Loading...
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/export.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
11#include <linux/reboot.h>
12#include <linux/prctl.h>
13#include <linux/highuid.h>
14#include <linux/fs.h>
15#include <linux/kmod.h>
16#include <linux/perf_event.h>
17#include <linux/resource.h>
18#include <linux/kernel.h>
19#include <linux/workqueue.h>
20#include <linux/capability.h>
21#include <linux/device.h>
22#include <linux/key.h>
23#include <linux/times.h>
24#include <linux/posix-timers.h>
25#include <linux/security.h>
26#include <linux/dcookies.h>
27#include <linux/suspend.h>
28#include <linux/tty.h>
29#include <linux/signal.h>
30#include <linux/cn_proc.h>
31#include <linux/getcpu.h>
32#include <linux/task_io_accounting_ops.h>
33#include <linux/seccomp.h>
34#include <linux/cpu.h>
35#include <linux/personality.h>
36#include <linux/ptrace.h>
37#include <linux/fs_struct.h>
38#include <linux/file.h>
39#include <linux/mount.h>
40#include <linux/gfp.h>
41#include <linux/syscore_ops.h>
42#include <linux/version.h>
43#include <linux/ctype.h>
44
45#include <linux/compat.h>
46#include <linux/syscalls.h>
47#include <linux/kprobes.h>
48#include <linux/user_namespace.h>
49#include <linux/binfmts.h>
50
51#include <linux/sched.h>
52#include <linux/rcupdate.h>
53#include <linux/uidgid.h>
54#include <linux/cred.h>
55
56#include <linux/kmsg_dump.h>
57/* Move somewhere else to avoid recompiling? */
58#include <generated/utsrelease.h>
59
60#include <asm/uaccess.h>
61#include <asm/io.h>
62#include <asm/unistd.h>
63
64#ifndef SET_UNALIGN_CTL
65# define SET_UNALIGN_CTL(a,b) (-EINVAL)
66#endif
67#ifndef GET_UNALIGN_CTL
68# define GET_UNALIGN_CTL(a,b) (-EINVAL)
69#endif
70#ifndef SET_FPEMU_CTL
71# define SET_FPEMU_CTL(a,b) (-EINVAL)
72#endif
73#ifndef GET_FPEMU_CTL
74# define GET_FPEMU_CTL(a,b) (-EINVAL)
75#endif
76#ifndef SET_FPEXC_CTL
77# define SET_FPEXC_CTL(a,b) (-EINVAL)
78#endif
79#ifndef GET_FPEXC_CTL
80# define GET_FPEXC_CTL(a,b) (-EINVAL)
81#endif
82#ifndef GET_ENDIAN
83# define GET_ENDIAN(a,b) (-EINVAL)
84#endif
85#ifndef SET_ENDIAN
86# define SET_ENDIAN(a,b) (-EINVAL)
87#endif
88#ifndef GET_TSC_CTL
89# define GET_TSC_CTL(a) (-EINVAL)
90#endif
91#ifndef SET_TSC_CTL
92# define SET_TSC_CTL(a) (-EINVAL)
93#endif
94
95/*
96 * this is where the system-wide overflow UID and GID are defined, for
97 * architectures that now have 32-bit UID/GID but didn't in the past
98 */
99
100int overflowuid = DEFAULT_OVERFLOWUID;
101int overflowgid = DEFAULT_OVERFLOWGID;
102
103EXPORT_SYMBOL(overflowuid);
104EXPORT_SYMBOL(overflowgid);
105
106/*
107 * the same as above, but for filesystems which can only store a 16-bit
108 * UID and GID. as such, this is needed on all architectures
109 */
110
111int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
112int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
113
114EXPORT_SYMBOL(fs_overflowuid);
115EXPORT_SYMBOL(fs_overflowgid);
116
117/*
118 * Returns true if current's euid is same as p's uid or euid,
119 * or has CAP_SYS_NICE to p's user_ns.
120 *
121 * Called with rcu_read_lock, creds are safe
122 */
123static bool set_one_prio_perm(struct task_struct *p)
124{
125 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
126
127 if (uid_eq(pcred->uid, cred->euid) ||
128 uid_eq(pcred->euid, cred->euid))
129 return true;
130 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
131 return true;
132 return false;
133}
134
135/*
136 * set the priority of a task
137 * - the caller must hold the RCU read lock
138 */
139static int set_one_prio(struct task_struct *p, int niceval, int error)
140{
141 int no_nice;
142
143 if (!set_one_prio_perm(p)) {
144 error = -EPERM;
145 goto out;
146 }
147 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
148 error = -EACCES;
149 goto out;
150 }
151 no_nice = security_task_setnice(p, niceval);
152 if (no_nice) {
153 error = no_nice;
154 goto out;
155 }
156 if (error == -ESRCH)
157 error = 0;
158 set_user_nice(p, niceval);
159out:
160 return error;
161}
162
163SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
164{
165 struct task_struct *g, *p;
166 struct user_struct *user;
167 const struct cred *cred = current_cred();
168 int error = -EINVAL;
169 struct pid *pgrp;
170 kuid_t uid;
171
172 if (which > PRIO_USER || which < PRIO_PROCESS)
173 goto out;
174
175 /* normalize: avoid signed division (rounding problems) */
176 error = -ESRCH;
177 if (niceval < MIN_NICE)
178 niceval = MIN_NICE;
179 if (niceval > MAX_NICE)
180 niceval = MAX_NICE;
181
182 rcu_read_lock();
183 read_lock(&tasklist_lock);
184 switch (which) {
185 case PRIO_PROCESS:
186 if (who)
187 p = find_task_by_vpid(who);
188 else
189 p = current;
190 if (p)
191 error = set_one_prio(p, niceval, error);
192 break;
193 case PRIO_PGRP:
194 if (who)
195 pgrp = find_vpid(who);
196 else
197 pgrp = task_pgrp(current);
198 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
199 error = set_one_prio(p, niceval, error);
200 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
201 break;
202 case PRIO_USER:
203 uid = make_kuid(cred->user_ns, who);
204 user = cred->user;
205 if (!who)
206 uid = cred->uid;
207 else if (!uid_eq(uid, cred->uid) &&
208 !(user = find_user(uid)))
209 goto out_unlock; /* No processes for this user */
210
211 do_each_thread(g, p) {
212 if (uid_eq(task_uid(p), uid))
213 error = set_one_prio(p, niceval, error);
214 } while_each_thread(g, p);
215 if (!uid_eq(uid, cred->uid))
216 free_uid(user); /* For find_user() */
217 break;
218 }
219out_unlock:
220 read_unlock(&tasklist_lock);
221 rcu_read_unlock();
222out:
223 return error;
224}
225
226/*
227 * Ugh. To avoid negative return values, "getpriority()" will
228 * not return the normal nice-value, but a negated value that
229 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
230 * to stay compatible.
231 */
232SYSCALL_DEFINE2(getpriority, int, which, int, who)
233{
234 struct task_struct *g, *p;
235 struct user_struct *user;
236 const struct cred *cred = current_cred();
237 long niceval, retval = -ESRCH;
238 struct pid *pgrp;
239 kuid_t uid;
240
241 if (which > PRIO_USER || which < PRIO_PROCESS)
242 return -EINVAL;
243
244 rcu_read_lock();
245 read_lock(&tasklist_lock);
246 switch (which) {
247 case PRIO_PROCESS:
248 if (who)
249 p = find_task_by_vpid(who);
250 else
251 p = current;
252 if (p) {
253 niceval = 20 - task_nice(p);
254 if (niceval > retval)
255 retval = niceval;
256 }
257 break;
258 case PRIO_PGRP:
259 if (who)
260 pgrp = find_vpid(who);
261 else
262 pgrp = task_pgrp(current);
263 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
264 niceval = 20 - task_nice(p);
265 if (niceval > retval)
266 retval = niceval;
267 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
268 break;
269 case PRIO_USER:
270 uid = make_kuid(cred->user_ns, who);
271 user = cred->user;
272 if (!who)
273 uid = cred->uid;
274 else if (!uid_eq(uid, cred->uid) &&
275 !(user = find_user(uid)))
276 goto out_unlock; /* No processes for this user */
277
278 do_each_thread(g, p) {
279 if (uid_eq(task_uid(p), uid)) {
280 niceval = 20 - task_nice(p);
281 if (niceval > retval)
282 retval = niceval;
283 }
284 } while_each_thread(g, p);
285 if (!uid_eq(uid, cred->uid))
286 free_uid(user); /* for find_user() */
287 break;
288 }
289out_unlock:
290 read_unlock(&tasklist_lock);
291 rcu_read_unlock();
292
293 return retval;
294}
295
296/*
297 * Unprivileged users may change the real gid to the effective gid
298 * or vice versa. (BSD-style)
299 *
300 * If you set the real gid at all, or set the effective gid to a value not
301 * equal to the real gid, then the saved gid is set to the new effective gid.
302 *
303 * This makes it possible for a setgid program to completely drop its
304 * privileges, which is often a useful assertion to make when you are doing
305 * a security audit over a program.
306 *
307 * The general idea is that a program which uses just setregid() will be
308 * 100% compatible with BSD. A program which uses just setgid() will be
309 * 100% compatible with POSIX with saved IDs.
310 *
311 * SMP: There are not races, the GIDs are checked only by filesystem
312 * operations (as far as semantic preservation is concerned).
313 */
314SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
315{
316 struct user_namespace *ns = current_user_ns();
317 const struct cred *old;
318 struct cred *new;
319 int retval;
320 kgid_t krgid, kegid;
321
322 krgid = make_kgid(ns, rgid);
323 kegid = make_kgid(ns, egid);
324
325 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
326 return -EINVAL;
327 if ((egid != (gid_t) -1) && !gid_valid(kegid))
328 return -EINVAL;
329
330 new = prepare_creds();
331 if (!new)
332 return -ENOMEM;
333 old = current_cred();
334
335 retval = -EPERM;
336 if (rgid != (gid_t) -1) {
337 if (gid_eq(old->gid, krgid) ||
338 gid_eq(old->egid, krgid) ||
339 ns_capable(old->user_ns, CAP_SETGID))
340 new->gid = krgid;
341 else
342 goto error;
343 }
344 if (egid != (gid_t) -1) {
345 if (gid_eq(old->gid, kegid) ||
346 gid_eq(old->egid, kegid) ||
347 gid_eq(old->sgid, kegid) ||
348 ns_capable(old->user_ns, CAP_SETGID))
349 new->egid = kegid;
350 else
351 goto error;
352 }
353
354 if (rgid != (gid_t) -1 ||
355 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
356 new->sgid = new->egid;
357 new->fsgid = new->egid;
358
359 return commit_creds(new);
360
361error:
362 abort_creds(new);
363 return retval;
364}
365
366/*
367 * setgid() is implemented like SysV w/ SAVED_IDS
368 *
369 * SMP: Same implicit races as above.
370 */
371SYSCALL_DEFINE1(setgid, gid_t, gid)
372{
373 struct user_namespace *ns = current_user_ns();
374 const struct cred *old;
375 struct cred *new;
376 int retval;
377 kgid_t kgid;
378
379 kgid = make_kgid(ns, gid);
380 if (!gid_valid(kgid))
381 return -EINVAL;
382
383 new = prepare_creds();
384 if (!new)
385 return -ENOMEM;
386 old = current_cred();
387
388 retval = -EPERM;
389 if (ns_capable(old->user_ns, CAP_SETGID))
390 new->gid = new->egid = new->sgid = new->fsgid = kgid;
391 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
392 new->egid = new->fsgid = kgid;
393 else
394 goto error;
395
396 return commit_creds(new);
397
398error:
399 abort_creds(new);
400 return retval;
401}
402
403/*
404 * change the user struct in a credentials set to match the new UID
405 */
406static int set_user(struct cred *new)
407{
408 struct user_struct *new_user;
409
410 new_user = alloc_uid(new->uid);
411 if (!new_user)
412 return -EAGAIN;
413
414 /*
415 * We don't fail in case of NPROC limit excess here because too many
416 * poorly written programs don't check set*uid() return code, assuming
417 * it never fails if called by root. We may still enforce NPROC limit
418 * for programs doing set*uid()+execve() by harmlessly deferring the
419 * failure to the execve() stage.
420 */
421 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
422 new_user != INIT_USER)
423 current->flags |= PF_NPROC_EXCEEDED;
424 else
425 current->flags &= ~PF_NPROC_EXCEEDED;
426
427 free_uid(new->user);
428 new->user = new_user;
429 return 0;
430}
431
432/*
433 * Unprivileged users may change the real uid to the effective uid
434 * or vice versa. (BSD-style)
435 *
436 * If you set the real uid at all, or set the effective uid to a value not
437 * equal to the real uid, then the saved uid is set to the new effective uid.
438 *
439 * This makes it possible for a setuid program to completely drop its
440 * privileges, which is often a useful assertion to make when you are doing
441 * a security audit over a program.
442 *
443 * The general idea is that a program which uses just setreuid() will be
444 * 100% compatible with BSD. A program which uses just setuid() will be
445 * 100% compatible with POSIX with saved IDs.
446 */
447SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
448{
449 struct user_namespace *ns = current_user_ns();
450 const struct cred *old;
451 struct cred *new;
452 int retval;
453 kuid_t kruid, keuid;
454
455 kruid = make_kuid(ns, ruid);
456 keuid = make_kuid(ns, euid);
457
458 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
459 return -EINVAL;
460 if ((euid != (uid_t) -1) && !uid_valid(keuid))
461 return -EINVAL;
462
463 new = prepare_creds();
464 if (!new)
465 return -ENOMEM;
466 old = current_cred();
467
468 retval = -EPERM;
469 if (ruid != (uid_t) -1) {
470 new->uid = kruid;
471 if (!uid_eq(old->uid, kruid) &&
472 !uid_eq(old->euid, kruid) &&
473 !ns_capable(old->user_ns, CAP_SETUID))
474 goto error;
475 }
476
477 if (euid != (uid_t) -1) {
478 new->euid = keuid;
479 if (!uid_eq(old->uid, keuid) &&
480 !uid_eq(old->euid, keuid) &&
481 !uid_eq(old->suid, keuid) &&
482 !ns_capable(old->user_ns, CAP_SETUID))
483 goto error;
484 }
485
486 if (!uid_eq(new->uid, old->uid)) {
487 retval = set_user(new);
488 if (retval < 0)
489 goto error;
490 }
491 if (ruid != (uid_t) -1 ||
492 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
493 new->suid = new->euid;
494 new->fsuid = new->euid;
495
496 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
497 if (retval < 0)
498 goto error;
499
500 return commit_creds(new);
501
502error:
503 abort_creds(new);
504 return retval;
505}
506
507/*
508 * setuid() is implemented like SysV with SAVED_IDS
509 *
510 * Note that SAVED_ID's is deficient in that a setuid root program
511 * like sendmail, for example, cannot set its uid to be a normal
512 * user and then switch back, because if you're root, setuid() sets
513 * the saved uid too. If you don't like this, blame the bright people
514 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
515 * will allow a root program to temporarily drop privileges and be able to
516 * regain them by swapping the real and effective uid.
517 */
518SYSCALL_DEFINE1(setuid, uid_t, uid)
519{
520 struct user_namespace *ns = current_user_ns();
521 const struct cred *old;
522 struct cred *new;
523 int retval;
524 kuid_t kuid;
525
526 kuid = make_kuid(ns, uid);
527 if (!uid_valid(kuid))
528 return -EINVAL;
529
530 new = prepare_creds();
531 if (!new)
532 return -ENOMEM;
533 old = current_cred();
534
535 retval = -EPERM;
536 if (ns_capable(old->user_ns, CAP_SETUID)) {
537 new->suid = new->uid = kuid;
538 if (!uid_eq(kuid, old->uid)) {
539 retval = set_user(new);
540 if (retval < 0)
541 goto error;
542 }
543 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
544 goto error;
545 }
546
547 new->fsuid = new->euid = kuid;
548
549 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
550 if (retval < 0)
551 goto error;
552
553 return commit_creds(new);
554
555error:
556 abort_creds(new);
557 return retval;
558}
559
560
561/*
562 * This function implements a generic ability to update ruid, euid,
563 * and suid. This allows you to implement the 4.4 compatible seteuid().
564 */
565SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
566{
567 struct user_namespace *ns = current_user_ns();
568 const struct cred *old;
569 struct cred *new;
570 int retval;
571 kuid_t kruid, keuid, ksuid;
572
573 kruid = make_kuid(ns, ruid);
574 keuid = make_kuid(ns, euid);
575 ksuid = make_kuid(ns, suid);
576
577 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
578 return -EINVAL;
579
580 if ((euid != (uid_t) -1) && !uid_valid(keuid))
581 return -EINVAL;
582
583 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
584 return -EINVAL;
585
586 new = prepare_creds();
587 if (!new)
588 return -ENOMEM;
589
590 old = current_cred();
591
592 retval = -EPERM;
593 if (!ns_capable(old->user_ns, CAP_SETUID)) {
594 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
595 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
596 goto error;
597 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
598 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
599 goto error;
600 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
601 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
602 goto error;
603 }
604
605 if (ruid != (uid_t) -1) {
606 new->uid = kruid;
607 if (!uid_eq(kruid, old->uid)) {
608 retval = set_user(new);
609 if (retval < 0)
610 goto error;
611 }
612 }
613 if (euid != (uid_t) -1)
614 new->euid = keuid;
615 if (suid != (uid_t) -1)
616 new->suid = ksuid;
617 new->fsuid = new->euid;
618
619 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
620 if (retval < 0)
621 goto error;
622
623 return commit_creds(new);
624
625error:
626 abort_creds(new);
627 return retval;
628}
629
630SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
631{
632 const struct cred *cred = current_cred();
633 int retval;
634 uid_t ruid, euid, suid;
635
636 ruid = from_kuid_munged(cred->user_ns, cred->uid);
637 euid = from_kuid_munged(cred->user_ns, cred->euid);
638 suid = from_kuid_munged(cred->user_ns, cred->suid);
639
640 if (!(retval = put_user(ruid, ruidp)) &&
641 !(retval = put_user(euid, euidp)))
642 retval = put_user(suid, suidp);
643
644 return retval;
645}
646
647/*
648 * Same as above, but for rgid, egid, sgid.
