	netif_wake_queue(adapter->netdev);
 423
 424	/* fire a link change interrupt to start the watchdog */
 425	ew32(ICS, E1000_ICS_LSC);
 426	return 0;
 427}
 428
 429/**
 430 * e1000_power_up_phy - restore link in case the phy was powered down
 431 * @adapter: address of board private structure
 432 *
 433 * The phy may be powered down to save power and turn off link when the
 434 * driver is unloaded and wake on lan is not enabled (among others)
 435 * *** this routine MUST be followed by a call to e1000_reset ***
 436 *
 437 **/
 438
 439void e1000_power_up_phy(struct e1000_adapter *adapter)
 440{
 441	struct e1000_hw *hw = &adapter->hw;
 442	u16 mii_reg = 0;
 443
 444	/* Just clear the power down bit to wake the phy back up */
 445	if (hw->media_type == e1000_media_type_copper) {
 446		/* according to the manual, the phy will retain its
 447		 * settings across a power-down/up cycle */
 
 448		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 449		mii_reg &= ~MII_CR_POWER_DOWN;
 450		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 451	}
 452}
 453
 454static void e1000_power_down_phy(struct e1000_adapter *adapter)
 455{
 456	struct e1000_hw *hw = &adapter->hw;
 457
 458	/* Power down the PHY so no link is implied when interface is down *
 459	 * The PHY cannot be powered down if any of the following is true *
 460	 * (a) WoL is enabled
 461	 * (b) AMT is active
 462	 * (c) SoL/IDER session is active */
 
 463	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 464	   hw->media_type == e1000_media_type_copper) {
 465		u16 mii_reg = 0;
 466
 467		switch (hw->mac_type) {
 468		case e1000_82540:
 469		case e1000_82545:
 470		case e1000_82545_rev_3:
 471		case e1000_82546:
 472		case e1000_ce4100:
 473		case e1000_82546_rev_3:
 474		case e1000_82541:
 475		case e1000_82541_rev_2:
 476		case e1000_82547:
 477		case e1000_82547_rev_2:
 478			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 479				goto out;
 480			break;
 481		default:
 482			goto out;
 483		}
 484		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 485		mii_reg |= MII_CR_POWER_DOWN;
 486		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 487		msleep(1);
 488	}
 489out:
 490	return;
 491}
 492
 493static void e1000_down_and_stop(struct e1000_adapter *adapter)
 494{
 495	set_bit(__E1000_DOWN, &adapter->flags);
 496
 497	/* Only kill reset task if adapter is not resetting */
 498	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 499		cancel_work_sync(&adapter->reset_task);
 500
 501	cancel_delayed_work_sync(&adapter->watchdog_task);
 
 
 
 
 
 
 
 502	cancel_delayed_work_sync(&adapter->phy_info_task);
 503	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 
 
 
 
 504}
 505
 506void e1000_down(struct e1000_adapter *adapter)
 507{
 508	struct e1000_hw *hw = &adapter->hw;
 509	struct net_device *netdev = adapter->netdev;
 510	u32 rctl, tctl;
 511
 512
 513	/* disable receives in the hardware */
 514	rctl = er32(RCTL);
 515	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 516	/* flush and sleep below */
 517
 518	netif_tx_disable(netdev);
 519
 520	/* disable transmits in the hardware */
 521	tctl = er32(TCTL);
 522	tctl &= ~E1000_TCTL_EN;
 523	ew32(TCTL, tctl);
 524	/* flush both disables and wait for them to finish */
 525	E1000_WRITE_FLUSH();
 526	msleep(10);
 527
 
 
 
 
 
 
 
 
 
 528	napi_disable(&adapter->napi);
 529
 530	e1000_irq_disable(adapter);
 531
 532	/*
 533	 * Setting DOWN must be after irq_disable to prevent
 534	 * a screaming interrupt.  Setting DOWN also prevents
 535	 * tasks from rescheduling.
 536	 */
 537	e1000_down_and_stop(adapter);
 538
 539	adapter->link_speed = 0;
 540	adapter->link_duplex = 0;
 541	netif_carrier_off(netdev);
 542
 543	e1000_reset(adapter);
 544	e1000_clean_all_tx_rings(adapter);
 545	e1000_clean_all_rx_rings(adapter);
 546}
 547
 548static void e1000_reinit_safe(struct e1000_adapter *adapter)
 549{
 550	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 551		msleep(1);
 552	mutex_lock(&adapter->mutex);
 553	e1000_down(adapter);
 554	e1000_up(adapter);
 555	mutex_unlock(&adapter->mutex);
 556	clear_bit(__E1000_RESETTING, &adapter->flags);
 557}
 558
 559void e1000_reinit_locked(struct e1000_adapter *adapter)
 560{
 561	/* if rtnl_lock is not held the call path is bogus */
 562	ASSERT_RTNL();
 563	WARN_ON(in_interrupt());
 564	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 565		msleep(1);
 566	e1000_down(adapter);
 567	e1000_up(adapter);
 
 
 
 
 
 568	clear_bit(__E1000_RESETTING, &adapter->flags);
 569}
 570
 571void e1000_reset(struct e1000_adapter *adapter)
 572{
 573	struct e1000_hw *hw = &adapter->hw;
 574	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 575	bool legacy_pba_adjust = false;
 576	u16 hwm;
 577
 578	/* Repartition Pba for greater than 9k mtu
 579	 * To take effect CTRL.RST is required.
 580	 */
 581
 582	switch (hw->mac_type) {
 583	case e1000_82542_rev2_0:
 584	case e1000_82542_rev2_1:
 585	case e1000_82543:
 586	case e1000_82544:
 587	case e1000_82540:
 588	case e1000_82541:
 589	case e1000_82541_rev_2:
 590		legacy_pba_adjust = true;
 591		pba = E1000_PBA_48K;
 592		break;
 593	case e1000_82545:
 594	case e1000_82545_rev_3:
 595	case e1000_82546:
 596	case e1000_ce4100:
 597	case e1000_82546_rev_3:
 598		pba = E1000_PBA_48K;
 599		break;
 600	case e1000_82547:
 601	case e1000_82547_rev_2:
 602		legacy_pba_adjust = true;
 603		pba = E1000_PBA_30K;
 604		break;
 605	case e1000_undefined:
 606	case e1000_num_macs:
 607		break;
 608	}
 609
 610	if (legacy_pba_adjust) {
 611		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 612			pba -= 8; /* allocate more FIFO for Tx */
 613
 614		if (hw->mac_type == e1000_82547) {
 615			adapter->tx_fifo_head = 0;
 616			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 617			adapter->tx_fifo_size =
 618				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 619			atomic_set(&adapter->tx_fifo_stall, 0);
 620		}
 621	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 622		/* adjust PBA for jumbo frames */
 623		ew32(PBA, pba);
 624
 625		/* To maintain wire speed transmits, the Tx FIFO should be
 626		 * large enough to accommodate two full transmit packets,
 627		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 628		 * the Rx FIFO should be large enough to accommodate at least
 629		 * one full receive packet and is similarly rounded up and
 630		 * expressed in KB. */
 
 631		pba = er32(PBA);
 632		/* upper 16 bits has Tx packet buffer allocation size in KB */
 633		tx_space = pba >> 16;
 634		/* lower 16 bits has Rx packet buffer allocation size in KB */
 635		pba &= 0xffff;
 636		/*
 637		 * the tx fifo also stores 16 bytes of information about the tx
 638		 * but don't include ethernet FCS because hardware appends it
 639		 */
 640		min_tx_space = (hw->max_frame_size +
 641		                sizeof(struct e1000_tx_desc) -
 642		                ETH_FCS_LEN) * 2;
 643		min_tx_space = ALIGN(min_tx_space, 1024);
 644		min_tx_space >>= 10;
 645		/* software strips receive CRC, so leave room for it */
 646		min_rx_space = hw->max_frame_size;
 647		min_rx_space = ALIGN(min_rx_space, 1024);
 648		min_rx_space >>= 10;
 649
 650		/* If current Tx allocation is less than the min Tx FIFO size,
 651		 * and the min Tx FIFO size is less than the current Rx FIFO
 652		 * allocation, take space away from current Rx allocation */
 
 653		if (tx_space < min_tx_space &&
 654		    ((min_tx_space - tx_space) < pba)) {
 655			pba = pba - (min_tx_space - tx_space);
 656
 657			/* PCI/PCIx hardware has PBA alignment constraints */
 658			switch (hw->mac_type) {
 659			case e1000_82545 ... e1000_82546_rev_3:
 660				pba &= ~(E1000_PBA_8K - 1);
 661				break;
 662			default:
 663				break;
 664			}
 665
 666			/* if short on rx space, rx wins and must trump tx
 667			 * adjustment or use Early Receive if available */
 
 668			if (pba < min_rx_space)
 669				pba = min_rx_space;
 670		}
 671	}
 672
 673	ew32(PBA, pba);
 674
 675	/*
 676	 * flow control settings:
 677	 * The high water mark must be low enough to fit one full frame
 678	 * (or the size used for early receive) above it in the Rx FIFO.
 679	 * Set it to the lower of:
 680	 * - 90% of the Rx FIFO size, and
 681	 * - the full Rx FIFO size minus the early receive size (for parts
 682	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 683	 * - the full Rx FIFO size minus one full frame
 684	 */
 685	hwm = min(((pba << 10) * 9 / 10),
 686		  ((pba << 10) - hw->max_frame_size));
 687
 688	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 689	hw->fc_low_water = hw->fc_high_water - 8;
 690	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 691	hw->fc_send_xon = 1;
 692	hw->fc = hw->original_fc;
 693
 694	/* Allow time for pending master requests to run */
 695	e1000_reset_hw(hw);
 696	if (hw->mac_type >= e1000_82544)
 697		ew32(WUC, 0);
 698
 699	if (e1000_init_hw(hw))
 700		e_dev_err("Hardware Error\n");
 701	e1000_update_mng_vlan(adapter);
 702
 703	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 704	if (hw->mac_type >= e1000_82544 &&
 705	    hw->autoneg == 1 &&
 706	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 707		u32 ctrl = er32(CTRL);
 708		/* clear phy power management bit if we are in gig only mode,
 709		 * which if enabled will attempt negotiation to 100Mb, which
 710		 * can cause a loss of link at power off or driver unload */
 
 711		ctrl &= ~E1000_CTRL_SWDPIN3;
 712		ew32(CTRL, ctrl);
 713	}
 714
 715	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 716	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 717
 718	e1000_reset_adaptive(hw);
 719	e1000_phy_get_info(hw, &adapter->phy_info);
 720
 721	e1000_release_manageability(adapter);
 722}
 723
 724/**
 725 *  Dump the eeprom for users having checksum issues
 726 **/
 727static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 728{
 729	struct net_device *netdev = adapter->netdev;
 730	struct ethtool_eeprom eeprom;
 731	const struct ethtool_ops *ops = netdev->ethtool_ops;
 732	u8 *data;
 733	int i;
 734	u16 csum_old, csum_new = 0;
 735
 736	eeprom.len = ops->get_eeprom_len(netdev);
 737	eeprom.offset = 0;
 738
 739	data = kmalloc(eeprom.len, GFP_KERNEL);
 740	if (!data)
 741		return;
 742
 743	ops->get_eeprom(netdev, &eeprom, data);
 744
 745	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 746		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 747	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 748		csum_new += data[i] + (data[i + 1] << 8);
 749	csum_new = EEPROM_SUM - csum_new;
 750
 751	pr_err("/*********************/\n");
 752	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 753	pr_err("Calculated              : 0x%04x\n", csum_new);
 754
 755	pr_err("Offset    Values\n");
 756	pr_err("========  ======\n");
 757	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 758
 759	pr_err("Include this output when contacting your support provider.\n");
 760	pr_err("This is not a software error! Something bad happened to\n");
 761	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 762	pr_err("result in further problems, possibly loss of data,\n");
 763	pr_err("corruption or system hangs!\n");
 764	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 765	pr_err("which is invalid and requires you to set the proper MAC\n");
 766	pr_err("address manually before continuing to enable this network\n");
 767	pr_err("device. Please inspect the EEPROM dump and report the\n");
 768	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 769	pr_err("/*********************/\n");
 770
 771	kfree(data);
 772}
 773
 774/**
 775 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 776 * @pdev: PCI device information struct
 777 *
 778 * Return true if an adapter needs ioport resources
 779 **/
 780static int e1000_is_need_ioport(struct pci_dev *pdev)
 781{
 782	switch (pdev->device) {
 783	case E1000_DEV_ID_82540EM:
 784	case E1000_DEV_ID_82540EM_LOM:
 785	case E1000_DEV_ID_82540EP:
 786	case E1000_DEV_ID_82540EP_LOM:
 787	case E1000_DEV_ID_82540EP_LP:
 788	case E1000_DEV_ID_82541EI:
 789	case E1000_DEV_ID_82541EI_MOBILE:
 790	case E1000_DEV_ID_82541ER:
 791	case E1000_DEV_ID_82541ER_LOM:
 792	case E1000_DEV_ID_82541GI:
 793	case E1000_DEV_ID_82541GI_LF:
 794	case E1000_DEV_ID_82541GI_MOBILE:
 795	case E1000_DEV_ID_82544EI_COPPER:
 796	case E1000_DEV_ID_82544EI_FIBER:
 797	case E1000_DEV_ID_82544GC_COPPER:
 798	case E1000_DEV_ID_82544GC_LOM:
 799	case E1000_DEV_ID_82545EM_COPPER:
 800	case E1000_DEV_ID_82545EM_FIBER:
 801	case E1000_DEV_ID_82546EB_COPPER:
 802	case E1000_DEV_ID_82546EB_FIBER:
 803	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 804		return true;
 805	default:
 806		return false;
 807	}
 808}
 809
 810static netdev_features_t e1000_fix_features(struct net_device *netdev,
 811	netdev_features_t features)
 812{
 813	/*
 814	 * Since there is no support for separate rx/tx vlan accel
 815	 * enable/disable make sure tx flag is always in same state as rx.
 816	 */
 817	if (features & NETIF_F_HW_VLAN_RX)
 818		features |= NETIF_F_HW_VLAN_TX;
 819	else
 820		features &= ~NETIF_F_HW_VLAN_TX;
 821
 822	return features;
 823}
 824
 825static int e1000_set_features(struct net_device *netdev,
 826	netdev_features_t features)
 827{
 828	struct e1000_adapter *adapter = netdev_priv(netdev);
 829	netdev_features_t changed = features ^ netdev->features;
 830
 831	if (changed & NETIF_F_HW_VLAN_RX)
 832		e1000_vlan_mode(netdev, features);
 833
 834	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 835		return 0;
 836
 837	netdev->features = features;
 838	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 839
 840	if (netif_running(netdev))
 841		e1000_reinit_locked(adapter);
 842	else
 843		e1000_reset(adapter);
 844
 845	return 0;
 846}
 847
 848static const struct net_device_ops e1000_netdev_ops = {
 849	.ndo_open		= e1000_open,
 850	.ndo_stop		= e1000_close,
 851	.ndo_start_xmit		= e1000_xmit_frame,
 852	.ndo_get_stats		= e1000_get_stats,
 853	.ndo_set_rx_mode	= e1000_set_rx_mode,
 854	.ndo_set_mac_address	= e1000_set_mac,
 855	.ndo_tx_timeout		= e1000_tx_timeout,
 856	.ndo_change_mtu		= e1000_change_mtu,
 857	.ndo_do_ioctl		= e1000_ioctl,
 858	.ndo_validate_addr	= eth_validate_addr,
 859	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 860	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 861#ifdef CONFIG_NET_POLL_CONTROLLER
 862	.ndo_poll_controller	= e1000_netpoll,
 863#endif
 864	.ndo_fix_features	= e1000_fix_features,
 865	.ndo_set_features	= e1000_set_features,
 866};
 867
 868/**
 869 * e1000_init_hw_struct - initialize members of hw struct
 870 * @adapter: board private struct
 871 * @hw: structure used by e1000_hw.c
 872 *
 873 * Factors out initialization of the e1000_hw struct to its own function
 874 * that can be called very early at init (just after struct allocation).
 875 * Fields are initialized based on PCI device information and
 876 * OS network device settings (MTU size).
 877 * Returns negative error codes if MAC type setup fails.
 878 */
 879static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 880				struct e1000_hw *hw)
 881{
 882	struct pci_dev *pdev = adapter->pdev;
 883
 884	/* PCI config space info */
 885	hw->vendor_id = pdev->vendor;
 886	hw->device_id = pdev->device;
 887	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 888	hw->subsystem_id = pdev->subsystem_device;
 889	hw->revision_id = pdev->revision;
 890
 891	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 892
 893	hw->max_frame_size = adapter->netdev->mtu +
 894			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 895	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 896
 897	/* identify the MAC */
 898	if (e1000_set_mac_type(hw)) {
 899		e_err(probe, "Unknown MAC Type\n");
 900		return -EIO;
 901	}
 902
 903	switch (hw->mac_type) {
 904	default:
 905		break;
 906	case e1000_82541:
 907	case e1000_82547:
 908	case e1000_82541_rev_2:
 909	case e1000_82547_rev_2:
 910		hw->phy_init_script = 1;
 911		break;
 912	}
 913
 914	e1000_set_media_type(hw);
 915	e1000_get_bus_info(hw);
 916
 917	hw->wait_autoneg_complete = false;
 918	hw->tbi_compatibility_en = true;
 919	hw->adaptive_ifs = true;
 920
 921	/* Copper options */
 922
 923	if (hw->media_type == e1000_media_type_copper) {
 924		hw->mdix = AUTO_ALL_MODES;
 925		hw->disable_polarity_correction = false;
 926		hw->master_slave = E1000_MASTER_SLAVE;
 927	}
 928
 929	return 0;
 930}
 931
 932/**
 933 * e1000_probe - Device Initialization Routine
 934 * @pdev: PCI device information struct
 935 * @ent: entry in e1000_pci_tbl
 936 *
 937 * Returns 0 on success, negative on failure
 938 *
 939 * e1000_probe initializes an adapter identified by a pci_dev structure.
 940 * The OS initialization, configuring of the adapter private structure,
 941 * and a hardware reset occur.
 942 **/
 943static int __devinit e1000_probe(struct pci_dev *pdev,
 944				 const struct pci_device_id *ent)
 945{
 946	struct net_device *netdev;
 947	struct e1000_adapter *adapter;
 948	struct e1000_hw *hw;
 949
 950	static int cards_found = 0;
 951	static int global_quad_port_a = 0; /* global ksp3 port a indication */
 952	int i, err, pci_using_dac;
 953	u16 eeprom_data = 0;
 954	u16 tmp = 0;
 955	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 956	int bars, need_ioport;
 
 957
 958	/* do not allocate ioport bars when not needed */
 959	need_ioport = e1000_is_need_ioport(pdev);
 960	if (need_ioport) {
 961		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 962		err = pci_enable_device(pdev);
 963	} else {
 964		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 965		err = pci_enable_device_mem(pdev);
 966	}
 967	if (err)
 968		return err;
 969
 970	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 971	if (err)
 972		goto err_pci_reg;
 973
 974	pci_set_master(pdev);
 975	err = pci_save_state(pdev);
 976	if (err)
 977		goto err_alloc_etherdev;
 978
 979	err = -ENOMEM;
 980	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 981	if (!netdev)
 982		goto err_alloc_etherdev;
 983
 984	SET_NETDEV_DEV(netdev, &pdev->dev);
 985
 986	pci_set_drvdata(pdev, netdev);
 987	adapter = netdev_priv(netdev);
 988	adapter->netdev = netdev;
 989	adapter->pdev = pdev;
 990	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 991	adapter->bars = bars;
 992	adapter->need_ioport = need_ioport;
 993
 994	hw = &adapter->hw;
 995	hw->back = adapter;
 996
 997	err = -EIO;
 998	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 999	if (!hw->hw_addr)
1000		goto err_ioremap;
1001
1002	if (adapter->need_ioport) {
1003		for (i = BAR_1; i <= BAR_5; i++) {
1004			if (pci_resource_len(pdev, i) == 0)
1005				continue;
1006			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1007				hw->io_base = pci_resource_start(pdev, i);
1008				break;
1009			}
1010		}
1011	}
1012
1013	/* make ready for any if (hw->...) below */
1014	err = e1000_init_hw_struct(adapter, hw);
1015	if (err)
1016		goto err_sw_init;
1017
1018	/*
1019	 * there is a workaround being applied below that limits
1020	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1021	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1022	 */
1023	pci_using_dac = 0;
1024	if ((hw->bus_type == e1000_bus_type_pcix) &&
1025	    !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1026		/*
1027		 * according to DMA-API-HOWTO, coherent calls will always
1028		 * succeed if the set call did
1029		 */
1030		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1031		pci_using_dac = 1;
1032	} else {
1033		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1034		if (err) {
1035			pr_err("No usable DMA config, aborting\n");
1036			goto err_dma;
1037		}
1038		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1039	}
1040
1041	netdev->netdev_ops = &e1000_netdev_ops;
1042	e1000_set_ethtool_ops(netdev);
1043	netdev->watchdog_timeo = 5 * HZ;
1044	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1045
1046	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1047
1048	adapter->bd_number = cards_found;
1049
1050	/* setup the private structure */
1051
1052	err = e1000_sw_init(adapter);
1053	if (err)
1054		goto err_sw_init;
1055
1056	err = -EIO;
1057	if (hw->mac_type == e1000_ce4100) {
1058		hw->ce4100_gbe_mdio_base_virt =
1059					ioremap(pci_resource_start(pdev, BAR_1),
1060		                                pci_resource_len(pdev, BAR_1));
1061
1062		if (!hw->ce4100_gbe_mdio_base_virt)
1063			goto err_mdio_ioremap;
1064	}
1065
1066	if (hw->mac_type >= e1000_82543) {
1067		netdev->hw_features = NETIF_F_SG |
1068				   NETIF_F_HW_CSUM |
1069				   NETIF_F_HW_VLAN_RX;
1070		netdev->features = NETIF_F_HW_VLAN_TX |
1071				   NETIF_F_HW_VLAN_FILTER;
1072	}
1073
1074	if ((hw->mac_type >= e1000_82544) &&
1075	   (hw->mac_type != e1000_82547))
1076		netdev->hw_features |= NETIF_F_TSO;
1077
1078	netdev->priv_flags |= IFF_SUPP_NOFCS;
1079
1080	netdev->features |= netdev->hw_features;
1081	netdev->hw_features |= NETIF_F_RXCSUM;
1082	netdev->hw_features |= NETIF_F_RXALL;
1083	netdev->hw_features |= NETIF_F_RXFCS;
1084
1085	if (pci_using_dac) {
1086		netdev->features |= NETIF_F_HIGHDMA;
1087		netdev->vlan_features |= NETIF_F_HIGHDMA;
1088	}
1089
1090	netdev->vlan_features |= NETIF_F_TSO;
1091	netdev->vlan_features |= NETIF_F_HW_CSUM;
1092	netdev->vlan_features |= NETIF_F_SG;
1093
1094	netdev->priv_flags |= IFF_UNICAST_FLT;
 
 
 
 
 
 
 
1095
1096	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1097
1098	/* initialize eeprom parameters */
1099	if (e1000_init_eeprom_params(hw)) {
1100		e_err(probe, "EEPROM initialization failed\n");
1101		goto err_eeprom;
1102	}
1103
1104	/* before reading the EEPROM, reset the controller to
1105	 * put the device in a known good starting state */
 
1106
1107	e1000_reset_hw(hw);
1108
1109	/* make sure the EEPROM is good */
1110	if (e1000_validate_eeprom_checksum(hw) < 0) {
1111		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1112		e1000_dump_eeprom(adapter);
1113		/*
1114		 * set MAC address to all zeroes to invalidate and temporary
1115		 * disable this device for the user. This blocks regular
1116		 * traffic while still permitting ethtool ioctls from reaching
1117		 * the hardware as well as allowing the user to run the
1118		 * interface after manually setting a hw addr using
1119		 * `ip set address`
1120		 */
1121		memset(hw->mac_addr, 0, netdev->addr_len);
1122	} else {
1123		/* copy the MAC address out of the EEPROM */
1124		if (e1000_read_mac_addr(hw))
1125			e_err(probe, "EEPROM Read Error\n");
1126	}
1127	/* don't block initalization here due to bad MAC address */
1128	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1129	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1130
1131	if (!is_valid_ether_addr(netdev->perm_addr))
1132		e_err(probe, "Invalid MAC Address\n");
1133
1134
1135	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1136	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1137			  e1000_82547_tx_fifo_stall_task);
1138	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1139	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1140
1141	e1000_check_options(adapter);
1142
1143	/* Initial Wake on LAN setting
1144	 * If APM wake is enabled in the EEPROM,
1145	 * enable the ACPI Magic Packet filter
1146	 */
1147
1148	switch (hw->mac_type) {
1149	case e1000_82542_rev2_0:
1150	case e1000_82542_rev2_1:
1151	case e1000_82543:
1152		break;
1153	case e1000_82544:
1154		e1000_read_eeprom(hw,
1155			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1156		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1157		break;
1158	case e1000_82546:
1159	case e1000_82546_rev_3:
1160		if (er32(STATUS) & E1000_STATUS_FUNC_1){
1161			e1000_read_eeprom(hw,
1162				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1163			break;
1164		}
1165		/* Fall Through */
1166	default:
1167		e1000_read_eeprom(hw,
1168			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1169		break;
1170	}
1171	if (eeprom_data & eeprom_apme_mask)
1172		adapter->eeprom_wol |= E1000_WUFC_MAG;
1173
1174	/* now that we have the eeprom settings, apply the special cases
1175	 * where the eeprom may be wrong or the board simply won't support
1176	 * wake on lan on a particular port */
 
1177	switch (pdev->device) {
1178	case E1000_DEV_ID_82546GB_PCIE:
1179		adapter->eeprom_wol = 0;
1180		break;
1181	case E1000_DEV_ID_82546EB_FIBER:
1182	case E1000_DEV_ID_82546GB_FIBER:
1183		/* Wake events only supported on port A for dual fiber
1184		 * regardless of eeprom setting */
 
1185		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1186			adapter->eeprom_wol = 0;
1187		break;
1188	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1189		/* if quad port adapter, disable WoL on all but port A */
1190		if (global_quad_port_a != 0)
1191			adapter->eeprom_wol = 0;
1192		else
1193			adapter->quad_port_a = true;
1194		/* Reset for multiple quad port adapters */
1195		if (++global_quad_port_a == 4)
1196			global_quad_port_a = 0;
1197		break;
1198	}
1199
1200	/* initialize the wol settings based on the eeprom settings */
1201	adapter->wol = adapter->eeprom_wol;
1202	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1203
1204	/* Auto detect PHY address */
1205	if (hw->mac_type == e1000_ce4100) {
1206		for (i = 0; i < 32; i++) {
1207			hw->phy_addr = i;
1208			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1209			if (tmp == 0 || tmp == 0xFF) {
1210				if (i == 31)
1211					goto err_eeprom;
1212				continue;
1213			} else
1214				break;
1215		}
 
 
 
1216	}
1217
1218	/* reset the hardware with the new settings */
1219	e1000_reset(adapter);
1220
1221	strcpy(netdev->name, "eth%d");
1222	err = register_netdev(netdev);
1223	if (err)
1224		goto err_register;
1225
1226	e1000_vlan_filter_on_off(adapter, false);
1227
1228	/* print bus type/speed/width info */
1229	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1230	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1231	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1232		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1233		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1234		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1235	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1236	       netdev->dev_addr);
1237
1238	/* carrier off reporting is important to ethtool even BEFORE open */
1239	netif_carrier_off(netdev);
1240
1241	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1242
1243	cards_found++;
1244	return 0;
1245
1246err_register:
1247err_eeprom:
1248	e1000_phy_hw_reset(hw);
1249
1250	if (hw->flash_address)
1251		iounmap(hw->flash_address);
1252	kfree(adapter->tx_ring);
1253	kfree(adapter->rx_ring);
1254err_dma:
1255err_sw_init:
1256err_mdio_ioremap:
1257	iounmap(hw->ce4100_gbe_mdio_base_virt);
1258	iounmap(hw->hw_addr);
1259err_ioremap:
 
1260	free_netdev(netdev);
1261err_alloc_etherdev:
1262	pci_release_selected_regions(pdev, bars);
1263err_pci_reg:
1264	pci_disable_device(pdev);
 
1265	return err;
1266}
1267
1268/**
1269 * e1000_remove - Device Removal Routine
1270 * @pdev: PCI device information struct
1271 *
1272 * e1000_remove is called by the PCI subsystem to alert the driver
1273 * that it should release a PCI device.  The could be caused by a
1274 * Hot-Plug event, or because the driver is going to be removed from
1275 * memory.
1276 **/
1277
1278static void __devexit e1000_remove(struct pci_dev *pdev)
1279{
1280	struct net_device *netdev = pci_get_drvdata(pdev);
1281	struct e1000_adapter *adapter = netdev_priv(netdev);
1282	struct e1000_hw *hw = &adapter->hw;
 
1283
1284	e1000_down_and_stop(adapter);
1285	e1000_release_manageability(adapter);
1286
1287	unregister_netdev(netdev);
1288
1289	e1000_phy_hw_reset(hw);
1290
1291	kfree(adapter->tx_ring);
1292	kfree(adapter->rx_ring);
1293
1294	if (hw->mac_type == e1000_ce4100)
1295		iounmap(hw->ce4100_gbe_mdio_base_virt);
1296	iounmap(hw->hw_addr);
1297	if (hw->flash_address)
1298		iounmap(hw->flash_address);
1299	pci_release_selected_regions(pdev, adapter->bars);
1300
 
1301	free_netdev(netdev);
1302
1303	pci_disable_device(pdev);
 
1304}
1305
1306/**
1307 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1308 * @adapter: board private structure to initialize
1309 *
1310 * e1000_sw_init initializes the Adapter private data structure.
1311 * e1000_init_hw_struct MUST be called before this function
1312 **/
1313
1314static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1315{
1316	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1317
1318	adapter->num_tx_queues = 1;
1319	adapter->num_rx_queues = 1;
1320
1321	if (e1000_alloc_queues(adapter)) {
1322		e_err(probe, "Unable to allocate memory for queues\n");
1323		return -ENOMEM;
1324	}
1325
1326	/* Explicitly disable IRQ since the NIC can be in any state. */
1327	e1000_irq_disable(adapter);
1328
1329	spin_lock_init(&adapter->stats_lock);
1330	mutex_init(&adapter->mutex);
1331
1332	set_bit(__E1000_DOWN, &adapter->flags);
1333
1334	return 0;
1335}
1336
1337/**
1338 * e1000_alloc_queues - Allocate memory for all rings
1339 * @adapter: board private structure to initialize
1340 *
1341 * We allocate one ring per queue at run-time since we don't know the
1342 * number of queues at compile-time.
1343 **/
1344
1345static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1346{
1347	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1348	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
1349	if (!adapter->tx_ring)
1350		return -ENOMEM;
1351
1352	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1353	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
1354	if (!adapter->rx_ring) {
1355		kfree(adapter->tx_ring);
1356		return -ENOMEM;
1357	}
1358
1359	return E1000_SUCCESS;
1360}
1361
1362/**
1363 * e1000_open - Called when a network interface is made active
1364 * @netdev: network interface device structure
1365 *
1366 * Returns 0 on success, negative value on failure
1367 *
1368 * The open entry point is called when a network interface is made
1369 * active by the system (IFF_UP).  At this point all resources needed
1370 * for transmit and receive operations are allocated, the interrupt
1371 * handler is registered with the OS, the watchdog task is started,
1372 * and the stack is notified that the interface is ready.
1373 **/
1374
1375static int e1000_open(struct net_device *netdev)
1376{
1377	struct e1000_adapter *adapter = netdev_priv(netdev);
1378	struct e1000_hw *hw = &adapter->hw;
1379	int err;
1380
1381	/* disallow open during test */
1382	if (test_bit(__E1000_TESTING, &adapter->flags))
1383		return -EBUSY;
1384
1385	netif_carrier_off(netdev);
1386
1387	/* allocate transmit descriptors */
1388	err = e1000_setup_all_tx_resources(adapter);
1389	if (err)
1390		goto err_setup_tx;
1391
1392	/* allocate receive descriptors */
1393	err = e1000_setup_all_rx_resources(adapter);
1394	if (err)
1395		goto err_setup_rx;
1396
1397	e1000_power_up_phy(adapter);
1398
1399	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1400	if ((hw->mng_cookie.status &
1401			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1402		e1000_update_mng_vlan(adapter);
1403	}
1404
1405	/* before we allocate an interrupt, we must be ready to handle it.
1406	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1407	 * as soon as we call pci_request_irq, so we have to setup our
1408	 * clean_rx handler before we do so.  */
 
1409	e1000_configure(adapter);
1410
1411	err = e1000_request_irq(adapter);
1412	if (err)
1413		goto err_req_irq;
1414
1415	/* From here on the code is the same as e1000_up() */
1416	clear_bit(__E1000_DOWN, &adapter->flags);
1417
1418	napi_enable(&adapter->napi);
1419
1420	e1000_irq_enable(adapter);
1421
1422	netif_start_queue(netdev);
1423
1424	/* fire a link status change interrupt to start the watchdog */
1425	ew32(ICS, E1000_ICS_LSC);
1426
1427	return E1000_SUCCESS;
1428
1429err_req_irq:
1430	e1000_power_down_phy(adapter);
1431	e1000_free_all_rx_resources(adapter);
1432err_setup_rx:
1433	e1000_free_all_tx_resources(adapter);
1434err_setup_tx:
1435	e1000_reset(adapter);
1436
1437	return err;
1438}
1439
1440/**
1441 * e1000_close - Disables a network interface
1442 * @netdev: network interface device structure
1443 *
1444 * Returns 0, this is not allowed to fail
1445 *
1446 * The close entry point is called when an interface is de-activated
1447 * by the OS.  The hardware is still under the drivers control, but
1448 * needs to be disabled.  A global MAC reset is issued to stop the
1449 * hardware, and all transmit and receive resources are freed.
1450 **/
1451
1452static int e1000_close(struct net_device *netdev)
1453{
1454	struct e1000_adapter *adapter = netdev_priv(netdev);
1455	struct e1000_hw *hw = &adapter->hw;
 
 
 
 
 
 
 
 
 
 
1456
1457	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1458	e1000_down(adapter);
1459	e1000_power_down_phy(adapter);
1460	e1000_free_irq(adapter);
1461
1462	e1000_free_all_tx_resources(adapter);
1463	e1000_free_all_rx_resources(adapter);
1464
1465	/* kill manageability vlan ID if supported, but not if a vlan with
1466	 * the same ID is registered on the host OS (let 8021q kill it) */
 
1467	if ((hw->mng_cookie.status &
1468			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1469	     !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1470		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
 
1471	}
1472
1473	return 0;
1474}
1475
1476/**
1477 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1478 * @adapter: address of board private structure
1479 * @start: address of beginning of memory
1480 * @len: length of memory
1481 **/
1482static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1483				  unsigned long len)
1484{
1485	struct e1000_hw *hw = &adapter->hw;
1486	unsigned long begin = (unsigned long)start;
1487	unsigned long end = begin + len;
1488
1489	/* First rev 82545 and 82546 need to not allow any memory
1490	 * write location to cross 64k boundary due to errata 23 */
 
1491	if (hw->mac_type == e1000_82545 ||
1492	    hw->mac_type == e1000_ce4100 ||
1493	    hw->mac_type == e1000_82546) {
1494		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1495	}
1496
1497	return true;
1498}
1499
1500/**
1501 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1502 * @adapter: board private structure
1503 * @txdr:    tx descriptor ring (for a specific queue) to setup
1504 *
1505 * Return 0 on success, negative on failure
1506 **/
1507
1508static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1509				    struct e1000_tx_ring *txdr)
1510{
1511	struct pci_dev *pdev = adapter->pdev;
1512	int size;
1513
1514	size = sizeof(struct e1000_buffer) * txdr->count;
1515	txdr->buffer_info = vzalloc(size);
1516	if (!txdr->buffer_info) {
1517		e_err(probe, "Unable to allocate memory for the Tx descriptor "
1518		      "ring\n");
1519		return -ENOMEM;
1520	}
1521
1522	/* round up to nearest 4K */
1523
1524	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1525	txdr->size = ALIGN(txdr->size, 4096);
1526
1527	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1528					GFP_KERNEL);
1529	if (!txdr->desc) {
1530setup_tx_desc_die:
1531		vfree(txdr->buffer_info);
1532		e_err(probe, "Unable to allocate memory for the Tx descriptor "
1533		      "ring\n");
1534		return -ENOMEM;
1535	}
1536
1537	/* Fix for errata 23, can't cross 64kB boundary */
1538	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539		void *olddesc = txdr->desc;
1540		dma_addr_t olddma = txdr->dma;
1541		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1542		      txdr->size, txdr->desc);
1543		/* Try again, without freeing the previous */
1544		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1545						&txdr->dma, GFP_KERNEL);
1546		/* Failed allocation, critical failure */
1547		if (!txdr->desc) {
1548			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1549					  olddma);
1550			goto setup_tx_desc_die;
1551		}
1552
1553		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1554			/* give up */
1555			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1556					  txdr->dma);
1557			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1558					  olddma);
1559			e_err(probe, "Unable to allocate aligned memory "
1560			      "for the transmit descriptor ring\n");
1561			vfree(txdr->buffer_info);
1562			return -ENOMEM;
1563		} else {
1564			/* Free old allocation, new allocation was successful */
1565			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1566					  olddma);
1567		}
1568	}
1569	memset(txdr->desc, 0, txdr->size);
1570
1571	txdr->next_to_use = 0;
1572	txdr->next_to_clean = 0;
1573
1574	return 0;
1575}
1576
1577/**
1578 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1579 * 				  (Descriptors) for all queues
1580 * @adapter: board private structure
1581 *
1582 * Return 0 on success, negative on failure
1583 **/
1584
1585int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1586{
1587	int i, err = 0;
1588
1589	for (i = 0; i < adapter->num_tx_queues; i++) {
1590		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1591		if (err) {
1592			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1593			for (i-- ; i >= 0; i--)
1594				e1000_free_tx_resources(adapter,
1595							&adapter->tx_ring[i]);
1596			break;
1597		}
1598	}
1599
1600	return err;
1601}
1602
1603/**
1604 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1605 * @adapter: board private structure
1606 *
1607 * Configure the Tx unit of the MAC after a reset.
1608 **/
1609
1610static void e1000_configure_tx(struct e1000_adapter *adapter)
1611{
1612	u64 tdba;
1613	struct e1000_hw *hw = &adapter->hw;
1614	u32 tdlen, tctl, tipg;
1615	u32 ipgr1, ipgr2;
1616
1617	/* Setup the HW Tx Head and Tail descriptor pointers */
1618
1619	switch (adapter->num_tx_queues) {
1620	case 1:
1621	default:
1622		tdba = adapter->tx_ring[0].dma;
1623		tdlen = adapter->tx_ring[0].count *
1624			sizeof(struct e1000_tx_desc);
1625		ew32(TDLEN, tdlen);
1626		ew32(TDBAH, (tdba >> 32));
1627		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1628		ew32(TDT, 0);
1629		ew32(TDH, 0);
1630		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1631		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
 
 
1632		break;
1633	}
1634
1635	/* Set the default values for the Tx Inter Packet Gap timer */
1636	if ((hw->media_type == e1000_media_type_fiber ||
1637	     hw->media_type == e1000_media_type_internal_serdes))
1638		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1639	else
1640		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1641
1642	switch (hw->mac_type) {
1643	case e1000_82542_rev2_0:
1644	case e1000_82542_rev2_1:
1645		tipg = DEFAULT_82542_TIPG_IPGT;
1646		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1647		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1648		break;
1649	default:
1650		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1651		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1652		break;
1653	}
1654	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1655	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1656	ew32(TIPG, tipg);
1657
1658	/* Set the Tx Interrupt Delay register */
1659
1660	ew32(TIDV, adapter->tx_int_delay);
1661	if (hw->mac_type >= e1000_82540)
1662		ew32(TADV, adapter->tx_abs_int_delay);
1663
1664	/* Program the Transmit Control Register */
1665
1666	tctl = er32(TCTL);
1667	tctl &= ~E1000_TCTL_CT;
1668	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1669		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1670
1671	e1000_config_collision_dist(hw);
1672
1673	/* Setup Transmit Descriptor Settings for eop descriptor */
1674	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1675
1676	/* only set IDE if we are delaying interrupts using the timers */
1677	if (adapter->tx_int_delay)
1678		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1679
1680	if (hw->mac_type < e1000_82543)
1681		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1682	else
1683		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1684
1685	/* Cache if we're 82544 running in PCI-X because we'll
1686	 * need this to apply a workaround later in the send path. */
 
