Linux Audio

Check our new training course

Loading...
v3.15
 
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/mm.h>
 
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/reboot.h>
  12#include <linux/prctl.h>
  13#include <linux/highuid.h>
  14#include <linux/fs.h>
  15#include <linux/kmod.h>
 
  16#include <linux/perf_event.h>
  17#include <linux/resource.h>
  18#include <linux/kernel.h>
  19#include <linux/workqueue.h>
  20#include <linux/capability.h>
  21#include <linux/device.h>
  22#include <linux/key.h>
  23#include <linux/times.h>
  24#include <linux/posix-timers.h>
  25#include <linux/security.h>
  26#include <linux/dcookies.h>
  27#include <linux/suspend.h>
  28#include <linux/tty.h>
  29#include <linux/signal.h>
  30#include <linux/cn_proc.h>
  31#include <linux/getcpu.h>
  32#include <linux/task_io_accounting_ops.h>
  33#include <linux/seccomp.h>
  34#include <linux/cpu.h>
  35#include <linux/personality.h>
  36#include <linux/ptrace.h>
  37#include <linux/fs_struct.h>
  38#include <linux/file.h>
  39#include <linux/mount.h>
  40#include <linux/gfp.h>
  41#include <linux/syscore_ops.h>
  42#include <linux/version.h>
  43#include <linux/ctype.h>
 
  44
  45#include <linux/compat.h>
  46#include <linux/syscalls.h>
  47#include <linux/kprobes.h>
  48#include <linux/user_namespace.h>
 
  49#include <linux/binfmts.h>
  50
  51#include <linux/sched.h>
 
 
 
 
 
 
 
  52#include <linux/rcupdate.h>
  53#include <linux/uidgid.h>
  54#include <linux/cred.h>
  55
 
 
  56#include <linux/kmsg_dump.h>
  57/* Move somewhere else to avoid recompiling? */
  58#include <generated/utsrelease.h>
  59
  60#include <asm/uaccess.h>
  61#include <asm/io.h>
  62#include <asm/unistd.h>
  63
 
 
  64#ifndef SET_UNALIGN_CTL
  65# define SET_UNALIGN_CTL(a,b)	(-EINVAL)
  66#endif
  67#ifndef GET_UNALIGN_CTL
  68# define GET_UNALIGN_CTL(a,b)	(-EINVAL)
  69#endif
  70#ifndef SET_FPEMU_CTL
  71# define SET_FPEMU_CTL(a,b)	(-EINVAL)
  72#endif
  73#ifndef GET_FPEMU_CTL
  74# define GET_FPEMU_CTL(a,b)	(-EINVAL)
  75#endif
  76#ifndef SET_FPEXC_CTL
  77# define SET_FPEXC_CTL(a,b)	(-EINVAL)
  78#endif
  79#ifndef GET_FPEXC_CTL
  80# define GET_FPEXC_CTL(a,b)	(-EINVAL)
  81#endif
  82#ifndef GET_ENDIAN
  83# define GET_ENDIAN(a,b)	(-EINVAL)
  84#endif
  85#ifndef SET_ENDIAN
  86# define SET_ENDIAN(a,b)	(-EINVAL)
  87#endif
  88#ifndef GET_TSC_CTL
  89# define GET_TSC_CTL(a)		(-EINVAL)
  90#endif
  91#ifndef SET_TSC_CTL
  92# define SET_TSC_CTL(a)		(-EINVAL)
  93#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94
  95/*
  96 * this is where the system-wide overflow UID and GID are defined, for
  97 * architectures that now have 32-bit UID/GID but didn't in the past
  98 */
  99
 100int overflowuid = DEFAULT_OVERFLOWUID;
 101int overflowgid = DEFAULT_OVERFLOWGID;
 102
 103EXPORT_SYMBOL(overflowuid);
 104EXPORT_SYMBOL(overflowgid);
 105
 106/*
 107 * the same as above, but for filesystems which can only store a 16-bit
 108 * UID and GID. as such, this is needed on all architectures
 109 */
 110
 111int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 112int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 113
 114EXPORT_SYMBOL(fs_overflowuid);
 115EXPORT_SYMBOL(fs_overflowgid);
 116
 117/*
 118 * Returns true if current's euid is same as p's uid or euid,
 119 * or has CAP_SYS_NICE to p's user_ns.
 120 *
 121 * Called with rcu_read_lock, creds are safe
 122 */
 123static bool set_one_prio_perm(struct task_struct *p)
 124{
 125	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 126
 127	if (uid_eq(pcred->uid,  cred->euid) ||
 128	    uid_eq(pcred->euid, cred->euid))
 129		return true;
 130	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 131		return true;
 132	return false;
 133}
 134
 135/*
 136 * set the priority of a task
 137 * - the caller must hold the RCU read lock
 138 */
 139static int set_one_prio(struct task_struct *p, int niceval, int error)
 140{
 141	int no_nice;
 142
 143	if (!set_one_prio_perm(p)) {
 144		error = -EPERM;
 145		goto out;
 146	}
 147	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 148		error = -EACCES;
 149		goto out;
 150	}
 151	no_nice = security_task_setnice(p, niceval);
 152	if (no_nice) {
 153		error = no_nice;
 154		goto out;
 155	}
 156	if (error == -ESRCH)
 157		error = 0;
 158	set_user_nice(p, niceval);
 159out:
 160	return error;
 161}
 162
 163SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 164{
 165	struct task_struct *g, *p;
 166	struct user_struct *user;
 167	const struct cred *cred = current_cred();
 168	int error = -EINVAL;
 169	struct pid *pgrp;
 170	kuid_t uid;
 171
 172	if (which > PRIO_USER || which < PRIO_PROCESS)
 173		goto out;
 174
 175	/* normalize: avoid signed division (rounding problems) */
 176	error = -ESRCH;
 177	if (niceval < MIN_NICE)
 178		niceval = MIN_NICE;
 179	if (niceval > MAX_NICE)
 180		niceval = MAX_NICE;
 181
 182	rcu_read_lock();
 183	read_lock(&tasklist_lock);
 184	switch (which) {
 185		case PRIO_PROCESS:
 186			if (who)
 187				p = find_task_by_vpid(who);
 188			else
 189				p = current;
 190			if (p)
 191				error = set_one_prio(p, niceval, error);
 192			break;
 193		case PRIO_PGRP:
 194			if (who)
 195				pgrp = find_vpid(who);
 196			else
 197				pgrp = task_pgrp(current);
 198			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 199				error = set_one_prio(p, niceval, error);
 200			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 201			break;
 202		case PRIO_USER:
 203			uid = make_kuid(cred->user_ns, who);
 204			user = cred->user;
 205			if (!who)
 206				uid = cred->uid;
 207			else if (!uid_eq(uid, cred->uid) &&
 208				 !(user = find_user(uid)))
 
 
 
 209				goto out_unlock;	/* No processes for this user */
 210
 211			do_each_thread(g, p) {
 212				if (uid_eq(task_uid(p), uid))
 213					error = set_one_prio(p, niceval, error);
 214			} while_each_thread(g, p);
 215			if (!uid_eq(uid, cred->uid))
 216				free_uid(user);		/* For find_user() */
 217			break;
 218	}
 219out_unlock:
 220	read_unlock(&tasklist_lock);
 221	rcu_read_unlock();
 222out:
 223	return error;
 224}
 225
 226/*
 227 * Ugh. To avoid negative return values, "getpriority()" will
 228 * not return the normal nice-value, but a negated value that
 229 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 230 * to stay compatible.
 231 */
 232SYSCALL_DEFINE2(getpriority, int, which, int, who)
 233{
 234	struct task_struct *g, *p;
 235	struct user_struct *user;
 236	const struct cred *cred = current_cred();
 237	long niceval, retval = -ESRCH;
 238	struct pid *pgrp;
 239	kuid_t uid;
 240
 241	if (which > PRIO_USER || which < PRIO_PROCESS)
 242		return -EINVAL;
 243
 244	rcu_read_lock();
 245	read_lock(&tasklist_lock);
 246	switch (which) {
 247		case PRIO_PROCESS:
 248			if (who)
 249				p = find_task_by_vpid(who);
 250			else
 251				p = current;
 252			if (p) {
 253				niceval = 20 - task_nice(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254				if (niceval > retval)
 255					retval = niceval;
 256			}
 257			break;
 258		case PRIO_PGRP:
 259			if (who)
 260				pgrp = find_vpid(who);
 261			else
 262				pgrp = task_pgrp(current);
 263			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 264				niceval = 20 - task_nice(p);
 265				if (niceval > retval)
 266					retval = niceval;
 267			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 268			break;
 269		case PRIO_USER:
 270			uid = make_kuid(cred->user_ns, who);
 271			user = cred->user;
 272			if (!who)
 273				uid = cred->uid;
 274			else if (!uid_eq(uid, cred->uid) &&
 275				 !(user = find_user(uid)))
 276				goto out_unlock;	/* No processes for this user */
 277
 278			do_each_thread(g, p) {
 279				if (uid_eq(task_uid(p), uid)) {
 280					niceval = 20 - task_nice(p);
 281					if (niceval > retval)
 282						retval = niceval;
 283				}
 284			} while_each_thread(g, p);
 285			if (!uid_eq(uid, cred->uid))
 286				free_uid(user);		/* for find_user() */
 287			break;
 288	}
 289out_unlock:
 290	read_unlock(&tasklist_lock);
 291	rcu_read_unlock();
 292
 293	return retval;
 294}
 295
 296/*
 297 * Unprivileged users may change the real gid to the effective gid
 298 * or vice versa.  (BSD-style)
 299 *
 300 * If you set the real gid at all, or set the effective gid to a value not
 301 * equal to the real gid, then the saved gid is set to the new effective gid.
 302 *
 303 * This makes it possible for a setgid program to completely drop its
 304 * privileges, which is often a useful assertion to make when you are doing
 305 * a security audit over a program.
 306 *
 307 * The general idea is that a program which uses just setregid() will be
 308 * 100% compatible with BSD.  A program which uses just setgid() will be
 309 * 100% compatible with POSIX with saved IDs. 
 310 *
 311 * SMP: There are not races, the GIDs are checked only by filesystem
 312 *      operations (as far as semantic preservation is concerned).
 313 */
 314SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 
 315{
 316	struct user_namespace *ns = current_user_ns();
 317	const struct cred *old;
 318	struct cred *new;
 319	int retval;
 320	kgid_t krgid, kegid;
 321
 322	krgid = make_kgid(ns, rgid);
 323	kegid = make_kgid(ns, egid);
 324
 325	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 326		return -EINVAL;
 327	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 328		return -EINVAL;
 329
 330	new = prepare_creds();
 331	if (!new)
 332		return -ENOMEM;
 333	old = current_cred();
 334
 335	retval = -EPERM;
 336	if (rgid != (gid_t) -1) {
 337		if (gid_eq(old->gid, krgid) ||
 338		    gid_eq(old->egid, krgid) ||
 339		    ns_capable(old->user_ns, CAP_SETGID))
 340			new->gid = krgid;
 341		else
 342			goto error;
 343	}
 344	if (egid != (gid_t) -1) {
 345		if (gid_eq(old->gid, kegid) ||
 346		    gid_eq(old->egid, kegid) ||
 347		    gid_eq(old->sgid, kegid) ||
 348		    ns_capable(old->user_ns, CAP_SETGID))
 349			new->egid = kegid;
 350		else
 351			goto error;
 352	}
 353
 354	if (rgid != (gid_t) -1 ||
 355	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 356		new->sgid = new->egid;
 357	new->fsgid = new->egid;
 358
 
 
 
 
 359	return commit_creds(new);
 360
 361error:
 362	abort_creds(new);
 363	return retval;
 364}
 365
 
 
 
 
 
 366/*
 367 * setgid() is implemented like SysV w/ SAVED_IDS 
 368 *
 369 * SMP: Same implicit races as above.
 370 */
 371SYSCALL_DEFINE1(setgid, gid_t, gid)
 372{
 373	struct user_namespace *ns = current_user_ns();
 374	const struct cred *old;
 375	struct cred *new;
 376	int retval;
 377	kgid_t kgid;
 378
 379	kgid = make_kgid(ns, gid);
 380	if (!gid_valid(kgid))
 381		return -EINVAL;
 382
 383	new = prepare_creds();
 384	if (!new)
 385		return -ENOMEM;
 386	old = current_cred();
 387
 388	retval = -EPERM;
 389	if (ns_capable(old->user_ns, CAP_SETGID))
 390		new->gid = new->egid = new->sgid = new->fsgid = kgid;
 391	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 392		new->egid = new->fsgid = kgid;
 393	else
 394		goto error;
 395
 
 
 
 
 396	return commit_creds(new);
 397
 398error:
 399	abort_creds(new);
 400	return retval;
 401}
 402
 
 
 
 
 
 403/*
 404 * change the user struct in a credentials set to match the new UID
 405 */
 406static int set_user(struct cred *new)
 407{
 408	struct user_struct *new_user;
 409
 410	new_user = alloc_uid(new->uid);
 411	if (!new_user)
 412		return -EAGAIN;
 413
 
 
 
 
 
 
 
 
 