649 */
650SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
651{
652 struct user_namespace *ns = current_user_ns();
653 const struct cred *old;
654 struct cred *new;
655 int retval;
656 kgid_t krgid, kegid, ksgid;
657
658 krgid = make_kgid(ns, rgid);
659 kegid = make_kgid(ns, egid);
660 ksgid = make_kgid(ns, sgid);
661
662 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
663 return -EINVAL;
664 if ((egid != (gid_t) -1) && !gid_valid(kegid))
665 return -EINVAL;
666 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
667 return -EINVAL;
668
669 new = prepare_creds();
670 if (!new)
671 return -ENOMEM;
672 old = current_cred();
673
674 retval = -EPERM;
675 if (!ns_capable(old->user_ns, CAP_SETGID)) {
676 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
677 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
678 goto error;
679 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
680 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
681 goto error;
682 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
683 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
684 goto error;
685 }
686
687 if (rgid != (gid_t) -1)
688 new->gid = krgid;
689 if (egid != (gid_t) -1)
690 new->egid = kegid;
691 if (sgid != (gid_t) -1)
692 new->sgid = ksgid;
693 new->fsgid = new->egid;
694
695 return commit_creds(new);
696
697error:
698 abort_creds(new);
699 return retval;
700}
701
702SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
703{
704 const struct cred *cred = current_cred();
705 int retval;
706 gid_t rgid, egid, sgid;
707
708 rgid = from_kgid_munged(cred->user_ns, cred->gid);
709 egid = from_kgid_munged(cred->user_ns, cred->egid);
710 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
711
712 if (!(retval = put_user(rgid, rgidp)) &&
713 !(retval = put_user(egid, egidp)))
714 retval = put_user(sgid, sgidp);
715
716 return retval;
717}
718
719
720/*
721 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
722 * is used for "access()" and for the NFS daemon (letting nfsd stay at
723 * whatever uid it wants to). It normally shadows "euid", except when
724 * explicitly set by setfsuid() or for access..
725 */
726SYSCALL_DEFINE1(setfsuid, uid_t, uid)
727{
728 const struct cred *old;
729 struct cred *new;
730 uid_t old_fsuid;
731 kuid_t kuid;
732
733 old = current_cred();
734 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
735
736 kuid = make_kuid(old->user_ns, uid);
737 if (!uid_valid(kuid))
738 return old_fsuid;
739
740 new = prepare_creds();
741 if (!new)
742 return old_fsuid;
743
744 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
745 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
746 ns_capable(old->user_ns, CAP_SETUID)) {
747 if (!uid_eq(kuid, old->fsuid)) {
748 new->fsuid = kuid;
749 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
750 goto change_okay;
751 }
752 }
753
754 abort_creds(new);
755 return old_fsuid;
756
757change_okay:
758 commit_creds(new);
759 return old_fsuid;
760}
761
762/*
763 * Samma på svenska..
764 */
765SYSCALL_DEFINE1(setfsgid, gid_t, gid)
766{
767 const struct cred *old;
768 struct cred *new;
769 gid_t old_fsgid;
770 kgid_t kgid;
771
772 old = current_cred();
773 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
774
775 kgid = make_kgid(old->user_ns, gid);
776 if (!gid_valid(kgid))
777 return old_fsgid;
778
779 new = prepare_creds();
780 if (!new)
781 return old_fsgid;
782
783 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
784 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
785 ns_capable(old->user_ns, CAP_SETGID)) {
786 if (!gid_eq(kgid, old->fsgid)) {
787 new->fsgid = kgid;
788 goto change_okay;
789 }
790 }
791
792 abort_creds(new);
793 return old_fsgid;
794
795change_okay:
796 commit_creds(new);
797 return old_fsgid;
798}
799
800/**
801 * sys_getpid - return the thread group id of the current process
802 *
803 * Note, despite the name, this returns the tgid not the pid. The tgid and
804 * the pid are identical unless CLONE_THREAD was specified on clone() in
805 * which case the tgid is the same in all threads of the same group.
806 *
807 * This is SMP safe as current->tgid does not change.
808 */
809SYSCALL_DEFINE0(getpid)
810{
811 return task_tgid_vnr(current);
812}
813
814/* Thread ID - the internal kernel "pid" */
815SYSCALL_DEFINE0(gettid)
816{
817 return task_pid_vnr(current);
818}
819
820/*
821 * Accessing ->real_parent is not SMP-safe, it could
822 * change from under us. However, we can use a stale
823 * value of ->real_parent under rcu_read_lock(), see
824 * release_task()->call_rcu(delayed_put_task_struct).
825 */
826SYSCALL_DEFINE0(getppid)
827{
828 int pid;
829
830 rcu_read_lock();
831 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
832 rcu_read_unlock();
833
834 return pid;
835}
836
837SYSCALL_DEFINE0(getuid)
838{
839 /* Only we change this so SMP safe */
840 return from_kuid_munged(current_user_ns(), current_uid());
841}
842
843SYSCALL_DEFINE0(geteuid)
844{
845 /* Only we change this so SMP safe */
846 return from_kuid_munged(current_user_ns(), current_euid());
847}
848
849SYSCALL_DEFINE0(getgid)
850{
851 /* Only we change this so SMP safe */
852 return from_kgid_munged(current_user_ns(), current_gid());
853}
854
855SYSCALL_DEFINE0(getegid)
856{
857 /* Only we change this so SMP safe */
858 return from_kgid_munged(current_user_ns(), current_egid());
859}
860
861void do_sys_times(struct tms *tms)
862{
863 cputime_t tgutime, tgstime, cutime, cstime;
864
865 spin_lock_irq(¤t->sighand->siglock);
866 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
867 cutime = current->signal->cutime;
868 cstime = current->signal->cstime;
869 spin_unlock_irq(¤t->sighand->siglock);
870 tms->tms_utime = cputime_to_clock_t(tgutime);
871 tms->tms_stime = cputime_to_clock_t(tgstime);
872 tms->tms_cutime = cputime_to_clock_t(cutime);
873 tms->tms_cstime = cputime_to_clock_t(cstime);
874}
875
876SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
877{
878 if (tbuf) {
879 struct tms tmp;
880
881 do_sys_times(&tmp);
882 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
883 return -EFAULT;
884 }
885 force_successful_syscall_return();
886 return (long) jiffies_64_to_clock_t(get_jiffies_64());
887}
888
889/*
890 * This needs some heavy checking ...
891 * I just haven't the stomach for it. I also don't fully
892 * understand sessions/pgrp etc. Let somebody who does explain it.
893 *
894 * OK, I think I have the protection semantics right.... this is really
895 * only important on a multi-user system anyway, to make sure one user
896 * can't send a signal to a process owned by another. -TYT, 12/12/91
897 *
898 * !PF_FORKNOEXEC check to conform completely to POSIX.
899 */
900SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
901{
902 struct task_struct *p;
903 struct task_struct *group_leader = current->group_leader;
904 struct pid *pgrp;
905 int err;
906
907 if (!pid)
908 pid = task_pid_vnr(group_leader);
909 if (!pgid)
910 pgid = pid;
911 if (pgid < 0)
912 return -EINVAL;
913 rcu_read_lock();
914
915 /* From this point forward we keep holding onto the tasklist lock
916 * so that our parent does not change from under us. -DaveM
917 */
918 write_lock_irq(&tasklist_lock);
919
920 err = -ESRCH;
921 p = find_task_by_vpid(pid);
922 if (!p)
923 goto out;
924
925 err = -EINVAL;
926 if (!thread_group_leader(p))
927 goto out;
928
929 if (same_thread_group(p->real_parent, group_leader)) {
930 err = -EPERM;
931 if (task_session(p) != task_session(group_leader))
932 goto out;
933 err = -EACCES;
934 if (!(p->flags & PF_FORKNOEXEC))
935 goto out;
936 } else {
937 err = -ESRCH;
938 if (p != group_leader)
939 goto out;
940 }
941
942 err = -EPERM;
943 if (p->signal->leader)
944 goto out;
945
946 pgrp = task_pid(p);
947 if (pgid != pid) {
948 struct task_struct *g;
949
950 pgrp = find_vpid(pgid);
951 g = pid_task(pgrp, PIDTYPE_PGID);
952 if (!g || task_session(g) != task_session(group_leader))
953 goto out;
954 }
955
956 err = security_task_setpgid(p, pgid);
957 if (err)
958 goto out;
959
960 if (task_pgrp(p) != pgrp)
961 change_pid(p, PIDTYPE_PGID, pgrp);
962
963 err = 0;
964out:
965 /* All paths lead to here, thus we are safe. -DaveM */
966 write_unlock_irq(&tasklist_lock);
967 rcu_read_unlock();
968 return err;
969}
970
971SYSCALL_DEFINE1(getpgid, pid_t, pid)
972{
973 struct task_struct *p;
974 struct pid *grp;
975 int retval;
976
977 rcu_read_lock();
978 if (!pid)
979 grp = task_pgrp(current);
980 else {
981 retval = -ESRCH;
982 p = find_task_by_vpid(pid);
983 if (!p)
984 goto out;
985 grp = task_pgrp(p);
986 if (!grp)
987 goto out;
988
989 retval = security_task_getpgid(p);
990 if (retval)
991 goto out;
992 }
993 retval = pid_vnr(grp);
994out:
995 rcu_read_unlock();
996 return retval;
997}
998
999#ifdef __ARCH_WANT_SYS_GETPGRP
1000
1001SYSCALL_DEFINE0(getpgrp)
1002{
1003 return sys_getpgid(0);
1004}
1005
1006#endif
1007
1008SYSCALL_DEFINE1(getsid, pid_t, pid)
1009{
1010 struct task_struct *p;
1011 struct pid *sid;
1012 int retval;
1013
1014 rcu_read_lock();
1015 if (!pid)
1016 sid = task_session(current);
1017 else {
1018 retval = -ESRCH;
1019 p = find_task_by_vpid(pid);
1020 if (!p)
1021 goto out;
1022 sid = task_session(p);
1023 if (!sid)
1024 goto out;
1025
1026 retval = security_task_getsid(p);
1027 if (retval)
1028 goto out;
1029 }
1030 retval = pid_vnr(sid);
1031out:
1032 rcu_read_unlock();
1033 return retval;
1034}
1035
1036static void set_special_pids(struct pid *pid)
1037{
1038 struct task_struct *curr = current->group_leader;
1039
1040 if (task_session(curr) != pid)
1041 change_pid(curr, PIDTYPE_SID, pid);
1042
1043 if (task_pgrp(curr) != pid)
1044 change_pid(curr, PIDTYPE_PGID, pid);
1045}
1046
1047SYSCALL_DEFINE0(setsid)
1048{
1049 struct task_struct *group_leader = current->group_leader;
1050 struct pid *sid = task_pid(group_leader);
1051 pid_t session = pid_vnr(sid);
1052 int err = -EPERM;
1053
1054 write_lock_irq(&tasklist_lock);
1055 /* Fail if I am already a session leader */
1056 if (group_leader->signal->leader)
1057 goto out;
1058
1059 /* Fail if a process group id already exists that equals the
1060 * proposed session id.
1061 */
1062 if (pid_task(sid, PIDTYPE_PGID))
1063 goto out;
1064
1065 group_leader->signal->leader = 1;
1066 set_special_pids(sid);
1067
1068 proc_clear_tty(group_leader);
1069
1070 err = session;
1071out:
1072 write_unlock_irq(&tasklist_lock);
1073 if (err > 0) {
1074 proc_sid_connector(group_leader);
1075 sched_autogroup_create_attach(group_leader);
1076 }
1077 return err;
1078}
1079
1080DECLARE_RWSEM(uts_sem);
1081
1082#ifdef COMPAT_UTS_MACHINE
1083#define override_architecture(name) \
1084 (personality(current->personality) == PER_LINUX32 && \
1085 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1086 sizeof(COMPAT_UTS_MACHINE)))
1087#else
1088#define override_architecture(name) 0
1089#endif
1090
1091/*
1092 * Work around broken programs that cannot handle "Linux 3.0".
1093 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1094 */
1095static int override_release(char __user *release, size_t len)
1096{
1097 int ret = 0;
1098
1099 if (current->personality & UNAME26) {
1100 const char *rest = UTS_RELEASE;
1101 char buf[65] = { 0 };
1102 int ndots = 0;
1103 unsigned v;
1104 size_t copy;
1105
1106 while (*rest) {
1107 if (*rest == '.' && ++ndots >= 3)
1108 break;
1109 if (!isdigit(*rest) && *rest != '.')
1110 break;
1111 rest++;
1112 }
1113 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1114 copy = clamp_t(size_t, len, 1, sizeof(buf));
1115 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1116 ret = copy_to_user(release, buf, copy + 1);
1117 }
1118 return ret;
1119}
1120
1121SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1122{
1123 int errno = 0;
1124
1125 down_read(&uts_sem);
1126 if (copy_to_user(name, utsname(), sizeof *name))
1127 errno = -EFAULT;
1128 up_read(&uts_sem);
1129
1130 if (!errno && override_release(name->release, sizeof(name->release)))
1131 errno = -EFAULT;
1132 if (!errno && override_architecture(name))
1133 errno = -EFAULT;
1134 return errno;
1135}
1136
1137#ifdef __ARCH_WANT_SYS_OLD_UNAME
1138/*
1139 * Old cruft
1140 */
1141SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1142{
1143 int error = 0;
1144
1145 if (!name)
1146 return -EFAULT;
1147
1148 down_read(&uts_sem);
1149 if (copy_to_user(name, utsname(), sizeof(*name)))
1150 error = -EFAULT;
1151 up_read(&uts_sem);
1152
1153 if (!error && override_release(name->release, sizeof(name->release)))
1154 error = -EFAULT;
1155 if (!error && override_architecture(name))
1156 error = -EFAULT;
1157 return error;
1158}
1159
1160SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1161{
1162 int error;
1163
1164 if (!name)
1165 return -EFAULT;
1166 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1167 return -EFAULT;
1168
1169 down_read(&uts_sem);
1170 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1171 __OLD_UTS_LEN);
1172 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1173 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1174 __OLD_UTS_LEN);
1175 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1176 error |= __copy_to_user(&name->release, &utsname()->release,
1177 __OLD_UTS_LEN);
1178 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1179 error |= __copy_to_user(&name->version, &utsname()->version,
1180 __OLD_UTS_LEN);
1181 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1182 error |= __copy_to_user(&name->machine, &utsname()->machine,
1183 __OLD_UTS_LEN);
1184 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1185 up_read(&uts_sem);
1186
1187 if (!error && override_architecture(name))
1188 error = -EFAULT;
1189 if (!error && override_release(name->release, sizeof(name->release)))
1190 error = -EFAULT;
1191 return error ? -EFAULT : 0;
1192}
1193#endif
1194
1195SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1196{
1197 int errno;
1198 char tmp[__NEW_UTS_LEN];
1199
1200 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1201 return -EPERM;
1202
1203 if (len < 0 || len > __NEW_UTS_LEN)
1204 return -EINVAL;
1205 down_write(&uts_sem);
1206 errno = -EFAULT;
1207 if (!copy_from_user(tmp, name, len)) {
1208 struct new_utsname *u = utsname();
1209
1210 memcpy(u->nodename, tmp, len);
1211 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1212 errno = 0;
1213 uts_proc_notify(UTS_PROC_HOSTNAME);
1214 }
1215 up_write(&uts_sem);
1216 return errno;
1217}
1218
1219#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1220
1221SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1222{
1223 int i, errno;
1224 struct new_utsname *u;
1225
1226 if (len < 0)
1227 return -EINVAL;
1228 down_read(&uts_sem);
1229 u = utsname();
1230 i = 1 + strlen(u->nodename);
1231 if (i > len)
1232 i = len;
1233 errno = 0;
1234 if (copy_to_user(name, u->nodename, i))
1235 errno = -EFAULT;
1236 up_read(&uts_sem);
1237 return errno;
1238}
1239
1240#endif
1241
1242/*
1243 * Only setdomainname; getdomainname can be implemented by calling
1244 * uname()
1245 */
1246SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1247{
1248 int errno;
1249 char tmp[__NEW_UTS_LEN];
1250
1251 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1252 return -EPERM;
1253 if (len < 0 || len > __NEW_UTS_LEN)
1254 return -EINVAL;
1255
1256 down_write(&uts_sem);
1257 errno = -EFAULT;
1258 if (!copy_from_user(tmp, name, len)) {
1259 struct new_utsname *u = utsname();
1260
1261 memcpy(u->domainname, tmp, len);
1262 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1263 errno = 0;
1264 uts_proc_notify(UTS_PROC_DOMAINNAME);
1265 }
1266 up_write(&uts_sem);
1267 return errno;
1268}
1269
1270SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1271{
1272 struct rlimit value;
1273 int ret;
1274
1275 ret = do_prlimit(current, resource, NULL, &value);
1276 if (!ret)
1277 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1278
1279 return ret;
1280}
1281
1282#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1283
1284/*
1285 * Back compatibility for getrlimit. Needed for some apps.