1687	if (hw->mac_type == e1000_82544 &&
1688	    hw->bus_type == e1000_bus_type_pcix)
1689		adapter->pcix_82544 = true;
1690
1691	ew32(TCTL, tctl);
1692
1693}
1694
1695/**
1696 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1697 * @adapter: board private structure
1698 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1699 *
1700 * Returns 0 on success, negative on failure
1701 **/
1702
1703static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1704				    struct e1000_rx_ring *rxdr)
1705{
1706	struct pci_dev *pdev = adapter->pdev;
1707	int size, desc_len;
1708
1709	size = sizeof(struct e1000_buffer) * rxdr->count;
1710	rxdr->buffer_info = vzalloc(size);
1711	if (!rxdr->buffer_info) {
1712		e_err(probe, "Unable to allocate memory for the Rx descriptor "
1713		      "ring\n");
1714		return -ENOMEM;
1715	}
1716
1717	desc_len = sizeof(struct e1000_rx_desc);
1718
1719	/* Round up to nearest 4K */
1720
1721	rxdr->size = rxdr->count * desc_len;
1722	rxdr->size = ALIGN(rxdr->size, 4096);
1723
1724	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1725					GFP_KERNEL);
1726
1727	if (!rxdr->desc) {
1728		e_err(probe, "Unable to allocate memory for the Rx descriptor "
1729		      "ring\n");
1730setup_rx_desc_die:
1731		vfree(rxdr->buffer_info);
1732		return -ENOMEM;
1733	}
1734
1735	/* Fix for errata 23, can't cross 64kB boundary */
1736	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1737		void *olddesc = rxdr->desc;
1738		dma_addr_t olddma = rxdr->dma;
1739		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1740		      rxdr->size, rxdr->desc);
1741		/* Try again, without freeing the previous */
1742		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1743						&rxdr->dma, GFP_KERNEL);
1744		/* Failed allocation, critical failure */
1745		if (!rxdr->desc) {
1746			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1747					  olddma);
1748			e_err(probe, "Unable to allocate memory for the Rx "
1749			      "descriptor ring\n");
1750			goto setup_rx_desc_die;
1751		}
1752
1753		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1754			/* give up */
1755			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1756					  rxdr->dma);
1757			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1758					  olddma);
1759			e_err(probe, "Unable to allocate aligned memory for "
1760			      "the Rx descriptor ring\n");
1761			goto setup_rx_desc_die;
1762		} else {
1763			/* Free old allocation, new allocation was successful */
1764			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1765					  olddma);
1766		}
1767	}
1768	memset(rxdr->desc, 0, rxdr->size);
1769
1770	rxdr->next_to_clean = 0;
1771	rxdr->next_to_use = 0;
1772	rxdr->rx_skb_top = NULL;
1773
1774	return 0;
1775}
1776
1777/**
1778 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1779 * 				  (Descriptors) for all queues
1780 * @adapter: board private structure
1781 *
1782 * Return 0 on success, negative on failure
1783 **/
1784
1785int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1786{
1787	int i, err = 0;
1788
1789	for (i = 0; i < adapter->num_rx_queues; i++) {
1790		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1791		if (err) {
1792			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1793			for (i-- ; i >= 0; i--)
1794				e1000_free_rx_resources(adapter,
1795							&adapter->rx_ring[i]);
1796			break;
1797		}
1798	}
1799
1800	return err;
1801}
1802
1803/**
1804 * e1000_setup_rctl - configure the receive control registers
1805 * @adapter: Board private structure
1806 **/
1807static void e1000_setup_rctl(struct e1000_adapter *adapter)
1808{
1809	struct e1000_hw *hw = &adapter->hw;
1810	u32 rctl;
1811
1812	rctl = er32(RCTL);
1813
1814	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1815
1816	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1817		E1000_RCTL_RDMTS_HALF |
1818		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1819
1820	if (hw->tbi_compatibility_on == 1)
1821		rctl |= E1000_RCTL_SBP;
1822	else
1823		rctl &= ~E1000_RCTL_SBP;
1824
1825	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1826		rctl &= ~E1000_RCTL_LPE;
1827	else
1828		rctl |= E1000_RCTL_LPE;
1829
1830	/* Setup buffer sizes */
1831	rctl &= ~E1000_RCTL_SZ_4096;
1832	rctl |= E1000_RCTL_BSEX;
1833	switch (adapter->rx_buffer_len) {
1834		case E1000_RXBUFFER_2048:
1835		default:
1836			rctl |= E1000_RCTL_SZ_2048;
1837			rctl &= ~E1000_RCTL_BSEX;
1838			break;
1839		case E1000_RXBUFFER_4096:
1840			rctl |= E1000_RCTL_SZ_4096;
1841			break;
1842		case E1000_RXBUFFER_8192:
1843			rctl |= E1000_RCTL_SZ_8192;
1844			break;
1845		case E1000_RXBUFFER_16384:
1846			rctl |= E1000_RCTL_SZ_16384;
1847			break;
1848	}
1849
1850	/* This is useful for sniffing bad packets. */
1851	if (adapter->netdev->features & NETIF_F_RXALL) {
1852		/* UPE and MPE will be handled by normal PROMISC logic
1853		 * in e1000e_set_rx_mode */
 
1854		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1855			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1856			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1857
1858		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1859			  E1000_RCTL_DPF | /* Allow filtered pause */
1860			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1861		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1862		 * and that breaks VLANs.
1863		 */
1864	}
1865
1866	ew32(RCTL, rctl);
1867}
1868
1869/**
1870 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1871 * @adapter: board private structure
1872 *
1873 * Configure the Rx unit of the MAC after a reset.
1874 **/
1875
1876static void e1000_configure_rx(struct e1000_adapter *adapter)
1877{
1878	u64 rdba;
1879	struct e1000_hw *hw = &adapter->hw;
1880	u32 rdlen, rctl, rxcsum;
1881
1882	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1883		rdlen = adapter->rx_ring[0].count *
1884		        sizeof(struct e1000_rx_desc);
1885		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1886		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1887	} else {
1888		rdlen = adapter->rx_ring[0].count *
1889		        sizeof(struct e1000_rx_desc);
1890		adapter->clean_rx = e1000_clean_rx_irq;
1891		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1892	}
1893
1894	/* disable receives while setting up the descriptors */
1895	rctl = er32(RCTL);
1896	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1897
1898	/* set the Receive Delay Timer Register */
1899	ew32(RDTR, adapter->rx_int_delay);
1900
1901	if (hw->mac_type >= e1000_82540) {
1902		ew32(RADV, adapter->rx_abs_int_delay);
1903		if (adapter->itr_setting != 0)
1904			ew32(ITR, 1000000000 / (adapter->itr * 256));
1905	}
1906
1907	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1908	 * the Base and Length of the Rx Descriptor Ring */
 
1909	switch (adapter->num_rx_queues) {
1910	case 1:
1911	default:
1912		rdba = adapter->rx_ring[0].dma;
1913		ew32(RDLEN, rdlen);
1914		ew32(RDBAH, (rdba >> 32));
1915		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1916		ew32(RDT, 0);
1917		ew32(RDH, 0);
1918		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1919		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
 
 
1920		break;
1921	}
1922
1923	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1924	if (hw->mac_type >= e1000_82543) {
1925		rxcsum = er32(RXCSUM);
1926		if (adapter->rx_csum)
1927			rxcsum |= E1000_RXCSUM_TUOFL;
1928		else
1929			/* don't need to clear IPPCSE as it defaults to 0 */
1930			rxcsum &= ~E1000_RXCSUM_TUOFL;
1931		ew32(RXCSUM, rxcsum);
1932	}
1933
1934	/* Enable Receives */
1935	ew32(RCTL, rctl | E1000_RCTL_EN);
1936}
1937
1938/**
1939 * e1000_free_tx_resources - Free Tx Resources per Queue
1940 * @adapter: board private structure
1941 * @tx_ring: Tx descriptor ring for a specific queue
1942 *
1943 * Free all transmit software resources
1944 **/
1945
1946static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1947				    struct e1000_tx_ring *tx_ring)
1948{
1949	struct pci_dev *pdev = adapter->pdev;
1950
1951	e1000_clean_tx_ring(adapter, tx_ring);
1952
1953	vfree(tx_ring->buffer_info);
1954	tx_ring->buffer_info = NULL;
1955
1956	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1957			  tx_ring->dma);
1958
1959	tx_ring->desc = NULL;
1960}
1961
1962/**
1963 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1964 * @adapter: board private structure
1965 *
1966 * Free all transmit software resources
1967 **/
1968
1969void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1970{
1971	int i;
1972
1973	for (i = 0; i < adapter->num_tx_queues; i++)
1974		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1975}
1976
1977static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1978					     struct e1000_buffer *buffer_info)
 
1979{
1980	if (buffer_info->dma) {
1981		if (buffer_info->mapped_as_page)
1982			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1983				       buffer_info->length, DMA_TO_DEVICE);
1984		else
1985			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1986					 buffer_info->length,
1987					 DMA_TO_DEVICE);
1988		buffer_info->dma = 0;
1989	}
1990	if (buffer_info->skb) {
1991		dev_kfree_skb_any(buffer_info->skb);
1992		buffer_info->skb = NULL;
1993	}
1994	buffer_info->time_stamp = 0;
1995	/* buffer_info must be completely set up in the transmit path */
1996}
1997
1998/**
1999 * e1000_clean_tx_ring - Free Tx Buffers
2000 * @adapter: board private structure
2001 * @tx_ring: ring to be cleaned
2002 **/
2003
2004static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2005				struct e1000_tx_ring *tx_ring)
2006{
2007	struct e1000_hw *hw = &adapter->hw;
2008	struct e1000_buffer *buffer_info;
2009	unsigned long size;
2010	unsigned int i;
2011
2012	/* Free all the Tx ring sk_buffs */
2013
2014	for (i = 0; i < tx_ring->count; i++) {
2015		buffer_info = &tx_ring->buffer_info[i];
2016		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2017	}
2018
2019	size = sizeof(struct e1000_buffer) * tx_ring->count;
 
2020	memset(tx_ring->buffer_info, 0, size);
2021
2022	/* Zero out the descriptor ring */
2023
2024	memset(tx_ring->desc, 0, tx_ring->size);
2025
2026	tx_ring->next_to_use = 0;
2027	tx_ring->next_to_clean = 0;
2028	tx_ring->last_tx_tso = false;
2029
2030	writel(0, hw->hw_addr + tx_ring->tdh);
2031	writel(0, hw->hw_addr + tx_ring->tdt);
2032}
2033
2034/**
2035 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2036 * @adapter: board private structure
2037 **/
2038
2039static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2040{
2041	int i;
2042
2043	for (i = 0; i < adapter->num_tx_queues; i++)
2044		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2045}
2046
2047/**
2048 * e1000_free_rx_resources - Free Rx Resources
2049 * @adapter: board private structure
2050 * @rx_ring: ring to clean the resources from
2051 *
2052 * Free all receive software resources
2053 **/
2054
2055static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2056				    struct e1000_rx_ring *rx_ring)
2057{
2058	struct pci_dev *pdev = adapter->pdev;
2059
2060	e1000_clean_rx_ring(adapter, rx_ring);
2061
2062	vfree(rx_ring->buffer_info);
2063	rx_ring->buffer_info = NULL;
2064
2065	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2066			  rx_ring->dma);
2067
2068	rx_ring->desc = NULL;
2069}
2070
2071/**
2072 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2073 * @adapter: board private structure
2074 *
2075 * Free all receive software resources
2076 **/
2077
2078void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2079{
2080	int i;
2081
2082	for (i = 0; i < adapter->num_rx_queues; i++)
2083		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2084}
2085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086/**
2087 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2088 * @adapter: board private structure
2089 * @rx_ring: ring to free buffers from
2090 **/
2091
2092static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2093				struct e1000_rx_ring *rx_ring)
2094{
2095	struct e1000_hw *hw = &adapter->hw;
2096	struct e1000_buffer *buffer_info;
2097	struct pci_dev *pdev = adapter->pdev;
2098	unsigned long size;
2099	unsigned int i;
2100
2101	/* Free all the Rx ring sk_buffs */
2102	for (i = 0; i < rx_ring->count; i++) {
2103		buffer_info = &rx_ring->buffer_info[i];
2104		if (buffer_info->dma &&
2105		    adapter->clean_rx == e1000_clean_rx_irq) {
2106			dma_unmap_single(&pdev->dev, buffer_info->dma,
2107			                 buffer_info->length,
2108					 DMA_FROM_DEVICE);
2109		} else if (buffer_info->dma &&
2110		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2111			dma_unmap_page(&pdev->dev, buffer_info->dma,
2112				       buffer_info->length,
2113				       DMA_FROM_DEVICE);
 
 
 
 
 
 
 
 
2114		}
2115
2116		buffer_info->dma = 0;
2117		if (buffer_info->page) {
2118			put_page(buffer_info->page);
2119			buffer_info->page = NULL;
2120		}
2121		if (buffer_info->skb) {
2122			dev_kfree_skb(buffer_info->skb);
2123			buffer_info->skb = NULL;
2124		}
2125	}
2126
2127	/* there also may be some cached data from a chained receive */
2128	if (rx_ring->rx_skb_top) {
2129		dev_kfree_skb(rx_ring->rx_skb_top);
2130		rx_ring->rx_skb_top = NULL;
2131	}
2132
2133	size = sizeof(struct e1000_buffer) * rx_ring->count;
2134	memset(rx_ring->buffer_info, 0, size);
2135
2136	/* Zero out the descriptor ring */
2137	memset(rx_ring->desc, 0, rx_ring->size);
2138
2139	rx_ring->next_to_clean = 0;
2140	rx_ring->next_to_use = 0;
2141
2142	writel(0, hw->hw_addr + rx_ring->rdh);
2143	writel(0, hw->hw_addr + rx_ring->rdt);
2144}
2145
2146/**
2147 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2148 * @adapter: board private structure
2149 **/
2150
2151static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2152{
2153	int i;
2154
2155	for (i = 0; i < adapter->num_rx_queues; i++)
2156		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2157}
2158
2159/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2160 * and memory write and invalidate disabled for certain operations
2161 */
2162static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2163{
2164	struct e1000_hw *hw = &adapter->hw;
2165	struct net_device *netdev = adapter->netdev;
2166	u32 rctl;
2167
2168	e1000_pci_clear_mwi(hw);
2169
2170	rctl = er32(RCTL);
2171	rctl |= E1000_RCTL_RST;
2172	ew32(RCTL, rctl);
2173	E1000_WRITE_FLUSH();
2174	mdelay(5);
2175
2176	if (netif_running(netdev))
2177		e1000_clean_all_rx_rings(adapter);
2178}
2179
2180static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2181{
2182	struct e1000_hw *hw = &adapter->hw;
2183	struct net_device *netdev = adapter->netdev;
2184	u32 rctl;
2185
2186	rctl = er32(RCTL);
2187	rctl &= ~E1000_RCTL_RST;
2188	ew32(RCTL, rctl);
2189	E1000_WRITE_FLUSH();
2190	mdelay(5);
2191
2192	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2193		e1000_pci_set_mwi(hw);
2194
2195	if (netif_running(netdev)) {
2196		/* No need to loop, because 82542 supports only 1 queue */
2197		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2198		e1000_configure_rx(adapter);
2199		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2200	}
2201}
2202
2203/**
2204 * e1000_set_mac - Change the Ethernet Address of the NIC
2205 * @netdev: network interface device structure
2206 * @p: pointer to an address structure
2207 *
2208 * Returns 0 on success, negative on failure
2209 **/
2210
2211static int e1000_set_mac(struct net_device *netdev, void *p)
2212{
2213	struct e1000_adapter *adapter = netdev_priv(netdev);
2214	struct e1000_hw *hw = &adapter->hw;
2215	struct sockaddr *addr = p;
2216
2217	if (!is_valid_ether_addr(addr->sa_data))
2218		return -EADDRNOTAVAIL;
2219
2220	/* 82542 2.0 needs to be in reset to write receive address registers */
2221
2222	if (hw->mac_type == e1000_82542_rev2_0)
2223		e1000_enter_82542_rst(adapter);
2224
2225	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2226	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2227
2228	e1000_rar_set(hw, hw->mac_addr, 0);
2229
2230	if (hw->mac_type == e1000_82542_rev2_0)
2231		e1000_leave_82542_rst(adapter);
2232
2233	return 0;
2234}
2235
2236/**
2237 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2238 * @netdev: network interface device structure
2239 *
2240 * The set_rx_mode entry point is called whenever the unicast or multicast
2241 * address lists or the network interface flags are updated. This routine is
2242 * responsible for configuring the hardware for proper unicast, multicast,
2243 * promiscuous mode, and all-multi behavior.
2244 **/
2245
2246static void e1000_set_rx_mode(struct net_device *netdev)
2247{
2248	struct e1000_adapter *adapter = netdev_priv(netdev);
2249	struct e1000_hw *hw = &adapter->hw;
2250	struct netdev_hw_addr *ha;
2251	bool use_uc = false;
2252	u32 rctl;
2253	u32 hash_value;
2254	int i, rar_entries = E1000_RAR_ENTRIES;
2255	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2256	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2257
2258	if (!mcarray) {
2259		e_err(probe, "memory allocation failed\n");
2260		return;
2261	}
2262
2263	/* Check for Promiscuous and All Multicast modes */
2264
2265	rctl = er32(RCTL);
2266
2267	if (netdev->flags & IFF_PROMISC) {
2268		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2269		rctl &= ~E1000_RCTL_VFE;
2270	} else {
2271		if (netdev->flags & IFF_ALLMULTI)
2272			rctl |= E1000_RCTL_MPE;
2273		else
2274			rctl &= ~E1000_RCTL_MPE;
2275		/* Enable VLAN filter if there is a VLAN */
2276		if (e1000_vlan_used(adapter))
2277			rctl |= E1000_RCTL_VFE;
2278	}
2279
2280	if (netdev_uc_count(netdev) > rar_entries - 1) {
2281		rctl |= E1000_RCTL_UPE;
2282	} else if (!(netdev->flags & IFF_PROMISC)) {
2283		rctl &= ~E1000_RCTL_UPE;
2284		use_uc = true;
2285	}
2286
2287	ew32(RCTL, rctl);
2288
2289	/* 82542 2.0 needs to be in reset to write receive address registers */
2290
2291	if (hw->mac_type == e1000_82542_rev2_0)
2292		e1000_enter_82542_rst(adapter);
2293
2294	/* load the first 14 addresses into the exact filters 1-14. Unicast
2295	 * addresses take precedence to avoid disabling unicast filtering
2296	 * when possible.
2297	 *
2298	 * RAR 0 is used for the station MAC address
2299	 * if there are not 14 addresses, go ahead and clear the filters
2300	 */
2301	i = 1;
2302	if (use_uc)
2303		netdev_for_each_uc_addr(ha, netdev) {
2304			if (i == rar_entries)
2305				break;
2306			e1000_rar_set(hw, ha->addr, i++);
2307		}
2308
2309	netdev_for_each_mc_addr(ha, netdev) {
2310		if (i == rar_entries) {
2311			/* load any remaining addresses into the hash table */
2312			u32 hash_reg, hash_bit, mta;
2313			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2314			hash_reg = (hash_value >> 5) & 0x7F;
2315			hash_bit = hash_value & 0x1F;
2316			mta = (1 << hash_bit);
2317			mcarray[hash_reg] |= mta;
2318		} else {
2319			e1000_rar_set(hw, ha->addr, i++);
2320		}
2321	}
2322
2323	for (; i < rar_entries; i++) {
2324		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2325		E1000_WRITE_FLUSH();
2326		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2327		E1000_WRITE_FLUSH();
2328	}
2329
2330	/* write the hash table completely, write from bottom to avoid
2331	 * both stupid write combining chipsets, and flushing each write */
 
2332	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2333		/*
2334		 * If we are on an 82544 has an errata where writing odd
2335		 * offsets overwrites the previous even offset, but writing
2336		 * backwards over the range solves the issue by always
2337		 * writing the odd offset first
2338		 */
2339		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2340	}
2341	E1000_WRITE_FLUSH();
2342
2343	if (hw->mac_type == e1000_82542_rev2_0)
2344		e1000_leave_82542_rst(adapter);
2345
2346	kfree(mcarray);
2347}
2348
2349/**
2350 * e1000_update_phy_info_task - get phy info
2351 * @work: work struct contained inside adapter struct
2352 *
2353 * Need to wait a few seconds after link up to get diagnostic information from
2354 * the phy
2355 */
2356static void e1000_update_phy_info_task(struct work_struct *work)
2357{
2358	struct e1000_adapter *adapter = container_of(work,
2359						     struct e1000_adapter,
2360						     phy_info_task.work);
2361	if (test_bit(__E1000_DOWN, &adapter->flags))
2362		return;
2363	mutex_lock(&adapter->mutex);
2364	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2365	mutex_unlock(&adapter->mutex);
2366}
2367
2368/**
2369 * e1000_82547_tx_fifo_stall_task - task to complete work
2370 * @work: work struct contained inside adapter struct
2371 **/
2372static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2373{
2374	struct e1000_adapter *adapter = container_of(work,
2375						     struct e1000_adapter,
2376						     fifo_stall_task.work);
2377	struct e1000_hw *hw = &adapter->hw;
2378	struct net_device *netdev = adapter->netdev;
2379	u32 tctl;
2380
2381	if (test_bit(__E1000_DOWN, &adapter->flags))
2382		return;
2383	mutex_lock(&adapter->mutex);
2384	if (atomic_read(&adapter->tx_fifo_stall)) {
2385		if ((er32(TDT) == er32(TDH)) &&
2386		   (er32(TDFT) == er32(TDFH)) &&
2387		   (er32(TDFTS) == er32(TDFHS))) {
2388			tctl = er32(TCTL);
2389			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2390			ew32(TDFT, adapter->tx_head_addr);
2391			ew32(TDFH, adapter->tx_head_addr);
2392			ew32(TDFTS, adapter->tx_head_addr);
2393			ew32(TDFHS, adapter->tx_head_addr);
2394			ew32(TCTL, tctl);
2395			E1000_WRITE_FLUSH();
2396
2397			adapter->tx_fifo_head = 0;
2398			atomic_set(&adapter->tx_fifo_stall, 0);
2399			netif_wake_queue(netdev);
2400		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2401			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2402		}
2403	}
2404	mutex_unlock(&adapter->mutex);
2405}
2406
2407bool e1000_has_link(struct e1000_adapter *adapter)
2408{
2409	struct e1000_hw *hw = &adapter->hw;
2410	bool link_active = false;
2411
2412	/* get_link_status is set on LSC (link status) interrupt or rx
2413	 * sequence error interrupt (except on intel ce4100).
2414	 * get_link_status will stay false until the
2415	 * e1000_check_for_link establishes link for copper adapters
2416	 * ONLY
2417	 */
2418	switch (hw->media_type) {
2419	case e1000_media_type_copper:
2420		if (hw->mac_type == e1000_ce4100)
2421			hw->get_link_status = 1;
2422		if (hw->get_link_status) {
2423			e1000_check_for_link(hw);
2424			link_active = !hw->get_link_status;
2425		} else {
2426			link_active = true;
2427		}
2428		break;
2429	case e1000_media_type_fiber:
2430		e1000_check_for_link(hw);
2431		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2432		break;
2433	case e1000_media_type_internal_serdes:
2434		e1000_check_for_link(hw);
2435		link_active = hw->serdes_has_link;
2436		break;
2437	default:
2438		break;
2439	}
2440
2441	return link_active;
2442}
2443
2444/**
2445 * e1000_watchdog - work function
2446 * @work: work struct contained inside adapter struct
2447 **/
2448static void e1000_watchdog(struct work_struct *work)
2449{
2450	struct e1000_adapter *adapter = container_of(work,
2451						     struct e1000_adapter,
2452						     watchdog_task.work);
2453	struct e1000_hw *hw = &adapter->hw;
2454	struct net_device *netdev = adapter->netdev;
2455	struct e1000_tx_ring *txdr = adapter->tx_ring;
2456	u32 link, tctl;
2457
2458	if (test_bit(__E1000_DOWN, &adapter->flags))
2459		return;
2460
2461	mutex_lock(&adapter->mutex);
2462	link = e1000_has_link(adapter);
2463	if ((netif_carrier_ok(netdev)) && link)
2464		goto link_up;
2465
2466	if (link) {
2467		if (!netif_carrier_ok(netdev)) {
2468			u32 ctrl;
2469			bool txb2b = true;
2470			/* update snapshot of PHY registers on LSC */
2471			e1000_get_speed_and_duplex(hw,
2472			                           &adapter->link_speed,
2473			                           &adapter->link_duplex);
2474
2475			ctrl = er32(CTRL);
2476			pr_info("%s NIC Link is Up %d Mbps %s, "
2477				"Flow Control: %s\n",
2478				netdev->name,
2479				adapter->link_speed,
2480				adapter->link_duplex == FULL_DUPLEX ?
2481				"Full Duplex" : "Half Duplex",
2482				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2483				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2484				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2485				E1000_CTRL_TFCE) ? "TX" : "None")));
2486
2487			/* adjust timeout factor according to speed/duplex */
2488			adapter->tx_timeout_factor = 1;
2489			switch (adapter->link_speed) {
2490			case SPEED_10:
2491				txb2b = false;
2492				adapter->tx_timeout_factor = 16;
2493				break;
2494			case SPEED_100:
2495				txb2b = false;
2496				/* maybe add some timeout factor ? */
2497				break;
2498			}
2499
2500			/* enable transmits in the hardware */
2501			tctl = er32(TCTL);
2502			tctl |= E1000_TCTL_EN;
2503			ew32(TCTL, tctl);
2504
2505			netif_carrier_on(netdev);
2506			if (!test_bit(__E1000_DOWN, &adapter->flags))
2507				schedule_delayed_work(&adapter->phy_info_task,
2508						      2 * HZ);
2509			adapter->smartspeed = 0;
2510		}
2511	} else {
2512		if (netif_carrier_ok(netdev)) {
2513			adapter->link_speed = 0;
2514			adapter->link_duplex = 0;
2515			pr_info("%s NIC Link is Down\n",
2516				netdev->name);
2517			netif_carrier_off(netdev);
2518
2519			if (!test_bit(__E1000_DOWN, &adapter->flags))
2520				schedule_delayed_work(&adapter->phy_info_task,
2521						      2 * HZ);
2522		}
2523
2524		e1000_smartspeed(adapter);
2525	}
2526
2527link_up:
2528	e1000_update_stats(adapter);
2529
2530	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2531	adapter->tpt_old = adapter->stats.tpt;
2532	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2533	adapter->colc_old = adapter->stats.colc;
2534
2535	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2536	adapter->gorcl_old = adapter->stats.gorcl;
2537	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2538	adapter->gotcl_old = adapter->stats.gotcl;
2539
2540	e1000_update_adaptive(hw);
2541
2542	if (!netif_carrier_ok(netdev)) {
2543		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2544			/* We've lost link, so the controller stops DMA,
2545			 * but we've got queued Tx work that's never going
2546			 * to get done, so reset controller to flush Tx.
2547			 * (Do the reset outside of interrupt context). */
 
2548			adapter->tx_timeout_count++;
2549			schedule_work(&adapter->reset_task);
2550			/* exit immediately since reset is imminent */
2551			goto unlock;
2552		}
2553	}
2554
2555	/* Simple mode for Interrupt Throttle Rate (ITR) */
2556	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2557		/*
2558		 * Symmetric Tx/Rx gets a reduced ITR=2000;
2559		 * Total asymmetrical Tx or Rx gets ITR=8000;
2560		 * everyone else is between 2000-8000.
2561		 */
2562		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2563		u32 dif = (adapter->gotcl > adapter->gorcl ?
2564			    adapter->gotcl - adapter->gorcl :
2565			    adapter->gorcl - adapter->gotcl) / 10000;
2566		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2567
2568		ew32(ITR, 1000000000 / (itr * 256));
2569	}
2570
2571	/* Cause software interrupt to ensure rx ring is cleaned */
2572	ew32(ICS, E1000_ICS_RXDMT0);
2573
2574	/* Force detection of hung controller every watchdog period */
2575	adapter->detect_tx_hung = true;
2576
2577	/* Reschedule the task */
2578	if (!test_bit(__E1000_DOWN, &adapter->flags))
2579		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2580
2581unlock:
2582	mutex_unlock(&adapter->mutex);
2583}
2584
2585enum latency_range {
2586	lowest_latency = 0,
2587	low_latency = 1,
2588	bulk_latency = 2,
2589	latency_invalid = 255
2590};
2591
2592/**
2593 * e1000_update_itr - update the dynamic ITR value based on statistics
2594 * @adapter: pointer to adapter
2595 * @itr_setting: current adapter->itr
2596 * @packets: the number of packets during this measurement interval
2597 * @bytes: the number of bytes during this measurement interval
2598 *
2599 *      Stores a new ITR value based on packets and byte
2600 *      counts during the last interrupt.  The advantage of per interrupt
2601 *      computation is faster updates and more accurate ITR for the current
2602 *      traffic pattern.  Constants in this function were computed
2603 *      based on theoretical maximum wire speed and thresholds were set based
2604 *      on testing data as well as attempting to minimize response time
2605 *      while increasing bulk throughput.
2606 *      this functionality is controlled by the InterruptThrottleRate module
2607 *      parameter (see e1000_param.c)
2608 **/
2609static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2610				     u16 itr_setting, int packets, int bytes)
2611{
2612	unsigned int retval = itr_setting;
2613	struct e1000_hw *hw = &adapter->hw;
2614
2615	if (unlikely(hw->mac_type < e1000_82540))
2616		goto update_itr_done;
2617
2618	if (packets == 0)
2619		goto update_itr_done;
2620
2621	switch (itr_setting) {
2622	case lowest_latency:
2623		/* jumbo frames get bulk treatment*/
2624		if (bytes/packets > 8000)
2625			retval = bulk_latency;
2626		else if ((packets < 5) && (bytes > 512))
2627			retval = low_latency;
2628		break;
2629	case low_latency:  /* 50 usec aka 20000 ints/s */
2630		if (bytes > 10000) {
2631			/* jumbo frames need bulk latency setting */
2632			if (bytes/packets > 8000)
2633				retval = bulk_latency;
2634			else if ((packets < 10) || ((bytes/packets) > 1200))
2635				retval = bulk_latency;
2636			else if ((packets > 35))
2637				retval = lowest_latency;
2638		} else if (bytes/packets > 2000)
2639			retval = bulk_latency;
2640		else if (packets <= 2 && bytes < 512)
2641			retval = lowest_latency;
2642		break;
2643	case bulk_latency: /* 250 usec aka 4000 ints/s */
2644		if (bytes > 25000) {
2645			if (packets > 35)
2646				retval = low_latency;
2647		} else if (bytes < 6000) {
2648			retval = low_latency;
2649		}
2650		break;
2651	}
2652
2653update_itr_done:
2654	return retval;
2655}
2656
2657static void e1000_set_itr(struct e1000_adapter *adapter)
2658{
2659	struct e1000_hw *hw = &adapter->hw;
2660	u16 current_itr;
2661	u32 new_itr = adapter->itr;
2662
2663	if (unlikely(hw->mac_type < e1000_82540))
2664		return;
2665
2666	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2667	if (unlikely(adapter->link_speed != SPEED_1000)) {
2668		current_itr = 0;
2669		new_itr = 4000;
2670		goto set_itr_now;
2671	}
2672
2673	adapter->tx_itr = e1000_update_itr(adapter,
2674	                            adapter->tx_itr,
2675	                            adapter->total_tx_packets,
2676	                            adapter->total_tx_bytes);
2677	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2678	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2679		adapter->tx_itr = low_latency;
2680
2681	adapter->rx_itr = e1000_update_itr(adapter,
2682	                            adapter->rx_itr,
2683	                            adapter->total_rx_packets,
2684	                            adapter->total_rx_bytes);
2685	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2686	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2687		adapter->rx_itr = low_latency;
2688
2689	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2690
2691	switch (current_itr) {
2692	/* counts and packets in update_itr are dependent on these numbers */
2693	case lowest_latency:
2694		new_itr = 70000;
2695		break;
2696	case low_latency:
2697		new_itr = 20000; /* aka hwitr = ~200 */
2698		break;
2699	case bulk_latency:
2700		new_itr = 4000;
2701		break;
2702	default:
2703		break;
2704	}
2705
2706set_itr_now:
2707	if (new_itr != adapter->itr) {
2708		/* this attempts to bias the interrupt rate towards Bulk
2709		 * by adding intermediate steps when interrupt rate is
2710		 * increasing */
 
2711		new_itr = new_itr > adapter->itr ?
2712		             min(adapter->itr + (new_itr >> 2), new_itr) :
2713		             new_itr;
2714		adapter->itr = new_itr;
2715		ew32(ITR, 1000000000 / (new_itr * 256));
2716	}
2717}
2718
2719#define E1000_TX_FLAGS_CSUM		0x00000001
2720#define E1000_TX_FLAGS_VLAN		0x00000002
2721#define E1000_TX_FLAGS_TSO		0x00000004
2722#define E1000_TX_FLAGS_IPV4		0x00000008
2723#define E1000_TX_FLAGS_NO_FCS		0x00000010
2724#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2725#define E1000_TX_FLAGS_VLAN_SHIFT	16
2726
2727static int e1000_tso(struct e1000_adapter *adapter,
2728		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
 
2729{
2730	struct e1000_context_desc *context_desc;
2731	struct e1000_buffer *buffer_info;
2732	unsigned int i;
2733	u32 cmd_length = 0;
2734	u16 ipcse = 0, tucse, mss;
2735	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2736	int err;
2737
2738	if (skb_is_gso(skb)) {
2739		if (skb_header_cloned(skb)) {
2740			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2741			if (err)
2742				return err;
2743		}
2744
2745		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2746		mss = skb_shinfo(skb)->gso_size;
2747		if (skb->protocol == htons(ETH_P_IP)) {
2748			struct iphdr *iph = ip_hdr(skb);
2749			iph->tot_len = 0;
2750			iph->check = 0;
2751			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2752								 iph->daddr, 0,
2753								 IPPROTO_TCP,
2754								 0);
2755			cmd_length = E1000_TXD_CMD_IP;
2756			ipcse = skb_transport_offset(skb) - 1;
2757		} else if (skb->protocol == htons(ETH_P_IPV6)) {
2758			ipv6_hdr(skb)->payload_len = 0;
2759			tcp_hdr(skb)->check =
2760				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2761						 &ipv6_hdr(skb)->daddr,
2762						 0, IPPROTO_TCP, 0);
2763			ipcse = 0;
2764		}
2765		ipcss = skb_network_offset(skb);
2766		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2767		tucss = skb_transport_offset(skb);
2768		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2769		tucse = 0;
2770
2771		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2772			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2773
2774		i = tx_ring->next_to_use;
2775		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2776		buffer_info = &tx_ring->buffer_info[i];
2777
2778		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2779		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2780		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2781		context_desc->upper_setup.tcp_fields.tucss = tucss;
2782		context_desc->upper_setup.tcp_fields.tucso = tucso;
2783		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2784		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2785		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2786		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2787
2788		buffer_info->time_stamp = jiffies;
2789		buffer_info->next_to_watch = i;
2790
2791		if (++i == tx_ring->count) i = 0;
 
 
2792		tx_ring->next_to_use = i;
2793
2794		return true;
2795	}
2796	return false;
2797}
2798
2799static bool e1000_tx_csum(struct e1000_adapter *adapter,
2800			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
 
2801{
2802	struct e1000_context_desc *context_desc;
2803	struct e1000_buffer *buffer_info;
2804	unsigned int i;
2805	u8 css;
2806	u32 cmd_len = E1000_TXD_CMD_DEXT;
2807
2808	if (skb->ip_summed != CHECKSUM_PARTIAL)
2809		return false;
2810
2811	switch (skb->protocol) {
2812	case cpu_to_be16(ETH_P_IP):
2813		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2814			cmd_len |= E1000_TXD_CMD_TCP;
2815		break;
2816	case cpu_to_be16(ETH_P_IPV6):
2817		/* XXX not handling all IPV6 headers */
2818		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2819			cmd_len |= E1000_TXD_CMD_TCP;
2820		break;
2821	default:
2822		if (unlikely(net_ratelimit()))
2823			e_warn(drv, "checksum_partial proto=%x!\n",
2824			       skb->protocol);
2825		break;
2826	}
2827
2828	css = skb_checksum_start_offset(skb);
2829
2830	i = tx_ring->next_to_use;
2831	buffer_info = &tx_ring->buffer_info[i];
2832	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2833
2834	context_desc->lower_setup.ip_config = 0;
2835	context_desc->upper_setup.tcp_fields.tucss = css;
2836	context_desc->upper_setup.tcp_fields.tucso =
2837		css + skb->csum_offset;
2838	context_desc->upper_setup.tcp_fields.tucse = 0;
2839	context_desc->tcp_seg_setup.data = 0;
2840	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2841
2842	buffer_info->time_stamp = jiffies;
2843	buffer_info->next_to_watch = i;
2844
2845	if (unlikely(++i == tx_ring->count)) i = 0;
 
 
2846	tx_ring->next_to_use = i;
2847
2848	return true;
2849}
2850
2851#define E1000_MAX_TXD_PWR	12
2852#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2853
2854static int e1000_tx_map(struct e1000_adapter *adapter,
2855			struct e1000_tx_ring *tx_ring,
2856			struct sk_buff *skb, unsigned int first,
2857			unsigned int max_per_txd, unsigned int nr_frags,
2858			unsigned int mss)
2859{
2860	struct e1000_hw *hw = &adapter->hw;
2861	struct pci_dev *pdev = adapter->pdev;
2862	struct e1000_buffer *buffer_info;
2863	unsigned int len = skb_headlen(skb);
2864	unsigned int offset = 0, size, count = 0, i;
2865	unsigned int f, bytecount, segs;
2866
2867	i = tx_ring->next_to_use;
2868
2869	while (len) {
2870		buffer_info = &tx_ring->buffer_info[i];
2871		size = min(len, max_per_txd);
2872		/* Workaround for Controller erratum --
2873		 * descriptor for non-tso packet in a linear SKB that follows a
2874		 * tso gets written back prematurely before the data is fully
2875		 * DMA'd to the controller */
 
2876		if (!skb->data_len && tx_ring->last_tx_tso &&
2877		    !skb_is_gso(skb)) {
2878			tx_ring->last_tx_tso = false;
2879			size -= 4;
2880		}
2881
2882		/* Workaround for premature desc write-backs
2883		 * in TSO mode.  Append 4-byte sentinel desc */
 
2884		if (unlikely(mss && !nr_frags && size == len && size > 8))
2885			size -= 4;
2886		/* work-around for errata 10 and it applies
2887		 * to all controllers in PCI-X mode
2888		 * The fix is to make sure that the first descriptor of a
2889		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2890		 */
2891		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2892		                (size > 2015) && count == 0))
2893		        size = 2015;
2894
2895		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2896		 * terminating buffers within evenly-aligned dwords. */
 
2897		if (unlikely(adapter->pcix_82544 &&
2898		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2899		   size > 4))
2900			size -= 4;
2901
2902		buffer_info->length = size;
2903		/* set time_stamp *before* dma to help avoid a possible race */
2904		buffer_info->time_stamp = jiffies;
2905		buffer_info->mapped_as_page = false;
2906		buffer_info->dma = dma_map_single(&pdev->dev,
2907						  skb->data + offset,
2908						  size,	DMA_TO_DEVICE);
2909		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2910			goto dma_error;
2911		buffer_info->next_to_watch = i;
2912
2913		len -= size;
2914		offset += size;
2915		count++;
2916		if (len) {
2917			i++;
2918			if (unlikely(i == tx_ring->count))
2919				i = 0;
2920		}
2921	}
2922
2923	for (f = 0; f < nr_frags; f++) {
2924		const struct skb_frag_struct *frag;
2925
2926		frag = &skb_shinfo(skb)->frags[f];
2927		len = skb_frag_size(frag);
2928		offset = 0;
2929
2930		while (len) {
2931			unsigned long bufend;
2932			i++;
2933			if (unlikely(i == tx_ring->count))
2934				i = 0;
2935
2936			buffer_info = &tx_ring->buffer_info[i];
2937			size = min(len, max_per_txd);
2938			/* Workaround for premature desc write-backs
2939			 * in TSO mode.  Append 4-byte sentinel desc */
2940			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
 
 
2941				size -= 4;
2942			/* Workaround for potential 82544 hang in PCI-X.
2943			 * Avoid terminating buffers within evenly-aligned
2944			 * dwords. */
 