 
 414	/*
 415	 * We don't fail in case of NPROC limit excess here because too many
 416	 * poorly written programs don't check set*uid() return code, assuming
 417	 * it never fails if called by root.  We may still enforce NPROC limit
 418	 * for programs doing set*uid()+execve() by harmlessly deferring the
 419	 * failure to the execve() stage.
 420	 */
 421	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 422			new_user != INIT_USER)
 423		current->flags |= PF_NPROC_EXCEEDED;
 424	else
 425		current->flags &= ~PF_NPROC_EXCEEDED;
 426
 427	free_uid(new->user);
 428	new->user = new_user;
 429	return 0;
 430}
 431
 432/*
 433 * Unprivileged users may change the real uid to the effective uid
 434 * or vice versa.  (BSD-style)
 435 *
 436 * If you set the real uid at all, or set the effective uid to a value not
 437 * equal to the real uid, then the saved uid is set to the new effective uid.
 438 *
 439 * This makes it possible for a setuid program to completely drop its
 440 * privileges, which is often a useful assertion to make when you are doing
 441 * a security audit over a program.
 442 *
 443 * The general idea is that a program which uses just setreuid() will be
 444 * 100% compatible with BSD.  A program which uses just setuid() will be
 445 * 100% compatible with POSIX with saved IDs. 
 446 */
 447SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 448{
 449	struct user_namespace *ns = current_user_ns();
 450	const struct cred *old;
 451	struct cred *new;
 452	int retval;
 453	kuid_t kruid, keuid;
 454
 455	kruid = make_kuid(ns, ruid);
 456	keuid = make_kuid(ns, euid);
 457
 458	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 459		return -EINVAL;
 460	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 461		return -EINVAL;
 462
 463	new = prepare_creds();
 464	if (!new)
 465		return -ENOMEM;
 466	old = current_cred();
 467
 468	retval = -EPERM;
 469	if (ruid != (uid_t) -1) {
 470		new->uid = kruid;
 471		if (!uid_eq(old->uid, kruid) &&
 472		    !uid_eq(old->euid, kruid) &&
 473		    !ns_capable(old->user_ns, CAP_SETUID))
 474			goto error;
 475	}
 476
 477	if (euid != (uid_t) -1) {
 478		new->euid = keuid;
 479		if (!uid_eq(old->uid, keuid) &&
 480		    !uid_eq(old->euid, keuid) &&
 481		    !uid_eq(old->suid, keuid) &&
 482		    !ns_capable(old->user_ns, CAP_SETUID))
 483			goto error;
 484	}
 485
 486	if (!uid_eq(new->uid, old->uid)) {
 487		retval = set_user(new);
 488		if (retval < 0)
 489			goto error;
 490	}
 491	if (ruid != (uid_t) -1 ||
 492	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 493		new->suid = new->euid;
 494	new->fsuid = new->euid;
 495
 496	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 497	if (retval < 0)
 498		goto error;
 499
 
 
 
 
 
 500	return commit_creds(new);
 501
 502error:
 503	abort_creds(new);
 504	return retval;
 505}
 506		
 
 
 
 
 
 507/*
 508 * setuid() is implemented like SysV with SAVED_IDS 
 509 * 
 510 * Note that SAVED_ID's is deficient in that a setuid root program
 511 * like sendmail, for example, cannot set its uid to be a normal 
 512 * user and then switch back, because if you're root, setuid() sets
 513 * the saved uid too.  If you don't like this, blame the bright people
 514 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 515 * will allow a root program to temporarily drop privileges and be able to
 516 * regain them by swapping the real and effective uid.  
 517 */
 518SYSCALL_DEFINE1(setuid, uid_t, uid)
 519{
 520	struct user_namespace *ns = current_user_ns();
 521	const struct cred *old;
 522	struct cred *new;
 523	int retval;
 524	kuid_t kuid;
 525
 526	kuid = make_kuid(ns, uid);
 527	if (!uid_valid(kuid))
 528		return -EINVAL;
 529
 530	new = prepare_creds();
 531	if (!new)
 532		return -ENOMEM;
 533	old = current_cred();
 534
 535	retval = -EPERM;
 536	if (ns_capable(old->user_ns, CAP_SETUID)) {
 537		new->suid = new->uid = kuid;
 538		if (!uid_eq(kuid, old->uid)) {
 539			retval = set_user(new);
 540			if (retval < 0)
 541				goto error;
 542		}
 543	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 544		goto error;
 545	}
 546
 547	new->fsuid = new->euid = kuid;
 548
 549	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 550	if (retval < 0)
 551		goto error;
 552
 
 
 
 
 
 553	return commit_creds(new);
 554
 555error:
 556	abort_creds(new);
 557	return retval;
 558}
 559
 
 
 
 
 
 560
 561/*
 562 * This function implements a generic ability to update ruid, euid,
 563 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 564 */
 565SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 566{
 567	struct user_namespace *ns = current_user_ns();
 568	const struct cred *old;
 569	struct cred *new;
 570	int retval;
 571	kuid_t kruid, keuid, ksuid;
 
 572
 573	kruid = make_kuid(ns, ruid);
 574	keuid = make_kuid(ns, euid);
 575	ksuid = make_kuid(ns, suid);
 576
 577	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 578		return -EINVAL;
 579
 580	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 581		return -EINVAL;
 582
 583	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 584		return -EINVAL;
 585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 586	new = prepare_creds();
 587	if (!new)
 588		return -ENOMEM;
 589
 590	old = current_cred();
 591
 592	retval = -EPERM;
 593	if (!ns_capable(old->user_ns, CAP_SETUID)) {
 594		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 595		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 596			goto error;
 597		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 598		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 599			goto error;
 600		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 601		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 602			goto error;
 603	}
 604
 605	if (ruid != (uid_t) -1) {
 606		new->uid = kruid;
 607		if (!uid_eq(kruid, old->uid)) {
 608			retval = set_user(new);
 609			if (retval < 0)
 610				goto error;
 611		}
 612	}
 613	if (euid != (uid_t) -1)
 614		new->euid = keuid;
 615	if (suid != (uid_t) -1)
 616		new->suid = ksuid;
 617	new->fsuid = new->euid;
 618
 619	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 620	if (retval < 0)
 621		goto error;
 622
 
 
 
 
 
 623	return commit_creds(new);
 624
 625error:
 626	abort_creds(new);
 627	return retval;
 628}
 629
 
 
 
 
 
 630SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 631{
 632	const struct cred *cred = current_cred();
 633	int retval;
 634	uid_t ruid, euid, suid;
 635
 636	ruid = from_kuid_munged(cred->user_ns, cred->uid);
 637	euid = from_kuid_munged(cred->user_ns, cred->euid);
 638	suid = from_kuid_munged(cred->user_ns, cred->suid);
 639
 640	if (!(retval   = put_user(ruid, ruidp)) &&
 641	    !(retval   = put_user(euid, euidp)))
 642		retval = put_user(suid, suidp);
 643
 
 
 644	return retval;
 645}
 646
 647/*
 648 * Same as above, but for rgid, egid, sgid.
 649 */
 650SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 651{
 652	struct user_namespace *ns = current_user_ns();
 653	const struct cred *old;
 654	struct cred *new;
 655	int retval;
 656	kgid_t krgid, kegid, ksgid;
 
 657
 658	krgid = make_kgid(ns, rgid);
 659	kegid = make_kgid(ns, egid);
 660	ksgid = make_kgid(ns, sgid);
 661
 662	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 663		return -EINVAL;
 664	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 665		return -EINVAL;
 666	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 667		return -EINVAL;
 668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669	new = prepare_creds();
 670	if (!new)
 671		return -ENOMEM;
 672	old = current_cred();
 673
 674	retval = -EPERM;
 675	if (!ns_capable(old->user_ns, CAP_SETGID)) {
 676		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 677		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 678			goto error;
 679		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 680		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 681			goto error;
 682		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 683		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 684			goto error;
 685	}
 686
 687	if (rgid != (gid_t) -1)
 688		new->gid = krgid;
 689	if (egid != (gid_t) -1)
 690		new->egid = kegid;
 691	if (sgid != (gid_t) -1)
 692		new->sgid = ksgid;
 693	new->fsgid = new->egid;
 694
 
 
 
 
 695	return commit_creds(new);
 696
 697error:
 698	abort_creds(new);
 699	return retval;
 700}
 701
 
 
 
 
 
 702SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 703{
 704	const struct cred *cred = current_cred();
 705	int retval;
 706	gid_t rgid, egid, sgid;
 707
 708	rgid = from_kgid_munged(cred->user_ns, cred->gid);
 709	egid = from_kgid_munged(cred->user_ns, cred->egid);
 710	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 711
 712	if (!(retval   = put_user(rgid, rgidp)) &&
 713	    !(retval   = put_user(egid, egidp)))
 714		retval = put_user(sgid, sgidp);
 
 
 
 715
 716	return retval;
 717}
 718
 719
 720/*
 721 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 722 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 723 * whatever uid it wants to). It normally shadows "euid", except when
 724 * explicitly set by setfsuid() or for access..
 725 */
 726SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 727{
 728	const struct cred *old;
 729	struct cred *new;
 730	uid_t old_fsuid;
 731	kuid_t kuid;
 732
 733	old = current_cred();
 734	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 735
 736	kuid = make_kuid(old->user_ns, uid);
 737	if (!uid_valid(kuid))
 738		return old_fsuid;
 739
 740	new = prepare_creds();
 741	if (!new)
 742		return old_fsuid;
 743
 744	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 745	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 746	    ns_capable(old->user_ns, CAP_SETUID)) {
 747		if (!uid_eq(kuid, old->fsuid)) {
 748			new->fsuid = kuid;
 749			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 750				goto change_okay;
 751		}
 752	}
 753
 754	abort_creds(new);
 755	return old_fsuid;
 756
 757change_okay:
 758	commit_creds(new);
 759	return old_fsuid;
 760}
 761
 
 
 
 
 
 762/*
 763 * Samma på svenska..
 764 */
 765SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 766{
 767	const struct cred *old;
 768	struct cred *new;
 769	gid_t old_fsgid;
 770	kgid_t kgid;
 771
 772	old = current_cred();
 773	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 774
 775	kgid = make_kgid(old->user_ns, gid);
 776	if (!gid_valid(kgid))
 777		return old_fsgid;
 778
 779	new = prepare_creds();
 780	if (!new)
 781		return old_fsgid;
 782
 783	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 784	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 785	    ns_capable(old->user_ns, CAP_SETGID)) {
 786		if (!gid_eq(kgid, old->fsgid)) {
 787			new->fsgid = kgid;
 788			goto change_okay;
 
 789		}
 790	}
 791
 792	abort_creds(new);
 793	return old_fsgid;
 794
 795change_okay:
 796	commit_creds(new);
 797	return old_fsgid;
 798}
 799
 
 
 
 
 
 
 800/**
 801 * sys_getpid - return the thread group id of the current process
 802 *
 803 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 804 * the pid are identical unless CLONE_THREAD was specified on clone() in
 805 * which case the tgid is the same in all threads of the same group.
 806 *
 807 * This is SMP safe as current->tgid does not change.
 808 */
 809SYSCALL_DEFINE0(getpid)
 810{
 811	return task_tgid_vnr(current);
 812}
 813
 814/* Thread ID - the internal kernel "pid" */
 815SYSCALL_DEFINE0(gettid)
 816{
 817	return task_pid_vnr(current);
 818}
 819
 820/*
 821 * Accessing ->real_parent is not SMP-safe, it could
 822 * change from under us. However, we can use a stale
 823 * value of ->real_parent under rcu_read_lock(), see
 824 * release_task()->call_rcu(delayed_put_task_struct).
 825 */
 826SYSCALL_DEFINE0(getppid)
 827{
 828	int pid;
 829
 830	rcu_read_lock();
 831	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 832	rcu_read_unlock();
 833
 834	return pid;
 835}
 836
 837SYSCALL_DEFINE0(getuid)
 838{
 839	/* Only we change this so SMP safe */
 840	return from_kuid_munged(current_user_ns(), current_uid());
 841}
 842
 843SYSCALL_DEFINE0(geteuid)
 844{
 845	/* Only we change this so SMP safe */
 846	return from_kuid_munged(current_user_ns(), current_euid());
 847}
 848
 849SYSCALL_DEFINE0(getgid)
 850{
 851	/* Only we change this so SMP safe */
 852	return from_kgid_munged(current_user_ns(), current_gid());
 853}
 854
 855SYSCALL_DEFINE0(getegid)
 856{
 857	/* Only we change this so SMP safe */
 858	return from_kgid_munged(current_user_ns(), current_egid());
 859}
 860
 861void do_sys_times(struct tms *tms)
 862{
 863	cputime_t tgutime, tgstime, cutime, cstime;
 864
 865	spin_lock_irq(&current->sighand->siglock);
 866	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 867	cutime = current->signal->cutime;
 868	cstime = current->signal->cstime;
 869	spin_unlock_irq(&current->sighand->siglock);
 870	tms->tms_utime = cputime_to_clock_t(tgutime);
 871	tms->tms_stime = cputime_to_clock_t(tgstime);
 872	tms->tms_cutime = cputime_to_clock_t(cutime);
 873	tms->tms_cstime = cputime_to_clock_t(cstime);
 874}
 875
 876SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 877{
 878	if (tbuf) {
 879		struct tms tmp;
 880
 881		do_sys_times(&tmp);
 882		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 883			return -EFAULT;
 884	}
 885	force_successful_syscall_return();
 886	return (long) jiffies_64_to_clock_t(get_jiffies_64());
 887}
 888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889/*
 890 * This needs some heavy checking ...
 891 * I just haven't the stomach for it. I also don't fully
 892 * understand sessions/pgrp etc. Let somebody who does explain it.
 893 *
 894 * OK, I think I have the protection semantics right.... this is really
 895 * only important on a multi-user system anyway, to make sure one user
 896 * can't send a signal to a process owned by another.  -TYT, 12/12/91
 897 *
 898 * !PF_FORKNOEXEC check to conform completely to POSIX.
 899 */
 900SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 901{
 902	struct task_struct *p;
 903	struct task_struct *group_leader = current->group_leader;
 904	struct pid *pgrp;
 905	int err;
 906
 907	if (!pid)
 908		pid = task_pid_vnr(group_leader);
 909	if (!pgid)
 910		pgid = pid;
 911	if (pgid < 0)
 912		return -EINVAL;
 913	rcu_read_lock();
 914
 915	/* From this point forward we keep holding onto the tasklist lock
 916	 * so that our parent does not change from under us. -DaveM
 917	 */
 918	write_lock_irq(&tasklist_lock);
 919
 920	err = -ESRCH;
 921	p = find_task_by_vpid(pid);
 922	if (!p)
 923		goto out;
 924
 925	err = -EINVAL;
 926	if (!thread_group_leader(p))
 927		goto out;
 928
 929	if (same_thread_group(p->real_parent, group_leader)) {
 930		err = -EPERM;
 931		if (task_session(p) != task_session(group_leader))
 932			goto out;
 933		err = -EACCES;
 934		if (!(p->flags & PF_FORKNOEXEC))
 935			goto out;
 936	} else {
 937		err = -ESRCH;
 938		if (p != group_leader)
 939			goto out;
 940	}
 941
 942	err = -EPERM;
 943	if (p->signal->leader)
 944		goto out;
 945
 946	pgrp = task_pid(p);
 947	if (pgid != pid) {
 948		struct task_struct *g;
 949
 950		pgrp = find_vpid(pgid);
 951		g = pid_task(pgrp, PIDTYPE_PGID);
 952		if (!g || task_session(g) != task_session(group_leader))
 953			goto out;
 954	}
 955
 956	err = security_task_setpgid(p, pgid);
 957	if (err)
 958		goto out;
 959
 960	if (task_pgrp(p) != pgrp)
 961		change_pid(p, PIDTYPE_PGID, pgrp);
 962
 963	err = 0;
 964out:
 965	/* All paths lead to here, thus we are safe. -DaveM */
 966	write_unlock_irq(&tasklist_lock);
 967	rcu_read_unlock();
 968	return err;
 969}
 970
 971SYSCALL_DEFINE1(getpgid, pid_t, pid)
 972{
 973	struct task_struct *p;
 974	struct pid *grp;
 975	int retval;
 976
 977	rcu_read_lock();
 978	if (!pid)
 979		grp = task_pgrp(current);
 980	else {
 981		retval = -ESRCH;
 982		p = find_task_by_vpid(pid);
 983		if (!p)
 984			goto out;
 985		grp = task_pgrp(p);
 986		if (!grp)
 987			goto out;
 988
 989		retval = security_task_getpgid(p);
 990		if (retval)
 991			goto out;
 992	}
 993	retval = pid_vnr(grp);
 994out:
 995	rcu_read_unlock();
 996	return retval;
 997}
 998
 