1286 */
1287
1288SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1289 struct rlimit __user *, rlim)
1290{
1291 struct rlimit x;
1292 if (resource >= RLIM_NLIMITS)
1293 return -EINVAL;
1294
1295 task_lock(current->group_leader);
1296 x = current->signal->rlim[resource];
1297 task_unlock(current->group_leader);
1298 if (x.rlim_cur > 0x7FFFFFFF)
1299 x.rlim_cur = 0x7FFFFFFF;
1300 if (x.rlim_max > 0x7FFFFFFF)
1301 x.rlim_max = 0x7FFFFFFF;
1302 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1303}
1304
1305#endif
1306
1307static inline bool rlim64_is_infinity(__u64 rlim64)
1308{
1309#if BITS_PER_LONG < 64
1310 return rlim64 >= ULONG_MAX;
1311#else
1312 return rlim64 == RLIM64_INFINITY;
1313#endif
1314}
1315
1316static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1317{
1318 if (rlim->rlim_cur == RLIM_INFINITY)
1319 rlim64->rlim_cur = RLIM64_INFINITY;
1320 else
1321 rlim64->rlim_cur = rlim->rlim_cur;
1322 if (rlim->rlim_max == RLIM_INFINITY)
1323 rlim64->rlim_max = RLIM64_INFINITY;
1324 else
1325 rlim64->rlim_max = rlim->rlim_max;
1326}
1327
1328static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1329{
1330 if (rlim64_is_infinity(rlim64->rlim_cur))
1331 rlim->rlim_cur = RLIM_INFINITY;
1332 else
1333 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1334 if (rlim64_is_infinity(rlim64->rlim_max))
1335 rlim->rlim_max = RLIM_INFINITY;
1336 else
1337 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1338}
1339
1340/* make sure you are allowed to change @tsk limits before calling this */
1341int do_prlimit(struct task_struct *tsk, unsigned int resource,
1342 struct rlimit *new_rlim, struct rlimit *old_rlim)
1343{
1344 struct rlimit *rlim;
1345 int retval = 0;
1346
1347 if (resource >= RLIM_NLIMITS)
1348 return -EINVAL;
1349 if (new_rlim) {
1350 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1351 return -EINVAL;
1352 if (resource == RLIMIT_NOFILE &&
1353 new_rlim->rlim_max > sysctl_nr_open)
1354 return -EPERM;
1355 }
1356
1357 /* protect tsk->signal and tsk->sighand from disappearing */
1358 read_lock(&tasklist_lock);
1359 if (!tsk->sighand) {
1360 retval = -ESRCH;
1361 goto out;
1362 }
1363
1364 rlim = tsk->signal->rlim + resource;
1365 task_lock(tsk->group_leader);
1366 if (new_rlim) {
1367 /* Keep the capable check against init_user_ns until
1368 cgroups can contain all limits */
1369 if (new_rlim->rlim_max > rlim->rlim_max &&
1370 !capable(CAP_SYS_RESOURCE))
1371 retval = -EPERM;
1372 if (!retval)
1373 retval = security_task_setrlimit(tsk->group_leader,
1374 resource, new_rlim);
1375 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1376 /*
1377 * The caller is asking for an immediate RLIMIT_CPU
1378 * expiry. But we use the zero value to mean "it was
1379 * never set". So let's cheat and make it one second
1380 * instead
1381 */
1382 new_rlim->rlim_cur = 1;
1383 }
1384 }
1385 if (!retval) {
1386 if (old_rlim)
1387 *old_rlim = *rlim;
1388 if (new_rlim)
1389 *rlim = *new_rlim;
1390 }
1391 task_unlock(tsk->group_leader);
1392
1393 /*
1394 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1395 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1396 * very long-standing error, and fixing it now risks breakage of
1397 * applications, so we live with it
1398 */
1399 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1400 new_rlim->rlim_cur != RLIM_INFINITY)
1401 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1402out:
1403 read_unlock(&tasklist_lock);
1404 return retval;
1405}
1406
1407/* rcu lock must be held */
1408static int check_prlimit_permission(struct task_struct *task)
1409{
1410 const struct cred *cred = current_cred(), *tcred;
1411
1412 if (current == task)
1413 return 0;
1414
1415 tcred = __task_cred(task);
1416 if (uid_eq(cred->uid, tcred->euid) &&
1417 uid_eq(cred->uid, tcred->suid) &&
1418 uid_eq(cred->uid, tcred->uid) &&
1419 gid_eq(cred->gid, tcred->egid) &&
1420 gid_eq(cred->gid, tcred->sgid) &&
1421 gid_eq(cred->gid, tcred->gid))
1422 return 0;
1423 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1424 return 0;
1425
1426 return -EPERM;
1427}
1428
1429SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1430 const struct rlimit64 __user *, new_rlim,
1431 struct rlimit64 __user *, old_rlim)
1432{
1433 struct rlimit64 old64, new64;
1434 struct rlimit old, new;
1435 struct task_struct *tsk;
1436 int ret;
1437
1438 if (new_rlim) {
1439 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1440 return -EFAULT;
1441 rlim64_to_rlim(&new64, &new);
1442 }
1443
1444 rcu_read_lock();
1445 tsk = pid ? find_task_by_vpid(pid) : current;
1446 if (!tsk) {
1447 rcu_read_unlock();
1448 return -ESRCH;
1449 }
1450 ret = check_prlimit_permission(tsk);
1451 if (ret) {
1452 rcu_read_unlock();
1453 return ret;
1454 }
1455 get_task_struct(tsk);
1456 rcu_read_unlock();
1457
1458 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1459 old_rlim ? &old : NULL);
1460
1461 if (!ret && old_rlim) {
1462 rlim_to_rlim64(&old, &old64);
1463 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1464 ret = -EFAULT;
1465 }
1466
1467 put_task_struct(tsk);
1468 return ret;
1469}
1470
1471SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1472{
1473 struct rlimit new_rlim;
1474
1475 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1476 return -EFAULT;
1477 return do_prlimit(current, resource, &new_rlim, NULL);
1478}
1479
1480/*
1481 * It would make sense to put struct rusage in the task_struct,
1482 * except that would make the task_struct be *really big*. After
1483 * task_struct gets moved into malloc'ed memory, it would
1484 * make sense to do this. It will make moving the rest of the information
1485 * a lot simpler! (Which we're not doing right now because we're not
1486 * measuring them yet).
1487 *
1488 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1489 * races with threads incrementing their own counters. But since word
1490 * reads are atomic, we either get new values or old values and we don't
1491 * care which for the sums. We always take the siglock to protect reading
1492 * the c* fields from p->signal from races with exit.c updating those
1493 * fields when reaping, so a sample either gets all the additions of a
1494 * given child after it's reaped, or none so this sample is before reaping.
1495 *
1496 * Locking:
1497 * We need to take the siglock for CHILDEREN, SELF and BOTH
1498 * for the cases current multithreaded, non-current single threaded
1499 * non-current multithreaded. Thread traversal is now safe with
1500 * the siglock held.
1501 * Strictly speaking, we donot need to take the siglock if we are current and
1502 * single threaded, as no one else can take our signal_struct away, no one
1503 * else can reap the children to update signal->c* counters, and no one else
1504 * can race with the signal-> fields. If we do not take any lock, the
1505 * signal-> fields could be read out of order while another thread was just
1506 * exiting. So we should place a read memory barrier when we avoid the lock.
1507 * On the writer side, write memory barrier is implied in __exit_signal
1508 * as __exit_signal releases the siglock spinlock after updating the signal->
1509 * fields. But we don't do this yet to keep things simple.
1510 *
1511 */
1512
1513static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1514{
1515 r->ru_nvcsw += t->nvcsw;
1516 r->ru_nivcsw += t->nivcsw;
1517 r->ru_minflt += t->min_flt;
1518 r->ru_majflt += t->maj_flt;
1519 r->ru_inblock += task_io_get_inblock(t);
1520 r->ru_oublock += task_io_get_oublock(t);
1521}
1522
1523static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1524{
1525 struct task_struct *t;
1526 unsigned long flags;
1527 cputime_t tgutime, tgstime, utime, stime;
1528 unsigned long maxrss = 0;
1529
1530 memset((char *) r, 0, sizeof *r);
1531 utime = stime = 0;
1532
1533 if (who == RUSAGE_THREAD) {
1534 task_cputime_adjusted(current, &utime, &stime);
1535 accumulate_thread_rusage(p, r);
1536 maxrss = p->signal->maxrss;
1537 goto out;
1538 }
1539
1540 if (!lock_task_sighand(p, &flags))
1541 return;
1542
1543 switch (who) {
1544 case RUSAGE_BOTH:
1545 case RUSAGE_CHILDREN:
1546 utime = p->signal->cutime;
1547 stime = p->signal->cstime;
1548 r->ru_nvcsw = p->signal->cnvcsw;
1549 r->ru_nivcsw = p->signal->cnivcsw;
1550 r->ru_minflt = p->signal->cmin_flt;
1551 r->ru_majflt = p->signal->cmaj_flt;
1552 r->ru_inblock = p->signal->cinblock;
1553 r->ru_oublock = p->signal->coublock;
1554 maxrss = p->signal->cmaxrss;
1555
1556 if (who == RUSAGE_CHILDREN)
1557 break;
1558
1559 case RUSAGE_SELF:
1560 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1561 utime += tgutime;
1562 stime += tgstime;
1563 r->ru_nvcsw += p->signal->nvcsw;
1564 r->ru_nivcsw += p->signal->nivcsw;
1565 r->ru_minflt += p->signal->min_flt;
1566 r->ru_majflt += p->signal->maj_flt;
1567 r->ru_inblock += p->signal->inblock;
1568 r->ru_oublock += p->signal->oublock;
1569 if (maxrss < p->signal->maxrss)
1570 maxrss = p->signal->maxrss;
1571 t = p;
1572 do {
1573 accumulate_thread_rusage(t, r);
1574 } while_each_thread(p, t);
1575 break;
1576
1577 default:
1578 BUG();
1579 }
1580 unlock_task_sighand(p, &flags);
1581
1582out:
1583 cputime_to_timeval(utime, &r->ru_utime);
1584 cputime_to_timeval(stime, &r->ru_stime);
1585
1586 if (who != RUSAGE_CHILDREN) {
1587 struct mm_struct *mm = get_task_mm(p);
1588 if (mm) {
1589 setmax_mm_hiwater_rss(&maxrss, mm);
1590 mmput(mm);
1591 }
1592 }
1593 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1594}
1595
1596int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1597{
1598 struct rusage r;
1599 k_getrusage(p, who, &r);
1600 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1601}
1602
1603SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1604{
1605 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1606 who != RUSAGE_THREAD)
1607 return -EINVAL;
1608 return getrusage(current, who, ru);
1609}
1610
1611#ifdef CONFIG_COMPAT
1612COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1613{
1614 struct rusage r;
1615
1616 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1617 who != RUSAGE_THREAD)
1618 return -EINVAL;
1619
1620 k_getrusage(current, who, &r);
1621 return put_compat_rusage(&r, ru);
1622}
1623#endif
1624
1625SYSCALL_DEFINE1(umask, int, mask)
1626{
1627 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1628 return mask;
1629}
1630
1631static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1632{
1633 struct fd exe;
1634 struct inode *inode;
1635 int err;
1636
1637 exe = fdget(fd);
1638 if (!exe.file)
1639 return -EBADF;
1640
1641 inode = file_inode(exe.file);
1642
1643 /*
1644 * Because the original mm->exe_file points to executable file, make
1645 * sure that this one is executable as well, to avoid breaking an
1646 * overall picture.
1647 */
1648 err = -EACCES;
1649 if (!S_ISREG(inode->i_mode) ||
1650 exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1651 goto exit;
1652
1653 err = inode_permission(inode, MAY_EXEC);
1654 if (err)
1655 goto exit;
1656
1657 down_write(&mm->mmap_sem);
1658
1659 /*
1660 * Forbid mm->exe_file change if old file still mapped.
1661 */
1662 err = -EBUSY;
1663 if (mm->exe_file) {
1664 struct vm_area_struct *vma;
1665
1666 for (vma = mm->mmap; vma; vma = vma->vm_next)
1667 if (vma->vm_file &&
1668 path_equal(&vma->vm_file->f_path,
1669 &mm->exe_file->f_path))
1670 goto exit_unlock;
1671 }
1672
1673 /*
1674 * The symlink can be changed only once, just to disallow arbitrary
1675 * transitions malicious software might bring in. This means one
1676 * could make a snapshot over all processes running and monitor
1677 * /proc/pid/exe changes to notice unusual activity if needed.
1678 */
1679 err = -EPERM;
1680 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1681 goto exit_unlock;
1682
1683 err = 0;
1684 set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */
1685exit_unlock:
1686 up_write(&mm->mmap_sem);
1687
1688exit:
1689 fdput(exe);
1690 return err;
1691}
1692
1693static int prctl_set_mm(int opt, unsigned long addr,
1694 unsigned long arg4, unsigned long arg5)
1695{
1696 unsigned long rlim = rlimit(RLIMIT_DATA);
1697 struct mm_struct *mm = current->mm;
1698 struct vm_area_struct *vma;
1699 int error;
1700
1701 if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1702 return -EINVAL;
1703
1704 if (!capable(CAP_SYS_RESOURCE))
1705 return -EPERM;
1706
1707 if (opt == PR_SET_MM_EXE_FILE)
1708 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1709
1710 if (addr >= TASK_SIZE || addr < mmap_min_addr)
1711 return -EINVAL;
1712
1713 error = -EINVAL;
1714
1715 down_read(&mm->mmap_sem);
1716 vma = find_vma(mm, addr);
1717
1718 switch (opt) {
1719 case PR_SET_MM_START_CODE:
1720 mm->start_code = addr;
1721 break;
1722 case PR_SET_MM_END_CODE:
1723 mm->end_code = addr;
1724 break;
1725 case PR_SET_MM_START_DATA:
1726 mm->start_data = addr;
1727 break;
1728 case PR_SET_MM_END_DATA:
1729 mm->end_data = addr;
1730 break;
1731
1732 case PR_SET_MM_START_BRK:
1733 if (addr <= mm->end_data)
1734 goto out;
1735
1736 if (rlim < RLIM_INFINITY &&
1737 (mm->brk - addr) +
1738 (mm->end_data - mm->start_data) > rlim)
1739 goto out;
1740
1741 mm->start_brk = addr;
1742 break;
1743
1744 case PR_SET_MM_BRK:
1745 if (addr <= mm->end_data)
1746 goto out;
1747
1748 if (rlim < RLIM_INFINITY &&
1749 (addr - mm->start_brk) +
1750 (mm->end_data - mm->start_data) > rlim)
1751 goto out;
1752
1753 mm->brk = addr;
1754 break;
1755
1756 /*
1757 * If command line arguments and environment
1758 * are placed somewhere else on stack, we can
1759 * set them up here, ARG_START/END to setup
1760 * command line argumets and ENV_START/END
1761 * for environment.
1762 */
1763 case PR_SET_MM_START_STACK:
1764 case PR_SET_MM_ARG_START:
1765 case PR_SET_MM_ARG_END:
1766 case PR_SET_MM_ENV_START:
1767 case PR_SET_MM_ENV_END:
1768 if (!vma) {
1769 error = -EFAULT;
1770 goto out;
1771 }
1772 if (opt == PR_SET_MM_START_STACK)
1773 mm->start_stack = addr;
1774 else if (opt == PR_SET_MM_ARG_START)
1775 mm->arg_start = addr;
1776 else if (opt == PR_SET_MM_ARG_END)
1777 mm->arg_end = addr;
1778 else if (opt == PR_SET_MM_ENV_START)
1779 mm->env_start = addr;
1780 else if (opt == PR_SET_MM_ENV_END)
1781 mm->env_end = addr;
1782 break;
1783
1784 /*
1785 * This doesn't move auxiliary vector itself
1786 * since it's pinned to mm_struct, but allow
1787 * to fill vector with new values. It's up
1788 * to a caller to provide sane values here
1789 * otherwise user space tools which use this
1790 * vector might be unhappy.
1791 */
1792 case PR_SET_MM_AUXV: {
1793 unsigned long user_auxv[AT_VECTOR_SIZE];
1794
1795 if (arg4 > sizeof(user_auxv))
1796 goto out;
1797 up_read(&mm->mmap_sem);
1798
1799 if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1800 return -EFAULT;
1801
1802 /* Make sure the last entry is always AT_NULL */
1803 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1804 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1805
1806 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1807
1808 task_lock(current);
1809 memcpy(mm->saved_auxv, user_auxv, arg4);
1810 task_unlock(current);
1811
1812 return 0;
1813 }
1814 default:
1815 goto out;
1816 }
1817
1818 error = 0;
1819out:
1820 up_read(&mm->mmap_sem);
1821 return error;
1822}
1823
1824#ifdef CONFIG_CHECKPOINT_RESTORE
1825static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1826{
1827 return put_user(me->clear_child_tid, tid_addr);
1828}
1829#else
1830static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1831{
1832 return -EINVAL;
1833}
1834#endif
1835
1836SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1837 unsigned long, arg4, unsigned long, arg5)
1838{
1839 struct task_struct *me = current;
1840 unsigned char comm[sizeof(me->comm)];
1841 long error;
1842
1843 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1844 if (error != -ENOSYS)
1845 return error;
1846
1847 error = 0;
1848 switch (option) {
1849 case PR_SET_PDEATHSIG:
1850 if (!valid_signal(arg2)) {
1851 error = -EINVAL;
1852 break;
1853 }
1854 me->pdeath_signal = arg2;
1855 break;
1856 case PR_GET_PDEATHSIG:
1857 error = put_user(me->pdeath_signal, (int __user *)arg2);
1858 break;
1859 case PR_GET_DUMPABLE:
1860 error = get_dumpable(me->mm);
1861 break;
1862 case PR_SET_DUMPABLE:
1863 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
1864 error = -EINVAL;
1865 break;
1866 }
1867 set_dumpable(me->mm, arg2);
1868 break;
1869
1870 case PR_SET_UNALIGN:
1871 error = SET_UNALIGN_CTL(me, arg2);
1872 break;
1873 case PR_GET_UNALIGN:
1874 error = GET_UNALIGN_CTL(me, arg2);
1875 break;
1876 case PR_SET_FPEMU:
1877 error = SET_FPEMU_CTL(me, arg2);
1878 break;
1879 case PR_GET_FPEMU:
1880 error = GET_FPEMU_CTL(me, arg2);
1881 break;
1882 case PR_SET_FPEXC:
1883 error = SET_FPEXC_CTL(me, arg2);
1884 break;
1885 case PR_GET_FPEXC:
1886 error = GET_FPEXC_CTL(me, arg2);
1887 break;
1888 case PR_GET_TIMING:
1889 error = PR_TIMING_STATISTICAL;
1890 break;
1891 case PR_SET_TIMING:
1892 if (arg2 != PR_TIMING_STATISTICAL)
1893 error = -EINVAL;
1894 break;
1895 case PR_SET_NAME:
1896 comm[sizeof(me->comm) - 1] = 0;
1897 if (strncpy_from_user(comm, (char __user *)arg2,
1898 sizeof(me->comm) - 1) < 0)
1899 return -EFAULT;
1900 set_task_comm(me, comm);
1901 proc_comm_connector(me);
1902 break;
1903 case PR_GET_NAME:
1904 get_task_comm(comm, me);
1905 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
1906 return -EFAULT;
1907 break;
1908 case PR_GET_ENDIAN:
1909 error = GET_ENDIAN(me, arg2);
1910 break;
1911 case PR_SET_ENDIAN:
1912 error = SET_ENDIAN(me, arg2);
1913 break;
1914 case PR_GET_SECCOMP:
1915 error = prctl_get_seccomp();
1916 break;
1917 case PR_SET_SECCOMP:
1918 error = prctl_set_seccomp(arg2, (char __user *)arg3);
1919 break;
1920 case PR_GET_TSC:
1921 error = GET_TSC_CTL(arg2);
1922 break;
1923 case PR_SET_TSC:
1924 error = SET_TSC_CTL(arg2);
1925 break;
1926 case PR_TASK_PERF_EVENTS_DISABLE:
1927 error = perf_event_task_disable();
1928 break;
1929 case PR_TASK_PERF_EVENTS_ENABLE:
1930 error = perf_event_task_enable();
1931 break;
1932 case PR_GET_TIMERSLACK:
1933 error = current->timer_slack_ns;
1934 break;
1935 case PR_SET_TIMERSLACK:
1936 if (arg2 <= 0)
1937 current->timer_slack_ns =
1938 current->default_timer_slack_ns;
1939 else
1940 current->timer_slack_ns = arg2;
1941 break;
1942 case PR_MCE_KILL:
1943 if (arg4 | arg5)
1944 return -EINVAL;
1945 switch (arg2) {
1946 case PR_MCE_KILL_CLEAR:
1947 if (arg3 != 0)
1948 return -EINVAL;
1949 current->flags &= ~PF_MCE_PROCESS;
1950 break;
1951 case PR_MCE_KILL_SET:
1952 current->flags |= PF_MCE_PROCESS;
1953 if (arg3 == PR_MCE_KILL_EARLY)
1954 current->flags |= PF_MCE_EARLY;
1955 else if (arg3 == PR_MCE_KILL_LATE)
1956 current->flags &= ~PF_MCE_EARLY;
1957 else if (arg3 == PR_MCE_KILL_DEFAULT)
1958 current->flags &=
1959 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1960 else
1961 return -EINVAL;
1962 break;
1963 default:
1964 return -EINVAL;
1965 }
1966 break;
1967 case PR_MCE_KILL_GET:
1968 if (arg2 | arg3 | arg4 | arg5)
1969 return -EINVAL;
1970 if (current->flags & PF_MCE_PROCESS)
1971 error = (current->flags & PF_MCE_EARLY) ?
