Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/mm.h>
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/reboot.h>
  12#include <linux/prctl.h>
  13#include <linux/highuid.h>
  14#include <linux/fs.h>
  15#include <linux/kmod.h>
  16#include <linux/perf_event.h>
  17#include <linux/resource.h>
  18#include <linux/kernel.h>
  19#include <linux/workqueue.h>
  20#include <linux/capability.h>
  21#include <linux/device.h>
  22#include <linux/key.h>
  23#include <linux/times.h>
  24#include <linux/posix-timers.h>
  25#include <linux/security.h>
  26#include <linux/dcookies.h>
  27#include <linux/suspend.h>
  28#include <linux/tty.h>
  29#include <linux/signal.h>
  30#include <linux/cn_proc.h>
  31#include <linux/getcpu.h>
  32#include <linux/task_io_accounting_ops.h>
  33#include <linux/seccomp.h>
  34#include <linux/cpu.h>
  35#include <linux/personality.h>
  36#include <linux/ptrace.h>
  37#include <linux/fs_struct.h>
  38#include <linux/file.h>
  39#include <linux/mount.h>
  40#include <linux/gfp.h>
  41#include <linux/syscore_ops.h>
  42#include <linux/version.h>
  43#include <linux/ctype.h>
  44
  45#include <linux/compat.h>
  46#include <linux/syscalls.h>
  47#include <linux/kprobes.h>
  48#include <linux/user_namespace.h>
  49#include <linux/binfmts.h>
  50
  51#include <linux/sched.h>
 
 
 
 
 
 
 
  52#include <linux/rcupdate.h>
  53#include <linux/uidgid.h>
  54#include <linux/cred.h>
  55
 
 
  56#include <linux/kmsg_dump.h>
  57/* Move somewhere else to avoid recompiling? */
  58#include <generated/utsrelease.h>
  59
  60#include <asm/uaccess.h>
  61#include <asm/io.h>
  62#include <asm/unistd.h>
  63
 
 
  64#ifndef SET_UNALIGN_CTL
  65# define SET_UNALIGN_CTL(a,b)	(-EINVAL)
  66#endif
  67#ifndef GET_UNALIGN_CTL
  68# define GET_UNALIGN_CTL(a,b)	(-EINVAL)
  69#endif
  70#ifndef SET_FPEMU_CTL
  71# define SET_FPEMU_CTL(a,b)	(-EINVAL)
  72#endif
  73#ifndef GET_FPEMU_CTL
  74# define GET_FPEMU_CTL(a,b)	(-EINVAL)
  75#endif
  76#ifndef SET_FPEXC_CTL
  77# define SET_FPEXC_CTL(a,b)	(-EINVAL)
  78#endif
  79#ifndef GET_FPEXC_CTL
  80# define GET_FPEXC_CTL(a,b)	(-EINVAL)
  81#endif
  82#ifndef GET_ENDIAN
  83# define GET_ENDIAN(a,b)	(-EINVAL)
  84#endif
  85#ifndef SET_ENDIAN
  86# define SET_ENDIAN(a,b)	(-EINVAL)
  87#endif
  88#ifndef GET_TSC_CTL
  89# define GET_TSC_CTL(a)		(-EINVAL)
  90#endif
  91#ifndef SET_TSC_CTL
  92# define SET_TSC_CTL(a)		(-EINVAL)
  93#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94
  95/*
  96 * this is where the system-wide overflow UID and GID are defined, for
  97 * architectures that now have 32-bit UID/GID but didn't in the past
  98 */
  99
 100int overflowuid = DEFAULT_OVERFLOWUID;
 101int overflowgid = DEFAULT_OVERFLOWGID;
 102
 103EXPORT_SYMBOL(overflowuid);
 104EXPORT_SYMBOL(overflowgid);
 105
 106/*
 107 * the same as above, but for filesystems which can only store a 16-bit
 108 * UID and GID. as such, this is needed on all architectures
 109 */
 110
 111int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 112int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 113
 114EXPORT_SYMBOL(fs_overflowuid);
 115EXPORT_SYMBOL(fs_overflowgid);
 116
 117/*
 118 * Returns true if current's euid is same as p's uid or euid,
 119 * or has CAP_SYS_NICE to p's user_ns.
 120 *
 121 * Called with rcu_read_lock, creds are safe
 122 */
 123static bool set_one_prio_perm(struct task_struct *p)
 124{
 125	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 126
 127	if (uid_eq(pcred->uid,  cred->euid) ||
 128	    uid_eq(pcred->euid, cred->euid))
 129		return true;
 130	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 131		return true;
 132	return false;
 133}
 134
 135/*
 136 * set the priority of a task
 137 * - the caller must hold the RCU read lock
 138 */
 139static int set_one_prio(struct task_struct *p, int niceval, int error)
 140{
 141	int no_nice;
 142
 143	if (!set_one_prio_perm(p)) {
 144		error = -EPERM;
 145		goto out;
 146	}
 147	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 148		error = -EACCES;
 149		goto out;
 150	}
 151	no_nice = security_task_setnice(p, niceval);
 152	if (no_nice) {
 153		error = no_nice;
 154		goto out;
 155	}
 156	if (error == -ESRCH)
 157		error = 0;
 158	set_user_nice(p, niceval);
 159out:
 160	return error;
 161}
 162
 163SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 164{
 165	struct task_struct *g, *p;
 166	struct user_struct *user;
 167	const struct cred *cred = current_cred();
 168	int error = -EINVAL;
 169	struct pid *pgrp;
 170	kuid_t uid;
 171
 172	if (which > PRIO_USER || which < PRIO_PROCESS)
 173		goto out;
 174
 175	/* normalize: avoid signed division (rounding problems) */
 176	error = -ESRCH;
 177	if (niceval < MIN_NICE)
 178		niceval = MIN_NICE;
 179	if (niceval > MAX_NICE)
 180		niceval = MAX_NICE;
 181
 182	rcu_read_lock();
 183	read_lock(&tasklist_lock);
 184	switch (which) {
 185		case PRIO_PROCESS:
 186			if (who)
 187				p = find_task_by_vpid(who);
 188			else
 189				p = current;
 190			if (p)
 191				error = set_one_prio(p, niceval, error);
 192			break;
 193		case PRIO_PGRP:
 194			if (who)
 195				pgrp = find_vpid(who);
 196			else
 197				pgrp = task_pgrp(current);
 198			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 199				error = set_one_prio(p, niceval, error);
 200			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 201			break;
 202		case PRIO_USER:
 203			uid = make_kuid(cred->user_ns, who);
 204			user = cred->user;
 205			if (!who)
 206				uid = cred->uid;
 207			else if (!uid_eq(uid, cred->uid) &&
 208				 !(user = find_user(uid)))
 
 209				goto out_unlock;	/* No processes for this user */
 210
 211			do_each_thread(g, p) {
 212				if (uid_eq(task_uid(p), uid))
 213					error = set_one_prio(p, niceval, error);
 214			} while_each_thread(g, p);
 215			if (!uid_eq(uid, cred->uid))
 216				free_uid(user);		/* For find_user() */
 217			break;
 218	}
 219out_unlock:
 220	read_unlock(&tasklist_lock);
 221	rcu_read_unlock();
 222out:
 223	return error;
 224}
 225
 226/*
 227 * Ugh. To avoid negative return values, "getpriority()" will
 228 * not return the normal nice-value, but a negated value that
 229 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 230 * to stay compatible.
 231 */
 232SYSCALL_DEFINE2(getpriority, int, which, int, who)
 233{
 234	struct task_struct *g, *p;
 235	struct user_struct *user;
 236	const struct cred *cred = current_cred();
 237	long niceval, retval = -ESRCH;
 238	struct pid *pgrp;
 239	kuid_t uid;
 240
 241	if (which > PRIO_USER || which < PRIO_PROCESS)
 242		return -EINVAL;
 243
 244	rcu_read_lock();
 245	read_lock(&tasklist_lock);
 246	switch (which) {
 247		case PRIO_PROCESS:
 248			if (who)
 249				p = find_task_by_vpid(who);
 250			else
 251				p = current;
 252			if (p) {
 253				niceval = 20 - task_nice(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254				if (niceval > retval)
 255					retval = niceval;
 256			}
 257			break;
 258		case PRIO_PGRP:
 259			if (who)
 260				pgrp = find_vpid(who);
 261			else
 262				pgrp = task_pgrp(current);
 263			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 264				niceval = 20 - task_nice(p);
 265				if (niceval > retval)
 266					retval = niceval;
 267			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 268			break;
 269		case PRIO_USER:
 270			uid = make_kuid(cred->user_ns, who);
 271			user = cred->user;
 272			if (!who)
 273				uid = cred->uid;
 274			else if (!uid_eq(uid, cred->uid) &&
 275				 !(user = find_user(uid)))
 276				goto out_unlock;	/* No processes for this user */
 277
 278			do_each_thread(g, p) {
 279				if (uid_eq(task_uid(p), uid)) {
 280					niceval = 20 - task_nice(p);
 281					if (niceval > retval)
 282						retval = niceval;
 283				}
 284			} while_each_thread(g, p);
 285			if (!uid_eq(uid, cred->uid))
 286				free_uid(user);		/* for find_user() */
 287			break;
 288	}
 289out_unlock:
 290	read_unlock(&tasklist_lock);
 291	rcu_read_unlock();
 292
 293	return retval;
 294}
 295
 296/*
 297 * Unprivileged users may change the real gid to the effective gid
 298 * or vice versa.  (BSD-style)
 299 *
 300 * If you set the real gid at all, or set the effective gid to a value not
 301 * equal to the real gid, then the saved gid is set to the new effective gid.
 302 *
 303 * This makes it possible for a setgid program to completely drop its
 304 * privileges, which is often a useful assertion to make when you are doing
 305 * a security audit over a program.
 306 *
 307 * The general idea is that a program which uses just setregid() will be
 308 * 100% compatible with BSD.  A program which uses just setgid() will be
 309 * 100% compatible with POSIX with saved IDs. 
 310 *
 311 * SMP: There are not races, the GIDs are checked only by filesystem
 312 *      operations (as far as semantic preservation is concerned).
 313 */
 314SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 
 315{
 316	struct user_namespace *ns = current_user_ns();
 317	const struct cred *old;
 318	struct cred *new;
 319	int retval;
 320	kgid_t krgid, kegid;
 321
 322	krgid = make_kgid(ns, rgid);
 323	kegid = make_kgid(ns, egid);
 324
 325	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 326		return -EINVAL;
 327	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 328		return -EINVAL;
 329
 330	new = prepare_creds();
 331	if (!new)
 332		return -ENOMEM;
 333	old = current_cred();
 334
 335	retval = -EPERM;
 336	if (rgid != (gid_t) -1) {
 337		if (gid_eq(old->gid, krgid) ||
 338		    gid_eq(old->egid, krgid) ||
 339		    ns_capable(old->user_ns, CAP_SETGID))
 340			new->gid = krgid;
 341		else
 342			goto error;
 343	}
 344	if (egid != (gid_t) -1) {
 345		if (gid_eq(old->gid, kegid) ||
 346		    gid_eq(old->egid, kegid) ||
 347		    gid_eq(old->sgid, kegid) ||
 348		    ns_capable(old->user_ns, CAP_SETGID))
 349			new->egid = kegid;
 350		else
 351			goto error;
 352	}
 353
 354	if (rgid != (gid_t) -1 ||
 355	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 356		new->sgid = new->egid;
 357	new->fsgid = new->egid;
 358
 359	return commit_creds(new);
 360
 361error:
 362	abort_creds(new);
 363	return retval;
 364}
 365
 
 
 
 
 
 366/*
 367 * setgid() is implemented like SysV w/ SAVED_IDS 
 368 *
 369 * SMP: Same implicit races as above.
 370 */
 371SYSCALL_DEFINE1(setgid, gid_t, gid)
 372{
 373	struct user_namespace *ns = current_user_ns();
 374	const struct cred *old;
 375	struct cred *new;
 376	int retval;
 377	kgid_t kgid;
 378
 379	kgid = make_kgid(ns, gid);
 380	if (!gid_valid(kgid))
 381		return -EINVAL;
 382
 383	new = prepare_creds();
 384	if (!new)
 385		return -ENOMEM;
 386	old = current_cred();
 387
 388	retval = -EPERM;
 389	if (ns_capable(old->user_ns, CAP_SETGID))
 390		new->gid = new->egid = new->sgid = new->fsgid = kgid;
 391	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 392		new->egid = new->fsgid = kgid;
 393	else
 394		goto error;
 395
 396	return commit_creds(new);
 397
 398error:
 399	abort_creds(new);
 400	return retval;
 401}
 402
 
 
 
 
 
 403/*
 404 * change the user struct in a credentials set to match the new UID
 405 */
 406static int set_user(struct cred *new)
 407{
 408	struct user_struct *new_user;
 409
 410	new_user = alloc_uid(new->uid);
 411	if (!new_user)
 412		return -EAGAIN;
 413
 414	/*
 415	 * We don't fail in case of NPROC limit excess here because too many
 416	 * poorly written programs don't check set*uid() return code, assuming
 417	 * it never fails if called by root.  We may still enforce NPROC limit
 418	 * for programs doing set*uid()+execve() by harmlessly deferring the
 419	 * failure to the execve() stage.
 420	 */
 421	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 422			new_user != INIT_USER)
 423		current->flags |= PF_NPROC_EXCEEDED;
 424	else
 425		current->flags &= ~PF_NPROC_EXCEEDED;
 426
 427	free_uid(new->user);
 428	new->user = new_user;
 429	return 0;
 430}
 431
 432/*
 433 * Unprivileged users may change the real uid to the effective uid
 434 * or vice versa.  (BSD-style)
 435 *
 436 * If you set the real uid at all, or set the effective uid to a value not
 437 * equal to the real uid, then the saved uid is set to the new effective uid.
 438 *
 439 * This makes it possible for a setuid program to completely drop its
 440 * privileges, which is often a useful assertion to make when you are doing
 441 * a security audit over a program.
 442 *
 443 * The general idea is that a program which uses just setreuid() will be
 444 * 100% compatible with BSD.  A program which uses just setuid() will be
 445 * 100% compatible with POSIX with saved IDs. 
 446 */
 447SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 448{
 449	struct user_namespace *ns = current_user_ns();
 450	const struct cred *old;
 451	struct cred *new;
 452	int retval;
 453	kuid_t kruid, keuid;
 454
 455	kruid = make_kuid(ns, ruid);
 456	keuid = make_kuid(ns, euid);
 457
 458	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 459		return -EINVAL;
 460	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 461		return -EINVAL;
 462
 463	new = prepare_creds();
 464	if (!new)
 465		return -ENOMEM;
 466	old = current_cred();
 467
 468	retval = -EPERM;
 469	if (ruid != (uid_t) -1) {
 470		new->uid = kruid;
 471		if (!uid_eq(old->uid, kruid) &&
 472		    !uid_eq(old->euid, kruid) &&
 473		    !ns_capable(old->user_ns, CAP_SETUID))
 474			goto error;
 475	}
 476
 477	if (euid != (uid_t) -1) {
 478		new->euid = keuid;
 479		if (!uid_eq(old->uid, keuid) &&
 480		    !uid_eq(old->euid, keuid) &&
 481		    !uid_eq(old->suid, keuid) &&
 482		    !ns_capable(old->user_ns, CAP_SETUID))
 483			goto error;
 484	}
 485
 486	if (!uid_eq(new->uid, old->uid)) {
 487		retval = set_user(new);
 488		if (retval < 0)
 489			goto error;
 490	}
 491	if (ruid != (uid_t) -1 ||
 492	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 493		new->suid = new->euid;
 494	new->fsuid = new->euid;
 495
 496	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 497	if (retval < 0)
 498		goto error;
 499
 500	return commit_creds(new);
 501
 502error:
 503	abort_creds(new);
 504	return retval;
 505}
 506		
 
 
 
 
 
 507/*
 508 * setuid() is implemented like SysV with SAVED_IDS 
 509 * 
 510 * Note that SAVED_ID's is deficient in that a setuid root program
 511 * like sendmail, for example, cannot set its uid to be a normal 
 512 * user and then switch back, because if you're root, setuid() sets
 513 * the saved uid too.  If you don't like this, blame the bright people
 514 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 515 * will allow a root program to temporarily drop privileges and be able to
 516 * regain them by swapping the real and effective uid.  
 517 */
 518SYSCALL_DEFINE1(setuid, uid_t, uid)
 519{
 520	struct user_namespace *ns = current_user_ns();
 521	const struct cred *old;
 522	struct cred *new;
 523	int retval;
 524	kuid_t kuid;
 525
 526	kuid = make_kuid(ns, uid);
 527	if (!uid_valid(kuid))
 528		return -EINVAL;
 529
 530	new = prepare_creds();
 531	if (!new)
 532		return -ENOMEM;
 533	old = current_cred();
 534
 535	retval = -EPERM;
 536	if (ns_capable(old->user_ns, CAP_SETUID)) {
 537		new->suid = new->uid = kuid;
 538		if (!uid_eq(kuid, old->uid)) {
 539			retval = set_user(new);
 540			if (retval < 0)
 541				goto error;
 542		}
 543	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 544		goto error;
 545	}
 546
 547	new->fsuid = new->euid = kuid;
 548
 549	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 550	if (retval < 0)
 551		goto error;
 552
 553	return commit_creds(new);
 554
 555error:
 556	abort_creds(new);
 557	return retval;
 558}
 559
 
 
 
 
 
 560
 561/*
 562 * This function implements a generic ability to update ruid, euid,
 563 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 564 */
 565SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 566{
 567	struct user_namespace *ns = current_user_ns();
 568	const struct cred *old;
 569	struct cred *new;
 570	int retval;
 571	kuid_t kruid, keuid, ksuid;
 572
 573	kruid = make_kuid(ns, ruid);
 574	keuid = make_kuid(ns, euid);
 575	ksuid = make_kuid(ns, suid);
 576
 577	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 578		return -EINVAL;
 579
 580	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 581		return -EINVAL;
 582
 583	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 584		return -EINVAL;
 585
 586	new = prepare_creds();
 587	if (!new)
 588		return -ENOMEM;
 589
 590	old = current_cred();
 591
 592	retval = -EPERM;
 593	if (!ns_capable(old->user_ns, CAP_SETUID)) {
 594		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 595		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 596			goto error;
 597		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 598		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 599			goto error;
 600		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 601		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 602			goto error;
 603	}
 604
 605	if (ruid != (uid_t) -1) {
 606		new->uid = kruid;
 607		if (!uid_eq(kruid, old->uid)) {
 608			retval = set_user(new);
 609			if (retval < 0)
 610				goto error;
 611		}
 612	}
 613	if (euid != (uid_t) -1)
 614		new->euid = keuid;
 615	if (suid != (uid_t) -1)
 616		new->suid = ksuid;
 617	new->fsuid = new->euid;
 618
 619	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 620	if (retval < 0)
 621		goto error;
 622
 623	return commit_creds(new);
 624
 625error:
 626	abort_creds(new);
 627	return retval;
 628}
 629
 