 
 
 
 
 999#ifdef __ARCH_WANT_SYS_GETPGRP
1000
1001SYSCALL_DEFINE0(getpgrp)
1002{
1003	return sys_getpgid(0);
1004}
1005
1006#endif
1007
1008SYSCALL_DEFINE1(getsid, pid_t, pid)
1009{
1010	struct task_struct *p;
1011	struct pid *sid;
1012	int retval;
1013
1014	rcu_read_lock();
1015	if (!pid)
1016		sid = task_session(current);
1017	else {
1018		retval = -ESRCH;
1019		p = find_task_by_vpid(pid);
1020		if (!p)
1021			goto out;
1022		sid = task_session(p);
1023		if (!sid)
1024			goto out;
1025
1026		retval = security_task_getsid(p);
1027		if (retval)
1028			goto out;
1029	}
1030	retval = pid_vnr(sid);
1031out:
1032	rcu_read_unlock();
1033	return retval;
1034}
1035
1036static void set_special_pids(struct pid *pid)
1037{
1038	struct task_struct *curr = current->group_leader;
1039
1040	if (task_session(curr) != pid)
1041		change_pid(curr, PIDTYPE_SID, pid);
1042
1043	if (task_pgrp(curr) != pid)
1044		change_pid(curr, PIDTYPE_PGID, pid);
1045}
1046
1047SYSCALL_DEFINE0(setsid)
1048{
1049	struct task_struct *group_leader = current->group_leader;
1050	struct pid *sid = task_pid(group_leader);
1051	pid_t session = pid_vnr(sid);
1052	int err = -EPERM;
1053
1054	write_lock_irq(&tasklist_lock);
1055	/* Fail if I am already a session leader */
1056	if (group_leader->signal->leader)
1057		goto out;
1058
1059	/* Fail if a process group id already exists that equals the
1060	 * proposed session id.
1061	 */
1062	if (pid_task(sid, PIDTYPE_PGID))
1063		goto out;
1064
1065	group_leader->signal->leader = 1;
1066	set_special_pids(sid);
1067
1068	proc_clear_tty(group_leader);
1069
1070	err = session;
1071out:
1072	write_unlock_irq(&tasklist_lock);
1073	if (err > 0) {
1074		proc_sid_connector(group_leader);
1075		sched_autogroup_create_attach(group_leader);
1076	}
1077	return err;
1078}
1079
 
 
 
 
 
1080DECLARE_RWSEM(uts_sem);
1081
1082#ifdef COMPAT_UTS_MACHINE
1083#define override_architecture(name) \
1084	(personality(current->personality) == PER_LINUX32 && \
1085	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1086		      sizeof(COMPAT_UTS_MACHINE)))
1087#else
1088#define override_architecture(name)	0
1089#endif
1090
1091/*
1092 * Work around broken programs that cannot handle "Linux 3.0".
1093 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
 
 
1094 */
1095static int override_release(char __user *release, size_t len)
1096{
1097	int ret = 0;
1098
1099	if (current->personality & UNAME26) {
1100		const char *rest = UTS_RELEASE;
1101		char buf[65] = { 0 };
1102		int ndots = 0;
1103		unsigned v;
1104		size_t copy;
1105
1106		while (*rest) {
1107			if (*rest == '.' && ++ndots >= 3)
1108				break;
1109			if (!isdigit(*rest) && *rest != '.')
1110				break;
1111			rest++;
1112		}
1113		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1114		copy = clamp_t(size_t, len, 1, sizeof(buf));
1115		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1116		ret = copy_to_user(release, buf, copy + 1);
1117	}
1118	return ret;
1119}
1120
1121SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1122{
1123	int errno = 0;
1124
1125	down_read(&uts_sem);
1126	if (copy_to_user(name, utsname(), sizeof *name))
1127		errno = -EFAULT;
1128	up_read(&uts_sem);
 
 
1129
1130	if (!errno && override_release(name->release, sizeof(name->release)))
1131		errno = -EFAULT;
1132	if (!errno && override_architecture(name))
1133		errno = -EFAULT;
1134	return errno;
1135}
1136
1137#ifdef __ARCH_WANT_SYS_OLD_UNAME
1138/*
1139 * Old cruft
1140 */
1141SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1142{
1143	int error = 0;
1144
1145	if (!name)
1146		return -EFAULT;
1147
1148	down_read(&uts_sem);
1149	if (copy_to_user(name, utsname(), sizeof(*name)))
1150		error = -EFAULT;
1151	up_read(&uts_sem);
 
 
1152
1153	if (!error && override_release(name->release, sizeof(name->release)))
1154		error = -EFAULT;
1155	if (!error && override_architecture(name))
1156		error = -EFAULT;
1157	return error;
1158}
1159
1160SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1161{
1162	int error;
1163
1164	if (!name)
1165		return -EFAULT;
1166	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1167		return -EFAULT;
1168
1169	down_read(&uts_sem);
1170	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1171			       __OLD_UTS_LEN);
1172	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1173	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1174				__OLD_UTS_LEN);
1175	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1176	error |= __copy_to_user(&name->release, &utsname()->release,
1177				__OLD_UTS_LEN);
1178	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1179	error |= __copy_to_user(&name->version, &utsname()->version,
1180				__OLD_UTS_LEN);
1181	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1182	error |= __copy_to_user(&name->machine, &utsname()->machine,
1183				__OLD_UTS_LEN);
1184	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1185	up_read(&uts_sem);
 
 
1186
1187	if (!error && override_architecture(name))
1188		error = -EFAULT;
1189	if (!error && override_release(name->release, sizeof(name->release)))
1190		error = -EFAULT;
1191	return error ? -EFAULT : 0;
1192}
1193#endif
1194
1195SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1196{
1197	int errno;
1198	char tmp[__NEW_UTS_LEN];
1199
1200	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1201		return -EPERM;
1202
1203	if (len < 0 || len > __NEW_UTS_LEN)
1204		return -EINVAL;
1205	down_write(&uts_sem);
1206	errno = -EFAULT;
1207	if (!copy_from_user(tmp, name, len)) {
1208		struct new_utsname *u = utsname();
1209
 
 
 
1210		memcpy(u->nodename, tmp, len);
1211		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1212		errno = 0;
1213		uts_proc_notify(UTS_PROC_HOSTNAME);
 
1214	}
1215	up_write(&uts_sem);
1216	return errno;
1217}
1218
1219#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1220
1221SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1222{
1223	int i, errno;
1224	struct new_utsname *u;
 
1225
1226	if (len < 0)
1227		return -EINVAL;
1228	down_read(&uts_sem);
1229	u = utsname();
1230	i = 1 + strlen(u->nodename);
1231	if (i > len)
1232		i = len;
1233	errno = 0;
1234	if (copy_to_user(name, u->nodename, i))
1235		errno = -EFAULT;
1236	up_read(&uts_sem);
1237	return errno;
 
 
1238}
1239
1240#endif
1241
1242/*
1243 * Only setdomainname; getdomainname can be implemented by calling
1244 * uname()
1245 */
1246SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1247{
1248	int errno;
1249	char tmp[__NEW_UTS_LEN];
1250
1251	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1252		return -EPERM;
1253	if (len < 0 || len > __NEW_UTS_LEN)
1254		return -EINVAL;
1255
1256	down_write(&uts_sem);
1257	errno = -EFAULT;
1258	if (!copy_from_user(tmp, name, len)) {
1259		struct new_utsname *u = utsname();
1260
 
 
 
1261		memcpy(u->domainname, tmp, len);
1262		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1263		errno = 0;
1264		uts_proc_notify(UTS_PROC_DOMAINNAME);
 
1265	}
1266	up_write(&uts_sem);
1267	return errno;
1268}
1269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1271{
1272	struct rlimit value;
1273	int ret;
1274
1275	ret = do_prlimit(current, resource, NULL, &value);
1276	if (!ret)
1277		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1278
1279	return ret;
1280}
1281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1283
1284/*
1285 *	Back compatibility for getrlimit. Needed for some apps.
1286 */
1287 
1288SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1289		struct rlimit __user *, rlim)
1290{
1291	struct rlimit x;
1292	if (resource >= RLIM_NLIMITS)
1293		return -EINVAL;
1294
 
1295	task_lock(current->group_leader);
1296	x = current->signal->rlim[resource];
1297	task_unlock(current->group_leader);
1298	if (x.rlim_cur > 0x7FFFFFFF)
1299		x.rlim_cur = 0x7FFFFFFF;
1300	if (x.rlim_max > 0x7FFFFFFF)
1301		x.rlim_max = 0x7FFFFFFF;
1302	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303}
 
1304
1305#endif
1306
1307static inline bool rlim64_is_infinity(__u64 rlim64)
1308{
1309#if BITS_PER_LONG < 64
1310	return rlim64 >= ULONG_MAX;
1311#else
1312	return rlim64 == RLIM64_INFINITY;
1313#endif
1314}
1315
1316static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1317{
1318	if (rlim->rlim_cur == RLIM_INFINITY)
1319		rlim64->rlim_cur = RLIM64_INFINITY;
1320	else
1321		rlim64->rlim_cur = rlim->rlim_cur;
1322	if (rlim->rlim_max == RLIM_INFINITY)
1323		rlim64->rlim_max = RLIM64_INFINITY;
1324	else
1325		rlim64->rlim_max = rlim->rlim_max;
1326}
1327
1328static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1329{
1330	if (rlim64_is_infinity(rlim64->rlim_cur))
1331		rlim->rlim_cur = RLIM_INFINITY;
1332	else
1333		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1334	if (rlim64_is_infinity(rlim64->rlim_max))
1335		rlim->rlim_max = RLIM_INFINITY;
1336	else
1337		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1338}
1339
1340/* make sure you are allowed to change @tsk limits before calling this */
1341int do_prlimit(struct task_struct *tsk, unsigned int resource,
1342		struct rlimit *new_rlim, struct rlimit *old_rlim)
1343{
1344	struct rlimit *rlim;
1345	int retval = 0;
1346
1347	if (resource >= RLIM_NLIMITS)
1348		return -EINVAL;
1349	if (new_rlim) {
1350		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1351			return -EINVAL;
1352		if (resource == RLIMIT_NOFILE &&
1353				new_rlim->rlim_max > sysctl_nr_open)
1354			return -EPERM;
1355	}
1356
1357	/* protect tsk->signal and tsk->sighand from disappearing */
1358	read_lock(&tasklist_lock);
1359	if (!tsk->sighand) {
1360		retval = -ESRCH;
1361		goto out;
1362	}
1363
1364	rlim = tsk->signal->rlim + resource;
1365	task_lock(tsk->group_leader);
1366	if (new_rlim) {
1367		/* Keep the capable check against init_user_ns until
1368		   cgroups can contain all limits */
1369		if (new_rlim->rlim_max > rlim->rlim_max &&
1370				!capable(CAP_SYS_RESOURCE))
1371			retval = -EPERM;
1372		if (!retval)
1373			retval = security_task_setrlimit(tsk->group_leader,
1374					resource, new_rlim);
1375		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1376			/*
1377			 * The caller is asking for an immediate RLIMIT_CPU
1378			 * expiry.  But we use the zero value to mean "it was
1379			 * never set".  So let's cheat and make it one second
1380			 * instead
1381			 */
1382			new_rlim->rlim_cur = 1;
1383		}
1384	}
1385	if (!retval) {
1386		if (old_rlim)
1387			*old_rlim = *rlim;
1388		if (new_rlim)
1389			*rlim = *new_rlim;
1390	}
1391	task_unlock(tsk->group_leader);
1392
1393	/*
1394	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1395	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1396	 * very long-standing error, and fixing it now risks breakage of
1397	 * applications, so we live with it
1398	 */
1399	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1400			 new_rlim->rlim_cur != RLIM_INFINITY)
1401		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1402out:
1403	read_unlock(&tasklist_lock);
1404	return retval;
1405}
1406
1407/* rcu lock must be held */
1408static int check_prlimit_permission(struct task_struct *task)
 