1972 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1973 else
1974 error = PR_MCE_KILL_DEFAULT;
1975 break;
1976 case PR_SET_MM:
1977 error = prctl_set_mm(arg2, arg3, arg4, arg5);
1978 break;
1979 case PR_GET_TID_ADDRESS:
1980 error = prctl_get_tid_address(me, (int __user **)arg2);
1981 break;
1982 case PR_SET_CHILD_SUBREAPER:
1983 me->signal->is_child_subreaper = !!arg2;
1984 break;
1985 case PR_GET_CHILD_SUBREAPER:
1986 error = put_user(me->signal->is_child_subreaper,
1987 (int __user *)arg2);
1988 break;
1989 case PR_SET_NO_NEW_PRIVS:
1990 if (arg2 != 1 || arg3 || arg4 || arg5)
1991 return -EINVAL;
1992
1993 current->no_new_privs = 1;
1994 break;
1995 case PR_GET_NO_NEW_PRIVS:
1996 if (arg2 || arg3 || arg4 || arg5)
1997 return -EINVAL;
1998 return current->no_new_privs ? 1 : 0;
1999 case PR_GET_THP_DISABLE:
2000 if (arg2 || arg3 || arg4 || arg5)
2001 return -EINVAL;
2002 error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2003 break;
2004 case PR_SET_THP_DISABLE:
2005 if (arg3 || arg4 || arg5)
2006 return -EINVAL;
2007 down_write(&me->mm->mmap_sem);
2008 if (arg2)
2009 me->mm->def_flags |= VM_NOHUGEPAGE;
2010 else
2011 me->mm->def_flags &= ~VM_NOHUGEPAGE;
2012 up_write(&me->mm->mmap_sem);
2013 break;
2014 default:
2015 error = -EINVAL;
2016 break;
2017 }
2018 return error;
2019}
2020
2021SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2022 struct getcpu_cache __user *, unused)
2023{
2024 int err = 0;
2025 int cpu = raw_smp_processor_id();
2026 if (cpup)
2027 err |= put_user(cpu, cpup);
2028 if (nodep)
2029 err |= put_user(cpu_to_node(cpu), nodep);
2030 return err ? -EFAULT : 0;
2031}
2032
2033/**
2034 * do_sysinfo - fill in sysinfo struct
2035 * @info: pointer to buffer to fill
2036 */
2037static int do_sysinfo(struct sysinfo *info)
2038{
2039 unsigned long mem_total, sav_total;
2040 unsigned int mem_unit, bitcount;
2041 struct timespec tp;
2042
2043 memset(info, 0, sizeof(struct sysinfo));
2044
2045 get_monotonic_boottime(&tp);
2046 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2047
2048 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2049
2050 info->procs = nr_threads;
2051
2052 si_meminfo(info);
2053 si_swapinfo(info);
2054
2055 /*
2056 * If the sum of all the available memory (i.e. ram + swap)
2057 * is less than can be stored in a 32 bit unsigned long then
2058 * we can be binary compatible with 2.2.x kernels. If not,
2059 * well, in that case 2.2.x was broken anyways...
2060 *
2061 * -Erik Andersen <andersee@debian.org>
2062 */
2063
2064 mem_total = info->totalram + info->totalswap;
2065 if (mem_total < info->totalram || mem_total < info->totalswap)
2066 goto out;
2067 bitcount = 0;
2068 mem_unit = info->mem_unit;
2069 while (mem_unit > 1) {
2070 bitcount++;
2071 mem_unit >>= 1;
2072 sav_total = mem_total;
2073 mem_total <<= 1;
2074 if (mem_total < sav_total)
2075 goto out;
2076 }
2077
2078 /*
2079 * If mem_total did not overflow, multiply all memory values by
2080 * info->mem_unit and set it to 1. This leaves things compatible
2081 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2082 * kernels...
2083 */
2084
2085 info->mem_unit = 1;
2086 info->totalram <<= bitcount;
2087 info->freeram <<= bitcount;
2088 info->sharedram <<= bitcount;
2089 info->bufferram <<= bitcount;
2090 info->totalswap <<= bitcount;
2091 info->freeswap <<= bitcount;
2092 info->totalhigh <<= bitcount;
2093 info->freehigh <<= bitcount;
2094
2095out:
2096 return 0;
2097}
2098
2099SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2100{
2101 struct sysinfo val;
2102
2103 do_sysinfo(&val);
2104
2105 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2106 return -EFAULT;
2107
2108 return 0;
2109}
2110
2111#ifdef CONFIG_COMPAT
2112struct compat_sysinfo {
2113 s32 uptime;
2114 u32 loads[3];
2115 u32 totalram;
2116 u32 freeram;
2117 u32 sharedram;
2118 u32 bufferram;
2119 u32 totalswap;
2120 u32 freeswap;
2121 u16 procs;
2122 u16 pad;
2123 u32 totalhigh;
2124 u32 freehigh;
2125 u32 mem_unit;
2126 char _f[20-2*sizeof(u32)-sizeof(int)];
2127};
2128
2129COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2130{
2131 struct sysinfo s;
2132
2133 do_sysinfo(&s);
2134
2135 /* Check to see if any memory value is too large for 32-bit and scale
2136 * down if needed
2137 */
2138 if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2139 int bitcount = 0;
2140
2141 while (s.mem_unit < PAGE_SIZE) {
2142 s.mem_unit <<= 1;
2143 bitcount++;
2144 }
2145
2146 s.totalram >>= bitcount;
2147 s.freeram >>= bitcount;
2148 s.sharedram >>= bitcount;
2149 s.bufferram >>= bitcount;
2150 s.totalswap >>= bitcount;
2151 s.freeswap >>= bitcount;
2152 s.totalhigh >>= bitcount;
2153 s.freehigh >>= bitcount;
2154 }
2155
2156 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2157 __put_user(s.uptime, &info->uptime) ||
2158 __put_user(s.loads[0], &info->loads[0]) ||
2159 __put_user(s.loads[1], &info->loads[1]) ||
2160 __put_user(s.loads[2], &info->loads[2]) ||
2161 __put_user(s.totalram, &info->totalram) ||
2162 __put_user(s.freeram, &info->freeram) ||
2163 __put_user(s.sharedram, &info->sharedram) ||
2164 __put_user(s.bufferram, &info->bufferram) ||
2165 __put_user(s.totalswap, &info->totalswap) ||
2166 __put_user(s.freeswap, &info->freeswap) ||
2167 __put_user(s.procs, &info->procs) ||
2168 __put_user(s.totalhigh, &info->totalhigh) ||
2169 __put_user(s.freehigh, &info->freehigh) ||
2170 __put_user(s.mem_unit, &info->mem_unit))
2171 return -EFAULT;
2172
2173 return 0;
2174}
2175#endif /* CONFIG_COMPAT */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/mm_inline.h>
11#include <linux/utsname.h>
12#include <linux/mman.h>
13#include <linux/reboot.h>
14#include <linux/prctl.h>
15#include <linux/highuid.h>
16#include <linux/fs.h>
17#include <linux/kmod.h>
18#include <linux/ksm.h>
19#include <linux/perf_event.h>
20#include <linux/resource.h>
21#include <linux/kernel.h>
22#include <linux/workqueue.h>
23#include <linux/capability.h>
24#include <linux/device.h>
25#include <linux/key.h>
26#include <linux/times.h>
27#include <linux/posix-timers.h>
28#include <linux/security.h>
29#include <linux/random.h>
30#include <linux/suspend.h>
31#include <linux/tty.h>
32#include <linux/signal.h>
33#include <linux/cn_proc.h>
34#include <linux/getcpu.h>
35#include <linux/task_io_accounting_ops.h>
36#include <linux/seccomp.h>
37#include <linux/cpu.h>
38#include <linux/personality.h>
39#include <linux/ptrace.h>
40#include <linux/fs_struct.h>
41#include <linux/file.h>
42#include <linux/mount.h>
43#include <linux/gfp.h>
44#include <linux/syscore_ops.h>
45#include <linux/version.h>
46#include <linux/ctype.h>
47#include <linux/syscall_user_dispatch.h>
48
49#include <linux/compat.h>
50#include <linux/syscalls.h>
51#include <linux/kprobes.h>
52#include <linux/user_namespace.h>
53#include <linux/time_namespace.h>
54#include <linux/binfmts.h>
55
56#include <linux/sched.h>
57#include <linux/sched/autogroup.h>
58#include <linux/sched/loadavg.h>
59#include <linux/sched/stat.h>
60#include <linux/sched/mm.h>
61#include <linux/sched/coredump.h>
62#include <linux/sched/task.h>
63#include <linux/sched/cputime.h>
64#include <linux/rcupdate.h>
65#include <linux/uidgid.h>
66#include <linux/cred.h>
67
68#include <linux/nospec.h>
69
70#include <linux/kmsg_dump.h>
71/* Move somewhere else to avoid recompiling? */
72#include <generated/utsrelease.h>
73
74#include <linux/uaccess.h>
75#include <asm/io.h>
76#include <asm/unistd.h>
77
78#include "uid16.h"
79
80#ifndef SET_UNALIGN_CTL
81# define SET_UNALIGN_CTL(a, b) (-EINVAL)
82#endif
83#ifndef GET_UNALIGN_CTL
84# define GET_UNALIGN_CTL(a, b) (-EINVAL)
85#endif
86#ifndef SET_FPEMU_CTL
87# define SET_FPEMU_CTL(a, b) (-EINVAL)
88#endif
89#ifndef GET_FPEMU_CTL
90# define GET_FPEMU_CTL(a, b) (-EINVAL)
91#endif
92#ifndef SET_FPEXC_CTL
93# define SET_FPEXC_CTL(a, b) (-EINVAL)
94#endif
95#ifndef GET_FPEXC_CTL
96# define GET_FPEXC_CTL(a, b) (-EINVAL)
97#endif
98#ifndef GET_ENDIAN
99# define GET_ENDIAN(a, b) (-EINVAL)
100#endif
101#ifndef SET_ENDIAN
102# define SET_ENDIAN(a, b) (-EINVAL)
103#endif
104#ifndef GET_TSC_CTL
105# define GET_TSC_CTL(a) (-EINVAL)
106#endif
107#ifndef SET_TSC_CTL
108# define SET_TSC_CTL(a) (-EINVAL)
109#endif
110#ifndef GET_FP_MODE
111# define GET_FP_MODE(a) (-EINVAL)
112#endif
113#ifndef SET_FP_MODE
114# define SET_FP_MODE(a,b) (-EINVAL)
115#endif
116#ifndef SVE_SET_VL
117# define SVE_SET_VL(a) (-EINVAL)
118#endif
119#ifndef SVE_GET_VL
120# define SVE_GET_VL() (-EINVAL)
121#endif
122#ifndef SME_SET_VL
123# define SME_SET_VL(a) (-EINVAL)
124#endif
125#ifndef SME_GET_VL
126# define SME_GET_VL() (-EINVAL)
127#endif
128#ifndef PAC_RESET_KEYS
129# define PAC_RESET_KEYS(a, b) (-EINVAL)
130#endif
131#ifndef PAC_SET_ENABLED_KEYS
132# define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
133#endif
134#ifndef PAC_GET_ENABLED_KEYS
135# define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
136#endif
137#ifndef SET_TAGGED_ADDR_CTRL
138# define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
139#endif
140#ifndef GET_TAGGED_ADDR_CTRL
141# define GET_TAGGED_ADDR_CTRL() (-EINVAL)
142#endif
143#ifndef RISCV_V_SET_CONTROL
144# define RISCV_V_SET_CONTROL(a) (-EINVAL)
145#endif
146#ifndef RISCV_V_GET_CONTROL
147# define RISCV_V_GET_CONTROL() (-EINVAL)
148#endif
149
150/*
151 * this is where the system-wide overflow UID and GID are defined, for
152 * architectures that now have 32-bit UID/GID but didn't in the past
153 */
154
155int overflowuid = DEFAULT_OVERFLOWUID;
156int overflowgid = DEFAULT_OVERFLOWGID;
157
158EXPORT_SYMBOL(overflowuid);
159EXPORT_SYMBOL(overflowgid);
160
161/*
162 * the same as above, but for filesystems which can only store a 16-bit
163 * UID and GID. as such, this is needed on all architectures
164 */
165
166int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
167int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
168
169EXPORT_SYMBOL(fs_overflowuid);
170EXPORT_SYMBOL(fs_overflowgid);
171
172/*
173 * Returns true if current's euid is same as p's uid or euid,
174 * or has CAP_SYS_NICE to p's user_ns.
175 *
176 * Called with rcu_read_lock, creds are safe
177 */
178static bool set_one_prio_perm(struct task_struct *p)
179{
180 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
181
182 if (uid_eq(pcred->uid, cred->euid) ||
183 uid_eq(pcred->euid, cred->euid))
184 return true;
185 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
186 return true;
187 return false;
188}
189
190/*
191 * set the priority of a task
192 * - the caller must hold the RCU read lock
193 */
194static int set_one_prio(struct task_struct *p, int niceval, int error)
195{
196 int no_nice;
197
198 if (!set_one_prio_perm(p)) {
199 error = -EPERM;
200 goto out;
201 }
202 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
203 error = -EACCES;
204 goto out;
205 }
206 no_nice = security_task_setnice(p, niceval);
207 if (no_nice) {
208 error = no_nice;
209 goto out;
210 }
211 if (error == -ESRCH)
212 error = 0;
213 set_user_nice(p, niceval);
214out:
215 return error;
216}
217
218SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
219{
220 struct task_struct *g, *p;
221 struct user_struct *user;
222 const struct cred *cred = current_cred();
223 int error = -EINVAL;
224 struct pid *pgrp;
225 kuid_t uid;
226
227 if (which > PRIO_USER || which < PRIO_PROCESS)
228 goto out;
229
230 /* normalize: avoid signed division (rounding problems) */
231 error = -ESRCH;
232 if (niceval < MIN_NICE)
233 niceval = MIN_NICE;
234 if (niceval > MAX_NICE)
235 niceval = MAX_NICE;
236
237 rcu_read_lock();
238 switch (which) {
239 case PRIO_PROCESS:
240 if (who)
241 p = find_task_by_vpid(who);
242 else
243 p = current;
244 if (p)
245 error = set_one_prio(p, niceval, error);
246 break;
247 case PRIO_PGRP:
248 if (who)
249 pgrp = find_vpid(who);
250 else
251 pgrp = task_pgrp(current);
252 read_lock(&tasklist_lock);
253 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
254 error = set_one_prio(p, niceval, error);
255 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
256 read_unlock(&tasklist_lock);
257 break;
258 case PRIO_USER:
259 uid = make_kuid(cred->user_ns, who);
260 user = cred->user;
261 if (!who)
262 uid = cred->uid;
263 else if (!uid_eq(uid, cred->uid)) {
264 user = find_user(uid);
265 if (!user)
266 goto out_unlock; /* No processes for this user */
267 }
268 for_each_process_thread(g, p) {
269 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
270 error = set_one_prio(p, niceval, error);
271 }
272 if (!uid_eq(uid, cred->uid))
273 free_uid(user); /* For find_user() */
274 break;
275 }
276out_unlock:
277 rcu_read_unlock();
278out:
279 return error;
280}
281
282/*
283 * Ugh. To avoid negative return values, "getpriority()" will
284 * not return the normal nice-value, but a negated value that
285 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
286 * to stay compatible.
287 */
288SYSCALL_DEFINE2(getpriority, int, which, int, who)
289{
290 struct task_struct *g, *p;
291 struct user_struct *user;
292 const struct cred *cred = current_cred();
293 long niceval, retval = -ESRCH;
294 struct pid *pgrp;
295 kuid_t uid;
296
297 if (which > PRIO_USER || which < PRIO_PROCESS)
298 return -EINVAL;
299
300 rcu_read_lock();
301 switch (which) {
302 case PRIO_PROCESS:
303 if (who)
304 p = find_task_by_vpid(who);
305 else
306 p = current;
307 if (p) {
308 niceval = nice_to_rlimit(task_nice(p));
309 if (niceval > retval)
310 retval = niceval;
311 }
312 break;
313 case PRIO_PGRP:
314 if (who)
315 pgrp = find_vpid(who);
316 else
317 pgrp = task_pgrp(current);
318 read_lock(&tasklist_lock);
319 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
320 niceval = nice_to_rlimit(task_nice(p));
321 if (niceval > retval)
322 retval = niceval;
323 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
324 read_unlock(&tasklist_lock);
325 break;
326 case PRIO_USER:
327 uid = make_kuid(cred->user_ns, who);
328 user = cred->user;
329 if (!who)
330 uid = cred->uid;
331 else if (!uid_eq(uid, cred->uid)) {
332 user = find_user(uid);
333 if (!user)
334 goto out_unlock; /* No processes for this user */
335 }
336 for_each_process_thread(g, p) {
337 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
338 niceval = nice_to_rlimit(task_nice(p));
339 if (niceval > retval)
340 retval = niceval;
341 }
342 }
343 if (!uid_eq(uid, cred->uid))
344 free_uid(user); /* for find_user() */
345 break;
346 }
347out_unlock:
348 rcu_read_unlock();
349
350 return retval;
351}
352
353/*
354 * Unprivileged users may change the real gid to the effective gid
355 * or vice versa. (BSD-style)
356 *
357 * If you set the real gid at all, or set the effective gid to a value not
358 * equal to the real gid, then the saved gid is set to the new effective gid.
359 *
360 * This makes it possible for a setgid program to completely drop its
361 * privileges, which is often a useful assertion to make when you are doing
362 * a security audit over a program.
363 *
364 * The general idea is that a program which uses just setregid() will be
365 * 100% compatible with BSD. A program which uses just setgid() will be
366 * 100% compatible with POSIX with saved IDs.
367 *
368 * SMP: There are not races, the GIDs are checked only by filesystem
369 * operations (as far as semantic preservation is concerned).
