Linux Audio

Check our new training course

Loading...
v3.5.6
  1/*
  2 * check TSC synchronization.
  3 *
  4 * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
  5 *
  6 * We check whether all boot CPUs have their TSC's synchronized,
  7 * print a warning if not and turn off the TSC clock-source.
  8 *
  9 * The warp-check is point-to-point between two CPUs, the CPU
 10 * initiating the bootup is the 'source CPU', the freshly booting
 11 * CPU is the 'target CPU'.
 12 *
 13 * Only two CPUs may participate - they can enter in any order.
 14 * ( The serial nature of the boot logic and the CPU hotplug lock
 15 *   protects against more than 2 CPUs entering this code. )
 16 */
 17#include <linux/spinlock.h>
 18#include <linux/kernel.h>
 19#include <linux/init.h>
 20#include <linux/smp.h>
 21#include <linux/nmi.h>
 22#include <asm/tsc.h>
 23
 24/*
 25 * Entry/exit counters that make sure that both CPUs
 26 * run the measurement code at once:
 27 */
 28static __cpuinitdata atomic_t start_count;
 29static __cpuinitdata atomic_t stop_count;
 30
 31/*
 32 * We use a raw spinlock in this exceptional case, because
 33 * we want to have the fastest, inlined, non-debug version
 34 * of a critical section, to be able to prove TSC time-warps:
 35 */
 36static __cpuinitdata arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 37
 38static __cpuinitdata cycles_t last_tsc;
 39static __cpuinitdata cycles_t max_warp;
 40static __cpuinitdata int nr_warps;
 41
 42/*
 43 * TSC-warp measurement loop running on both CPUs:
 44 */
 45static __cpuinit void check_tsc_warp(unsigned int timeout)
 46{
 47	cycles_t start, now, prev, end;
 48	int i;
 49
 50	rdtsc_barrier();
 51	start = get_cycles();
 52	rdtsc_barrier();
 53	/*
 54	 * The measurement runs for 'timeout' msecs:
 55	 */
 56	end = start + (cycles_t) tsc_khz * timeout;
 57	now = start;
 58
 59	for (i = 0; ; i++) {
 60		/*
 61		 * We take the global lock, measure TSC, save the
 62		 * previous TSC that was measured (possibly on
 63		 * another CPU) and update the previous TSC timestamp.
 64		 */
 65		arch_spin_lock(&sync_lock);
 66		prev = last_tsc;
 67		rdtsc_barrier();
 68		now = get_cycles();
 69		rdtsc_barrier();
 70		last_tsc = now;
 71		arch_spin_unlock(&sync_lock);
 72
 73		/*
 74		 * Be nice every now and then (and also check whether
 75		 * measurement is done [we also insert a 10 million
 76		 * loops safety exit, so we dont lock up in case the
 77		 * TSC readout is totally broken]):
 78		 */
 79		if (unlikely(!(i & 7))) {
 80			if (now > end || i > 10000000)
 81				break;
 82			cpu_relax();
 83			touch_nmi_watchdog();
 84		}
 85		/*
 86		 * Outside the critical section we can now see whether
 87		 * we saw a time-warp of the TSC going backwards:
 88		 */
 89		if (unlikely(prev > now)) {
 90			arch_spin_lock(&sync_lock);
 91			max_warp = max(max_warp, prev - now);
 92			nr_warps++;
 93			arch_spin_unlock(&sync_lock);
 94		}
 95	}
 96	WARN(!(now-start),
 97		"Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
 98			now-start, end-start);
 99}
100
101/*
102 * If the target CPU coming online doesn't have any of its core-siblings
103 * online, a timeout of 20msec will be used for the TSC-warp measurement
104 * loop. Otherwise a smaller timeout of 2msec will be used, as we have some
105 * information about this socket already (and this information grows as we
106 * have more and more logical-siblings in that socket).
107 *
108 * Ideally we should be able to skip the TSC sync check on the other
109 * core-siblings, if the first logical CPU in a socket passed the sync test.
110 * But as the TSC is per-logical CPU and can potentially be modified wrongly
111 * by the bios, TSC sync test for smaller duration should be able
112 * to catch such errors. Also this will catch the condition where all the
113 * cores in the socket doesn't get reset at the same time.