2945			bufend = (unsigned long)
2946				page_to_phys(skb_frag_page(frag));
2947			bufend += offset + size - 1;
2948			if (unlikely(adapter->pcix_82544 &&
2949				     !(bufend & 4) &&
2950				     size > 4))
2951				size -= 4;
2952
2953			buffer_info->length = size;
2954			buffer_info->time_stamp = jiffies;
2955			buffer_info->mapped_as_page = true;
2956			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2957						offset, size, DMA_TO_DEVICE);
2958			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2959				goto dma_error;
2960			buffer_info->next_to_watch = i;
2961
2962			len -= size;
2963			offset += size;
2964			count++;
2965		}
2966	}
2967
2968	segs = skb_shinfo(skb)->gso_segs ?: 1;
2969	/* multiply data chunks by size of headers */
2970	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2971
2972	tx_ring->buffer_info[i].skb = skb;
2973	tx_ring->buffer_info[i].segs = segs;
2974	tx_ring->buffer_info[i].bytecount = bytecount;
2975	tx_ring->buffer_info[first].next_to_watch = i;
2976
2977	return count;
2978
2979dma_error:
2980	dev_err(&pdev->dev, "TX DMA map failed\n");
2981	buffer_info->dma = 0;
2982	if (count)
2983		count--;
2984
2985	while (count--) {
2986		if (i==0)
2987			i += tx_ring->count;
2988		i--;
2989		buffer_info = &tx_ring->buffer_info[i];
2990		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2991	}
2992
2993	return 0;
2994}
2995
2996static void e1000_tx_queue(struct e1000_adapter *adapter,
2997			   struct e1000_tx_ring *tx_ring, int tx_flags,
2998			   int count)
2999{
3000	struct e1000_hw *hw = &adapter->hw;
3001	struct e1000_tx_desc *tx_desc = NULL;
3002	struct e1000_buffer *buffer_info;
3003	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3004	unsigned int i;
3005
3006	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3007		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3008		             E1000_TXD_CMD_TSE;
3009		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3010
3011		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3012			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3013	}
3014
3015	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3016		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3017		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3018	}
3019
3020	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3021		txd_lower |= E1000_TXD_CMD_VLE;
3022		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3023	}
3024
3025	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3026		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3027
3028	i = tx_ring->next_to_use;
3029
3030	while (count--) {
3031		buffer_info = &tx_ring->buffer_info[i];
3032		tx_desc = E1000_TX_DESC(*tx_ring, i);
3033		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3034		tx_desc->lower.data =
3035			cpu_to_le32(txd_lower | buffer_info->length);
3036		tx_desc->upper.data = cpu_to_le32(txd_upper);
3037		if (unlikely(++i == tx_ring->count)) i = 0;
 
3038	}
3039
3040	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3041
3042	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3043	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3044		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3045
3046	/* Force memory writes to complete before letting h/w
3047	 * know there are new descriptors to fetch.  (Only
3048	 * applicable for weak-ordered memory model archs,
3049	 * such as IA-64). */
3050	wmb();
 
3051
3052	tx_ring->next_to_use = i;
3053	writel(i, hw->hw_addr + tx_ring->tdt);
3054	/* we need this if more than one processor can write to our tail
3055	 * at a time, it syncronizes IO on IA64/Altix systems */
3056	mmiowb();
3057}
3058
3059/**
3060 * 82547 workaround to avoid controller hang in half-duplex environment.
3061 * The workaround is to avoid queuing a large packet that would span
3062 * the internal Tx FIFO ring boundary by notifying the stack to resend
3063 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3064 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3065 * to the beginning of the Tx FIFO.
3066 **/
3067
3068#define E1000_FIFO_HDR			0x10
3069#define E1000_82547_PAD_LEN		0x3E0
3070
3071static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3072				       struct sk_buff *skb)
3073{
3074	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3075	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3076
3077	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3078
3079	if (adapter->link_duplex != HALF_DUPLEX)
3080		goto no_fifo_stall_required;
3081
3082	if (atomic_read(&adapter->tx_fifo_stall))
3083		return 1;
3084
3085	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3086		atomic_set(&adapter->tx_fifo_stall, 1);
3087		return 1;
3088	}
3089
3090no_fifo_stall_required:
3091	adapter->tx_fifo_head += skb_fifo_len;
3092	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3093		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3094	return 0;
3095}
3096
3097static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3098{
3099	struct e1000_adapter *adapter = netdev_priv(netdev);
3100	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3101
3102	netif_stop_queue(netdev);
3103	/* Herbert's original patch had:
3104	 *  smp_mb__after_netif_stop_queue();
3105	 * but since that doesn't exist yet, just open code it. */
 
3106	smp_mb();
3107
3108	/* We need to check again in a case another CPU has just
3109	 * made room available. */
 
3110	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3111		return -EBUSY;
3112
3113	/* A reprieve! */
3114	netif_start_queue(netdev);
3115	++adapter->restart_queue;
3116	return 0;
3117}
3118
3119static int e1000_maybe_stop_tx(struct net_device *netdev,
3120                               struct e1000_tx_ring *tx_ring, int size)
3121{
3122	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3123		return 0;
3124	return __e1000_maybe_stop_tx(netdev, size);
3125}
3126
3127#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3128static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3129				    struct net_device *netdev)
3130{
3131	struct e1000_adapter *adapter = netdev_priv(netdev);
3132	struct e1000_hw *hw = &adapter->hw;
3133	struct e1000_tx_ring *tx_ring;
3134	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3135	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3136	unsigned int tx_flags = 0;
3137	unsigned int len = skb_headlen(skb);
3138	unsigned int nr_frags;
3139	unsigned int mss;
3140	int count = 0;
3141	int tso;
3142	unsigned int f;
 
3143
3144	/* This goes back to the question of how to logically map a tx queue
3145	 * to a flow.  Right now, performance is impacted slightly negatively
3146	 * if using multiple tx queues.  If the stack breaks away from a
3147	 * single qdisc implementation, we can look at this again. */
 
3148	tx_ring = adapter->tx_ring;
3149
3150	if (unlikely(skb->len <= 0)) {
3151		dev_kfree_skb_any(skb);
 
 
 
3152		return NETDEV_TX_OK;
3153	}
3154
3155	mss = skb_shinfo(skb)->gso_size;
3156	/* The controller does a simple calculation to
3157	 * make sure there is enough room in the FIFO before
3158	 * initiating the DMA for each buffer.  The calc is:
3159	 * 4 = ceil(buffer len/mss).  To make sure we don't
3160	 * overrun the FIFO, adjust the max buffer len if mss
3161	 * drops. */
 
3162	if (mss) {
3163		u8 hdr_len;
3164		max_per_txd = min(mss << 2, max_per_txd);
3165		max_txd_pwr = fls(max_per_txd) - 1;
3166
3167		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3168		if (skb->data_len && hdr_len == len) {
3169			switch (hw->mac_type) {
 
3170				unsigned int pull_size;
3171			case e1000_82544:
3172				/* Make sure we have room to chop off 4 bytes,
3173				 * and that the end alignment will work out to
3174				 * this hardware's requirements
3175				 * NOTE: this is a TSO only workaround
3176				 * if end byte alignment not correct move us
3177				 * into the next dword */
3178				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
 
 
3179					break;
3180				/* fall through */
3181				pull_size = min((unsigned int)4, skb->data_len);
3182				if (!__pskb_pull_tail(skb, pull_size)) {
3183					e_err(drv, "__pskb_pull_tail "
3184					      "failed.\n");
3185					dev_kfree_skb_any(skb);
3186					return NETDEV_TX_OK;
3187				}
3188				len = skb_headlen(skb);
3189				break;
 
3190			default:
3191				/* do nothing */
3192				break;
3193			}
3194		}
3195	}
3196
3197	/* reserve a descriptor for the offload context */
3198	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3199		count++;
3200	count++;
3201
3202	/* Controller Erratum workaround */
3203	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3204		count++;
3205
3206	count += TXD_USE_COUNT(len, max_txd_pwr);
3207
3208	if (adapter->pcix_82544)
3209		count++;
3210
3211	/* work-around for errata 10 and it applies to all controllers
3212	 * in PCI-X mode, so add one more descriptor to the count
3213	 */
3214	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3215			(len > 2015)))
3216		count++;
3217
3218	nr_frags = skb_shinfo(skb)->nr_frags;
3219	for (f = 0; f < nr_frags; f++)
3220		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3221				       max_txd_pwr);
3222	if (adapter->pcix_82544)
3223		count += nr_frags;
3224
3225	/* need: count + 2 desc gap to keep tail from touching
3226	 * head, otherwise try next time */
 
3227	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3228		return NETDEV_TX_BUSY;
3229
3230	if (unlikely((hw->mac_type == e1000_82547) &&
3231		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3232		netif_stop_queue(netdev);
3233		if (!test_bit(__E1000_DOWN, &adapter->flags))
3234			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3235		return NETDEV_TX_BUSY;
3236	}
3237
3238	if (vlan_tx_tag_present(skb)) {
3239		tx_flags |= E1000_TX_FLAGS_VLAN;
3240		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
 
3241	}
3242
3243	first = tx_ring->next_to_use;
3244
3245	tso = e1000_tso(adapter, tx_ring, skb);
3246	if (tso < 0) {
3247		dev_kfree_skb_any(skb);
3248		return NETDEV_TX_OK;
3249	}
3250
3251	if (likely(tso)) {
3252		if (likely(hw->mac_type != e1000_82544))
3253			tx_ring->last_tx_tso = true;
3254		tx_flags |= E1000_TX_FLAGS_TSO;
3255	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3256		tx_flags |= E1000_TX_FLAGS_CSUM;
3257
3258	if (likely(skb->protocol == htons(ETH_P_IP)))
3259		tx_flags |= E1000_TX_FLAGS_IPV4;
3260
3261	if (unlikely(skb->no_fcs))
3262		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3263
3264	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3265	                     nr_frags, mss);
3266
3267	if (count) {
 
 
 
 
 
 
 
 
 
 
3268		skb_tx_timestamp(skb);
3269
3270		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
 
 
 
 
 
 
 
 
3271		/* Make sure there is space in the ring for the next send. */
3272		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3273
 
 
 
 
3274	} else {
3275		dev_kfree_skb_any(skb);
3276		tx_ring->buffer_info[first].time_stamp = 0;
3277		tx_ring->next_to_use = first;
3278	}
3279
3280	return NETDEV_TX_OK;
3281}
3282
3283#define NUM_REGS 38 /* 1 based count */
3284static void e1000_regdump(struct e1000_adapter *adapter)
3285{
3286	struct e1000_hw *hw = &adapter->hw;
3287	u32 regs[NUM_REGS];
3288	u32 *regs_buff = regs;
3289	int i = 0;
3290
3291	static const char * const reg_name[] = {
3292		"CTRL",  "STATUS",
3293		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3294		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3295		"TIDV", "TXDCTL", "TADV", "TARC0",
3296		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3297		"TXDCTL1", "TARC1",
3298		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3299		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3300		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3301	};
3302
3303	regs_buff[0]  = er32(CTRL);
3304	regs_buff[1]  = er32(STATUS);
3305
3306	regs_buff[2]  = er32(RCTL);
3307	regs_buff[3]  = er32(RDLEN);
3308	regs_buff[4]  = er32(RDH);
3309	regs_buff[5]  = er32(RDT);
3310	regs_buff[6]  = er32(RDTR);
3311
3312	regs_buff[7]  = er32(TCTL);
3313	regs_buff[8]  = er32(TDBAL);
3314	regs_buff[9]  = er32(TDBAH);
3315	regs_buff[10] = er32(TDLEN);
3316	regs_buff[11] = er32(TDH);
3317	regs_buff[12] = er32(TDT);
3318	regs_buff[13] = er32(TIDV);
3319	regs_buff[14] = er32(TXDCTL);
3320	regs_buff[15] = er32(TADV);
3321	regs_buff[16] = er32(TARC0);
3322
3323	regs_buff[17] = er32(TDBAL1);
3324	regs_buff[18] = er32(TDBAH1);
3325	regs_buff[19] = er32(TDLEN1);
3326	regs_buff[20] = er32(TDH1);
3327	regs_buff[21] = er32(TDT1);
3328	regs_buff[22] = er32(TXDCTL1);
3329	regs_buff[23] = er32(TARC1);
3330	regs_buff[24] = er32(CTRL_EXT);
3331	regs_buff[25] = er32(ERT);
3332	regs_buff[26] = er32(RDBAL0);
3333	regs_buff[27] = er32(RDBAH0);
3334	regs_buff[28] = er32(TDFH);
3335	regs_buff[29] = er32(TDFT);
3336	regs_buff[30] = er32(TDFHS);
3337	regs_buff[31] = er32(TDFTS);
3338	regs_buff[32] = er32(TDFPC);
3339	regs_buff[33] = er32(RDFH);
3340	regs_buff[34] = er32(RDFT);
3341	regs_buff[35] = er32(RDFHS);
3342	regs_buff[36] = er32(RDFTS);
3343	regs_buff[37] = er32(RDFPC);
3344
3345	pr_info("Register dump\n");
3346	for (i = 0; i < NUM_REGS; i++)
3347		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3348}
3349
3350/*
3351 * e1000_dump: Print registers, tx ring and rx ring
3352 */
3353static void e1000_dump(struct e1000_adapter *adapter)
3354{
3355	/* this code doesn't handle multiple rings */
3356	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3357	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3358	int i;
3359
3360	if (!netif_msg_hw(adapter))
3361		return;
3362
3363	/* Print Registers */
3364	e1000_regdump(adapter);
3365
3366	/*
3367	 * transmit dump
3368	 */
3369	pr_info("TX Desc ring0 dump\n");
3370
3371	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372	 *
3373	 * Legacy Transmit Descriptor
3374	 *   +--------------------------------------------------------------+
3375	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3376	 *   +--------------------------------------------------------------+
3377	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3378	 *   +--------------------------------------------------------------+
3379	 *   63       48 47        36 35    32 31     24 23    16 15        0
3380	 *
3381	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382	 *   63      48 47    40 39       32 31             16 15    8 7      0
3383	 *   +----------------------------------------------------------------+
3384	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3385	 *   +----------------------------------------------------------------+
3386	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3387	 *   +----------------------------------------------------------------+
3388	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3389	 *
3390	 * Extended Data Descriptor (DTYP=0x1)
3391	 *   +----------------------------------------------------------------+
3392	 * 0 |                     Buffer Address [63:0]                      |
3393	 *   +----------------------------------------------------------------+
3394	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3395	 *   +----------------------------------------------------------------+
3396	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3397	 */
3398	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3399	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3400
3401	if (!netif_msg_tx_done(adapter))
3402		goto rx_ring_summary;
3403
3404	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406		struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3407		struct my_u { __le64 a; __le64 b; };
3408		struct my_u *u = (struct my_u *)tx_desc;
3409		const char *type;
3410
3411		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412			type = "NTC/U";
3413		else if (i == tx_ring->next_to_use)
3414			type = "NTU";
3415		else if (i == tx_ring->next_to_clean)
3416			type = "NTC";
3417		else
3418			type = "";
3419
3420		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3421			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422			le64_to_cpu(u->a), le64_to_cpu(u->b),
3423			(u64)buffer_info->dma, buffer_info->length,
3424			buffer_info->next_to_watch,
3425			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3426	}
3427
3428rx_ring_summary:
3429	/*
3430	 * receive dump
3431	 */
3432	pr_info("\nRX Desc ring dump\n");
3433
3434	/* Legacy Receive Descriptor Format
3435	 *
3436	 * +-----------------------------------------------------+
3437	 * |                Buffer Address [63:0]                |
3438	 * +-----------------------------------------------------+
3439	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440	 * +-----------------------------------------------------+
3441	 * 63       48 47    40 39      32 31         16 15      0
3442	 */
3443	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3444
3445	if (!netif_msg_rx_status(adapter))
3446		goto exit;
3447
3448	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450		struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3451		struct my_u { __le64 a; __le64 b; };
3452		struct my_u *u = (struct my_u *)rx_desc;
3453		const char *type;
3454
3455		if (i == rx_ring->next_to_use)
3456			type = "NTU";
3457		else if (i == rx_ring->next_to_clean)
3458			type = "NTC";
3459		else
3460			type = "";
3461
3462		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3463			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464			(u64)buffer_info->dma, buffer_info->skb, type);
3465	} /* for */
3466
3467	/* dump the descriptor caches */
3468	/* rx */
3469	pr_info("Rx descriptor cache in 64bit format\n");
3470	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472			i,
3473			readl(adapter->hw.hw_addr + i+4),
3474			readl(adapter->hw.hw_addr + i),
3475			readl(adapter->hw.hw_addr + i+12),
3476			readl(adapter->hw.hw_addr + i+8));
3477	}
3478	/* tx */
3479	pr_info("Tx descriptor cache in 64bit format\n");
3480	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482			i,
3483			readl(adapter->hw.hw_addr + i+4),
3484			readl(adapter->hw.hw_addr + i),
3485			readl(adapter->hw.hw_addr + i+12),
3486			readl(adapter->hw.hw_addr + i+8));
3487	}
3488exit:
3489	return;
3490}
3491
3492/**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
 
3495 **/
3496
3497static void e1000_tx_timeout(struct net_device *netdev)
3498{
3499	struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501	/* Do the reset outside of interrupt context */
3502	adapter->tx_timeout_count++;
3503	schedule_work(&adapter->reset_task);
3504}
3505
3506static void e1000_reset_task(struct work_struct *work)
3507{
3508	struct e1000_adapter *adapter =
3509		container_of(work, struct e1000_adapter, reset_task);
3510
3511	if (test_bit(__E1000_DOWN, &adapter->flags))
3512		return;
3513	e_err(drv, "Reset adapter\n");
3514	e1000_reinit_safe(adapter);
3515}
3516
3517/**
3518 * e1000_get_stats - Get System Network Statistics
3519 * @netdev: network interface device structure
3520 *
3521 * Returns the address of the device statistics structure.
3522 * The statistics are actually updated from the watchdog.
3523 **/
3524
3525static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3526{
3527	/* only return the current stats */
3528	return &netdev->stats;
3529}
3530
3531/**
3532 * e1000_change_mtu - Change the Maximum Transfer Unit
3533 * @netdev: network interface device structure
3534 * @new_mtu: new value for maximum frame size
3535 *
3536 * Returns 0 on success, negative on failure
3537 **/
3538
3539static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3540{
3541	struct e1000_adapter *adapter = netdev_priv(netdev);
3542	struct e1000_hw *hw = &adapter->hw;
3543	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3544
3545	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3546	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3547		e_err(probe, "Invalid MTU setting\n");
3548		return -EINVAL;
3549	}
3550
3551	/* Adapter-specific max frame size limits. */
3552	switch (hw->mac_type) {
3553	case e1000_undefined ... e1000_82542_rev2_1:
3554		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3555			e_err(probe, "Jumbo Frames not supported.\n");
3556			return -EINVAL;
3557		}
3558		break;
3559	default:
3560		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3561		break;
3562	}
3563
3564	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3565		msleep(1);
3566	/* e1000_down has a dependency on max_frame_size */
3567	hw->max_frame_size = max_frame;
3568	if (netif_running(netdev))
 
 
3569		e1000_down(adapter);
 
3570
3571	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3572	 * means we reserve 2 more, this pushes us to allocate from the next
3573	 * larger slab size.
3574	 * i.e. RXBUFFER_2048 --> size-4096 slab
3575	 *  however with the new *_jumbo_rx* routines, jumbo receives will use
3576	 *  fragmented skbs */
 
3577
3578	if (max_frame <= E1000_RXBUFFER_2048)
3579		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3580	else
3581#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3582		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3583#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3584		adapter->rx_buffer_len = PAGE_SIZE;
3585#endif
3586
3587	/* adjust allocation if LPE protects us, and we aren't using SBP */
3588	if (!hw->tbi_compatibility_on &&
3589	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3590	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3591		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3592
3593	pr_info("%s changing MTU from %d to %d\n",
3594		netdev->name, netdev->mtu, new_mtu);
3595	netdev->mtu = new_mtu;
3596
3597	if (netif_running(netdev))
3598		e1000_up(adapter);
3599	else
3600		e1000_reset(adapter);
3601
3602	clear_bit(__E1000_RESETTING, &adapter->flags);
3603
3604	return 0;
3605}
3606
3607/**
3608 * e1000_update_stats - Update the board statistics counters
3609 * @adapter: board private structure
3610 **/
3611
3612void e1000_update_stats(struct e1000_adapter *adapter)
3613{
3614	struct net_device *netdev = adapter->netdev;
3615	struct e1000_hw *hw = &adapter->hw;
3616	struct pci_dev *pdev = adapter->pdev;
3617	unsigned long flags;
3618	u16 phy_tmp;
3619
3620#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3621
3622	/*
3623	 * Prevent stats update while adapter is being reset, or if the pci
3624	 * connection is down.
3625	 */
3626	if (adapter->link_speed == 0)
3627		return;
3628	if (pci_channel_offline(pdev))
3629		return;
3630
3631	spin_lock_irqsave(&adapter->stats_lock, flags);
3632
3633	/* these counters are modified from e1000_tbi_adjust_stats,
3634	 * called from the interrupt context, so they must only
3635	 * be written while holding adapter->stats_lock
3636	 */
3637
3638	adapter->stats.crcerrs += er32(CRCERRS);
3639	adapter->stats.gprc += er32(GPRC);
3640	adapter->stats.gorcl += er32(GORCL);
3641	adapter->stats.gorch += er32(GORCH);
3642	adapter->stats.bprc += er32(BPRC);
3643	adapter->stats.mprc += er32(MPRC);
3644	adapter->stats.roc += er32(ROC);
3645
3646	adapter->stats.prc64 += er32(PRC64);
3647	adapter->stats.prc127 += er32(PRC127);
3648	adapter->stats.prc255 += er32(PRC255);
3649	adapter->stats.prc511 += er32(PRC511);
3650	adapter->stats.prc1023 += er32(PRC1023);
3651	adapter->stats.prc1522 += er32(PRC1522);
3652
3653	adapter->stats.symerrs += er32(SYMERRS);
3654	adapter->stats.mpc += er32(MPC);
3655	adapter->stats.scc += er32(SCC);
3656	adapter->stats.ecol += er32(ECOL);
3657	adapter->stats.mcc += er32(MCC);
3658	adapter->stats.latecol += er32(LATECOL);
3659	adapter->stats.dc += er32(DC);
3660	adapter->stats.sec += er32(SEC);
3661	adapter->stats.rlec += er32(RLEC);
3662	adapter->stats.xonrxc += er32(XONRXC);
3663	adapter->stats.xontxc += er32(XONTXC);
3664	adapter->stats.xoffrxc += er32(XOFFRXC);
3665	adapter->stats.xofftxc += er32(XOFFTXC);
3666	adapter->stats.fcruc += er32(FCRUC);
3667	adapter->stats.gptc += er32(GPTC);
3668	adapter->stats.gotcl += er32(GOTCL);
3669	adapter->stats.gotch += er32(GOTCH);
3670	adapter->stats.rnbc += er32(RNBC);
3671	adapter->stats.ruc += er32(RUC);
3672	adapter->stats.rfc += er32(RFC);
3673	adapter->stats.rjc += er32(RJC);
3674	adapter->stats.torl += er32(TORL);
3675	adapter->stats.torh += er32(TORH);
3676	adapter->stats.totl += er32(TOTL);
3677	adapter->stats.toth += er32(TOTH);
3678	adapter->stats.tpr += er32(TPR);
3679
3680	adapter->stats.ptc64 += er32(PTC64);
3681	adapter->stats.ptc127 += er32(PTC127);
3682	adapter->stats.ptc255 += er32(PTC255);
3683	adapter->stats.ptc511 += er32(PTC511);
3684	adapter->stats.ptc1023 += er32(PTC1023);
3685	adapter->stats.ptc1522 += er32(PTC1522);
3686
3687	adapter->stats.mptc += er32(MPTC);
3688	adapter->stats.bptc += er32(BPTC);
3689
3690	/* used for adaptive IFS */
3691
3692	hw->tx_packet_delta = er32(TPT);
3693	adapter->stats.tpt += hw->tx_packet_delta;
3694	hw->collision_delta = er32(COLC);
3695	adapter->stats.colc += hw->collision_delta;
3696
3697	if (hw->mac_type >= e1000_82543) {
3698		adapter->stats.algnerrc += er32(ALGNERRC);
3699		adapter->stats.rxerrc += er32(RXERRC);
3700		adapter->stats.tncrs += er32(TNCRS);
3701		adapter->stats.cexterr += er32(CEXTERR);
3702		adapter->stats.tsctc += er32(TSCTC);
3703		adapter->stats.tsctfc += er32(TSCTFC);
3704	}
3705
3706	/* Fill out the OS statistics structure */
3707	netdev->stats.multicast = adapter->stats.mprc;
3708	netdev->stats.collisions = adapter->stats.colc;
3709
3710	/* Rx Errors */
3711
3712	/* RLEC on some newer hardware can be incorrect so build
3713	* our own version based on RUC and ROC */
 
3714	netdev->stats.rx_errors = adapter->stats.rxerrc +
3715		adapter->stats.crcerrs + adapter->stats.algnerrc +
3716		adapter->stats.ruc + adapter->stats.roc +
3717		adapter->stats.cexterr;
3718	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3719	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3720	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3721	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3722	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3723
3724	/* Tx Errors */
3725	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3726	netdev->stats.tx_errors = adapter->stats.txerrc;
3727	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3728	netdev->stats.tx_window_errors = adapter->stats.latecol;
3729	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3730	if (hw->bad_tx_carr_stats_fd &&
3731	    adapter->link_duplex == FULL_DUPLEX) {
3732		netdev->stats.tx_carrier_errors = 0;
3733		adapter->stats.tncrs = 0;
3734	}
3735
3736	/* Tx Dropped needs to be maintained elsewhere */
3737
3738	/* Phy Stats */
3739	if (hw->media_type == e1000_media_type_copper) {
3740		if ((adapter->link_speed == SPEED_1000) &&
3741		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3742			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3743			adapter->phy_stats.idle_errors += phy_tmp;
3744		}
3745
3746		if ((hw->mac_type <= e1000_82546) &&
3747		   (hw->phy_type == e1000_phy_m88) &&
3748		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3749			adapter->phy_stats.receive_errors += phy_tmp;
3750	}
3751
3752	/* Management Stats */
3753	if (hw->has_smbus) {
3754		adapter->stats.mgptc += er32(MGTPTC);
3755		adapter->stats.mgprc += er32(MGTPRC);
3756		adapter->stats.mgpdc += er32(MGTPDC);
3757	}
3758
3759	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3760}
3761
3762/**
3763 * e1000_intr - Interrupt Handler
3764 * @irq: interrupt number
3765 * @data: pointer to a network interface device structure
3766 **/
3767
3768static irqreturn_t e1000_intr(int irq, void *data)
3769{
3770	struct net_device *netdev = data;
3771	struct e1000_adapter *adapter = netdev_priv(netdev);
3772	struct e1000_hw *hw = &adapter->hw;
3773	u32 icr = er32(ICR);
3774
3775	if (unlikely((!icr)))
3776		return IRQ_NONE;  /* Not our interrupt */
3777
3778	/*
3779	 * we might have caused the interrupt, but the above
3780	 * read cleared it, and just in case the driver is
3781	 * down there is nothing to do so return handled
3782	 */
3783	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3784		return IRQ_HANDLED;
3785
3786	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3787		hw->get_link_status = 1;
3788		/* guard against interrupt when we're going down */
3789		if (!test_bit(__E1000_DOWN, &adapter->flags))
3790			schedule_delayed_work(&adapter->watchdog_task, 1);
3791	}
3792
3793	/* disable interrupts, without the synchronize_irq bit */
3794	ew32(IMC, ~0);
3795	E1000_WRITE_FLUSH();
3796
3797	if (likely(napi_schedule_prep(&adapter->napi))) {
3798		adapter->total_tx_bytes = 0;
3799		adapter->total_tx_packets = 0;
3800		adapter->total_rx_bytes = 0;
3801		adapter->total_rx_packets = 0;
3802		__napi_schedule(&adapter->napi);
3803	} else {
3804		/* this really should not happen! if it does it is basically a
3805		 * bug, but not a hard error, so enable ints and continue */
 
3806		if (!test_bit(__E1000_DOWN, &adapter->flags))
3807			e1000_irq_enable(adapter);
3808	}
3809
3810	return IRQ_HANDLED;
3811}
3812
3813/**
3814 * e1000_clean - NAPI Rx polling callback
3815 * @adapter: board private structure
 
3816 **/
3817static int e1000_clean(struct napi_struct *napi, int budget)
3818{
3819	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
 
3820	int tx_clean_complete = 0, work_done = 0;
3821
3822	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3823
3824	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3825
3826	if (!tx_clean_complete)
3827		work_done = budget;
3828
3829	/* If budget not fully consumed, exit the polling mode */
3830	if (work_done < budget) {
 
 
3831		if (likely(adapter->itr_setting & 3))
3832			e1000_set_itr(adapter);
3833		napi_complete(napi);
3834		if (!test_bit(__E1000_DOWN, &adapter->flags))
3835			e1000_irq_enable(adapter);
3836	}
3837
3838	return work_done;
3839}
3840
3841/**
3842 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3843 * @adapter: board private structure
 
3844 **/
3845static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3846			       struct e1000_tx_ring *tx_ring)
3847{
3848	struct e1000_hw *hw = &adapter->hw;
3849	struct net_device *netdev = adapter->netdev;
3850	struct e1000_tx_desc *tx_desc, *eop_desc;
3851	struct e1000_buffer *buffer_info;
3852	unsigned int i, eop;
3853	unsigned int count = 0;
3854	unsigned int total_tx_bytes=0, total_tx_packets=0;
 
3855
3856	i = tx_ring->next_to_clean;
3857	eop = tx_ring->buffer_info[i].next_to_watch;
3858	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3859
3860	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3861	       (count < tx_ring->count)) {
3862		bool cleaned = false;
3863		rmb();	/* read buffer_info after eop_desc */
3864		for ( ; !cleaned; count++) {
3865			tx_desc = E1000_TX_DESC(*tx_ring, i);
3866			buffer_info = &tx_ring->buffer_info[i];
3867			cleaned = (i == eop);
3868
3869			if (cleaned) {
3870				total_tx_packets += buffer_info->segs;
3871				total_tx_bytes += buffer_info->bytecount;
 
 
 
 
 
3872			}
3873			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3874			tx_desc->upper.data = 0;
3875
3876			if (unlikely(++i == tx_ring->count)) i = 0;
 
3877		}
3878
3879		eop = tx_ring->buffer_info[i].next_to_watch;
3880		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3881	}
3882
3883	tx_ring->next_to_clean = i;
 
 
 
 
 
3884
3885#define TX_WAKE_THRESHOLD 32
3886	if (unlikely(count && netif_carrier_ok(netdev) &&
3887		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3888		/* Make sure that anybody stopping the queue after this
3889		 * sees the new next_to_clean.
3890		 */
3891		smp_mb();
3892
3893		if (netif_queue_stopped(netdev) &&
3894		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3895			netif_wake_queue(netdev);
3896			++adapter->restart_queue;
3897		}
3898	}
3899
3900	if (adapter->detect_tx_hung) {
3901		/* Detect a transmit hang in hardware, this serializes the
3902		 * check with the clearing of time_stamp and movement of i */
 
3903		adapter->detect_tx_hung = false;
3904		if (tx_ring->buffer_info[eop].time_stamp &&
3905		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3906		               (adapter->tx_timeout_factor * HZ)) &&
3907		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3908
3909			/* detected Tx unit hang */
3910			e_err(drv, "Detected Tx Unit Hang\n"
3911			      "  Tx Queue             <%lu>\n"
3912			      "  TDH                  <%x>\n"
3913			      "  TDT                  <%x>\n"
3914			      "  next_to_use          <%x>\n"
3915			      "  next_to_clean        <%x>\n"
3916			      "buffer_info[next_to_clean]\n"
3917			      "  time_stamp           <%lx>\n"
3918			      "  next_to_watch        <%x>\n"
3919			      "  jiffies              <%lx>\n"
3920			      "  next_to_watch.status <%x>\n",
3921				(unsigned long)((tx_ring - adapter->tx_ring) /
3922					sizeof(struct e1000_tx_ring)),
3923				readl(hw->hw_addr + tx_ring->tdh),
3924				readl(hw->hw_addr + tx_ring->tdt),
3925				tx_ring->next_to_use,
3926				tx_ring->next_to_clean,
3927				tx_ring->buffer_info[eop].time_stamp,
3928				eop,
3929				jiffies,
3930				eop_desc->upper.fields.status);
3931			e1000_dump(adapter);
3932			netif_stop_queue(netdev);
3933		}
3934	}
3935	adapter->total_tx_bytes += total_tx_bytes;
3936	adapter->total_tx_packets += total_tx_packets;
3937	netdev->stats.tx_bytes += total_tx_bytes;
3938	netdev->stats.tx_packets += total_tx_packets;
3939	return count < tx_ring->count;
3940}
3941
3942/**
3943 * e1000_rx_checksum - Receive Checksum Offload for 82543
3944 * @adapter:     board private structure
3945 * @status_err:  receive descriptor status and error fields
3946 * @csum:        receive descriptor csum field
3947 * @sk_buff:     socket buffer with received data
3948 **/
3949
3950static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3951			      u32 csum, struct sk_buff *skb)
3952{
3953	struct e1000_hw *hw = &adapter->hw;
3954	u16 status = (u16)status_err;
3955	u8 errors = (u8)(status_err >> 24);
3956
3957	skb_checksum_none_assert(skb);
3958
3959	/* 82543 or newer only */
3960	if (unlikely(hw->mac_type < e1000_82543)) return;
 
3961	/* Ignore Checksum bit is set */
3962	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
 
3963	/* TCP/UDP checksum error bit is set */
3964	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3965		/* let the stack verify checksum errors */
3966		adapter->hw_csum_err++;
3967		return;
3968	}
3969	/* TCP/UDP Checksum has not been calculated */
3970	if (!(status & E1000_RXD_STAT_TCPCS))
3971		return;
3972
3973	/* It must be a TCP or UDP packet with a valid checksum */
3974	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3975		/* TCP checksum is good */
3976		skb->ip_summed = CHECKSUM_UNNECESSARY;
3977	}
3978	adapter->hw_csum_good++;
3979}
3980
3981/**
3982 * e1000_consume_page - helper function
 
 
 
3983 **/
3984static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3985                               u16 length)
3986{
3987	bi->page = NULL;
3988	skb->len += length;
3989	skb->data_len += length;
3990	skb->truesize += PAGE_SIZE;
3991}
3992
3993/**
3994 * e1000_receive_skb - helper function to handle rx indications
3995 * @adapter: board private structure
3996 * @status: descriptor status field as written by hardware
3997 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3998 * @skb: pointer to sk_buff to be indicated to stack
3999 */
4000static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4001			      __le16 vlan, struct sk_buff *skb)
4002{
4003	skb->protocol = eth_type_trans(skb, adapter->netdev);
4004
4005	if (status & E1000_RXD_STAT_VP) {
4006		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4007
4008		__vlan_hwaccel_put_tag(skb, vid);
4009	}
4010	napi_gro_receive(&adapter->napi, skb);
4011}
4012
4013/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4014 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4015 * @adapter: board private structure
4016 * @rx_ring: ring to clean
4017 * @work_done: amount of napi work completed this call
4018 * @work_to_do: max amount of work allowed for this call to do
4019 *
4020 * the return value indicates whether actual cleaning was done, there
4021 * is no guarantee that everything was cleaned
4022 */
4023static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4024				     struct e1000_rx_ring *rx_ring,
4025				     int *work_done, int work_to_do)
4026{
4027	struct e1000_hw *hw = &adapter->hw;
4028	struct net_device *netdev = adapter->netdev;
4029	struct pci_dev *pdev = adapter->pdev;
4030	struct e1000_rx_desc *rx_desc, *next_rxd;
4031	struct e1000_buffer *buffer_info, *next_buffer;
4032	unsigned long irq_flags;
4033	u32 length;
4034	unsigned int i;
4035	int cleaned_count = 0;
4036	bool cleaned = false;
4037	unsigned int total_rx_bytes=0, total_rx_packets=0;
4038
4039	i = rx_ring->next_to_clean;
4040	rx_desc = E1000_RX_DESC(*rx_ring, i);
4041	buffer_info = &rx_ring->buffer_info[i];
4042
4043	while (rx_desc->status & E1000_RXD_STAT_DD) {
4044		struct sk_buff *skb;
4045		u8 status;
4046
4047		if (*work_done >= work_to_do)
4048			break;
4049		(*work_done)++;
4050		rmb(); /* read descriptor and rx_buffer_info after status DD */
4051
4052		status = rx_desc->status;
4053		skb = buffer_info->skb;
4054		buffer_info->skb = NULL;
4055
4056		if (++i == rx_ring->count) i = 0;
 
 
4057		next_rxd = E1000_RX_DESC(*rx_ring, i);
4058		prefetch(next_rxd);
4059
4060		next_buffer = &rx_ring->buffer_info[i];
4061
4062		cleaned = true;
4063		cleaned_count++;
4064		dma_unmap_page(&pdev->dev, buffer_info->dma,
4065			       buffer_info->length, DMA_FROM_DEVICE);
4066		buffer_info->dma = 0;
4067
4068		length = le16_to_cpu(rx_desc->length);
4069
4070		/* errors is only valid for DD + EOP descriptors */
4071		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4072		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4073			u8 *mapped;
4074			u8 last_byte;
4075
4076			mapped = page_address(buffer_info->page);
4077			last_byte = *(mapped + length - 1);
4078			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4079				       last_byte)) {
4080				spin_lock_irqsave(&adapter->stats_lock,
4081				                  irq_flags);
4082				e1000_tbi_adjust_stats(hw, &adapter->stats,
4083						       length, mapped);
4084				spin_unlock_irqrestore(&adapter->stats_lock,
4085				                       irq_flags);
4086				length--;
 
 
4087			} else {
4088				if (netdev->features & NETIF_F_RXALL)
4089					goto process_skb;
4090				/* recycle both page and skb */
4091				buffer_info->skb = skb;
4092				/* an error means any chain goes out the window
4093				 * too */
4094				if (rx_ring->rx_skb_top)
4095					dev_kfree_skb(rx_ring->rx_skb_top);
4096				rx_ring->rx_skb_top = NULL;
4097				goto next_desc;
4098			}
4099		}
4100
4101#define rxtop rx_ring->rx_skb_top
4102process_skb:
4103		if (!(status & E1000_RXD_STAT_EOP)) {
4104			/* this descriptor is only the beginning (or middle) */
4105			if (!rxtop) {
4106				/* this is the beginning of a chain */
4107				rxtop = skb;
4108				skb_fill_page_desc(rxtop, 0, buffer_info->page,
4109				                   0, length);
 
 
 
 
4110			} else {
4111				/* this is the middle of a chain */
4112				skb_fill_page_desc(rxtop,
4113				    skb_shinfo(rxtop)->nr_frags,
4114				    buffer_info->page, 0, length);
4115				/* re-use the skb, only consumed the page */
4116				buffer_info->skb = skb;
4117			}
4118			e1000_consume_page(buffer_info, rxtop, length);
4119			goto next_desc;
4120		} else {
4121			if (rxtop) {
4122				/* end of the chain */
4123				skb_fill_page_desc(rxtop,
4124				    skb_shinfo(rxtop)->nr_frags,
4125				    buffer_info->page, 0, length);
4126				/* re-use the current skb, we only consumed the
4127				 * page */
4128				buffer_info->skb = skb;
4129				skb = rxtop;
4130				rxtop = NULL;
4131				e1000_consume_page(buffer_info, skb, length);
4132			} else {
 
4133				/* no chain, got EOP, this buf is the packet
4134				 * copybreak to save the put_page/alloc_page */
4135				if (length <= copybreak &&
4136				    skb_tailroom(skb) >= length) {
 
4137					u8 *vaddr;
4138					vaddr = kmap_atomic(buffer_info->page);
4139					memcpy(skb_tail_pointer(skb), vaddr, length);
 
 
 
 
 
 
 
 
 
4140					kunmap_atomic(vaddr);
4141					/* re-use the page, so don't erase
4142					 * buffer_info->page */
 
4143					skb_put(skb, length);
 
 
 
 
 
 
 
 
 
 
4144				} else {
4145					skb_fill_page_desc(skb, 0,
4146					                   buffer_info->page, 0,
4147				                           length);
 
 
 