1409{
1410	const struct cred *cred = current_cred(), *tcred;
 
1411
1412	if (current == task)
1413		return 0;
1414
1415	tcred = __task_cred(task);
1416	if (uid_eq(cred->uid, tcred->euid) &&
1417	    uid_eq(cred->uid, tcred->suid) &&
1418	    uid_eq(cred->uid, tcred->uid)  &&
1419	    gid_eq(cred->gid, tcred->egid) &&
1420	    gid_eq(cred->gid, tcred->sgid) &&
1421	    gid_eq(cred->gid, tcred->gid))
1422		return 0;
1423	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1424		return 0;
1425
1426	return -EPERM;
1427}
1428
1429SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1430		const struct rlimit64 __user *, new_rlim,
1431		struct rlimit64 __user *, old_rlim)
1432{
1433	struct rlimit64 old64, new64;
1434	struct rlimit old, new;
1435	struct task_struct *tsk;
 
1436	int ret;
1437
 
 
 
1438	if (new_rlim) {
1439		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1440			return -EFAULT;
1441		rlim64_to_rlim(&new64, &new);
 
1442	}
1443
1444	rcu_read_lock();
1445	tsk = pid ? find_task_by_vpid(pid) : current;
1446	if (!tsk) {
1447		rcu_read_unlock();
1448		return -ESRCH;
1449	}
1450	ret = check_prlimit_permission(tsk);
1451	if (ret) {
1452		rcu_read_unlock();
1453		return ret;
1454	}
1455	get_task_struct(tsk);
1456	rcu_read_unlock();
1457
1458	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1459			old_rlim ? &old : NULL);
1460
1461	if (!ret && old_rlim) {
1462		rlim_to_rlim64(&old, &old64);
1463		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1464			ret = -EFAULT;
1465	}
1466
1467	put_task_struct(tsk);
1468	return ret;
1469}
1470
1471SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1472{
1473	struct rlimit new_rlim;
1474
1475	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1476		return -EFAULT;
1477	return do_prlimit(current, resource, &new_rlim, NULL);
1478}
1479
1480/*
1481 * It would make sense to put struct rusage in the task_struct,
1482 * except that would make the task_struct be *really big*.  After
1483 * task_struct gets moved into malloc'ed memory, it would
1484 * make sense to do this.  It will make moving the rest of the information
1485 * a lot simpler!  (Which we're not doing right now because we're not
1486 * measuring them yet).
1487 *
1488 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1489 * races with threads incrementing their own counters.  But since word
1490 * reads are atomic, we either get new values or old values and we don't
1491 * care which for the sums.  We always take the siglock to protect reading
1492 * the c* fields from p->signal from races with exit.c updating those
1493 * fields when reaping, so a sample either gets all the additions of a
1494 * given child after it's reaped, or none so this sample is before reaping.
1495 *
1496 * Locking:
1497 * We need to take the siglock for CHILDEREN, SELF and BOTH
1498 * for  the cases current multithreaded, non-current single threaded
1499 * non-current multithreaded.  Thread traversal is now safe with
1500 * the siglock held.
1501 * Strictly speaking, we donot need to take the siglock if we are current and
1502 * single threaded,  as no one else can take our signal_struct away, no one
1503 * else can  reap the  children to update signal->c* counters, and no one else
1504 * can race with the signal-> fields. If we do not take any lock, the
1505 * signal-> fields could be read out of order while another thread was just
1506 * exiting. So we should  place a read memory barrier when we avoid the lock.
1507 * On the writer side,  write memory barrier is implied in  __exit_signal
1508 * as __exit_signal releases  the siglock spinlock after updating the signal->
1509 * fields. But we don't do this yet to keep things simple.
1510 *
1511 */
1512
1513static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1514{
1515	r->ru_nvcsw += t->nvcsw;
1516	r->ru_nivcsw += t->nivcsw;
1517	r->ru_minflt += t->min_flt;
1518	r->ru_majflt += t->maj_flt;
1519	r->ru_inblock += task_io_get_inblock(t);
1520	r->ru_oublock += task_io_get_oublock(t);
1521}
1522
1523static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1524{
1525	struct task_struct *t;
1526	unsigned long flags;
1527	cputime_t tgutime, tgstime, utime, stime;
1528	unsigned long maxrss = 0;
 
 
 
1529
1530	memset((char *) r, 0, sizeof *r);
 
1531	utime = stime = 0;
 
1532
1533	if (who == RUSAGE_THREAD) {
1534		task_cputime_adjusted(current, &utime, &stime);
1535		accumulate_thread_rusage(p, r);
1536		maxrss = p->signal->maxrss;
1537		goto out;
1538	}
1539
1540	if (!lock_task_sighand(p, &flags))
1541		return;
1542
1543	switch (who) {
1544		case RUSAGE_BOTH:
1545		case RUSAGE_CHILDREN:
1546			utime = p->signal->cutime;
1547			stime = p->signal->cstime;
1548			r->ru_nvcsw = p->signal->cnvcsw;
1549			r->ru_nivcsw = p->signal->cnivcsw;
1550			r->ru_minflt = p->signal->cmin_flt;
1551			r->ru_majflt = p->signal->cmaj_flt;
1552			r->ru_inblock = p->signal->cinblock;
1553			r->ru_oublock = p->signal->coublock;
1554			maxrss = p->signal->cmaxrss;
1555
1556			if (who == RUSAGE_CHILDREN)
1557				break;
1558
1559		case RUSAGE_SELF:
1560			thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1561			utime += tgutime;
1562			stime += tgstime;
1563			r->ru_nvcsw += p->signal->nvcsw;
1564			r->ru_nivcsw += p->signal->nivcsw;
1565			r->ru_minflt += p->signal->min_flt;
1566			r->ru_majflt += p->signal->maj_flt;
1567			r->ru_inblock += p->signal->inblock;
1568			r->ru_oublock += p->signal->oublock;
1569			if (maxrss < p->signal->maxrss)
1570				maxrss = p->signal->maxrss;
1571			t = p;
1572			do {
1573				accumulate_thread_rusage(t, r);
1574			} while_each_thread(p, t);
1575			break;
 
1576
1577		default:
1578			BUG();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1579	}
1580	unlock_task_sighand(p, &flags);
1581
1582out:
1583	cputime_to_timeval(utime, &r->ru_utime);
1584	cputime_to_timeval(stime, &r->ru_stime);
 
 
1585
1586	if (who != RUSAGE_CHILDREN) {
1587		struct mm_struct *mm = get_task_mm(p);
1588		if (mm) {
1589			setmax_mm_hiwater_rss(&maxrss, mm);
1590			mmput(mm);
1591		}
 
 
 
 
 
 
1592	}
 
 
1593	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
 
 
1594}
1595
1596int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1597{
1598	struct rusage r;
1599	k_getrusage(p, who, &r);
1600	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1601}
1602
1603SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1604{
1605	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1606	    who != RUSAGE_THREAD)
1607		return -EINVAL;
1608	return getrusage(current, who, ru);
 
 
1609}
1610
1611#ifdef CONFIG_COMPAT
1612COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1613{
1614	struct rusage r;
1615
1616	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1617	    who != RUSAGE_THREAD)
1618		return -EINVAL;
1619
1620	k_getrusage(current, who, &r);
1621	return put_compat_rusage(&r, ru);
1622}
1623#endif
1624
1625SYSCALL_DEFINE1(umask, int, mask)
1626{
1627	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1628	return mask;
1629}
1630
1631static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1632{
1633	struct fd exe;
1634	struct inode *inode;
1635	int err;
1636
1637	exe = fdget(fd);
1638	if (!exe.file)
1639		return -EBADF;
1640
1641	inode = file_inode(exe.file);
1642
1643	/*
1644	 * Because the original mm->exe_file points to executable file, make
1645	 * sure that this one is executable as well, to avoid breaking an
1646	 * overall picture.
1647	 */
1648	err = -EACCES;
1649	if (!S_ISREG(inode->i_mode)	||
1650	    exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1651		goto exit;
1652
1653	err = inode_permission(inode, MAY_EXEC);
1654	if (err)
1655		goto exit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1656
1657	down_write(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
1658
1659	/*
1660	 * Forbid mm->exe_file change if old file still mapped.
 
1661	 */
1662	err = -EBUSY;
1663	if (mm->exe_file) {
1664		struct vm_area_struct *vma;
1665
1666		for (vma = mm->mmap; vma; vma = vma->vm_next)
1667			if (vma->vm_file &&
1668			    path_equal(&vma->vm_file->f_path,
1669				       &mm->exe_file->f_path))
1670				goto exit_unlock;
1671	}
1672
1673	/*
1674	 * The symlink can be changed only once, just to disallow arbitrary
1675	 * transitions malicious software might bring in. This means one
1676	 * could make a snapshot over all processes running and monitor
1677	 * /proc/pid/exe changes to notice unusual activity if needed.
1678	 */
1679	err = -EPERM;
1680	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1681		goto exit_unlock;
 
 
 
 
 
 
 
 
1682
1683	err = 0;
1684	set_mm_exe_file(mm, exe.file);	/* this grabs a reference to exe.file */
1685exit_unlock:
1686	up_write(&mm->mmap_sem);
1687
1688exit:
1689	fdput(exe);
1690	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691}
1692
1693static int prctl_set_mm(int opt, unsigned long addr,
1694			unsigned long arg4, unsigned long arg5)
1695{
1696	unsigned long rlim = rlimit(RLIMIT_DATA);
1697	struct mm_struct *mm = current->mm;
 
 
 
 
 
1698	struct vm_area_struct *vma;
1699	int error;
1700
1701	if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
 
 
1702		return -EINVAL;
1703
 
 
 
 
 
1704	if (!capable(CAP_SYS_RESOURCE))
1705		return -EPERM;
1706
1707	if (opt == PR_SET_MM_EXE_FILE)
1708		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1709
 
 
 
1710	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1711		return -EINVAL;
1712
1713	error = -EINVAL;
1714
1715	down_read(&mm->mmap_sem);
 
 
 
 
 
1716	vma = find_vma(mm, addr);
1717
 
 
 
 
 
 
 
 
 
 
 
 
 
1718	switch (opt) {
1719	case PR_SET_MM_START_CODE:
1720		mm->start_code = addr;
1721		break;
1722	case PR_SET_MM_END_CODE:
1723		mm->end_code = addr;
1724		break;
1725	case PR_SET_MM_START_DATA:
1726		mm->start_data = addr;
1727		break;
1728	case PR_SET_MM_END_DATA:
1729		mm->end_data = addr;
 
 
 
1730		break;
1731
1732	case PR_SET_MM_START_BRK:
1733		if (addr <= mm->end_data)
1734			goto out;
1735
1736		if (rlim < RLIM_INFINITY &&
1737		    (mm->brk - addr) +
1738		    (mm->end_data - mm->start_data) > rlim)
1739			goto out;
1740
1741		mm->start_brk = addr;
1742		break;
1743
1744	case PR_SET_MM_BRK:
1745		if (addr <= mm->end_data)
1746			goto out;
1747
1748		if (rlim < RLIM_INFINITY &&
1749		    (addr - mm->start_brk) +
1750		    (mm->end_data - mm->start_data) > rlim)
1751			goto out;
1752
1753		mm->brk = addr;
1754		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755
 
 
 
 
 
1756	/*
1757	 * If command line arguments and environment
1758	 * are placed somewhere else on stack, we can
1759	 * set them up here, ARG_START/END to setup
1760	 * command line argumets and ENV_START/END
1761	 * for environment.
1762	 */
1763	case PR_SET_MM_START_STACK:
1764	case PR_SET_MM_ARG_START:
1765	case PR_SET_MM_ARG_END:
1766	case PR_SET_MM_ENV_START:
1767	case PR_SET_MM_ENV_END:
1768		if (!vma) {
1769			error = -EFAULT;
1770			goto out;
1771		}
1772		if (opt == PR_SET_MM_START_STACK)
1773			mm->start_stack = addr;
1774		else if (opt == PR_SET_MM_ARG_START)
1775			mm->arg_start = addr;
1776		else if (opt == PR_SET_MM_ARG_END)
1777			mm->arg_end = addr;
1778		else if (opt == PR_SET_MM_ENV_START)
1779			mm->env_start = addr;
1780		else if (opt == PR_SET_MM_ENV_END)
1781			mm->env_end = addr;
1782		break;
1783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784	/*
1785	 * This doesn't move auxiliary vector itself
1786	 * since it's pinned to mm_struct, but allow
1787	 * to fill vector with new values. It's up
1788	 * to a caller to provide sane values here
1789	 * otherwise user space tools which use this
1790	 * vector might be unhappy.
1791	 */
1792	case PR_SET_MM_AUXV: {
1793		unsigned long user_auxv[AT_VECTOR_SIZE];
 
1794
1795		if (arg4 > sizeof(user_auxv))
1796			goto out;
1797		up_read(&mm->mmap_sem);
1798
1799		if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1800			return -EFAULT;
 
 
1801
1802		/* Make sure the last entry is always AT_NULL */
1803		user_auxv[AT_VECTOR_SIZE - 2] = 0;
1804		user_auxv[AT_VECTOR_SIZE - 1] = 0;
1805
1806		BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1807
1808		task_lock(current);
1809		memcpy(mm->saved_auxv, user_auxv, arg4);
1810		task_unlock(current);
1811
1812		return 0;
1813	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1814	default:
1815		goto out;
1816	}
1817
1818	error = 0;
1819out:
1820	up_read(&mm->mmap_sem);
1821	return error;
1822}
1823
1824#ifdef CONFIG_CHECKPOINT_RESTORE
1825static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
 
1826{
1827	return put_user(me->clear_child_tid, tid_addr);
1828}
1829#else
1830static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
 