 
 
 
 
 630SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 631{
 632	const struct cred *cred = current_cred();
 633	int retval;
 634	uid_t ruid, euid, suid;
 635
 636	ruid = from_kuid_munged(cred->user_ns, cred->uid);
 637	euid = from_kuid_munged(cred->user_ns, cred->euid);
 638	suid = from_kuid_munged(cred->user_ns, cred->suid);
 639
 640	if (!(retval   = put_user(ruid, ruidp)) &&
 641	    !(retval   = put_user(euid, euidp)))
 642		retval = put_user(suid, suidp);
 643
 
 
 644	return retval;
 645}
 646
 647/*
 648 * Same as above, but for rgid, egid, sgid.
 649 */
 650SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 651{
 652	struct user_namespace *ns = current_user_ns();
 653	const struct cred *old;
 654	struct cred *new;
 655	int retval;
 656	kgid_t krgid, kegid, ksgid;
 657
 658	krgid = make_kgid(ns, rgid);
 659	kegid = make_kgid(ns, egid);
 660	ksgid = make_kgid(ns, sgid);
 661
 662	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 663		return -EINVAL;
 664	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 665		return -EINVAL;
 666	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 667		return -EINVAL;
 668
 669	new = prepare_creds();
 670	if (!new)
 671		return -ENOMEM;
 672	old = current_cred();
 673
 674	retval = -EPERM;
 675	if (!ns_capable(old->user_ns, CAP_SETGID)) {
 676		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 677		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 678			goto error;
 679		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 680		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 681			goto error;
 682		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 683		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 684			goto error;
 685	}
 686
 687	if (rgid != (gid_t) -1)
 688		new->gid = krgid;
 689	if (egid != (gid_t) -1)
 690		new->egid = kegid;
 691	if (sgid != (gid_t) -1)
 692		new->sgid = ksgid;
 693	new->fsgid = new->egid;
 694
 695	return commit_creds(new);
 696
 697error:
 698	abort_creds(new);
 699	return retval;
 700}
 701
 
 
 
 
 
 702SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 703{
 704	const struct cred *cred = current_cred();
 705	int retval;
 706	gid_t rgid, egid, sgid;
 707
 708	rgid = from_kgid_munged(cred->user_ns, cred->gid);
 709	egid = from_kgid_munged(cred->user_ns, cred->egid);
 710	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 711
 712	if (!(retval   = put_user(rgid, rgidp)) &&
 713	    !(retval   = put_user(egid, egidp)))
 714		retval = put_user(sgid, sgidp);
 
 
 
 715
 716	return retval;
 717}
 718
 719
 720/*
 721 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 722 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 723 * whatever uid it wants to). It normally shadows "euid", except when
 724 * explicitly set by setfsuid() or for access..
 725 */
 726SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 727{
 728	const struct cred *old;
 729	struct cred *new;
 730	uid_t old_fsuid;
 731	kuid_t kuid;
 732
 733	old = current_cred();
 734	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 735
 736	kuid = make_kuid(old->user_ns, uid);
 737	if (!uid_valid(kuid))
 738		return old_fsuid;
 739
 740	new = prepare_creds();
 741	if (!new)
 742		return old_fsuid;
 743
 744	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 745	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 746	    ns_capable(old->user_ns, CAP_SETUID)) {
 747		if (!uid_eq(kuid, old->fsuid)) {
 748			new->fsuid = kuid;
 749			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 750				goto change_okay;
 751		}
 752	}
 753
 754	abort_creds(new);
 755	return old_fsuid;
 756
 757change_okay:
 758	commit_creds(new);
 759	return old_fsuid;
 760}
 761
 
 
 
 
 
 762/*
 763 * Samma på svenska..
 764 */
 765SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 766{
 767	const struct cred *old;
 768	struct cred *new;
 769	gid_t old_fsgid;
 770	kgid_t kgid;
 771
 772	old = current_cred();
 773	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 774
 775	kgid = make_kgid(old->user_ns, gid);
 776	if (!gid_valid(kgid))
 777		return old_fsgid;
 778
 779	new = prepare_creds();
 780	if (!new)
 781		return old_fsgid;
 782
 783	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 784	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 785	    ns_capable(old->user_ns, CAP_SETGID)) {
 786		if (!gid_eq(kgid, old->fsgid)) {
 787			new->fsgid = kgid;
 788			goto change_okay;
 789		}
 790	}
 791
 792	abort_creds(new);
 793	return old_fsgid;
 794
 795change_okay:
 796	commit_creds(new);
 797	return old_fsgid;
 798}
 799
 
 
 
 
 
 
 800/**
 801 * sys_getpid - return the thread group id of the current process
 802 *
 803 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 804 * the pid are identical unless CLONE_THREAD was specified on clone() in
 805 * which case the tgid is the same in all threads of the same group.
 806 *
 807 * This is SMP safe as current->tgid does not change.
 808 */
 809SYSCALL_DEFINE0(getpid)
 810{
 811	return task_tgid_vnr(current);
 812}
 813
 814/* Thread ID - the internal kernel "pid" */
 815SYSCALL_DEFINE0(gettid)
 816{
 817	return task_pid_vnr(current);
 818}
 819
 820/*
 821 * Accessing ->real_parent is not SMP-safe, it could
 822 * change from under us. However, we can use a stale
 823 * value of ->real_parent under rcu_read_lock(), see
 824 * release_task()->call_rcu(delayed_put_task_struct).
 825 */
 826SYSCALL_DEFINE0(getppid)
 827{
 828	int pid;
 829
 830	rcu_read_lock();
 831	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 832	rcu_read_unlock();
 833
 834	return pid;
 835}
 836
 837SYSCALL_DEFINE0(getuid)
 838{
 839	/* Only we change this so SMP safe */
 840	return from_kuid_munged(current_user_ns(), current_uid());
 841}
 842
 843SYSCALL_DEFINE0(geteuid)
 844{
 845	/* Only we change this so SMP safe */
 846	return from_kuid_munged(current_user_ns(), current_euid());
 847}
 848
 849SYSCALL_DEFINE0(getgid)
 850{
 851	/* Only we change this so SMP safe */
 852	return from_kgid_munged(current_user_ns(), current_gid());
 853}
 854
 855SYSCALL_DEFINE0(getegid)
 856{
 857	/* Only we change this so SMP safe */
 858	return from_kgid_munged(current_user_ns(), current_egid());
 859}
 860
 861void do_sys_times(struct tms *tms)
 862{
 863	cputime_t tgutime, tgstime, cutime, cstime;
 864
 865	spin_lock_irq(&current->sighand->siglock);
 866	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 867	cutime = current->signal->cutime;
 868	cstime = current->signal->cstime;
 869	spin_unlock_irq(&current->sighand->siglock);
 870	tms->tms_utime = cputime_to_clock_t(tgutime);
 871	tms->tms_stime = cputime_to_clock_t(tgstime);
 872	tms->tms_cutime = cputime_to_clock_t(cutime);
 873	tms->tms_cstime = cputime_to_clock_t(cstime);
 874}
 875
 876SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 877{
 878	if (tbuf) {
 879		struct tms tmp;
 880
 881		do_sys_times(&tmp);
 882		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 883			return -EFAULT;
 884	}
 885	force_successful_syscall_return();
 886	return (long) jiffies_64_to_clock_t(get_jiffies_64());
 887}
 888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889/*
 890 * This needs some heavy checking ...
 891 * I just haven't the stomach for it. I also don't fully
 892 * understand sessions/pgrp etc. Let somebody who does explain it.
 893 *
 894 * OK, I think I have the protection semantics right.... this is really
 895 * only important on a multi-user system anyway, to make sure one user
 896 * can't send a signal to a process owned by another.  -TYT, 12/12/91
 897 *
 898 * !PF_FORKNOEXEC check to conform completely to POSIX.
 899 */
 900SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 901{
 902	struct task_struct *p;
 903	struct task_struct *group_leader = current->group_leader;
 904	struct pid *pgrp;
 905	int err;
 906
 907	if (!pid)
 908		pid = task_pid_vnr(group_leader);
 909	if (!pgid)
 910		pgid = pid;
 911	if (pgid < 0)
 912		return -EINVAL;
 913	rcu_read_lock();
 914
 915	/* From this point forward we keep holding onto the tasklist lock
 916	 * so that our parent does not change from under us. -DaveM
 917	 */
 918	write_lock_irq(&tasklist_lock);
 919
 920	err = -ESRCH;
 921	p = find_task_by_vpid(pid);
 922	if (!p)
 923		goto out;
 924
 925	err = -EINVAL;
 926	if (!thread_group_leader(p))
 927		goto out;
 928
 929	if (same_thread_group(p->real_parent, group_leader)) {
 930		err = -EPERM;
 931		if (task_session(p) != task_session(group_leader))
 932			goto out;
 933		err = -EACCES;
 934		if (!(p->flags & PF_FORKNOEXEC))
 935			goto out;
 936	} else {
 937		err = -ESRCH;
 938		if (p != group_leader)
 939			goto out;
 940	}
 941
 942	err = -EPERM;
 943	if (p->signal->leader)
 944		goto out;
 945
 946	pgrp = task_pid(p);
 947	if (pgid != pid) {
 948		struct task_struct *g;
 949
 950		pgrp = find_vpid(pgid);
 951		g = pid_task(pgrp, PIDTYPE_PGID);
 952		if (!g || task_session(g) != task_session(group_leader))
 953			goto out;
 954	}
 955
 956	err = security_task_setpgid(p, pgid);
 957	if (err)
 958		goto out;
 959
 960	if (task_pgrp(p) != pgrp)
 961		change_pid(p, PIDTYPE_PGID, pgrp);
 962
 963	err = 0;
 964out:
 965	/* All paths lead to here, thus we are safe. -DaveM */
 966	write_unlock_irq(&tasklist_lock);
 967	rcu_read_unlock();
 968	return err;
 969}
 970
 971SYSCALL_DEFINE1(getpgid, pid_t, pid)
 972{
 973	struct task_struct *p;
 974	struct pid *grp;
 975	int retval;
 976
 977	rcu_read_lock();
 978	if (!pid)
 979		grp = task_pgrp(current);
 980	else {
 981		retval = -ESRCH;
 982		p = find_task_by_vpid(pid);
 983		if (!p)
 984			goto out;
 985		grp = task_pgrp(p);
 986		if (!grp)
 987			goto out;
 988
 989		retval = security_task_getpgid(p);
 990		if (retval)
 991			goto out;
 992	}
 993	retval = pid_vnr(grp);
 994out:
 995	rcu_read_unlock();
 996	return retval;
 997}
 998
 
 
 
 
 
 999#ifdef __ARCH_WANT_SYS_GETPGRP
1000
1001SYSCALL_DEFINE0(getpgrp)
1002{
1003	return sys_getpgid(0);
1004}
1005
1006#endif
1007
1008SYSCALL_DEFINE1(getsid, pid_t, pid)
1009{
1010	struct task_struct *p;
1011	struct pid *sid;
1012	int retval;
1013
1014	rcu_read_lock();
1015	if (!pid)
1016		sid = task_session(current);
1017	else {
1018		retval = -ESRCH;
1019		p = find_task_by_vpid(pid);
1020		if (!p)
1021			goto out;
1022		sid = task_session(p);
1023		if (!sid)
1024			goto out;
1025
1026		retval = security_task_getsid(p);
1027		if (retval)
1028			goto out;
1029	}
1030	retval = pid_vnr(sid);
1031out:
1032	rcu_read_unlock();
1033	return retval;
1034}
1035
1036static void set_special_pids(struct pid *pid)
1037{
1038	struct task_struct *curr = current->group_leader;
1039
1040	if (task_session(curr) != pid)
1041		change_pid(curr, PIDTYPE_SID, pid);
1042
1043	if (task_pgrp(curr) != pid)
1044		change_pid(curr, PIDTYPE_PGID, pid);
1045}
1046
1047SYSCALL_DEFINE0(setsid)
1048{
1049	struct task_struct *group_leader = current->group_leader;
1050	struct pid *sid = task_pid(group_leader);
1051	pid_t session = pid_vnr(sid);
1052	int err = -EPERM;
1053
1054	write_lock_irq(&tasklist_lock);
1055	/* Fail if I am already a session leader */
1056	if (group_leader->signal->leader)
1057		goto out;
1058
1059	/* Fail if a process group id already exists that equals the
1060	 * proposed session id.
1061	 */
1062	if (pid_task(sid, PIDTYPE_PGID))
1063		goto out;
1064
1065	group_leader->signal->leader = 1;
1066	set_special_pids(sid);
1067
1068	proc_clear_tty(group_leader);
1069
1070	err = session;
1071out:
1072	write_unlock_irq(&tasklist_lock);
1073	if (err > 0) {
1074		proc_sid_connector(group_leader);
1075		sched_autogroup_create_attach(group_leader);
1076	}
1077	return err;
1078}
1079
 
 
 
 
 
1080DECLARE_RWSEM(uts_sem);
1081
1082#ifdef COMPAT_UTS_MACHINE
1083#define override_architecture(name) \
1084	(personality(current->personality) == PER_LINUX32 && \
1085	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1086		      sizeof(COMPAT_UTS_MACHINE)))
1087#else
1088#define override_architecture(name)	0
1089#endif
1090
1091/*
1092 * Work around broken programs that cannot handle "Linux 3.0".
1093 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
 
 
1094 */
1095static int override_release(char __user *release, size_t len)
1096{
1097	int ret = 0;
1098
1099	if (current->personality & UNAME26) {
1100		const char *rest = UTS_RELEASE;
1101		char buf[65] = { 0 };
1102		int ndots = 0;
1103		unsigned v;
1104		size_t copy;
1105
1106		while (*rest) {
1107			if (*rest == '.' && ++ndots >= 3)
1108				break;
1109			if (!isdigit(*rest) && *rest != '.')
1110				break;
1111			rest++;
1112		}
1113		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1114		copy = clamp_t(size_t, len, 1, sizeof(buf));
1115		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1116		ret = copy_to_user(release, buf, copy + 1);
1117	}
1118	return ret;
1119}
1120
1121SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1122{
1123	int errno = 0;
1124
1125	down_read(&uts_sem);
1126	if (copy_to_user(name, utsname(), sizeof *name))
1127		errno = -EFAULT;
1128	up_read(&uts_sem);
 
 
1129
1130	if (!errno && override_release(name->release, sizeof(name->release)))
1131		errno = -EFAULT;
1132	if (!errno && override_architecture(name))
1133		errno = -EFAULT;
1134	return errno;
1135}
1136
1137#ifdef __ARCH_WANT_SYS_OLD_UNAME
1138/*
1139 * Old cruft
1140 */
1141SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1142{
1143	int error = 0;
1144
1145	if (!name)
1146		return -EFAULT;
1147
1148	down_read(&uts_sem);
1149	if (copy_to_user(name, utsname(), sizeof(*name)))
1150		error = -EFAULT;
1151	up_read(&uts_sem);
 
 
1152
1153	if (!error && override_release(name->release, sizeof(name->release)))
1154		error = -EFAULT;
1155	if (!error && override_architecture(name))
1156		error = -EFAULT;
1157	return error;
1158}
1159
1160SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1161{
1162	int error;
1163
1164	if (!name)
1165		return -EFAULT;
1166	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1167		return -EFAULT;
1168
1169	down_read(&uts_sem);
1170	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1171			       __OLD_UTS_LEN);
1172	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1173	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1174				__OLD_UTS_LEN);
1175	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1176	error |= __copy_to_user(&name->release, &utsname()->release,
1177				__OLD_UTS_LEN);
1178	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1179	error |= __copy_to_user(&name->version, &utsname()->version,
1180				__OLD_UTS_LEN);
1181	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1182	error |= __copy_to_user(&name->machine, &utsname()->machine,
1183				__OLD_UTS_LEN);
1184	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1185	up_read(&uts_sem);
 
 
1186
1187	if (!error && override_architecture(name))
1188		error = -EFAULT;
1189	if (!error && override_release(name->release, sizeof(name->release)))
1190		error = -EFAULT;
1191	return error ? -EFAULT : 0;
1192}
1193#endif
1194
1195SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1196{
1197	int errno;
1198	char tmp[__NEW_UTS_LEN];
1199
1200	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1201		return -EPERM;
1202
1203	if (len < 0 || len > __NEW_UTS_LEN)
1204		return -EINVAL;
1205	down_write(&uts_sem);
1206	errno = -EFAULT;
1207	if (!copy_from_user(tmp, name, len)) {
1208		struct new_utsname *u = utsname();
1209
 
 
1210		memcpy(u->nodename, tmp, len);
1211		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1212		errno = 0;
1213		uts_proc_notify(UTS_PROC_HOSTNAME);
 
1214	}
1215	up_write(&uts_sem);
1216	return errno;
1217}
1218
1219#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1220
1221SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1222{
1223	int i, errno;
1224	struct new_utsname *u;
 
1225
1226	if (len < 0)
1227		return -EINVAL;
1228	down_read(&uts_sem);
1229	u = utsname();
1230	i = 1 + strlen(u->nodename);
1231	if (i > len)
1232		i = len;
1233	errno = 0;
1234	if (copy_to_user(name, u->nodename, i))
1235		errno = -EFAULT;
1236	up_read(&uts_sem);
1237	return errno;
 
 
1238}
1239
1240#endif
1241
1242/*
1243 * Only setdomainname; getdomainname can be implemented by calling
1244 * uname()
1245 */
1246SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1247{
1248	int errno;
1249	char tmp[__NEW_UTS_LEN];
1250
1251	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1252		return -EPERM;
1253	if (len < 0 || len > __NEW_UTS_LEN)
1254		return -EINVAL;
1255
1256	down_write(&uts_sem);
1257	errno = -EFAULT;
1258	if (!copy_from_user(tmp, name, len)) {
1259		struct new_utsname *u = utsname();
1260
 
 
1261		memcpy(u->domainname, tmp, len);
1262		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1263		errno = 0;
1264		uts_proc_notify(UTS_PROC_DOMAINNAME);
 