 
4148					e1000_consume_page(buffer_info, skb,
4149					                   length);
4150				}
4151			}
4152		}
4153
4154		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4155		e1000_rx_checksum(adapter,
4156		                  (u32)(status) |
4157		                  ((u32)(rx_desc->errors) << 24),
4158		                  le16_to_cpu(rx_desc->csum), skb);
4159
4160		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4161		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4162			pskb_trim(skb, skb->len - 4);
4163		total_rx_packets++;
4164
4165		/* eth type trans needs skb->data to point to something */
4166		if (!pskb_may_pull(skb, ETH_HLEN)) {
4167			e_err(drv, "pskb_may_pull failed.\n");
4168			dev_kfree_skb(skb);
4169			goto next_desc;
4170		}
4171
4172		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4173
4174next_desc:
4175		rx_desc->status = 0;
4176
4177		/* return some buffers to hardware, one at a time is too slow */
4178		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4179			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4180			cleaned_count = 0;
4181		}
4182
4183		/* use prefetched values */
4184		rx_desc = next_rxd;
4185		buffer_info = next_buffer;
4186	}
4187	rx_ring->next_to_clean = i;
4188
4189	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4190	if (cleaned_count)
4191		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4192
4193	adapter->total_rx_packets += total_rx_packets;
4194	adapter->total_rx_bytes += total_rx_bytes;
4195	netdev->stats.rx_bytes += total_rx_bytes;
4196	netdev->stats.rx_packets += total_rx_packets;
4197	return cleaned;
4198}
4199
4200/*
4201 * this should improve performance for small packets with large amounts
4202 * of reassembly being done in the stack
4203 */
4204static void e1000_check_copybreak(struct net_device *netdev,
4205				 struct e1000_buffer *buffer_info,
4206				 u32 length, struct sk_buff **skb)
4207{
4208	struct sk_buff *new_skb;
4209
4210	if (length > copybreak)
4211		return;
4212
4213	new_skb = netdev_alloc_skb_ip_align(netdev, length);
4214	if (!new_skb)
4215		return;
 
 
 
 
 
4216
4217	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4218				       (*skb)->data - NET_IP_ALIGN,
4219				       length + NET_IP_ALIGN);
4220	/* save the skb in buffer_info as good */
4221	buffer_info->skb = *skb;
4222	*skb = new_skb;
4223}
4224
4225/**
4226 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4227 * @adapter: board private structure
4228 * @rx_ring: ring to clean
4229 * @work_done: amount of napi work completed this call
4230 * @work_to_do: max amount of work allowed for this call to do
4231 */
4232static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4233			       struct e1000_rx_ring *rx_ring,
4234			       int *work_done, int work_to_do)
4235{
4236	struct e1000_hw *hw = &adapter->hw;
4237	struct net_device *netdev = adapter->netdev;
4238	struct pci_dev *pdev = adapter->pdev;
4239	struct e1000_rx_desc *rx_desc, *next_rxd;
4240	struct e1000_buffer *buffer_info, *next_buffer;
4241	unsigned long flags;
4242	u32 length;
4243	unsigned int i;
4244	int cleaned_count = 0;
4245	bool cleaned = false;
4246	unsigned int total_rx_bytes=0, total_rx_packets=0;
4247
4248	i = rx_ring->next_to_clean;
4249	rx_desc = E1000_RX_DESC(*rx_ring, i);
4250	buffer_info = &rx_ring->buffer_info[i];
4251
4252	while (rx_desc->status & E1000_RXD_STAT_DD) {
4253		struct sk_buff *skb;
 
4254		u8 status;
4255
4256		if (*work_done >= work_to_do)
4257			break;
4258		(*work_done)++;
4259		rmb(); /* read descriptor and rx_buffer_info after status DD */
4260
4261		status = rx_desc->status;
4262		skb = buffer_info->skb;
4263		buffer_info->skb = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4264
4265		prefetch(skb->data - NET_IP_ALIGN);
 
4266
4267		if (++i == rx_ring->count) i = 0;
4268		next_rxd = E1000_RX_DESC(*rx_ring, i);
4269		prefetch(next_rxd);
4270
4271		next_buffer = &rx_ring->buffer_info[i];
4272
4273		cleaned = true;
4274		cleaned_count++;
4275		dma_unmap_single(&pdev->dev, buffer_info->dma,
4276				 buffer_info->length, DMA_FROM_DEVICE);
4277		buffer_info->dma = 0;
4278
4279		length = le16_to_cpu(rx_desc->length);
4280		/* !EOP means multiple descriptors were used to store a single
4281		 * packet, if thats the case we need to toss it.  In fact, we
4282		 * to toss every packet with the EOP bit clear and the next
4283		 * frame that _does_ have the EOP bit set, as it is by
4284		 * definition only a frame fragment
4285		 */
4286		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4287			adapter->discarding = true;
4288
4289		if (adapter->discarding) {
4290			/* All receives must fit into a single buffer */
4291			e_dbg("Receive packet consumed multiple buffers\n");
4292			/* recycle */
4293			buffer_info->skb = skb;
4294			if (status & E1000_RXD_STAT_EOP)
4295				adapter->discarding = false;
4296			goto next_desc;
4297		}
4298
4299		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4300			u8 last_byte = *(skb->data + length - 1);
4301			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4302				       last_byte)) {
4303				spin_lock_irqsave(&adapter->stats_lock, flags);
4304				e1000_tbi_adjust_stats(hw, &adapter->stats,
4305				                       length, skb->data);
4306				spin_unlock_irqrestore(&adapter->stats_lock,
4307				                       flags);
4308				length--;
 
 
4309			} else {
4310				if (netdev->features & NETIF_F_RXALL)
4311					goto process_skb;
4312				/* recycle */
4313				buffer_info->skb = skb;
4314				goto next_desc;
4315			}
4316		}
4317
4318process_skb:
4319		total_rx_bytes += (length - 4); /* don't count FCS */
4320		total_rx_packets++;
4321
4322		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4323			/* adjust length to remove Ethernet CRC, this must be
4324			 * done after the TBI_ACCEPT workaround above
4325			 */
4326			length -= 4;
4327
4328		e1000_check_copybreak(netdev, buffer_info, length, &skb);
4329
4330		skb_put(skb, length);
 
4331
4332		/* Receive Checksum Offload */
4333		e1000_rx_checksum(adapter,
4334				  (u32)(status) |
4335				  ((u32)(rx_desc->errors) << 24),
4336				  le16_to_cpu(rx_desc->csum), skb);
4337
4338		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4339
4340next_desc:
4341		rx_desc->status = 0;
4342
4343		/* return some buffers to hardware, one at a time is too slow */
4344		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4345			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4346			cleaned_count = 0;
4347		}
4348
4349		/* use prefetched values */
4350		rx_desc = next_rxd;
4351		buffer_info = next_buffer;
4352	}
4353	rx_ring->next_to_clean = i;
4354
4355	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4356	if (cleaned_count)
4357		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4358
4359	adapter->total_rx_packets += total_rx_packets;
4360	adapter->total_rx_bytes += total_rx_bytes;
4361	netdev->stats.rx_bytes += total_rx_bytes;
4362	netdev->stats.rx_packets += total_rx_packets;
4363	return cleaned;
4364}
4365
4366/**
4367 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4368 * @adapter: address of board private structure
4369 * @rx_ring: pointer to receive ring structure
4370 * @cleaned_count: number of buffers to allocate this pass
4371 **/
4372
4373static void
4374e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4375                             struct e1000_rx_ring *rx_ring, int cleaned_count)
4376{
4377	struct net_device *netdev = adapter->netdev;
4378	struct pci_dev *pdev = adapter->pdev;
4379	struct e1000_rx_desc *rx_desc;
4380	struct e1000_buffer *buffer_info;
4381	struct sk_buff *skb;
4382	unsigned int i;
4383	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4384
4385	i = rx_ring->next_to_use;
4386	buffer_info = &rx_ring->buffer_info[i];
4387
4388	while (cleaned_count--) {
4389		skb = buffer_info->skb;
4390		if (skb) {
4391			skb_trim(skb, 0);
4392			goto check_page;
4393		}
4394
4395		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4396		if (unlikely(!skb)) {
4397			/* Better luck next round */
4398			adapter->alloc_rx_buff_failed++;
4399			break;
4400		}
4401
4402		buffer_info->skb = skb;
4403		buffer_info->length = adapter->rx_buffer_len;
4404check_page:
4405		/* allocate a new page if necessary */
4406		if (!buffer_info->page) {
4407			buffer_info->page = alloc_page(GFP_ATOMIC);
4408			if (unlikely(!buffer_info->page)) {
4409				adapter->alloc_rx_buff_failed++;
4410				break;
4411			}
4412		}
4413
4414		if (!buffer_info->dma) {
4415			buffer_info->dma = dma_map_page(&pdev->dev,
4416			                                buffer_info->page, 0,
4417							buffer_info->length,
4418							DMA_FROM_DEVICE);
4419			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4420				put_page(buffer_info->page);
4421				dev_kfree_skb(skb);
4422				buffer_info->page = NULL;
4423				buffer_info->skb = NULL;
4424				buffer_info->dma = 0;
4425				adapter->alloc_rx_buff_failed++;
4426				break; /* while !buffer_info->skb */
4427			}
4428		}
4429
4430		rx_desc = E1000_RX_DESC(*rx_ring, i);
4431		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4432
4433		if (unlikely(++i == rx_ring->count))
4434			i = 0;
4435		buffer_info = &rx_ring->buffer_info[i];
4436	}
4437
4438	if (likely(rx_ring->next_to_use != i)) {
4439		rx_ring->next_to_use = i;
4440		if (unlikely(i-- == 0))
4441			i = (rx_ring->count - 1);
4442
4443		/* Force memory writes to complete before letting h/w
4444		 * know there are new descriptors to fetch.  (Only
4445		 * applicable for weak-ordered memory model archs,
4446		 * such as IA-64). */
4447		wmb();
 
4448		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4449	}
4450}
4451
4452/**
4453 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4454 * @adapter: address of board private structure
 
 
4455 **/
4456
4457static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4458				   struct e1000_rx_ring *rx_ring,
4459				   int cleaned_count)
4460{
4461	struct e1000_hw *hw = &adapter->hw;
4462	struct net_device *netdev = adapter->netdev;
4463	struct pci_dev *pdev = adapter->pdev;
4464	struct e1000_rx_desc *rx_desc;
4465	struct e1000_buffer *buffer_info;
4466	struct sk_buff *skb;
4467	unsigned int i;
4468	unsigned int bufsz = adapter->rx_buffer_len;
4469
4470	i = rx_ring->next_to_use;
4471	buffer_info = &rx_ring->buffer_info[i];
4472
4473	while (cleaned_count--) {
4474		skb = buffer_info->skb;
4475		if (skb) {
4476			skb_trim(skb, 0);
4477			goto map_skb;
4478		}
4479
4480		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4481		if (unlikely(!skb)) {
 
 
 
4482			/* Better luck next round */
4483			adapter->alloc_rx_buff_failed++;
4484			break;
4485		}
4486
4487		/* Fix for errata 23, can't cross 64kB boundary */
4488		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4489			struct sk_buff *oldskb = skb;
4490			e_err(rx_err, "skb align check failed: %u bytes at "
4491			      "%p\n", bufsz, skb->data);
4492			/* Try again, without freeing the previous */
4493			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4494			/* Failed allocation, critical failure */
4495			if (!skb) {
4496				dev_kfree_skb(oldskb);
4497				adapter->alloc_rx_buff_failed++;
4498				break;
4499			}
4500
4501			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4502				/* give up */
4503				dev_kfree_skb(skb);
4504				dev_kfree_skb(oldskb);
4505				adapter->alloc_rx_buff_failed++;
4506				break; /* while !buffer_info->skb */
4507			}
4508
4509			/* Use new allocation */
4510			dev_kfree_skb(oldskb);
4511		}
4512		buffer_info->skb = skb;
4513		buffer_info->length = adapter->rx_buffer_len;
4514map_skb:
4515		buffer_info->dma = dma_map_single(&pdev->dev,
4516						  skb->data,
4517						  buffer_info->length,
4518						  DMA_FROM_DEVICE);
4519		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4520			dev_kfree_skb(skb);
4521			buffer_info->skb = NULL;
4522			buffer_info->dma = 0;
4523			adapter->alloc_rx_buff_failed++;
4524			break; /* while !buffer_info->skb */
4525		}
4526
4527		/*
4528		 * XXX if it was allocated cleanly it will never map to a
4529		 * boundary crossing
4530		 */
4531
4532		/* Fix for errata 23, can't cross 64kB boundary */
4533		if (!e1000_check_64k_bound(adapter,
4534					(void *)(unsigned long)buffer_info->dma,
4535					adapter->rx_buffer_len)) {
4536			e_err(rx_err, "dma align check failed: %u bytes at "
4537			      "%p\n", adapter->rx_buffer_len,
4538			      (void *)(unsigned long)buffer_info->dma);
4539			dev_kfree_skb(skb);
4540			buffer_info->skb = NULL;
4541
4542			dma_unmap_single(&pdev->dev, buffer_info->dma,
4543					 adapter->rx_buffer_len,
4544					 DMA_FROM_DEVICE);
 
 
 
4545			buffer_info->dma = 0;
4546
4547			adapter->alloc_rx_buff_failed++;
4548			break; /* while !buffer_info->skb */
4549		}
 
 
4550		rx_desc = E1000_RX_DESC(*rx_ring, i);
4551		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4552
4553		if (unlikely(++i == rx_ring->count))
4554			i = 0;
4555		buffer_info = &rx_ring->buffer_info[i];
4556	}
4557
4558	if (likely(rx_ring->next_to_use != i)) {
4559		rx_ring->next_to_use = i;
4560		if (unlikely(i-- == 0))
4561			i = (rx_ring->count - 1);
4562
4563		/* Force memory writes to complete before letting h/w
4564		 * know there are new descriptors to fetch.  (Only
4565		 * applicable for weak-ordered memory model archs,
4566		 * such as IA-64). */
4567		wmb();
 
4568		writel(i, hw->hw_addr + rx_ring->rdt);
4569	}
4570}
4571
4572/**
4573 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4574 * @adapter:
4575 **/
4576
4577static void e1000_smartspeed(struct e1000_adapter *adapter)
4578{
4579	struct e1000_hw *hw = &adapter->hw;
4580	u16 phy_status;
4581	u16 phy_ctrl;
4582
4583	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4584	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4585		return;
4586
4587	if (adapter->smartspeed == 0) {
4588		/* If Master/Slave config fault is asserted twice,
4589		 * we assume back-to-back */
 
4590		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4591		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
 
4592		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4593		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
 
4594		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4595		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4596			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4597			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4598					    phy_ctrl);
4599			adapter->smartspeed++;
4600			if (!e1000_phy_setup_autoneg(hw) &&
4601			   !e1000_read_phy_reg(hw, PHY_CTRL,
4602				   	       &phy_ctrl)) {
4603				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4604					     MII_CR_RESTART_AUTO_NEG);
4605				e1000_write_phy_reg(hw, PHY_CTRL,
4606						    phy_ctrl);
4607			}
4608		}
4609		return;
4610	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4611		/* If still no link, perhaps using 2/3 pair cable */
4612		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4613		phy_ctrl |= CR_1000T_MS_ENABLE;
4614		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4615		if (!e1000_phy_setup_autoneg(hw) &&
4616		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4617			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4618				     MII_CR_RESTART_AUTO_NEG);
4619			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4620		}
4621	}
4622	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4623	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4624		adapter->smartspeed = 0;
4625}
4626
4627/**
4628 * e1000_ioctl -
4629 * @netdev:
4630 * @ifreq:
4631 * @cmd:
4632 **/
4633
4634static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4635{
4636	switch (cmd) {
4637	case SIOCGMIIPHY:
4638	case SIOCGMIIREG:
4639	case SIOCSMIIREG:
4640		return e1000_mii_ioctl(netdev, ifr, cmd);
4641	default:
4642		return -EOPNOTSUPP;
4643	}
4644}
4645
4646/**
4647 * e1000_mii_ioctl -
4648 * @netdev:
4649 * @ifreq:
4650 * @cmd:
4651 **/
4652
4653static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4654			   int cmd)
4655{
4656	struct e1000_adapter *adapter = netdev_priv(netdev);
4657	struct e1000_hw *hw = &adapter->hw;
4658	struct mii_ioctl_data *data = if_mii(ifr);
4659	int retval;
4660	u16 mii_reg;
4661	unsigned long flags;
4662
4663	if (hw->media_type != e1000_media_type_copper)
4664		return -EOPNOTSUPP;
4665
4666	switch (cmd) {
4667	case SIOCGMIIPHY:
4668		data->phy_id = hw->phy_addr;
4669		break;
4670	case SIOCGMIIREG:
4671		spin_lock_irqsave(&adapter->stats_lock, flags);
4672		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4673				   &data->val_out)) {
4674			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4675			return -EIO;
4676		}
4677		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4678		break;
4679	case SIOCSMIIREG:
4680		if (data->reg_num & ~(0x1F))
4681			return -EFAULT;
4682		mii_reg = data->val_in;
4683		spin_lock_irqsave(&adapter->stats_lock, flags);
4684		if (e1000_write_phy_reg(hw, data->reg_num,
4685					mii_reg)) {
4686			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4687			return -EIO;
4688		}
4689		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4690		if (hw->media_type == e1000_media_type_copper) {
4691			switch (data->reg_num) {
4692			case PHY_CTRL:
4693				if (mii_reg & MII_CR_POWER_DOWN)
4694					break;
4695				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4696					hw->autoneg = 1;
4697					hw->autoneg_advertised = 0x2F;
4698				} else {
4699					u32 speed;
4700					if (mii_reg & 0x40)
4701						speed = SPEED_1000;
4702					else if (mii_reg & 0x2000)
4703						speed = SPEED_100;
4704					else
4705						speed = SPEED_10;
4706					retval = e1000_set_spd_dplx(
4707						adapter, speed,
4708						((mii_reg & 0x100)
4709						 ? DUPLEX_FULL :
4710						 DUPLEX_HALF));
4711					if (retval)
4712						return retval;
4713				}
4714				if (netif_running(adapter->netdev))
4715					e1000_reinit_locked(adapter);
4716				else
4717					e1000_reset(adapter);
4718				break;
4719			case M88E1000_PHY_SPEC_CTRL:
4720			case M88E1000_EXT_PHY_SPEC_CTRL:
4721				if (e1000_phy_reset(hw))
4722					return -EIO;
4723				break;
4724			}
4725		} else {
4726			switch (data->reg_num) {
4727			case PHY_CTRL:
4728				if (mii_reg & MII_CR_POWER_DOWN)
4729					break;
4730				if (netif_running(adapter->netdev))
4731					e1000_reinit_locked(adapter);
4732				else
4733					e1000_reset(adapter);
4734				break;
4735			}
4736		}
4737		break;
4738	default:
4739		return -EOPNOTSUPP;
4740	}
4741	return E1000_SUCCESS;
4742}
4743
4744void e1000_pci_set_mwi(struct e1000_hw *hw)
4745{
4746	struct e1000_adapter *adapter = hw->back;
4747	int ret_val = pci_set_mwi(adapter->pdev);
4748
4749	if (ret_val)
4750		e_err(probe, "Error in setting MWI\n");
4751}
4752
4753void e1000_pci_clear_mwi(struct e1000_hw *hw)
4754{
4755	struct e1000_adapter *adapter = hw->back;
4756
4757	pci_clear_mwi(adapter->pdev);
4758}
4759
4760int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4761{
4762	struct e1000_adapter *adapter = hw->back;
4763	return pcix_get_mmrbc(adapter->pdev);
4764}
4765
4766void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4767{
4768	struct e1000_adapter *adapter = hw->back;
4769	pcix_set_mmrbc(adapter->pdev, mmrbc);
4770}
4771
4772void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4773{
4774	outl(value, port);
4775}
4776
4777static bool e1000_vlan_used(struct e1000_adapter *adapter)
4778{
4779	u16 vid;
4780
4781	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4782		return true;
4783	return false;
4784}
4785
4786static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4787			      netdev_features_t features)
4788{
4789	struct e1000_hw *hw = &adapter->hw;
4790	u32 ctrl;
4791
4792	ctrl = er32(CTRL);
4793	if (features & NETIF_F_HW_VLAN_RX) {
4794		/* enable VLAN tag insert/strip */
4795		ctrl |= E1000_CTRL_VME;
4796	} else {
4797		/* disable VLAN tag insert/strip */
4798		ctrl &= ~E1000_CTRL_VME;
4799	}
4800	ew32(CTRL, ctrl);
4801}
4802static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4803				     bool filter_on)
4804{
4805	struct e1000_hw *hw = &adapter->hw;
4806	u32 rctl;
4807
4808	if (!test_bit(__E1000_DOWN, &adapter->flags))
4809		e1000_irq_disable(adapter);
4810
4811	__e1000_vlan_mode(adapter, adapter->netdev->features);
4812	if (filter_on) {
4813		/* enable VLAN receive filtering */
4814		rctl = er32(RCTL);
4815		rctl &= ~E1000_RCTL_CFIEN;
4816		if (!(adapter->netdev->flags & IFF_PROMISC))
4817			rctl |= E1000_RCTL_VFE;
4818		ew32(RCTL, rctl);
4819		e1000_update_mng_vlan(adapter);
4820	} else {
4821		/* disable VLAN receive filtering */
4822		rctl = er32(RCTL);
4823		rctl &= ~E1000_RCTL_VFE;
4824		ew32(RCTL, rctl);
4825	}
4826
4827	if (!test_bit(__E1000_DOWN, &adapter->flags))
4828		e1000_irq_enable(adapter);
4829}
4830
4831static void e1000_vlan_mode(struct net_device *netdev,
4832			    netdev_features_t features)
4833{
4834	struct e1000_adapter *adapter = netdev_priv(netdev);
4835
4836	if (!test_bit(__E1000_DOWN, &adapter->flags))
4837		e1000_irq_disable(adapter);
4838
4839	__e1000_vlan_mode(adapter, features);
4840
4841	if (!test_bit(__E1000_DOWN, &adapter->flags))
4842		e1000_irq_enable(adapter);
4843}
4844
4845static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
 
4846{
4847	struct e1000_adapter *adapter = netdev_priv(netdev);
4848	struct e1000_hw *hw = &adapter->hw;
4849	u32 vfta, index;
4850
4851	if ((hw->mng_cookie.status &
4852	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4853	    (vid == adapter->mng_vlan_id))
4854		return 0;
4855
4856	if (!e1000_vlan_used(adapter))
4857		e1000_vlan_filter_on_off(adapter, true);
4858
4859	/* add VID to filter table */
4860	index = (vid >> 5) & 0x7F;
4861	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4862	vfta |= (1 << (vid & 0x1F));
4863	e1000_write_vfta(hw, index, vfta);
4864
4865	set_bit(vid, adapter->active_vlans);
4866
4867	return 0;
4868}
4869
4870static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
 
4871{
4872	struct e1000_adapter *adapter = netdev_priv(netdev);
4873	struct e1000_hw *hw = &adapter->hw;
4874	u32 vfta, index;
4875
4876	if (!test_bit(__E1000_DOWN, &adapter->flags))
4877		e1000_irq_disable(adapter);
4878	if (!test_bit(__E1000_DOWN, &adapter->flags))
4879		e1000_irq_enable(adapter);
4880
4881	/* remove VID from filter table */
4882	index = (vid >> 5) & 0x7F;
4883	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4884	vfta &= ~(1 << (vid & 0x1F));
4885	e1000_write_vfta(hw, index, vfta);
4886
4887	clear_bit(vid, adapter->active_vlans);
4888
4889	if (!e1000_vlan_used(adapter))
4890		e1000_vlan_filter_on_off(adapter, false);
4891
4892	return 0;
4893}
4894
4895static void e1000_restore_vlan(struct e1000_adapter *adapter)
4896{
4897	u16 vid;
4898
4899	if (!e1000_vlan_used(adapter))
4900		return;
4901
4902	e1000_vlan_filter_on_off(adapter, true);
4903	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4904		e1000_vlan_rx_add_vid(adapter->netdev, vid);
4905}
4906
4907int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4908{
4909	struct e1000_hw *hw = &adapter->hw;
4910
4911	hw->autoneg = 0;
4912
4913	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4914	 * for the switch() below to work */
 
4915	if ((spd & 1) || (dplx & ~1))
4916		goto err_inval;
4917
4918	/* Fiber NICs only allow 1000 gbps Full duplex */
4919	if ((hw->media_type == e1000_media_type_fiber) &&
4920	    spd != SPEED_1000 &&
4921	    dplx != DUPLEX_FULL)
4922		goto err_inval;
4923
4924	switch (spd + dplx) {
4925	case SPEED_10 + DUPLEX_HALF:
4926		hw->forced_speed_duplex = e1000_10_half;
4927		break;
4928	case SPEED_10 + DUPLEX_FULL:
4929		hw->forced_speed_duplex = e1000_10_full;
4930		break;
4931	case SPEED_100 + DUPLEX_HALF:
4932		hw->forced_speed_duplex = e1000_100_half;
4933		break;
4934	case SPEED_100 + DUPLEX_FULL:
4935		hw->forced_speed_duplex = e1000_100_full;
4936		break;
4937	case SPEED_1000 + DUPLEX_FULL:
4938		hw->autoneg = 1;
4939		hw->autoneg_advertised = ADVERTISE_1000_FULL;
4940		break;
4941	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4942	default:
4943		goto err_inval;
4944	}
 
 
 
 
4945	return 0;
4946
4947err_inval:
4948	e_err(probe, "Unsupported Speed/Duplex configuration\n");
4949	return -EINVAL;
4950}
4951
4952static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4953{
4954	struct net_device *netdev = pci_get_drvdata(pdev);
4955	struct e1000_adapter *adapter = netdev_priv(netdev);
4956	struct e1000_hw *hw = &adapter->hw;
4957	u32 ctrl, ctrl_ext, rctl, status;
4958	u32 wufc = adapter->wol;
4959#ifdef CONFIG_PM
4960	int retval = 0;
4961#endif
4962
4963	netif_device_detach(netdev);
4964
4965	if (netif_running(netdev)) {
 
 
 
 
 
4966		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4967		e1000_down(adapter);
4968	}
4969
4970#ifdef CONFIG_PM
4971	retval = pci_save_state(pdev);
4972	if (retval)
4973		return retval;
4974#endif
4975
4976	status = er32(STATUS);
4977	if (status & E1000_STATUS_LU)
4978		wufc &= ~E1000_WUFC_LNKC;
4979
4980	if (wufc) {
4981		e1000_setup_rctl(adapter);
4982		e1000_set_rx_mode(netdev);
4983
4984		rctl = er32(RCTL);
4985
4986		/* turn on all-multi mode if wake on multicast is enabled */
4987		if (wufc & E1000_WUFC_MC)
4988			rctl |= E1000_RCTL_MPE;
4989
4990		/* enable receives in the hardware */
4991		ew32(RCTL, rctl | E1000_RCTL_EN);
4992
4993		if (hw->mac_type >= e1000_82540) {
4994			ctrl = er32(CTRL);
4995			/* advertise wake from D3Cold */
4996			#define E1000_CTRL_ADVD3WUC 0x00100000
4997			/* phy power management enable */
4998			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4999			ctrl |= E1000_CTRL_ADVD3WUC |
5000				E1000_CTRL_EN_PHY_PWR_MGMT;
5001			ew32(CTRL, ctrl);
5002		}
5003
5004		if (hw->media_type == e1000_media_type_fiber ||
5005		    hw->media_type == e1000_media_type_internal_serdes) {
5006			/* keep the laser running in D3 */
5007			ctrl_ext = er32(CTRL_EXT);
5008			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5009			ew32(CTRL_EXT, ctrl_ext);
5010		}
5011
5012		ew32(WUC, E1000_WUC_PME_EN);
5013		ew32(WUFC, wufc);
5014	} else {
5015		ew32(WUC, 0);
5016		ew32(WUFC, 0);
5017	}
5018
5019	e1000_release_manageability(adapter);
5020
5021	*enable_wake = !!wufc;
5022
5023	/* make sure adapter isn't asleep if manageability is enabled */
5024	if (adapter->en_mng_pt)
5025		*enable_wake = true;
5026
5027	if (netif_running(netdev))
5028		e1000_free_irq(adapter);
5029
5030	pci_disable_device(pdev);
 
5031
5032	return 0;
5033}
5034
5035#ifdef CONFIG_PM
5036static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5037{
5038	int retval;
 
5039	bool wake;
5040
5041	retval = __e1000_shutdown(pdev, &wake);
5042	if (retval)
5043		return retval;
5044
5045	if (wake) {
5046		pci_prepare_to_sleep(pdev);
5047	} else {
5048		pci_wake_from_d3(pdev, false);
5049		pci_set_power_state(pdev, PCI_D3hot);
5050	}
5051
5052	return 0;
5053}
5054
5055static int e1000_resume(struct pci_dev *pdev)
5056{
 
5057	struct net_device *netdev = pci_get_drvdata(pdev);
5058	struct e1000_adapter *adapter = netdev_priv(netdev);
5059	struct e1000_hw *hw = &adapter->hw;
5060	u32 err;
5061
5062	pci_set_power_state(pdev, PCI_D0);
5063	pci_restore_state(pdev);
5064	pci_save_state(pdev);
5065
5066	if (adapter->need_ioport)
5067		err = pci_enable_device(pdev);
5068	else
5069		err = pci_enable_device_mem(pdev);
5070	if (err) {
5071		pr_err("Cannot enable PCI device from suspend\n");
5072		return err;
5073	}
 
 
 
 
5074	pci_set_master(pdev);
5075
5076	pci_enable_wake(pdev, PCI_D3hot, 0);
5077	pci_enable_wake(pdev, PCI_D3cold, 0);
5078
5079	if (netif_running(netdev)) {
5080		err = e1000_request_irq(adapter);
5081		if (err)
5082			return err;
5083	}
5084
5085	e1000_power_up_phy(adapter);
5086	e1000_reset(adapter);
5087	ew32(WUS, ~0);
5088
5089	e1000_init_manageability(adapter);
5090
5091	if (netif_running(netdev))
5092		e1000_up(adapter);
5093
5094	netif_device_attach(netdev);
5095
5096	return 0;
5097}
5098#endif
5099
5100static void e1000_shutdown(struct pci_dev *pdev)
5101{
5102	bool wake;
5103
5104	__e1000_shutdown(pdev, &wake);
5105
5106	if (system_state == SYSTEM_POWER_OFF) {
5107		pci_wake_from_d3(pdev, wake);
5108		pci_set_power_state(pdev, PCI_D3hot);
5109	}
5110}
5111
5112#ifdef CONFIG_NET_POLL_CONTROLLER
5113/*
5114 * Polling 'interrupt' - used by things like netconsole to send skbs
5115 * without having to re-enable interrupts. It's not called while
5116 * the interrupt routine is executing.
5117 */
5118static void e1000_netpoll(struct net_device *netdev)
5119{
5120	struct e1000_adapter *adapter = netdev_priv(netdev);
5121
5122	disable_irq(adapter->pdev->irq);
5123	e1000_intr(adapter->pdev->irq, netdev);
5124	enable_irq(adapter->pdev->irq);
5125}
5126#endif
5127
5128/**
5129 * e1000_io_error_detected - called when PCI error is detected
5130 * @pdev: Pointer to PCI device
5131 * @state: The current pci connection state
5132 *
5133 * This function is called after a PCI bus error affecting
5134 * this device has been detected.
5135 */
5136static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5137						pci_channel_state_t state)
5138{
5139	struct net_device *netdev = pci_get_drvdata(pdev);
5140	struct e1000_adapter *adapter = netdev_priv(netdev);
5141
5142	netif_device_detach(netdev);
5143
5144	if (state == pci_channel_io_perm_failure)
5145		return PCI_ERS_RESULT_DISCONNECT;
5146
5147	if (netif_running(netdev))
5148		e1000_down(adapter);
5149	pci_disable_device(pdev);
5150
5151	/* Request a slot slot reset. */
 
 
 
5152	return PCI_ERS_RESULT_NEED_RESET;
5153}
5154
5155/**
5156 * e1000_io_slot_reset - called after the pci bus has been reset.
5157 * @pdev: Pointer to PCI device
5158 *
5159 * Restart the card from scratch, as if from a cold-boot. Implementation
5160 * resembles the first-half of the e1000_resume routine.
5161 */
5162static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5163{
5164	struct net_device *netdev = pci_get_drvdata(pdev);
5165	struct e1000_adapter *adapter = netdev_priv(netdev);
5166	struct e1000_hw *hw = &adapter->hw;
5167	int err;
5168
5169	if (adapter->need_ioport)
5170		err = pci_enable_device(pdev);
5171	else
5172		err = pci_enable_device_mem(pdev);
5173	if (err) {
5174		pr_err("Cannot re-enable PCI device after reset.\n");
5175		return PCI_ERS_RESULT_DISCONNECT;
5176	}
 
 
 
 
5177	pci_set_master(pdev);
5178
5179	pci_enable_wake(pdev, PCI_D3hot, 0);
5180	pci_enable_wake(pdev, PCI_D3cold, 0);
5181
5182	e1000_reset(adapter);
5183	ew32(WUS, ~0);
5184
5185	return PCI_ERS_RESULT_RECOVERED;
5186}
5187
5188/**
5189 * e1000_io_resume - called when traffic can start flowing again.
5190 * @pdev: Pointer to PCI device
5191 *
5192 * This callback is called when the error recovery driver tells us that
5193 * its OK to resume normal operation. Implementation resembles the
5194 * second-half of the e1000_resume routine.
5195 */
5196static void e1000_io_resume(struct pci_dev *pdev)
5197{
5198	struct net_device *netdev = pci_get_drvdata(pdev);
5199	struct e1000_adapter *adapter = netdev_priv(netdev);
5200
5201	e1000_init_manageability(adapter);
5202
5203	if (netif_running(netdev)) {
5204		if (e1000_up(adapter)) {
5205			pr_info("can't bring device back up after reset\n");
5206			return;
5207		}
5208	}
5209
5210	netif_device_attach(netdev);
5211}
5212
5213/* e1000_main.c */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "e1000.h"
   5#include <net/ip6_checksum.h>
   6#include <linux/io.h>
   7#include <linux/prefetch.h>
   8#include <linux/bitops.h>
   9#include <linux/if_vlan.h>
  10
  11char e1000_driver_name[] = "e1000";
  12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
 
 
  13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  14
  15/* e1000_pci_tbl - PCI Device ID Table
  16 *
  17 * Last entry must be all 0s
  18 *
  19 * Macro expands to...
  20 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  21 */
  22static const struct pci_device_id e1000_pci_tbl[] = {
  23	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  24	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  25	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  26	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  27	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  28	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  29	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  30	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  31	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  32	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  33	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  34	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  35	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  36	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  37	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  38	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  39	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  40	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  41	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  42	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  43	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  44	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  45	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  46	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  47	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  48	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  49	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  50	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  53	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  54	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  55	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  57	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  58	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  59	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  60	/* required last entry */
  61	{0,}
  62};
  63
  64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  65
  66int e1000_up(struct e1000_adapter *adapter);
  67void e1000_down(struct e1000_adapter *adapter);
  68void e1000_reinit_locked(struct e1000_adapter *adapter);
  69void e1000_reset(struct e1000_adapter *adapter);
  70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  75				    struct e1000_tx_ring *txdr);
  76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  77				    struct e1000_rx_ring *rxdr);
  78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  79				    struct e1000_tx_ring *tx_ring);
  80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  81				    struct e1000_rx_ring *rx_ring);
  82void e1000_update_stats(struct e1000_adapter *adapter);
  83
  84static int e1000_init_module(void);
  85static void e1000_exit_module(void);
  86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  87static void e1000_remove(struct pci_dev *pdev);
  88static int e1000_alloc_queues(struct e1000_adapter *adapter);
  89static int e1000_sw_init(struct e1000_adapter *adapter);
  90int e1000_open(struct net_device *netdev);
  91int e1000_close(struct net_device *netdev);
  92static void e1000_configure_tx(struct e1000_adapter *adapter);
  93static void e1000_configure_rx(struct e1000_adapter *adapter);
  94static void e1000_setup_rctl(struct e1000_adapter *adapter);
  95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  98				struct e1000_tx_ring *tx_ring);
  99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 100				struct e1000_rx_ring *rx_ring);
 101static void e1000_set_rx_mode(struct net_device *netdev);
 102static void e1000_update_phy_info_task(struct work_struct *work);
 103static void e1000_watchdog(struct work_struct *work);
 104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 106				    struct net_device *netdev);
 
 107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 108static int e1000_set_mac(struct net_device *netdev, void *p);
 109static irqreturn_t e1000_intr(int irq, void *data);
 110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 111			       struct e1000_tx_ring *tx_ring);
 112static int e1000_clean(struct napi_struct *napi, int budget);
 113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 114			       struct e1000_rx_ring *rx_ring,
 115			       int *work_done, int work_to_do);
 116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 117				     struct e1000_rx_ring *rx_ring,
 118				     int *work_done, int work_to_do);
 119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 120					 struct e1000_rx_ring *rx_ring,
 121					 int cleaned_count)
 122{
 123}
 124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 125				   struct e1000_rx_ring *rx_ring,
 126				   int cleaned_count);
 127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 128					 struct e1000_rx_ring *rx_ring,
 129					 int cleaned_count);
 130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 132			   int cmd);
 133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
 136static void e1000_reset_task(struct work_struct *work);
 137static void e1000_smartspeed(struct e1000_adapter *adapter);
 138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 139				       struct sk_buff *skb);
 140
 141static bool e1000_vlan_used(struct e1000_adapter *adapter);
 142static void e1000_vlan_mode(struct net_device *netdev,
 143			    netdev_features_t features);
 144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 145				     bool filter_on);
 146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 147				 __be16 proto, u16 vid);
 148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 149				  __be16 proto, u16 vid);
 150static void e1000_restore_vlan(struct e1000_adapter *adapter);
 151
 152static int __maybe_unused e1000_suspend(struct device *dev);
 153static int __maybe_unused e1000_resume(struct device *dev);
 
 
 154static void e1000_shutdown(struct pci_dev *pdev);
 155
 156#ifdef CONFIG_NET_POLL_CONTROLLER
 157/* for netdump / net console */
 158static void e1000_netpoll (struct net_device *netdev);
 159#endif
 160
 161#define COPYBREAK_DEFAULT 256
 162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 163module_param(copybreak, uint, 0644);
 164MODULE_PARM_DESC(copybreak,
 165	"Maximum size of packet that is copied to a new buffer on receive");
 166
 167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 168						pci_channel_state_t state);
 169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 170static void e1000_io_resume(struct pci_dev *pdev);
 171
 172static const struct pci_error_handlers e1000_err_handler = {
 173	.error_detected = e1000_io_error_detected,
 174	.slot_reset = e1000_io_slot_reset,
 175	.resume = e1000_io_resume,
 176};
 177
 178static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
 179
 180static struct pci_driver e1000_driver = {
 181	.name     = e1000_driver_name,
 182	.id_table = e1000_pci_tbl,
 183	.probe    = e1000_probe,
 184	.remove   = e1000_remove,
 185	.driver = {
 186		.pm = &e1000_pm_ops,
 187	},
 
 
 188	.shutdown = e1000_shutdown,
 189	.err_handler = &e1000_err_handler
 190};
 191
 192MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 193MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 194MODULE_LICENSE("GPL v2");
 
 195
 196#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 197static int debug = -1;
 198module_param(debug, int, 0);
 199MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 200
 201/**
 202 * e1000_get_hw_dev - helper function for getting netdev
 203 * @hw: pointer to HW struct
 204 *
 205 * return device used by hardware layer to print debugging information
 206 *
 207 **/
 208struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 209{
 210	struct e1000_adapter *adapter = hw->back;
 211	return adapter->netdev;
 212}
 213
 214/**
 215 * e1000_init_module - Driver Registration Routine
 216 *
 217 * e1000_init_module is the first routine called when the driver is
 218 * loaded. All it does is register with the PCI subsystem.
 219 **/
 
 220static int __init e1000_init_module(void)
 221{
 222	int ret;
 223	pr_info("%s\n", e1000_driver_string);
 224
 225	pr_info("%s\n", e1000_copyright);
 226
 227	ret = pci_register_driver(&e1000_driver);
 228	if (copybreak != COPYBREAK_DEFAULT) {
 229		if (copybreak == 0)
 230			pr_info("copybreak disabled\n");
 231		else
 232			pr_info("copybreak enabled for "
 233				   "packets <= %u bytes\n", copybreak);
 234	}
 235	return ret;
 236}
 237
 238module_init(e1000_init_module);
 239
 240/**
 241 * e1000_exit_module - Driver Exit Cleanup Routine
 242 *
 243 * e1000_exit_module is called just before the driver is removed
 244 * from memory.
 245 **/
 