1831{
1832	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833}
1834#endif
1835
1836SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1837		unsigned long, arg4, unsigned long, arg5)
1838{
1839	struct task_struct *me = current;
1840	unsigned char comm[sizeof(me->comm)];
1841	long error;
1842
1843	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1844	if (error != -ENOSYS)
1845		return error;
1846
1847	error = 0;
1848	switch (option) {
1849	case PR_SET_PDEATHSIG:
1850		if (!valid_signal(arg2)) {
1851			error = -EINVAL;
1852			break;
1853		}
1854		me->pdeath_signal = arg2;
1855		break;
1856	case PR_GET_PDEATHSIG:
1857		error = put_user(me->pdeath_signal, (int __user *)arg2);
1858		break;
1859	case PR_GET_DUMPABLE:
1860		error = get_dumpable(me->mm);
1861		break;
1862	case PR_SET_DUMPABLE:
1863		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
1864			error = -EINVAL;
1865			break;
1866		}
1867		set_dumpable(me->mm, arg2);
1868		break;
1869
1870	case PR_SET_UNALIGN:
1871		error = SET_UNALIGN_CTL(me, arg2);
1872		break;
1873	case PR_GET_UNALIGN:
1874		error = GET_UNALIGN_CTL(me, arg2);
1875		break;
1876	case PR_SET_FPEMU:
1877		error = SET_FPEMU_CTL(me, arg2);
1878		break;
1879	case PR_GET_FPEMU:
1880		error = GET_FPEMU_CTL(me, arg2);
1881		break;
1882	case PR_SET_FPEXC:
1883		error = SET_FPEXC_CTL(me, arg2);
1884		break;
1885	case PR_GET_FPEXC:
1886		error = GET_FPEXC_CTL(me, arg2);
1887		break;
1888	case PR_GET_TIMING:
1889		error = PR_TIMING_STATISTICAL;
1890		break;
1891	case PR_SET_TIMING:
1892		if (arg2 != PR_TIMING_STATISTICAL)
1893			error = -EINVAL;
1894		break;
1895	case PR_SET_NAME:
1896		comm[sizeof(me->comm) - 1] = 0;
1897		if (strncpy_from_user(comm, (char __user *)arg2,
1898				      sizeof(me->comm) - 1) < 0)
1899			return -EFAULT;
1900		set_task_comm(me, comm);
1901		proc_comm_connector(me);
1902		break;
1903	case PR_GET_NAME:
1904		get_task_comm(comm, me);
1905		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
1906			return -EFAULT;
1907		break;
1908	case PR_GET_ENDIAN:
1909		error = GET_ENDIAN(me, arg2);
1910		break;
1911	case PR_SET_ENDIAN:
1912		error = SET_ENDIAN(me, arg2);
1913		break;
1914	case PR_GET_SECCOMP:
1915		error = prctl_get_seccomp();
1916		break;
1917	case PR_SET_SECCOMP:
1918		error = prctl_set_seccomp(arg2, (char __user *)arg3);
1919		break;
1920	case PR_GET_TSC:
1921		error = GET_TSC_CTL(arg2);
1922		break;
1923	case PR_SET_TSC:
1924		error = SET_TSC_CTL(arg2);
1925		break;
1926	case PR_TASK_PERF_EVENTS_DISABLE:
1927		error = perf_event_task_disable();
1928		break;
1929	case PR_TASK_PERF_EVENTS_ENABLE:
1930		error = perf_event_task_enable();
1931		break;
1932	case PR_GET_TIMERSLACK:
1933		error = current->timer_slack_ns;
 
 
 
1934		break;
1935	case PR_SET_TIMERSLACK:
 
 
1936		if (arg2 <= 0)
1937			current->timer_slack_ns =
1938					current->default_timer_slack_ns;
1939		else
1940			current->timer_slack_ns = arg2;
1941		break;
1942	case PR_MCE_KILL:
1943		if (arg4 | arg5)
1944			return -EINVAL;
1945		switch (arg2) {
1946		case PR_MCE_KILL_CLEAR:
1947			if (arg3 != 0)
1948				return -EINVAL;
1949			current->flags &= ~PF_MCE_PROCESS;
1950			break;
1951		case PR_MCE_KILL_SET:
1952			current->flags |= PF_MCE_PROCESS;
1953			if (arg3 == PR_MCE_KILL_EARLY)
1954				current->flags |= PF_MCE_EARLY;
1955			else if (arg3 == PR_MCE_KILL_LATE)
1956				current->flags &= ~PF_MCE_EARLY;
1957			else if (arg3 == PR_MCE_KILL_DEFAULT)
1958				current->flags &=
1959						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1960			else
1961				return -EINVAL;
1962			break;
1963		default:
1964			return -EINVAL;
1965		}
1966		break;
1967	case PR_MCE_KILL_GET:
1968		if (arg2 | arg3 | arg4 | arg5)
1969			return -EINVAL;
1970		if (current->flags & PF_MCE_PROCESS)
1971			error = (current->flags & PF_MCE_EARLY) ?
1972				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1973		else
1974			error = PR_MCE_KILL_DEFAULT;
1975		break;
1976	case PR_SET_MM:
1977		error = prctl_set_mm(arg2, arg3, arg4, arg5);
1978		break;
1979	case PR_GET_TID_ADDRESS:
1980		error = prctl_get_tid_address(me, (int __user **)arg2);
1981		break;
1982	case PR_SET_CHILD_SUBREAPER:
1983		me->signal->is_child_subreaper = !!arg2;
 
 
 
 
1984		break;
1985	case PR_GET_CHILD_SUBREAPER:
1986		error = put_user(me->signal->is_child_subreaper,
1987				 (int __user *)arg2);
1988		break;
1989	case PR_SET_NO_NEW_PRIVS:
1990		if (arg2 != 1 || arg3 || arg4 || arg5)
1991			return -EINVAL;
1992
1993		current->no_new_privs = 1;
1994		break;
1995	case PR_GET_NO_NEW_PRIVS:
1996		if (arg2 || arg3 || arg4 || arg5)
1997			return -EINVAL;
1998		return current->no_new_privs ? 1 : 0;
1999	case PR_GET_THP_DISABLE:
2000		if (arg2 || arg3 || arg4 || arg5)
2001			return -EINVAL;
2002		error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2003		break;
2004	case PR_SET_THP_DISABLE:
2005		if (arg3 || arg4 || arg5)
2006			return -EINVAL;
2007		down_write(&me->mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2008		if (arg2)
2009			me->mm->def_flags |= VM_NOHUGEPAGE;
2010		else
2011			me->mm->def_flags &= ~VM_NOHUGEPAGE;
2012		up_write(&me->mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2013		break;
2014	default:
2015		error = -EINVAL;
2016		break;
2017	}
2018	return error;
2019}
2020
2021SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2022		struct getcpu_cache __user *, unused)
2023{
2024	int err = 0;
2025	int cpu = raw_smp_processor_id();
 
2026	if (cpup)
2027		err |= put_user(cpu, cpup);
2028	if (nodep)
2029		err |= put_user(cpu_to_node(cpu), nodep);
2030	return err ? -EFAULT : 0;
2031}
2032
2033/**
2034 * do_sysinfo - fill in sysinfo struct
2035 * @info: pointer to buffer to fill
2036 */
2037static int do_sysinfo(struct sysinfo *info)
2038{
2039	unsigned long mem_total, sav_total;
2040	unsigned int mem_unit, bitcount;
2041	struct timespec tp;
2042
2043	memset(info, 0, sizeof(struct sysinfo));
2044
2045	get_monotonic_boottime(&tp);
 
2046	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2047
2048	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2049
2050	info->procs = nr_threads;
2051
2052	si_meminfo(info);
2053	si_swapinfo(info);
2054
2055	/*
2056	 * If the sum of all the available memory (i.e. ram + swap)
2057	 * is less than can be stored in a 32 bit unsigned long then
2058	 * we can be binary compatible with 2.2.x kernels.  If not,
2059	 * well, in that case 2.2.x was broken anyways...
2060	 *
2061	 *  -Erik Andersen <andersee@debian.org>
2062	 */
2063
2064	mem_total = info->totalram + info->totalswap;
2065	if (mem_total < info->totalram || mem_total < info->totalswap)
2066		goto out;
2067	bitcount = 0;
2068	mem_unit = info->mem_unit;
2069	while (mem_unit > 1) {
2070		bitcount++;
2071		mem_unit >>= 1;
2072		sav_total = mem_total;
2073		mem_total <<= 1;
2074		if (mem_total < sav_total)
2075			goto out;
2076	}
2077
2078	/*
2079	 * If mem_total did not overflow, multiply all memory values by
2080	 * info->mem_unit and set it to 1.  This leaves things compatible
2081	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2082	 * kernels...
2083	 */
2084
2085	info->mem_unit = 1;
2086	info->totalram <<= bitcount;
2087	info->freeram <<= bitcount;
2088	info->sharedram <<= bitcount;
2089	info->bufferram <<= bitcount;
2090	info->totalswap <<= bitcount;
2091	info->freeswap <<= bitcount;
2092	info->totalhigh <<= bitcount;
2093	info->freehigh <<= bitcount;
2094
2095out:
2096	return 0;
2097}
2098
2099SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2100{
2101	struct sysinfo val;
2102
2103	do_sysinfo(&val);
2104
2105	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2106		return -EFAULT;
2107
2108	return 0;
2109}
2110
2111#ifdef CONFIG_COMPAT
2112struct compat_sysinfo {
2113	s32 uptime;
2114	u32 loads[3];
2115	u32 totalram;
2116	u32 freeram;
2117	u32 sharedram;
2118	u32 bufferram;
2119	u32 totalswap;
2120	u32 freeswap;
2121	u16 procs;
2122	u16 pad;
2123	u32 totalhigh;
2124	u32 freehigh;
2125	u32 mem_unit;
2126	char _f[20-2*sizeof(u32)-sizeof(int)];
2127};
2128
2129COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2130{
2131	struct sysinfo s;
 
2132
2133	do_sysinfo(&s);
2134
2135	/* Check to see if any memory value is too large for 32-bit and scale
2136	 *  down if needed
2137	 */
2138	if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2139		int bitcount = 0;
2140
2141		while (s.mem_unit < PAGE_SIZE) {
2142			s.mem_unit <<= 1;
2143			bitcount++;
2144		}
2145
2146		s.totalram >>= bitcount;
2147		s.freeram >>= bitcount;
2148		s.sharedram >>= bitcount;
2149		s.bufferram >>= bitcount;
2150		s.totalswap >>= bitcount;
2151		s.freeswap >>= bitcount;
2152		s.totalhigh >>= bitcount;
2153		s.freehigh >>= bitcount;
2154	}
2155
2156	if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2157	    __put_user(s.uptime, &info->uptime) ||
2158	    __put_user(s.loads[0], &info->loads[0]) ||
2159	    __put_user(s.loads[1], &info->loads[1]) ||
2160	    __put_user(s.loads[2], &info->loads[2]) ||
2161	    __put_user(s.totalram, &info->totalram) ||
2162	    __put_user(s.freeram, &info->freeram) ||
2163	    __put_user(s.sharedram, &info->sharedram) ||
2164	    __put_user(s.bufferram, &info->bufferram) ||
2165	    __put_user(s.totalswap, &info->totalswap) ||
2166	    __put_user(s.freeswap, &info->freeswap) ||
2167	    __put_user(s.procs, &info->procs) ||
2168	    __put_user(s.totalhigh, &info->totalhigh) ||
2169	    __put_user(s.freehigh, &info->freehigh) ||
2170	    __put_user(s.mem_unit, &info->mem_unit))
 