114 */
115static inline unsigned int loop_timeout(int cpu)
116{
117	return (cpumask_weight(cpu_core_mask(cpu)) > 1) ? 2 : 20;
118}
119
120/*
121 * Source CPU calls into this - it waits for the freshly booted
122 * target CPU to arrive and then starts the measurement:
123 */
124void __cpuinit check_tsc_sync_source(int cpu)
125{
126	int cpus = 2;
127
128	/*
129	 * No need to check if we already know that the TSC is not
130	 * synchronized:
131	 */
132	if (unsynchronized_tsc())
133		return;
134
135	if (tsc_clocksource_reliable) {
136		if (cpu == (nr_cpu_ids-1) || system_state != SYSTEM_BOOTING)
137			pr_info(
138			"Skipped synchronization checks as TSC is reliable.\n");
139		return;
140	}
141
142	/*
143	 * Reset it - in case this is a second bootup:
144	 */
145	atomic_set(&stop_count, 0);
146
147	/*
148	 * Wait for the target to arrive:
149	 */
150	while (atomic_read(&start_count) != cpus-1)
151		cpu_relax();
152	/*
153	 * Trigger the target to continue into the measurement too:
154	 */
155	atomic_inc(&start_count);
156
157	check_tsc_warp(loop_timeout(cpu));
158
159	while (atomic_read(&stop_count) != cpus-1)
160		cpu_relax();
161
162	if (nr_warps) {
163		pr_warning("TSC synchronization [CPU#%d -> CPU#%d]:\n",
164			smp_processor_id(), cpu);
165		pr_warning("Measured %Ld cycles TSC warp between CPUs, "
166			   "turning off TSC clock.\n", max_warp);
167		mark_tsc_unstable("check_tsc_sync_source failed");
168	} else {
169		pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n",
170			smp_processor_id(), cpu);
171	}
172
173	/*
174	 * Reset it - just in case we boot another CPU later:
175	 */
176	atomic_set(&start_count, 0);
177	nr_warps = 0;
178	max_warp = 0;
179	last_tsc = 0;
180
181	/*
182	 * Let the target continue with the bootup:
183	 */
184	atomic_inc(&stop_count);
185}
186
187/*
188 * Freshly booted CPUs call into this:
189 */
190void __cpuinit check_tsc_sync_target(void)
191{
192	int cpus = 2;
193
194	if (unsynchronized_tsc() || tsc_clocksource_reliable)
195		return;
196
197	/*
198	 * Register this CPU's participation and wait for the
199	 * source CPU to start the measurement:
200	 */
201	atomic_inc(&start_count);
202	while (atomic_read(&start_count) != cpus)
203		cpu_relax();
204
205	check_tsc_warp(loop_timeout(smp_processor_id()));
206
207	/*
208	 * Ok, we are done:
209	 */
210	atomic_inc(&stop_count);
211
212	/*
213	 * Wait for the source CPU to print stuff:
214	 */
215	while (atomic_read(&stop_count) != cpus)
216		cpu_relax();
217}
v3.1
  1/*
  2 * check TSC synchronization.
  3 *
  4 * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
  5 *
  6 * We check whether all boot CPUs have their TSC's synchronized,
  7 * print a warning if not and turn off the TSC clock-source.
  8 *
  9 * The warp-check is point-to-point between two CPUs, the CPU
 10 * initiating the bootup is the 'source CPU', the freshly booting
 11 * CPU is the 'target CPU'.
 12 *
 13 * Only two CPUs may participate - they can enter in any order.
 14 * ( The serial nature of the boot logic and the CPU hotplug lock
 15 *   protects against more than 2 CPUs entering this code. )
 16 */
 17#include <linux/spinlock.h>
 18#include <linux/kernel.h>
 19#include <linux/init.h>
 20#include <linux/smp.h>
 21#include <linux/nmi.h>
 22#include <asm/tsc.h>
 23
 24/*
 25 * Entry/exit counters that make sure that both CPUs
 26 * run the measurement code at once:
 27 */
 28static __cpuinitdata atomic_t start_count;
 29static __cpuinitdata atomic_t stop_count;
 30
 31/*
 32 * We use a raw spinlock in this exceptional case, because
 33 * we want to have the fastest, inlined, non-debug version
 34 * of a critical section, to be able to prove TSC time-warps:
 35 */
 36static __cpuinitdata arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 37
 38static __cpuinitdata cycles_t last_tsc;
 39static __cpuinitdata cycles_t max_warp;
 40static __cpuinitdata int nr_warps;
 41
 42/*
 43 * TSC-warp measurement loop running on both CPUs:
 44 */
 45static __cpuinit void check_tsc_warp(void)
 46{
 47	cycles_t start, now, prev, end;
 48	int i;
 49
 50	rdtsc_barrier();
 51	start = get_cycles();
 52	rdtsc_barrier();
 53	/*
 54	 * The measurement runs for 20 msecs:
 55	 */
 56	end = start + tsc_khz * 20ULL;
 57	now = start;
 58
 59	for (i = 0; ; i++) {
 60		/*
 61		 * We take the global lock, measure TSC, save the
 62		 * previous TSC that was measured (possibly on
 63		 * another CPU) and update the previous TSC timestamp.