 246static void __exit e1000_exit_module(void)
 247{
 248	pci_unregister_driver(&e1000_driver);
 249}
 250
 251module_exit(e1000_exit_module);
 252
 253static int e1000_request_irq(struct e1000_adapter *adapter)
 254{
 255	struct net_device *netdev = adapter->netdev;
 256	irq_handler_t handler = e1000_intr;
 257	int irq_flags = IRQF_SHARED;
 258	int err;
 259
 260	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 261			  netdev);
 262	if (err) {
 263		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 264	}
 265
 266	return err;
 267}
 268
 269static void e1000_free_irq(struct e1000_adapter *adapter)
 270{
 271	struct net_device *netdev = adapter->netdev;
 272
 273	free_irq(adapter->pdev->irq, netdev);
 274}
 275
 276/**
 277 * e1000_irq_disable - Mask off interrupt generation on the NIC
 278 * @adapter: board private structure
 279 **/
 
 280static void e1000_irq_disable(struct e1000_adapter *adapter)
 281{
 282	struct e1000_hw *hw = &adapter->hw;
 283
 284	ew32(IMC, ~0);
 285	E1000_WRITE_FLUSH();
 286	synchronize_irq(adapter->pdev->irq);
 287}
 288
 289/**
 290 * e1000_irq_enable - Enable default interrupt generation settings
 291 * @adapter: board private structure
 292 **/
 
 293static void e1000_irq_enable(struct e1000_adapter *adapter)
 294{
 295	struct e1000_hw *hw = &adapter->hw;
 296
 297	ew32(IMS, IMS_ENABLE_MASK);
 298	E1000_WRITE_FLUSH();
 299}
 300
 301static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 302{
 303	struct e1000_hw *hw = &adapter->hw;
 304	struct net_device *netdev = adapter->netdev;
 305	u16 vid = hw->mng_cookie.vlan_id;
 306	u16 old_vid = adapter->mng_vlan_id;
 307
 308	if (!e1000_vlan_used(adapter))
 309		return;
 310
 311	if (!test_bit(vid, adapter->active_vlans)) {
 312		if (hw->mng_cookie.status &
 313		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 314			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 315			adapter->mng_vlan_id = vid;
 316		} else {
 317			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 318		}
 319		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 320		    (vid != old_vid) &&
 321		    !test_bit(old_vid, adapter->active_vlans))
 322			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 323					       old_vid);
 324	} else {
 325		adapter->mng_vlan_id = vid;
 326	}
 327}
 328
 329static void e1000_init_manageability(struct e1000_adapter *adapter)
 330{
 331	struct e1000_hw *hw = &adapter->hw;
 332
 333	if (adapter->en_mng_pt) {
 334		u32 manc = er32(MANC);
 335
 336		/* disable hardware interception of ARP */
 337		manc &= ~(E1000_MANC_ARP_EN);
 338
 339		ew32(MANC, manc);
 340	}
 341}
 342
 343static void e1000_release_manageability(struct e1000_adapter *adapter)
 344{
 345	struct e1000_hw *hw = &adapter->hw;
 346
 347	if (adapter->en_mng_pt) {
 348		u32 manc = er32(MANC);
 349
 350		/* re-enable hardware interception of ARP */
 351		manc |= E1000_MANC_ARP_EN;
 352
 353		ew32(MANC, manc);
 354	}
 355}
 356
 357/**
 358 * e1000_configure - configure the hardware for RX and TX
 359 * @adapter: private board structure
 360 **/
 361static void e1000_configure(struct e1000_adapter *adapter)
 362{
 363	struct net_device *netdev = adapter->netdev;
 364	int i;
 365
 366	e1000_set_rx_mode(netdev);
 367
 368	e1000_restore_vlan(adapter);
 369	e1000_init_manageability(adapter);
 370
 371	e1000_configure_tx(adapter);
 372	e1000_setup_rctl(adapter);
 373	e1000_configure_rx(adapter);
 374	/* call E1000_DESC_UNUSED which always leaves
 375	 * at least 1 descriptor unused to make sure
 376	 * next_to_use != next_to_clean
 377	 */
 378	for (i = 0; i < adapter->num_rx_queues; i++) {
 379		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 380		adapter->alloc_rx_buf(adapter, ring,
 381				      E1000_DESC_UNUSED(ring));
 382	}
 383}
 384
 385int e1000_up(struct e1000_adapter *adapter)
 386{
 387	struct e1000_hw *hw = &adapter->hw;
 388
 389	/* hardware has been reset, we need to reload some things */
 390	e1000_configure(adapter);
 391
 392	clear_bit(__E1000_DOWN, &adapter->flags);
 393
 394	napi_enable(&adapter->napi);
 395
 396	e1000_irq_enable(adapter);
 397
 398	netif_wake_queue(adapter->netdev);
 399
 400	/* fire a link change interrupt to start the watchdog */
 401	ew32(ICS, E1000_ICS_LSC);
 402	return 0;
 403}
 404
 405/**
 406 * e1000_power_up_phy - restore link in case the phy was powered down
 407 * @adapter: address of board private structure
 408 *
 409 * The phy may be powered down to save power and turn off link when the
 410 * driver is unloaded and wake on lan is not enabled (among others)
 411 * *** this routine MUST be followed by a call to e1000_reset ***
 
 412 **/
 
 413void e1000_power_up_phy(struct e1000_adapter *adapter)
 414{
 415	struct e1000_hw *hw = &adapter->hw;
 416	u16 mii_reg = 0;
 417
 418	/* Just clear the power down bit to wake the phy back up */
 419	if (hw->media_type == e1000_media_type_copper) {
 420		/* according to the manual, the phy will retain its
 421		 * settings across a power-down/up cycle
 422		 */
 423		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 424		mii_reg &= ~MII_CR_POWER_DOWN;
 425		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 426	}
 427}
 428
 429static void e1000_power_down_phy(struct e1000_adapter *adapter)
 430{
 431	struct e1000_hw *hw = &adapter->hw;
 432
 433	/* Power down the PHY so no link is implied when interface is down *
 434	 * The PHY cannot be powered down if any of the following is true *
 435	 * (a) WoL is enabled
 436	 * (b) AMT is active
 437	 * (c) SoL/IDER session is active
 438	 */
 439	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 440	   hw->media_type == e1000_media_type_copper) {
 441		u16 mii_reg = 0;
 442
 443		switch (hw->mac_type) {
 444		case e1000_82540:
 445		case e1000_82545:
 446		case e1000_82545_rev_3:
 447		case e1000_82546:
 448		case e1000_ce4100:
 449		case e1000_82546_rev_3:
 450		case e1000_82541:
 451		case e1000_82541_rev_2:
 452		case e1000_82547:
 453		case e1000_82547_rev_2:
 454			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 455				goto out;
 456			break;
 457		default:
 458			goto out;
 459		}
 460		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 461		mii_reg |= MII_CR_POWER_DOWN;
 462		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 463		msleep(1);
 464	}
 465out:
 466	return;
 467}
 468
 469static void e1000_down_and_stop(struct e1000_adapter *adapter)
 470{
 471	set_bit(__E1000_DOWN, &adapter->flags);
 472
 
 
 
 
 473	cancel_delayed_work_sync(&adapter->watchdog_task);
 474
 475	/*
 476	 * Since the watchdog task can reschedule other tasks, we should cancel
 477	 * it first, otherwise we can run into the situation when a work is
 478	 * still running after the adapter has been turned down.
 479	 */
 480
 481	cancel_delayed_work_sync(&adapter->phy_info_task);
 482	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 483
 484	/* Only kill reset task if adapter is not resetting */
 485	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 486		cancel_work_sync(&adapter->reset_task);
 487}
 488
 489void e1000_down(struct e1000_adapter *adapter)
 490{
 491	struct e1000_hw *hw = &adapter->hw;
 492	struct net_device *netdev = adapter->netdev;
 493	u32 rctl, tctl;
 494
 
 495	/* disable receives in the hardware */
 496	rctl = er32(RCTL);
 497	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 498	/* flush and sleep below */
 499
 500	netif_tx_disable(netdev);
 501
 502	/* disable transmits in the hardware */
 503	tctl = er32(TCTL);
 504	tctl &= ~E1000_TCTL_EN;
 505	ew32(TCTL, tctl);
 506	/* flush both disables and wait for them to finish */
 507	E1000_WRITE_FLUSH();
 508	msleep(10);
 509
 510	/* Set the carrier off after transmits have been disabled in the
 511	 * hardware, to avoid race conditions with e1000_watchdog() (which
 512	 * may be running concurrently to us, checking for the carrier
 513	 * bit to decide whether it should enable transmits again). Such
 514	 * a race condition would result into transmission being disabled
 515	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
 516	 */
 517	netif_carrier_off(netdev);
 518
 519	napi_disable(&adapter->napi);
 520
 521	e1000_irq_disable(adapter);
 522
 523	/* Setting DOWN must be after irq_disable to prevent
 
 524	 * a screaming interrupt.  Setting DOWN also prevents
 525	 * tasks from rescheduling.
 526	 */
 527	e1000_down_and_stop(adapter);
 528
 529	adapter->link_speed = 0;
 530	adapter->link_duplex = 0;
 
 531
 532	e1000_reset(adapter);
 533	e1000_clean_all_tx_rings(adapter);
 534	e1000_clean_all_rx_rings(adapter);
 535}
 536
 
 
 
 
 
 
 
 
 
 
 
 537void e1000_reinit_locked(struct e1000_adapter *adapter)
 538{
 
 
 
 539	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 540		msleep(1);
 541
 542	/* only run the task if not already down */
 543	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
 544		e1000_down(adapter);
 545		e1000_up(adapter);
 546	}
 547
 548	clear_bit(__E1000_RESETTING, &adapter->flags);
 549}
 550
 551void e1000_reset(struct e1000_adapter *adapter)
 552{
 553	struct e1000_hw *hw = &adapter->hw;
 554	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 555	bool legacy_pba_adjust = false;
 556	u16 hwm;
 557
 558	/* Repartition Pba for greater than 9k mtu
 559	 * To take effect CTRL.RST is required.
 560	 */
 561
 562	switch (hw->mac_type) {
 563	case e1000_82542_rev2_0:
 564	case e1000_82542_rev2_1:
 565	case e1000_82543:
 566	case e1000_82544:
 567	case e1000_82540:
 568	case e1000_82541:
 569	case e1000_82541_rev_2:
 570		legacy_pba_adjust = true;
 571		pba = E1000_PBA_48K;
 572		break;
 573	case e1000_82545:
 574	case e1000_82545_rev_3:
 575	case e1000_82546:
 576	case e1000_ce4100:
 577	case e1000_82546_rev_3:
 578		pba = E1000_PBA_48K;
 579		break;
 580	case e1000_82547:
 581	case e1000_82547_rev_2:
 582		legacy_pba_adjust = true;
 583		pba = E1000_PBA_30K;
 584		break;
 585	case e1000_undefined:
 586	case e1000_num_macs:
 587		break;
 588	}
 589
 590	if (legacy_pba_adjust) {
 591		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 592			pba -= 8; /* allocate more FIFO for Tx */
 593
 594		if (hw->mac_type == e1000_82547) {
 595			adapter->tx_fifo_head = 0;
 596			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 597			adapter->tx_fifo_size =
 598				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 599			atomic_set(&adapter->tx_fifo_stall, 0);
 600		}
 601	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 602		/* adjust PBA for jumbo frames */
 603		ew32(PBA, pba);
 604
 605		/* To maintain wire speed transmits, the Tx FIFO should be
 606		 * large enough to accommodate two full transmit packets,
 607		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 608		 * the Rx FIFO should be large enough to accommodate at least
 609		 * one full receive packet and is similarly rounded up and
 610		 * expressed in KB.
 611		 */
 612		pba = er32(PBA);
 613		/* upper 16 bits has Tx packet buffer allocation size in KB */
 614		tx_space = pba >> 16;
 615		/* lower 16 bits has Rx packet buffer allocation size in KB */
 616		pba &= 0xffff;
 617		/* the Tx fifo also stores 16 bytes of information about the Tx
 
 618		 * but don't include ethernet FCS because hardware appends it
 619		 */
 620		min_tx_space = (hw->max_frame_size +
 621				sizeof(struct e1000_tx_desc) -
 622				ETH_FCS_LEN) * 2;
 623		min_tx_space = ALIGN(min_tx_space, 1024);
 624		min_tx_space >>= 10;
 625		/* software strips receive CRC, so leave room for it */
 626		min_rx_space = hw->max_frame_size;
 627		min_rx_space = ALIGN(min_rx_space, 1024);
 628		min_rx_space >>= 10;
 629
 630		/* If current Tx allocation is less than the min Tx FIFO size,
 631		 * and the min Tx FIFO size is less than the current Rx FIFO
 632		 * allocation, take space away from current Rx allocation
 633		 */
 634		if (tx_space < min_tx_space &&
 635		    ((min_tx_space - tx_space) < pba)) {
 636			pba = pba - (min_tx_space - tx_space);
 637
 638			/* PCI/PCIx hardware has PBA alignment constraints */
 639			switch (hw->mac_type) {
 640			case e1000_82545 ... e1000_82546_rev_3:
 641				pba &= ~(E1000_PBA_8K - 1);
 642				break;
 643			default:
 644				break;
 645			}
 646
 647			/* if short on Rx space, Rx wins and must trump Tx
 648			 * adjustment or use Early Receive if available
 649			 */
 650			if (pba < min_rx_space)
 651				pba = min_rx_space;
 652		}
 653	}
 654
 655	ew32(PBA, pba);
 656
 657	/* flow control settings:
 
 658	 * The high water mark must be low enough to fit one full frame
 659	 * (or the size used for early receive) above it in the Rx FIFO.
 660	 * Set it to the lower of:
 661	 * - 90% of the Rx FIFO size, and
 662	 * - the full Rx FIFO size minus the early receive size (for parts
 663	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 664	 * - the full Rx FIFO size minus one full frame
 665	 */
 666	hwm = min(((pba << 10) * 9 / 10),
 667		  ((pba << 10) - hw->max_frame_size));
 668
 669	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 670	hw->fc_low_water = hw->fc_high_water - 8;
 671	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 672	hw->fc_send_xon = 1;
 673	hw->fc = hw->original_fc;
 674
 675	/* Allow time for pending master requests to run */
 676	e1000_reset_hw(hw);
 677	if (hw->mac_type >= e1000_82544)
 678		ew32(WUC, 0);
 679
 680	if (e1000_init_hw(hw))
 681		e_dev_err("Hardware Error\n");
 682	e1000_update_mng_vlan(adapter);
 683
 684	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 685	if (hw->mac_type >= e1000_82544 &&
 686	    hw->autoneg == 1 &&
 687	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 688		u32 ctrl = er32(CTRL);
 689		/* clear phy power management bit if we are in gig only mode,
 690		 * which if enabled will attempt negotiation to 100Mb, which
 691		 * can cause a loss of link at power off or driver unload
 692		 */
 693		ctrl &= ~E1000_CTRL_SWDPIN3;
 694		ew32(CTRL, ctrl);
 695	}
 696
 697	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 698	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 699
 700	e1000_reset_adaptive(hw);
 701	e1000_phy_get_info(hw, &adapter->phy_info);
 702
 703	e1000_release_manageability(adapter);
 704}
 705
 706/* Dump the eeprom for users having checksum issues */
 
 
 707static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 708{
 709	struct net_device *netdev = adapter->netdev;
 710	struct ethtool_eeprom eeprom;
 711	const struct ethtool_ops *ops = netdev->ethtool_ops;
 712	u8 *data;
 713	int i;
 714	u16 csum_old, csum_new = 0;
 715
 716	eeprom.len = ops->get_eeprom_len(netdev);
 717	eeprom.offset = 0;
 718
 719	data = kmalloc(eeprom.len, GFP_KERNEL);
 720	if (!data)
 721		return;
 722
 723	ops->get_eeprom(netdev, &eeprom, data);
 724
 725	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 726		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 727	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 728		csum_new += data[i] + (data[i + 1] << 8);
 729	csum_new = EEPROM_SUM - csum_new;
 730
 731	pr_err("/*********************/\n");
 732	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 733	pr_err("Calculated              : 0x%04x\n", csum_new);
 734
 735	pr_err("Offset    Values\n");
 736	pr_err("========  ======\n");
 737	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 738
 739	pr_err("Include this output when contacting your support provider.\n");
 740	pr_err("This is not a software error! Something bad happened to\n");
 741	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 742	pr_err("result in further problems, possibly loss of data,\n");
 743	pr_err("corruption or system hangs!\n");
 744	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 745	pr_err("which is invalid and requires you to set the proper MAC\n");
 746	pr_err("address manually before continuing to enable this network\n");
 747	pr_err("device. Please inspect the EEPROM dump and report the\n");
 748	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 749	pr_err("/*********************/\n");
 750
 751	kfree(data);
 752}
 753
 754/**
 755 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 756 * @pdev: PCI device information struct
 757 *
 758 * Return true if an adapter needs ioport resources
 759 **/
 760static int e1000_is_need_ioport(struct pci_dev *pdev)
 761{
 762	switch (pdev->device) {
 763	case E1000_DEV_ID_82540EM:
 764	case E1000_DEV_ID_82540EM_LOM:
 765	case E1000_DEV_ID_82540EP:
 766	case E1000_DEV_ID_82540EP_LOM:
 767	case E1000_DEV_ID_82540EP_LP:
 768	case E1000_DEV_ID_82541EI:
 769	case E1000_DEV_ID_82541EI_MOBILE:
 770	case E1000_DEV_ID_82541ER:
 771	case E1000_DEV_ID_82541ER_LOM:
 772	case E1000_DEV_ID_82541GI:
 773	case E1000_DEV_ID_82541GI_LF:
 774	case E1000_DEV_ID_82541GI_MOBILE:
 775	case E1000_DEV_ID_82544EI_COPPER:
 776	case E1000_DEV_ID_82544EI_FIBER:
 777	case E1000_DEV_ID_82544GC_COPPER:
 778	case E1000_DEV_ID_82544GC_LOM:
 779	case E1000_DEV_ID_82545EM_COPPER:
 780	case E1000_DEV_ID_82545EM_FIBER:
 781	case E1000_DEV_ID_82546EB_COPPER:
 782	case E1000_DEV_ID_82546EB_FIBER:
 783	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 784		return true;
 785	default:
 786		return false;
 787	}
 788}
 789
 790static netdev_features_t e1000_fix_features(struct net_device *netdev,
 791	netdev_features_t features)
 792{
 793	/* Since there is no support for separate Rx/Tx vlan accel
 794	 * enable/disable make sure Tx flag is always in same state as Rx.
 
 795	 */
 796	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 797		features |= NETIF_F_HW_VLAN_CTAG_TX;
 798	else
 799		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 800
 801	return features;
 802}
 803
 804static int e1000_set_features(struct net_device *netdev,
 805	netdev_features_t features)
 806{
 807	struct e1000_adapter *adapter = netdev_priv(netdev);
 808	netdev_features_t changed = features ^ netdev->features;
 809
 810	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 811		e1000_vlan_mode(netdev, features);
 812
 813	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 814		return 0;
 815
 816	netdev->features = features;
 817	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 818
 819	if (netif_running(netdev))
 820		e1000_reinit_locked(adapter);
 821	else
 822		e1000_reset(adapter);
 823
 824	return 1;
 825}
 826
 827static const struct net_device_ops e1000_netdev_ops = {
 828	.ndo_open		= e1000_open,
 829	.ndo_stop		= e1000_close,
 830	.ndo_start_xmit		= e1000_xmit_frame,
 
 831	.ndo_set_rx_mode	= e1000_set_rx_mode,
 832	.ndo_set_mac_address	= e1000_set_mac,
 833	.ndo_tx_timeout		= e1000_tx_timeout,
 834	.ndo_change_mtu		= e1000_change_mtu,
 835	.ndo_do_ioctl		= e1000_ioctl,
 836	.ndo_validate_addr	= eth_validate_addr,
 837	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 838	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 839#ifdef CONFIG_NET_POLL_CONTROLLER
 840	.ndo_poll_controller	= e1000_netpoll,
 841#endif
 842	.ndo_fix_features	= e1000_fix_features,
 843	.ndo_set_features	= e1000_set_features,
 844};
 845
 846/**
 847 * e1000_init_hw_struct - initialize members of hw struct
 848 * @adapter: board private struct
 849 * @hw: structure used by e1000_hw.c
 850 *
 851 * Factors out initialization of the e1000_hw struct to its own function
 852 * that can be called very early at init (just after struct allocation).
 853 * Fields are initialized based on PCI device information and
 854 * OS network device settings (MTU size).
 855 * Returns negative error codes if MAC type setup fails.
 856 */
 857static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 858				struct e1000_hw *hw)
 859{
 860	struct pci_dev *pdev = adapter->pdev;
 861
 862	/* PCI config space info */
 863	hw->vendor_id = pdev->vendor;
 864	hw->device_id = pdev->device;
 865	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 866	hw->subsystem_id = pdev->subsystem_device;
 867	hw->revision_id = pdev->revision;
 868
 869	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 870
 871	hw->max_frame_size = adapter->netdev->mtu +
 872			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 873	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 874
 875	/* identify the MAC */
 876	if (e1000_set_mac_type(hw)) {
 877		e_err(probe, "Unknown MAC Type\n");
 878		return -EIO;
 879	}
 880
 881	switch (hw->mac_type) {
 882	default:
 883		break;
 884	case e1000_82541:
 885	case e1000_82547:
 886	case e1000_82541_rev_2:
 887	case e1000_82547_rev_2:
 888		hw->phy_init_script = 1;
 889		break;
 890	}
 891
 892	e1000_set_media_type(hw);
 893	e1000_get_bus_info(hw);
 894
 895	hw->wait_autoneg_complete = false;
 896	hw->tbi_compatibility_en = true;
 897	hw->adaptive_ifs = true;
 898
 899	/* Copper options */
 900
 901	if (hw->media_type == e1000_media_type_copper) {
 902		hw->mdix = AUTO_ALL_MODES;
 903		hw->disable_polarity_correction = false;
 904		hw->master_slave = E1000_MASTER_SLAVE;
 905	}
 906
 907	return 0;
 908}
 909
 910/**
 911 * e1000_probe - Device Initialization Routine
 912 * @pdev: PCI device information struct
 913 * @ent: entry in e1000_pci_tbl
 914 *
 915 * Returns 0 on success, negative on failure
 916 *
 917 * e1000_probe initializes an adapter identified by a pci_dev structure.
 918 * The OS initialization, configuring of the adapter private structure,
 919 * and a hardware reset occur.
 920 **/
 921static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 
 922{
 923	struct net_device *netdev;
 924	struct e1000_adapter *adapter = NULL;
 925	struct e1000_hw *hw;
 926
 927	static int cards_found;
 928	static int global_quad_port_a; /* global ksp3 port a indication */
 929	int i, err, pci_using_dac;
 930	u16 eeprom_data = 0;
 931	u16 tmp = 0;
 932	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 933	int bars, need_ioport;
 934	bool disable_dev = false;
 935
 936	/* do not allocate ioport bars when not needed */
 937	need_ioport = e1000_is_need_ioport(pdev);
 938	if (need_ioport) {
 939		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 940		err = pci_enable_device(pdev);
 941	} else {
 942		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 943		err = pci_enable_device_mem(pdev);
 944	}
 945	if (err)
 946		return err;
 947
 948	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 949	if (err)
 950		goto err_pci_reg;
 951
 952	pci_set_master(pdev);
 953	err = pci_save_state(pdev);
 954	if (err)
 955		goto err_alloc_etherdev;
 956
 957	err = -ENOMEM;
 958	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 959	if (!netdev)
 960		goto err_alloc_etherdev;
 961
 962	SET_NETDEV_DEV(netdev, &pdev->dev);
 963
 964	pci_set_drvdata(pdev, netdev);
 965	adapter = netdev_priv(netdev);
 966	adapter->netdev = netdev;
 967	adapter->pdev = pdev;
 968	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 969	adapter->bars = bars;
 970	adapter->need_ioport = need_ioport;
 971
 972	hw = &adapter->hw;
 973	hw->back = adapter;
 974
 975	err = -EIO;
 976	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 977	if (!hw->hw_addr)
 978		goto err_ioremap;
 979
 980	if (adapter->need_ioport) {
 981		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
 982			if (pci_resource_len(pdev, i) == 0)
 983				continue;
 984			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 985				hw->io_base = pci_resource_start(pdev, i);
 986				break;
 987			}
 988		}
 989	}
 990
 991	/* make ready for any if (hw->...) below */
 992	err = e1000_init_hw_struct(adapter, hw);
 993	if (err)
 994		goto err_sw_init;
 995
 996	/* there is a workaround being applied below that limits
 
 997	 * 64-bit DMA addresses to 64-bit hardware.  There are some
 998	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
 999	 */
1000	pci_using_dac = 0;
1001	if ((hw->bus_type == e1000_bus_type_pcix) &&
1002	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
 
 
 
 
 
1003		pci_using_dac = 1;
1004	} else {
1005		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1006		if (err) {
1007			pr_err("No usable DMA config, aborting\n");
1008			goto err_dma;
1009		}
 
1010	}
1011
1012	netdev->netdev_ops = &e1000_netdev_ops;
1013	e1000_set_ethtool_ops(netdev);
1014	netdev->watchdog_timeo = 5 * HZ;
1015	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1016
1017	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1018
1019	adapter->bd_number = cards_found;
1020
1021	/* setup the private structure */
1022
1023	err = e1000_sw_init(adapter);
1024	if (err)
1025		goto err_sw_init;
1026
1027	err = -EIO;
1028	if (hw->mac_type == e1000_ce4100) {
1029		hw->ce4100_gbe_mdio_base_virt =
1030					ioremap(pci_resource_start(pdev, BAR_1),
1031						pci_resource_len(pdev, BAR_1));
1032
1033		if (!hw->ce4100_gbe_mdio_base_virt)
1034			goto err_mdio_ioremap;
1035	}
1036
1037	if (hw->mac_type >= e1000_82543) {
1038		netdev->hw_features = NETIF_F_SG |
1039				   NETIF_F_HW_CSUM |
1040				   NETIF_F_HW_VLAN_CTAG_RX;
1041		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1042				   NETIF_F_HW_VLAN_CTAG_FILTER;
1043	}
1044
1045	if ((hw->mac_type >= e1000_82544) &&
1046	   (hw->mac_type != e1000_82547))
1047		netdev->hw_features |= NETIF_F_TSO;
1048
1049	netdev->priv_flags |= IFF_SUPP_NOFCS;
1050
1051	netdev->features |= netdev->hw_features;
1052	netdev->hw_features |= (NETIF_F_RXCSUM |
1053				NETIF_F_RXALL |
1054				NETIF_F_RXFCS);
1055
1056	if (pci_using_dac) {
1057		netdev->features |= NETIF_F_HIGHDMA;
1058		netdev->vlan_features |= NETIF_F_HIGHDMA;
1059	}
1060
1061	netdev->vlan_features |= (NETIF_F_TSO |
1062				  NETIF_F_HW_CSUM |
1063				  NETIF_F_SG);
1064
1065	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1066	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1067	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1068		netdev->priv_flags |= IFF_UNICAST_FLT;
1069
1070	/* MTU range: 46 - 16110 */
1071	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1072	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1073
1074	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1075
1076	/* initialize eeprom parameters */
1077	if (e1000_init_eeprom_params(hw)) {
1078		e_err(probe, "EEPROM initialization failed\n");
1079		goto err_eeprom;
1080	}
1081
1082	/* before reading the EEPROM, reset the controller to
1083	 * put the device in a known good starting state
1084	 */
1085
1086	e1000_reset_hw(hw);
1087
1088	/* make sure the EEPROM is good */
1089	if (e1000_validate_eeprom_checksum(hw) < 0) {
1090		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1091		e1000_dump_eeprom(adapter);
1092		/* set MAC address to all zeroes to invalidate and temporary
 
1093		 * disable this device for the user. This blocks regular
1094		 * traffic while still permitting ethtool ioctls from reaching
1095		 * the hardware as well as allowing the user to run the
1096		 * interface after manually setting a hw addr using
1097		 * `ip set address`
1098		 */
1099		memset(hw->mac_addr, 0, netdev->addr_len);
1100	} else {
1101		/* copy the MAC address out of the EEPROM */
1102		if (e1000_read_mac_addr(hw))
1103			e_err(probe, "EEPROM Read Error\n");
1104	}
1105	/* don't block initialization here due to bad MAC address */
1106	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
 
1107
1108	if (!is_valid_ether_addr(netdev->dev_addr))
1109		e_err(probe, "Invalid MAC Address\n");
1110
1111
1112	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1113	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1114			  e1000_82547_tx_fifo_stall_task);
1115	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1116	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1117
1118	e1000_check_options(adapter);
1119
1120	/* Initial Wake on LAN setting
1121	 * If APM wake is enabled in the EEPROM,
1122	 * enable the ACPI Magic Packet filter
1123	 */
1124
1125	switch (hw->mac_type) {
1126	case e1000_82542_rev2_0:
1127	case e1000_82542_rev2_1:
1128	case e1000_82543:
1129		break;
1130	case e1000_82544:
1131		e1000_read_eeprom(hw,
1132			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1133		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1134		break;
1135	case e1000_82546:
1136	case e1000_82546_rev_3:
1137		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1138			e1000_read_eeprom(hw,
1139				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1140			break;
1141		}
1142		fallthrough;
1143	default:
1144		e1000_read_eeprom(hw,
1145			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1146		break;
1147	}
1148	if (eeprom_data & eeprom_apme_mask)
1149		adapter->eeprom_wol |= E1000_WUFC_MAG;
1150
1151	/* now that we have the eeprom settings, apply the special cases
1152	 * where the eeprom may be wrong or the board simply won't support
1153	 * wake on lan on a particular port
1154	 */
1155	switch (pdev->device) {
1156	case E1000_DEV_ID_82546GB_PCIE:
1157		adapter->eeprom_wol = 0;
1158		break;
1159	case E1000_DEV_ID_82546EB_FIBER:
1160	case E1000_DEV_ID_82546GB_FIBER:
1161		/* Wake events only supported on port A for dual fiber
1162		 * regardless of eeprom setting
1163		 */
1164		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1165			adapter->eeprom_wol = 0;
1166		break;
1167	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1168		/* if quad port adapter, disable WoL on all but port A */
1169		if (global_quad_port_a != 0)
1170			adapter->eeprom_wol = 0;
1171		else
1172			adapter->quad_port_a = true;
1173		/* Reset for multiple quad port adapters */
1174		if (++global_quad_port_a == 4)
1175			global_quad_port_a = 0;
1176		break;
1177	}
1178
1179	/* initialize the wol settings based on the eeprom settings */
1180	adapter->wol = adapter->eeprom_wol;
1181	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1182
1183	/* Auto detect PHY address */
1184	if (hw->mac_type == e1000_ce4100) {
1185		for (i = 0; i < 32; i++) {
1186			hw->phy_addr = i;
1187			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1188
1189			if (tmp != 0 && tmp != 0xFF)
 
 
 
1190				break;
1191		}
1192
1193		if (i >= 32)
1194			goto err_eeprom;
1195	}
1196
1197	/* reset the hardware with the new settings */
1198	e1000_reset(adapter);
1199
1200	strcpy(netdev->name, "eth%d");
1201	err = register_netdev(netdev);
1202	if (err)
1203		goto err_register;
1204
1205	e1000_vlan_filter_on_off(adapter, false);
1206
1207	/* print bus type/speed/width info */
1208	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1209	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1210	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1211		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1212		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1213		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1214	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1215	       netdev->dev_addr);
1216
1217	/* carrier off reporting is important to ethtool even BEFORE open */
1218	netif_carrier_off(netdev);
1219
1220	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1221
1222	cards_found++;
1223	return 0;
1224
1225err_register:
1226err_eeprom:
1227	e1000_phy_hw_reset(hw);
1228
1229	if (hw->flash_address)
1230		iounmap(hw->flash_address);
1231	kfree(adapter->tx_ring);
1232	kfree(adapter->rx_ring);
1233err_dma:
1234err_sw_init:
1235err_mdio_ioremap:
1236	iounmap(hw->ce4100_gbe_mdio_base_virt);
1237	iounmap(hw->hw_addr);
1238err_ioremap:
1239	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1240	free_netdev(netdev);
1241err_alloc_etherdev:
1242	pci_release_selected_regions(pdev, bars);
1243err_pci_reg:
1244	if (!adapter || disable_dev)
1245		pci_disable_device(pdev);
1246	return err;
1247}
1248
1249/**
1250 * e1000_remove - Device Removal Routine
1251 * @pdev: PCI device information struct
1252 *
1253 * e1000_remove is called by the PCI subsystem to alert the driver
1254 * that it should release a PCI device. That could be caused by a
1255 * Hot-Plug event, or because the driver is going to be removed from
1256 * memory.
1257 **/
1258static void e1000_remove(struct pci_dev *pdev)
 
1259{
1260	struct net_device *netdev = pci_get_drvdata(pdev);
1261	struct e1000_adapter *adapter = netdev_priv(netdev);
1262	struct e1000_hw *hw = &adapter->hw;
1263	bool disable_dev;
1264
1265	e1000_down_and_stop(adapter);
1266	e1000_release_manageability(adapter);
1267
1268	unregister_netdev(netdev);
1269
1270	e1000_phy_hw_reset(hw);
1271
1272	kfree(adapter->tx_ring);
1273	kfree(adapter->rx_ring);
1274
1275	if (hw->mac_type == e1000_ce4100)
1276		iounmap(hw->ce4100_gbe_mdio_base_virt);
1277	iounmap(hw->hw_addr);
1278	if (hw->flash_address)
1279		iounmap(hw->flash_address);
1280	pci_release_selected_regions(pdev, adapter->bars);
1281
1282	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1283	free_netdev(netdev);
1284
1285	if (disable_dev)
1286		pci_disable_device(pdev);
1287}
1288
1289/**
1290 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1291 * @adapter: board private structure to initialize
1292 *
1293 * e1000_sw_init initializes the Adapter private data structure.
1294 * e1000_init_hw_struct MUST be called before this function
1295 **/
1296static int e1000_sw_init(struct e1000_adapter *adapter)
 
1297{
1298	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1299
1300	adapter->num_tx_queues = 1;
1301	adapter->num_rx_queues = 1;
1302
1303	if (e1000_alloc_queues(adapter)) {
1304		e_err(probe, "Unable to allocate memory for queues\n");
1305		return -ENOMEM;
1306	}
1307
1308	/* Explicitly disable IRQ since the NIC can be in any state. */
1309	e1000_irq_disable(adapter);
1310
1311	spin_lock_init(&adapter->stats_lock);
 
1312
1313	set_bit(__E1000_DOWN, &adapter->flags);
1314
1315	return 0;
1316}
1317
1318/**
1319 * e1000_alloc_queues - Allocate memory for all rings
1320 * @adapter: board private structure to initialize
1321 *
1322 * We allocate one ring per queue at run-time since we don't know the
1323 * number of queues at compile-time.
1324 **/
1325static int e1000_alloc_queues(struct e1000_adapter *adapter)
 
1326{
1327	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1328				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1329	if (!adapter->tx_ring)
1330		return -ENOMEM;
1331
1332	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1333				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1334	if (!adapter->rx_ring) {
1335		kfree(adapter->tx_ring);
1336		return -ENOMEM;
1337	}
1338
1339	return E1000_SUCCESS;
1340}
1341
1342/**
1343 * e1000_open - Called when a network interface is made active
1344 * @netdev: network interface device structure
1345 *
1346 * Returns 0 on success, negative value on failure
1347 *
1348 * The open entry point is called when a network interface is made
1349 * active by the system (IFF_UP).  At this point all resources needed
1350 * for transmit and receive operations are allocated, the interrupt
1351 * handler is registered with the OS, the watchdog task is started,
1352 * and the stack is notified that the interface is ready.
1353 **/
1354int e1000_open(struct net_device *netdev)
 
1355{
1356	struct e1000_adapter *adapter = netdev_priv(netdev);
1357	struct e1000_hw *hw = &adapter->hw;
1358	int err;
1359
1360	/* disallow open during test */
1361	if (test_bit(__E1000_TESTING, &adapter->flags))
1362		return -EBUSY;
1363
1364	netif_carrier_off(netdev);
1365
1366	/* allocate transmit descriptors */
1367	err = e1000_setup_all_tx_resources(adapter);
1368	if (err)
1369		goto err_setup_tx;
1370
1371	/* allocate receive descriptors */
1372	err = e1000_setup_all_rx_resources(adapter);
1373	if (err)
1374		goto err_setup_rx;
1375
1376	e1000_power_up_phy(adapter);
1377
1378	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1379	if ((hw->mng_cookie.status &
1380			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1381		e1000_update_mng_vlan(adapter);
1382	}
1383
1384	/* before we allocate an interrupt, we must be ready to handle it.
1385	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1386	 * as soon as we call pci_request_irq, so we have to setup our
1387	 * clean_rx handler before we do so.
1388	 */
1389	e1000_configure(adapter);
1390
1391	err = e1000_request_irq(adapter);
1392	if (err)
1393		goto err_req_irq;
1394
1395	/* From here on the code is the same as e1000_up() */
1396	clear_bit(__E1000_DOWN, &adapter->flags);
1397
1398	napi_enable(&adapter->napi);
1399
1400	e1000_irq_enable(adapter);
1401
1402	netif_start_queue(netdev);
1403
1404	/* fire a link status change interrupt to start the watchdog */
1405	ew32(ICS, E1000_ICS_LSC);
1406
1407	return E1000_SUCCESS;
1408
1409err_req_irq:
1410	e1000_power_down_phy(adapter);
1411	e1000_free_all_rx_resources(adapter);
1412err_setup_rx:
1413	e1000_free_all_tx_resources(adapter);
1414err_setup_tx:
1415	e1000_reset(adapter);
1416
1417	return err;
1418}
1419
1420/**
1421 * e1000_close - Disables a network interface
1422 * @netdev: network interface device structure
1423 *
1424 * Returns 0, this is not allowed to fail
1425 *
1426 * The close entry point is called when an interface is de-activated
1427 * by the OS.  The hardware is still under the drivers control, but
1428 * needs to be disabled.  A global MAC reset is issued to stop the
1429 * hardware, and all transmit and receive resources are freed.
1430 **/
1431int e1000_close(struct net_device *netdev)
 
1432{
1433	struct e1000_adapter *adapter = netdev_priv(netdev);
1434	struct e1000_hw *hw = &adapter->hw;
1435	int count = E1000_CHECK_RESET_COUNT;
1436
1437	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1438		usleep_range(10000, 20000);
1439
1440	WARN_ON(count < 0);
1441
1442	/* signal that we're down so that the reset task will no longer run */
1443	set_bit(__E1000_DOWN, &adapter->flags);
1444	clear_bit(__E1000_RESETTING, &adapter->flags);
1445
 
1446	e1000_down(adapter);
1447	e1000_power_down_phy(adapter);
1448	e1000_free_irq(adapter);
1449
1450	e1000_free_all_tx_resources(adapter);
1451	e1000_free_all_rx_resources(adapter);
1452
1453	/* kill manageability vlan ID if supported, but not if a vlan with
1454	 * the same ID is registered on the host OS (let 8021q kill it)
1455	 */
1456	if ((hw->mng_cookie.status &
1457	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1458	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1459		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1460				       adapter->mng_vlan_id);
1461	}
1462
1463	return 0;
1464}
1465
1466/**
1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468 * @adapter: address of board private structure
1469 * @start: address of beginning of memory
1470 * @len: length of memory
1471 **/
1472static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473				  unsigned long len)
1474{
1475	struct e1000_hw *hw = &adapter->hw;
1476	unsigned long begin = (unsigned long)start;
1477	unsigned long end = begin + len;
1478
1479	/* First rev 82545 and 82546 need to not allow any memory
1480	 * write location to cross 64k boundary due to errata 23
1481	 */
1482	if (hw->mac_type == e1000_82545 ||
1483	    hw->mac_type == e1000_ce4100 ||
1484	    hw->mac_type == e1000_82546) {
1485		return ((begin ^ (end - 1)) >> 16) == 0;
1486	}
1487
1488	return true;
1489}
1490
1491/**
1492 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1493 * @adapter: board private structure
1494 * @txdr:    tx descriptor ring (for a specific queue) to setup
1495 *
1496 * Return 0 on success, negative on failure
1497 **/
 
1498static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499				    struct e1000_tx_ring *txdr)
1500{
1501	struct pci_dev *pdev = adapter->pdev;
1502	int size;
1503
1504	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1505	txdr->buffer_info = vzalloc(size);
1506	if (!txdr->buffer_info)
 