1265	}
1266	up_write(&uts_sem);
1267	return errno;
1268}
1269
1270SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1271{
1272	struct rlimit value;
1273	int ret;
1274
1275	ret = do_prlimit(current, resource, NULL, &value);
1276	if (!ret)
1277		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1278
1279	return ret;
1280}
1281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1283
1284/*
1285 *	Back compatibility for getrlimit. Needed for some apps.
1286 */
1287 
1288SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1289		struct rlimit __user *, rlim)
1290{
1291	struct rlimit x;
1292	if (resource >= RLIM_NLIMITS)
1293		return -EINVAL;
1294
 
1295	task_lock(current->group_leader);
1296	x = current->signal->rlim[resource];
1297	task_unlock(current->group_leader);
1298	if (x.rlim_cur > 0x7FFFFFFF)
1299		x.rlim_cur = 0x7FFFFFFF;
1300	if (x.rlim_max > 0x7FFFFFFF)
1301		x.rlim_max = 0x7FFFFFFF;
1302	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1303}
1304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1305#endif
1306
1307static inline bool rlim64_is_infinity(__u64 rlim64)
1308{
1309#if BITS_PER_LONG < 64
1310	return rlim64 >= ULONG_MAX;
1311#else
1312	return rlim64 == RLIM64_INFINITY;
1313#endif
1314}
1315
1316static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1317{
1318	if (rlim->rlim_cur == RLIM_INFINITY)
1319		rlim64->rlim_cur = RLIM64_INFINITY;
1320	else
1321		rlim64->rlim_cur = rlim->rlim_cur;
1322	if (rlim->rlim_max == RLIM_INFINITY)
1323		rlim64->rlim_max = RLIM64_INFINITY;
1324	else
1325		rlim64->rlim_max = rlim->rlim_max;
1326}
1327
1328static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1329{
1330	if (rlim64_is_infinity(rlim64->rlim_cur))
1331		rlim->rlim_cur = RLIM_INFINITY;
1332	else
1333		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1334	if (rlim64_is_infinity(rlim64->rlim_max))
1335		rlim->rlim_max = RLIM_INFINITY;
1336	else
1337		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1338}
1339
1340/* make sure you are allowed to change @tsk limits before calling this */
1341int do_prlimit(struct task_struct *tsk, unsigned int resource,
1342		struct rlimit *new_rlim, struct rlimit *old_rlim)
1343{
1344	struct rlimit *rlim;
1345	int retval = 0;
1346
1347	if (resource >= RLIM_NLIMITS)
1348		return -EINVAL;
1349	if (new_rlim) {
1350		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1351			return -EINVAL;
1352		if (resource == RLIMIT_NOFILE &&
1353				new_rlim->rlim_max > sysctl_nr_open)
1354			return -EPERM;
1355	}
1356
1357	/* protect tsk->signal and tsk->sighand from disappearing */
1358	read_lock(&tasklist_lock);
1359	if (!tsk->sighand) {
1360		retval = -ESRCH;
1361		goto out;
1362	}
1363
1364	rlim = tsk->signal->rlim + resource;
1365	task_lock(tsk->group_leader);
1366	if (new_rlim) {
1367		/* Keep the capable check against init_user_ns until
1368		   cgroups can contain all limits */
1369		if (new_rlim->rlim_max > rlim->rlim_max &&
1370				!capable(CAP_SYS_RESOURCE))
1371			retval = -EPERM;
1372		if (!retval)
1373			retval = security_task_setrlimit(tsk->group_leader,
1374					resource, new_rlim);
1375		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1376			/*
1377			 * The caller is asking for an immediate RLIMIT_CPU
1378			 * expiry.  But we use the zero value to mean "it was
1379			 * never set".  So let's cheat and make it one second
1380			 * instead
1381			 */
1382			new_rlim->rlim_cur = 1;
1383		}
1384	}
1385	if (!retval) {
1386		if (old_rlim)
1387			*old_rlim = *rlim;
1388		if (new_rlim)
1389			*rlim = *new_rlim;
1390	}
1391	task_unlock(tsk->group_leader);
1392
1393	/*
1394	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1395	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1396	 * very long-standing error, and fixing it now risks breakage of
1397	 * applications, so we live with it
1398	 */
1399	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1400			 new_rlim->rlim_cur != RLIM_INFINITY)
 
1401		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1402out:
1403	read_unlock(&tasklist_lock);
1404	return retval;
1405}
1406
1407/* rcu lock must be held */
1408static int check_prlimit_permission(struct task_struct *task)
 
1409{
1410	const struct cred *cred = current_cred(), *tcred;
 
1411
1412	if (current == task)
1413		return 0;
1414
1415	tcred = __task_cred(task);
1416	if (uid_eq(cred->uid, tcred->euid) &&
1417	    uid_eq(cred->uid, tcred->suid) &&
1418	    uid_eq(cred->uid, tcred->uid)  &&
1419	    gid_eq(cred->gid, tcred->egid) &&
1420	    gid_eq(cred->gid, tcred->sgid) &&
1421	    gid_eq(cred->gid, tcred->gid))
1422		return 0;
1423	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1424		return 0;
1425
1426	return -EPERM;
1427}
1428
1429SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1430		const struct rlimit64 __user *, new_rlim,
1431		struct rlimit64 __user *, old_rlim)
1432{
1433	struct rlimit64 old64, new64;
1434	struct rlimit old, new;
1435	struct task_struct *tsk;
 
1436	int ret;
1437
 
 
 
1438	if (new_rlim) {
1439		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1440			return -EFAULT;
1441		rlim64_to_rlim(&new64, &new);
 
1442	}
1443
1444	rcu_read_lock();
1445	tsk = pid ? find_task_by_vpid(pid) : current;
1446	if (!tsk) {
1447		rcu_read_unlock();
1448		return -ESRCH;
1449	}
1450	ret = check_prlimit_permission(tsk);
1451	if (ret) {
1452		rcu_read_unlock();
1453		return ret;
1454	}
1455	get_task_struct(tsk);
1456	rcu_read_unlock();
1457
1458	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1459			old_rlim ? &old : NULL);
1460
1461	if (!ret && old_rlim) {
1462		rlim_to_rlim64(&old, &old64);
1463		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1464			ret = -EFAULT;
1465	}
1466
1467	put_task_struct(tsk);
1468	return ret;
1469}
1470
1471SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1472{
1473	struct rlimit new_rlim;
1474
1475	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1476		return -EFAULT;
1477	return do_prlimit(current, resource, &new_rlim, NULL);
1478}
1479
1480/*
1481 * It would make sense to put struct rusage in the task_struct,
1482 * except that would make the task_struct be *really big*.  After
1483 * task_struct gets moved into malloc'ed memory, it would
1484 * make sense to do this.  It will make moving the rest of the information
1485 * a lot simpler!  (Which we're not doing right now because we're not
1486 * measuring them yet).
1487 *
1488 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1489 * races with threads incrementing their own counters.  But since word
1490 * reads are atomic, we either get new values or old values and we don't
1491 * care which for the sums.  We always take the siglock to protect reading
1492 * the c* fields from p->signal from races with exit.c updating those
1493 * fields when reaping, so a sample either gets all the additions of a
1494 * given child after it's reaped, or none so this sample is before reaping.
1495 *
1496 * Locking:
1497 * We need to take the siglock for CHILDEREN, SELF and BOTH
1498 * for  the cases current multithreaded, non-current single threaded
1499 * non-current multithreaded.  Thread traversal is now safe with
1500 * the siglock held.
1501 * Strictly speaking, we donot need to take the siglock if we are current and
1502 * single threaded,  as no one else can take our signal_struct away, no one
1503 * else can  reap the  children to update signal->c* counters, and no one else
1504 * can race with the signal-> fields. If we do not take any lock, the
1505 * signal-> fields could be read out of order while another thread was just
1506 * exiting. So we should  place a read memory barrier when we avoid the lock.
1507 * On the writer side,  write memory barrier is implied in  __exit_signal
1508 * as __exit_signal releases  the siglock spinlock after updating the signal->
1509 * fields. But we don't do this yet to keep things simple.
1510 *
1511 */
1512
1513static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1514{
1515	r->ru_nvcsw += t->nvcsw;
1516	r->ru_nivcsw += t->nivcsw;
1517	r->ru_minflt += t->min_flt;
1518	r->ru_majflt += t->maj_flt;
1519	r->ru_inblock += task_io_get_inblock(t);
1520	r->ru_oublock += task_io_get_oublock(t);
1521}
1522
1523static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1524{
1525	struct task_struct *t;
1526	unsigned long flags;
1527	cputime_t tgutime, tgstime, utime, stime;
1528	unsigned long maxrss = 0;
1529
1530	memset((char *) r, 0, sizeof *r);
1531	utime = stime = 0;
1532
1533	if (who == RUSAGE_THREAD) {
1534		task_cputime_adjusted(current, &utime, &stime);
1535		accumulate_thread_rusage(p, r);
1536		maxrss = p->signal->maxrss;
1537		goto out;
1538	}
1539
1540	if (!lock_task_sighand(p, &flags))
1541		return;
1542
1543	switch (who) {
1544		case RUSAGE_BOTH:
1545		case RUSAGE_CHILDREN:
1546			utime = p->signal->cutime;
1547			stime = p->signal->cstime;
1548			r->ru_nvcsw = p->signal->cnvcsw;
1549			r->ru_nivcsw = p->signal->cnivcsw;
1550			r->ru_minflt = p->signal->cmin_flt;
1551			r->ru_majflt = p->signal->cmaj_flt;
1552			r->ru_inblock = p->signal->cinblock;
1553			r->ru_oublock = p->signal->coublock;
1554			maxrss = p->signal->cmaxrss;
1555
1556			if (who == RUSAGE_CHILDREN)
1557				break;
1558
1559		case RUSAGE_SELF:
1560			thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1561			utime += tgutime;
1562			stime += tgstime;
1563			r->ru_nvcsw += p->signal->nvcsw;
1564			r->ru_nivcsw += p->signal->nivcsw;
1565			r->ru_minflt += p->signal->min_flt;
1566			r->ru_majflt += p->signal->maj_flt;
1567			r->ru_inblock += p->signal->inblock;
1568			r->ru_oublock += p->signal->oublock;
1569			if (maxrss < p->signal->maxrss)
1570				maxrss = p->signal->maxrss;
1571			t = p;
1572			do {
1573				accumulate_thread_rusage(t, r);
1574			} while_each_thread(p, t);
1575			break;
 
1576
1577		default:
1578			BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1579	}
1580	unlock_task_sighand(p, &flags);
1581
1582out:
1583	cputime_to_timeval(utime, &r->ru_utime);
1584	cputime_to_timeval(stime, &r->ru_stime);
1585
1586	if (who != RUSAGE_CHILDREN) {
1587		struct mm_struct *mm = get_task_mm(p);
 
1588		if (mm) {
1589			setmax_mm_hiwater_rss(&maxrss, mm);
1590			mmput(mm);
1591		}
1592	}
1593	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1594}
1595
1596int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1597{
1598	struct rusage r;
1599	k_getrusage(p, who, &r);
1600	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1601}
1602
1603SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1604{
1605	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1606	    who != RUSAGE_THREAD)
1607		return -EINVAL;
1608	return getrusage(current, who, ru);
 
 
1609}
1610
1611#ifdef CONFIG_COMPAT
1612COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1613{
1614	struct rusage r;
1615
1616	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1617	    who != RUSAGE_THREAD)
1618		return -EINVAL;
1619
1620	k_getrusage(current, who, &r);
1621	return put_compat_rusage(&r, ru);
1622}
1623#endif
1624
1625SYSCALL_DEFINE1(umask, int, mask)
1626{
1627	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1628	return mask;
1629}
1630
1631static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1632{
1633	struct fd exe;
 
1634	struct inode *inode;
1635	int err;
1636
1637	exe = fdget(fd);
1638	if (!exe.file)
1639		return -EBADF;
1640
1641	inode = file_inode(exe.file);
1642
1643	/*
1644	 * Because the original mm->exe_file points to executable file, make
1645	 * sure that this one is executable as well, to avoid breaking an
1646	 * overall picture.
1647	 */
1648	err = -EACCES;
1649	if (!S_ISREG(inode->i_mode)	||
1650	    exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1651		goto exit;
1652
1653	err = inode_permission(inode, MAY_EXEC);
1654	if (err)
1655		goto exit;
1656
1657	down_write(&mm->mmap_sem);
1658
1659	/*
1660	 * Forbid mm->exe_file change if old file still mapped.
1661	 */
 
1662	err = -EBUSY;
1663	if (mm->exe_file) {
1664		struct vm_area_struct *vma;
1665
1666		for (vma = mm->mmap; vma; vma = vma->vm_next)
1667			if (vma->vm_file &&
1668			    path_equal(&vma->vm_file->f_path,
1669				       &mm->exe_file->f_path))
1670				goto exit_unlock;
1671	}
 
 
1672
1673	/*
1674	 * The symlink can be changed only once, just to disallow arbitrary
1675	 * transitions malicious software might bring in. This means one
1676	 * could make a snapshot over all processes running and monitor
1677	 * /proc/pid/exe changes to notice unusual activity if needed.
1678	 */
1679	err = -EPERM;
1680	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1681		goto exit_unlock;
1682
1683	err = 0;
1684	set_mm_exe_file(mm, exe.file);	/* this grabs a reference to exe.file */
1685exit_unlock:
1686	up_write(&mm->mmap_sem);
1687
 
1688exit:
1689	fdput(exe);
1690	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691}
1692
1693static int prctl_set_mm(int opt, unsigned long addr,
1694			unsigned long arg4, unsigned long arg5)
1695{
1696	unsigned long rlim = rlimit(RLIMIT_DATA);
1697	struct mm_struct *mm = current->mm;
 
 
 
 
 
1698	struct vm_area_struct *vma;
1699	int error;
1700
1701	if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
 
 
1702		return -EINVAL;
1703
 
 
 
 
 
1704	if (!capable(CAP_SYS_RESOURCE))
1705		return -EPERM;
1706
1707	if (opt == PR_SET_MM_EXE_FILE)
1708		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1709
 
 
 
1710	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1711		return -EINVAL;
1712
1713	error = -EINVAL;
1714
 
 
 
 
 
1715	down_read(&mm->mmap_sem);
1716	vma = find_vma(mm, addr);
1717
 
 
 
 
 
 
 
 
 
 
 
 
 
1718	switch (opt) {
1719	case PR_SET_MM_START_CODE:
1720		mm->start_code = addr;
1721		break;
1722	case PR_SET_MM_END_CODE:
1723		mm->end_code = addr;
1724		break;
1725	case PR_SET_MM_START_DATA:
1726		mm->start_data = addr;
1727		break;
1728	case PR_SET_MM_END_DATA:
1729		mm->end_data = addr;
 
 
 
1730		break;
1731
1732	case PR_SET_MM_START_BRK:
1733		if (addr <= mm->end_data)
1734			goto out;
1735
1736		if (rlim < RLIM_INFINITY &&
1737		    (mm->brk - addr) +
1738		    (mm->end_data - mm->start_data) > rlim)
1739			goto out;
1740
1741		mm->start_brk = addr;
1742		break;
1743
1744	case PR_SET_MM_BRK:
1745		if (addr <= mm->end_data)
1746			goto out;
1747
1748		if (rlim < RLIM_INFINITY &&
1749		    (addr - mm->start_brk) +
1750		    (mm->end_data - mm->start_data) > rlim)
1751			goto out;
1752
1753		mm->brk = addr;
 
 
 
 
1754		break;
 
 
 
 
 
 
 
1755
 
1756	/*
1757	 * If command line arguments and environment
1758	 * are placed somewhere else on stack, we can
1759	 * set them up here, ARG_START/END to setup
1760	 * command line argumets and ENV_START/END
1761	 * for environment.
1762	 */
1763	case PR_SET_MM_START_STACK:
1764	case PR_SET_MM_ARG_START:
1765	case PR_SET_MM_ARG_END:
1766	case PR_SET_MM_ENV_START:
1767	case PR_SET_MM_ENV_END:
1768		if (!vma) {
1769			error = -EFAULT;
1770			goto out;
1771		}
1772		if (opt == PR_SET_MM_START_STACK)
1773			mm->start_stack = addr;
1774		else if (opt == PR_SET_MM_ARG_START)
1775			mm->arg_start = addr;
1776		else if (opt == PR_SET_MM_ARG_END)
1777			mm->arg_end = addr;
1778		else if (opt == PR_SET_MM_ENV_START)
1779			mm->env_start = addr;
1780		else if (opt == PR_SET_MM_ENV_END)
1781			mm->env_end = addr;
1782		break;
1783
1784	/*
1785	 * This doesn't move auxiliary vector itself
1786	 * since it's pinned to mm_struct, but allow
1787	 * to fill vector with new values. It's up
1788	 * to a caller to provide sane values here
1789	 * otherwise user space tools which use this
1790	 * vector might be unhappy.
1791	 */
1792	case PR_SET_MM_AUXV: {
1793		unsigned long user_auxv[AT_VECTOR_SIZE];
1794
1795		if (arg4 > sizeof(user_auxv))
1796			goto out;
1797		up_read(&mm->mmap_sem);
1798
1799		if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1800			return -EFAULT;
1801
1802		/* Make sure the last entry is always AT_NULL */
1803		user_auxv[AT_VECTOR_SIZE - 2] = 0;
1804		user_auxv[AT_VECTOR_SIZE - 1] = 0;
1805
1806		BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1807
1808		task_lock(current);
1809		memcpy(mm->saved_auxv, user_auxv, arg4);
1810		task_unlock(current);
1811
1812		return 0;
1813	}
1814	default:
1815		goto out;
1816	}
1817
 
 
 
 
 
 
 
 
 
 
 
 
1818	error = 0;
1819out:
 