370 */
371#ifdef CONFIG_MULTIUSER
372long __sys_setregid(gid_t rgid, gid_t egid)
373{
374 struct user_namespace *ns = current_user_ns();
375 const struct cred *old;
376 struct cred *new;
377 int retval;
378 kgid_t krgid, kegid;
379
380 krgid = make_kgid(ns, rgid);
381 kegid = make_kgid(ns, egid);
382
383 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
384 return -EINVAL;
385 if ((egid != (gid_t) -1) && !gid_valid(kegid))
386 return -EINVAL;
387
388 new = prepare_creds();
389 if (!new)
390 return -ENOMEM;
391 old = current_cred();
392
393 retval = -EPERM;
394 if (rgid != (gid_t) -1) {
395 if (gid_eq(old->gid, krgid) ||
396 gid_eq(old->egid, krgid) ||
397 ns_capable_setid(old->user_ns, CAP_SETGID))
398 new->gid = krgid;
399 else
400 goto error;
401 }
402 if (egid != (gid_t) -1) {
403 if (gid_eq(old->gid, kegid) ||
404 gid_eq(old->egid, kegid) ||
405 gid_eq(old->sgid, kegid) ||
406 ns_capable_setid(old->user_ns, CAP_SETGID))
407 new->egid = kegid;
408 else
409 goto error;
410 }
411
412 if (rgid != (gid_t) -1 ||
413 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
414 new->sgid = new->egid;
415 new->fsgid = new->egid;
416
417 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
418 if (retval < 0)
419 goto error;
420
421 return commit_creds(new);
422
423error:
424 abort_creds(new);
425 return retval;
426}
427
428SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
429{
430 return __sys_setregid(rgid, egid);
431}
432
433/*
434 * setgid() is implemented like SysV w/ SAVED_IDS
435 *
436 * SMP: Same implicit races as above.
437 */
438long __sys_setgid(gid_t gid)
439{
440 struct user_namespace *ns = current_user_ns();
441 const struct cred *old;
442 struct cred *new;
443 int retval;
444 kgid_t kgid;
445
446 kgid = make_kgid(ns, gid);
447 if (!gid_valid(kgid))
448 return -EINVAL;
449
450 new = prepare_creds();
451 if (!new)
452 return -ENOMEM;
453 old = current_cred();
454
455 retval = -EPERM;
456 if (ns_capable_setid(old->user_ns, CAP_SETGID))
457 new->gid = new->egid = new->sgid = new->fsgid = kgid;
458 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
459 new->egid = new->fsgid = kgid;
460 else
461 goto error;
462
463 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
464 if (retval < 0)
465 goto error;
466
467 return commit_creds(new);
468
469error:
470 abort_creds(new);
471 return retval;
472}
473
474SYSCALL_DEFINE1(setgid, gid_t, gid)
475{
476 return __sys_setgid(gid);
477}
478
479/*
480 * change the user struct in a credentials set to match the new UID
481 */
482static int set_user(struct cred *new)
483{
484 struct user_struct *new_user;
485
486 new_user = alloc_uid(new->uid);
487 if (!new_user)
488 return -EAGAIN;
489
490 free_uid(new->user);
491 new->user = new_user;
492 return 0;
493}
494
495static void flag_nproc_exceeded(struct cred *new)
496{
497 if (new->ucounts == current_ucounts())
498 return;
499
500 /*
501 * We don't fail in case of NPROC limit excess here because too many
502 * poorly written programs don't check set*uid() return code, assuming
503 * it never fails if called by root. We may still enforce NPROC limit
504 * for programs doing set*uid()+execve() by harmlessly deferring the
505 * failure to the execve() stage.
506 */
507 if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
508 new->user != INIT_USER)
509 current->flags |= PF_NPROC_EXCEEDED;
510 else
511 current->flags &= ~PF_NPROC_EXCEEDED;
512}
513
514/*
515 * Unprivileged users may change the real uid to the effective uid
516 * or vice versa. (BSD-style)
517 *
518 * If you set the real uid at all, or set the effective uid to a value not
519 * equal to the real uid, then the saved uid is set to the new effective uid.
520 *
521 * This makes it possible for a setuid program to completely drop its
522 * privileges, which is often a useful assertion to make when you are doing
523 * a security audit over a program.
524 *
525 * The general idea is that a program which uses just setreuid() will be
526 * 100% compatible with BSD. A program which uses just setuid() will be
527 * 100% compatible with POSIX with saved IDs.
528 */
529long __sys_setreuid(uid_t ruid, uid_t euid)
530{
531 struct user_namespace *ns = current_user_ns();
532 const struct cred *old;
533 struct cred *new;
534 int retval;
535 kuid_t kruid, keuid;
536
537 kruid = make_kuid(ns, ruid);
538 keuid = make_kuid(ns, euid);
539
540 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
541 return -EINVAL;
542 if ((euid != (uid_t) -1) && !uid_valid(keuid))
543 return -EINVAL;
544
545 new = prepare_creds();
546 if (!new)
547 return -ENOMEM;
548 old = current_cred();
549
550 retval = -EPERM;
551 if (ruid != (uid_t) -1) {
552 new->uid = kruid;
553 if (!uid_eq(old->uid, kruid) &&
554 !uid_eq(old->euid, kruid) &&
555 !ns_capable_setid(old->user_ns, CAP_SETUID))
556 goto error;
557 }
558
559 if (euid != (uid_t) -1) {
560 new->euid = keuid;
561 if (!uid_eq(old->uid, keuid) &&
562 !uid_eq(old->euid, keuid) &&
563 !uid_eq(old->suid, keuid) &&
564 !ns_capable_setid(old->user_ns, CAP_SETUID))
565 goto error;
566 }
567
568 if (!uid_eq(new->uid, old->uid)) {
569 retval = set_user(new);
570 if (retval < 0)
571 goto error;
572 }
573 if (ruid != (uid_t) -1 ||
574 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
575 new->suid = new->euid;
576 new->fsuid = new->euid;
577
578 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
579 if (retval < 0)
580 goto error;
581
582 retval = set_cred_ucounts(new);
583 if (retval < 0)
584 goto error;
585
586 flag_nproc_exceeded(new);
587 return commit_creds(new);
588
589error:
590 abort_creds(new);
591 return retval;
592}
593
594SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
595{
596 return __sys_setreuid(ruid, euid);
597}
598
599/*
600 * setuid() is implemented like SysV with SAVED_IDS
601 *
602 * Note that SAVED_ID's is deficient in that a setuid root program
603 * like sendmail, for example, cannot set its uid to be a normal
604 * user and then switch back, because if you're root, setuid() sets
605 * the saved uid too. If you don't like this, blame the bright people
606 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
607 * will allow a root program to temporarily drop privileges and be able to
608 * regain them by swapping the real and effective uid.
609 */
610long __sys_setuid(uid_t uid)
611{
612 struct user_namespace *ns = current_user_ns();
613 const struct cred *old;
614 struct cred *new;
615 int retval;
616 kuid_t kuid;
617
618 kuid = make_kuid(ns, uid);
619 if (!uid_valid(kuid))
620 return -EINVAL;
621
622 new = prepare_creds();
623 if (!new)
624 return -ENOMEM;
625 old = current_cred();
626
627 retval = -EPERM;
628 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
629 new->suid = new->uid = kuid;
630 if (!uid_eq(kuid, old->uid)) {
631 retval = set_user(new);
632 if (retval < 0)
633 goto error;
634 }
635 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
636 goto error;
637 }
638
639 new->fsuid = new->euid = kuid;
640
641 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
642 if (retval < 0)
643 goto error;
644
645 retval = set_cred_ucounts(new);
646 if (retval < 0)
647 goto error;
648
649 flag_nproc_exceeded(new);
650 return commit_creds(new);
651
652error:
653 abort_creds(new);
654 return retval;
655}
656
657SYSCALL_DEFINE1(setuid, uid_t, uid)
658{
659 return __sys_setuid(uid);
660}
661
662
663/*
664 * This function implements a generic ability to update ruid, euid,
665 * and suid. This allows you to implement the 4.4 compatible seteuid().
666 */
667long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
668{
669 struct user_namespace *ns = current_user_ns();
670 const struct cred *old;
671 struct cred *new;
672 int retval;
673 kuid_t kruid, keuid, ksuid;
674 bool ruid_new, euid_new, suid_new;
675
676 kruid = make_kuid(ns, ruid);
677 keuid = make_kuid(ns, euid);
678 ksuid = make_kuid(ns, suid);
679
680 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
681 return -EINVAL;
682
683 if ((euid != (uid_t) -1) && !uid_valid(keuid))
684 return -EINVAL;
685
686 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
687 return -EINVAL;
688
689 old = current_cred();
690
691 /* check for no-op */
692 if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
693 (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
694 uid_eq(keuid, old->fsuid))) &&
695 (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
696 return 0;
697
698 ruid_new = ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
699 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
700 euid_new = euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
701 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
702 suid_new = suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
703 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
704 if ((ruid_new || euid_new || suid_new) &&
705 !ns_capable_setid(old->user_ns, CAP_SETUID))
706 return -EPERM;
707
708 new = prepare_creds();
709 if (!new)
710 return -ENOMEM;
711
712 if (ruid != (uid_t) -1) {
713 new->uid = kruid;
714 if (!uid_eq(kruid, old->uid)) {
715 retval = set_user(new);
716 if (retval < 0)
717 goto error;
718 }
719 }
720 if (euid != (uid_t) -1)
721 new->euid = keuid;
722 if (suid != (uid_t) -1)
723 new->suid = ksuid;
724 new->fsuid = new->euid;
725
726 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
727 if (retval < 0)
728 goto error;
729
730 retval = set_cred_ucounts(new);
731 if (retval < 0)
732 goto error;
733
734 flag_nproc_exceeded(new);
735 return commit_creds(new);
736
737error:
738 abort_creds(new);
739 return retval;
740}
741
742SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
743{
744 return __sys_setresuid(ruid, euid, suid);
745}
746
747SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
748{
749 const struct cred *cred = current_cred();
750 int retval;
751 uid_t ruid, euid, suid;
752
753 ruid = from_kuid_munged(cred->user_ns, cred->uid);
754 euid = from_kuid_munged(cred->user_ns, cred->euid);
755 suid = from_kuid_munged(cred->user_ns, cred->suid);
756
757 retval = put_user(ruid, ruidp);
758 if (!retval) {
759 retval = put_user(euid, euidp);
760 if (!retval)
761 return put_user(suid, suidp);
762 }
763 return retval;
764}
765
766/*
767 * Same as above, but for rgid, egid, sgid.
768 */
769long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
770{
771 struct user_namespace *ns = current_user_ns();
772 const struct cred *old;
773 struct cred *new;
774 int retval;
775 kgid_t krgid, kegid, ksgid;
776 bool rgid_new, egid_new, sgid_new;
777
778 krgid = make_kgid(ns, rgid);
779 kegid = make_kgid(ns, egid);
780 ksgid = make_kgid(ns, sgid);
781
782 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
783 return -EINVAL;
784 if ((egid != (gid_t) -1) && !gid_valid(kegid))
785 return -EINVAL;
786 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
787 return -EINVAL;
788
789 old = current_cred();
790
791 /* check for no-op */
792 if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
793 (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
794 gid_eq(kegid, old->fsgid))) &&
795 (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
796 return 0;
797
798 rgid_new = rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
799 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
800 egid_new = egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
801 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
802 sgid_new = sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
803 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
804 if ((rgid_new || egid_new || sgid_new) &&
805 !ns_capable_setid(old->user_ns, CAP_SETGID))
806 return -EPERM;
807
808 new = prepare_creds();
809 if (!new)
810 return -ENOMEM;
811
812 if (rgid != (gid_t) -1)
813 new->gid = krgid;
814 if (egid != (gid_t) -1)
815 new->egid = kegid;
816 if (sgid != (gid_t) -1)
817 new->sgid = ksgid;
818 new->fsgid = new->egid;
819
820 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
821 if (retval < 0)
822 goto error;
823
824 return commit_creds(new);
825
826error:
827 abort_creds(new);
828 return retval;
829}
830
831SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
832{
833 return __sys_setresgid(rgid, egid, sgid);
834}
835
836SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
837{
838 const struct cred *cred = current_cred();
839 int retval;
840 gid_t rgid, egid, sgid;
841
842 rgid = from_kgid_munged(cred->user_ns, cred->gid);
843 egid = from_kgid_munged(cred->user_ns, cred->egid);
844 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
845
846 retval = put_user(rgid, rgidp);
847 if (!retval) {
848 retval = put_user(egid, egidp);
849 if (!retval)
850 retval = put_user(sgid, sgidp);
851 }
852
853 return retval;
854}
855
856
857/*
858 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
859 * is used for "access()" and for the NFS daemon (letting nfsd stay at
860 * whatever uid it wants to). It normally shadows "euid", except when
861 * explicitly set by setfsuid() or for access..
862 */
863long __sys_setfsuid(uid_t uid)
864{
865 const struct cred *old;
866 struct cred *new;
867 uid_t old_fsuid;
868 kuid_t kuid;
869
870 old = current_cred();
871 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
872
873 kuid = make_kuid(old->user_ns, uid);
874 if (!uid_valid(kuid))
875 return old_fsuid;
876
877 new = prepare_creds();
878 if (!new)
879 return old_fsuid;
880
881 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
882 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
883 ns_capable_setid(old->user_ns, CAP_SETUID)) {
884 if (!uid_eq(kuid, old->fsuid)) {
885 new->fsuid = kuid;
886 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
887 goto change_okay;
888 }
889 }
890
891 abort_creds(new);
892 return old_fsuid;
893
894change_okay:
895 commit_creds(new);
896 return old_fsuid;
897}
898
899SYSCALL_DEFINE1(setfsuid, uid_t, uid)
900{
901 return __sys_setfsuid(uid);
902}
903
904/*
905 * Samma på svenska..
906 */
907long __sys_setfsgid(gid_t gid)
908{
909 const struct cred *old;
910 struct cred *new;
911 gid_t old_fsgid;
912 kgid_t kgid;
913
914 old = current_cred();
915 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
916
917 kgid = make_kgid(old->user_ns, gid);
918 if (!gid_valid(kgid))
919 return old_fsgid;
920
921 new = prepare_creds();
922 if (!new)
923 return old_fsgid;
924
925 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
926 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
927 ns_capable_setid(old->user_ns, CAP_SETGID)) {
928 if (!gid_eq(kgid, old->fsgid)) {
929 new->fsgid = kgid;
930 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
931 goto change_okay;
932 }
933 }
934
935 abort_creds(new);
936 return old_fsgid;
937
938change_okay:
939 commit_creds(new);
940 return old_fsgid;
941}
942
943SYSCALL_DEFINE1(setfsgid, gid_t, gid)
944{
945 return __sys_setfsgid(gid);
946}
947#endif /* CONFIG_MULTIUSER */
948
949/**
950 * sys_getpid - return the thread group id of the current process
951 *
952 * Note, despite the name, this returns the tgid not the pid. The tgid and
953 * the pid are identical unless CLONE_THREAD was specified on clone() in
954 * which case the tgid is the same in all threads of the same group.
955 *
956 * This is SMP safe as current->tgid does not change.
957 */
958SYSCALL_DEFINE0(getpid)
959{
960 return task_tgid_vnr(current);
961}
962
963/* Thread ID - the internal kernel "pid" */
964SYSCALL_DEFINE0(gettid)
965{
966 return task_pid_vnr(current);
967}
968
969/*
970 * Accessing ->real_parent is not SMP-safe, it could
971 * change from under us. However, we can use a stale
972 * value of ->real_parent under rcu_read_lock(), see
973 * release_task()->call_rcu(delayed_put_task_struct).
974 */
975SYSCALL_DEFINE0(getppid)
976{
977 int pid;
978
979 rcu_read_lock();
980 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
981 rcu_read_unlock();
982
983 return pid;
984}
985
986SYSCALL_DEFINE0(getuid)
987{
988 /* Only we change this so SMP safe */
989 return from_kuid_munged(current_user_ns(), current_uid());
990}
991
992SYSCALL_DEFINE0(geteuid)
993{
994 /* Only we change this so SMP safe */
995 return from_kuid_munged(current_user_ns(), current_euid());
996}
997
998SYSCALL_DEFINE0(getgid)
999{
1000 /* Only we change this so SMP safe */
1001 return from_kgid_munged(current_user_ns(), current_gid());
1002}
1003
1004SYSCALL_DEFINE0(getegid)
1005{
1006 /* Only we change this so SMP safe */
1007 return from_kgid_munged(current_user_ns(), current_egid());
1008}
1009
1010static void do_sys_times(struct tms *tms)
1011{
1012 u64 tgutime, tgstime, cutime, cstime;
1013
1014 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1015 cutime = current->signal->cutime;
1016 cstime = current->signal->cstime;
1017 tms->tms_utime = nsec_to_clock_t(tgutime);
1018 tms->tms_stime = nsec_to_clock_t(tgstime);
1019 tms->tms_cutime = nsec_to_clock_t(cutime);
1020 tms->tms_cstime = nsec_to_clock_t(cstime);
1021}
1022
1023SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1024{
1025 if (tbuf) {
1026 struct tms tmp;
1027
1028 do_sys_times(&tmp);
1029 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1030 return -EFAULT;
1031 }
1032 force_successful_syscall_return();
1033 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1034}
1035
1036#ifdef CONFIG_COMPAT
1037static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1038{
1039 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1040}
1041
1042COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1043{
1044 if (tbuf) {
1045 struct tms tms;
1046 struct compat_tms tmp;
1047
1048 do_sys_times(&tms);
1049 /* Convert our struct tms to the compat version. */
1050 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1051 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1052 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1053 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1054 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1055 return -EFAULT;
1056 }
1057 force_successful_syscall_return();
1058 return compat_jiffies_to_clock_t(jiffies);
1059}
1060#endif
1061
1062/*
1063 * This needs some heavy checking ...
1064 * I just haven't the stomach for it. I also don't fully
1065 * understand sessions/pgrp etc. Let somebody who does explain it.
1066 *
1067 * OK, I think I have the protection semantics right.... this is really
1068 * only important on a multi-user system anyway, to make sure one user
1069 * can't send a signal to a process owned by another. -TYT, 12/12/91
1070 *
1071 * !PF_FORKNOEXEC check to conform completely to POSIX.