 
1507		return -ENOMEM;
 
1508
1509	/* round up to nearest 4K */
1510
1511	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1512	txdr->size = ALIGN(txdr->size, 4096);
1513
1514	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1515					GFP_KERNEL);
1516	if (!txdr->desc) {
1517setup_tx_desc_die:
1518		vfree(txdr->buffer_info);
 
 
1519		return -ENOMEM;
1520	}
1521
1522	/* Fix for errata 23, can't cross 64kB boundary */
1523	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1524		void *olddesc = txdr->desc;
1525		dma_addr_t olddma = txdr->dma;
1526		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1527		      txdr->size, txdr->desc);
1528		/* Try again, without freeing the previous */
1529		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1530						&txdr->dma, GFP_KERNEL);
1531		/* Failed allocation, critical failure */
1532		if (!txdr->desc) {
1533			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1534					  olddma);
1535			goto setup_tx_desc_die;
1536		}
1537
1538		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539			/* give up */
1540			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1541					  txdr->dma);
1542			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1543					  olddma);
1544			e_err(probe, "Unable to allocate aligned memory "
1545			      "for the transmit descriptor ring\n");
1546			vfree(txdr->buffer_info);
1547			return -ENOMEM;
1548		} else {
1549			/* Free old allocation, new allocation was successful */
1550			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551					  olddma);
1552		}
1553	}
1554	memset(txdr->desc, 0, txdr->size);
1555
1556	txdr->next_to_use = 0;
1557	txdr->next_to_clean = 0;
1558
1559	return 0;
1560}
1561
1562/**
1563 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1564 * 				  (Descriptors) for all queues
1565 * @adapter: board private structure
1566 *
1567 * Return 0 on success, negative on failure
1568 **/
 
1569int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1570{
1571	int i, err = 0;
1572
1573	for (i = 0; i < adapter->num_tx_queues; i++) {
1574		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1575		if (err) {
1576			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1577			for (i-- ; i >= 0; i--)
1578				e1000_free_tx_resources(adapter,
1579							&adapter->tx_ring[i]);
1580			break;
1581		}
1582	}
1583
1584	return err;
1585}
1586
1587/**
1588 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1589 * @adapter: board private structure
1590 *
1591 * Configure the Tx unit of the MAC after a reset.
1592 **/
 
1593static void e1000_configure_tx(struct e1000_adapter *adapter)
1594{
1595	u64 tdba;
1596	struct e1000_hw *hw = &adapter->hw;
1597	u32 tdlen, tctl, tipg;
1598	u32 ipgr1, ipgr2;
1599
1600	/* Setup the HW Tx Head and Tail descriptor pointers */
1601
1602	switch (adapter->num_tx_queues) {
1603	case 1:
1604	default:
1605		tdba = adapter->tx_ring[0].dma;
1606		tdlen = adapter->tx_ring[0].count *
1607			sizeof(struct e1000_tx_desc);
1608		ew32(TDLEN, tdlen);
1609		ew32(TDBAH, (tdba >> 32));
1610		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1611		ew32(TDT, 0);
1612		ew32(TDH, 0);
1613		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1614					   E1000_TDH : E1000_82542_TDH);
1615		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1616					   E1000_TDT : E1000_82542_TDT);
1617		break;
1618	}
1619
1620	/* Set the default values for the Tx Inter Packet Gap timer */
1621	if ((hw->media_type == e1000_media_type_fiber ||
1622	     hw->media_type == e1000_media_type_internal_serdes))
1623		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1624	else
1625		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1626
1627	switch (hw->mac_type) {
1628	case e1000_82542_rev2_0:
1629	case e1000_82542_rev2_1:
1630		tipg = DEFAULT_82542_TIPG_IPGT;
1631		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1632		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1633		break;
1634	default:
1635		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1636		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1637		break;
1638	}
1639	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1640	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1641	ew32(TIPG, tipg);
1642
1643	/* Set the Tx Interrupt Delay register */
1644
1645	ew32(TIDV, adapter->tx_int_delay);
1646	if (hw->mac_type >= e1000_82540)
1647		ew32(TADV, adapter->tx_abs_int_delay);
1648
1649	/* Program the Transmit Control Register */
1650
1651	tctl = er32(TCTL);
1652	tctl &= ~E1000_TCTL_CT;
1653	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1654		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1655
1656	e1000_config_collision_dist(hw);
1657
1658	/* Setup Transmit Descriptor Settings for eop descriptor */
1659	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1660
1661	/* only set IDE if we are delaying interrupts using the timers */
1662	if (adapter->tx_int_delay)
1663		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1664
1665	if (hw->mac_type < e1000_82543)
1666		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1667	else
1668		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1669
1670	/* Cache if we're 82544 running in PCI-X because we'll
1671	 * need this to apply a workaround later in the send path.
1672	 */
1673	if (hw->mac_type == e1000_82544 &&
1674	    hw->bus_type == e1000_bus_type_pcix)
1675		adapter->pcix_82544 = true;
1676
1677	ew32(TCTL, tctl);
1678
1679}
1680
1681/**
1682 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1683 * @adapter: board private structure
1684 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1685 *
1686 * Returns 0 on success, negative on failure
1687 **/
 
1688static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1689				    struct e1000_rx_ring *rxdr)
1690{
1691	struct pci_dev *pdev = adapter->pdev;
1692	int size, desc_len;
1693
1694	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1695	rxdr->buffer_info = vzalloc(size);
1696	if (!rxdr->buffer_info)
 
 
1697		return -ENOMEM;
 
1698
1699	desc_len = sizeof(struct e1000_rx_desc);
1700
1701	/* Round up to nearest 4K */
1702
1703	rxdr->size = rxdr->count * desc_len;
1704	rxdr->size = ALIGN(rxdr->size, 4096);
1705
1706	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1707					GFP_KERNEL);
 
1708	if (!rxdr->desc) {
 
 
1709setup_rx_desc_die:
1710		vfree(rxdr->buffer_info);
1711		return -ENOMEM;
1712	}
1713
1714	/* Fix for errata 23, can't cross 64kB boundary */
1715	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1716		void *olddesc = rxdr->desc;
1717		dma_addr_t olddma = rxdr->dma;
1718		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1719		      rxdr->size, rxdr->desc);
1720		/* Try again, without freeing the previous */
1721		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1722						&rxdr->dma, GFP_KERNEL);
1723		/* Failed allocation, critical failure */
1724		if (!rxdr->desc) {
1725			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1726					  olddma);
 
 
1727			goto setup_rx_desc_die;
1728		}
1729
1730		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1731			/* give up */
1732			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1733					  rxdr->dma);
1734			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1735					  olddma);
1736			e_err(probe, "Unable to allocate aligned memory for "
1737			      "the Rx descriptor ring\n");
1738			goto setup_rx_desc_die;
1739		} else {
1740			/* Free old allocation, new allocation was successful */
1741			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1742					  olddma);
1743		}
1744	}
1745	memset(rxdr->desc, 0, rxdr->size);
1746
1747	rxdr->next_to_clean = 0;
1748	rxdr->next_to_use = 0;
1749	rxdr->rx_skb_top = NULL;
1750
1751	return 0;
1752}
1753
1754/**
1755 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1756 * 				  (Descriptors) for all queues
1757 * @adapter: board private structure
1758 *
1759 * Return 0 on success, negative on failure
1760 **/
 
1761int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1762{
1763	int i, err = 0;
1764
1765	for (i = 0; i < adapter->num_rx_queues; i++) {
1766		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1767		if (err) {
1768			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1769			for (i-- ; i >= 0; i--)
1770				e1000_free_rx_resources(adapter,
1771							&adapter->rx_ring[i]);
1772			break;
1773		}
1774	}
1775
1776	return err;
1777}
1778
1779/**
1780 * e1000_setup_rctl - configure the receive control registers
1781 * @adapter: Board private structure
1782 **/
1783static void e1000_setup_rctl(struct e1000_adapter *adapter)
1784{
1785	struct e1000_hw *hw = &adapter->hw;
1786	u32 rctl;
1787
1788	rctl = er32(RCTL);
1789
1790	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1791
1792	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1793		E1000_RCTL_RDMTS_HALF |
1794		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1795
1796	if (hw->tbi_compatibility_on == 1)
1797		rctl |= E1000_RCTL_SBP;
1798	else
1799		rctl &= ~E1000_RCTL_SBP;
1800
1801	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1802		rctl &= ~E1000_RCTL_LPE;
1803	else
1804		rctl |= E1000_RCTL_LPE;
1805
1806	/* Setup buffer sizes */
1807	rctl &= ~E1000_RCTL_SZ_4096;
1808	rctl |= E1000_RCTL_BSEX;
1809	switch (adapter->rx_buffer_len) {
1810	case E1000_RXBUFFER_2048:
1811	default:
1812		rctl |= E1000_RCTL_SZ_2048;
1813		rctl &= ~E1000_RCTL_BSEX;
1814		break;
1815	case E1000_RXBUFFER_4096:
1816		rctl |= E1000_RCTL_SZ_4096;
1817		break;
1818	case E1000_RXBUFFER_8192:
1819		rctl |= E1000_RCTL_SZ_8192;
1820		break;
1821	case E1000_RXBUFFER_16384:
1822		rctl |= E1000_RCTL_SZ_16384;
1823		break;
1824	}
1825
1826	/* This is useful for sniffing bad packets. */
1827	if (adapter->netdev->features & NETIF_F_RXALL) {
1828		/* UPE and MPE will be handled by normal PROMISC logic
1829		 * in e1000e_set_rx_mode
1830		 */
1831		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1832			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1833			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1834
1835		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1836			  E1000_RCTL_DPF | /* Allow filtered pause */
1837			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1838		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1839		 * and that breaks VLANs.
1840		 */
1841	}
1842
1843	ew32(RCTL, rctl);
1844}
1845
1846/**
1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1848 * @adapter: board private structure
1849 *
1850 * Configure the Rx unit of the MAC after a reset.
1851 **/
 
1852static void e1000_configure_rx(struct e1000_adapter *adapter)
1853{
1854	u64 rdba;
1855	struct e1000_hw *hw = &adapter->hw;
1856	u32 rdlen, rctl, rxcsum;
1857
1858	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1859		rdlen = adapter->rx_ring[0].count *
1860			sizeof(struct e1000_rx_desc);
1861		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1862		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1863	} else {
1864		rdlen = adapter->rx_ring[0].count *
1865			sizeof(struct e1000_rx_desc);
1866		adapter->clean_rx = e1000_clean_rx_irq;
1867		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1868	}
1869
1870	/* disable receives while setting up the descriptors */
1871	rctl = er32(RCTL);
1872	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873
1874	/* set the Receive Delay Timer Register */
1875	ew32(RDTR, adapter->rx_int_delay);
1876
1877	if (hw->mac_type >= e1000_82540) {
1878		ew32(RADV, adapter->rx_abs_int_delay);
1879		if (adapter->itr_setting != 0)
1880			ew32(ITR, 1000000000 / (adapter->itr * 256));
1881	}
1882
1883	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1884	 * the Base and Length of the Rx Descriptor Ring
1885	 */
1886	switch (adapter->num_rx_queues) {
1887	case 1:
1888	default:
1889		rdba = adapter->rx_ring[0].dma;
1890		ew32(RDLEN, rdlen);
1891		ew32(RDBAH, (rdba >> 32));
1892		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1893		ew32(RDT, 0);
1894		ew32(RDH, 0);
1895		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1896					   E1000_RDH : E1000_82542_RDH);
1897		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1898					   E1000_RDT : E1000_82542_RDT);
1899		break;
1900	}
1901
1902	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1903	if (hw->mac_type >= e1000_82543) {
1904		rxcsum = er32(RXCSUM);
1905		if (adapter->rx_csum)
1906			rxcsum |= E1000_RXCSUM_TUOFL;
1907		else
1908			/* don't need to clear IPPCSE as it defaults to 0 */
1909			rxcsum &= ~E1000_RXCSUM_TUOFL;
1910		ew32(RXCSUM, rxcsum);
1911	}
1912
1913	/* Enable Receives */
1914	ew32(RCTL, rctl | E1000_RCTL_EN);
1915}
1916
1917/**
1918 * e1000_free_tx_resources - Free Tx Resources per Queue
1919 * @adapter: board private structure
1920 * @tx_ring: Tx descriptor ring for a specific queue
1921 *
1922 * Free all transmit software resources
1923 **/
 
1924static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1925				    struct e1000_tx_ring *tx_ring)
1926{
1927	struct pci_dev *pdev = adapter->pdev;
1928
1929	e1000_clean_tx_ring(adapter, tx_ring);
1930
1931	vfree(tx_ring->buffer_info);
1932	tx_ring->buffer_info = NULL;
1933
1934	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1935			  tx_ring->dma);
1936
1937	tx_ring->desc = NULL;
1938}
1939
1940/**
1941 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1942 * @adapter: board private structure
1943 *
1944 * Free all transmit software resources
1945 **/
 
1946void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1947{
1948	int i;
1949
1950	for (i = 0; i < adapter->num_tx_queues; i++)
1951		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1952}
1953
1954static void
1955e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1956				 struct e1000_tx_buffer *buffer_info)
1957{
1958	if (buffer_info->dma) {
1959		if (buffer_info->mapped_as_page)
1960			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1961				       buffer_info->length, DMA_TO_DEVICE);
1962		else
1963			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1964					 buffer_info->length,
1965					 DMA_TO_DEVICE);
1966		buffer_info->dma = 0;
1967	}
1968	if (buffer_info->skb) {
1969		dev_kfree_skb_any(buffer_info->skb);
1970		buffer_info->skb = NULL;
1971	}
1972	buffer_info->time_stamp = 0;
1973	/* buffer_info must be completely set up in the transmit path */
1974}
1975
1976/**
1977 * e1000_clean_tx_ring - Free Tx Buffers
1978 * @adapter: board private structure
1979 * @tx_ring: ring to be cleaned
1980 **/
 
1981static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1982				struct e1000_tx_ring *tx_ring)
1983{
1984	struct e1000_hw *hw = &adapter->hw;
1985	struct e1000_tx_buffer *buffer_info;
1986	unsigned long size;
1987	unsigned int i;
1988
1989	/* Free all the Tx ring sk_buffs */
1990
1991	for (i = 0; i < tx_ring->count; i++) {
1992		buffer_info = &tx_ring->buffer_info[i];
1993		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1994	}
1995
1996	netdev_reset_queue(adapter->netdev);
1997	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1998	memset(tx_ring->buffer_info, 0, size);
1999
2000	/* Zero out the descriptor ring */
2001
2002	memset(tx_ring->desc, 0, tx_ring->size);
2003
2004	tx_ring->next_to_use = 0;
2005	tx_ring->next_to_clean = 0;
2006	tx_ring->last_tx_tso = false;
2007
2008	writel(0, hw->hw_addr + tx_ring->tdh);
2009	writel(0, hw->hw_addr + tx_ring->tdt);
2010}
2011
2012/**
2013 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2014 * @adapter: board private structure
2015 **/
 
2016static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2017{
2018	int i;
2019
2020	for (i = 0; i < adapter->num_tx_queues; i++)
2021		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2022}
2023
2024/**
2025 * e1000_free_rx_resources - Free Rx Resources
2026 * @adapter: board private structure
2027 * @rx_ring: ring to clean the resources from
2028 *
2029 * Free all receive software resources
2030 **/
 
2031static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2032				    struct e1000_rx_ring *rx_ring)
2033{
2034	struct pci_dev *pdev = adapter->pdev;
2035
2036	e1000_clean_rx_ring(adapter, rx_ring);
2037
2038	vfree(rx_ring->buffer_info);
2039	rx_ring->buffer_info = NULL;
2040
2041	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2042			  rx_ring->dma);
2043
2044	rx_ring->desc = NULL;
2045}
2046
2047/**
2048 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2049 * @adapter: board private structure
2050 *
2051 * Free all receive software resources
2052 **/
 
2053void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2054{
2055	int i;
2056
2057	for (i = 0; i < adapter->num_rx_queues; i++)
2058		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2059}
2060
2061#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2062static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2063{
2064	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2065		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2066}
2067
2068static void *e1000_alloc_frag(const struct e1000_adapter *a)
2069{
2070	unsigned int len = e1000_frag_len(a);
2071	u8 *data = netdev_alloc_frag(len);
2072
2073	if (likely(data))
2074		data += E1000_HEADROOM;
2075	return data;
2076}
2077
2078/**
2079 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2080 * @adapter: board private structure
2081 * @rx_ring: ring to free buffers from
2082 **/
 
2083static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2084				struct e1000_rx_ring *rx_ring)
2085{
2086	struct e1000_hw *hw = &adapter->hw;
2087	struct e1000_rx_buffer *buffer_info;
2088	struct pci_dev *pdev = adapter->pdev;
2089	unsigned long size;
2090	unsigned int i;
2091
2092	/* Free all the Rx netfrags */
2093	for (i = 0; i < rx_ring->count; i++) {
2094		buffer_info = &rx_ring->buffer_info[i];
2095		if (adapter->clean_rx == e1000_clean_rx_irq) {
2096			if (buffer_info->dma)
2097				dma_unmap_single(&pdev->dev, buffer_info->dma,
2098						 adapter->rx_buffer_len,
2099						 DMA_FROM_DEVICE);
2100			if (buffer_info->rxbuf.data) {
2101				skb_free_frag(buffer_info->rxbuf.data);
2102				buffer_info->rxbuf.data = NULL;
2103			}
2104		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2105			if (buffer_info->dma)
2106				dma_unmap_page(&pdev->dev, buffer_info->dma,
2107					       adapter->rx_buffer_len,
2108					       DMA_FROM_DEVICE);
2109			if (buffer_info->rxbuf.page) {
2110				put_page(buffer_info->rxbuf.page);
2111				buffer_info->rxbuf.page = NULL;
2112			}
2113		}
2114
2115		buffer_info->dma = 0;
 
 
 
 
 
 
 
 
2116	}
2117
2118	/* there also may be some cached data from a chained receive */
2119	napi_free_frags(&adapter->napi);
2120	rx_ring->rx_skb_top = NULL;
 
 
2121
2122	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2123	memset(rx_ring->buffer_info, 0, size);
2124
2125	/* Zero out the descriptor ring */
2126	memset(rx_ring->desc, 0, rx_ring->size);
2127
2128	rx_ring->next_to_clean = 0;
2129	rx_ring->next_to_use = 0;
2130
2131	writel(0, hw->hw_addr + rx_ring->rdh);
2132	writel(0, hw->hw_addr + rx_ring->rdt);
2133}
2134
2135/**
2136 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2137 * @adapter: board private structure
2138 **/
 
2139static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2140{
2141	int i;
2142
2143	for (i = 0; i < adapter->num_rx_queues; i++)
2144		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2145}
2146
2147/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2148 * and memory write and invalidate disabled for certain operations
2149 */
2150static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2151{
2152	struct e1000_hw *hw = &adapter->hw;
2153	struct net_device *netdev = adapter->netdev;
2154	u32 rctl;
2155
2156	e1000_pci_clear_mwi(hw);
2157
2158	rctl = er32(RCTL);
2159	rctl |= E1000_RCTL_RST;
2160	ew32(RCTL, rctl);
2161	E1000_WRITE_FLUSH();
2162	mdelay(5);
2163
2164	if (netif_running(netdev))
2165		e1000_clean_all_rx_rings(adapter);
2166}
2167
2168static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2169{
2170	struct e1000_hw *hw = &adapter->hw;
2171	struct net_device *netdev = adapter->netdev;
2172	u32 rctl;
2173
2174	rctl = er32(RCTL);
2175	rctl &= ~E1000_RCTL_RST;
2176	ew32(RCTL, rctl);
2177	E1000_WRITE_FLUSH();
2178	mdelay(5);
2179
2180	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2181		e1000_pci_set_mwi(hw);
2182
2183	if (netif_running(netdev)) {
2184		/* No need to loop, because 82542 supports only 1 queue */
2185		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2186		e1000_configure_rx(adapter);
2187		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2188	}
2189}
2190
2191/**
2192 * e1000_set_mac - Change the Ethernet Address of the NIC
2193 * @netdev: network interface device structure
2194 * @p: pointer to an address structure
2195 *
2196 * Returns 0 on success, negative on failure
2197 **/
 
2198static int e1000_set_mac(struct net_device *netdev, void *p)
2199{
2200	struct e1000_adapter *adapter = netdev_priv(netdev);
2201	struct e1000_hw *hw = &adapter->hw;
2202	struct sockaddr *addr = p;
2203
2204	if (!is_valid_ether_addr(addr->sa_data))
2205		return -EADDRNOTAVAIL;
2206
2207	/* 82542 2.0 needs to be in reset to write receive address registers */
2208
2209	if (hw->mac_type == e1000_82542_rev2_0)
2210		e1000_enter_82542_rst(adapter);
2211
2212	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2213	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2214
2215	e1000_rar_set(hw, hw->mac_addr, 0);
2216
2217	if (hw->mac_type == e1000_82542_rev2_0)
2218		e1000_leave_82542_rst(adapter);
2219
2220	return 0;
2221}
2222
2223/**
2224 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2225 * @netdev: network interface device structure
2226 *
2227 * The set_rx_mode entry point is called whenever the unicast or multicast
2228 * address lists or the network interface flags are updated. This routine is
2229 * responsible for configuring the hardware for proper unicast, multicast,
2230 * promiscuous mode, and all-multi behavior.
2231 **/
 
2232static void e1000_set_rx_mode(struct net_device *netdev)
2233{
2234	struct e1000_adapter *adapter = netdev_priv(netdev);
2235	struct e1000_hw *hw = &adapter->hw;
2236	struct netdev_hw_addr *ha;
2237	bool use_uc = false;
2238	u32 rctl;
2239	u32 hash_value;
2240	int i, rar_entries = E1000_RAR_ENTRIES;
2241	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2242	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2243
2244	if (!mcarray)
 
2245		return;
 
2246
2247	/* Check for Promiscuous and All Multicast modes */
2248
2249	rctl = er32(RCTL);
2250
2251	if (netdev->flags & IFF_PROMISC) {
2252		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2253		rctl &= ~E1000_RCTL_VFE;
2254	} else {
2255		if (netdev->flags & IFF_ALLMULTI)
2256			rctl |= E1000_RCTL_MPE;
2257		else
2258			rctl &= ~E1000_RCTL_MPE;
2259		/* Enable VLAN filter if there is a VLAN */
2260		if (e1000_vlan_used(adapter))
2261			rctl |= E1000_RCTL_VFE;
2262	}
2263
2264	if (netdev_uc_count(netdev) > rar_entries - 1) {
2265		rctl |= E1000_RCTL_UPE;
2266	} else if (!(netdev->flags & IFF_PROMISC)) {
2267		rctl &= ~E1000_RCTL_UPE;
2268		use_uc = true;
2269	}
2270
2271	ew32(RCTL, rctl);
2272
2273	/* 82542 2.0 needs to be in reset to write receive address registers */
2274
2275	if (hw->mac_type == e1000_82542_rev2_0)
2276		e1000_enter_82542_rst(adapter);
2277
2278	/* load the first 14 addresses into the exact filters 1-14. Unicast
2279	 * addresses take precedence to avoid disabling unicast filtering
2280	 * when possible.
2281	 *
2282	 * RAR 0 is used for the station MAC address
2283	 * if there are not 14 addresses, go ahead and clear the filters
2284	 */
2285	i = 1;
2286	if (use_uc)
2287		netdev_for_each_uc_addr(ha, netdev) {
2288			if (i == rar_entries)
2289				break;
2290			e1000_rar_set(hw, ha->addr, i++);
2291		}
2292
2293	netdev_for_each_mc_addr(ha, netdev) {
2294		if (i == rar_entries) {
2295			/* load any remaining addresses into the hash table */
2296			u32 hash_reg, hash_bit, mta;
2297			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2298			hash_reg = (hash_value >> 5) & 0x7F;
2299			hash_bit = hash_value & 0x1F;
2300			mta = (1 << hash_bit);
2301			mcarray[hash_reg] |= mta;
2302		} else {
2303			e1000_rar_set(hw, ha->addr, i++);
2304		}
2305	}
2306
2307	for (; i < rar_entries; i++) {
2308		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2309		E1000_WRITE_FLUSH();
2310		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2311		E1000_WRITE_FLUSH();
2312	}
2313
2314	/* write the hash table completely, write from bottom to avoid
2315	 * both stupid write combining chipsets, and flushing each write
2316	 */
2317	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2318		/* If we are on an 82544 has an errata where writing odd
 
2319		 * offsets overwrites the previous even offset, but writing
2320		 * backwards over the range solves the issue by always
2321		 * writing the odd offset first
2322		 */
2323		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2324	}
2325	E1000_WRITE_FLUSH();
2326
2327	if (hw->mac_type == e1000_82542_rev2_0)
2328		e1000_leave_82542_rst(adapter);
2329
2330	kfree(mcarray);
2331}
2332
2333/**
2334 * e1000_update_phy_info_task - get phy info
2335 * @work: work struct contained inside adapter struct
2336 *
2337 * Need to wait a few seconds after link up to get diagnostic information from
2338 * the phy
2339 */
2340static void e1000_update_phy_info_task(struct work_struct *work)
2341{
2342	struct e1000_adapter *adapter = container_of(work,
2343						     struct e1000_adapter,
2344						     phy_info_task.work);
2345
 
 
2346	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
 
2347}
2348
2349/**
2350 * e1000_82547_tx_fifo_stall_task - task to complete work
2351 * @work: work struct contained inside adapter struct
2352 **/
2353static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2354{
2355	struct e1000_adapter *adapter = container_of(work,
2356						     struct e1000_adapter,
2357						     fifo_stall_task.work);
2358	struct e1000_hw *hw = &adapter->hw;
2359	struct net_device *netdev = adapter->netdev;
2360	u32 tctl;
2361
 
 
 
2362	if (atomic_read(&adapter->tx_fifo_stall)) {
2363		if ((er32(TDT) == er32(TDH)) &&
2364		   (er32(TDFT) == er32(TDFH)) &&
2365		   (er32(TDFTS) == er32(TDFHS))) {
2366			tctl = er32(TCTL);
2367			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2368			ew32(TDFT, adapter->tx_head_addr);
2369			ew32(TDFH, adapter->tx_head_addr);
2370			ew32(TDFTS, adapter->tx_head_addr);
2371			ew32(TDFHS, adapter->tx_head_addr);
2372			ew32(TCTL, tctl);
2373			E1000_WRITE_FLUSH();
2374
2375			adapter->tx_fifo_head = 0;
2376			atomic_set(&adapter->tx_fifo_stall, 0);
2377			netif_wake_queue(netdev);
2378		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2379			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2380		}
2381	}
 
2382}
2383
2384bool e1000_has_link(struct e1000_adapter *adapter)
2385{
2386	struct e1000_hw *hw = &adapter->hw;
2387	bool link_active = false;
2388
2389	/* get_link_status is set on LSC (link status) interrupt or rx
2390	 * sequence error interrupt (except on intel ce4100).
2391	 * get_link_status will stay false until the
2392	 * e1000_check_for_link establishes link for copper adapters
2393	 * ONLY
2394	 */
2395	switch (hw->media_type) {
2396	case e1000_media_type_copper:
2397		if (hw->mac_type == e1000_ce4100)
2398			hw->get_link_status = 1;
2399		if (hw->get_link_status) {
2400			e1000_check_for_link(hw);
2401			link_active = !hw->get_link_status;
2402		} else {
2403			link_active = true;
2404		}
2405		break;
2406	case e1000_media_type_fiber:
2407		e1000_check_for_link(hw);
2408		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2409		break;
2410	case e1000_media_type_internal_serdes:
2411		e1000_check_for_link(hw);
2412		link_active = hw->serdes_has_link;
2413		break;
2414	default:
2415		break;
2416	}
2417
2418	return link_active;
2419}
2420
2421/**
2422 * e1000_watchdog - work function
2423 * @work: work struct contained inside adapter struct
2424 **/
2425static void e1000_watchdog(struct work_struct *work)
2426{
2427	struct e1000_adapter *adapter = container_of(work,
2428						     struct e1000_adapter,
2429						     watchdog_task.work);
2430	struct e1000_hw *hw = &adapter->hw;
2431	struct net_device *netdev = adapter->netdev;
2432	struct e1000_tx_ring *txdr = adapter->tx_ring;
2433	u32 link, tctl;
2434
 
 
 
 
2435	link = e1000_has_link(adapter);
2436	if ((netif_carrier_ok(netdev)) && link)
2437		goto link_up;
2438
2439	if (link) {
2440		if (!netif_carrier_ok(netdev)) {
2441			u32 ctrl;
 
2442			/* update snapshot of PHY registers on LSC */
2443			e1000_get_speed_and_duplex(hw,
2444						   &adapter->link_speed,
2445						   &adapter->link_duplex);
2446
2447			ctrl = er32(CTRL);
2448			pr_info("%s NIC Link is Up %d Mbps %s, "
2449				"Flow Control: %s\n",
2450				netdev->name,
2451				adapter->link_speed,
2452				adapter->link_duplex == FULL_DUPLEX ?
2453				"Full Duplex" : "Half Duplex",
2454				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2455				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2456				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2457				E1000_CTRL_TFCE) ? "TX" : "None")));
2458
2459			/* adjust timeout factor according to speed/duplex */
2460			adapter->tx_timeout_factor = 1;
2461			switch (adapter->link_speed) {
2462			case SPEED_10:
 
2463				adapter->tx_timeout_factor = 16;
2464				break;
2465			case SPEED_100:
 
2466				/* maybe add some timeout factor ? */
2467				break;
2468			}
2469
2470			/* enable transmits in the hardware */
2471			tctl = er32(TCTL);
2472			tctl |= E1000_TCTL_EN;
2473			ew32(TCTL, tctl);
2474
2475			netif_carrier_on(netdev);
2476			if (!test_bit(__E1000_DOWN, &adapter->flags))
2477				schedule_delayed_work(&adapter->phy_info_task,
2478						      2 * HZ);
2479			adapter->smartspeed = 0;
2480		}
2481	} else {
2482		if (netif_carrier_ok(netdev)) {
2483			adapter->link_speed = 0;
2484			adapter->link_duplex = 0;
2485			pr_info("%s NIC Link is Down\n",
2486				netdev->name);
2487			netif_carrier_off(netdev);
2488
2489			if (!test_bit(__E1000_DOWN, &adapter->flags))
2490				schedule_delayed_work(&adapter->phy_info_task,
2491						      2 * HZ);
2492		}
2493
2494		e1000_smartspeed(adapter);
2495	}
2496
2497link_up:
2498	e1000_update_stats(adapter);
2499
2500	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2501	adapter->tpt_old = adapter->stats.tpt;
2502	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2503	adapter->colc_old = adapter->stats.colc;
2504
2505	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2506	adapter->gorcl_old = adapter->stats.gorcl;
2507	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2508	adapter->gotcl_old = adapter->stats.gotcl;
2509
2510	e1000_update_adaptive(hw);
2511
2512	if (!netif_carrier_ok(netdev)) {
2513		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2514			/* We've lost link, so the controller stops DMA,
2515			 * but we've got queued Tx work that's never going
2516			 * to get done, so reset controller to flush Tx.
2517			 * (Do the reset outside of interrupt context).
2518			 */
2519			adapter->tx_timeout_count++;
2520			schedule_work(&adapter->reset_task);
2521			/* exit immediately since reset is imminent */
2522			return;
2523		}
2524	}
2525
2526	/* Simple mode for Interrupt Throttle Rate (ITR) */
2527	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2528		/* Symmetric Tx/Rx gets a reduced ITR=2000;
 
2529		 * Total asymmetrical Tx or Rx gets ITR=8000;
2530		 * everyone else is between 2000-8000.
2531		 */
2532		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2533		u32 dif = (adapter->gotcl > adapter->gorcl ?
2534			    adapter->gotcl - adapter->gorcl :
2535			    adapter->gorcl - adapter->gotcl) / 10000;
2536		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2537
2538		ew32(ITR, 1000000000 / (itr * 256));
2539	}
2540
2541	/* Cause software interrupt to ensure rx ring is cleaned */
2542	ew32(ICS, E1000_ICS_RXDMT0);
2543
2544	/* Force detection of hung controller every watchdog period */
2545	adapter->detect_tx_hung = true;
2546
2547	/* Reschedule the task */
2548	if (!test_bit(__E1000_DOWN, &adapter->flags))
2549		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
 
 
 
2550}
2551
2552enum latency_range {
2553	lowest_latency = 0,
2554	low_latency = 1,
2555	bulk_latency = 2,
2556	latency_invalid = 255
2557};
2558
2559/**
2560 * e1000_update_itr - update the dynamic ITR value based on statistics
2561 * @adapter: pointer to adapter
2562 * @itr_setting: current adapter->itr
2563 * @packets: the number of packets during this measurement interval
2564 * @bytes: the number of bytes during this measurement interval
2565 *
2566 *      Stores a new ITR value based on packets and byte
2567 *      counts during the last interrupt.  The advantage of per interrupt
2568 *      computation is faster updates and more accurate ITR for the current
2569 *      traffic pattern.  Constants in this function were computed
2570 *      based on theoretical maximum wire speed and thresholds were set based
2571 *      on testing data as well as attempting to minimize response time
2572 *      while increasing bulk throughput.
2573 *      this functionality is controlled by the InterruptThrottleRate module
2574 *      parameter (see e1000_param.c)
2575 **/
2576static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2577				     u16 itr_setting, int packets, int bytes)
2578{
2579	unsigned int retval = itr_setting;
2580	struct e1000_hw *hw = &adapter->hw;
2581
2582	if (unlikely(hw->mac_type < e1000_82540))
2583		goto update_itr_done;
2584
2585	if (packets == 0)
2586		goto update_itr_done;
2587
2588	switch (itr_setting) {
2589	case lowest_latency:
2590		/* jumbo frames get bulk treatment*/
2591		if (bytes/packets > 8000)
2592			retval = bulk_latency;
2593		else if ((packets < 5) && (bytes > 512))
2594			retval = low_latency;
2595		break;
2596	case low_latency:  /* 50 usec aka 20000 ints/s */
2597		if (bytes > 10000) {
2598			/* jumbo frames need bulk latency setting */
2599			if (bytes/packets > 8000)
2600				retval = bulk_latency;
2601			else if ((packets < 10) || ((bytes/packets) > 1200))
2602				retval = bulk_latency;
2603			else if ((packets > 35))
2604				retval = lowest_latency;
2605		} else if (bytes/packets > 2000)
2606			retval = bulk_latency;
2607		else if (packets <= 2 && bytes < 512)
2608			retval = lowest_latency;
2609		break;
2610	case bulk_latency: /* 250 usec aka 4000 ints/s */
2611		if (bytes > 25000) {
2612			if (packets > 35)
2613				retval = low_latency;
2614		} else if (bytes < 6000) {
2615			retval = low_latency;
2616		}
2617		break;
2618	}
2619
2620update_itr_done:
2621	return retval;
2622}
2623
2624static void e1000_set_itr(struct e1000_adapter *adapter)
2625{
2626	struct e1000_hw *hw = &adapter->hw;
2627	u16 current_itr;
2628	u32 new_itr = adapter->itr;
2629
2630	if (unlikely(hw->mac_type < e1000_82540))
2631		return;
2632
2633	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2634	if (unlikely(adapter->link_speed != SPEED_1000)) {
 
2635		new_itr = 4000;
2636		goto set_itr_now;
2637	}
2638
2639	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2640					   adapter->total_tx_packets,
2641					   adapter->total_tx_bytes);
 
2642	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2643	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2644		adapter->tx_itr = low_latency;
2645
2646	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2647					   adapter->total_rx_packets,
2648					   adapter->total_rx_bytes);
 
2649	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2650	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2651		adapter->rx_itr = low_latency;
2652
2653	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2654
2655	switch (current_itr) {
2656	/* counts and packets in update_itr are dependent on these numbers */
2657	case lowest_latency:
2658		new_itr = 70000;
2659		break;
2660	case low_latency:
2661		new_itr = 20000; /* aka hwitr = ~200 */
2662		break;
2663	case bulk_latency:
2664		new_itr = 4000;
2665		break;
2666	default:
2667		break;
2668	}
2669
2670set_itr_now:
2671	if (new_itr != adapter->itr) {
2672		/* this attempts to bias the interrupt rate towards Bulk
2673		 * by adding intermediate steps when interrupt rate is
2674		 * increasing
2675		 */
2676		new_itr = new_itr > adapter->itr ?
2677			  min(adapter->itr + (new_itr >> 2), new_itr) :
2678			  new_itr;
2679		adapter->itr = new_itr;
2680		ew32(ITR, 1000000000 / (new_itr * 256));
2681	}
2682}
2683
2684#define E1000_TX_FLAGS_CSUM		0x00000001
2685#define E1000_TX_FLAGS_VLAN		0x00000002
2686#define E1000_TX_FLAGS_TSO		0x00000004
2687#define E1000_TX_FLAGS_IPV4		0x00000008
2688#define E1000_TX_FLAGS_NO_FCS		0x00000010
2689#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2690#define E1000_TX_FLAGS_VLAN_SHIFT	16
2691
2692static int e1000_tso(struct e1000_adapter *adapter,
2693		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2694		     __be16 protocol)
2695{
2696	struct e1000_context_desc *context_desc;
2697	struct e1000_tx_buffer *buffer_info;
2698	unsigned int i;
2699	u32 cmd_length = 0;
2700	u16 ipcse = 0, tucse, mss;
2701	u8 ipcss, ipcso, tucss, tucso, hdr_len;
 
2702
2703	if (skb_is_gso(skb)) {
2704		int err;
2705
2706		err = skb_cow_head(skb, 0);
2707		if (err < 0)
2708			return err;
2709
2710		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2711		mss = skb_shinfo(skb)->gso_size;
2712		if (protocol == htons(ETH_P_IP)) {
2713			struct iphdr *iph = ip_hdr(skb);
2714			iph->tot_len = 0;
2715			iph->check = 0;
2716			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2717								 iph->daddr, 0,
2718								 IPPROTO_TCP,
2719								 0);
2720			cmd_length = E1000_TXD_CMD_IP;
2721			ipcse = skb_transport_offset(skb) - 1;
2722		} else if (skb_is_gso_v6(skb)) {
2723			tcp_v6_gso_csum_prep(skb);
 
 
 