1820	up_read(&mm->mmap_sem);
1821	return error;
1822}
1823
1824#ifdef CONFIG_CHECKPOINT_RESTORE
1825static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1826{
1827	return put_user(me->clear_child_tid, tid_addr);
1828}
1829#else
1830static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1831{
1832	return -EINVAL;
1833}
1834#endif
1835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1837		unsigned long, arg4, unsigned long, arg5)
1838{
1839	struct task_struct *me = current;
1840	unsigned char comm[sizeof(me->comm)];
1841	long error;
1842
1843	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1844	if (error != -ENOSYS)
1845		return error;
1846
1847	error = 0;
1848	switch (option) {
1849	case PR_SET_PDEATHSIG:
1850		if (!valid_signal(arg2)) {
1851			error = -EINVAL;
1852			break;
1853		}
1854		me->pdeath_signal = arg2;
1855		break;
1856	case PR_GET_PDEATHSIG:
1857		error = put_user(me->pdeath_signal, (int __user *)arg2);
1858		break;
1859	case PR_GET_DUMPABLE:
1860		error = get_dumpable(me->mm);
1861		break;
1862	case PR_SET_DUMPABLE:
1863		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
1864			error = -EINVAL;
1865			break;
1866		}
1867		set_dumpable(me->mm, arg2);
1868		break;
1869
1870	case PR_SET_UNALIGN:
1871		error = SET_UNALIGN_CTL(me, arg2);
1872		break;
1873	case PR_GET_UNALIGN:
1874		error = GET_UNALIGN_CTL(me, arg2);
1875		break;
1876	case PR_SET_FPEMU:
1877		error = SET_FPEMU_CTL(me, arg2);
1878		break;
1879	case PR_GET_FPEMU:
1880		error = GET_FPEMU_CTL(me, arg2);
1881		break;
1882	case PR_SET_FPEXC:
1883		error = SET_FPEXC_CTL(me, arg2);
1884		break;
1885	case PR_GET_FPEXC:
1886		error = GET_FPEXC_CTL(me, arg2);
1887		break;
1888	case PR_GET_TIMING:
1889		error = PR_TIMING_STATISTICAL;
1890		break;
1891	case PR_SET_TIMING:
1892		if (arg2 != PR_TIMING_STATISTICAL)
1893			error = -EINVAL;
1894		break;
1895	case PR_SET_NAME:
1896		comm[sizeof(me->comm) - 1] = 0;
1897		if (strncpy_from_user(comm, (char __user *)arg2,
1898				      sizeof(me->comm) - 1) < 0)
1899			return -EFAULT;
1900		set_task_comm(me, comm);
1901		proc_comm_connector(me);
1902		break;
1903	case PR_GET_NAME:
1904		get_task_comm(comm, me);
1905		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
1906			return -EFAULT;
1907		break;
1908	case PR_GET_ENDIAN:
1909		error = GET_ENDIAN(me, arg2);
1910		break;
1911	case PR_SET_ENDIAN:
1912		error = SET_ENDIAN(me, arg2);
1913		break;
1914	case PR_GET_SECCOMP:
1915		error = prctl_get_seccomp();
1916		break;
1917	case PR_SET_SECCOMP:
1918		error = prctl_set_seccomp(arg2, (char __user *)arg3);
1919		break;
1920	case PR_GET_TSC:
1921		error = GET_TSC_CTL(arg2);
1922		break;
1923	case PR_SET_TSC:
1924		error = SET_TSC_CTL(arg2);
1925		break;
1926	case PR_TASK_PERF_EVENTS_DISABLE:
1927		error = perf_event_task_disable();
1928		break;
1929	case PR_TASK_PERF_EVENTS_ENABLE:
1930		error = perf_event_task_enable();
1931		break;
1932	case PR_GET_TIMERSLACK:
1933		error = current->timer_slack_ns;
 
 
 
1934		break;
1935	case PR_SET_TIMERSLACK:
1936		if (arg2 <= 0)
1937			current->timer_slack_ns =
1938					current->default_timer_slack_ns;
1939		else
1940			current->timer_slack_ns = arg2;
1941		break;
1942	case PR_MCE_KILL:
1943		if (arg4 | arg5)
1944			return -EINVAL;
1945		switch (arg2) {
1946		case PR_MCE_KILL_CLEAR:
1947			if (arg3 != 0)
1948				return -EINVAL;
1949			current->flags &= ~PF_MCE_PROCESS;
1950			break;
1951		case PR_MCE_KILL_SET:
1952			current->flags |= PF_MCE_PROCESS;
1953			if (arg3 == PR_MCE_KILL_EARLY)
1954				current->flags |= PF_MCE_EARLY;
1955			else if (arg3 == PR_MCE_KILL_LATE)
1956				current->flags &= ~PF_MCE_EARLY;
1957			else if (arg3 == PR_MCE_KILL_DEFAULT)
1958				current->flags &=
1959						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1960			else
1961				return -EINVAL;
1962			break;
1963		default:
1964			return -EINVAL;
1965		}
1966		break;
1967	case PR_MCE_KILL_GET:
1968		if (arg2 | arg3 | arg4 | arg5)
1969			return -EINVAL;
1970		if (current->flags & PF_MCE_PROCESS)
1971			error = (current->flags & PF_MCE_EARLY) ?
1972				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1973		else
1974			error = PR_MCE_KILL_DEFAULT;
1975		break;
1976	case PR_SET_MM:
1977		error = prctl_set_mm(arg2, arg3, arg4, arg5);
1978		break;
1979	case PR_GET_TID_ADDRESS:
1980		error = prctl_get_tid_address(me, (int __user **)arg2);
1981		break;
1982	case PR_SET_CHILD_SUBREAPER:
1983		me->signal->is_child_subreaper = !!arg2;
 
 
 
 
1984		break;
1985	case PR_GET_CHILD_SUBREAPER:
1986		error = put_user(me->signal->is_child_subreaper,
1987				 (int __user *)arg2);
1988		break;
1989	case PR_SET_NO_NEW_PRIVS:
1990		if (arg2 != 1 || arg3 || arg4 || arg5)
1991			return -EINVAL;
1992
1993		current->no_new_privs = 1;
1994		break;
1995	case PR_GET_NO_NEW_PRIVS:
1996		if (arg2 || arg3 || arg4 || arg5)
1997			return -EINVAL;
1998		return current->no_new_privs ? 1 : 0;
1999	case PR_GET_THP_DISABLE:
2000		if (arg2 || arg3 || arg4 || arg5)
2001			return -EINVAL;
2002		error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2003		break;
2004	case PR_SET_THP_DISABLE:
2005		if (arg3 || arg4 || arg5)
2006			return -EINVAL;
2007		down_write(&me->mm->mmap_sem);
 
2008		if (arg2)
2009			me->mm->def_flags |= VM_NOHUGEPAGE;
2010		else
2011			me->mm->def_flags &= ~VM_NOHUGEPAGE;
2012		up_write(&me->mm->mmap_sem);
2013		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014	default:
2015		error = -EINVAL;
2016		break;
2017	}
2018	return error;
2019}
2020
2021SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2022		struct getcpu_cache __user *, unused)
2023{
2024	int err = 0;
2025	int cpu = raw_smp_processor_id();
 