1072 */
1073SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1074{
1075 struct task_struct *p;
1076 struct task_struct *group_leader = current->group_leader;
1077 struct pid *pgrp;
1078 int err;
1079
1080 if (!pid)
1081 pid = task_pid_vnr(group_leader);
1082 if (!pgid)
1083 pgid = pid;
1084 if (pgid < 0)
1085 return -EINVAL;
1086 rcu_read_lock();
1087
1088 /* From this point forward we keep holding onto the tasklist lock
1089 * so that our parent does not change from under us. -DaveM
1090 */
1091 write_lock_irq(&tasklist_lock);
1092
1093 err = -ESRCH;
1094 p = find_task_by_vpid(pid);
1095 if (!p)
1096 goto out;
1097
1098 err = -EINVAL;
1099 if (!thread_group_leader(p))
1100 goto out;
1101
1102 if (same_thread_group(p->real_parent, group_leader)) {
1103 err = -EPERM;
1104 if (task_session(p) != task_session(group_leader))
1105 goto out;
1106 err = -EACCES;
1107 if (!(p->flags & PF_FORKNOEXEC))
1108 goto out;
1109 } else {
1110 err = -ESRCH;
1111 if (p != group_leader)
1112 goto out;
1113 }
1114
1115 err = -EPERM;
1116 if (p->signal->leader)
1117 goto out;
1118
1119 pgrp = task_pid(p);
1120 if (pgid != pid) {
1121 struct task_struct *g;
1122
1123 pgrp = find_vpid(pgid);
1124 g = pid_task(pgrp, PIDTYPE_PGID);
1125 if (!g || task_session(g) != task_session(group_leader))
1126 goto out;
1127 }
1128
1129 err = security_task_setpgid(p, pgid);
1130 if (err)
1131 goto out;
1132
1133 if (task_pgrp(p) != pgrp)
1134 change_pid(p, PIDTYPE_PGID, pgrp);
1135
1136 err = 0;
1137out:
1138 /* All paths lead to here, thus we are safe. -DaveM */
1139 write_unlock_irq(&tasklist_lock);
1140 rcu_read_unlock();
1141 return err;
1142}
1143
1144static int do_getpgid(pid_t pid)
1145{
1146 struct task_struct *p;
1147 struct pid *grp;
1148 int retval;
1149
1150 rcu_read_lock();
1151 if (!pid)
1152 grp = task_pgrp(current);
1153 else {
1154 retval = -ESRCH;
1155 p = find_task_by_vpid(pid);
1156 if (!p)
1157 goto out;
1158 grp = task_pgrp(p);
1159 if (!grp)
1160 goto out;
1161
1162 retval = security_task_getpgid(p);
1163 if (retval)
1164 goto out;
1165 }
1166 retval = pid_vnr(grp);
1167out:
1168 rcu_read_unlock();
1169 return retval;
1170}
1171
1172SYSCALL_DEFINE1(getpgid, pid_t, pid)
1173{
1174 return do_getpgid(pid);
1175}
1176
1177#ifdef __ARCH_WANT_SYS_GETPGRP
1178
1179SYSCALL_DEFINE0(getpgrp)
1180{
1181 return do_getpgid(0);
1182}
1183
1184#endif
1185
1186SYSCALL_DEFINE1(getsid, pid_t, pid)
1187{
1188 struct task_struct *p;
1189 struct pid *sid;
1190 int retval;
1191
1192 rcu_read_lock();
1193 if (!pid)
1194 sid = task_session(current);
1195 else {
1196 retval = -ESRCH;
1197 p = find_task_by_vpid(pid);
1198 if (!p)
1199 goto out;
1200 sid = task_session(p);
1201 if (!sid)
1202 goto out;
1203
1204 retval = security_task_getsid(p);
1205 if (retval)
1206 goto out;
1207 }
1208 retval = pid_vnr(sid);
1209out:
1210 rcu_read_unlock();
1211 return retval;
1212}
1213
1214static void set_special_pids(struct pid *pid)
1215{
1216 struct task_struct *curr = current->group_leader;
1217
1218 if (task_session(curr) != pid)
1219 change_pid(curr, PIDTYPE_SID, pid);
1220
1221 if (task_pgrp(curr) != pid)
1222 change_pid(curr, PIDTYPE_PGID, pid);
1223}
1224
1225int ksys_setsid(void)
1226{
1227 struct task_struct *group_leader = current->group_leader;
1228 struct pid *sid = task_pid(group_leader);
1229 pid_t session = pid_vnr(sid);
1230 int err = -EPERM;
1231
1232 write_lock_irq(&tasklist_lock);
1233 /* Fail if I am already a session leader */
1234 if (group_leader->signal->leader)
1235 goto out;
1236
1237 /* Fail if a process group id already exists that equals the
1238 * proposed session id.
1239 */
1240 if (pid_task(sid, PIDTYPE_PGID))
1241 goto out;
1242
1243 group_leader->signal->leader = 1;
1244 set_special_pids(sid);
1245
1246 proc_clear_tty(group_leader);
1247
1248 err = session;
1249out:
1250 write_unlock_irq(&tasklist_lock);
1251 if (err > 0) {
1252 proc_sid_connector(group_leader);
1253 sched_autogroup_create_attach(group_leader);
1254 }
1255 return err;
1256}
1257
1258SYSCALL_DEFINE0(setsid)
1259{
1260 return ksys_setsid();
1261}
1262
1263DECLARE_RWSEM(uts_sem);
1264
1265#ifdef COMPAT_UTS_MACHINE
1266#define override_architecture(name) \
1267 (personality(current->personality) == PER_LINUX32 && \
1268 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1269 sizeof(COMPAT_UTS_MACHINE)))
1270#else
1271#define override_architecture(name) 0
1272#endif
1273
1274/*
1275 * Work around broken programs that cannot handle "Linux 3.0".
1276 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1277 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1278 * 2.6.60.
1279 */
1280static int override_release(char __user *release, size_t len)
1281{
1282 int ret = 0;
1283
1284 if (current->personality & UNAME26) {
1285 const char *rest = UTS_RELEASE;
1286 char buf[65] = { 0 };
1287 int ndots = 0;
1288 unsigned v;
1289 size_t copy;
1290
1291 while (*rest) {
1292 if (*rest == '.' && ++ndots >= 3)
1293 break;
1294 if (!isdigit(*rest) && *rest != '.')
1295 break;
1296 rest++;
1297 }
1298 v = LINUX_VERSION_PATCHLEVEL + 60;
1299 copy = clamp_t(size_t, len, 1, sizeof(buf));
1300 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1301 ret = copy_to_user(release, buf, copy + 1);
1302 }
1303 return ret;
1304}
1305
1306SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1307{
1308 struct new_utsname tmp;
1309
1310 down_read(&uts_sem);
1311 memcpy(&tmp, utsname(), sizeof(tmp));
1312 up_read(&uts_sem);
1313 if (copy_to_user(name, &tmp, sizeof(tmp)))
1314 return -EFAULT;
1315
1316 if (override_release(name->release, sizeof(name->release)))
1317 return -EFAULT;
1318 if (override_architecture(name))
1319 return -EFAULT;
1320 return 0;
1321}
1322
1323#ifdef __ARCH_WANT_SYS_OLD_UNAME
1324/*
1325 * Old cruft
1326 */
1327SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1328{
1329 struct old_utsname tmp;
1330
1331 if (!name)
1332 return -EFAULT;
1333
1334 down_read(&uts_sem);
1335 memcpy(&tmp, utsname(), sizeof(tmp));
1336 up_read(&uts_sem);
1337 if (copy_to_user(name, &tmp, sizeof(tmp)))
1338 return -EFAULT;
1339
1340 if (override_release(name->release, sizeof(name->release)))
1341 return -EFAULT;
1342 if (override_architecture(name))
1343 return -EFAULT;
1344 return 0;
1345}
1346
1347SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1348{
1349 struct oldold_utsname tmp;
1350
1351 if (!name)
1352 return -EFAULT;
1353
1354 memset(&tmp, 0, sizeof(tmp));
1355
1356 down_read(&uts_sem);
1357 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1358 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1359 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1360 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1361 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1362 up_read(&uts_sem);
1363 if (copy_to_user(name, &tmp, sizeof(tmp)))
1364 return -EFAULT;
1365
1366 if (override_architecture(name))
1367 return -EFAULT;
1368 if (override_release(name->release, sizeof(name->release)))
1369 return -EFAULT;
1370 return 0;
1371}
1372#endif
1373
1374SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1375{
1376 int errno;
1377 char tmp[__NEW_UTS_LEN];
1378
1379 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1380 return -EPERM;
1381
1382 if (len < 0 || len > __NEW_UTS_LEN)
1383 return -EINVAL;
1384 errno = -EFAULT;
1385 if (!copy_from_user(tmp, name, len)) {
1386 struct new_utsname *u;
1387
1388 add_device_randomness(tmp, len);
1389 down_write(&uts_sem);
1390 u = utsname();
1391 memcpy(u->nodename, tmp, len);
1392 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1393 errno = 0;
1394 uts_proc_notify(UTS_PROC_HOSTNAME);
1395 up_write(&uts_sem);
1396 }
1397 return errno;
1398}
1399
1400#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1401
1402SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1403{
1404 int i;
1405 struct new_utsname *u;
1406 char tmp[__NEW_UTS_LEN + 1];
1407
1408 if (len < 0)
1409 return -EINVAL;
1410 down_read(&uts_sem);
1411 u = utsname();
1412 i = 1 + strlen(u->nodename);
1413 if (i > len)
1414 i = len;
1415 memcpy(tmp, u->nodename, i);
1416 up_read(&uts_sem);
1417 if (copy_to_user(name, tmp, i))
1418 return -EFAULT;
1419 return 0;
1420}
1421
1422#endif
1423
1424/*
1425 * Only setdomainname; getdomainname can be implemented by calling
1426 * uname()
1427 */
1428SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1429{
1430 int errno;
1431 char tmp[__NEW_UTS_LEN];
1432
1433 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1434 return -EPERM;
1435 if (len < 0 || len > __NEW_UTS_LEN)
1436 return -EINVAL;
1437
1438 errno = -EFAULT;
1439 if (!copy_from_user(tmp, name, len)) {
1440 struct new_utsname *u;
1441
1442 add_device_randomness(tmp, len);
1443 down_write(&uts_sem);
1444 u = utsname();
1445 memcpy(u->domainname, tmp, len);
1446 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1447 errno = 0;
1448 uts_proc_notify(UTS_PROC_DOMAINNAME);
1449 up_write(&uts_sem);
1450 }
1451 return errno;
1452}
1453
1454/* make sure you are allowed to change @tsk limits before calling this */
1455static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1456 struct rlimit *new_rlim, struct rlimit *old_rlim)
1457{
1458 struct rlimit *rlim;
1459 int retval = 0;
1460
1461 if (resource >= RLIM_NLIMITS)
1462 return -EINVAL;
1463 resource = array_index_nospec(resource, RLIM_NLIMITS);
1464
1465 if (new_rlim) {
1466 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1467 return -EINVAL;
1468 if (resource == RLIMIT_NOFILE &&
1469 new_rlim->rlim_max > sysctl_nr_open)
1470 return -EPERM;
1471 }
1472
1473 /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1474 rlim = tsk->signal->rlim + resource;
1475 task_lock(tsk->group_leader);
1476 if (new_rlim) {
1477 /*
1478 * Keep the capable check against init_user_ns until cgroups can
1479 * contain all limits.
1480 */
1481 if (new_rlim->rlim_max > rlim->rlim_max &&
1482 !capable(CAP_SYS_RESOURCE))
1483 retval = -EPERM;
1484 if (!retval)
1485 retval = security_task_setrlimit(tsk, resource, new_rlim);
1486 }
1487 if (!retval) {
1488 if (old_rlim)
1489 *old_rlim = *rlim;
1490 if (new_rlim)
1491 *rlim = *new_rlim;
1492 }
1493 task_unlock(tsk->group_leader);
1494
1495 /*
1496 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1497 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1498 * ignores the rlimit.
1499 */
1500 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1501 new_rlim->rlim_cur != RLIM_INFINITY &&
1502 IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1503 /*
1504 * update_rlimit_cpu can fail if the task is exiting, but there
1505 * may be other tasks in the thread group that are not exiting,
1506 * and they need their cpu timers adjusted.
1507 *
1508 * The group_leader is the last task to be released, so if we
1509 * cannot update_rlimit_cpu on it, then the entire process is
1510 * exiting and we do not need to update at all.
1511 */
1512 update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1513 }
1514
1515 return retval;
1516}
1517
1518SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1519{
1520 struct rlimit value;
1521 int ret;
1522
1523 ret = do_prlimit(current, resource, NULL, &value);
1524 if (!ret)
1525 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1526
1527 return ret;
1528}
1529
1530#ifdef CONFIG_COMPAT
1531
1532COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1533 struct compat_rlimit __user *, rlim)
1534{
1535 struct rlimit r;
1536 struct compat_rlimit r32;
1537
1538 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1539 return -EFAULT;
1540
1541 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1542 r.rlim_cur = RLIM_INFINITY;
1543 else
1544 r.rlim_cur = r32.rlim_cur;
1545 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1546 r.rlim_max = RLIM_INFINITY;
1547 else
1548 r.rlim_max = r32.rlim_max;
1549 return do_prlimit(current, resource, &r, NULL);
1550}
1551
1552COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1553 struct compat_rlimit __user *, rlim)
1554{
1555 struct rlimit r;
1556 int ret;
1557
1558 ret = do_prlimit(current, resource, NULL, &r);
1559 if (!ret) {
1560 struct compat_rlimit r32;
1561 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1562 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1563 else
1564 r32.rlim_cur = r.rlim_cur;
1565 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1566 r32.rlim_max = COMPAT_RLIM_INFINITY;
1567 else
1568 r32.rlim_max = r.rlim_max;
1569
1570 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1571 return -EFAULT;
1572 }
1573 return ret;
1574}
1575
1576#endif
1577
1578#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1579
1580/*
1581 * Back compatibility for getrlimit. Needed for some apps.
1582 */
1583SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1584 struct rlimit __user *, rlim)
1585{
1586 struct rlimit x;
1587 if (resource >= RLIM_NLIMITS)
1588 return -EINVAL;
1589
1590 resource = array_index_nospec(resource, RLIM_NLIMITS);
1591 task_lock(current->group_leader);
1592 x = current->signal->rlim[resource];
1593 task_unlock(current->group_leader);
1594 if (x.rlim_cur > 0x7FFFFFFF)
1595 x.rlim_cur = 0x7FFFFFFF;
1596 if (x.rlim_max > 0x7FFFFFFF)
1597 x.rlim_max = 0x7FFFFFFF;
1598 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1599}
1600
1601#ifdef CONFIG_COMPAT
1602COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1603 struct compat_rlimit __user *, rlim)
1604{
1605 struct rlimit r;
1606
1607 if (resource >= RLIM_NLIMITS)
1608 return -EINVAL;
1609
1610 resource = array_index_nospec(resource, RLIM_NLIMITS);
1611 task_lock(current->group_leader);
1612 r = current->signal->rlim[resource];
1613 task_unlock(current->group_leader);
1614 if (r.rlim_cur > 0x7FFFFFFF)
1615 r.rlim_cur = 0x7FFFFFFF;
1616 if (r.rlim_max > 0x7FFFFFFF)
1617 r.rlim_max = 0x7FFFFFFF;
1618
1619 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1620 put_user(r.rlim_max, &rlim->rlim_max))
1621 return -EFAULT;
1622 return 0;
1623}
1624#endif
1625
1626#endif
1627
1628static inline bool rlim64_is_infinity(__u64 rlim64)
1629{
1630#if BITS_PER_LONG < 64
1631 return rlim64 >= ULONG_MAX;
1632#else
1633 return rlim64 == RLIM64_INFINITY;
1634#endif
1635}
1636
1637static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1638{
1639 if (rlim->rlim_cur == RLIM_INFINITY)
1640 rlim64->rlim_cur = RLIM64_INFINITY;
1641 else
1642 rlim64->rlim_cur = rlim->rlim_cur;
1643 if (rlim->rlim_max == RLIM_INFINITY)
1644 rlim64->rlim_max = RLIM64_INFINITY;
1645 else
1646 rlim64->rlim_max = rlim->rlim_max;
1647}
1648
1649static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1650{
1651 if (rlim64_is_infinity(rlim64->rlim_cur))
1652 rlim->rlim_cur = RLIM_INFINITY;
1653 else
1654 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1655 if (rlim64_is_infinity(rlim64->rlim_max))
1656 rlim->rlim_max = RLIM_INFINITY;
1657 else
1658 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1659}
1660
1661/* rcu lock must be held */
1662static int check_prlimit_permission(struct task_struct *task,
1663 unsigned int flags)
1664{
1665 const struct cred *cred = current_cred(), *tcred;
1666 bool id_match;
1667
1668 if (current == task)
1669 return 0;
1670
1671 tcred = __task_cred(task);
1672 id_match = (uid_eq(cred->uid, tcred->euid) &&
1673 uid_eq(cred->uid, tcred->suid) &&
1674 uid_eq(cred->uid, tcred->uid) &&
1675 gid_eq(cred->gid, tcred->egid) &&
1676 gid_eq(cred->gid, tcred->sgid) &&
1677 gid_eq(cred->gid, tcred->gid));
1678 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1679 return -EPERM;
1680
1681 return security_task_prlimit(cred, tcred, flags);
1682}
1683
1684SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1685 const struct rlimit64 __user *, new_rlim,
1686 struct rlimit64 __user *, old_rlim)
1687{
1688 struct rlimit64 old64, new64;
1689 struct rlimit old, new;
1690 struct task_struct *tsk;
1691 unsigned int checkflags = 0;
1692 int ret;
1693
1694 if (old_rlim)
1695 checkflags |= LSM_PRLIMIT_READ;
1696
1697 if (new_rlim) {
1698 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1699 return -EFAULT;
1700 rlim64_to_rlim(&new64, &new);
1701 checkflags |= LSM_PRLIMIT_WRITE;
1702 }
1703
1704 rcu_read_lock();
1705 tsk = pid ? find_task_by_vpid(pid) : current;
1706 if (!tsk) {
1707 rcu_read_unlock();
1708 return -ESRCH;
1709 }
1710 ret = check_prlimit_permission(tsk, checkflags);
1711 if (ret) {
1712 rcu_read_unlock();
1713 return ret;
1714 }
1715 get_task_struct(tsk);
1716 rcu_read_unlock();
1717
1718 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1719 old_rlim ? &old : NULL);
1720
1721 if (!ret && old_rlim) {
1722 rlim_to_rlim64(&old, &old64);
1723 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1724 ret = -EFAULT;
1725 }
1726
1727 put_task_struct(tsk);
1728 return ret;
1729}
1730
1731SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1732{
1733 struct rlimit new_rlim;
1734
1735 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1736 return -EFAULT;
1737 return do_prlimit(current, resource, &new_rlim, NULL);
1738}
1739
1740/*
1741 * It would make sense to put struct rusage in the task_struct,
1742 * except that would make the task_struct be *really big*. After
1743 * task_struct gets moved into malloc'ed memory, it would
1744 * make sense to do this. It will make moving the rest of the information
1745 * a lot simpler! (Which we're not doing right now because we're not
1746 * measuring them yet).