2171		return -EFAULT;
2172
2173	return 0;
2174}
2175#endif /* CONFIG_COMPAT */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/kernel/sys.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/mm.h>
  10#include <linux/mm_inline.h>
  11#include <linux/utsname.h>
  12#include <linux/mman.h>
  13#include <linux/reboot.h>
  14#include <linux/prctl.h>
  15#include <linux/highuid.h>
  16#include <linux/fs.h>
  17#include <linux/kmod.h>
  18#include <linux/ksm.h>
  19#include <linux/perf_event.h>
  20#include <linux/resource.h>
  21#include <linux/kernel.h>
  22#include <linux/workqueue.h>
  23#include <linux/capability.h>
  24#include <linux/device.h>
  25#include <linux/key.h>
  26#include <linux/times.h>
  27#include <linux/posix-timers.h>
  28#include <linux/security.h>
  29#include <linux/random.h>
  30#include <linux/suspend.h>
  31#include <linux/tty.h>
  32#include <linux/signal.h>
  33#include <linux/cn_proc.h>
  34#include <linux/getcpu.h>
  35#include <linux/task_io_accounting_ops.h>
  36#include <linux/seccomp.h>
  37#include <linux/cpu.h>
  38#include <linux/personality.h>
  39#include <linux/ptrace.h>
  40#include <linux/fs_struct.h>
  41#include <linux/file.h>
  42#include <linux/mount.h>
  43#include <linux/gfp.h>
  44#include <linux/syscore_ops.h>
  45#include <linux/version.h>
  46#include <linux/ctype.h>
  47#include <linux/syscall_user_dispatch.h>
  48
  49#include <linux/compat.h>
  50#include <linux/syscalls.h>
  51#include <linux/kprobes.h>
  52#include <linux/user_namespace.h>
  53#include <linux/time_namespace.h>
  54#include <linux/binfmts.h>
  55
  56#include <linux/sched.h>
  57#include <linux/sched/autogroup.h>
  58#include <linux/sched/loadavg.h>
  59#include <linux/sched/stat.h>
  60#include <linux/sched/mm.h>
  61#include <linux/sched/coredump.h>
  62#include <linux/sched/task.h>
  63#include <linux/sched/cputime.h>
  64#include <linux/rcupdate.h>
  65#include <linux/uidgid.h>
  66#include <linux/cred.h>
  67
  68#include <linux/nospec.h>
  69
  70#include <linux/kmsg_dump.h>
  71/* Move somewhere else to avoid recompiling? */
  72#include <generated/utsrelease.h>
  73
  74#include <linux/uaccess.h>
  75#include <asm/io.h>
  76#include <asm/unistd.h>
  77
  78#include "uid16.h"
  79
  80#ifndef SET_UNALIGN_CTL
  81# define SET_UNALIGN_CTL(a, b)	(-EINVAL)
  82#endif
  83#ifndef GET_UNALIGN_CTL
  84# define GET_UNALIGN_CTL(a, b)	(-EINVAL)
  85#endif
  86#ifndef SET_FPEMU_CTL
  87# define SET_FPEMU_CTL(a, b)	(-EINVAL)
  88#endif
  89#ifndef GET_FPEMU_CTL
  90# define GET_FPEMU_CTL(a, b)	(-EINVAL)
  91#endif
  92#ifndef SET_FPEXC_CTL
  93# define SET_FPEXC_CTL(a, b)	(-EINVAL)
  94#endif
  95#ifndef GET_FPEXC_CTL
  96# define GET_FPEXC_CTL(a, b)	(-EINVAL)
  97#endif
  98#ifndef GET_ENDIAN
  99# define GET_ENDIAN(a, b)	(-EINVAL)
 100#endif
 101#ifndef SET_ENDIAN
 102# define SET_ENDIAN(a, b)	(-EINVAL)
 103#endif
 104#ifndef GET_TSC_CTL
 105# define GET_TSC_CTL(a)		(-EINVAL)
 106#endif
 107#ifndef SET_TSC_CTL
 108# define SET_TSC_CTL(a)		(-EINVAL)
 109#endif
 110#ifndef GET_FP_MODE
 111# define GET_FP_MODE(a)		(-EINVAL)
 112#endif
 113#ifndef SET_FP_MODE
 114# define SET_FP_MODE(a,b)	(-EINVAL)
 115#endif
 116#ifndef SVE_SET_VL
 117# define SVE_SET_VL(a)		(-EINVAL)
 118#endif
 119#ifndef SVE_GET_VL
 120# define SVE_GET_VL()		(-EINVAL)
 121#endif
 122#ifndef SME_SET_VL
 123# define SME_SET_VL(a)		(-EINVAL)
 124#endif
 125#ifndef SME_GET_VL
 126# define SME_GET_VL()		(-EINVAL)
 127#endif
 128#ifndef PAC_RESET_KEYS
 129# define PAC_RESET_KEYS(a, b)	(-EINVAL)
 130#endif
 131#ifndef PAC_SET_ENABLED_KEYS
 132# define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
 133#endif
 134#ifndef PAC_GET_ENABLED_KEYS
 135# define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
 136#endif
 137#ifndef SET_TAGGED_ADDR_CTRL
 138# define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
 139#endif
 140#ifndef GET_TAGGED_ADDR_CTRL
 141# define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
 142#endif
 143#ifndef RISCV_V_SET_CONTROL
 144# define RISCV_V_SET_CONTROL(a)		(-EINVAL)
 145#endif
 146#ifndef RISCV_V_GET_CONTROL
 147# define RISCV_V_GET_CONTROL()		(-EINVAL)
 148#endif
 149#ifndef RISCV_SET_ICACHE_FLUSH_CTX
 150# define RISCV_SET_ICACHE_FLUSH_CTX(a, b)	(-EINVAL)
 151#endif
 152#ifndef PPC_GET_DEXCR_ASPECT
 153# define PPC_GET_DEXCR_ASPECT(a, b)	(-EINVAL)
 154#endif
 155#ifndef PPC_SET_DEXCR_ASPECT
 156# define PPC_SET_DEXCR_ASPECT(a, b, c)	(-EINVAL)
 157#endif
 158
 159/*
 160 * this is where the system-wide overflow UID and GID are defined, for
 161 * architectures that now have 32-bit UID/GID but didn't in the past
 162 */
 163
 164int overflowuid = DEFAULT_OVERFLOWUID;
 165int overflowgid = DEFAULT_OVERFLOWGID;
 166
 167EXPORT_SYMBOL(overflowuid);
 168EXPORT_SYMBOL(overflowgid);
 169
 170/*
 171 * the same as above, but for filesystems which can only store a 16-bit
 172 * UID and GID. as such, this is needed on all architectures
 173 */
 174
 175int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 176int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
 177
 178EXPORT_SYMBOL(fs_overflowuid);
 179EXPORT_SYMBOL(fs_overflowgid);
 180
 181/*
 182 * Returns true if current's euid is same as p's uid or euid,
 183 * or has CAP_SYS_NICE to p's user_ns.
 184 *
 185 * Called with rcu_read_lock, creds are safe
 186 */
 187static bool set_one_prio_perm(struct task_struct *p)
 188{
 189	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 190
 191	if (uid_eq(pcred->uid,  cred->euid) ||
 192	    uid_eq(pcred->euid, cred->euid))
 193		return true;
 194	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 195		return true;
 196	return false;
 197}
 198
 199/*
 200 * set the priority of a task
 201 * - the caller must hold the RCU read lock
 202 */
 203static int set_one_prio(struct task_struct *p, int niceval, int error)
 204{
 205	int no_nice;
 206
 207	if (!set_one_prio_perm(p)) {
 208		error = -EPERM;
 209		goto out;
 210	}
 211	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 212		error = -EACCES;
 213		goto out;
 214	}
 215	no_nice = security_task_setnice(p, niceval);
 216	if (no_nice) {
 217		error = no_nice;
 218		goto out;
 219	}
 220	if (error == -ESRCH)
 221		error = 0;
 222	set_user_nice(p, niceval);
 223out:
 224	return error;
 225}
 226
 227SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 228{
 229	struct task_struct *g, *p;
 230	struct user_struct *user;
 231	const struct cred *cred = current_cred();
 232	int error = -EINVAL;
 233	struct pid *pgrp;
 234	kuid_t uid;
 235
 236	if (which > PRIO_USER || which < PRIO_PROCESS)
 237		goto out;
 238
 239	/* normalize: avoid signed division (rounding problems) */
 240	error = -ESRCH;
 241	if (niceval < MIN_NICE)
 242		niceval = MIN_NICE;
 243	if (niceval > MAX_NICE)
 244		niceval = MAX_NICE;
 245
 246	rcu_read_lock();
 
 247	switch (which) {
 248	case PRIO_PROCESS:
 249		if (who)
 250			p = find_task_by_vpid(who);
 251		else
 252			p = current;
 253		if (p)
 254			error = set_one_prio(p, niceval, error);
 255		break;
 256	case PRIO_PGRP:
 257		if (who)
 258			pgrp = find_vpid(who);
 259		else
 260			pgrp = task_pgrp(current);
 261		read_lock(&tasklist_lock);
 262		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 263			error = set_one_prio(p, niceval, error);
 264		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 265		read_unlock(&tasklist_lock);
 266		break;
 267	case PRIO_USER:
 268		uid = make_kuid(cred->user_ns, who);
 269		user = cred->user;
 270		if (!who)
 271			uid = cred->uid;
 272		else if (!uid_eq(uid, cred->uid)) {
 273			user = find_user(uid);
 274			if (!user)
 275				goto out_unlock;	/* No processes for this user */
 276		}
 277		for_each_process_thread(g, p) {
 278			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
 279				error = set_one_prio(p, niceval, error);
 280		}
 281		if (!uid_eq(uid, cred->uid))
 282			free_uid(user);		/* For find_user() */
 283		break;
 284	}
 285out_unlock:
 
 286	rcu_read_unlock();
 287out:
 288	return error;
 289}
 290
 291/*
 292 * Ugh. To avoid negative return values, "getpriority()" will
 293 * not return the normal nice-value, but a negated value that
 294 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 295 * to stay compatible.
 296 */
 297SYSCALL_DEFINE2(getpriority, int, which, int, who)
 298{
 299	struct task_struct *g, *p;
 300	struct user_struct *user;
 301	const struct cred *cred = current_cred();
 302	long niceval, retval = -ESRCH;
 303	struct pid *pgrp;
 304	kuid_t uid;
 305
 306	if (which > PRIO_USER || which < PRIO_PROCESS)
 307		return -EINVAL;
 308
 309	rcu_read_lock();
 
 310	switch (which) {
 311	case PRIO_PROCESS:
 312		if (who)
 313			p = find_task_by_vpid(who);
 314		else
 315			p = current;
 316		if (p) {
 317			niceval = nice_to_rlimit(task_nice(p));
 318			if (niceval > retval)
 319				retval = niceval;
 320		}
 321		break;
 322	case PRIO_PGRP:
 323		if (who)
 324			pgrp = find_vpid(who);
 325		else
 326			pgrp = task_pgrp(current);
 327		read_lock(&tasklist_lock);
 328		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 329			niceval = nice_to_rlimit(task_nice(p));
 330			if (niceval > retval)
 331				retval = niceval;
 332		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 333		read_unlock(&tasklist_lock);
 334		break;
 335	case PRIO_USER:
 336		uid = make_kuid(cred->user_ns, who);
 337		user = cred->user;
 338		if (!who)
 339			uid = cred->uid;
 340		else if (!uid_eq(uid, cred->uid)) {
 341			user = find_user(uid);
 342			if (!user)
 343				goto out_unlock;	/* No processes for this user */
 344		}
 345		for_each_process_thread(g, p) {
 346			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
 347				niceval = nice_to_rlimit(task_nice(p));
 348				if (niceval > retval)
 349					retval = niceval;
 350			}
 351		}
 352		if (!uid_eq(uid, cred->uid))
 353			free_uid(user);		/* for find_user() */
 354		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355	}
 356out_unlock:
 
 357	rcu_read_unlock();
 358
 359	return retval;
 360}
 361
 362/*
 363 * Unprivileged users may change the real gid to the effective gid
 364 * or vice versa.  (BSD-style)
 365 *
 366 * If you set the real gid at all, or set the effective gid to a value not
 367 * equal to the real gid, then the saved gid is set to the new effective gid.
 368 *
 369 * This makes it possible for a setgid program to completely drop its
 370 * privileges, which is often a useful assertion to make when you are doing
 371 * a security audit over a program.
 372 *
 373 * The general idea is that a program which uses just setregid() will be
 374 * 100% compatible with BSD.  A program which uses just setgid() will be
 375 * 100% compatible with POSIX with saved IDs.
 376 *
 377 * SMP: There are not races, the GIDs are checked only by filesystem
 378 *      operations (as far as semantic preservation is concerned).
 379 */
 380#ifdef CONFIG_MULTIUSER
 381long __sys_setregid(gid_t rgid, gid_t egid)
 382{
 383	struct user_namespace *ns = current_user_ns();
 384	const struct cred *old;
 385	struct cred *new;
 386	int retval;
 387	kgid_t krgid, kegid;
 388
 389	krgid = make_kgid(ns, rgid);
 390	kegid = make_kgid(ns, egid);
 391
 392	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 393		return -EINVAL;
 394	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 395		return -EINVAL;
 396
 397	new = prepare_creds();
 398	if (!new)
 399		return -ENOMEM;
 400	old = current_cred();
 401
 402	retval = -EPERM;
 403	if (rgid != (gid_t) -1) {
 404		if (gid_eq(old->gid, krgid) ||
 405		    gid_eq(old->egid, krgid) ||
 406		    ns_capable_setid(old->user_ns, CAP_SETGID))
 407			new->gid = krgid;
 408		else
 409			goto error;
 410	}
 411	if (egid != (gid_t) -1) {
 412		if (gid_eq(old->gid, kegid) ||
 413		    gid_eq(old->egid, kegid) ||
 414		    gid_eq(old->sgid, kegid) ||
 415		    ns_capable_setid(old->user_ns, CAP_SETGID))
 416			new->egid = kegid;
 417		else
 418			goto error;
 419	}
 420
 421	if (rgid != (gid_t) -1 ||
 422	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 423		new->sgid = new->egid;
 424	new->fsgid = new->egid;
 425
 426	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
 427	if (retval < 0)
 428		goto error;
 429
 430	return commit_creds(new);
 431
 432error:
 433	abort_creds(new);
 434	return retval;
 435}
 436
 437SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 438{
 439	return __sys_setregid(rgid, egid);
 440}
 441
 442/*
 443 * setgid() is implemented like SysV w/ SAVED_IDS
 444 *
 445 * SMP: Same implicit races as above.
 446 */
 447long __sys_setgid(gid_t gid)
 448{
 449	struct user_namespace *ns = current_user_ns();
 450	const struct cred *old;
 451	struct cred *new;
 452	int retval;
 453	kgid_t kgid;
 454
 455	kgid = make_kgid(ns, gid);
 456	if (!gid_valid(kgid))
 457		return -EINVAL;
 458
 459	new = prepare_creds();
 460	if (!new)
 461		return -ENOMEM;
 462	old = current_cred();
 463
 464	retval = -EPERM;
 465	if (ns_capable_setid(old->user_ns, CAP_SETGID))
 466		new->gid = new->egid = new->sgid = new->fsgid = kgid;
 467	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 468		new->egid = new->fsgid = kgid;
 469	else
 470		goto error;
 471
 472	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
 473	if (retval < 0)
 474		goto error;
 475
 476	return commit_creds(new);
 477
 478error:
 479	abort_creds(new);
 480	return retval;
 481}
 482
 483SYSCALL_DEFINE1(setgid, gid_t, gid)
 484{
 485	return __sys_setgid(gid);
 486}
 487
 488/*
 489 * change the user struct in a credentials set to match the new UID
 490 */
 491static int set_user(struct cred *new)
 492{
 493	struct user_struct *new_user;
 494
 495	new_user = alloc_uid(new->uid);
 496	if (!new_user)
 497		return -EAGAIN;
 498
 499	free_uid(new->user);
 500	new->user = new_user;
 501	return 0;
 502}
 503
 504static void flag_nproc_exceeded(struct cred *new)
 505{
 506	if (new->ucounts == current_ucounts())
 507		return;
 508
 509	/*
 510	 * We don't fail in case of NPROC limit excess here because too many
 511	 * poorly written programs don't check set*uid() return code, assuming
 512	 * it never fails if called by root.  We may still enforce NPROC limit
 513	 * for programs doing set*uid()+execve() by harmlessly deferring the
 514	 * failure to the execve() stage.
 515	 */
 516	if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
 517			new->user != INIT_USER)
 518		current->flags |= PF_NPROC_EXCEEDED;
 519	else
 520		current->flags &= ~PF_NPROC_EXCEEDED;
 