2026	if (cpup)
2027		err |= put_user(cpu, cpup);
2028	if (nodep)
2029		err |= put_user(cpu_to_node(cpu), nodep);
2030	return err ? -EFAULT : 0;
2031}
2032
2033/**
2034 * do_sysinfo - fill in sysinfo struct
2035 * @info: pointer to buffer to fill
2036 */
2037static int do_sysinfo(struct sysinfo *info)
2038{
2039	unsigned long mem_total, sav_total;
2040	unsigned int mem_unit, bitcount;
2041	struct timespec tp;
2042
2043	memset(info, 0, sizeof(struct sysinfo));
2044
2045	get_monotonic_boottime(&tp);
2046	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2047
2048	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2049
2050	info->procs = nr_threads;
2051
2052	si_meminfo(info);
2053	si_swapinfo(info);
2054
2055	/*
2056	 * If the sum of all the available memory (i.e. ram + swap)
2057	 * is less than can be stored in a 32 bit unsigned long then
2058	 * we can be binary compatible with 2.2.x kernels.  If not,
2059	 * well, in that case 2.2.x was broken anyways...
2060	 *
2061	 *  -Erik Andersen <andersee@debian.org>
2062	 */
2063
2064	mem_total = info->totalram + info->totalswap;
2065	if (mem_total < info->totalram || mem_total < info->totalswap)
2066		goto out;
2067	bitcount = 0;
2068	mem_unit = info->mem_unit;
2069	while (mem_unit > 1) {
2070		bitcount++;
2071		mem_unit >>= 1;
2072		sav_total = mem_total;
2073		mem_total <<= 1;
2074		if (mem_total < sav_total)
2075			goto out;
2076	}
2077
2078	/*
2079	 * If mem_total did not overflow, multiply all memory values by
2080	 * info->mem_unit and set it to 1.  This leaves things compatible
2081	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2082	 * kernels...
2083	 */
2084
2085	info->mem_unit = 1;
2086	info->totalram <<= bitcount;
2087	info->freeram <<= bitcount;
2088	info->sharedram <<= bitcount;
2089	info->bufferram <<= bitcount;
2090	info->totalswap <<= bitcount;
2091	info->freeswap <<= bitcount;
2092	info->totalhigh <<= bitcount;
2093	info->freehigh <<= bitcount;
2094
2095out:
2096	return 0;
2097}
2098
2099SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2100{
2101	struct sysinfo val;
2102
2103	do_sysinfo(&val);
2104
2105	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2106		return -EFAULT;
2107
2108	return 0;
2109}
2110
2111#ifdef CONFIG_COMPAT
2112struct compat_sysinfo {
2113	s32 uptime;
2114	u32 loads[3];
2115	u32 totalram;
2116	u32 freeram;
2117	u32 sharedram;
2118	u32 bufferram;
2119	u32 totalswap;
2120	u32 freeswap;
2121	u16 procs;
2122	u16 pad;
2123	u32 totalhigh;
2124	u32 freehigh;
2125	u32 mem_unit;
2126	char _f[20-2*sizeof(u32)-sizeof(int)];
2127};
2128
2129COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2130{
2131	struct sysinfo s;
2132
2133	do_sysinfo(&s);
2134
2135	/* Check to see if any memory value is too large for 32-bit and scale
2136	 *  down if needed
2137	 */
2138	if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2139		int bitcount = 0;
2140
2141		while (s.mem_unit < PAGE_SIZE) {
2142			s.mem_unit <<= 1;
2143			bitcount++;
2144		}
2145
2146		s.totalram >>= bitcount;
2147		s.freeram >>= bitcount;
2148		s.sharedram >>= bitcount;
2149		s.bufferram >>= bitcount;
2150		s.totalswap >>= bitcount;
2151		s.freeswap >>= bitcount;
2152		s.totalhigh >>= bitcount;
2153		s.freehigh >>= bitcount;
2154	}
2155
2156	if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2157	    __put_user(s.uptime, &info->uptime) ||
2158	    __put_user(s.loads[0], &info->loads[0]) ||
2159	    __put_user(s.loads[1], &info->loads[1]) ||
2160	    __put_user(s.loads[2], &info->loads[2]) ||
2161	    __put_user(s.totalram, &info->totalram) ||
2162	    __put_user(s.freeram, &info->freeram) ||
2163	    __put_user(s.sharedram, &info->sharedram) ||
2164	    __put_user(s.bufferram, &info->bufferram) ||
2165	    __put_user(s.totalswap, &info->totalswap) ||
2166	    __put_user(s.freeswap, &info->freeswap) ||
2167	    __put_user(s.procs, &info->procs) ||
2168	    __put_user(s.totalhigh, &info->totalhigh) ||
2169	    __put_user(s.freehigh, &info->freehigh) ||
2170	    __put_user(s.mem_unit, &info->mem_unit))
2171		return -EFAULT;
2172
2173	return 0;
2174}
2175#endif /* CONFIG_COMPAT */
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/kernel/sys.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/mm.h>
  10#include <linux/utsname.h>
  11#include <linux/mman.h>
  12#include <linux/reboot.h>
  13#include <linux/prctl.h>
  14#include <linux/highuid.h>
  15#include <linux/fs.h>
  16#include <linux/kmod.h>
  17#include <linux/perf_event.h>
  18#include <linux/resource.h>
  19#include <linux/kernel.h>
  20#include <linux/workqueue.h>
  21#include <linux/capability.h>
  22#include <linux/device.h>
  23#include <linux/key.h>
  24#include <linux/times.h>
  25#include <linux/posix-timers.h>
  26#include <linux/security.h>
  27#include <linux/dcookies.h>
  28#include <linux/suspend.h>
  29#include <linux/tty.h>
  30#include <linux/signal.h>
  31#include <linux/cn_proc.h>
  32#include <linux/getcpu.h>
  33#include <linux/task_io_accounting_ops.h>
  34#include <linux/seccomp.h>
  35#include <linux/cpu.h>
  36#include <linux/personality.h>
  37#include <linux/ptrace.h>
  38#include <linux/fs_struct.h>
  39#include <linux/file.h>
  40#include <linux/mount.h>
  41#include <linux/gfp.h>
  42#include <linux/syscore_ops.h>
  43#include <linux/version.h>
  44#include <linux/ctype.h>
  45
  46#include <linux/compat.h>
  47#include <linux/syscalls.h>
  48#include <linux/kprobes.h>
  49#include <linux/user_namespace.h>
  50#include <linux/binfmts.h>
  51
  52#include <linux/sched.h>
  53#include <linux/sched/autogroup.h>
  54#include <linux/sched/loadavg.h>
  55#include <linux/sched/stat.h>
  56#include <linux/sched/mm.h>
  57#include <linux/sched/coredump.h>
  58#include <linux/sched/task.h>
  59#include <linux/sched/cputime.h>
  60#include <linux/rcupdate.h>
  61#include <linux/uidgid.h>
  62#include <linux/cred.h>
  63
  64#include <linux/nospec.h>
  65
  66#include <linux/kmsg_dump.h>
  67/* Move somewhere else to avoid recompiling? */
  68#include <generated/utsrelease.h>
  69
  70#include <linux/uaccess.h>
  71#include <asm/io.h>
  72#include <asm/unistd.h>
  73
  74#include "uid16.h"
  75
  76#ifndef SET_UNALIGN_CTL
  77# define SET_UNALIGN_CTL(a, b)	(-EINVAL)
  78#endif
  79#ifndef GET_UNALIGN_CTL
  80# define GET_UNALIGN_CTL(a, b)	(-EINVAL)
  81#endif
  82#ifndef SET_FPEMU_CTL
  83# define SET_FPEMU_CTL(a, b)	(-EINVAL)
  84#endif
  85#ifndef GET_FPEMU_CTL
  86# define GET_FPEMU_CTL(a, b)	(-EINVAL)
  87#endif
  88#ifndef SET_FPEXC_CTL
  89# define SET_FPEXC_CTL(a, b)	(-EINVAL)
  90#endif
  91#ifndef GET_FPEXC_CTL
  92# define GET_FPEXC_CTL(a, b)	(-EINVAL)
  93#endif
  94#ifndef GET_ENDIAN
  95# define GET_ENDIAN(a, b)	(-EINVAL)
  96#endif
  97#ifndef SET_ENDIAN
  98# define SET_ENDIAN(a, b)	(-EINVAL)
  99#endif
 100#ifndef GET_TSC_CTL
 101# define GET_TSC_CTL(a)		(-EINVAL)
 102#endif
 103#ifndef SET_TSC_CTL
 104# define SET_TSC_CTL(a)		(-EINVAL)
 105#endif
 106#ifndef GET_FP_MODE
 107# define GET_FP_MODE(a)		(-EINVAL)
 108#endif
 109#ifndef SET_FP_MODE
 110# define SET_FP_MODE(a,b)	(-EINVAL)
 111#endif
 112#ifndef SVE_SET_VL
 113# define SVE_SET_VL(a)		(-EINVAL)
 114#endif
 115#ifndef SVE_GET_VL
 116# define SVE_GET_VL()		(-EINVAL)
 117#endif
 118#ifndef PAC_RESET_KEYS
 119# define PAC_RESET_KEYS(a, b)	(-EINVAL)
 120#endif
 121#ifndef SET_TAGGED_ADDR_CTRL
 122# define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
 123#endif
 124#ifndef GET_TAGGED_ADDR_CTRL
 125# define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
 126#endif
 127
 128/*
 129 * this is where the system-wide overflow UID and GID are defined, for
 130 * architectures that now have 32-bit UID/GID but didn't in the past
 131 */
 132
 133int overflowuid = DEFAULT_OVERFLOWUID;
 134int overflowgid = DEFAULT_OVERFLOWGID;
 135
 136EXPORT_SYMBOL(overflowuid);
 137EXPORT_SYMBOL(overflowgid);
 138
 139/*
 140 * the same as above, but for filesystems which can only store a 16-bit
 141 * UID and GID. as such, this is needed on all architectures
 142 */
 143
 144int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 145int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
 146
 147EXPORT_SYMBOL(fs_overflowuid);
 148EXPORT_SYMBOL(fs_overflowgid);
 149
 150/*
 151 * Returns true if current's euid is same as p's uid or euid,
 152 * or has CAP_SYS_NICE to p's user_ns.
 153 *
 154 * Called with rcu_read_lock, creds are safe
 155 */
 156static bool set_one_prio_perm(struct task_struct *p)
 157{
 158	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 159
 160	if (uid_eq(pcred->uid,  cred->euid) ||
 161	    uid_eq(pcred->euid, cred->euid))
 162		return true;
 163	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 164		return true;
 165	return false;
 166}
 167
 168/*
 169 * set the priority of a task
 170 * - the caller must hold the RCU read lock
 171 */
 172static int set_one_prio(struct task_struct *p, int niceval, int error)
 173{
 174	int no_nice;
 175
 176	if (!set_one_prio_perm(p)) {
 177		error = -EPERM;
 178		goto out;
 179	}
 180	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 181		error = -EACCES;
 182		goto out;
 183	}
 184	no_nice = security_task_setnice(p, niceval);
 185	if (no_nice) {
 186		error = no_nice;
 187		goto out;
 188	}
 189	if (error == -ESRCH)
 190		error = 0;
 191	set_user_nice(p, niceval);
 192out:
 193	return error;
 194}
 195
 196SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 197{
 198	struct task_struct *g, *p;
 199	struct user_struct *user;
 200	const struct cred *cred = current_cred();
 201	int error = -EINVAL;
 202	struct pid *pgrp;
 203	kuid_t uid;
 204
 205	if (which > PRIO_USER || which < PRIO_PROCESS)
 206		goto out;
 207
 208	/* normalize: avoid signed division (rounding problems) */
 209	error = -ESRCH;
 210	if (niceval < MIN_NICE)
 211		niceval = MIN_NICE;
 212	if (niceval > MAX_NICE)
 213		niceval = MAX_NICE;
 214
 215	rcu_read_lock();
 216	read_lock(&tasklist_lock);
 217	switch (which) {
 218	case PRIO_PROCESS:
 219		if (who)
 220			p = find_task_by_vpid(who);
 221		else
 222			p = current;
 223		if (p)
 224			error = set_one_prio(p, niceval, error);
 225		break;
 226	case PRIO_PGRP:
 227		if (who)
 228			pgrp = find_vpid(who);
 229		else
 230			pgrp = task_pgrp(current);
 231		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 232			error = set_one_prio(p, niceval, error);
 233		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 234		break;
 235	case PRIO_USER:
 236		uid = make_kuid(cred->user_ns, who);
 237		user = cred->user;
 238		if (!who)
 239			uid = cred->uid;
 240		else if (!uid_eq(uid, cred->uid)) {
 241			user = find_user(uid);
 242			if (!user)
 243				goto out_unlock;	/* No processes for this user */
 244		}
 245		do_each_thread(g, p) {
 246			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
 247				error = set_one_prio(p, niceval, error);
 248		} while_each_thread(g, p);
 249		if (!uid_eq(uid, cred->uid))
 250			free_uid(user);		/* For find_user() */
 251		break;
 252	}
 253out_unlock:
 254	read_unlock(&tasklist_lock);
 255	rcu_read_unlock();
 256out:
 257	return error;
 258}
 259
 260/*
 261 * Ugh. To avoid negative return values, "getpriority()" will
 262 * not return the normal nice-value, but a negated value that
 263 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 264 * to stay compatible.
 265 */
 266SYSCALL_DEFINE2(getpriority, int, which, int, who)
 267{
 268	struct task_struct *g, *p;
 269	struct user_struct *user;
 270	const struct cred *cred = current_cred();
 271	long niceval, retval = -ESRCH;
 272	struct pid *pgrp;
 273	kuid_t uid;
 274
 275	if (which > PRIO_USER || which < PRIO_PROCESS)
 276		return -EINVAL;
 277
 278	rcu_read_lock();
 279	read_lock(&tasklist_lock);
 280	switch (which) {
 281	case PRIO_PROCESS:
 282		if (who)
 283			p = find_task_by_vpid(who);
 284		else
 285			p = current;
 286		if (p) {
 287			niceval = nice_to_rlimit(task_nice(p));
 288			if (niceval > retval)
 289				retval = niceval;
 290		}
 291		break;
 292	case PRIO_PGRP:
 293		if (who)
 294			pgrp = find_vpid(who);
 295		else
 296			pgrp = task_pgrp(current);
 297		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 298			niceval = nice_to_rlimit(task_nice(p));
 299			if (niceval > retval)
 300				retval = niceval;
 301		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 302		break;
 303	case PRIO_USER:
 304		uid = make_kuid(cred->user_ns, who);
 305		user = cred->user;
 306		if (!who)
 307			uid = cred->uid;
 308		else if (!uid_eq(uid, cred->uid)) {
 309			user = find_user(uid);
 310			if (!user)
 311				goto out_unlock;	/* No processes for this user */
 312		}
 313		do_each_thread(g, p) {
 314			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
 315				niceval = nice_to_rlimit(task_nice(p));
 316				if (niceval > retval)
 317					retval = niceval;
 318			}
 319		} while_each_thread(g, p);
 320		if (!uid_eq(uid, cred->uid))
 321			free_uid(user);		/* for find_user() */
 322		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323	}
 324out_unlock:
 325	read_unlock(&tasklist_lock);
 326	rcu_read_unlock();
 327
 328	return retval;
 329}
 330
 331/*
 332 * Unprivileged users may change the real gid to the effective gid
 333 * or vice versa.  (BSD-style)
 334 *
 335 * If you set the real gid at all, or set the effective gid to a value not
 336 * equal to the real gid, then the saved gid is set to the new effective gid.
 337 *
 338 * This makes it possible for a setgid program to completely drop its
 339 * privileges, which is often a useful assertion to make when you are doing
 340 * a security audit over a program.
 341 *
 342 * The general idea is that a program which uses just setregid() will be
 343 * 100% compatible with BSD.  A program which uses just setgid() will be
 344 * 100% compatible with POSIX with saved IDs.
 345 *
 346 * SMP: There are not races, the GIDs are checked only by filesystem
 347 *      operations (as far as semantic preservation is concerned).
 348 */
 349#ifdef CONFIG_MULTIUSER
 350long __sys_setregid(gid_t rgid, gid_t egid)
 351{
 352	struct user_namespace *ns = current_user_ns();
 353	const struct cred *old;
 354	struct cred *new;
 355	int retval;
 356	kgid_t krgid, kegid;
 357
 358	krgid = make_kgid(ns, rgid);
 359	kegid = make_kgid(ns, egid);
 360
 361	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 362		return -EINVAL;
 363	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 364		return -EINVAL;
 365
 366	new = prepare_creds();
 367	if (!new)
 368		return -ENOMEM;
 369	old = current_cred();
 370
 371	retval = -EPERM;
 372	if (rgid != (gid_t) -1) {
 373		if (gid_eq(old->gid, krgid) ||
 374		    gid_eq(old->egid, krgid) ||
 375		    ns_capable(old->user_ns, CAP_SETGID))
 376			new->gid = krgid;
 377		else
 378			goto error;
 379	}
 380	if (egid != (gid_t) -1) {
 381		if (gid_eq(old->gid, kegid) ||
 382		    gid_eq(old->egid, kegid) ||
 383		    gid_eq(old->sgid, kegid) ||
 384		    ns_capable(old->user_ns, CAP_SETGID))
 385			new->egid = kegid;
 386		else
 387			goto error;
 388	}
 389
 390	if (rgid != (gid_t) -1 ||
 391	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 392		new->sgid = new->egid;
 393	new->fsgid = new->egid;
 394
 395	return commit_creds(new);
 396
 397error:
 398	abort_creds(new);
 399	return retval;
 400}
 401
 402SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 403{
 404	return __sys_setregid(rgid, egid);
 405}
 406
 407/*
 408 * setgid() is implemented like SysV w/ SAVED_IDS
 409 *
 410 * SMP: Same implicit races as above.
 411 */
 412long __sys_setgid(gid_t gid)
 413{
 414	struct user_namespace *ns = current_user_ns();
 415	const struct cred *old;
 416	struct cred *new;
 417	int retval;
 418	kgid_t kgid;
 419
 420	kgid = make_kgid(ns, gid);
 421	if (!gid_valid(kgid))
 422		return -EINVAL;
 423
 424	new = prepare_creds();
 425	if (!new)
 426		return -ENOMEM;
 427	old = current_cred();
 428
 429	retval = -EPERM;
 430	if (ns_capable(old->user_ns, CAP_SETGID))
 431		new->gid = new->egid = new->sgid = new->fsgid = kgid;
 432	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 433		new->egid = new->fsgid = kgid;
 434	else
 435		goto error;
 436
 437	return commit_creds(new);
 438
 439error:
 440	abort_creds(new);
 441	return retval;
 442}
 443
 444SYSCALL_DEFINE1(setgid, gid_t, gid)
 445{
 446	return __sys_setgid(gid);
 447}
 448
 449/*
 450 * change the user struct in a credentials set to match the new UID
 451 */
 452static int set_user(struct cred *new)
 453{
 454	struct user_struct *new_user;
 455
 456	new_user = alloc_uid(new->uid);
 457	if (!new_user)
 458		return -EAGAIN;
 459
 460	/*
 461	 * We don't fail in case of NPROC limit excess here because too many
 462	 * poorly written programs don't check set*uid() return code, assuming
 463	 * it never fails if called by root.  We may still enforce NPROC limit
 464	 * for programs doing set*uid()+execve() by harmlessly deferring the
 465	 * failure to the execve() stage.
 466	 */
 467	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 468			new_user != INIT_USER)
 469		current->flags |= PF_NPROC_EXCEEDED;
 470	else
 471		current->flags &= ~PF_NPROC_EXCEEDED;
 472
 473	free_uid(new->user);
 474	new->user = new_user;
 475	return 0;
 476}
 477
 478/*
 479 * Unprivileged users may change the real uid to the effective uid
 480 * or vice versa.  (BSD-style)
 481 *
 482 * If you set the real uid at all, or set the effective uid to a value not
 483 * equal to the real uid, then the saved uid is set to the new effective uid.
 484 *
 485 * This makes it possible for a setuid program to completely drop its
 486 * privileges, which is often a useful assertion to make when you are doing
 487 * a security audit over a program.
 488 *
 489 * The general idea is that a program which uses just setreuid() will be
 490 * 100% compatible with BSD.  A program which uses just setuid() will be
 491 * 100% compatible with POSIX with saved IDs.
 492 */
 493long __sys_setreuid(uid_t ruid, uid_t euid)
 494{
 495	struct user_namespace *ns = current_user_ns();
 496	const struct cred *old;
 497	struct cred *new;
 498	int retval;
 499	kuid_t kruid, keuid;
 500
 501	kruid = make_kuid(ns, ruid);
 502	keuid = make_kuid(ns, euid);
 503
 504	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 505		return -EINVAL;
 506	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 507		return -EINVAL;
 508
 509	new = prepare_creds();
 510	if (!new)
 511		return -ENOMEM;
 512	old = current_cred();
 513
 514	retval = -EPERM;
 515	if (ruid != (uid_t) -1) {
 516		new->uid = kruid;
 517		if (!uid_eq(old->uid, kruid) &&
 518		    !uid_eq(old->euid, kruid) &&
 519		    !ns_capable_setid(old->user_ns, CAP_SETUID))
 520			goto error;
 521	}
 522
 523	if (euid != (uid_t) -1) {
 524		new->euid = keuid;
 525		if (!uid_eq(old->uid, keuid) &&
 526		    !uid_eq(old->euid, keuid) &&
 527		    !uid_eq(old->suid, keuid) &&
 528		    !ns_capable_setid(old->user_ns, CAP_SETUID))
 529			goto error;
 530	}
 531
 532	if (!uid_eq(new->uid, old->uid)) {
 533		retval = set_user(new);
 534		if (retval < 0)
 535			goto error;
 536	}
 537	if (ruid != (uid_t) -1 ||
 538	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 539		new->suid = new->euid;
 540	new->fsuid = new->euid;
 541
 542	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 543	if (retval < 0)
 544		goto error;
 545
 546	return commit_creds(new);
 547
 548error:
 549	abort_creds(new);
 550	return retval;
 551}
 552
 553SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 554{
 555	return __sys_setreuid(ruid, euid);
 556}
 557
 558/*
 559 * setuid() is implemented like SysV with SAVED_IDS
 560 *
 561 * Note that SAVED_ID's is deficient in that a setuid root program
 562 * like sendmail, for example, cannot set its uid to be a normal
 563 * user and then switch back, because if you're root, setuid() sets
 564 * the saved uid too.  If you don't like this, blame the bright people
 565 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 566 * will allow a root program to temporarily drop privileges and be able to
 567 * regain them by swapping the real and effective uid.
 568 */
 569long __sys_setuid(uid_t uid)
 570{
 571	struct user_namespace *ns = current_user_ns();
 572	const struct cred *old;
 573	struct cred *new;
 574	int retval;
 575	kuid_t kuid;
 576
 577	kuid = make_kuid(ns, uid);
 578	if (!uid_valid(kuid))
 579		return -EINVAL;
 580
 581	new = prepare_creds();
 582	if (!new)
 583		return -ENOMEM;
 584	old = current_cred();
 585
 586	retval = -EPERM;
 587	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
 588		new->suid = new->uid = kuid;
 589		if (!uid_eq(kuid, old->uid)) {
 590			retval = set_user(new);
 591			if (retval < 0)
 592				goto error;
 593		}
 594	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 595		goto error;
 596	}
 597
 598	new->fsuid = new->euid = kuid;
 599
 600	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 601	if (retval < 0)
 602		goto error;
 603
 604	return commit_creds(new);
 605
 606error:
 607	abort_creds(new);
 608	return retval;
 609}
 610
 611SYSCALL_DEFINE1(setuid, uid_t, uid)
 612{
 613	return __sys_setuid(uid);
 614}
 615
 616
 617/*
 618 * This function implements a generic ability to update ruid, euid,
 619 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 620 */
 621long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
 622{
 623	struct user_namespace *ns = current_user_ns();
 624	const struct cred *old;
 625	struct cred *new;
 626	int retval;
 627	kuid_t kruid, keuid, ksuid;
 628
 629	kruid = make_kuid(ns, ruid);
 630	keuid = make_kuid(ns, euid);
 631	ksuid = make_kuid(ns, suid);
 632
 633	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 634		return -EINVAL;
 635
 636	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 637		return -EINVAL;
 638
 639	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 640		return -EINVAL;
 641
 642	new = prepare_creds();
 643	if (!new)
 644		return -ENOMEM;
 645
 646	old = current_cred();
 647
 648	retval = -EPERM;
 649	if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
 650		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 651		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 652			goto error;
 653		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 654		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 655			goto error;
 656		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 657		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 658			goto error;
 659	}
 660
 661	if (ruid != (uid_t) -1) {
 662		new->uid = kruid;
 663		if (!uid_eq(kruid, old->uid)) {
 664			retval = set_user(new);
 665			if (retval < 0)
 666				goto error;
 667		}
 668	}
 669	if (euid != (uid_t) -1)
 670		new->euid = keuid;
 671	if (suid != (uid_t) -1)
 672		new->suid = ksuid;
 673	new->fsuid = new->euid;
 674
 675	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 676	if (retval < 0)
 677		goto error;
 678
 679	return commit_creds(new);
 680
 681error:
 682	abort_creds(new);
 683	return retval;
 684}
 685
 686SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 687{
 688	return __sys_setresuid(ruid, euid, suid);
 689}
 690
 691SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 692{
 693	const struct cred *cred = current_cred();
 694	int retval;
 695	uid_t ruid, euid, suid;
 696
 697	ruid = from_kuid_munged(cred->user_ns, cred->uid);
 698	euid = from_kuid_munged(cred->user_ns, cred->euid);
 699	suid = from_kuid_munged(cred->user_ns, cred->suid);
 700
 701	retval = put_user(ruid, ruidp);
 702	if (!retval) {
 703		retval = put_user(euid, euidp);
 704		if (!retval)
 705			return put_user(suid, suidp);
 706	}
 707	return retval;
 708}
 709
 710/*
 711 * Same as above, but for rgid, egid, sgid.
 712 */
 713long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
 714{
 715	struct user_namespace *ns = current_user_ns();
 716	const struct cred *old;
 717	struct cred *new;
 718	int retval;
 719	kgid_t krgid, kegid, ksgid;
 720
 721	krgid = make_kgid(ns, rgid);
 722	kegid = make_kgid(ns, egid);
 723	ksgid = make_kgid(ns, sgid);
 724
 725	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 726		return -EINVAL;
 727	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 728		return -EINVAL;
 729	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 730		return -EINVAL;
 731
 732	new = prepare_creds();
 733	if (!new)
 734		return -ENOMEM;
 735	old = current_cred();
 736
 737	retval = -EPERM;
 738	if (!ns_capable(old->user_ns, CAP_SETGID)) {
 739		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 740		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 741			goto error;
 742		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 743		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 744			goto error;
 745		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 746		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 747			goto error;
 748	}
 749
 750	if (rgid != (gid_t) -1)
 751		new->gid = krgid;
 752	if (egid != (gid_t) -1)
 753		new->egid = kegid;
 754	if (sgid != (gid_t) -1)
 755		new->sgid = ksgid;
 756	new->fsgid = new->egid;
 757
 758	return commit_creds(new);
 759
 760error:
 761	abort_creds(new);
 762	return retval;
 763}
 764
 765SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 766{
 767	return __sys_setresgid(rgid, egid, sgid);
 768}
 769
 770SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 771{
 772	const struct cred *cred = current_cred();
 773	int retval;
 774	gid_t rgid, egid, sgid;
 775
 776	rgid = from_kgid_munged(cred->user_ns, cred->gid);
 777	egid = from_kgid_munged(cred->user_ns, cred->egid);
 778	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 779
 780	retval = put_user(rgid, rgidp);
 781	if (!retval) {
 782		retval = put_user(egid, egidp);
 783		if (!retval)
 784			retval = put_user(sgid, sgidp);
 785	}
 786
 787	return retval;
 788}
 789
 790
 791/*
 792 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 793 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 794 * whatever uid it wants to). It normally shadows "euid", except when
 795 * explicitly set by setfsuid() or for access..
 796 */
 797long __sys_setfsuid(uid_t uid)
 798{
 799	const struct cred *old;
 800	struct cred *new;
 801	uid_t old_fsuid;
 802	kuid_t kuid;
 803
 804	old = current_cred();
 805	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 806
 807	kuid = make_kuid(old->user_ns, uid);
 808	if (!uid_valid(kuid))
 809		return old_fsuid;
 810
 811	new = prepare_creds();
 812	if (!new)
 813		return old_fsuid;
 814
 815	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 816	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 817	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
 818		if (!uid_eq(kuid, old->fsuid)) {
 819			new->fsuid = kuid;
 820			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 821				goto change_okay;
 822		}
 823	}
 824
 825	abort_creds(new);
 826	return old_fsuid;
 827
 828change_okay:
 829	commit_creds(new);
 830	return old_fsuid;
 831}
 832
 833SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 834{
 835	return __sys_setfsuid(uid);
 836}
 837
 838/*
 839 * Samma på svenska..
 840 */
 841long __sys_setfsgid(gid_t gid)
 842{
 843	const struct cred *old;
 844	struct cred *new;
 845	gid_t old_fsgid;
 846	kgid_t kgid;
 847
 848	old = current_cred();
 849	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 850
 851	kgid = make_kgid(old->user_ns, gid);
 852	if (!gid_valid(kgid))
 853		return old_fsgid;
 854
 855	new = prepare_creds();
 856	if (!new)
 857		return old_fsgid;
 858
 859	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 860	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 861	    ns_capable(old->user_ns, CAP_SETGID)) {
 862		if (!gid_eq(kgid, old->fsgid)) {
 863			new->fsgid = kgid;
 864			goto change_okay;
 865		}
 866	}
 867
 868	abort_creds(new);
 869	return old_fsgid;
 870
 871change_okay:
 872	commit_creds(new);
 873	return old_fsgid;
 874}
 875
 876SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 877{
 878	return __sys_setfsgid(gid);
 879}
 880#endif /* CONFIG_MULTIUSER */
 881
 882/**
 883 * sys_getpid - return the thread group id of the current process
 884 *
 885 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 886 * the pid are identical unless CLONE_THREAD was specified on clone() in
 887 * which case the tgid is the same in all threads of the same group.
 888 *
 889 * This is SMP safe as current->tgid does not change.
 890 */
 891SYSCALL_DEFINE0(getpid)
 892{
 893	return task_tgid_vnr(current);
 894}
 895
 896/* Thread ID - the internal kernel "pid" */
 897SYSCALL_DEFINE0(gettid)
 898{
 899	return task_pid_vnr(current);
 900}
 901
 902/*
 903 * Accessing ->real_parent is not SMP-safe, it could
 904 * change from under us. However, we can use a stale
 905 * value of ->real_parent under rcu_read_lock(), see
 906 * release_task()->call_rcu(delayed_put_task_struct).
 907 */
 908SYSCALL_DEFINE0(getppid)
 909{
 910	int pid;
 911
 912	rcu_read_lock();
 913	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 914	rcu_read_unlock();
 915
 916	return pid;
 917}
 918
 919SYSCALL_DEFINE0(getuid)
 920{
 921	/* Only we change this so SMP safe */
 922	return from_kuid_munged(current_user_ns(), current_uid());
 923}
 924
 925SYSCALL_DEFINE0(geteuid)
 926{
 927	/* Only we change this so SMP safe */
 928	return from_kuid_munged(current_user_ns(), current_euid());
 929}
 930
 931SYSCALL_DEFINE0(getgid)
 932{
 933	/* Only we change this so SMP safe */
 934	return from_kgid_munged(current_user_ns(), current_gid());
 935}
 936
 937SYSCALL_DEFINE0(getegid)
 938{
 939	/* Only we change this so SMP safe */
 940	return from_kgid_munged(current_user_ns(), current_egid());
 941}
 942
 943static void do_sys_times(struct tms *tms)
 944{
 945	u64 tgutime, tgstime, cutime, cstime;
 946
 