1747 *
1748 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1749 * races with threads incrementing their own counters. But since word
1750 * reads are atomic, we either get new values or old values and we don't
1751 * care which for the sums. We always take the siglock to protect reading
1752 * the c* fields from p->signal from races with exit.c updating those
1753 * fields when reaping, so a sample either gets all the additions of a
1754 * given child after it's reaped, or none so this sample is before reaping.
1755 *
1756 * Locking:
1757 * We need to take the siglock for CHILDEREN, SELF and BOTH
1758 * for the cases current multithreaded, non-current single threaded
1759 * non-current multithreaded. Thread traversal is now safe with
1760 * the siglock held.
1761 * Strictly speaking, we donot need to take the siglock if we are current and
1762 * single threaded, as no one else can take our signal_struct away, no one
1763 * else can reap the children to update signal->c* counters, and no one else
1764 * can race with the signal-> fields. If we do not take any lock, the
1765 * signal-> fields could be read out of order while another thread was just
1766 * exiting. So we should place a read memory barrier when we avoid the lock.
1767 * On the writer side, write memory barrier is implied in __exit_signal
1768 * as __exit_signal releases the siglock spinlock after updating the signal->
1769 * fields. But we don't do this yet to keep things simple.
1770 *
1771 */
1772
1773static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1774{
1775 r->ru_nvcsw += t->nvcsw;
1776 r->ru_nivcsw += t->nivcsw;
1777 r->ru_minflt += t->min_flt;
1778 r->ru_majflt += t->maj_flt;
1779 r->ru_inblock += task_io_get_inblock(t);
1780 r->ru_oublock += task_io_get_oublock(t);
1781}
1782
1783void getrusage(struct task_struct *p, int who, struct rusage *r)
1784{
1785 struct task_struct *t;
1786 unsigned long flags;
1787 u64 tgutime, tgstime, utime, stime;
1788 unsigned long maxrss;
1789 struct mm_struct *mm;
1790 struct signal_struct *sig = p->signal;
1791 unsigned int seq = 0;
1792
1793retry:
1794 memset(r, 0, sizeof(*r));
1795 utime = stime = 0;
1796 maxrss = 0;
1797
1798 if (who == RUSAGE_THREAD) {
1799 task_cputime_adjusted(current, &utime, &stime);
1800 accumulate_thread_rusage(p, r);
1801 maxrss = sig->maxrss;
1802 goto out_thread;
1803 }
1804
1805 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1806
1807 switch (who) {
1808 case RUSAGE_BOTH:
1809 case RUSAGE_CHILDREN:
1810 utime = sig->cutime;
1811 stime = sig->cstime;
1812 r->ru_nvcsw = sig->cnvcsw;
1813 r->ru_nivcsw = sig->cnivcsw;
1814 r->ru_minflt = sig->cmin_flt;
1815 r->ru_majflt = sig->cmaj_flt;
1816 r->ru_inblock = sig->cinblock;
1817 r->ru_oublock = sig->coublock;
1818 maxrss = sig->cmaxrss;
1819
1820 if (who == RUSAGE_CHILDREN)
1821 break;
1822 fallthrough;
1823
1824 case RUSAGE_SELF:
1825 r->ru_nvcsw += sig->nvcsw;
1826 r->ru_nivcsw += sig->nivcsw;
1827 r->ru_minflt += sig->min_flt;
1828 r->ru_majflt += sig->maj_flt;
1829 r->ru_inblock += sig->inblock;
1830 r->ru_oublock += sig->oublock;
1831 if (maxrss < sig->maxrss)
1832 maxrss = sig->maxrss;
1833
1834 rcu_read_lock();
1835 __for_each_thread(sig, t)
1836 accumulate_thread_rusage(t, r);
1837 rcu_read_unlock();
1838
1839 break;
1840
1841 default:
1842 BUG();
1843 }
1844
1845 if (need_seqretry(&sig->stats_lock, seq)) {
1846 seq = 1;
1847 goto retry;
1848 }
1849 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1850
1851 if (who == RUSAGE_CHILDREN)
1852 goto out_children;
1853
1854 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1855 utime += tgutime;
1856 stime += tgstime;
1857
1858out_thread:
1859 mm = get_task_mm(p);
1860 if (mm) {
1861 setmax_mm_hiwater_rss(&maxrss, mm);
1862 mmput(mm);
1863 }
1864
1865out_children:
1866 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1867 r->ru_utime = ns_to_kernel_old_timeval(utime);
1868 r->ru_stime = ns_to_kernel_old_timeval(stime);
1869}
1870
1871SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1872{
1873 struct rusage r;
1874
1875 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1876 who != RUSAGE_THREAD)
1877 return -EINVAL;
1878
1879 getrusage(current, who, &r);
1880 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1881}
1882
1883#ifdef CONFIG_COMPAT
1884COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1885{
1886 struct rusage r;
1887
1888 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1889 who != RUSAGE_THREAD)
1890 return -EINVAL;
1891
1892 getrusage(current, who, &r);
1893 return put_compat_rusage(&r, ru);
1894}
1895#endif
1896
1897SYSCALL_DEFINE1(umask, int, mask)
1898{
1899 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1900 return mask;
1901}
1902
1903static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1904{
1905 struct fd exe;
1906 struct inode *inode;
1907 int err;
1908
1909 exe = fdget(fd);
1910 if (!exe.file)
1911 return -EBADF;
1912
1913 inode = file_inode(exe.file);
1914
1915 /*
1916 * Because the original mm->exe_file points to executable file, make
1917 * sure that this one is executable as well, to avoid breaking an
1918 * overall picture.
1919 */
1920 err = -EACCES;
1921 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1922 goto exit;
1923
1924 err = file_permission(exe.file, MAY_EXEC);
1925 if (err)
1926 goto exit;
1927
1928 err = replace_mm_exe_file(mm, exe.file);
1929exit:
1930 fdput(exe);
1931 return err;
1932}
1933
1934/*
1935 * Check arithmetic relations of passed addresses.
1936 *
1937 * WARNING: we don't require any capability here so be very careful
1938 * in what is allowed for modification from userspace.
1939 */
1940static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1941{
1942 unsigned long mmap_max_addr = TASK_SIZE;
1943 int error = -EINVAL, i;
1944
1945 static const unsigned char offsets[] = {
1946 offsetof(struct prctl_mm_map, start_code),
1947 offsetof(struct prctl_mm_map, end_code),
1948 offsetof(struct prctl_mm_map, start_data),
1949 offsetof(struct prctl_mm_map, end_data),
1950 offsetof(struct prctl_mm_map, start_brk),
1951 offsetof(struct prctl_mm_map, brk),
1952 offsetof(struct prctl_mm_map, start_stack),
1953 offsetof(struct prctl_mm_map, arg_start),
1954 offsetof(struct prctl_mm_map, arg_end),
1955 offsetof(struct prctl_mm_map, env_start),
1956 offsetof(struct prctl_mm_map, env_end),
1957 };
1958
1959 /*
1960 * Make sure the members are not somewhere outside
1961 * of allowed address space.
1962 */
1963 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1964 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1965
1966 if ((unsigned long)val >= mmap_max_addr ||
1967 (unsigned long)val < mmap_min_addr)
1968 goto out;
1969 }
1970
1971 /*
1972 * Make sure the pairs are ordered.
1973 */
1974#define __prctl_check_order(__m1, __op, __m2) \
1975 ((unsigned long)prctl_map->__m1 __op \
1976 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1977 error = __prctl_check_order(start_code, <, end_code);
1978 error |= __prctl_check_order(start_data,<=, end_data);
1979 error |= __prctl_check_order(start_brk, <=, brk);
1980 error |= __prctl_check_order(arg_start, <=, arg_end);
1981 error |= __prctl_check_order(env_start, <=, env_end);
1982 if (error)
1983 goto out;
1984#undef __prctl_check_order
1985
1986 error = -EINVAL;
1987
1988 /*
1989 * Neither we should allow to override limits if they set.
1990 */
1991 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1992 prctl_map->start_brk, prctl_map->end_data,
1993 prctl_map->start_data))
1994 goto out;
1995
1996 error = 0;
1997out:
1998 return error;
1999}
2000
2001#ifdef CONFIG_CHECKPOINT_RESTORE
2002static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2003{
2004 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2005 unsigned long user_auxv[AT_VECTOR_SIZE];
2006 struct mm_struct *mm = current->mm;
2007 int error;
2008
2009 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2010 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2011
2012 if (opt == PR_SET_MM_MAP_SIZE)
2013 return put_user((unsigned int)sizeof(prctl_map),
2014 (unsigned int __user *)addr);
2015
2016 if (data_size != sizeof(prctl_map))
2017 return -EINVAL;
2018
2019 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2020 return -EFAULT;
2021
2022 error = validate_prctl_map_addr(&prctl_map);
2023 if (error)
2024 return error;
2025
2026 if (prctl_map.auxv_size) {
2027 /*
2028 * Someone is trying to cheat the auxv vector.
2029 */
2030 if (!prctl_map.auxv ||
2031 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2032 return -EINVAL;
2033
2034 memset(user_auxv, 0, sizeof(user_auxv));
2035 if (copy_from_user(user_auxv,
2036 (const void __user *)prctl_map.auxv,
2037 prctl_map.auxv_size))
2038 return -EFAULT;
2039
2040 /* Last entry must be AT_NULL as specification requires */
2041 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2042 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2043 }
2044
2045 if (prctl_map.exe_fd != (u32)-1) {
2046 /*
2047 * Check if the current user is checkpoint/restore capable.
2048 * At the time of this writing, it checks for CAP_SYS_ADMIN
2049 * or CAP_CHECKPOINT_RESTORE.
2050 * Note that a user with access to ptrace can masquerade an
2051 * arbitrary program as any executable, even setuid ones.
2052 * This may have implications in the tomoyo subsystem.
2053 */
2054 if (!checkpoint_restore_ns_capable(current_user_ns()))
2055 return -EPERM;
2056
2057 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2058 if (error)
2059 return error;
2060 }
2061
2062 /*
2063 * arg_lock protects concurrent updates but we still need mmap_lock for
2064 * read to exclude races with sys_brk.
2065 */
2066 mmap_read_lock(mm);
2067
2068 /*
2069 * We don't validate if these members are pointing to
2070 * real present VMAs because application may have correspond
2071 * VMAs already unmapped and kernel uses these members for statistics
2072 * output in procfs mostly, except
2073 *
2074 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2075 * for VMAs when updating these members so anything wrong written
2076 * here cause kernel to swear at userspace program but won't lead
2077 * to any problem in kernel itself
2078 */
2079
2080 spin_lock(&mm->arg_lock);
2081 mm->start_code = prctl_map.start_code;
2082 mm->end_code = prctl_map.end_code;
2083 mm->start_data = prctl_map.start_data;
2084 mm->end_data = prctl_map.end_data;
2085 mm->start_brk = prctl_map.start_brk;
2086 mm->brk = prctl_map.brk;
2087 mm->start_stack = prctl_map.start_stack;
2088 mm->arg_start = prctl_map.arg_start;
2089 mm->arg_end = prctl_map.arg_end;
2090 mm->env_start = prctl_map.env_start;
2091 mm->env_end = prctl_map.env_end;
2092 spin_unlock(&mm->arg_lock);
2093
2094 /*
2095 * Note this update of @saved_auxv is lockless thus
2096 * if someone reads this member in procfs while we're
2097 * updating -- it may get partly updated results. It's
2098 * known and acceptable trade off: we leave it as is to
2099 * not introduce additional locks here making the kernel
2100 * more complex.
2101 */
2102 if (prctl_map.auxv_size)
2103 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2104
2105 mmap_read_unlock(mm);
2106 return 0;
2107}
2108#endif /* CONFIG_CHECKPOINT_RESTORE */
2109
2110static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2111 unsigned long len)
2112{
2113 /*
2114 * This doesn't move the auxiliary vector itself since it's pinned to
2115 * mm_struct, but it permits filling the vector with new values. It's
2116 * up to the caller to provide sane values here, otherwise userspace
2117 * tools which use this vector might be unhappy.
2118 */
2119 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2120
2121 if (len > sizeof(user_auxv))
2122 return -EINVAL;
2123
2124 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2125 return -EFAULT;
2126
2127 /* Make sure the last entry is always AT_NULL */
2128 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2129 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2130
2131 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2132
2133 task_lock(current);
2134 memcpy(mm->saved_auxv, user_auxv, len);
2135 task_unlock(current);
2136
2137 return 0;
2138}
2139
2140static int prctl_set_mm(int opt, unsigned long addr,
2141 unsigned long arg4, unsigned long arg5)
2142{
2143 struct mm_struct *mm = current->mm;
2144 struct prctl_mm_map prctl_map = {
2145 .auxv = NULL,
2146 .auxv_size = 0,
2147 .exe_fd = -1,
2148 };
2149 struct vm_area_struct *vma;
2150 int error;
2151
2152 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2153 opt != PR_SET_MM_MAP &&
2154 opt != PR_SET_MM_MAP_SIZE)))
2155 return -EINVAL;
2156
2157#ifdef CONFIG_CHECKPOINT_RESTORE
2158 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2159 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2160#endif
2161
2162 if (!capable(CAP_SYS_RESOURCE))
2163 return -EPERM;
2164
2165 if (opt == PR_SET_MM_EXE_FILE)
2166 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2167
2168 if (opt == PR_SET_MM_AUXV)
2169 return prctl_set_auxv(mm, addr, arg4);
2170
2171 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2172 return -EINVAL;
2173
2174 error = -EINVAL;
2175
2176 /*
2177 * arg_lock protects concurrent updates of arg boundaries, we need
2178 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2179 * validation.
2180 */
2181 mmap_read_lock(mm);
2182 vma = find_vma(mm, addr);
2183
2184 spin_lock(&mm->arg_lock);
2185 prctl_map.start_code = mm->start_code;
2186 prctl_map.end_code = mm->end_code;
2187 prctl_map.start_data = mm->start_data;
2188 prctl_map.end_data = mm->end_data;
2189 prctl_map.start_brk = mm->start_brk;
2190 prctl_map.brk = mm->brk;
2191 prctl_map.start_stack = mm->start_stack;
2192 prctl_map.arg_start = mm->arg_start;
2193 prctl_map.arg_end = mm->arg_end;
2194 prctl_map.env_start = mm->env_start;
2195 prctl_map.env_end = mm->env_end;
2196
2197 switch (opt) {
2198 case PR_SET_MM_START_CODE:
2199 prctl_map.start_code = addr;
2200 break;
2201 case PR_SET_MM_END_CODE:
2202 prctl_map.end_code = addr;
2203 break;
2204 case PR_SET_MM_START_DATA:
2205 prctl_map.start_data = addr;
2206 break;
2207 case PR_SET_MM_END_DATA:
2208 prctl_map.end_data = addr;
2209 break;
2210 case PR_SET_MM_START_STACK:
2211 prctl_map.start_stack = addr;
2212 break;
2213 case PR_SET_MM_START_BRK:
2214 prctl_map.start_brk = addr;
2215 break;
2216 case PR_SET_MM_BRK:
2217 prctl_map.brk = addr;
2218 break;
2219 case PR_SET_MM_ARG_START:
2220 prctl_map.arg_start = addr;
2221 break;
2222 case PR_SET_MM_ARG_END:
2223 prctl_map.arg_end = addr;
2224 break;
2225 case PR_SET_MM_ENV_START:
2226 prctl_map.env_start = addr;
2227 break;
2228 case PR_SET_MM_ENV_END:
2229 prctl_map.env_end = addr;
2230 break;
2231 default:
2232 goto out;
2233 }
2234
2235 error = validate_prctl_map_addr(&prctl_map);
2236 if (error)
2237 goto out;
2238
2239 switch (opt) {
2240 /*
2241 * If command line arguments and environment
2242 * are placed somewhere else on stack, we can
2243 * set them up here, ARG_START/END to setup
2244 * command line arguments and ENV_START/END
2245 * for environment.
2246 */
2247 case PR_SET_MM_START_STACK:
2248 case PR_SET_MM_ARG_START:
2249 case PR_SET_MM_ARG_END:
2250 case PR_SET_MM_ENV_START:
2251 case PR_SET_MM_ENV_END:
2252 if (!vma) {
2253 error = -EFAULT;
2254 goto out;
2255 }
2256 }
2257
2258 mm->start_code = prctl_map.start_code;
2259 mm->end_code = prctl_map.end_code;
2260 mm->start_data = prctl_map.start_data;
2261 mm->end_data = prctl_map.end_data;
2262 mm->start_brk = prctl_map.start_brk;
2263 mm->brk = prctl_map.brk;
2264 mm->start_stack = prctl_map.start_stack;
2265 mm->arg_start = prctl_map.arg_start;
2266 mm->arg_end = prctl_map.arg_end;
2267 mm->env_start = prctl_map.env_start;
2268 mm->env_end = prctl_map.env_end;
2269
2270 error = 0;
2271out:
2272 spin_unlock(&mm->arg_lock);
2273 mmap_read_unlock(mm);
2274 return error;
2275}
2276
2277#ifdef CONFIG_CHECKPOINT_RESTORE
2278static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2279{
2280 return put_user(me->clear_child_tid, tid_addr);
2281}
2282#else
2283static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2284{
2285 return -EINVAL;
2286}
2287#endif
2288
2289static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2290{
2291 /*
2292 * If task has has_child_subreaper - all its descendants
2293 * already have these flag too and new descendants will
2294 * inherit it on fork, skip them.
2295 *
2296 * If we've found child_reaper - skip descendants in
2297 * it's subtree as they will never get out pidns.