 
 
 
 521}
 522
 523/*
 524 * Unprivileged users may change the real uid to the effective uid
 525 * or vice versa.  (BSD-style)
 526 *
 527 * If you set the real uid at all, or set the effective uid to a value not
 528 * equal to the real uid, then the saved uid is set to the new effective uid.
 529 *
 530 * This makes it possible for a setuid program to completely drop its
 531 * privileges, which is often a useful assertion to make when you are doing
 532 * a security audit over a program.
 533 *
 534 * The general idea is that a program which uses just setreuid() will be
 535 * 100% compatible with BSD.  A program which uses just setuid() will be
 536 * 100% compatible with POSIX with saved IDs.
 537 */
 538long __sys_setreuid(uid_t ruid, uid_t euid)
 539{
 540	struct user_namespace *ns = current_user_ns();
 541	const struct cred *old;
 542	struct cred *new;
 543	int retval;
 544	kuid_t kruid, keuid;
 545
 546	kruid = make_kuid(ns, ruid);
 547	keuid = make_kuid(ns, euid);
 548
 549	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 550		return -EINVAL;
 551	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 552		return -EINVAL;
 553
 554	new = prepare_creds();
 555	if (!new)
 556		return -ENOMEM;
 557	old = current_cred();
 558
 559	retval = -EPERM;
 560	if (ruid != (uid_t) -1) {
 561		new->uid = kruid;
 562		if (!uid_eq(old->uid, kruid) &&
 563		    !uid_eq(old->euid, kruid) &&
 564		    !ns_capable_setid(old->user_ns, CAP_SETUID))
 565			goto error;
 566	}
 567
 568	if (euid != (uid_t) -1) {
 569		new->euid = keuid;
 570		if (!uid_eq(old->uid, keuid) &&
 571		    !uid_eq(old->euid, keuid) &&
 572		    !uid_eq(old->suid, keuid) &&
 573		    !ns_capable_setid(old->user_ns, CAP_SETUID))
 574			goto error;
 575	}
 576
 577	if (!uid_eq(new->uid, old->uid)) {
 578		retval = set_user(new);
 579		if (retval < 0)
 580			goto error;
 581	}
 582	if (ruid != (uid_t) -1 ||
 583	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 584		new->suid = new->euid;
 585	new->fsuid = new->euid;
 586
 587	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 588	if (retval < 0)
 589		goto error;
 590
 591	retval = set_cred_ucounts(new);
 592	if (retval < 0)
 593		goto error;
 594
 595	flag_nproc_exceeded(new);
 596	return commit_creds(new);
 597
 598error:
 599	abort_creds(new);
 600	return retval;
 601}
 602
 603SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 604{
 605	return __sys_setreuid(ruid, euid);
 606}
 607
 608/*
 609 * setuid() is implemented like SysV with SAVED_IDS
 610 *
 611 * Note that SAVED_ID's is deficient in that a setuid root program
 612 * like sendmail, for example, cannot set its uid to be a normal
 613 * user and then switch back, because if you're root, setuid() sets
 614 * the saved uid too.  If you don't like this, blame the bright people
 615 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 616 * will allow a root program to temporarily drop privileges and be able to
 617 * regain them by swapping the real and effective uid.
 618 */
 619long __sys_setuid(uid_t uid)
 620{
 621	struct user_namespace *ns = current_user_ns();
 622	const struct cred *old;
 623	struct cred *new;
 624	int retval;
 625	kuid_t kuid;
 626
 627	kuid = make_kuid(ns, uid);
 628	if (!uid_valid(kuid))
 629		return -EINVAL;
 630
 631	new = prepare_creds();
 632	if (!new)
 633		return -ENOMEM;
 634	old = current_cred();
 635
 636	retval = -EPERM;
 637	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
 638		new->suid = new->uid = kuid;
 639		if (!uid_eq(kuid, old->uid)) {
 640			retval = set_user(new);
 641			if (retval < 0)
 642				goto error;
 643		}
 644	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 645		goto error;
 646	}
 647
 648	new->fsuid = new->euid = kuid;
 649
 650	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 651	if (retval < 0)
 652		goto error;
 653
 654	retval = set_cred_ucounts(new);
 655	if (retval < 0)
 656		goto error;
 657
 658	flag_nproc_exceeded(new);
 659	return commit_creds(new);
 660
 661error:
 662	abort_creds(new);
 663	return retval;
 664}
 665
 666SYSCALL_DEFINE1(setuid, uid_t, uid)
 667{
 668	return __sys_setuid(uid);
 669}
 670
 671
 672/*
 673 * This function implements a generic ability to update ruid, euid,
 674 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 675 */
 676long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
 677{
 678	struct user_namespace *ns = current_user_ns();
 679	const struct cred *old;
 680	struct cred *new;
 681	int retval;
 682	kuid_t kruid, keuid, ksuid;
 683	bool ruid_new, euid_new, suid_new;
 684
 685	kruid = make_kuid(ns, ruid);
 686	keuid = make_kuid(ns, euid);
 687	ksuid = make_kuid(ns, suid);
 688
 689	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 690		return -EINVAL;
 691
 692	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 693		return -EINVAL;
 694
 695	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 696		return -EINVAL;
 697
 698	old = current_cred();
 699
 700	/* check for no-op */
 701	if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
 702	    (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
 703				    uid_eq(keuid, old->fsuid))) &&
 704	    (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
 705		return 0;
 706
 707	ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 708		   !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
 709	euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 710		   !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
 711	suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 712		   !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
 713	if ((ruid_new || euid_new || suid_new) &&
 714	    !ns_capable_setid(old->user_ns, CAP_SETUID))
 715		return -EPERM;
 716
 717	new = prepare_creds();
 718	if (!new)
 719		return -ENOMEM;
 720
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721	if (ruid != (uid_t) -1) {
 722		new->uid = kruid;
 723		if (!uid_eq(kruid, old->uid)) {
 724			retval = set_user(new);
 725			if (retval < 0)
 726				goto error;
 727		}
 728	}
 729	if (euid != (uid_t) -1)
 730		new->euid = keuid;
 731	if (suid != (uid_t) -1)
 732		new->suid = ksuid;
 733	new->fsuid = new->euid;
 734
 735	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 736	if (retval < 0)
 737		goto error;
 738
 739	retval = set_cred_ucounts(new);
 740	if (retval < 0)
 741		goto error;
 742
 743	flag_nproc_exceeded(new);
 744	return commit_creds(new);
 745
 746error:
 747	abort_creds(new);
 748	return retval;
 749}
 750
 751SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 752{
 753	return __sys_setresuid(ruid, euid, suid);
 754}
 755
 756SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 757{
 758	const struct cred *cred = current_cred();
 759	int retval;
 760	uid_t ruid, euid, suid;
 761
 762	ruid = from_kuid_munged(cred->user_ns, cred->uid);
 763	euid = from_kuid_munged(cred->user_ns, cred->euid);
 764	suid = from_kuid_munged(cred->user_ns, cred->suid);
 765
 766	retval = put_user(ruid, ruidp);
 767	if (!retval) {
 768		retval = put_user(euid, euidp);
 769		if (!retval)
 770			return put_user(suid, suidp);
 771	}
 772	return retval;
 773}
 774
 775/*
 776 * Same as above, but for rgid, egid, sgid.
 777 */
 778long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
 779{
 780	struct user_namespace *ns = current_user_ns();
 781	const struct cred *old;
 782	struct cred *new;
 783	int retval;
 784	kgid_t krgid, kegid, ksgid;
 785	bool rgid_new, egid_new, sgid_new;
 786
 787	krgid = make_kgid(ns, rgid);
 788	kegid = make_kgid(ns, egid);
 789	ksgid = make_kgid(ns, sgid);
 790
 791	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 792		return -EINVAL;
 793	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 794		return -EINVAL;
 795	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 796		return -EINVAL;
 797
 798	old = current_cred();
 799
 800	/* check for no-op */
 801	if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
 802	    (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
 803				    gid_eq(kegid, old->fsgid))) &&
 804	    (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
 805		return 0;
 806
 807	rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 808		   !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
 809	egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 810		   !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
 811	sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 812		   !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
 813	if ((rgid_new || egid_new || sgid_new) &&
 814	    !ns_capable_setid(old->user_ns, CAP_SETGID))
 815		return -EPERM;
 816
 817	new = prepare_creds();
 818	if (!new)
 819		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820
 821	if (rgid != (gid_t) -1)
 822		new->gid = krgid;
 823	if (egid != (gid_t) -1)
 824		new->egid = kegid;
 825	if (sgid != (gid_t) -1)
 826		new->sgid = ksgid;
 827	new->fsgid = new->egid;
 828
 829	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
 830	if (retval < 0)
 831		goto error;
 832
 833	return commit_creds(new);
 834
 835error:
 836	abort_creds(new);
 837	return retval;
 838}
 839
 840SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 841{
 842	return __sys_setresgid(rgid, egid, sgid);
 843}
 844
 845SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 846{
 847	const struct cred *cred = current_cred();
 848	int retval;
 849	gid_t rgid, egid, sgid;
 850
 851	rgid = from_kgid_munged(cred->user_ns, cred->gid);
 852	egid = from_kgid_munged(cred->user_ns, cred->egid);
 853	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 854
 855	retval = put_user(rgid, rgidp);
 856	if (!retval) {
 857		retval = put_user(egid, egidp);
 858		if (!retval)
 859			retval = put_user(sgid, sgidp);
 860	}
 861
 862	return retval;
 863}
 864
 865
 866/*
 867 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 868 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 869 * whatever uid it wants to). It normally shadows "euid", except when
 870 * explicitly set by setfsuid() or for access..
 871 */
 872long __sys_setfsuid(uid_t uid)
 873{
 874	const struct cred *old;
 875	struct cred *new;
 876	uid_t old_fsuid;
 877	kuid_t kuid;
 878
 879	old = current_cred();
 880	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 881
 882	kuid = make_kuid(old->user_ns, uid);
 883	if (!uid_valid(kuid))
 884		return old_fsuid;
 885
 886	new = prepare_creds();
 887	if (!new)
 888		return old_fsuid;
 889
 890	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 891	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 892	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
 893		if (!uid_eq(kuid, old->fsuid)) {
 894			new->fsuid = kuid;
 895			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 896				goto change_okay;
 897		}
 898	}
 899
 900	abort_creds(new);
 901	return old_fsuid;
 902
 903change_okay:
 904	commit_creds(new);
 905	return old_fsuid;
 906}
 907
 908SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 909{
 910	return __sys_setfsuid(uid);
 911}
 912
 913/*
 914 * Samma på svenska..
 915 */
 916long __sys_setfsgid(gid_t gid)
 917{
 918	const struct cred *old;
 919	struct cred *new;
 920	gid_t old_fsgid;
 921	kgid_t kgid;
 922
 923	old = current_cred();
 924	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 925
 926	kgid = make_kgid(old->user_ns, gid);
 927	if (!gid_valid(kgid))
 928		return old_fsgid;
 929
 930	new = prepare_creds();
 931	if (!new)
 932		return old_fsgid;
 933
 934	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 935	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 936	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
 937		if (!gid_eq(kgid, old->fsgid)) {
 938			new->fsgid = kgid;
 939			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
 940				goto change_okay;
 941		}
 942	}
 943
 944	abort_creds(new);
 945	return old_fsgid;
 946
 947change_okay:
 948	commit_creds(new);
 949	return old_fsgid;
 950}
 951
 952SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 953{
 954	return __sys_setfsgid(gid);
 955}
 956#endif /* CONFIG_MULTIUSER */
 957
 958/**
 959 * sys_getpid - return the thread group id of the current process
 960 *
 961 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 962 * the pid are identical unless CLONE_THREAD was specified on clone() in
 963 * which case the tgid is the same in all threads of the same group.
 964 *
 965 * This is SMP safe as current->tgid does not change.
 966 */
 967SYSCALL_DEFINE0(getpid)
 968{
 969	return task_tgid_vnr(current);
 970}
 971
 972/* Thread ID - the internal kernel "pid" */
 973SYSCALL_DEFINE0(gettid)
 974{
 975	return task_pid_vnr(current);
 976}
 977
 978/*
 979 * Accessing ->real_parent is not SMP-safe, it could
 980 * change from under us. However, we can use a stale
 981 * value of ->real_parent under rcu_read_lock(), see
 982 * release_task()->call_rcu(delayed_put_task_struct).
 983 */
 984SYSCALL_DEFINE0(getppid)
 985{
 986	int pid;
 987
 988	rcu_read_lock();
 989	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 990	rcu_read_unlock();
 991
 992	return pid;
 993}
 994
 995SYSCALL_DEFINE0(getuid)
 996{
 997	/* Only we change this so SMP safe */
 998	return from_kuid_munged(current_user_ns(), current_uid());
 999}
1000
1001SYSCALL_DEFINE0(geteuid)
1002{
1003	/* Only we change this so SMP safe */
1004	return from_kuid_munged(current_user_ns(), current_euid());
1005}
1006
1007SYSCALL_DEFINE0(getgid)
1008{
1009	/* Only we change this so SMP safe */
1010	return from_kgid_munged(current_user_ns(), current_gid());
1011}
1012
1013SYSCALL_DEFINE0(getegid)
1014{
1015	/* Only we change this so SMP safe */
1016	return from_kgid_munged(current_user_ns(), current_egid());
1017}
1018
1019static void do_sys_times(struct tms *tms)
1020{
1021	u64 tgutime, tgstime, cutime, cstime;
1022
 