 947	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 948	cutime = current->signal->cutime;
 949	cstime = current->signal->cstime;
 950	tms->tms_utime = nsec_to_clock_t(tgutime);
 951	tms->tms_stime = nsec_to_clock_t(tgstime);
 952	tms->tms_cutime = nsec_to_clock_t(cutime);
 953	tms->tms_cstime = nsec_to_clock_t(cstime);
 
 954}
 955
 956SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 957{
 958	if (tbuf) {
 959		struct tms tmp;
 960
 961		do_sys_times(&tmp);
 962		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 963			return -EFAULT;
 964	}
 965	force_successful_syscall_return();
 966	return (long) jiffies_64_to_clock_t(get_jiffies_64());
 967}
 968
 969#ifdef CONFIG_COMPAT
 970static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
 971{
 972	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
 973}
 974
 975COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
 976{
 977	if (tbuf) {
 978		struct tms tms;
 979		struct compat_tms tmp;
 980
 981		do_sys_times(&tms);
 982		/* Convert our struct tms to the compat version. */
 983		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
 984		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
 985		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
 986		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
 987		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
 988			return -EFAULT;
 989	}
 990	force_successful_syscall_return();
 991	return compat_jiffies_to_clock_t(jiffies);
 992}
 993#endif
 994
 995/*
 996 * This needs some heavy checking ...
 997 * I just haven't the stomach for it. I also don't fully
 998 * understand sessions/pgrp etc. Let somebody who does explain it.
 999 *
1000 * OK, I think I have the protection semantics right.... this is really
1001 * only important on a multi-user system anyway, to make sure one user
1002 * can't send a signal to a process owned by another.  -TYT, 12/12/91
1003 *
1004 * !PF_FORKNOEXEC check to conform completely to POSIX.
1005 */
1006SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1007{
1008	struct task_struct *p;
1009	struct task_struct *group_leader = current->group_leader;
1010	struct pid *pgrp;
1011	int err;
1012
1013	if (!pid)
1014		pid = task_pid_vnr(group_leader);
1015	if (!pgid)
1016		pgid = pid;
1017	if (pgid < 0)
1018		return -EINVAL;
1019	rcu_read_lock();
1020
1021	/* From this point forward we keep holding onto the tasklist lock
1022	 * so that our parent does not change from under us. -DaveM
1023	 */
1024	write_lock_irq(&tasklist_lock);
1025
1026	err = -ESRCH;
1027	p = find_task_by_vpid(pid);
1028	if (!p)
1029		goto out;
1030
1031	err = -EINVAL;
1032	if (!thread_group_leader(p))
1033		goto out;
1034
1035	if (same_thread_group(p->real_parent, group_leader)) {
1036		err = -EPERM;
1037		if (task_session(p) != task_session(group_leader))
1038			goto out;
1039		err = -EACCES;
1040		if (!(p->flags & PF_FORKNOEXEC))
1041			goto out;
1042	} else {
1043		err = -ESRCH;
1044		if (p != group_leader)
1045			goto out;
1046	}
1047
1048	err = -EPERM;
1049	if (p->signal->leader)
1050		goto out;
1051
1052	pgrp = task_pid(p);
1053	if (pgid != pid) {
1054		struct task_struct *g;
1055
1056		pgrp = find_vpid(pgid);
1057		g = pid_task(pgrp, PIDTYPE_PGID);
1058		if (!g || task_session(g) != task_session(group_leader))
1059			goto out;
1060	}
1061
1062	err = security_task_setpgid(p, pgid);
1063	if (err)
1064		goto out;
1065
1066	if (task_pgrp(p) != pgrp)
1067		change_pid(p, PIDTYPE_PGID, pgrp);
1068
1069	err = 0;
1070out:
1071	/* All paths lead to here, thus we are safe. -DaveM */
1072	write_unlock_irq(&tasklist_lock);
1073	rcu_read_unlock();
1074	return err;
1075}
1076
1077static int do_getpgid(pid_t pid)
1078{
1079	struct task_struct *p;
1080	struct pid *grp;
1081	int retval;
1082
1083	rcu_read_lock();
1084	if (!pid)
1085		grp = task_pgrp(current);
1086	else {
1087		retval = -ESRCH;
1088		p = find_task_by_vpid(pid);
1089		if (!p)
1090			goto out;
1091		grp = task_pgrp(p);
1092		if (!grp)
1093			goto out;
1094
1095		retval = security_task_getpgid(p);
1096		if (retval)
1097			goto out;
1098	}
1099	retval = pid_vnr(grp);
1100out:
1101	rcu_read_unlock();
1102	return retval;
1103}
1104
1105SYSCALL_DEFINE1(getpgid, pid_t, pid)
1106{
1107	return do_getpgid(pid);
1108}
1109
1110#ifdef __ARCH_WANT_SYS_GETPGRP
1111
1112SYSCALL_DEFINE0(getpgrp)
1113{
1114	return do_getpgid(0);
1115}
1116
1117#endif
1118
1119SYSCALL_DEFINE1(getsid, pid_t, pid)
1120{
1121	struct task_struct *p;
1122	struct pid *sid;
1123	int retval;
1124
1125	rcu_read_lock();
1126	if (!pid)
1127		sid = task_session(current);
1128	else {
1129		retval = -ESRCH;
1130		p = find_task_by_vpid(pid);
1131		if (!p)
1132			goto out;
1133		sid = task_session(p);
1134		if (!sid)
1135			goto out;
1136
1137		retval = security_task_getsid(p);
1138		if (retval)
1139			goto out;
1140	}
1141	retval = pid_vnr(sid);
1142out:
1143	rcu_read_unlock();
1144	return retval;
1145}
1146
1147static void set_special_pids(struct pid *pid)
1148{
1149	struct task_struct *curr = current->group_leader;
1150
1151	if (task_session(curr) != pid)
1152		change_pid(curr, PIDTYPE_SID, pid);
1153
1154	if (task_pgrp(curr) != pid)
1155		change_pid(curr, PIDTYPE_PGID, pid);
1156}
1157
1158int ksys_setsid(void)
1159{
1160	struct task_struct *group_leader = current->group_leader;
1161	struct pid *sid = task_pid(group_leader);
1162	pid_t session = pid_vnr(sid);
1163	int err = -EPERM;
1164
1165	write_lock_irq(&tasklist_lock);
1166	/* Fail if I am already a session leader */
1167	if (group_leader->signal->leader)
1168		goto out;
1169
1170	/* Fail if a process group id already exists that equals the
1171	 * proposed session id.
1172	 */
1173	if (pid_task(sid, PIDTYPE_PGID))
1174		goto out;
1175
1176	group_leader->signal->leader = 1;
1177	set_special_pids(sid);
1178
1179	proc_clear_tty(group_leader);
1180
1181	err = session;
1182out:
1183	write_unlock_irq(&tasklist_lock);
1184	if (err > 0) {
1185		proc_sid_connector(group_leader);
1186		sched_autogroup_create_attach(group_leader);
1187	}
1188	return err;
1189}
1190
1191SYSCALL_DEFINE0(setsid)
1192{
1193	return ksys_setsid();
1194}
1195
1196DECLARE_RWSEM(uts_sem);
1197
1198#ifdef COMPAT_UTS_MACHINE
1199#define override_architecture(name) \
1200	(personality(current->personality) == PER_LINUX32 && \
1201	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1202		      sizeof(COMPAT_UTS_MACHINE)))
1203#else
1204#define override_architecture(name)	0
1205#endif
1206
1207/*
1208 * Work around broken programs that cannot handle "Linux 3.0".
1209 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1210 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1211 * 2.6.60.
1212 */
1213static int override_release(char __user *release, size_t len)
1214{
1215	int ret = 0;
1216
1217	if (current->personality & UNAME26) {
1218		const char *rest = UTS_RELEASE;
1219		char buf[65] = { 0 };
1220		int ndots = 0;
1221		unsigned v;
1222		size_t copy;
1223
1224		while (*rest) {
1225			if (*rest == '.' && ++ndots >= 3)
1226				break;
1227			if (!isdigit(*rest) && *rest != '.')
1228				break;
1229			rest++;
1230		}
1231		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1232		copy = clamp_t(size_t, len, 1, sizeof(buf));
1233		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1234		ret = copy_to_user(release, buf, copy + 1);
1235	}
1236	return ret;
1237}
1238
1239SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1240{
1241	struct new_utsname tmp;
1242
1243	down_read(&uts_sem);
1244	memcpy(&tmp, utsname(), sizeof(tmp));
 
1245	up_read(&uts_sem);
1246	if (copy_to_user(name, &tmp, sizeof(tmp)))
1247		return -EFAULT;
1248
1249	if (override_release(name->release, sizeof(name->release)))
1250		return -EFAULT;
1251	if (override_architecture(name))
1252		return -EFAULT;
1253	return 0;
1254}
1255
1256#ifdef __ARCH_WANT_SYS_OLD_UNAME
1257/*
1258 * Old cruft
1259 */
1260SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1261{
1262	struct old_utsname tmp;
1263
1264	if (!name)
1265		return -EFAULT;
1266
1267	down_read(&uts_sem);
1268	memcpy(&tmp, utsname(), sizeof(tmp));
 
1269	up_read(&uts_sem);
1270	if (copy_to_user(name, &tmp, sizeof(tmp)))
1271		return -EFAULT;
1272
1273	if (override_release(name->release, sizeof(name->release)))
1274		return -EFAULT;
1275	if (override_architecture(name))
1276		return -EFAULT;
1277	return 0;
1278}
1279
1280SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1281{
1282	struct oldold_utsname tmp = {};
1283
1284	if (!name)
1285		return -EFAULT;
 
 
1286
1287	down_read(&uts_sem);
1288	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1289	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1290	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1291	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1292	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
 
 
 
 
 
 
 
 
 
 
1293	up_read(&uts_sem);
1294	if (copy_to_user(name, &tmp, sizeof(tmp)))
1295		return -EFAULT;
1296
1297	if (override_architecture(name))
1298		return -EFAULT;
1299	if (override_release(name->release, sizeof(name->release)))
1300		return -EFAULT;
1301	return 0;
1302}
1303#endif
1304
1305SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1306{
1307	int errno;
1308	char tmp[__NEW_UTS_LEN];
1309
1310	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1311		return -EPERM;
1312
1313	if (len < 0 || len > __NEW_UTS_LEN)
1314		return -EINVAL;
 
1315	errno = -EFAULT;
1316	if (!copy_from_user(tmp, name, len)) {
1317		struct new_utsname *u;
1318
1319		down_write(&uts_sem);
1320		u = utsname();
1321		memcpy(u->nodename, tmp, len);
1322		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1323		errno = 0;
1324		uts_proc_notify(UTS_PROC_HOSTNAME);
1325		up_write(&uts_sem);
1326	}
 
1327	return errno;
1328}
1329
1330#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1331
1332SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1333{
1334	int i;
1335	struct new_utsname *u;
1336	char tmp[__NEW_UTS_LEN + 1];
1337
1338	if (len < 0)
1339		return -EINVAL;
1340	down_read(&uts_sem);
1341	u = utsname();
1342	i = 1 + strlen(u->nodename);
1343	if (i > len)
1344		i = len;
1345	memcpy(tmp, u->nodename, i);
 
 
1346	up_read(&uts_sem);
1347	if (copy_to_user(name, tmp, i))
1348		return -EFAULT;
1349	return 0;
1350}
1351
1352#endif
1353
1354/*
1355 * Only setdomainname; getdomainname can be implemented by calling
1356 * uname()
1357 */
1358SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1359{
1360	int errno;
1361	char tmp[__NEW_UTS_LEN];
1362
1363	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1364		return -EPERM;
1365	if (len < 0 || len > __NEW_UTS_LEN)
1366		return -EINVAL;
1367
 
1368	errno = -EFAULT;
1369	if (!copy_from_user(tmp, name, len)) {
1370		struct new_utsname *u;
1371
1372		down_write(&uts_sem);
1373		u = utsname();
1374		memcpy(u->domainname, tmp, len);
1375		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1376		errno = 0;
1377		uts_proc_notify(UTS_PROC_DOMAINNAME);
1378		up_write(&uts_sem);
1379	}
 
1380	return errno;
1381}
1382
1383SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1384{
1385	struct rlimit value;
1386	int ret;
1387
1388	ret = do_prlimit(current, resource, NULL, &value);
1389	if (!ret)
1390		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1391
1392	return ret;
1393}
1394
1395#ifdef CONFIG_COMPAT
1396
1397COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1398		       struct compat_rlimit __user *, rlim)
1399{
1400	struct rlimit r;
1401	struct compat_rlimit r32;
1402
1403	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1404		return -EFAULT;
1405
1406	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1407		r.rlim_cur = RLIM_INFINITY;
1408	else
1409		r.rlim_cur = r32.rlim_cur;
1410	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1411		r.rlim_max = RLIM_INFINITY;
1412	else
1413		r.rlim_max = r32.rlim_max;
1414	return do_prlimit(current, resource, &r, NULL);
1415}
1416
1417COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1418		       struct compat_rlimit __user *, rlim)
1419{
1420	struct rlimit r;
1421	int ret;
1422
1423	ret = do_prlimit(current, resource, NULL, &r);
1424	if (!ret) {
1425		struct compat_rlimit r32;
1426		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1427			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1428		else
1429			r32.rlim_cur = r.rlim_cur;
1430		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1431			r32.rlim_max = COMPAT_RLIM_INFINITY;
1432		else
1433			r32.rlim_max = r.rlim_max;
1434
1435		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1436			return -EFAULT;
1437	}
1438	return ret;
1439}
1440
1441#endif
1442
1443#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1444
1445/*
1446 *	Back compatibility for getrlimit. Needed for some apps.
1447 */
 
1448SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1449		struct rlimit __user *, rlim)
1450{
1451	struct rlimit x;
1452	if (resource >= RLIM_NLIMITS)
1453		return -EINVAL;
1454
1455	resource = array_index_nospec(resource, RLIM_NLIMITS);
1456	task_lock(current->group_leader);
1457	x = current->signal->rlim[resource];
1458	task_unlock(current->group_leader);
1459	if (x.rlim_cur > 0x7FFFFFFF)
1460		x.rlim_cur = 0x7FFFFFFF;
1461	if (x.rlim_max > 0x7FFFFFFF)
1462		x.rlim_max = 0x7FFFFFFF;
1463	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1464}
1465
1466#ifdef CONFIG_COMPAT
1467COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1468		       struct compat_rlimit __user *, rlim)
1469{
1470	struct rlimit r;
1471
1472	if (resource >= RLIM_NLIMITS)
1473		return -EINVAL;
1474
1475	resource = array_index_nospec(resource, RLIM_NLIMITS);
1476	task_lock(current->group_leader);
1477	r = current->signal->rlim[resource];
1478	task_unlock(current->group_leader);
1479	if (r.rlim_cur > 0x7FFFFFFF)
1480		r.rlim_cur = 0x7FFFFFFF;
1481	if (r.rlim_max > 0x7FFFFFFF)
1482		r.rlim_max = 0x7FFFFFFF;
1483
1484	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1485	    put_user(r.rlim_max, &rlim->rlim_max))
1486		return -EFAULT;
1487	return 0;
1488}
1489#endif
1490
1491#endif
1492
1493static inline bool rlim64_is_infinity(__u64 rlim64)
1494{
1495#if BITS_PER_LONG < 64
1496	return rlim64 >= ULONG_MAX;
1497#else
1498	return rlim64 == RLIM64_INFINITY;
1499#endif
1500}
1501
1502static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1503{
1504	if (rlim->rlim_cur == RLIM_INFINITY)
1505		rlim64->rlim_cur = RLIM64_INFINITY;
1506	else
1507		rlim64->rlim_cur = rlim->rlim_cur;
1508	if (rlim->rlim_max == RLIM_INFINITY)
1509		rlim64->rlim_max = RLIM64_INFINITY;
1510	else
1511		rlim64->rlim_max = rlim->rlim_max;
1512}
1513
1514static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1515{
1516	if (rlim64_is_infinity(rlim64->rlim_cur))
1517		rlim->rlim_cur = RLIM_INFINITY;
1518	else
1519		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1520	if (rlim64_is_infinity(rlim64->rlim_max))
1521		rlim->rlim_max = RLIM_INFINITY;
1522	else
1523		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1524}
1525
1526/* make sure you are allowed to change @tsk limits before calling this */
1527int do_prlimit(struct task_struct *tsk, unsigned int resource,
1528		struct rlimit *new_rlim, struct rlimit *old_rlim)
1529{
1530	struct rlimit *rlim;
1531	int retval = 0;
1532
1533	if (resource >= RLIM_NLIMITS)
1534		return -EINVAL;
1535	if (new_rlim) {
1536		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1537			return -EINVAL;
1538		if (resource == RLIMIT_NOFILE &&
1539				new_rlim->rlim_max > sysctl_nr_open)
1540			return -EPERM;
1541	}
1542
1543	/* protect tsk->signal and tsk->sighand from disappearing */
1544	read_lock(&tasklist_lock);
1545	if (!tsk->sighand) {
1546		retval = -ESRCH;
1547		goto out;
1548	}
1549
1550	rlim = tsk->signal->rlim + resource;
1551	task_lock(tsk->group_leader);
1552	if (new_rlim) {
1553		/* Keep the capable check against init_user_ns until
1554		   cgroups can contain all limits */
1555		if (new_rlim->rlim_max > rlim->rlim_max &&
1556				!capable(CAP_SYS_RESOURCE))
1557			retval = -EPERM;
1558		if (!retval)
1559			retval = security_task_setrlimit(tsk, resource, new_rlim);
 
 
 
 
 
 
 
 
 
 
1560	}
1561	if (!retval) {
1562		if (old_rlim)
1563			*old_rlim = *rlim;
1564		if (new_rlim)
1565			*rlim = *new_rlim;
1566	}
1567	task_unlock(tsk->group_leader);
1568
1569	/*
1570	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1571	 * infite. In case of RLIM_INFINITY the posix CPU timer code
1572	 * ignores the rlimit.
 