 64		 */
 65		arch_spin_lock(&sync_lock);
 66		prev = last_tsc;
 67		rdtsc_barrier();
 68		now = get_cycles();
 69		rdtsc_barrier();
 70		last_tsc = now;
 71		arch_spin_unlock(&sync_lock);
 72
 73		/*
 74		 * Be nice every now and then (and also check whether
 75		 * measurement is done [we also insert a 10 million
 76		 * loops safety exit, so we dont lock up in case the
 77		 * TSC readout is totally broken]):
 78		 */
 79		if (unlikely(!(i & 7))) {
 80			if (now > end || i > 10000000)
 81				break;
 82			cpu_relax();
 83			touch_nmi_watchdog();
 84		}
 85		/*
 86		 * Outside the critical section we can now see whether
 87		 * we saw a time-warp of the TSC going backwards:
 88		 */
 89		if (unlikely(prev > now)) {
 90			arch_spin_lock(&sync_lock);
 91			max_warp = max(max_warp, prev - now);
 92			nr_warps++;
 93			arch_spin_unlock(&sync_lock);
 94		}
 95	}
 96	WARN(!(now-start),
 97		"Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
 98			now-start, end-start);
 99}
100
101/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102 * Source CPU calls into this - it waits for the freshly booted
103 * target CPU to arrive and then starts the measurement:
104 */
105void __cpuinit check_tsc_sync_source(int cpu)
106{
107	int cpus = 2;
108
109	/*
110	 * No need to check if we already know that the TSC is not
111	 * synchronized:
112	 */
113	if (unsynchronized_tsc())
114		return;
115
116	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
117		if (cpu == (nr_cpu_ids-1) || system_state != SYSTEM_BOOTING)
118			pr_info(
119			"Skipped synchronization checks as TSC is reliable.\n");
120		return;
121	}
122
123	/*
124	 * Reset it - in case this is a second bootup:
125	 */
126	atomic_set(&stop_count, 0);
127
128	/*
129	 * Wait for the target to arrive:
130	 */
131	while (atomic_read(&start_count) != cpus-1)
132		cpu_relax();
133	/*
134	 * Trigger the target to continue into the measurement too:
135	 */
136	atomic_inc(&start_count);
137
138	check_tsc_warp();
139
140	while (atomic_read(&stop_count) != cpus-1)
141		cpu_relax();
142
143	if (nr_warps) {
144		pr_warning("TSC synchronization [CPU#%d -> CPU#%d]:\n",
145			smp_processor_id(), cpu);
146		pr_warning("Measured %Ld cycles TSC warp between CPUs, "
147			   "turning off TSC clock.\n", max_warp);
148		mark_tsc_unstable("check_tsc_sync_source failed");
149	} else {
150		pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n",
151			smp_processor_id(), cpu);
152	}
153
154	/*
155	 * Reset it - just in case we boot another CPU later:
156	 */
157	atomic_set(&start_count, 0);
158	nr_warps = 0;
159	max_warp = 0;
160	last_tsc = 0;
161
162	/*
163	 * Let the target continue with the bootup:
164	 */
165	atomic_inc(&stop_count);
166}
167
168/*
169 * Freshly booted CPUs call into this:
170 */
171void __cpuinit check_tsc_sync_target(void)
172{
173	int cpus = 2;
174
175	if (unsynchronized_tsc() || boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
176		return;
177
178	/*
179	 * Register this CPU's participation and wait for the
180	 * source CPU to start the measurement:
181	 */
182	atomic_inc(&start_count);
183	while (atomic_read(&start_count) != cpus)
184		cpu_relax();
185
186	check_tsc_warp();
187
188	/*
189	 * Ok, we are done:
190	 */
191	atomic_inc(&stop_count);
192
193	/*
194	 * Wait for the source CPU to print stuff:
195	 */
196	while (atomic_read(&stop_count) != cpus)
197		cpu_relax();
198}