 
2724			ipcse = 0;
2725		}
2726		ipcss = skb_network_offset(skb);
2727		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2728		tucss = skb_transport_offset(skb);
2729		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2730		tucse = 0;
2731
2732		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2733			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2734
2735		i = tx_ring->next_to_use;
2736		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2737		buffer_info = &tx_ring->buffer_info[i];
2738
2739		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2740		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2741		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2742		context_desc->upper_setup.tcp_fields.tucss = tucss;
2743		context_desc->upper_setup.tcp_fields.tucso = tucso;
2744		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2745		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2746		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2747		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2748
2749		buffer_info->time_stamp = jiffies;
2750		buffer_info->next_to_watch = i;
2751
2752		if (++i == tx_ring->count)
2753			i = 0;
2754
2755		tx_ring->next_to_use = i;
2756
2757		return true;
2758	}
2759	return false;
2760}
2761
2762static bool e1000_tx_csum(struct e1000_adapter *adapter,
2763			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2764			  __be16 protocol)
2765{
2766	struct e1000_context_desc *context_desc;
2767	struct e1000_tx_buffer *buffer_info;
2768	unsigned int i;
2769	u8 css;
2770	u32 cmd_len = E1000_TXD_CMD_DEXT;
2771
2772	if (skb->ip_summed != CHECKSUM_PARTIAL)
2773		return false;
2774
2775	switch (protocol) {
2776	case cpu_to_be16(ETH_P_IP):
2777		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2778			cmd_len |= E1000_TXD_CMD_TCP;
2779		break;
2780	case cpu_to_be16(ETH_P_IPV6):
2781		/* XXX not handling all IPV6 headers */
2782		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2783			cmd_len |= E1000_TXD_CMD_TCP;
2784		break;
2785	default:
2786		if (unlikely(net_ratelimit()))
2787			e_warn(drv, "checksum_partial proto=%x!\n",
2788			       skb->protocol);
2789		break;
2790	}
2791
2792	css = skb_checksum_start_offset(skb);
2793
2794	i = tx_ring->next_to_use;
2795	buffer_info = &tx_ring->buffer_info[i];
2796	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2797
2798	context_desc->lower_setup.ip_config = 0;
2799	context_desc->upper_setup.tcp_fields.tucss = css;
2800	context_desc->upper_setup.tcp_fields.tucso =
2801		css + skb->csum_offset;
2802	context_desc->upper_setup.tcp_fields.tucse = 0;
2803	context_desc->tcp_seg_setup.data = 0;
2804	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2805
2806	buffer_info->time_stamp = jiffies;
2807	buffer_info->next_to_watch = i;
2808
2809	if (unlikely(++i == tx_ring->count))
2810		i = 0;
2811
2812	tx_ring->next_to_use = i;
2813
2814	return true;
2815}
2816
2817#define E1000_MAX_TXD_PWR	12
2818#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2819
2820static int e1000_tx_map(struct e1000_adapter *adapter,
2821			struct e1000_tx_ring *tx_ring,
2822			struct sk_buff *skb, unsigned int first,
2823			unsigned int max_per_txd, unsigned int nr_frags,
2824			unsigned int mss)
2825{
2826	struct e1000_hw *hw = &adapter->hw;
2827	struct pci_dev *pdev = adapter->pdev;
2828	struct e1000_tx_buffer *buffer_info;
2829	unsigned int len = skb_headlen(skb);
2830	unsigned int offset = 0, size, count = 0, i;
2831	unsigned int f, bytecount, segs;
2832
2833	i = tx_ring->next_to_use;
2834
2835	while (len) {
2836		buffer_info = &tx_ring->buffer_info[i];
2837		size = min(len, max_per_txd);
2838		/* Workaround for Controller erratum --
2839		 * descriptor for non-tso packet in a linear SKB that follows a
2840		 * tso gets written back prematurely before the data is fully
2841		 * DMA'd to the controller
2842		 */
2843		if (!skb->data_len && tx_ring->last_tx_tso &&
2844		    !skb_is_gso(skb)) {
2845			tx_ring->last_tx_tso = false;
2846			size -= 4;
2847		}
2848
2849		/* Workaround for premature desc write-backs
2850		 * in TSO mode.  Append 4-byte sentinel desc
2851		 */
2852		if (unlikely(mss && !nr_frags && size == len && size > 8))
2853			size -= 4;
2854		/* work-around for errata 10 and it applies
2855		 * to all controllers in PCI-X mode
2856		 * The fix is to make sure that the first descriptor of a
2857		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2858		 */
2859		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2860			     (size > 2015) && count == 0))
2861			size = 2015;
2862
2863		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2864		 * terminating buffers within evenly-aligned dwords.
2865		 */
2866		if (unlikely(adapter->pcix_82544 &&
2867		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2868		   size > 4))
2869			size -= 4;
2870
2871		buffer_info->length = size;
2872		/* set time_stamp *before* dma to help avoid a possible race */
2873		buffer_info->time_stamp = jiffies;
2874		buffer_info->mapped_as_page = false;
2875		buffer_info->dma = dma_map_single(&pdev->dev,
2876						  skb->data + offset,
2877						  size, DMA_TO_DEVICE);
2878		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2879			goto dma_error;
2880		buffer_info->next_to_watch = i;
2881
2882		len -= size;
2883		offset += size;
2884		count++;
2885		if (len) {
2886			i++;
2887			if (unlikely(i == tx_ring->count))
2888				i = 0;
2889		}
2890	}
2891
2892	for (f = 0; f < nr_frags; f++) {
2893		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2894
 
2895		len = skb_frag_size(frag);
2896		offset = 0;
2897
2898		while (len) {
2899			unsigned long bufend;
2900			i++;
2901			if (unlikely(i == tx_ring->count))
2902				i = 0;
2903
2904			buffer_info = &tx_ring->buffer_info[i];
2905			size = min(len, max_per_txd);
2906			/* Workaround for premature desc write-backs
2907			 * in TSO mode.  Append 4-byte sentinel desc
2908			 */
2909			if (unlikely(mss && f == (nr_frags-1) &&
2910			    size == len && size > 8))
2911				size -= 4;
2912			/* Workaround for potential 82544 hang in PCI-X.
2913			 * Avoid terminating buffers within evenly-aligned
2914			 * dwords.
2915			 */
2916			bufend = (unsigned long)
2917				page_to_phys(skb_frag_page(frag));
2918			bufend += offset + size - 1;
2919			if (unlikely(adapter->pcix_82544 &&
2920				     !(bufend & 4) &&
2921				     size > 4))
2922				size -= 4;
2923
2924			buffer_info->length = size;
2925			buffer_info->time_stamp = jiffies;
2926			buffer_info->mapped_as_page = true;
2927			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2928						offset, size, DMA_TO_DEVICE);
2929			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2930				goto dma_error;
2931			buffer_info->next_to_watch = i;
2932
2933			len -= size;
2934			offset += size;
2935			count++;
2936		}
2937	}
2938
2939	segs = skb_shinfo(skb)->gso_segs ?: 1;
2940	/* multiply data chunks by size of headers */
2941	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2942
2943	tx_ring->buffer_info[i].skb = skb;
2944	tx_ring->buffer_info[i].segs = segs;
2945	tx_ring->buffer_info[i].bytecount = bytecount;
2946	tx_ring->buffer_info[first].next_to_watch = i;
2947
2948	return count;
2949
2950dma_error:
2951	dev_err(&pdev->dev, "TX DMA map failed\n");
2952	buffer_info->dma = 0;
2953	if (count)
2954		count--;
2955
2956	while (count--) {
2957		if (i == 0)
2958			i += tx_ring->count;
2959		i--;
2960		buffer_info = &tx_ring->buffer_info[i];
2961		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2962	}
2963
2964	return 0;
2965}
2966
2967static void e1000_tx_queue(struct e1000_adapter *adapter,
2968			   struct e1000_tx_ring *tx_ring, int tx_flags,
2969			   int count)
2970{
 
2971	struct e1000_tx_desc *tx_desc = NULL;
2972	struct e1000_tx_buffer *buffer_info;
2973	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2974	unsigned int i;
2975
2976	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2977		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2978			     E1000_TXD_CMD_TSE;
2979		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2980
2981		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2982			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2983	}
2984
2985	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2986		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2987		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2988	}
2989
2990	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2991		txd_lower |= E1000_TXD_CMD_VLE;
2992		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2993	}
2994
2995	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2996		txd_lower &= ~(E1000_TXD_CMD_IFCS);
2997
2998	i = tx_ring->next_to_use;
2999
3000	while (count--) {
3001		buffer_info = &tx_ring->buffer_info[i];
3002		tx_desc = E1000_TX_DESC(*tx_ring, i);
3003		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3004		tx_desc->lower.data =
3005			cpu_to_le32(txd_lower | buffer_info->length);
3006		tx_desc->upper.data = cpu_to_le32(txd_upper);
3007		if (unlikely(++i == tx_ring->count))
3008			i = 0;
3009	}
3010
3011	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3012
3013	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3014	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3015		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3016
3017	/* Force memory writes to complete before letting h/w
3018	 * know there are new descriptors to fetch.  (Only
3019	 * applicable for weak-ordered memory model archs,
3020	 * such as IA-64).
3021	 */
3022	dma_wmb();
3023
3024	tx_ring->next_to_use = i;
 
 
 
 
3025}
3026
3027/* 82547 workaround to avoid controller hang in half-duplex environment.
 
3028 * The workaround is to avoid queuing a large packet that would span
3029 * the internal Tx FIFO ring boundary by notifying the stack to resend
3030 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3031 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3032 * to the beginning of the Tx FIFO.
3033 */
3034
3035#define E1000_FIFO_HDR			0x10
3036#define E1000_82547_PAD_LEN		0x3E0
3037
3038static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3039				       struct sk_buff *skb)
3040{
3041	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3042	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3043
3044	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3045
3046	if (adapter->link_duplex != HALF_DUPLEX)
3047		goto no_fifo_stall_required;
3048
3049	if (atomic_read(&adapter->tx_fifo_stall))
3050		return 1;
3051
3052	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3053		atomic_set(&adapter->tx_fifo_stall, 1);
3054		return 1;
3055	}
3056
3057no_fifo_stall_required:
3058	adapter->tx_fifo_head += skb_fifo_len;
3059	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3060		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3061	return 0;
3062}
3063
3064static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3065{
3066	struct e1000_adapter *adapter = netdev_priv(netdev);
3067	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3068
3069	netif_stop_queue(netdev);
3070	/* Herbert's original patch had:
3071	 *  smp_mb__after_netif_stop_queue();
3072	 * but since that doesn't exist yet, just open code it.
3073	 */
3074	smp_mb();
3075
3076	/* We need to check again in a case another CPU has just
3077	 * made room available.
3078	 */
3079	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3080		return -EBUSY;
3081
3082	/* A reprieve! */
3083	netif_start_queue(netdev);
3084	++adapter->restart_queue;
3085	return 0;
3086}
3087
3088static int e1000_maybe_stop_tx(struct net_device *netdev,
3089			       struct e1000_tx_ring *tx_ring, int size)
3090{
3091	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3092		return 0;
3093	return __e1000_maybe_stop_tx(netdev, size);
3094}
3095
3096#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3097static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3098				    struct net_device *netdev)
3099{
3100	struct e1000_adapter *adapter = netdev_priv(netdev);
3101	struct e1000_hw *hw = &adapter->hw;
3102	struct e1000_tx_ring *tx_ring;
3103	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3104	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3105	unsigned int tx_flags = 0;
3106	unsigned int len = skb_headlen(skb);
3107	unsigned int nr_frags;
3108	unsigned int mss;
3109	int count = 0;
3110	int tso;
3111	unsigned int f;
3112	__be16 protocol = vlan_get_protocol(skb);
3113
3114	/* This goes back to the question of how to logically map a Tx queue
3115	 * to a flow.  Right now, performance is impacted slightly negatively
3116	 * if using multiple Tx queues.  If the stack breaks away from a
3117	 * single qdisc implementation, we can look at this again.
3118	 */
3119	tx_ring = adapter->tx_ring;
3120
3121	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3122	 * packets may get corrupted during padding by HW.
3123	 * To WA this issue, pad all small packets manually.
3124	 */
3125	if (eth_skb_pad(skb))
3126		return NETDEV_TX_OK;
 
3127
3128	mss = skb_shinfo(skb)->gso_size;
3129	/* The controller does a simple calculation to
3130	 * make sure there is enough room in the FIFO before
3131	 * initiating the DMA for each buffer.  The calc is:
3132	 * 4 = ceil(buffer len/mss).  To make sure we don't
3133	 * overrun the FIFO, adjust the max buffer len if mss
3134	 * drops.
3135	 */
3136	if (mss) {
3137		u8 hdr_len;
3138		max_per_txd = min(mss << 2, max_per_txd);
3139		max_txd_pwr = fls(max_per_txd) - 1;
3140
3141		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3142		if (skb->data_len && hdr_len == len) {
3143			switch (hw->mac_type) {
3144			case e1000_82544: {
3145				unsigned int pull_size;
3146
3147				/* Make sure we have room to chop off 4 bytes,
3148				 * and that the end alignment will work out to
3149				 * this hardware's requirements
3150				 * NOTE: this is a TSO only workaround
3151				 * if end byte alignment not correct move us
3152				 * into the next dword
3153				 */
3154				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3155				    & 4)
3156					break;
 
3157				pull_size = min((unsigned int)4, skb->data_len);
3158				if (!__pskb_pull_tail(skb, pull_size)) {
3159					e_err(drv, "__pskb_pull_tail "
3160					      "failed.\n");
3161					dev_kfree_skb_any(skb);
3162					return NETDEV_TX_OK;
3163				}
3164				len = skb_headlen(skb);
3165				break;
3166			}
3167			default:
3168				/* do nothing */
3169				break;
3170			}
3171		}
3172	}
3173
3174	/* reserve a descriptor for the offload context */
3175	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3176		count++;
3177	count++;
3178
3179	/* Controller Erratum workaround */
3180	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3181		count++;
3182
3183	count += TXD_USE_COUNT(len, max_txd_pwr);
3184
3185	if (adapter->pcix_82544)
3186		count++;
3187
3188	/* work-around for errata 10 and it applies to all controllers
3189	 * in PCI-X mode, so add one more descriptor to the count
3190	 */
3191	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3192			(len > 2015)))
3193		count++;
3194
3195	nr_frags = skb_shinfo(skb)->nr_frags;
3196	for (f = 0; f < nr_frags; f++)
3197		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3198				       max_txd_pwr);
3199	if (adapter->pcix_82544)
3200		count += nr_frags;
3201
3202	/* need: count + 2 desc gap to keep tail from touching
3203	 * head, otherwise try next time
3204	 */
3205	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3206		return NETDEV_TX_BUSY;
3207
3208	if (unlikely((hw->mac_type == e1000_82547) &&
3209		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3210		netif_stop_queue(netdev);
3211		if (!test_bit(__E1000_DOWN, &adapter->flags))
3212			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3213		return NETDEV_TX_BUSY;
3214	}
3215
3216	if (skb_vlan_tag_present(skb)) {
3217		tx_flags |= E1000_TX_FLAGS_VLAN;
3218		tx_flags |= (skb_vlan_tag_get(skb) <<
3219			     E1000_TX_FLAGS_VLAN_SHIFT);
3220	}
3221
3222	first = tx_ring->next_to_use;
3223
3224	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3225	if (tso < 0) {
3226		dev_kfree_skb_any(skb);
3227		return NETDEV_TX_OK;
3228	}
3229
3230	if (likely(tso)) {
3231		if (likely(hw->mac_type != e1000_82544))
3232			tx_ring->last_tx_tso = true;
3233		tx_flags |= E1000_TX_FLAGS_TSO;
3234	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3235		tx_flags |= E1000_TX_FLAGS_CSUM;
3236
3237	if (protocol == htons(ETH_P_IP))
3238		tx_flags |= E1000_TX_FLAGS_IPV4;
3239
3240	if (unlikely(skb->no_fcs))
3241		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3242
3243	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3244			     nr_frags, mss);
3245
3246	if (count) {
3247		/* The descriptors needed is higher than other Intel drivers
3248		 * due to a number of workarounds.  The breakdown is below:
3249		 * Data descriptors: MAX_SKB_FRAGS + 1
3250		 * Context Descriptor: 1
3251		 * Keep head from touching tail: 2
3252		 * Workarounds: 3
3253		 */
3254		int desc_needed = MAX_SKB_FRAGS + 7;
3255
3256		netdev_sent_queue(netdev, skb->len);
3257		skb_tx_timestamp(skb);
3258
3259		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3260
3261		/* 82544 potentially requires twice as many data descriptors
3262		 * in order to guarantee buffers don't end on evenly-aligned
3263		 * dwords
3264		 */
3265		if (adapter->pcix_82544)
3266			desc_needed += MAX_SKB_FRAGS + 1;
3267
3268		/* Make sure there is space in the ring for the next send. */
3269		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3270
3271		if (!netdev_xmit_more() ||
3272		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3273			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3274		}
3275	} else {
3276		dev_kfree_skb_any(skb);
3277		tx_ring->buffer_info[first].time_stamp = 0;
3278		tx_ring->next_to_use = first;
3279	}
3280
3281	return NETDEV_TX_OK;
3282}
3283
3284#define NUM_REGS 38 /* 1 based count */
3285static void e1000_regdump(struct e1000_adapter *adapter)
3286{
3287	struct e1000_hw *hw = &adapter->hw;
3288	u32 regs[NUM_REGS];
3289	u32 *regs_buff = regs;
3290	int i = 0;
3291
3292	static const char * const reg_name[] = {
3293		"CTRL",  "STATUS",
3294		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3295		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3296		"TIDV", "TXDCTL", "TADV", "TARC0",
3297		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3298		"TXDCTL1", "TARC1",
3299		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3300		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3301		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3302	};
3303
3304	regs_buff[0]  = er32(CTRL);
3305	regs_buff[1]  = er32(STATUS);
3306
3307	regs_buff[2]  = er32(RCTL);
3308	regs_buff[3]  = er32(RDLEN);
3309	regs_buff[4]  = er32(RDH);
3310	regs_buff[5]  = er32(RDT);
3311	regs_buff[6]  = er32(RDTR);
3312
3313	regs_buff[7]  = er32(TCTL);
3314	regs_buff[8]  = er32(TDBAL);
3315	regs_buff[9]  = er32(TDBAH);
3316	regs_buff[10] = er32(TDLEN);
3317	regs_buff[11] = er32(TDH);
3318	regs_buff[12] = er32(TDT);
3319	regs_buff[13] = er32(TIDV);
3320	regs_buff[14] = er32(TXDCTL);
3321	regs_buff[15] = er32(TADV);
3322	regs_buff[16] = er32(TARC0);
3323
3324	regs_buff[17] = er32(TDBAL1);
3325	regs_buff[18] = er32(TDBAH1);
3326	regs_buff[19] = er32(TDLEN1);
3327	regs_buff[20] = er32(TDH1);
3328	regs_buff[21] = er32(TDT1);
3329	regs_buff[22] = er32(TXDCTL1);
3330	regs_buff[23] = er32(TARC1);
3331	regs_buff[24] = er32(CTRL_EXT);
3332	regs_buff[25] = er32(ERT);
3333	regs_buff[26] = er32(RDBAL0);
3334	regs_buff[27] = er32(RDBAH0);
3335	regs_buff[28] = er32(TDFH);
3336	regs_buff[29] = er32(TDFT);
3337	regs_buff[30] = er32(TDFHS);
3338	regs_buff[31] = er32(TDFTS);
3339	regs_buff[32] = er32(TDFPC);
3340	regs_buff[33] = er32(RDFH);
3341	regs_buff[34] = er32(RDFT);
3342	regs_buff[35] = er32(RDFHS);
3343	regs_buff[36] = er32(RDFTS);
3344	regs_buff[37] = er32(RDFPC);
3345
3346	pr_info("Register dump\n");
3347	for (i = 0; i < NUM_REGS; i++)
3348		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3349}
3350
3351/*
3352 * e1000_dump: Print registers, tx ring and rx ring
3353 */
3354static void e1000_dump(struct e1000_adapter *adapter)
3355{
3356	/* this code doesn't handle multiple rings */
3357	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3358	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3359	int i;
3360
3361	if (!netif_msg_hw(adapter))
3362		return;
3363
3364	/* Print Registers */
3365	e1000_regdump(adapter);
3366
3367	/* transmit dump */
 
 
3368	pr_info("TX Desc ring0 dump\n");
3369
3370	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3371	 *
3372	 * Legacy Transmit Descriptor
3373	 *   +--------------------------------------------------------------+
3374	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3375	 *   +--------------------------------------------------------------+
3376	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3377	 *   +--------------------------------------------------------------+
3378	 *   63       48 47        36 35    32 31     24 23    16 15        0
3379	 *
3380	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3381	 *   63      48 47    40 39       32 31             16 15    8 7      0
3382	 *   +----------------------------------------------------------------+
3383	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3384	 *   +----------------------------------------------------------------+
3385	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3386	 *   +----------------------------------------------------------------+
3387	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3388	 *
3389	 * Extended Data Descriptor (DTYP=0x1)
3390	 *   +----------------------------------------------------------------+
3391	 * 0 |                     Buffer Address [63:0]                      |
3392	 *   +----------------------------------------------------------------+
3393	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3394	 *   +----------------------------------------------------------------+
3395	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3396	 */
3397	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3398	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3399
3400	if (!netif_msg_tx_done(adapter))
3401		goto rx_ring_summary;
3402
3403	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3404		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3405		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3406		struct my_u { __le64 a; __le64 b; };
3407		struct my_u *u = (struct my_u *)tx_desc;
3408		const char *type;
3409
3410		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3411			type = "NTC/U";
3412		else if (i == tx_ring->next_to_use)
3413			type = "NTU";
3414		else if (i == tx_ring->next_to_clean)
3415			type = "NTC";
3416		else
3417			type = "";
3418
3419		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3420			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3421			le64_to_cpu(u->a), le64_to_cpu(u->b),
3422			(u64)buffer_info->dma, buffer_info->length,
3423			buffer_info->next_to_watch,
3424			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3425	}
3426
3427rx_ring_summary:
3428	/* receive dump */
 
 
3429	pr_info("\nRX Desc ring dump\n");
3430
3431	/* Legacy Receive Descriptor Format
3432	 *
3433	 * +-----------------------------------------------------+
3434	 * |                Buffer Address [63:0]                |
3435	 * +-----------------------------------------------------+
3436	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3437	 * +-----------------------------------------------------+
3438	 * 63       48 47    40 39      32 31         16 15      0
3439	 */
3440	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3441
3442	if (!netif_msg_rx_status(adapter))
3443		goto exit;
3444
3445	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3446		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3447		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3448		struct my_u { __le64 a; __le64 b; };
3449		struct my_u *u = (struct my_u *)rx_desc;
3450		const char *type;
3451
3452		if (i == rx_ring->next_to_use)
3453			type = "NTU";
3454		else if (i == rx_ring->next_to_clean)
3455			type = "NTC";
3456		else
3457			type = "";
3458
3459		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3460			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3461			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3462	} /* for */
3463
3464	/* dump the descriptor caches */
3465	/* rx */
3466	pr_info("Rx descriptor cache in 64bit format\n");
3467	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3468		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3469			i,
3470			readl(adapter->hw.hw_addr + i+4),
3471			readl(adapter->hw.hw_addr + i),
3472			readl(adapter->hw.hw_addr + i+12),
3473			readl(adapter->hw.hw_addr + i+8));
3474	}
3475	/* tx */
3476	pr_info("Tx descriptor cache in 64bit format\n");
3477	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3478		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3479			i,
3480			readl(adapter->hw.hw_addr + i+4),
3481			readl(adapter->hw.hw_addr + i),
3482			readl(adapter->hw.hw_addr + i+12),
3483			readl(adapter->hw.hw_addr + i+8));
3484	}
3485exit:
3486	return;
3487}
3488
3489/**
3490 * e1000_tx_timeout - Respond to a Tx Hang
3491 * @netdev: network interface device structure
3492 * @txqueue: number of the Tx queue that hung (unused)
3493 **/
3494static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
 
3495{
3496	struct e1000_adapter *adapter = netdev_priv(netdev);
3497
3498	/* Do the reset outside of interrupt context */
3499	adapter->tx_timeout_count++;
3500	schedule_work(&adapter->reset_task);
3501}
3502
3503static void e1000_reset_task(struct work_struct *work)
3504{
3505	struct e1000_adapter *adapter =
3506		container_of(work, struct e1000_adapter, reset_task);
3507
 
 
3508	e_err(drv, "Reset adapter\n");
3509	e1000_reinit_locked(adapter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3510}
3511
3512/**
3513 * e1000_change_mtu - Change the Maximum Transfer Unit
3514 * @netdev: network interface device structure
3515 * @new_mtu: new value for maximum frame size
3516 *
3517 * Returns 0 on success, negative on failure
3518 **/
 
3519static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3520{
3521	struct e1000_adapter *adapter = netdev_priv(netdev);
3522	struct e1000_hw *hw = &adapter->hw;
3523	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
 
 
 
 
 
 
3524
3525	/* Adapter-specific max frame size limits. */
3526	switch (hw->mac_type) {
3527	case e1000_undefined ... e1000_82542_rev2_1:
3528		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3529			e_err(probe, "Jumbo Frames not supported.\n");
3530			return -EINVAL;
3531		}
3532		break;
3533	default:
3534		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3535		break;
3536	}
3537
3538	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3539		msleep(1);
3540	/* e1000_down has a dependency on max_frame_size */
3541	hw->max_frame_size = max_frame;
3542	if (netif_running(netdev)) {
3543		/* prevent buffers from being reallocated */
3544		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3545		e1000_down(adapter);
3546	}
3547
3548	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3549	 * means we reserve 2 more, this pushes us to allocate from the next
3550	 * larger slab size.
3551	 * i.e. RXBUFFER_2048 --> size-4096 slab
3552	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3553	 * fragmented skbs
3554	 */
3555
3556	if (max_frame <= E1000_RXBUFFER_2048)
3557		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3558	else
3559#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3560		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3561#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3562		adapter->rx_buffer_len = PAGE_SIZE;
3563#endif
3564
3565	/* adjust allocation if LPE protects us, and we aren't using SBP */
3566	if (!hw->tbi_compatibility_on &&
3567	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3568	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3569		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3570
3571	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3572		   netdev->mtu, new_mtu);
3573	netdev->mtu = new_mtu;
3574
3575	if (netif_running(netdev))
3576		e1000_up(adapter);
3577	else
3578		e1000_reset(adapter);
3579
3580	clear_bit(__E1000_RESETTING, &adapter->flags);
3581
3582	return 0;
3583}
3584
3585/**
3586 * e1000_update_stats - Update the board statistics counters
3587 * @adapter: board private structure
3588 **/
 
3589void e1000_update_stats(struct e1000_adapter *adapter)
3590{
3591	struct net_device *netdev = adapter->netdev;
3592	struct e1000_hw *hw = &adapter->hw;
3593	struct pci_dev *pdev = adapter->pdev;
3594	unsigned long flags;
3595	u16 phy_tmp;
3596
3597#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3598
3599	/* Prevent stats update while adapter is being reset, or if the pci
 
3600	 * connection is down.
3601	 */
3602	if (adapter->link_speed == 0)
3603		return;
3604	if (pci_channel_offline(pdev))
3605		return;
3606
3607	spin_lock_irqsave(&adapter->stats_lock, flags);
3608
3609	/* these counters are modified from e1000_tbi_adjust_stats,
3610	 * called from the interrupt context, so they must only
3611	 * be written while holding adapter->stats_lock
3612	 */
3613
3614	adapter->stats.crcerrs += er32(CRCERRS);
3615	adapter->stats.gprc += er32(GPRC);
3616	adapter->stats.gorcl += er32(GORCL);
3617	adapter->stats.gorch += er32(GORCH);
3618	adapter->stats.bprc += er32(BPRC);
3619	adapter->stats.mprc += er32(MPRC);
3620	adapter->stats.roc += er32(ROC);
3621
3622	adapter->stats.prc64 += er32(PRC64);
3623	adapter->stats.prc127 += er32(PRC127);
3624	adapter->stats.prc255 += er32(PRC255);
3625	adapter->stats.prc511 += er32(PRC511);
3626	adapter->stats.prc1023 += er32(PRC1023);
3627	adapter->stats.prc1522 += er32(PRC1522);
3628
3629	adapter->stats.symerrs += er32(SYMERRS);
3630	adapter->stats.mpc += er32(MPC);
3631	adapter->stats.scc += er32(SCC);
3632	adapter->stats.ecol += er32(ECOL);
3633	adapter->stats.mcc += er32(MCC);
3634	adapter->stats.latecol += er32(LATECOL);
3635	adapter->stats.dc += er32(DC);
3636	adapter->stats.sec += er32(SEC);
3637	adapter->stats.rlec += er32(RLEC);
3638	adapter->stats.xonrxc += er32(XONRXC);
3639	adapter->stats.xontxc += er32(XONTXC);
3640	adapter->stats.xoffrxc += er32(XOFFRXC);
3641	adapter->stats.xofftxc += er32(XOFFTXC);
3642	adapter->stats.fcruc += er32(FCRUC);
3643	adapter->stats.gptc += er32(GPTC);
3644	adapter->stats.gotcl += er32(GOTCL);
3645	adapter->stats.gotch += er32(GOTCH);
3646	adapter->stats.rnbc += er32(RNBC);
3647	adapter->stats.ruc += er32(RUC);
3648	adapter->stats.rfc += er32(RFC);
3649	adapter->stats.rjc += er32(RJC);
3650	adapter->stats.torl += er32(TORL);
3651	adapter->stats.torh += er32(TORH);
3652	adapter->stats.totl += er32(TOTL);
3653	adapter->stats.toth += er32(TOTH);
3654	adapter->stats.tpr += er32(TPR);
3655
3656	adapter->stats.ptc64 += er32(PTC64);
3657	adapter->stats.ptc127 += er32(PTC127);
3658	adapter->stats.ptc255 += er32(PTC255);
3659	adapter->stats.ptc511 += er32(PTC511);
3660	adapter->stats.ptc1023 += er32(PTC1023);
3661	adapter->stats.ptc1522 += er32(PTC1522);
3662
3663	adapter->stats.mptc += er32(MPTC);
3664	adapter->stats.bptc += er32(BPTC);
3665
3666	/* used for adaptive IFS */
3667
3668	hw->tx_packet_delta = er32(TPT);
3669	adapter->stats.tpt += hw->tx_packet_delta;
3670	hw->collision_delta = er32(COLC);
3671	adapter->stats.colc += hw->collision_delta;
3672
3673	if (hw->mac_type >= e1000_82543) {
3674		adapter->stats.algnerrc += er32(ALGNERRC);
3675		adapter->stats.rxerrc += er32(RXERRC);
3676		adapter->stats.tncrs += er32(TNCRS);
3677		adapter->stats.cexterr += er32(CEXTERR);
3678		adapter->stats.tsctc += er32(TSCTC);
3679		adapter->stats.tsctfc += er32(TSCTFC);
3680	}
3681
3682	/* Fill out the OS statistics structure */
3683	netdev->stats.multicast = adapter->stats.mprc;
3684	netdev->stats.collisions = adapter->stats.colc;
3685
3686	/* Rx Errors */
3687
3688	/* RLEC on some newer hardware can be incorrect so build
3689	 * our own version based on RUC and ROC
3690	 */
3691	netdev->stats.rx_errors = adapter->stats.rxerrc +
3692		adapter->stats.crcerrs + adapter->stats.algnerrc +
3693		adapter->stats.ruc + adapter->stats.roc +
3694		adapter->stats.cexterr;
3695	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3696	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3697	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3698	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3699	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3700
3701	/* Tx Errors */
3702	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3703	netdev->stats.tx_errors = adapter->stats.txerrc;
3704	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3705	netdev->stats.tx_window_errors = adapter->stats.latecol;
3706	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3707	if (hw->bad_tx_carr_stats_fd &&
3708	    adapter->link_duplex == FULL_DUPLEX) {
3709		netdev->stats.tx_carrier_errors = 0;
3710		adapter->stats.tncrs = 0;
3711	}
3712
3713	/* Tx Dropped needs to be maintained elsewhere */
3714
3715	/* Phy Stats */
3716	if (hw->media_type == e1000_media_type_copper) {
3717		if ((adapter->link_speed == SPEED_1000) &&
3718		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3719			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3720			adapter->phy_stats.idle_errors += phy_tmp;
3721		}
3722
3723		if ((hw->mac_type <= e1000_82546) &&
3724		   (hw->phy_type == e1000_phy_m88) &&
3725		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3726			adapter->phy_stats.receive_errors += phy_tmp;
3727	}
3728
3729	/* Management Stats */
3730	if (hw->has_smbus) {
3731		adapter->stats.mgptc += er32(MGTPTC);
3732		adapter->stats.mgprc += er32(MGTPRC);
3733		adapter->stats.mgpdc += er32(MGTPDC);
3734	}
3735
3736	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3737}
3738
3739/**
3740 * e1000_intr - Interrupt Handler
3741 * @irq: interrupt number
3742 * @data: pointer to a network interface device structure
3743 **/
 
3744static irqreturn_t e1000_intr(int irq, void *data)
3745{
3746	struct net_device *netdev = data;
3747	struct e1000_adapter *adapter = netdev_priv(netdev);
3748	struct e1000_hw *hw = &adapter->hw;
3749	u32 icr = er32(ICR);
3750
3751	if (unlikely((!icr)))
3752		return IRQ_NONE;  /* Not our interrupt */
3753
3754	/* we might have caused the interrupt, but the above
 
3755	 * read cleared it, and just in case the driver is
3756	 * down there is nothing to do so return handled
3757	 */
3758	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3759		return IRQ_HANDLED;
3760
3761	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3762		hw->get_link_status = 1;
3763		/* guard against interrupt when we're going down */
3764		if (!test_bit(__E1000_DOWN, &adapter->flags))
3765			schedule_delayed_work(&adapter->watchdog_task, 1);
3766	}
3767
3768	/* disable interrupts, without the synchronize_irq bit */
3769	ew32(IMC, ~0);
3770	E1000_WRITE_FLUSH();
3771
3772	if (likely(napi_schedule_prep(&adapter->napi))) {
3773		adapter->total_tx_bytes = 0;
3774		adapter->total_tx_packets = 0;
3775		adapter->total_rx_bytes = 0;
3776		adapter->total_rx_packets = 0;
3777		__napi_schedule(&adapter->napi);
3778	} else {
3779		/* this really should not happen! if it does it is basically a
3780		 * bug, but not a hard error, so enable ints and continue
3781		 */
3782		if (!test_bit(__E1000_DOWN, &adapter->flags))
3783			e1000_irq_enable(adapter);
3784	}
3785
3786	return IRQ_HANDLED;
3787}
3788
3789/**
3790 * e1000_clean - NAPI Rx polling callback
3791 * @napi: napi struct containing references to driver info
3792 * @budget: budget given to driver for receive packets
3793 **/
3794static int e1000_clean(struct napi_struct *napi, int budget)
3795{
3796	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3797						     napi);
3798	int tx_clean_complete = 0, work_done = 0;
3799
3800	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3801
3802	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3803
3804	if (!tx_clean_complete || work_done == budget)
3805		return budget;
3806
3807	/* Exit the polling mode, but don't re-enable interrupts if stack might
3808	 * poll us due to busy-polling
3809	 */
3810	if (likely(napi_complete_done(napi, work_done))) {
3811		if (likely(adapter->itr_setting & 3))
3812			e1000_set_itr(adapter);
 
3813		if (!test_bit(__E1000_DOWN, &adapter->flags))
3814			e1000_irq_enable(adapter);
3815	}
3816
3817	return work_done;
3818}
3819
3820/**
3821 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3822 * @adapter: board private structure
3823 * @tx_ring: ring to clean
3824 **/
3825static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3826			       struct e1000_tx_ring *tx_ring)
3827{
3828	struct e1000_hw *hw = &adapter->hw;
3829	struct net_device *netdev = adapter->netdev;
3830	struct e1000_tx_desc *tx_desc, *eop_desc;
3831	struct e1000_tx_buffer *buffer_info;
3832	unsigned int i, eop;
3833	unsigned int count = 0;
3834	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3835	unsigned int bytes_compl = 0, pkts_compl = 0;
3836
3837	i = tx_ring->next_to_clean;
3838	eop = tx_ring->buffer_info[i].next_to_watch;
3839	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3840
3841	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3842	       (count < tx_ring->count)) {
3843		bool cleaned = false;
3844		dma_rmb();	/* read buffer_info after eop_desc */
3845		for ( ; !cleaned; count++) {
3846			tx_desc = E1000_TX_DESC(*tx_ring, i);
3847			buffer_info = &tx_ring->buffer_info[i];
3848			cleaned = (i == eop);
3849
3850			if (cleaned) {
3851				total_tx_packets += buffer_info->segs;
3852				total_tx_bytes += buffer_info->bytecount;
3853				if (buffer_info->skb) {
3854					bytes_compl += buffer_info->skb->len;
3855					pkts_compl++;
3856				}
3857
3858			}
3859			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3860			tx_desc->upper.data = 0;
3861
3862			if (unlikely(++i == tx_ring->count))
3863				i = 0;
3864		}
3865
3866		eop = tx_ring->buffer_info[i].next_to_watch;
3867		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3868	}
3869
3870	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3871	 * which will reuse the cleaned buffers.
3872	 */
3873	smp_store_release(&tx_ring->next_to_clean, i);
3874
3875	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3876
3877#define TX_WAKE_THRESHOLD 32
3878	if (unlikely(count && netif_carrier_ok(netdev) &&
3879		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3880		/* Make sure that anybody stopping the queue after this
3881		 * sees the new next_to_clean.
3882		 */
3883		smp_mb();
3884
3885		if (netif_queue_stopped(netdev) &&
3886		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3887			netif_wake_queue(netdev);
3888			++adapter->restart_queue;
3889		}
3890	}
3891
3892	if (adapter->detect_tx_hung) {
3893		/* Detect a transmit hang in hardware, this serializes the
3894		 * check with the clearing of time_stamp and movement of i
3895		 */
3896		adapter->detect_tx_hung = false;
3897		if (tx_ring->buffer_info[eop].time_stamp &&
3898		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3899			       (adapter->tx_timeout_factor * HZ)) &&
3900		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3901
3902			/* detected Tx unit hang */
3903			e_err(drv, "Detected Tx Unit Hang\n"
3904			      "  Tx Queue             <%lu>\n"
3905			      "  TDH                  <%x>\n"
3906			      "  TDT                  <%x>\n"
3907			      "  next_to_use          <%x>\n"
3908			      "  next_to_clean        <%x>\n"
3909			      "buffer_info[next_to_clean]\n"
3910			      "  time_stamp           <%lx>\n"
3911			      "  next_to_watch        <%x>\n"
3912			      "  jiffies              <%lx>\n"
3913			      "  next_to_watch.status <%x>\n",
3914				(unsigned long)(tx_ring - adapter->tx_ring),
 
3915				readl(hw->hw_addr + tx_ring->tdh),
3916				readl(hw->hw_addr + tx_ring->tdt),
3917				tx_ring->next_to_use,
3918				tx_ring->next_to_clean,
3919				tx_ring->buffer_info[eop].time_stamp,
3920				eop,
3921				jiffies,
3922				eop_desc->upper.fields.status);
3923			e1000_dump(adapter);
3924			netif_stop_queue(netdev);
3925		}
3926	}
3927	adapter->total_tx_bytes += total_tx_bytes;
3928	adapter->total_tx_packets += total_tx_packets;
3929	netdev->stats.tx_bytes += total_tx_bytes;
3930	netdev->stats.tx_packets += total_tx_packets;
3931	return count < tx_ring->count;
3932}
3933
3934/**
3935 * e1000_rx_checksum - Receive Checksum Offload for 82543
3936 * @adapter:     board private structure
3937 * @status_err:  receive descriptor status and error fields
3938 * @csum:        receive descriptor csum field
3939 * @skb:         socket buffer with received data
3940 **/
 
3941static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3942			      u32 csum, struct sk_buff *skb)
3943{
3944	struct e1000_hw *hw = &adapter->hw;
3945	u16 status = (u16)status_err;
3946	u8 errors = (u8)(status_err >> 24);
3947
3948	skb_checksum_none_assert(skb);
3949
3950	/* 82543 or newer only */
3951	if (unlikely(hw->mac_type < e1000_82543))
3952		return;
3953	/* Ignore Checksum bit is set */
3954	if (unlikely(status & E1000_RXD_STAT_IXSM))
3955		return;
3956	/* TCP/UDP checksum error bit is set */
3957	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3958		/* let the stack verify checksum errors */
3959		adapter->hw_csum_err++;
3960		return;
3961	}
3962	/* TCP/UDP Checksum has not been calculated */
3963	if (!(status & E1000_RXD_STAT_TCPCS))
3964		return;
3965
3966	/* It must be a TCP or UDP packet with a valid checksum */
3967	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3968		/* TCP checksum is good */
3969		skb->ip_summed = CHECKSUM_UNNECESSARY;
3970	}
3971	adapter->hw_csum_good++;
3972}
3973
3974/**
3975 * e1000_consume_page - helper function for jumbo Rx path
3976 * @bi: software descriptor shadow data
3977 * @skb: skb being modified
3978 * @length: length of data being added
3979 **/
3980static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3981			       u16 length)
3982{
3983	bi->rxbuf.page = NULL;
3984	skb->len += length;
3985	skb->data_len += length;
3986	skb->truesize += PAGE_SIZE;
3987}
3988
3989/**
3990 * e1000_receive_skb - helper function to handle rx indications
3991 * @adapter: board private structure
3992 * @status: descriptor status field as written by hardware
3993 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3994 * @skb: pointer to sk_buff to be indicated to stack
3995 */
3996static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3997			      __le16 vlan, struct sk_buff *skb)
3998{
3999	skb->protocol = eth_type_trans(skb, adapter->netdev);
4000
4001	if (status & E1000_RXD_STAT_VP) {
4002		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4003
4004		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4005	}
4006	napi_gro_receive(&adapter->napi, skb);
4007}
4008
4009/**
4010 * e1000_tbi_adjust_stats
4011 * @hw: Struct containing variables accessed by shared code
4012 * @stats: point to stats struct
4013 * @frame_len: The length of the frame in question
4014 * @mac_addr: The Ethernet destination address of the frame in question
4015 *
4016 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4017 */
4018static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4019				   struct e1000_hw_stats *stats,
4020				   u32 frame_len, const u8 *mac_addr)
4021{
4022	u64 carry_bit;
4023
4024	/* First adjust the frame length. */
4025	frame_len--;
4026	/* We need to adjust the statistics counters, since the hardware
4027	 * counters overcount this packet as a CRC error and undercount
4028	 * the packet as a good packet
4029	 */
4030	/* This packet should not be counted as a CRC error. */
4031	stats->crcerrs--;
4032	/* This packet does count as a Good Packet Received. */
4033	stats->gprc++;
4034
4035	/* Adjust the Good Octets received counters */
4036	carry_bit = 0x80000000 & stats->gorcl;
4037	stats->gorcl += frame_len;
4038	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4039	 * Received Count) was one before the addition,
4040	 * AND it is zero after, then we lost the carry out,
4041	 * need to add one to Gorch (Good Octets Received Count High).
4042	 * This could be simplified if all environments supported
4043	 * 64-bit integers.
4044	 */
4045	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4046		stats->gorch++;
4047	/* Is this a broadcast or multicast?  Check broadcast first,
4048	 * since the test for a multicast frame will test positive on
4049	 * a broadcast frame.
4050	 */
4051	if (is_broadcast_ether_addr(mac_addr))
4052		stats->bprc++;
4053	else if (is_multicast_ether_addr(mac_addr))
4054		stats->mprc++;
4055
4056	if (frame_len == hw->max_frame_size) {
4057		/* In this case, the hardware has overcounted the number of
4058		 * oversize frames.
4059		 */
4060		if (stats->roc > 0)
4061			stats->roc--;
4062	}
4063
4064	/* Adjust the bin counters when the extra byte put the frame in the
4065	 * wrong bin. Remember that the frame_len was adjusted above.
4066	 */
4067	if (frame_len == 64) {
4068		stats->prc64++;
4069		stats->prc127--;
4070	} else if (frame_len == 127) {
4071		stats->prc127++;
4072		stats->prc255--;
4073	} else if (frame_len == 255) {
4074		stats->prc255++;
4075		stats->prc511--;
4076	} else if (frame_len == 511) {
4077		stats->prc511++;
4078		stats->prc1023--;
4079	} else if (frame_len == 1023) {
4080		stats->prc1023++;
4081		stats->prc1522--;
4082	} else if (frame_len == 1522) {
4083		stats->prc1522++;
4084	}
4085}
4086
4087static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4088				    u8 status, u8 errors,
4089				    u32 length, const u8 *data)
4090{
4091	struct e1000_hw *hw = &adapter->hw;
4092	u8 last_byte = *(data + length - 1);
4093
4094	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4095		unsigned long irq_flags;
4096
4097		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4098		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4099		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4100
4101		return true;
4102	}
4103
4104	return false;
4105}
4106
4107static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4108					  unsigned int bufsz)
4109{
4110	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4111
4112	if (unlikely(!skb))
4113		adapter->alloc_rx_buff_failed++;
4114	return skb;
4115}
4116
4117/**
4118 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4119 * @adapter: board private structure
4120 * @rx_ring: ring to clean
4121 * @work_done: amount of napi work completed this call
4122 * @work_to_do: max amount of work allowed for this call to do
4123 *
4124 * the return value indicates whether actual cleaning was done, there
4125 * is no guarantee that everything was cleaned
4126 */
4127static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4128				     struct e1000_rx_ring *rx_ring,
4129				     int *work_done, int work_to_do)
4130{
 