1573	 */
1574	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1575	     new_rlim->rlim_cur != RLIM_INFINITY &&
1576	     IS_ENABLED(CONFIG_POSIX_TIMERS))
1577		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1578out:
1579	read_unlock(&tasklist_lock);
1580	return retval;
1581}
1582
1583/* rcu lock must be held */
1584static int check_prlimit_permission(struct task_struct *task,
1585				    unsigned int flags)
1586{
1587	const struct cred *cred = current_cred(), *tcred;
1588	bool id_match;
1589
1590	if (current == task)
1591		return 0;
1592
1593	tcred = __task_cred(task);
1594	id_match = (uid_eq(cred->uid, tcred->euid) &&
1595		    uid_eq(cred->uid, tcred->suid) &&
1596		    uid_eq(cred->uid, tcred->uid)  &&
1597		    gid_eq(cred->gid, tcred->egid) &&
1598		    gid_eq(cred->gid, tcred->sgid) &&
1599		    gid_eq(cred->gid, tcred->gid));
1600	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1601		return -EPERM;
 
1602
1603	return security_task_prlimit(cred, tcred, flags);
1604}
1605
1606SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1607		const struct rlimit64 __user *, new_rlim,
1608		struct rlimit64 __user *, old_rlim)
1609{
1610	struct rlimit64 old64, new64;
1611	struct rlimit old, new;
1612	struct task_struct *tsk;
1613	unsigned int checkflags = 0;
1614	int ret;
1615
1616	if (old_rlim)
1617		checkflags |= LSM_PRLIMIT_READ;
1618
1619	if (new_rlim) {
1620		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1621			return -EFAULT;
1622		rlim64_to_rlim(&new64, &new);
1623		checkflags |= LSM_PRLIMIT_WRITE;
1624	}
1625
1626	rcu_read_lock();
1627	tsk = pid ? find_task_by_vpid(pid) : current;
1628	if (!tsk) {
1629		rcu_read_unlock();
1630		return -ESRCH;
1631	}
1632	ret = check_prlimit_permission(tsk, checkflags);
1633	if (ret) {
1634		rcu_read_unlock();
1635		return ret;
1636	}
1637	get_task_struct(tsk);
1638	rcu_read_unlock();
1639
1640	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1641			old_rlim ? &old : NULL);
1642
1643	if (!ret && old_rlim) {
1644		rlim_to_rlim64(&old, &old64);
1645		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1646			ret = -EFAULT;
1647	}
1648
1649	put_task_struct(tsk);
1650	return ret;
1651}
1652
1653SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1654{
1655	struct rlimit new_rlim;
1656
1657	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1658		return -EFAULT;
1659	return do_prlimit(current, resource, &new_rlim, NULL);
1660}
1661
1662/*
1663 * It would make sense to put struct rusage in the task_struct,
1664 * except that would make the task_struct be *really big*.  After
1665 * task_struct gets moved into malloc'ed memory, it would
1666 * make sense to do this.  It will make moving the rest of the information
1667 * a lot simpler!  (Which we're not doing right now because we're not
1668 * measuring them yet).
1669 *
1670 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1671 * races with threads incrementing their own counters.  But since word
1672 * reads are atomic, we either get new values or old values and we don't
1673 * care which for the sums.  We always take the siglock to protect reading
1674 * the c* fields from p->signal from races with exit.c updating those
1675 * fields when reaping, so a sample either gets all the additions of a
1676 * given child after it's reaped, or none so this sample is before reaping.
1677 *
1678 * Locking:
1679 * We need to take the siglock for CHILDEREN, SELF and BOTH
1680 * for  the cases current multithreaded, non-current single threaded
1681 * non-current multithreaded.  Thread traversal is now safe with
1682 * the siglock held.
1683 * Strictly speaking, we donot need to take the siglock if we are current and
1684 * single threaded,  as no one else can take our signal_struct away, no one
1685 * else can  reap the  children to update signal->c* counters, and no one else
1686 * can race with the signal-> fields. If we do not take any lock, the
1687 * signal-> fields could be read out of order while another thread was just
1688 * exiting. So we should  place a read memory barrier when we avoid the lock.
1689 * On the writer side,  write memory barrier is implied in  __exit_signal
1690 * as __exit_signal releases  the siglock spinlock after updating the signal->
1691 * fields. But we don't do this yet to keep things simple.
1692 *
1693 */
1694
1695static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1696{
1697	r->ru_nvcsw += t->nvcsw;
1698	r->ru_nivcsw += t->nivcsw;
1699	r->ru_minflt += t->min_flt;
1700	r->ru_majflt += t->maj_flt;
1701	r->ru_inblock += task_io_get_inblock(t);
1702	r->ru_oublock += task_io_get_oublock(t);
1703}
1704
1705void getrusage(struct task_struct *p, int who, struct rusage *r)
1706{
1707	struct task_struct *t;
1708	unsigned long flags;
1709	u64 tgutime, tgstime, utime, stime;
1710	unsigned long maxrss = 0;
1711
1712	memset((char *)r, 0, sizeof (*r));
1713	utime = stime = 0;
1714
1715	if (who == RUSAGE_THREAD) {
1716		task_cputime_adjusted(current, &utime, &stime);
1717		accumulate_thread_rusage(p, r);
1718		maxrss = p->signal->maxrss;
1719		goto out;
1720	}
1721
1722	if (!lock_task_sighand(p, &flags))
1723		return;
1724
1725	switch (who) {
1726	case RUSAGE_BOTH:
1727	case RUSAGE_CHILDREN:
1728		utime = p->signal->cutime;
1729		stime = p->signal->cstime;
1730		r->ru_nvcsw = p->signal->cnvcsw;
1731		r->ru_nivcsw = p->signal->cnivcsw;
1732		r->ru_minflt = p->signal->cmin_flt;
1733		r->ru_majflt = p->signal->cmaj_flt;
1734		r->ru_inblock = p->signal->cinblock;
1735		r->ru_oublock = p->signal->coublock;
1736		maxrss = p->signal->cmaxrss;
 
 
 
1737
1738		if (who == RUSAGE_CHILDREN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1739			break;
1740		/* fall through */
1741
1742	case RUSAGE_SELF:
1743		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1744		utime += tgutime;
1745		stime += tgstime;
1746		r->ru_nvcsw += p->signal->nvcsw;
1747		r->ru_nivcsw += p->signal->nivcsw;
1748		r->ru_minflt += p->signal->min_flt;
1749		r->ru_majflt += p->signal->maj_flt;
1750		r->ru_inblock += p->signal->inblock;
1751		r->ru_oublock += p->signal->oublock;
1752		if (maxrss < p->signal->maxrss)
1753			maxrss = p->signal->maxrss;
1754		t = p;
1755		do {
1756			accumulate_thread_rusage(t, r);
1757		} while_each_thread(p, t);
1758		break;
1759
1760	default:
1761		BUG();
1762	}
1763	unlock_task_sighand(p, &flags);
1764
1765out:
1766	r->ru_utime = ns_to_timeval(utime);
1767	r->ru_stime = ns_to_timeval(stime);
1768
1769	if (who != RUSAGE_CHILDREN) {
1770		struct mm_struct *mm = get_task_mm(p);
1771
1772		if (mm) {
1773			setmax_mm_hiwater_rss(&maxrss, mm);
1774			mmput(mm);
1775		}
1776	}
1777	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1778}
1779
1780SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1781{
1782	struct rusage r;
 
 
 
1783
 
 
1784	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1785	    who != RUSAGE_THREAD)
1786		return -EINVAL;
1787
1788	getrusage(current, who, &r);
1789	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1790}
1791
1792#ifdef CONFIG_COMPAT
1793COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1794{
1795	struct rusage r;
1796
1797	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1798	    who != RUSAGE_THREAD)
1799		return -EINVAL;
1800
1801	getrusage(current, who, &r);
1802	return put_compat_rusage(&r, ru);
1803}
1804#endif
1805
1806SYSCALL_DEFINE1(umask, int, mask)
1807{
1808	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1809	return mask;
1810}
1811
1812static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1813{
1814	struct fd exe;
1815	struct file *old_exe, *exe_file;
1816	struct inode *inode;
1817	int err;
1818
1819	exe = fdget(fd);
1820	if (!exe.file)
1821		return -EBADF;
1822
1823	inode = file_inode(exe.file);
1824
1825	/*
1826	 * Because the original mm->exe_file points to executable file, make
1827	 * sure that this one is executable as well, to avoid breaking an
1828	 * overall picture.
1829	 */
1830	err = -EACCES;
1831	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
 
1832		goto exit;
1833
1834	err = inode_permission(inode, MAY_EXEC);
1835	if (err)
1836		goto exit;
1837
 
 
1838	/*
1839	 * Forbid mm->exe_file change if old file still mapped.
1840	 */
1841	exe_file = get_mm_exe_file(mm);
1842	err = -EBUSY;
1843	if (exe_file) {
1844		struct vm_area_struct *vma;
1845
1846		down_read(&mm->mmap_sem);
1847		for (vma = mm->mmap; vma; vma = vma->vm_next) {
1848			if (!vma->vm_file)
1849				continue;
1850			if (path_equal(&vma->vm_file->f_path,
1851				       &exe_file->f_path))
1852				goto exit_err;
1853		}
1854
1855		up_read(&mm->mmap_sem);
1856		fput(exe_file);
1857	}
 
 
 
 
 
 
1858
1859	err = 0;
1860	/* set the new file, lockless */
1861	get_file(exe.file);
1862	old_exe = xchg(&mm->exe_file, exe.file);
1863	if (old_exe)
1864		fput(old_exe);
1865exit:
1866	fdput(exe);
1867	return err;
1868exit_err:
1869	up_read(&mm->mmap_sem);
1870	fput(exe_file);
1871	goto exit;
1872}
1873
1874/*
1875 * Check arithmetic relations of passed addresses.
1876 *
1877 * WARNING: we don't require any capability here so be very careful
1878 * in what is allowed for modification from userspace.
1879 */
1880static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1881{
1882	unsigned long mmap_max_addr = TASK_SIZE;
1883	int error = -EINVAL, i;
1884
1885	static const unsigned char offsets[] = {
1886		offsetof(struct prctl_mm_map, start_code),
1887		offsetof(struct prctl_mm_map, end_code),
1888		offsetof(struct prctl_mm_map, start_data),
1889		offsetof(struct prctl_mm_map, end_data),
1890		offsetof(struct prctl_mm_map, start_brk),
1891		offsetof(struct prctl_mm_map, brk),
1892		offsetof(struct prctl_mm_map, start_stack),
1893		offsetof(struct prctl_mm_map, arg_start),
1894		offsetof(struct prctl_mm_map, arg_end),
1895		offsetof(struct prctl_mm_map, env_start),
1896		offsetof(struct prctl_mm_map, env_end),
1897	};
1898
1899	/*
1900	 * Make sure the members are not somewhere outside
1901	 * of allowed address space.
1902	 */
1903	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1904		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1905
1906		if ((unsigned long)val >= mmap_max_addr ||
1907		    (unsigned long)val < mmap_min_addr)
1908			goto out;
1909	}
1910
1911	/*
1912	 * Make sure the pairs are ordered.
1913	 */
1914#define __prctl_check_order(__m1, __op, __m2)				\
1915	((unsigned long)prctl_map->__m1 __op				\
1916	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1917	error  = __prctl_check_order(start_code, <, end_code);
1918	error |= __prctl_check_order(start_data,<=, end_data);
1919	error |= __prctl_check_order(start_brk, <=, brk);
1920	error |= __prctl_check_order(arg_start, <=, arg_end);
1921	error |= __prctl_check_order(env_start, <=, env_end);
1922	if (error)
1923		goto out;
1924#undef __prctl_check_order
1925
1926	error = -EINVAL;
1927
1928	/*
1929	 * @brk should be after @end_data in traditional maps.
1930	 */
1931	if (prctl_map->start_brk <= prctl_map->end_data ||
1932	    prctl_map->brk <= prctl_map->end_data)
1933		goto out;
1934
1935	/*
1936	 * Neither we should allow to override limits if they set.
1937	 */
1938	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1939			      prctl_map->start_brk, prctl_map->end_data,
1940			      prctl_map->start_data))
1941			goto out;
1942
1943	error = 0;
1944out:
1945	return error;
1946}
1947
1948#ifdef CONFIG_CHECKPOINT_RESTORE
1949static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1950{
1951	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1952	unsigned long user_auxv[AT_VECTOR_SIZE];
1953	struct mm_struct *mm = current->mm;
1954	int error;
1955
1956	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1957	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1958
1959	if (opt == PR_SET_MM_MAP_SIZE)
1960		return put_user((unsigned int)sizeof(prctl_map),
1961				(unsigned int __user *)addr);
1962
1963	if (data_size != sizeof(prctl_map))
1964		return -EINVAL;
1965
1966	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1967		return -EFAULT;
1968
1969	error = validate_prctl_map_addr(&prctl_map);
1970	if (error)
1971		return error;
1972
1973	if (prctl_map.auxv_size) {
1974		/*
1975		 * Someone is trying to cheat the auxv vector.
1976		 */
1977		if (!prctl_map.auxv ||
1978				prctl_map.auxv_size > sizeof(mm->saved_auxv))
1979			return -EINVAL;
1980
1981		memset(user_auxv, 0, sizeof(user_auxv));
1982		if (copy_from_user(user_auxv,
1983				   (const void __user *)prctl_map.auxv,
1984				   prctl_map.auxv_size))
1985			return -EFAULT;
1986
1987		/* Last entry must be AT_NULL as specification requires */
1988		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1989		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1990	}
1991
1992	if (prctl_map.exe_fd != (u32)-1) {
1993		/*
1994		 * Make sure the caller has the rights to
1995		 * change /proc/pid/exe link: only local sys admin should
1996		 * be allowed to.
1997		 */
1998		if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1999			return -EINVAL;
2000
2001		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2002		if (error)
2003			return error;
2004	}
2005
2006	/*
2007	 * arg_lock protects concurent updates but we still need mmap_sem for
2008	 * read to exclude races with sys_brk.
2009	 */
2010	down_read(&mm->mmap_sem);
2011
2012	/*
2013	 * We don't validate if these members are pointing to
2014	 * real present VMAs because application may have correspond
2015	 * VMAs already unmapped and kernel uses these members for statistics
2016	 * output in procfs mostly, except
2017	 *
2018	 *  - @start_brk/@brk which are used in do_brk but kernel lookups
2019	 *    for VMAs when updating these memvers so anything wrong written
2020	 *    here cause kernel to swear at userspace program but won't lead
2021	 *    to any problem in kernel itself
2022	 */
2023
2024	spin_lock(&mm->arg_lock);
2025	mm->start_code	= prctl_map.start_code;
2026	mm->end_code	= prctl_map.end_code;
2027	mm->start_data	= prctl_map.start_data;
2028	mm->end_data	= prctl_map.end_data;
2029	mm->start_brk	= prctl_map.start_brk;
2030	mm->brk		= prctl_map.brk;
2031	mm->start_stack	= prctl_map.start_stack;
2032	mm->arg_start	= prctl_map.arg_start;
2033	mm->arg_end	= prctl_map.arg_end;
2034	mm->env_start	= prctl_map.env_start;
2035	mm->env_end	= prctl_map.env_end;
2036	spin_unlock(&mm->arg_lock);
2037
2038	/*
2039	 * Note this update of @saved_auxv is lockless thus
2040	 * if someone reads this member in procfs while we're
2041	 * updating -- it may get partly updated results. It's
2042	 * known and acceptable trade off: we leave it as is to
2043	 * not introduce additional locks here making the kernel
2044	 * more complex.
2045	 */
2046	if (prctl_map.auxv_size)
2047		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2048
2049	up_read(&mm->mmap_sem);
2050	return 0;
2051}
2052#endif /* CONFIG_CHECKPOINT_RESTORE */
2053
2054static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2055			  unsigned long len)
2056{
2057	/*
2058	 * This doesn't move the auxiliary vector itself since it's pinned to
2059	 * mm_struct, but it permits filling the vector with new values.  It's
2060	 * up to the caller to provide sane values here, otherwise userspace
2061	 * tools which use this vector might be unhappy.
2062	 */
2063	unsigned long user_auxv[AT_VECTOR_SIZE];
2064
2065	if (len > sizeof(user_auxv))
2066		return -EINVAL;
2067
2068	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2069		return -EFAULT;
2070
2071	/* Make sure the last entry is always AT_NULL */
2072	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2073	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2074
2075	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2076
2077	task_lock(current);
2078	memcpy(mm->saved_auxv, user_auxv, len);
2079	task_unlock(current);
2080
2081	return 0;
2082}
2083
2084static int prctl_set_mm(int opt, unsigned long addr,
2085			unsigned long arg4, unsigned long arg5)
2086{
 