2298 */
2299 if (p->signal->has_child_subreaper ||
2300 is_child_reaper(task_pid(p)))
2301 return 0;
2302
2303 p->signal->has_child_subreaper = 1;
2304 return 1;
2305}
2306
2307int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2308{
2309 return -EINVAL;
2310}
2311
2312int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2313 unsigned long ctrl)
2314{
2315 return -EINVAL;
2316}
2317
2318#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2319
2320#ifdef CONFIG_ANON_VMA_NAME
2321
2322#define ANON_VMA_NAME_MAX_LEN 80
2323#define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2324
2325static inline bool is_valid_name_char(char ch)
2326{
2327 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2328 return ch > 0x1f && ch < 0x7f &&
2329 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2330}
2331
2332static int prctl_set_vma(unsigned long opt, unsigned long addr,
2333 unsigned long size, unsigned long arg)
2334{
2335 struct mm_struct *mm = current->mm;
2336 const char __user *uname;
2337 struct anon_vma_name *anon_name = NULL;
2338 int error;
2339
2340 switch (opt) {
2341 case PR_SET_VMA_ANON_NAME:
2342 uname = (const char __user *)arg;
2343 if (uname) {
2344 char *name, *pch;
2345
2346 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2347 if (IS_ERR(name))
2348 return PTR_ERR(name);
2349
2350 for (pch = name; *pch != '\0'; pch++) {
2351 if (!is_valid_name_char(*pch)) {
2352 kfree(name);
2353 return -EINVAL;
2354 }
2355 }
2356 /* anon_vma has its own copy */
2357 anon_name = anon_vma_name_alloc(name);
2358 kfree(name);
2359 if (!anon_name)
2360 return -ENOMEM;
2361
2362 }
2363
2364 mmap_write_lock(mm);
2365 error = madvise_set_anon_name(mm, addr, size, anon_name);
2366 mmap_write_unlock(mm);
2367 anon_vma_name_put(anon_name);
2368 break;
2369 default:
2370 error = -EINVAL;
2371 }
2372
2373 return error;
2374}
2375
2376#else /* CONFIG_ANON_VMA_NAME */
2377static int prctl_set_vma(unsigned long opt, unsigned long start,
2378 unsigned long size, unsigned long arg)
2379{
2380 return -EINVAL;
2381}
2382#endif /* CONFIG_ANON_VMA_NAME */
2383
2384static inline unsigned long get_current_mdwe(void)
2385{
2386 unsigned long ret = 0;
2387
2388 if (test_bit(MMF_HAS_MDWE, ¤t->mm->flags))
2389 ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2390 if (test_bit(MMF_HAS_MDWE_NO_INHERIT, ¤t->mm->flags))
2391 ret |= PR_MDWE_NO_INHERIT;
2392
2393 return ret;
2394}
2395
2396static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2397 unsigned long arg4, unsigned long arg5)
2398{
2399 unsigned long current_bits;
2400
2401 if (arg3 || arg4 || arg5)
2402 return -EINVAL;
2403
2404 if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2405 return -EINVAL;
2406
2407 /* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2408 if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2409 return -EINVAL;
2410
2411 /*
2412 * EOPNOTSUPP might be more appropriate here in principle, but
2413 * existing userspace depends on EINVAL specifically.
2414 */
2415 if (!arch_memory_deny_write_exec_supported())
2416 return -EINVAL;
2417
2418 current_bits = get_current_mdwe();
2419 if (current_bits && current_bits != bits)
2420 return -EPERM; /* Cannot unset the flags */
2421
2422 if (bits & PR_MDWE_NO_INHERIT)
2423 set_bit(MMF_HAS_MDWE_NO_INHERIT, ¤t->mm->flags);
2424 if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2425 set_bit(MMF_HAS_MDWE, ¤t->mm->flags);
2426
2427 return 0;
2428}
2429
2430static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2431 unsigned long arg4, unsigned long arg5)
2432{
2433 if (arg2 || arg3 || arg4 || arg5)
2434 return -EINVAL;
2435 return get_current_mdwe();
2436}
2437
2438static int prctl_get_auxv(void __user *addr, unsigned long len)
2439{
2440 struct mm_struct *mm = current->mm;
2441 unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2442
2443 if (size && copy_to_user(addr, mm->saved_auxv, size))
2444 return -EFAULT;
2445 return sizeof(mm->saved_auxv);
2446}
2447
2448SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2449 unsigned long, arg4, unsigned long, arg5)
2450{
2451 struct task_struct *me = current;
2452 unsigned char comm[sizeof(me->comm)];
2453 long error;
2454
2455 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2456 if (error != -ENOSYS)
2457 return error;
2458
2459 error = 0;
2460 switch (option) {
2461 case PR_SET_PDEATHSIG:
2462 if (!valid_signal(arg2)) {
2463 error = -EINVAL;
2464 break;
2465 }
2466 me->pdeath_signal = arg2;
2467 break;
2468 case PR_GET_PDEATHSIG:
2469 error = put_user(me->pdeath_signal, (int __user *)arg2);
2470 break;
2471 case PR_GET_DUMPABLE:
2472 error = get_dumpable(me->mm);
2473 break;
2474 case PR_SET_DUMPABLE:
2475 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2476 error = -EINVAL;
2477 break;
2478 }
2479 set_dumpable(me->mm, arg2);
2480 break;
2481
2482 case PR_SET_UNALIGN:
2483 error = SET_UNALIGN_CTL(me, arg2);
2484 break;
2485 case PR_GET_UNALIGN:
2486 error = GET_UNALIGN_CTL(me, arg2);
2487 break;
2488 case PR_SET_FPEMU:
2489 error = SET_FPEMU_CTL(me, arg2);
2490 break;
2491 case PR_GET_FPEMU:
2492 error = GET_FPEMU_CTL(me, arg2);
2493 break;
2494 case PR_SET_FPEXC:
2495 error = SET_FPEXC_CTL(me, arg2);
2496 break;
2497 case PR_GET_FPEXC:
2498 error = GET_FPEXC_CTL(me, arg2);
2499 break;
2500 case PR_GET_TIMING:
2501 error = PR_TIMING_STATISTICAL;
2502 break;
2503 case PR_SET_TIMING:
2504 if (arg2 != PR_TIMING_STATISTICAL)
2505 error = -EINVAL;
2506 break;
2507 case PR_SET_NAME:
2508 comm[sizeof(me->comm) - 1] = 0;
2509 if (strncpy_from_user(comm, (char __user *)arg2,
2510 sizeof(me->comm) - 1) < 0)
2511 return -EFAULT;
2512 set_task_comm(me, comm);
2513 proc_comm_connector(me);
2514 break;
2515 case PR_GET_NAME:
2516 get_task_comm(comm, me);
2517 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2518 return -EFAULT;
2519 break;
2520 case PR_GET_ENDIAN:
2521 error = GET_ENDIAN(me, arg2);
2522 break;
2523 case PR_SET_ENDIAN:
2524 error = SET_ENDIAN(me, arg2);
2525 break;
2526 case PR_GET_SECCOMP:
2527 error = prctl_get_seccomp();
2528 break;
2529 case PR_SET_SECCOMP:
2530 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2531 break;
2532 case PR_GET_TSC:
2533 error = GET_TSC_CTL(arg2);
2534 break;
2535 case PR_SET_TSC:
2536 error = SET_TSC_CTL(arg2);
2537 break;
2538 case PR_TASK_PERF_EVENTS_DISABLE:
2539 error = perf_event_task_disable();
2540 break;
2541 case PR_TASK_PERF_EVENTS_ENABLE:
2542 error = perf_event_task_enable();
2543 break;
2544 case PR_GET_TIMERSLACK:
2545 if (current->timer_slack_ns > ULONG_MAX)
2546 error = ULONG_MAX;
2547 else
2548 error = current->timer_slack_ns;
2549 break;
2550 case PR_SET_TIMERSLACK:
2551 if (arg2 <= 0)
2552 current->timer_slack_ns =
2553 current->default_timer_slack_ns;
2554 else
2555 current->timer_slack_ns = arg2;
2556 break;
2557 case PR_MCE_KILL:
2558 if (arg4 | arg5)
2559 return -EINVAL;
2560 switch (arg2) {
2561 case PR_MCE_KILL_CLEAR:
2562 if (arg3 != 0)
2563 return -EINVAL;
2564 current->flags &= ~PF_MCE_PROCESS;
2565 break;
2566 case PR_MCE_KILL_SET:
2567 current->flags |= PF_MCE_PROCESS;
2568 if (arg3 == PR_MCE_KILL_EARLY)
2569 current->flags |= PF_MCE_EARLY;
2570 else if (arg3 == PR_MCE_KILL_LATE)
2571 current->flags &= ~PF_MCE_EARLY;
2572 else if (arg3 == PR_MCE_KILL_DEFAULT)
2573 current->flags &=
2574 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2575 else
2576 return -EINVAL;
2577 break;
2578 default:
2579 return -EINVAL;
2580 }
2581 break;
2582 case PR_MCE_KILL_GET:
2583 if (arg2 | arg3 | arg4 | arg5)
2584 return -EINVAL;
2585 if (current->flags & PF_MCE_PROCESS)
2586 error = (current->flags & PF_MCE_EARLY) ?
2587 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2588 else
2589 error = PR_MCE_KILL_DEFAULT;
2590 break;
2591 case PR_SET_MM:
2592 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2593 break;
2594 case PR_GET_TID_ADDRESS:
2595 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2596 break;
2597 case PR_SET_CHILD_SUBREAPER:
2598 me->signal->is_child_subreaper = !!arg2;
2599 if (!arg2)
2600 break;
2601
2602 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2603 break;
2604 case PR_GET_CHILD_SUBREAPER:
2605 error = put_user(me->signal->is_child_subreaper,
2606 (int __user *)arg2);
2607 break;
2608 case PR_SET_NO_NEW_PRIVS:
2609 if (arg2 != 1 || arg3 || arg4 || arg5)
2610 return -EINVAL;
2611
2612 task_set_no_new_privs(current);
2613 break;
2614 case PR_GET_NO_NEW_PRIVS:
2615 if (arg2 || arg3 || arg4 || arg5)
2616 return -EINVAL;
2617 return task_no_new_privs(current) ? 1 : 0;
2618 case PR_GET_THP_DISABLE:
2619 if (arg2 || arg3 || arg4 || arg5)
2620 return -EINVAL;
2621 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2622 break;
2623 case PR_SET_THP_DISABLE:
2624 if (arg3 || arg4 || arg5)
2625 return -EINVAL;
2626 if (mmap_write_lock_killable(me->mm))
2627 return -EINTR;
2628 if (arg2)
2629 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2630 else
2631 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2632 mmap_write_unlock(me->mm);
2633 break;
2634 case PR_MPX_ENABLE_MANAGEMENT:
2635 case PR_MPX_DISABLE_MANAGEMENT:
2636 /* No longer implemented: */
2637 return -EINVAL;
2638 case PR_SET_FP_MODE:
2639 error = SET_FP_MODE(me, arg2);
2640 break;
2641 case PR_GET_FP_MODE:
2642 error = GET_FP_MODE(me);
2643 break;
2644 case PR_SVE_SET_VL:
2645 error = SVE_SET_VL(arg2);
2646 break;
2647 case PR_SVE_GET_VL:
2648 error = SVE_GET_VL();
2649 break;
2650 case PR_SME_SET_VL:
2651 error = SME_SET_VL(arg2);
2652 break;
2653 case PR_SME_GET_VL:
2654 error = SME_GET_VL();
2655 break;
2656 case PR_GET_SPECULATION_CTRL:
2657 if (arg3 || arg4 || arg5)
2658 return -EINVAL;
2659 error = arch_prctl_spec_ctrl_get(me, arg2);
2660 break;
2661 case PR_SET_SPECULATION_CTRL:
2662 if (arg4 || arg5)
2663 return -EINVAL;
2664 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2665 break;
2666 case PR_PAC_RESET_KEYS:
2667 if (arg3 || arg4 || arg5)
2668 return -EINVAL;
2669 error = PAC_RESET_KEYS(me, arg2);
2670 break;
2671 case PR_PAC_SET_ENABLED_KEYS:
2672 if (arg4 || arg5)
2673 return -EINVAL;
2674 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2675 break;
2676 case PR_PAC_GET_ENABLED_KEYS:
2677 if (arg2 || arg3 || arg4 || arg5)
2678 return -EINVAL;
2679 error = PAC_GET_ENABLED_KEYS(me);
2680 break;
2681 case PR_SET_TAGGED_ADDR_CTRL:
2682 if (arg3 || arg4 || arg5)
2683 return -EINVAL;
2684 error = SET_TAGGED_ADDR_CTRL(arg2);
2685 break;
2686 case PR_GET_TAGGED_ADDR_CTRL:
2687 if (arg2 || arg3 || arg4 || arg5)
2688 return -EINVAL;
2689 error = GET_TAGGED_ADDR_CTRL();
2690 break;
2691 case PR_SET_IO_FLUSHER:
2692 if (!capable(CAP_SYS_RESOURCE))
2693 return -EPERM;
2694
2695 if (arg3 || arg4 || arg5)
2696 return -EINVAL;
2697
2698 if (arg2 == 1)
2699 current->flags |= PR_IO_FLUSHER;
2700 else if (!arg2)
2701 current->flags &= ~PR_IO_FLUSHER;
2702 else
2703 return -EINVAL;
2704 break;
2705 case PR_GET_IO_FLUSHER:
2706 if (!capable(CAP_SYS_RESOURCE))
2707 return -EPERM;
2708
2709 if (arg2 || arg3 || arg4 || arg5)
2710 return -EINVAL;
2711
2712 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2713 break;
2714 case PR_SET_SYSCALL_USER_DISPATCH:
2715 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2716 (char __user *) arg5);
2717 break;
2718#ifdef CONFIG_SCHED_CORE
2719 case PR_SCHED_CORE:
2720 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2721 break;
2722#endif
2723 case PR_SET_MDWE:
2724 error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2725 break;
2726 case PR_GET_MDWE:
2727 error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2728 break;
2729 case PR_SET_VMA:
2730 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2731 break;
2732 case PR_GET_AUXV:
2733 if (arg4 || arg5)
2734 return -EINVAL;
2735 error = prctl_get_auxv((void __user *)arg2, arg3);
2736 break;
2737#ifdef CONFIG_KSM
2738 case PR_SET_MEMORY_MERGE:
2739 if (arg3 || arg4 || arg5)
2740 return -EINVAL;
2741 if (mmap_write_lock_killable(me->mm))
2742 return -EINTR;
2743
2744 if (arg2)
2745 error = ksm_enable_merge_any(me->mm);
2746 else
2747 error = ksm_disable_merge_any(me->mm);
2748 mmap_write_unlock(me->mm);
2749 break;
2750 case PR_GET_MEMORY_MERGE:
2751 if (arg2 || arg3 || arg4 || arg5)
2752 return -EINVAL;
2753
2754 error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2755 break;
2756#endif
2757 case PR_RISCV_V_SET_CONTROL:
2758 error = RISCV_V_SET_CONTROL(arg2);
2759 break;
2760 case PR_RISCV_V_GET_CONTROL:
2761 error = RISCV_V_GET_CONTROL();
2762 break;
2763 default:
2764 error = -EINVAL;
2765 break;
2766 }
2767 return error;
2768}
2769
2770SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2771 struct getcpu_cache __user *, unused)
2772{
2773 int err = 0;
2774 int cpu = raw_smp_processor_id();
2775
2776 if (cpup)
2777 err |= put_user(cpu, cpup);
2778 if (nodep)
2779 err |= put_user(cpu_to_node(cpu), nodep);
2780 return err ? -EFAULT : 0;
2781}
2782
2783/**
2784 * do_sysinfo - fill in sysinfo struct
2785 * @info: pointer to buffer to fill
2786 */
2787static int do_sysinfo(struct sysinfo *info)
2788{
2789 unsigned long mem_total, sav_total;
2790 unsigned int mem_unit, bitcount;
2791 struct timespec64 tp;
2792
2793 memset(info, 0, sizeof(struct sysinfo));
2794
2795 ktime_get_boottime_ts64(&tp);
2796 timens_add_boottime(&tp);
2797 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2798
2799 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2800
2801 info->procs = nr_threads;
2802
2803 si_meminfo(info);
2804 si_swapinfo(info);
2805
2806 /*
2807 * If the sum of all the available memory (i.e. ram + swap)
2808 * is less than can be stored in a 32 bit unsigned long then
2809 * we can be binary compatible with 2.2.x kernels. If not,
2810 * well, in that case 2.2.x was broken anyways...
2811 *
2812 * -Erik Andersen <andersee@debian.org>
2813 */
2814
2815 mem_total = info->totalram + info->totalswap;
2816 if (mem_total < info->totalram || mem_total < info->totalswap)
2817 goto out;
2818 bitcount = 0;
2819 mem_unit = info->mem_unit;
2820 while (mem_unit > 1) {
2821 bitcount++;
2822 mem_unit >>= 1;
2823 sav_total = mem_total;
2824 mem_total <<= 1;
2825 if (mem_total < sav_total)
2826 goto out;
2827 }
2828
2829 /*
2830 * If mem_total did not overflow, multiply all memory values by
2831 * info->mem_unit and set it to 1. This leaves things compatible
2832 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2833 * kernels...
2834 */
2835
2836 info->mem_unit = 1;
2837 info->totalram <<= bitcount;
2838 info->freeram <<= bitcount;
2839 info->sharedram <<= bitcount;
2840 info->bufferram <<= bitcount;
2841 info->totalswap <<= bitcount;
2842 info->freeswap <<= bitcount;
2843 info->totalhigh <<= bitcount;
2844 info->freehigh <<= bitcount;
2845
2846out:
2847 return 0;
2848}
2849
2850SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2851{
2852 struct sysinfo val;
2853
2854 do_sysinfo(&val);
2855
2856 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2857 return -EFAULT;
2858
2859 return 0;
2860}
2861
2862#ifdef CONFIG_COMPAT
2863struct compat_sysinfo {
2864 s32 uptime;
2865 u32 loads[3];
2866 u32 totalram;
2867 u32 freeram;
2868 u32 sharedram;
2869 u32 bufferram;
2870 u32 totalswap;
2871 u32 freeswap;
2872 u16 procs;
2873 u16 pad;
2874 u32 totalhigh;
2875 u32 freehigh;
2876 u32 mem_unit;
2877 char _f[20-2*sizeof(u32)-sizeof(int)];
2878};
2879
2880COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2881{
2882 struct sysinfo s;
2883 struct compat_sysinfo s_32;
2884
2885 do_sysinfo(&s);
2886
2887 /* Check to see if any memory value is too large for 32-bit and scale
2888 * down if needed
2889 */
2890 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2891 int bitcount = 0;
2892
2893 while (s.mem_unit < PAGE_SIZE) {
2894 s.mem_unit <<= 1;
2895 bitcount++;
2896 }
2897
2898 s.totalram >>= bitcount;
2899 s.freeram >>= bitcount;
2900 s.sharedram >>= bitcount;
2901 s.bufferram >>= bitcount;
2902 s.totalswap >>= bitcount;
2903 s.freeswap >>= bitcount;
2904 s.totalhigh >>= bitcount;
2905 s.freehigh >>= bitcount;
2906 }
2907
2908 memset(&s_32, 0, sizeof(s_32));
2909 s_32.uptime = s.uptime;
2910 s_32.loads[0] = s.loads[0];
2911 s_32.loads[1] = s.loads[1];
2912 s_32.loads[2] = s.loads[2];
2913 s_32.totalram = s.totalram;
2914 s_32.freeram = s.freeram;
2915 s_32.sharedram = s.sharedram;
2916 s_32.bufferram = s.bufferram;
2917 s_32.totalswap = s.totalswap;
2918 s_32.freeswap = s.freeswap;
2919 s_32.procs = s.procs;
2920 s_32.totalhigh = s.totalhigh;
2921 s_32.freehigh = s.freehigh;
2922 s_32.mem_unit = s.mem_unit;
2923 if (copy_to_user(info, &s_32, sizeof(s_32)))
2924 return -EFAULT;
2925 return 0;
2926}
2927#endif /* CONFIG_COMPAT */