4131	struct net_device *netdev = adapter->netdev;
4132	struct pci_dev *pdev = adapter->pdev;
4133	struct e1000_rx_desc *rx_desc, *next_rxd;
4134	struct e1000_rx_buffer *buffer_info, *next_buffer;
 
4135	u32 length;
4136	unsigned int i;
4137	int cleaned_count = 0;
4138	bool cleaned = false;
4139	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4140
4141	i = rx_ring->next_to_clean;
4142	rx_desc = E1000_RX_DESC(*rx_ring, i);
4143	buffer_info = &rx_ring->buffer_info[i];
4144
4145	while (rx_desc->status & E1000_RXD_STAT_DD) {
4146		struct sk_buff *skb;
4147		u8 status;
4148
4149		if (*work_done >= work_to_do)
4150			break;
4151		(*work_done)++;
4152		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4153
4154		status = rx_desc->status;
 
 
4155
4156		if (++i == rx_ring->count)
4157			i = 0;
4158
4159		next_rxd = E1000_RX_DESC(*rx_ring, i);
4160		prefetch(next_rxd);
4161
4162		next_buffer = &rx_ring->buffer_info[i];
4163
4164		cleaned = true;
4165		cleaned_count++;
4166		dma_unmap_page(&pdev->dev, buffer_info->dma,
4167			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4168		buffer_info->dma = 0;
4169
4170		length = le16_to_cpu(rx_desc->length);
4171
4172		/* errors is only valid for DD + EOP descriptors */
4173		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4174		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4175			u8 *mapped = page_address(buffer_info->rxbuf.page);
 
4176
4177			if (e1000_tbi_should_accept(adapter, status,
4178						    rx_desc->errors,
4179						    length, mapped)) {
 
 
 
 
 
 
 
4180				length--;
4181			} else if (netdev->features & NETIF_F_RXALL) {
4182				goto process_skb;
4183			} else {
 
 
 
 
4184				/* an error means any chain goes out the window
4185				 * too
4186				 */
4187				dev_kfree_skb(rx_ring->rx_skb_top);
4188				rx_ring->rx_skb_top = NULL;
4189				goto next_desc;
4190			}
4191		}
4192
4193#define rxtop rx_ring->rx_skb_top
4194process_skb:
4195		if (!(status & E1000_RXD_STAT_EOP)) {
4196			/* this descriptor is only the beginning (or middle) */
4197			if (!rxtop) {
4198				/* this is the beginning of a chain */
4199				rxtop = napi_get_frags(&adapter->napi);
4200				if (!rxtop)
4201					break;
4202
4203				skb_fill_page_desc(rxtop, 0,
4204						   buffer_info->rxbuf.page,
4205						   0, length);
4206			} else {
4207				/* this is the middle of a chain */
4208				skb_fill_page_desc(rxtop,
4209				    skb_shinfo(rxtop)->nr_frags,
4210				    buffer_info->rxbuf.page, 0, length);
 
 
4211			}
4212			e1000_consume_page(buffer_info, rxtop, length);
4213			goto next_desc;
4214		} else {
4215			if (rxtop) {
4216				/* end of the chain */
4217				skb_fill_page_desc(rxtop,
4218				    skb_shinfo(rxtop)->nr_frags,
4219				    buffer_info->rxbuf.page, 0, length);
 
 
 
4220				skb = rxtop;
4221				rxtop = NULL;
4222				e1000_consume_page(buffer_info, skb, length);
4223			} else {
4224				struct page *p;
4225				/* no chain, got EOP, this buf is the packet
4226				 * copybreak to save the put_page/alloc_page
4227				 */
4228				p = buffer_info->rxbuf.page;
4229				if (length <= copybreak) {
4230					u8 *vaddr;
4231
4232					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4233						length -= 4;
4234					skb = e1000_alloc_rx_skb(adapter,
4235								 length);
4236					if (!skb)
4237						break;
4238
4239					vaddr = kmap_atomic(p);
4240					memcpy(skb_tail_pointer(skb), vaddr,
4241					       length);
4242					kunmap_atomic(vaddr);
4243					/* re-use the page, so don't erase
4244					 * buffer_info->rxbuf.page
4245					 */
4246					skb_put(skb, length);
4247					e1000_rx_checksum(adapter,
4248							  status | rx_desc->errors << 24,
4249							  le16_to_cpu(rx_desc->csum), skb);
4250
4251					total_rx_bytes += skb->len;
4252					total_rx_packets++;
4253
4254					e1000_receive_skb(adapter, status,
4255							  rx_desc->special, skb);
4256					goto next_desc;
4257				} else {
4258					skb = napi_get_frags(&adapter->napi);
4259					if (!skb) {
4260						adapter->alloc_rx_buff_failed++;
4261						break;
4262					}
4263					skb_fill_page_desc(skb, 0, p, 0,
4264							   length);
4265					e1000_consume_page(buffer_info, skb,
4266							   length);
4267				}
4268			}
4269		}
4270
4271		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4272		e1000_rx_checksum(adapter,
4273				  (u32)(status) |
4274				  ((u32)(rx_desc->errors) << 24),
4275				  le16_to_cpu(rx_desc->csum), skb);
4276
4277		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4278		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4279			pskb_trim(skb, skb->len - 4);
4280		total_rx_packets++;
4281
4282		if (status & E1000_RXD_STAT_VP) {
4283			__le16 vlan = rx_desc->special;
4284			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4285
4286			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4287		}
4288
4289		napi_gro_frags(&adapter->napi);
4290
4291next_desc:
4292		rx_desc->status = 0;
4293
4294		/* return some buffers to hardware, one at a time is too slow */
4295		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4296			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4297			cleaned_count = 0;
4298		}
4299
4300		/* use prefetched values */
4301		rx_desc = next_rxd;
4302		buffer_info = next_buffer;
4303	}
4304	rx_ring->next_to_clean = i;
4305
4306	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4307	if (cleaned_count)
4308		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4309
4310	adapter->total_rx_packets += total_rx_packets;
4311	adapter->total_rx_bytes += total_rx_bytes;
4312	netdev->stats.rx_bytes += total_rx_bytes;
4313	netdev->stats.rx_packets += total_rx_packets;
4314	return cleaned;
4315}
4316
4317/* this should improve performance for small packets with large amounts
 
4318 * of reassembly being done in the stack
4319 */
4320static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4321				       struct e1000_rx_buffer *buffer_info,
4322				       u32 length, const void *data)
4323{
4324	struct sk_buff *skb;
4325
4326	if (length > copybreak)
4327		return NULL;
4328
4329	skb = e1000_alloc_rx_skb(adapter, length);
4330	if (!skb)
4331		return NULL;
4332
4333	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4334				length, DMA_FROM_DEVICE);
4335
4336	skb_put_data(skb, data, length);
4337
4338	return skb;
 
 
 
 
 
4339}
4340
4341/**
4342 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4343 * @adapter: board private structure
4344 * @rx_ring: ring to clean
4345 * @work_done: amount of napi work completed this call
4346 * @work_to_do: max amount of work allowed for this call to do
4347 */
4348static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4349			       struct e1000_rx_ring *rx_ring,
4350			       int *work_done, int work_to_do)
4351{
 
4352	struct net_device *netdev = adapter->netdev;
4353	struct pci_dev *pdev = adapter->pdev;
4354	struct e1000_rx_desc *rx_desc, *next_rxd;
4355	struct e1000_rx_buffer *buffer_info, *next_buffer;
 
4356	u32 length;
4357	unsigned int i;
4358	int cleaned_count = 0;
4359	bool cleaned = false;
4360	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4361
4362	i = rx_ring->next_to_clean;
4363	rx_desc = E1000_RX_DESC(*rx_ring, i);
4364	buffer_info = &rx_ring->buffer_info[i];
4365
4366	while (rx_desc->status & E1000_RXD_STAT_DD) {
4367		struct sk_buff *skb;
4368		u8 *data;
4369		u8 status;
4370
4371		if (*work_done >= work_to_do)
4372			break;
4373		(*work_done)++;
4374		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4375
4376		status = rx_desc->status;
4377		length = le16_to_cpu(rx_desc->length);
4378
4379		data = buffer_info->rxbuf.data;
4380		prefetch(data);
4381		skb = e1000_copybreak(adapter, buffer_info, length, data);
4382		if (!skb) {
4383			unsigned int frag_len = e1000_frag_len(adapter);
4384
4385			skb = build_skb(data - E1000_HEADROOM, frag_len);
4386			if (!skb) {
4387				adapter->alloc_rx_buff_failed++;
4388				break;
4389			}
4390
4391			skb_reserve(skb, E1000_HEADROOM);
4392			dma_unmap_single(&pdev->dev, buffer_info->dma,
4393					 adapter->rx_buffer_len,
4394					 DMA_FROM_DEVICE);
4395			buffer_info->dma = 0;
4396			buffer_info->rxbuf.data = NULL;
4397		}
4398
4399		if (++i == rx_ring->count)
4400			i = 0;
4401
 
4402		next_rxd = E1000_RX_DESC(*rx_ring, i);
4403		prefetch(next_rxd);
4404
4405		next_buffer = &rx_ring->buffer_info[i];
4406
4407		cleaned = true;
4408		cleaned_count++;
 
 
 
4409
 
4410		/* !EOP means multiple descriptors were used to store a single
4411		 * packet, if thats the case we need to toss it.  In fact, we
4412		 * to toss every packet with the EOP bit clear and the next
4413		 * frame that _does_ have the EOP bit set, as it is by
4414		 * definition only a frame fragment
4415		 */
4416		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4417			adapter->discarding = true;
4418
4419		if (adapter->discarding) {
4420			/* All receives must fit into a single buffer */
4421			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4422			dev_kfree_skb(skb);
 
4423			if (status & E1000_RXD_STAT_EOP)
4424				adapter->discarding = false;
4425			goto next_desc;
4426		}
4427
4428		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4429			if (e1000_tbi_should_accept(adapter, status,
4430						    rx_desc->errors,
4431						    length, data)) {
 
 
 
 
 
4432				length--;
4433			} else if (netdev->features & NETIF_F_RXALL) {
4434				goto process_skb;
4435			} else {
4436				dev_kfree_skb(skb);
 
 
 
4437				goto next_desc;
4438			}
4439		}
4440
4441process_skb:
4442		total_rx_bytes += (length - 4); /* don't count FCS */
4443		total_rx_packets++;
4444
4445		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4446			/* adjust length to remove Ethernet CRC, this must be
4447			 * done after the TBI_ACCEPT workaround above
4448			 */
4449			length -= 4;
4450
4451		if (buffer_info->rxbuf.data == NULL)
4452			skb_put(skb, length);
4453		else /* copybreak skb */
4454			skb_trim(skb, length);
4455
4456		/* Receive Checksum Offload */
4457		e1000_rx_checksum(adapter,
4458				  (u32)(status) |
4459				  ((u32)(rx_desc->errors) << 24),
4460				  le16_to_cpu(rx_desc->csum), skb);
4461
4462		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4463
4464next_desc:
4465		rx_desc->status = 0;
4466
4467		/* return some buffers to hardware, one at a time is too slow */
4468		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4469			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4470			cleaned_count = 0;
4471		}
4472
4473		/* use prefetched values */
4474		rx_desc = next_rxd;
4475		buffer_info = next_buffer;
4476	}
4477	rx_ring->next_to_clean = i;
4478
4479	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4480	if (cleaned_count)
4481		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4482
4483	adapter->total_rx_packets += total_rx_packets;
4484	adapter->total_rx_bytes += total_rx_bytes;
4485	netdev->stats.rx_bytes += total_rx_bytes;
4486	netdev->stats.rx_packets += total_rx_packets;
4487	return cleaned;
4488}
4489
4490/**
4491 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4492 * @adapter: address of board private structure
4493 * @rx_ring: pointer to receive ring structure
4494 * @cleaned_count: number of buffers to allocate this pass
4495 **/
 
4496static void
4497e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4498			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4499{
 
4500	struct pci_dev *pdev = adapter->pdev;
4501	struct e1000_rx_desc *rx_desc;
4502	struct e1000_rx_buffer *buffer_info;
 
4503	unsigned int i;
 
4504
4505	i = rx_ring->next_to_use;
4506	buffer_info = &rx_ring->buffer_info[i];
4507
4508	while (cleaned_count--) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4509		/* allocate a new page if necessary */
4510		if (!buffer_info->rxbuf.page) {
4511			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4512			if (unlikely(!buffer_info->rxbuf.page)) {
4513				adapter->alloc_rx_buff_failed++;
4514				break;
4515			}
4516		}
4517
4518		if (!buffer_info->dma) {
4519			buffer_info->dma = dma_map_page(&pdev->dev,
4520							buffer_info->rxbuf.page, 0,
4521							adapter->rx_buffer_len,
4522							DMA_FROM_DEVICE);
4523			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4524				put_page(buffer_info->rxbuf.page);
4525				buffer_info->rxbuf.page = NULL;
 
 
4526				buffer_info->dma = 0;
4527				adapter->alloc_rx_buff_failed++;
4528				break;
4529			}
4530		}
4531
4532		rx_desc = E1000_RX_DESC(*rx_ring, i);
4533		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4534
4535		if (unlikely(++i == rx_ring->count))
4536			i = 0;
4537		buffer_info = &rx_ring->buffer_info[i];
4538	}
4539
4540	if (likely(rx_ring->next_to_use != i)) {
4541		rx_ring->next_to_use = i;
4542		if (unlikely(i-- == 0))
4543			i = (rx_ring->count - 1);
4544
4545		/* Force memory writes to complete before letting h/w
4546		 * know there are new descriptors to fetch.  (Only
4547		 * applicable for weak-ordered memory model archs,
4548		 * such as IA-64).
4549		 */
4550		dma_wmb();
4551		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4552	}
4553}
4554
4555/**
4556 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4557 * @adapter: address of board private structure
4558 * @rx_ring: pointer to ring struct
4559 * @cleaned_count: number of new Rx buffers to try to allocate
4560 **/
 
4561static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4562				   struct e1000_rx_ring *rx_ring,
4563				   int cleaned_count)
4564{
4565	struct e1000_hw *hw = &adapter->hw;
 
4566	struct pci_dev *pdev = adapter->pdev;
4567	struct e1000_rx_desc *rx_desc;
4568	struct e1000_rx_buffer *buffer_info;
 
4569	unsigned int i;
4570	unsigned int bufsz = adapter->rx_buffer_len;
4571
4572	i = rx_ring->next_to_use;
4573	buffer_info = &rx_ring->buffer_info[i];
4574
4575	while (cleaned_count--) {
4576		void *data;
 
 
 
 
4577
4578		if (buffer_info->rxbuf.data)
4579			goto skip;
4580
4581		data = e1000_alloc_frag(adapter);
4582		if (!data) {
4583			/* Better luck next round */
4584			adapter->alloc_rx_buff_failed++;
4585			break;
4586		}
4587
4588		/* Fix for errata 23, can't cross 64kB boundary */
4589		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4590			void *olddata = data;
4591			e_err(rx_err, "skb align check failed: %u bytes at "
4592			      "%p\n", bufsz, data);
4593			/* Try again, without freeing the previous */
4594			data = e1000_alloc_frag(adapter);
4595			/* Failed allocation, critical failure */
4596			if (!data) {
4597				skb_free_frag(olddata);
4598				adapter->alloc_rx_buff_failed++;
4599				break;
4600			}
4601
4602			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4603				/* give up */
4604				skb_free_frag(data);
4605				skb_free_frag(olddata);
4606				adapter->alloc_rx_buff_failed++;
4607				break;
4608			}
4609
4610			/* Use new allocation */
4611			skb_free_frag(olddata);
4612		}
 
 
 
4613		buffer_info->dma = dma_map_single(&pdev->dev,
4614						  data,
4615						  adapter->rx_buffer_len,
4616						  DMA_FROM_DEVICE);
4617		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4618			skb_free_frag(data);
 
4619			buffer_info->dma = 0;
4620			adapter->alloc_rx_buff_failed++;
4621			break;
4622		}
4623
4624		/* XXX if it was allocated cleanly it will never map to a
 
4625		 * boundary crossing
4626		 */
4627
4628		/* Fix for errata 23, can't cross 64kB boundary */
4629		if (!e1000_check_64k_bound(adapter,
4630					(void *)(unsigned long)buffer_info->dma,
4631					adapter->rx_buffer_len)) {
4632			e_err(rx_err, "dma align check failed: %u bytes at "
4633			      "%p\n", adapter->rx_buffer_len,
4634			      (void *)(unsigned long)buffer_info->dma);
 
 
4635
4636			dma_unmap_single(&pdev->dev, buffer_info->dma,
4637					 adapter->rx_buffer_len,
4638					 DMA_FROM_DEVICE);
4639
4640			skb_free_frag(data);
4641			buffer_info->rxbuf.data = NULL;
4642			buffer_info->dma = 0;
4643
4644			adapter->alloc_rx_buff_failed++;
4645			break;
4646		}
4647		buffer_info->rxbuf.data = data;
4648 skip:
4649		rx_desc = E1000_RX_DESC(*rx_ring, i);
4650		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4651
4652		if (unlikely(++i == rx_ring->count))
4653			i = 0;
4654		buffer_info = &rx_ring->buffer_info[i];
4655	}
4656
4657	if (likely(rx_ring->next_to_use != i)) {
4658		rx_ring->next_to_use = i;
4659		if (unlikely(i-- == 0))
4660			i = (rx_ring->count - 1);
4661
4662		/* Force memory writes to complete before letting h/w
4663		 * know there are new descriptors to fetch.  (Only
4664		 * applicable for weak-ordered memory model archs,
4665		 * such as IA-64).
4666		 */
4667		dma_wmb();
4668		writel(i, hw->hw_addr + rx_ring->rdt);
4669	}
4670}
4671
4672/**
4673 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4674 * @adapter: address of board private structure
4675 **/
 
4676static void e1000_smartspeed(struct e1000_adapter *adapter)
4677{
4678	struct e1000_hw *hw = &adapter->hw;
4679	u16 phy_status;
4680	u16 phy_ctrl;
4681
4682	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4683	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4684		return;
4685
4686	if (adapter->smartspeed == 0) {
4687		/* If Master/Slave config fault is asserted twice,
4688		 * we assume back-to-back
4689		 */
4690		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4691		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4692			return;
4693		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4695			return;
4696		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4697		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4698			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4699			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4700					    phy_ctrl);
4701			adapter->smartspeed++;
4702			if (!e1000_phy_setup_autoneg(hw) &&
4703			   !e1000_read_phy_reg(hw, PHY_CTRL,
4704					       &phy_ctrl)) {
4705				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4706					     MII_CR_RESTART_AUTO_NEG);
4707				e1000_write_phy_reg(hw, PHY_CTRL,
4708						    phy_ctrl);
4709			}
4710		}
4711		return;
4712	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4713		/* If still no link, perhaps using 2/3 pair cable */
4714		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4715		phy_ctrl |= CR_1000T_MS_ENABLE;
4716		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4717		if (!e1000_phy_setup_autoneg(hw) &&
4718		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4719			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4720				     MII_CR_RESTART_AUTO_NEG);
4721			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4722		}
4723	}
4724	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4725	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4726		adapter->smartspeed = 0;
4727}
4728
4729/**
4730 * e1000_ioctl - handle ioctl calls
4731 * @netdev: pointer to our netdev
4732 * @ifr: pointer to interface request structure
4733 * @cmd: ioctl data
4734 **/
 
4735static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4736{
4737	switch (cmd) {
4738	case SIOCGMIIPHY:
4739	case SIOCGMIIREG:
4740	case SIOCSMIIREG:
4741		return e1000_mii_ioctl(netdev, ifr, cmd);
4742	default:
4743		return -EOPNOTSUPP;
4744	}
4745}
4746
4747/**
4748 * e1000_mii_ioctl -
4749 * @netdev: pointer to our netdev
4750 * @ifr: pointer to interface request structure
4751 * @cmd: ioctl data
4752 **/
 
4753static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4754			   int cmd)
4755{
4756	struct e1000_adapter *adapter = netdev_priv(netdev);
4757	struct e1000_hw *hw = &adapter->hw;
4758	struct mii_ioctl_data *data = if_mii(ifr);
4759	int retval;
4760	u16 mii_reg;
4761	unsigned long flags;
4762
4763	if (hw->media_type != e1000_media_type_copper)
4764		return -EOPNOTSUPP;
4765
4766	switch (cmd) {
4767	case SIOCGMIIPHY:
4768		data->phy_id = hw->phy_addr;
4769		break;
4770	case SIOCGMIIREG:
4771		spin_lock_irqsave(&adapter->stats_lock, flags);
4772		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4773				   &data->val_out)) {
4774			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4775			return -EIO;
4776		}
4777		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778		break;
4779	case SIOCSMIIREG:
4780		if (data->reg_num & ~(0x1F))
4781			return -EFAULT;
4782		mii_reg = data->val_in;
4783		spin_lock_irqsave(&adapter->stats_lock, flags);
4784		if (e1000_write_phy_reg(hw, data->reg_num,
4785					mii_reg)) {
4786			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4787			return -EIO;
4788		}
4789		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790		if (hw->media_type == e1000_media_type_copper) {
4791			switch (data->reg_num) {
4792			case PHY_CTRL:
4793				if (mii_reg & MII_CR_POWER_DOWN)
4794					break;
4795				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4796					hw->autoneg = 1;
4797					hw->autoneg_advertised = 0x2F;
4798				} else {
4799					u32 speed;
4800					if (mii_reg & 0x40)
4801						speed = SPEED_1000;
4802					else if (mii_reg & 0x2000)
4803						speed = SPEED_100;
4804					else
4805						speed = SPEED_10;
4806					retval = e1000_set_spd_dplx(
4807						adapter, speed,
4808						((mii_reg & 0x100)
4809						 ? DUPLEX_FULL :
4810						 DUPLEX_HALF));
4811					if (retval)
4812						return retval;
4813				}
4814				if (netif_running(adapter->netdev))
4815					e1000_reinit_locked(adapter);
4816				else
4817					e1000_reset(adapter);
4818				break;
4819			case M88E1000_PHY_SPEC_CTRL:
4820			case M88E1000_EXT_PHY_SPEC_CTRL:
4821				if (e1000_phy_reset(hw))
4822					return -EIO;
4823				break;
4824			}
4825		} else {
4826			switch (data->reg_num) {
4827			case PHY_CTRL:
4828				if (mii_reg & MII_CR_POWER_DOWN)
4829					break;
4830				if (netif_running(adapter->netdev))
4831					e1000_reinit_locked(adapter);
4832				else
4833					e1000_reset(adapter);
4834				break;
4835			}
4836		}
4837		break;
4838	default:
4839		return -EOPNOTSUPP;
4840	}
4841	return E1000_SUCCESS;
4842}
4843
4844void e1000_pci_set_mwi(struct e1000_hw *hw)
4845{
4846	struct e1000_adapter *adapter = hw->back;
4847	int ret_val = pci_set_mwi(adapter->pdev);
4848
4849	if (ret_val)
4850		e_err(probe, "Error in setting MWI\n");
4851}
4852
4853void e1000_pci_clear_mwi(struct e1000_hw *hw)
4854{
4855	struct e1000_adapter *adapter = hw->back;
4856
4857	pci_clear_mwi(adapter->pdev);
4858}
4859
4860int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4861{
4862	struct e1000_adapter *adapter = hw->back;
4863	return pcix_get_mmrbc(adapter->pdev);
4864}
4865
4866void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4867{
4868	struct e1000_adapter *adapter = hw->back;
4869	pcix_set_mmrbc(adapter->pdev, mmrbc);
4870}
4871
4872void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4873{
4874	outl(value, port);
4875}
4876
4877static bool e1000_vlan_used(struct e1000_adapter *adapter)
4878{
4879	u16 vid;
4880
4881	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4882		return true;
4883	return false;
4884}
4885
4886static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4887			      netdev_features_t features)
4888{
4889	struct e1000_hw *hw = &adapter->hw;
4890	u32 ctrl;
4891
4892	ctrl = er32(CTRL);
4893	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4894		/* enable VLAN tag insert/strip */
4895		ctrl |= E1000_CTRL_VME;
4896	} else {
4897		/* disable VLAN tag insert/strip */
4898		ctrl &= ~E1000_CTRL_VME;
4899	}
4900	ew32(CTRL, ctrl);
4901}
4902static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4903				     bool filter_on)
4904{
4905	struct e1000_hw *hw = &adapter->hw;
4906	u32 rctl;
4907
4908	if (!test_bit(__E1000_DOWN, &adapter->flags))
4909		e1000_irq_disable(adapter);
4910
4911	__e1000_vlan_mode(adapter, adapter->netdev->features);
4912	if (filter_on) {
4913		/* enable VLAN receive filtering */
4914		rctl = er32(RCTL);
4915		rctl &= ~E1000_RCTL_CFIEN;
4916		if (!(adapter->netdev->flags & IFF_PROMISC))
4917			rctl |= E1000_RCTL_VFE;
4918		ew32(RCTL, rctl);
4919		e1000_update_mng_vlan(adapter);
4920	} else {
4921		/* disable VLAN receive filtering */
4922		rctl = er32(RCTL);
4923		rctl &= ~E1000_RCTL_VFE;
4924		ew32(RCTL, rctl);
4925	}
4926
4927	if (!test_bit(__E1000_DOWN, &adapter->flags))
4928		e1000_irq_enable(adapter);
4929}
4930
4931static void e1000_vlan_mode(struct net_device *netdev,
4932			    netdev_features_t features)
4933{
4934	struct e1000_adapter *adapter = netdev_priv(netdev);
4935
4936	if (!test_bit(__E1000_DOWN, &adapter->flags))
4937		e1000_irq_disable(adapter);
4938
4939	__e1000_vlan_mode(adapter, features);
4940
4941	if (!test_bit(__E1000_DOWN, &adapter->flags))
4942		e1000_irq_enable(adapter);
4943}
4944
4945static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4946				 __be16 proto, u16 vid)
4947{
4948	struct e1000_adapter *adapter = netdev_priv(netdev);
4949	struct e1000_hw *hw = &adapter->hw;
4950	u32 vfta, index;
4951
4952	if ((hw->mng_cookie.status &
4953	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4954	    (vid == adapter->mng_vlan_id))
4955		return 0;
4956
4957	if (!e1000_vlan_used(adapter))
4958		e1000_vlan_filter_on_off(adapter, true);
4959
4960	/* add VID to filter table */
4961	index = (vid >> 5) & 0x7F;
4962	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4963	vfta |= (1 << (vid & 0x1F));
4964	e1000_write_vfta(hw, index, vfta);
4965
4966	set_bit(vid, adapter->active_vlans);
4967
4968	return 0;
4969}
4970
4971static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4972				  __be16 proto, u16 vid)
4973{
4974	struct e1000_adapter *adapter = netdev_priv(netdev);
4975	struct e1000_hw *hw = &adapter->hw;
4976	u32 vfta, index;
4977
4978	if (!test_bit(__E1000_DOWN, &adapter->flags))
4979		e1000_irq_disable(adapter);
4980	if (!test_bit(__E1000_DOWN, &adapter->flags))
4981		e1000_irq_enable(adapter);
4982
4983	/* remove VID from filter table */
4984	index = (vid >> 5) & 0x7F;
4985	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4986	vfta &= ~(1 << (vid & 0x1F));
4987	e1000_write_vfta(hw, index, vfta);
4988
4989	clear_bit(vid, adapter->active_vlans);
4990
4991	if (!e1000_vlan_used(adapter))
4992		e1000_vlan_filter_on_off(adapter, false);
4993
4994	return 0;
4995}
4996
4997static void e1000_restore_vlan(struct e1000_adapter *adapter)
4998{
4999	u16 vid;
5000
5001	if (!e1000_vlan_used(adapter))
5002		return;
5003
5004	e1000_vlan_filter_on_off(adapter, true);
5005	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5006		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5007}
5008
5009int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5010{
5011	struct e1000_hw *hw = &adapter->hw;
5012
5013	hw->autoneg = 0;
5014
5015	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5016	 * for the switch() below to work
5017	 */
5018	if ((spd & 1) || (dplx & ~1))
5019		goto err_inval;
5020
5021	/* Fiber NICs only allow 1000 gbps Full duplex */
5022	if ((hw->media_type == e1000_media_type_fiber) &&
5023	    spd != SPEED_1000 &&
5024	    dplx != DUPLEX_FULL)
5025		goto err_inval;
5026
5027	switch (spd + dplx) {
5028	case SPEED_10 + DUPLEX_HALF:
5029		hw->forced_speed_duplex = e1000_10_half;
5030		break;
5031	case SPEED_10 + DUPLEX_FULL:
5032		hw->forced_speed_duplex = e1000_10_full;
5033		break;
5034	case SPEED_100 + DUPLEX_HALF:
5035		hw->forced_speed_duplex = e1000_100_half;
5036		break;
5037	case SPEED_100 + DUPLEX_FULL:
5038		hw->forced_speed_duplex = e1000_100_full;
5039		break;
5040	case SPEED_1000 + DUPLEX_FULL:
5041		hw->autoneg = 1;
5042		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5043		break;
5044	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5045	default:
5046		goto err_inval;
5047	}
5048
5049	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5050	hw->mdix = AUTO_ALL_MODES;
5051
5052	return 0;
5053
5054err_inval:
5055	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5056	return -EINVAL;
5057}
5058
5059static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5060{
5061	struct net_device *netdev = pci_get_drvdata(pdev);
5062	struct e1000_adapter *adapter = netdev_priv(netdev);
5063	struct e1000_hw *hw = &adapter->hw;
5064	u32 ctrl, ctrl_ext, rctl, status;
5065	u32 wufc = adapter->wol;
 
 
 
5066
5067	netif_device_detach(netdev);
5068
5069	if (netif_running(netdev)) {
5070		int count = E1000_CHECK_RESET_COUNT;
5071
5072		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5073			usleep_range(10000, 20000);
5074
5075		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5076		e1000_down(adapter);
5077	}
5078
 
 
 
 
 
 
5079	status = er32(STATUS);
5080	if (status & E1000_STATUS_LU)
5081		wufc &= ~E1000_WUFC_LNKC;
5082
5083	if (wufc) {
5084		e1000_setup_rctl(adapter);
5085		e1000_set_rx_mode(netdev);
5086
5087		rctl = er32(RCTL);
5088
5089		/* turn on all-multi mode if wake on multicast is enabled */
5090		if (wufc & E1000_WUFC_MC)
5091			rctl |= E1000_RCTL_MPE;
5092
5093		/* enable receives in the hardware */
5094		ew32(RCTL, rctl | E1000_RCTL_EN);
5095
5096		if (hw->mac_type >= e1000_82540) {
5097			ctrl = er32(CTRL);
5098			/* advertise wake from D3Cold */
5099			#define E1000_CTRL_ADVD3WUC 0x00100000
5100			/* phy power management enable */
5101			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5102			ctrl |= E1000_CTRL_ADVD3WUC |
5103				E1000_CTRL_EN_PHY_PWR_MGMT;
5104			ew32(CTRL, ctrl);
5105		}
5106
5107		if (hw->media_type == e1000_media_type_fiber ||
5108		    hw->media_type == e1000_media_type_internal_serdes) {
5109			/* keep the laser running in D3 */
5110			ctrl_ext = er32(CTRL_EXT);
5111			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5112			ew32(CTRL_EXT, ctrl_ext);
5113		}
5114
5115		ew32(WUC, E1000_WUC_PME_EN);
5116		ew32(WUFC, wufc);
5117	} else {
5118		ew32(WUC, 0);
5119		ew32(WUFC, 0);
5120	}
5121
5122	e1000_release_manageability(adapter);
5123
5124	*enable_wake = !!wufc;
5125
5126	/* make sure adapter isn't asleep if manageability is enabled */
5127	if (adapter->en_mng_pt)
5128		*enable_wake = true;
5129
5130	if (netif_running(netdev))
5131		e1000_free_irq(adapter);
5132
5133	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5134		pci_disable_device(pdev);
5135
5136	return 0;
5137}
5138
5139static int __maybe_unused e1000_suspend(struct device *dev)
 
5140{
5141	int retval;
5142	struct pci_dev *pdev = to_pci_dev(dev);
5143	bool wake;
5144
5145	retval = __e1000_shutdown(pdev, &wake);
5146	device_set_wakeup_enable(dev, wake);
 
 
 
 
 
 
 
 
5147
5148	return retval;
5149}
5150
5151static int __maybe_unused e1000_resume(struct device *dev)
5152{
5153	struct pci_dev *pdev = to_pci_dev(dev);
5154	struct net_device *netdev = pci_get_drvdata(pdev);
5155	struct e1000_adapter *adapter = netdev_priv(netdev);
5156	struct e1000_hw *hw = &adapter->hw;
5157	u32 err;
5158
 
 
 
 
5159	if (adapter->need_ioport)
5160		err = pci_enable_device(pdev);
5161	else
5162		err = pci_enable_device_mem(pdev);
5163	if (err) {
5164		pr_err("Cannot enable PCI device from suspend\n");
5165		return err;
5166	}
5167
5168	/* flush memory to make sure state is correct */
5169	smp_mb__before_atomic();
5170	clear_bit(__E1000_DISABLED, &adapter->flags);
5171	pci_set_master(pdev);
5172
5173	pci_enable_wake(pdev, PCI_D3hot, 0);
5174	pci_enable_wake(pdev, PCI_D3cold, 0);
5175
5176	if (netif_running(netdev)) {
5177		err = e1000_request_irq(adapter);
5178		if (err)
5179			return err;
5180	}
5181
5182	e1000_power_up_phy(adapter);
5183	e1000_reset(adapter);
5184	ew32(WUS, ~0);
5185
5186	e1000_init_manageability(adapter);
5187
5188	if (netif_running(netdev))
5189		e1000_up(adapter);
5190
5191	netif_device_attach(netdev);
5192
5193	return 0;
5194}
 
5195
5196static void e1000_shutdown(struct pci_dev *pdev)
5197{
5198	bool wake;
5199
5200	__e1000_shutdown(pdev, &wake);
5201
5202	if (system_state == SYSTEM_POWER_OFF) {
5203		pci_wake_from_d3(pdev, wake);
5204		pci_set_power_state(pdev, PCI_D3hot);
5205	}
5206}
5207
5208#ifdef CONFIG_NET_POLL_CONTROLLER
5209/* Polling 'interrupt' - used by things like netconsole to send skbs
 
5210 * without having to re-enable interrupts. It's not called while
5211 * the interrupt routine is executing.
5212 */
5213static void e1000_netpoll(struct net_device *netdev)
5214{
5215	struct e1000_adapter *adapter = netdev_priv(netdev);
5216
5217	if (disable_hardirq(adapter->pdev->irq))
5218		e1000_intr(adapter->pdev->irq, netdev);
5219	enable_irq(adapter->pdev->irq);
5220}
5221#endif
5222
5223/**
5224 * e1000_io_error_detected - called when PCI error is detected
5225 * @pdev: Pointer to PCI device
5226 * @state: The current pci connection state
5227 *
5228 * This function is called after a PCI bus error affecting
5229 * this device has been detected.
5230 */
5231static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5232						pci_channel_state_t state)
5233{
5234	struct net_device *netdev = pci_get_drvdata(pdev);
5235	struct e1000_adapter *adapter = netdev_priv(netdev);
5236
5237	netif_device_detach(netdev);
5238
5239	if (state == pci_channel_io_perm_failure)
5240		return PCI_ERS_RESULT_DISCONNECT;
5241
5242	if (netif_running(netdev))
5243		e1000_down(adapter);
 
5244
5245	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5246		pci_disable_device(pdev);
5247
5248	/* Request a slot reset. */
5249	return PCI_ERS_RESULT_NEED_RESET;
5250}
5251
5252/**
5253 * e1000_io_slot_reset - called after the pci bus has been reset.
5254 * @pdev: Pointer to PCI device
5255 *
5256 * Restart the card from scratch, as if from a cold-boot. Implementation
5257 * resembles the first-half of the e1000_resume routine.
5258 */
5259static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5260{
5261	struct net_device *netdev = pci_get_drvdata(pdev);
5262	struct e1000_adapter *adapter = netdev_priv(netdev);
5263	struct e1000_hw *hw = &adapter->hw;
5264	int err;
5265
5266	if (adapter->need_ioport)
5267		err = pci_enable_device(pdev);
5268	else
5269		err = pci_enable_device_mem(pdev);
5270	if (err) {
5271		pr_err("Cannot re-enable PCI device after reset.\n");
5272		return PCI_ERS_RESULT_DISCONNECT;
5273	}
5274
5275	/* flush memory to make sure state is correct */
5276	smp_mb__before_atomic();
5277	clear_bit(__E1000_DISABLED, &adapter->flags);
5278	pci_set_master(pdev);
5279
5280	pci_enable_wake(pdev, PCI_D3hot, 0);
5281	pci_enable_wake(pdev, PCI_D3cold, 0);
5282
5283	e1000_reset(adapter);
5284	ew32(WUS, ~0);
5285
5286	return PCI_ERS_RESULT_RECOVERED;
5287}
5288
5289/**
5290 * e1000_io_resume - called when traffic can start flowing again.
5291 * @pdev: Pointer to PCI device
5292 *
5293 * This callback is called when the error recovery driver tells us that
5294 * its OK to resume normal operation. Implementation resembles the
5295 * second-half of the e1000_resume routine.
5296 */
5297static void e1000_io_resume(struct pci_dev *pdev)
5298{
5299	struct net_device *netdev = pci_get_drvdata(pdev);
5300	struct e1000_adapter *adapter = netdev_priv(netdev);
5301
5302	e1000_init_manageability(adapter);
5303
5304	if (netif_running(netdev)) {
5305		if (e1000_up(adapter)) {
5306			pr_info("can't bring device back up after reset\n");
5307			return;
5308		}
5309	}
5310
5311	netif_device_attach(netdev);
5312}
5313
5314/* e1000_main.c */