2087	struct mm_struct *mm = current->mm;
2088	struct prctl_mm_map prctl_map = {
2089		.auxv = NULL,
2090		.auxv_size = 0,
2091		.exe_fd = -1,
2092	};
2093	struct vm_area_struct *vma;
2094	int error;
2095
2096	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2097			      opt != PR_SET_MM_MAP &&
2098			      opt != PR_SET_MM_MAP_SIZE)))
2099		return -EINVAL;
2100
2101#ifdef CONFIG_CHECKPOINT_RESTORE
2102	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2103		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2104#endif
2105
2106	if (!capable(CAP_SYS_RESOURCE))
2107		return -EPERM;
2108
2109	if (opt == PR_SET_MM_EXE_FILE)
2110		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2111
2112	if (opt == PR_SET_MM_AUXV)
2113		return prctl_set_auxv(mm, addr, arg4);
2114
2115	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2116		return -EINVAL;
2117
2118	error = -EINVAL;
2119
2120	/*
2121	 * arg_lock protects concurent updates of arg boundaries, we need
2122	 * mmap_sem for a) concurrent sys_brk, b) finding VMA for addr
2123	 * validation.
2124	 */
2125	down_read(&mm->mmap_sem);
2126	vma = find_vma(mm, addr);
2127
2128	spin_lock(&mm->arg_lock);
2129	prctl_map.start_code	= mm->start_code;
2130	prctl_map.end_code	= mm->end_code;
2131	prctl_map.start_data	= mm->start_data;
2132	prctl_map.end_data	= mm->end_data;
2133	prctl_map.start_brk	= mm->start_brk;
2134	prctl_map.brk		= mm->brk;
2135	prctl_map.start_stack	= mm->start_stack;
2136	prctl_map.arg_start	= mm->arg_start;
2137	prctl_map.arg_end	= mm->arg_end;
2138	prctl_map.env_start	= mm->env_start;
2139	prctl_map.env_end	= mm->env_end;
2140
2141	switch (opt) {
2142	case PR_SET_MM_START_CODE:
2143		prctl_map.start_code = addr;
2144		break;
2145	case PR_SET_MM_END_CODE:
2146		prctl_map.end_code = addr;
2147		break;
2148	case PR_SET_MM_START_DATA:
2149		prctl_map.start_data = addr;
2150		break;
2151	case PR_SET_MM_END_DATA:
2152		prctl_map.end_data = addr;
2153		break;
2154	case PR_SET_MM_START_STACK:
2155		prctl_map.start_stack = addr;
2156		break;
 
2157	case PR_SET_MM_START_BRK:
2158		prctl_map.start_brk = addr;
 
 
 
 
 
 
 
 
2159		break;
 
2160	case PR_SET_MM_BRK:
2161		prctl_map.brk = addr;
2162		break;
2163	case PR_SET_MM_ARG_START:
2164		prctl_map.arg_start = addr;
2165		break;
2166	case PR_SET_MM_ARG_END:
2167		prctl_map.arg_end = addr;
2168		break;
2169	case PR_SET_MM_ENV_START:
2170		prctl_map.env_start = addr;
2171		break;
2172	case PR_SET_MM_ENV_END:
2173		prctl_map.env_end = addr;
2174		break;
2175	default:
2176		goto out;
2177	}
2178
2179	error = validate_prctl_map_addr(&prctl_map);
2180	if (error)
2181		goto out;
2182
2183	switch (opt) {
2184	/*
2185	 * If command line arguments and environment
2186	 * are placed somewhere else on stack, we can
2187	 * set them up here, ARG_START/END to setup
2188	 * command line argumets and ENV_START/END
2189	 * for environment.
2190	 */
2191	case PR_SET_MM_START_STACK:
2192	case PR_SET_MM_ARG_START:
2193	case PR_SET_MM_ARG_END:
2194	case PR_SET_MM_ENV_START:
2195	case PR_SET_MM_ENV_END:
2196		if (!vma) {
2197			error = -EFAULT;
2198			goto out;
2199		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200	}
2201
2202	mm->start_code	= prctl_map.start_code;
2203	mm->end_code	= prctl_map.end_code;
2204	mm->start_data	= prctl_map.start_data;
2205	mm->end_data	= prctl_map.end_data;
2206	mm->start_brk	= prctl_map.start_brk;
2207	mm->brk		= prctl_map.brk;
2208	mm->start_stack	= prctl_map.start_stack;
2209	mm->arg_start	= prctl_map.arg_start;
2210	mm->arg_end	= prctl_map.arg_end;
2211	mm->env_start	= prctl_map.env_start;
2212	mm->env_end	= prctl_map.env_end;
2213
2214	error = 0;
2215out:
2216	spin_unlock(&mm->arg_lock);
2217	up_read(&mm->mmap_sem);
2218	return error;
2219}
2220
2221#ifdef CONFIG_CHECKPOINT_RESTORE
2222static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2223{
2224	return put_user(me->clear_child_tid, tid_addr);
2225}
2226#else
2227static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2228{
2229	return -EINVAL;
2230}
2231#endif
2232
2233static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2234{
2235	/*
2236	 * If task has has_child_subreaper - all its decendants
2237	 * already have these flag too and new decendants will
2238	 * inherit it on fork, skip them.
2239	 *
2240	 * If we've found child_reaper - skip descendants in
2241	 * it's subtree as they will never get out pidns.
2242	 */
2243	if (p->signal->has_child_subreaper ||
2244	    is_child_reaper(task_pid(p)))
2245		return 0;
2246
2247	p->signal->has_child_subreaper = 1;
2248	return 1;
2249}
2250
2251int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2252{
2253	return -EINVAL;
2254}
2255
2256int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2257				    unsigned long ctrl)
2258{
2259	return -EINVAL;
2260}
2261
2262SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2263		unsigned long, arg4, unsigned long, arg5)
2264{
2265	struct task_struct *me = current;
2266	unsigned char comm[sizeof(me->comm)];
2267	long error;
2268
2269	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2270	if (error != -ENOSYS)
2271		return error;
2272
2273	error = 0;
2274	switch (option) {
2275	case PR_SET_PDEATHSIG:
2276		if (!valid_signal(arg2)) {
2277			error = -EINVAL;
2278			break;
2279		}
2280		me->pdeath_signal = arg2;
2281		break;
2282	case PR_GET_PDEATHSIG:
2283		error = put_user(me->pdeath_signal, (int __user *)arg2);
2284		break;
2285	case PR_GET_DUMPABLE:
2286		error = get_dumpable(me->mm);
2287		break;
2288	case PR_SET_DUMPABLE:
2289		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2290			error = -EINVAL;
2291			break;
2292		}
2293		set_dumpable(me->mm, arg2);
2294		break;
2295
2296	case PR_SET_UNALIGN:
2297		error = SET_UNALIGN_CTL(me, arg2);
2298		break;
2299	case PR_GET_UNALIGN:
2300		error = GET_UNALIGN_CTL(me, arg2);
2301		break;
2302	case PR_SET_FPEMU:
2303		error = SET_FPEMU_CTL(me, arg2);
2304		break;
2305	case PR_GET_FPEMU:
2306		error = GET_FPEMU_CTL(me, arg2);
2307		break;
2308	case PR_SET_FPEXC:
2309		error = SET_FPEXC_CTL(me, arg2);
2310		break;
2311	case PR_GET_FPEXC:
2312		error = GET_FPEXC_CTL(me, arg2);
2313		break;
2314	case PR_GET_TIMING:
2315		error = PR_TIMING_STATISTICAL;
2316		break;
2317	case PR_SET_TIMING:
2318		if (arg2 != PR_TIMING_STATISTICAL)
2319			error = -EINVAL;
2320		break;
2321	case PR_SET_NAME:
2322		comm[sizeof(me->comm) - 1] = 0;
2323		if (strncpy_from_user(comm, (char __user *)arg2,
2324				      sizeof(me->comm) - 1) < 0)
2325			return -EFAULT;
2326		set_task_comm(me, comm);
2327		proc_comm_connector(me);
2328		break;
2329	case PR_GET_NAME:
2330		get_task_comm(comm, me);
2331		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2332			return -EFAULT;
2333		break;
2334	case PR_GET_ENDIAN:
2335		error = GET_ENDIAN(me, arg2);
2336		break;
2337	case PR_SET_ENDIAN:
2338		error = SET_ENDIAN(me, arg2);
2339		break;
2340	case PR_GET_SECCOMP:
2341		error = prctl_get_seccomp();
2342		break;
2343	case PR_SET_SECCOMP:
2344		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2345		break;
2346	case PR_GET_TSC:
2347		error = GET_TSC_CTL(arg2);
2348		break;
2349	case PR_SET_TSC:
2350		error = SET_TSC_CTL(arg2);
2351		break;
2352	case PR_TASK_PERF_EVENTS_DISABLE:
2353		error = perf_event_task_disable();
2354		break;
2355	case PR_TASK_PERF_EVENTS_ENABLE:
2356		error = perf_event_task_enable();
2357		break;
2358	case PR_GET_TIMERSLACK:
2359		if (current->timer_slack_ns > ULONG_MAX)
2360			error = ULONG_MAX;
2361		else
2362			error = current->timer_slack_ns;
2363		break;
2364	case PR_SET_TIMERSLACK:
2365		if (arg2 <= 0)
2366			current->timer_slack_ns =
2367					current->default_timer_slack_ns;
2368		else
2369			current->timer_slack_ns = arg2;
2370		break;
2371	case PR_MCE_KILL:
2372		if (arg4 | arg5)
2373			return -EINVAL;
2374		switch (arg2) {
2375		case PR_MCE_KILL_CLEAR:
2376			if (arg3 != 0)
2377				return -EINVAL;
2378			current->flags &= ~PF_MCE_PROCESS;
2379			break;
2380		case PR_MCE_KILL_SET:
2381			current->flags |= PF_MCE_PROCESS;
2382			if (arg3 == PR_MCE_KILL_EARLY)
2383				current->flags |= PF_MCE_EARLY;
2384			else if (arg3 == PR_MCE_KILL_LATE)
2385				current->flags &= ~PF_MCE_EARLY;
2386			else if (arg3 == PR_MCE_KILL_DEFAULT)
2387				current->flags &=
2388						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2389			else
2390				return -EINVAL;
2391			break;
2392		default:
2393			return -EINVAL;
2394		}
2395		break;
2396	case PR_MCE_KILL_GET:
2397		if (arg2 | arg3 | arg4 | arg5)
2398			return -EINVAL;
2399		if (current->flags & PF_MCE_PROCESS)
2400			error = (current->flags & PF_MCE_EARLY) ?
2401				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2402		else
2403			error = PR_MCE_KILL_DEFAULT;
2404		break;
2405	case PR_SET_MM:
2406		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2407		break;
2408	case PR_GET_TID_ADDRESS:
2409		error = prctl_get_tid_address(me, (int __user **)arg2);
2410		break;
2411	case PR_SET_CHILD_SUBREAPER:
2412		me->signal->is_child_subreaper = !!arg2;
2413		if (!arg2)
2414			break;
2415
2416		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2417		break;
2418	case PR_GET_CHILD_SUBREAPER:
2419		error = put_user(me->signal->is_child_subreaper,
2420				 (int __user *)arg2);
2421		break;
2422	case PR_SET_NO_NEW_PRIVS:
2423		if (arg2 != 1 || arg3 || arg4 || arg5)
2424			return -EINVAL;
2425
2426		task_set_no_new_privs(current);
2427		break;
2428	case PR_GET_NO_NEW_PRIVS:
2429		if (arg2 || arg3 || arg4 || arg5)
2430			return -EINVAL;
2431		return task_no_new_privs(current) ? 1 : 0;
2432	case PR_GET_THP_DISABLE:
2433		if (arg2 || arg3 || arg4 || arg5)
2434			return -EINVAL;
2435		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2436		break;
2437	case PR_SET_THP_DISABLE:
2438		if (arg3 || arg4 || arg5)
2439			return -EINVAL;
2440		if (down_write_killable(&me->mm->mmap_sem))
2441			return -EINTR;
2442		if (arg2)
2443			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2444		else
2445			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2446		up_write(&me->mm->mmap_sem);
2447		break;
2448	case PR_MPX_ENABLE_MANAGEMENT:
2449	case PR_MPX_DISABLE_MANAGEMENT:
2450		/* No longer implemented: */
2451		return -EINVAL;
2452	case PR_SET_FP_MODE:
2453		error = SET_FP_MODE(me, arg2);
2454		break;
2455	case PR_GET_FP_MODE:
2456		error = GET_FP_MODE(me);
2457		break;
2458	case PR_SVE_SET_VL:
2459		error = SVE_SET_VL(arg2);
2460		break;
2461	case PR_SVE_GET_VL:
2462		error = SVE_GET_VL();
2463		break;
2464	case PR_GET_SPECULATION_CTRL:
2465		if (arg3 || arg4 || arg5)
2466			return -EINVAL;
2467		error = arch_prctl_spec_ctrl_get(me, arg2);
2468		break;
2469	case PR_SET_SPECULATION_CTRL:
2470		if (arg4 || arg5)
2471			return -EINVAL;
2472		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2473		break;
2474	case PR_PAC_RESET_KEYS:
2475		if (arg3 || arg4 || arg5)
2476			return -EINVAL;
2477		error = PAC_RESET_KEYS(me, arg2);
2478		break;
2479	case PR_SET_TAGGED_ADDR_CTRL:
2480		if (arg3 || arg4 || arg5)
2481			return -EINVAL;
2482		error = SET_TAGGED_ADDR_CTRL(arg2);
2483		break;
2484	case PR_GET_TAGGED_ADDR_CTRL:
2485		if (arg2 || arg3 || arg4 || arg5)
2486			return -EINVAL;
2487		error = GET_TAGGED_ADDR_CTRL();
2488		break;
2489	default:
2490		error = -EINVAL;
2491		break;
2492	}
2493	return error;
2494}
2495
2496SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2497		struct getcpu_cache __user *, unused)
2498{
2499	int err = 0;
2500	int cpu = raw_smp_processor_id();
2501
2502	if (cpup)
2503		err |= put_user(cpu, cpup);
2504	if (nodep)
2505		err |= put_user(cpu_to_node(cpu), nodep);
2506	return err ? -EFAULT : 0;
2507}
2508
2509/**
2510 * do_sysinfo - fill in sysinfo struct
2511 * @info: pointer to buffer to fill
2512 */
2513static int do_sysinfo(struct sysinfo *info)
2514{
2515	unsigned long mem_total, sav_total;
2516	unsigned int mem_unit, bitcount;
2517	struct timespec64 tp;
2518
2519	memset(info, 0, sizeof(struct sysinfo));
2520
2521	ktime_get_boottime_ts64(&tp);
2522	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2523
2524	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2525
2526	info->procs = nr_threads;
2527
2528	si_meminfo(info);
2529	si_swapinfo(info);
2530
2531	/*
2532	 * If the sum of all the available memory (i.e. ram + swap)
2533	 * is less than can be stored in a 32 bit unsigned long then
2534	 * we can be binary compatible with 2.2.x kernels.  If not,
2535	 * well, in that case 2.2.x was broken anyways...
2536	 *
2537	 *  -Erik Andersen <andersee@debian.org>
2538	 */
2539
2540	mem_total = info->totalram + info->totalswap;
2541	if (mem_total < info->totalram || mem_total < info->totalswap)
2542		goto out;
2543	bitcount = 0;
2544	mem_unit = info->mem_unit;
2545	while (mem_unit > 1) {
2546		bitcount++;
2547		mem_unit >>= 1;
2548		sav_total = mem_total;
2549		mem_total <<= 1;
2550		if (mem_total < sav_total)
2551			goto out;
2552	}
2553
2554	/*
2555	 * If mem_total did not overflow, multiply all memory values by
2556	 * info->mem_unit and set it to 1.  This leaves things compatible
2557	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2558	 * kernels...
2559	 */
2560
2561	info->mem_unit = 1;
2562	info->totalram <<= bitcount;
2563	info->freeram <<= bitcount;
2564	info->sharedram <<= bitcount;
2565	info->bufferram <<= bitcount;
2566	info->totalswap <<= bitcount;
2567	info->freeswap <<= bitcount;
2568	info->totalhigh <<= bitcount;
2569	info->freehigh <<= bitcount;
2570
2571out:
2572	return 0;
2573}
2574
2575SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2576{
2577	struct sysinfo val;
2578
2579	do_sysinfo(&val);
2580
2581	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2582		return -EFAULT;
2583
2584	return 0;
2585}
2586
2587#ifdef CONFIG_COMPAT
2588struct compat_sysinfo {
2589	s32 uptime;
2590	u32 loads[3];
2591	u32 totalram;
2592	u32 freeram;
2593	u32 sharedram;
2594	u32 bufferram;
2595	u32 totalswap;
2596	u32 freeswap;
2597	u16 procs;
2598	u16 pad;
2599	u32 totalhigh;
2600	u32 freehigh;
2601	u32 mem_unit;
2602	char _f[20-2*sizeof(u32)-sizeof(int)];
2603};
2604
2605COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2606{
2607	struct sysinfo s;
2608
2609	do_sysinfo(&s);
2610
2611	/* Check to see if any memory value is too large for 32-bit and scale
2612	 *  down if needed
2613	 */
2614	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2615		int bitcount = 0;
2616
2617		while (s.mem_unit < PAGE_SIZE) {
2618			s.mem_unit <<= 1;
2619			bitcount++;
2620		}
2621
2622		s.totalram >>= bitcount;
2623		s.freeram >>= bitcount;
2624		s.sharedram >>= bitcount;
2625		s.bufferram >>= bitcount;
2626		s.totalswap >>= bitcount;
2627		s.freeswap >>= bitcount;
2628		s.totalhigh >>= bitcount;
2629		s.freehigh >>= bitcount;
2630	}
2631
2632	if (!access_ok(info, sizeof(struct compat_sysinfo)) ||
2633	    __put_user(s.uptime, &info->uptime) ||
2634	    __put_user(s.loads[0], &info->loads[0]) ||
2635	    __put_user(s.loads[1], &info->loads[1]) ||
2636	    __put_user(s.loads[2], &info->loads[2]) ||
2637	    __put_user(s.totalram, &info->totalram) ||
2638	    __put_user(s.freeram, &info->freeram) ||
2639	    __put_user(s.sharedram, &info->sharedram) ||
2640	    __put_user(s.bufferram, &info->bufferram) ||
2641	    __put_user(s.totalswap, &info->totalswap) ||
2642	    __put_user(s.freeswap, &info->freeswap) ||
2643	    __put_user(s.procs, &info->procs) ||
2644	    __put_user(s.totalhigh, &info->totalhigh) ||
2645	    __put_user(s.freehigh, &info->freehigh) ||
2646	    __put_user(s.mem_unit, &info->mem_unit))
2647		return -EFAULT;
2648
2649	return 0;
2650}
2651#endif /* CONFIG_COMPAT */