1023	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1024	cutime = current->signal->cutime;
1025	cstime = current->signal->cstime;
1026	tms->tms_utime = nsec_to_clock_t(tgutime);
1027	tms->tms_stime = nsec_to_clock_t(tgstime);
1028	tms->tms_cutime = nsec_to_clock_t(cutime);
1029	tms->tms_cstime = nsec_to_clock_t(cstime);
 
1030}
1031
1032SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1033{
1034	if (tbuf) {
1035		struct tms tmp;
1036
1037		do_sys_times(&tmp);
1038		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1039			return -EFAULT;
1040	}
1041	force_successful_syscall_return();
1042	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1043}
1044
1045#ifdef CONFIG_COMPAT
1046static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1047{
1048	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1049}
1050
1051COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1052{
1053	if (tbuf) {
1054		struct tms tms;
1055		struct compat_tms tmp;
1056
1057		do_sys_times(&tms);
1058		/* Convert our struct tms to the compat version. */
1059		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1060		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1061		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1062		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1063		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1064			return -EFAULT;
1065	}
1066	force_successful_syscall_return();
1067	return compat_jiffies_to_clock_t(jiffies);
1068}
1069#endif
1070
1071/*
1072 * This needs some heavy checking ...
1073 * I just haven't the stomach for it. I also don't fully
1074 * understand sessions/pgrp etc. Let somebody who does explain it.
1075 *
1076 * OK, I think I have the protection semantics right.... this is really
1077 * only important on a multi-user system anyway, to make sure one user
1078 * can't send a signal to a process owned by another.  -TYT, 12/12/91
1079 *
1080 * !PF_FORKNOEXEC check to conform completely to POSIX.
1081 */
1082SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1083{
1084	struct task_struct *p;
1085	struct task_struct *group_leader = current->group_leader;
1086	struct pid *pgrp;
1087	int err;
1088
1089	if (!pid)
1090		pid = task_pid_vnr(group_leader);
1091	if (!pgid)
1092		pgid = pid;
1093	if (pgid < 0)
1094		return -EINVAL;
1095	rcu_read_lock();
1096
1097	/* From this point forward we keep holding onto the tasklist lock
1098	 * so that our parent does not change from under us. -DaveM
1099	 */
1100	write_lock_irq(&tasklist_lock);
1101
1102	err = -ESRCH;
1103	p = find_task_by_vpid(pid);
1104	if (!p)
1105		goto out;
1106
1107	err = -EINVAL;
1108	if (!thread_group_leader(p))
1109		goto out;
1110
1111	if (same_thread_group(p->real_parent, group_leader)) {
1112		err = -EPERM;
1113		if (task_session(p) != task_session(group_leader))
1114			goto out;
1115		err = -EACCES;
1116		if (!(p->flags & PF_FORKNOEXEC))
1117			goto out;
1118	} else {
1119		err = -ESRCH;
1120		if (p != group_leader)
1121			goto out;
1122	}
1123
1124	err = -EPERM;
1125	if (p->signal->leader)
1126		goto out;
1127
1128	pgrp = task_pid(p);
1129	if (pgid != pid) {
1130		struct task_struct *g;
1131
1132		pgrp = find_vpid(pgid);
1133		g = pid_task(pgrp, PIDTYPE_PGID);
1134		if (!g || task_session(g) != task_session(group_leader))
1135			goto out;
1136	}
1137
1138	err = security_task_setpgid(p, pgid);
1139	if (err)
1140		goto out;
1141
1142	if (task_pgrp(p) != pgrp)
1143		change_pid(p, PIDTYPE_PGID, pgrp);
1144
1145	err = 0;
1146out:
1147	/* All paths lead to here, thus we are safe. -DaveM */
1148	write_unlock_irq(&tasklist_lock);
1149	rcu_read_unlock();
1150	return err;
1151}
1152
1153static int do_getpgid(pid_t pid)
1154{
1155	struct task_struct *p;
1156	struct pid *grp;
1157	int retval;
1158
1159	rcu_read_lock();
1160	if (!pid)
1161		grp = task_pgrp(current);
1162	else {
1163		retval = -ESRCH;
1164		p = find_task_by_vpid(pid);
1165		if (!p)
1166			goto out;
1167		grp = task_pgrp(p);
1168		if (!grp)
1169			goto out;
1170
1171		retval = security_task_getpgid(p);
1172		if (retval)
1173			goto out;
1174	}
1175	retval = pid_vnr(grp);
1176out:
1177	rcu_read_unlock();
1178	return retval;
1179}
1180
1181SYSCALL_DEFINE1(getpgid, pid_t, pid)
1182{
1183	return do_getpgid(pid);
1184}
1185
1186#ifdef __ARCH_WANT_SYS_GETPGRP
1187
1188SYSCALL_DEFINE0(getpgrp)
1189{
1190	return do_getpgid(0);
1191}
1192
1193#endif
1194
1195SYSCALL_DEFINE1(getsid, pid_t, pid)
1196{
1197	struct task_struct *p;
1198	struct pid *sid;
1199	int retval;
1200
1201	rcu_read_lock();
1202	if (!pid)
1203		sid = task_session(current);
1204	else {
1205		retval = -ESRCH;
1206		p = find_task_by_vpid(pid);
1207		if (!p)
1208			goto out;
1209		sid = task_session(p);
1210		if (!sid)
1211			goto out;
1212
1213		retval = security_task_getsid(p);
1214		if (retval)
1215			goto out;
1216	}
1217	retval = pid_vnr(sid);
1218out:
1219	rcu_read_unlock();
1220	return retval;
1221}
1222
1223static void set_special_pids(struct pid *pid)
1224{
1225	struct task_struct *curr = current->group_leader;
1226
1227	if (task_session(curr) != pid)
1228		change_pid(curr, PIDTYPE_SID, pid);
1229
1230	if (task_pgrp(curr) != pid)
1231		change_pid(curr, PIDTYPE_PGID, pid);
1232}
1233
1234int ksys_setsid(void)
1235{
1236	struct task_struct *group_leader = current->group_leader;
1237	struct pid *sid = task_pid(group_leader);
1238	pid_t session = pid_vnr(sid);
1239	int err = -EPERM;
1240
1241	write_lock_irq(&tasklist_lock);
1242	/* Fail if I am already a session leader */
1243	if (group_leader->signal->leader)
1244		goto out;
1245
1246	/* Fail if a process group id already exists that equals the
1247	 * proposed session id.
1248	 */
1249	if (pid_task(sid, PIDTYPE_PGID))
1250		goto out;
1251
1252	group_leader->signal->leader = 1;
1253	set_special_pids(sid);
1254
1255	proc_clear_tty(group_leader);
1256
1257	err = session;
1258out:
1259	write_unlock_irq(&tasklist_lock);
1260	if (err > 0) {
1261		proc_sid_connector(group_leader);
1262		sched_autogroup_create_attach(group_leader);
1263	}
1264	return err;
1265}
1266
1267SYSCALL_DEFINE0(setsid)
1268{
1269	return ksys_setsid();
1270}
1271
1272DECLARE_RWSEM(uts_sem);
1273
1274#ifdef COMPAT_UTS_MACHINE
1275#define override_architecture(name) \
1276	(personality(current->personality) == PER_LINUX32 && \
1277	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1278		      sizeof(COMPAT_UTS_MACHINE)))
1279#else
1280#define override_architecture(name)	0
1281#endif
1282
1283/*
1284 * Work around broken programs that cannot handle "Linux 3.0".
1285 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1286 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1287 * 2.6.60.
1288 */
1289static int override_release(char __user *release, size_t len)
1290{
1291	int ret = 0;
1292
1293	if (current->personality & UNAME26) {
1294		const char *rest = UTS_RELEASE;
1295		char buf[65] = { 0 };
1296		int ndots = 0;
1297		unsigned v;
1298		size_t copy;
1299
1300		while (*rest) {
1301			if (*rest == '.' && ++ndots >= 3)
1302				break;
1303			if (!isdigit(*rest) && *rest != '.')
1304				break;
1305			rest++;
1306		}
1307		v = LINUX_VERSION_PATCHLEVEL + 60;
1308		copy = clamp_t(size_t, len, 1, sizeof(buf));
1309		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1310		ret = copy_to_user(release, buf, copy + 1);
1311	}
1312	return ret;
1313}
1314
1315SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1316{
1317	struct new_utsname tmp;
1318
1319	down_read(&uts_sem);
1320	memcpy(&tmp, utsname(), sizeof(tmp));
 
1321	up_read(&uts_sem);
1322	if (copy_to_user(name, &tmp, sizeof(tmp)))
1323		return -EFAULT;
1324
1325	if (override_release(name->release, sizeof(name->release)))
1326		return -EFAULT;
1327	if (override_architecture(name))
1328		return -EFAULT;
1329	return 0;
1330}
1331
1332#ifdef __ARCH_WANT_SYS_OLD_UNAME
1333/*
1334 * Old cruft
1335 */
1336SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1337{
1338	struct old_utsname tmp;
1339
1340	if (!name)
1341		return -EFAULT;
1342
1343	down_read(&uts_sem);
1344	memcpy(&tmp, utsname(), sizeof(tmp));
 
1345	up_read(&uts_sem);
1346	if (copy_to_user(name, &tmp, sizeof(tmp)))
1347		return -EFAULT;
1348
1349	if (override_release(name->release, sizeof(name->release)))
1350		return -EFAULT;
1351	if (override_architecture(name))
1352		return -EFAULT;
1353	return 0;
1354}
1355
1356SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1357{
1358	struct oldold_utsname tmp;
1359
1360	if (!name)
1361		return -EFAULT;
1362
1363	memset(&tmp, 0, sizeof(tmp));
1364
1365	down_read(&uts_sem);
1366	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1367	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1368	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1369	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1370	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
 
 
 
 
 
 
 
 
 
 
1371	up_read(&uts_sem);
1372	if (copy_to_user(name, &tmp, sizeof(tmp)))
1373		return -EFAULT;
1374
1375	if (override_architecture(name))
1376		return -EFAULT;
1377	if (override_release(name->release, sizeof(name->release)))
1378		return -EFAULT;
1379	return 0;
1380}
1381#endif
1382
1383SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1384{
1385	int errno;
1386	char tmp[__NEW_UTS_LEN];
1387
1388	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1389		return -EPERM;
1390
1391	if (len < 0 || len > __NEW_UTS_LEN)
1392		return -EINVAL;
 
1393	errno = -EFAULT;
1394	if (!copy_from_user(tmp, name, len)) {
1395		struct new_utsname *u;
1396
1397		add_device_randomness(tmp, len);
1398		down_write(&uts_sem);
1399		u = utsname();
1400		memcpy(u->nodename, tmp, len);
1401		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1402		errno = 0;
1403		uts_proc_notify(UTS_PROC_HOSTNAME);
1404		up_write(&uts_sem);
1405	}
 
1406	return errno;
1407}
1408
1409#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1410
1411SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1412{
1413	int i;
1414	struct new_utsname *u;
1415	char tmp[__NEW_UTS_LEN + 1];
1416
1417	if (len < 0)
1418		return -EINVAL;
1419	down_read(&uts_sem);
1420	u = utsname();
1421	i = 1 + strlen(u->nodename);
1422	if (i > len)
1423		i = len;
1424	memcpy(tmp, u->nodename, i);
 
 
1425	up_read(&uts_sem);
1426	if (copy_to_user(name, tmp, i))
1427		return -EFAULT;
1428	return 0;
1429}
1430
1431#endif
1432
1433/*
1434 * Only setdomainname; getdomainname can be implemented by calling
1435 * uname()
1436 */
1437SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1438{
1439	int errno;
1440	char tmp[__NEW_UTS_LEN];
1441
1442	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1443		return -EPERM;
1444	if (len < 0 || len > __NEW_UTS_LEN)
1445		return -EINVAL;
1446
 
1447	errno = -EFAULT;
1448	if (!copy_from_user(tmp, name, len)) {
1449		struct new_utsname *u;
1450
1451		add_device_randomness(tmp, len);
1452		down_write(&uts_sem);
1453		u = utsname();
1454		memcpy(u->domainname, tmp, len);
1455		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1456		errno = 0;
1457		uts_proc_notify(UTS_PROC_DOMAINNAME);
1458		up_write(&uts_sem);
1459	}
 
1460	return errno;
1461}
1462
1463/* make sure you are allowed to change @tsk limits before calling this */
1464static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1465		      struct rlimit *new_rlim, struct rlimit *old_rlim)
1466{
1467	struct rlimit *rlim;
1468	int retval = 0;
1469
1470	if (resource >= RLIM_NLIMITS)
1471		return -EINVAL;
1472	resource = array_index_nospec(resource, RLIM_NLIMITS);
1473
1474	if (new_rlim) {
1475		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1476			return -EINVAL;
1477		if (resource == RLIMIT_NOFILE &&
1478				new_rlim->rlim_max > sysctl_nr_open)
1479			return -EPERM;
1480	}
1481
1482	/* Holding a refcount on tsk protects tsk->signal from disappearing. */
1483	rlim = tsk->signal->rlim + resource;
1484	task_lock(tsk->group_leader);
1485	if (new_rlim) {
1486		/*
1487		 * Keep the capable check against init_user_ns until cgroups can
1488		 * contain all limits.
1489		 */
1490		if (new_rlim->rlim_max > rlim->rlim_max &&
1491				!capable(CAP_SYS_RESOURCE))
1492			retval = -EPERM;
1493		if (!retval)
1494			retval = security_task_setrlimit(tsk, resource, new_rlim);
1495	}
1496	if (!retval) {
1497		if (old_rlim)
1498			*old_rlim = *rlim;
1499		if (new_rlim)
1500			*rlim = *new_rlim;
1501	}
1502	task_unlock(tsk->group_leader);
1503
1504	/*
1505	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1506	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1507	 * ignores the rlimit.
1508	 */
1509	if (!retval && new_rlim && resource == RLIMIT_CPU &&
1510	    new_rlim->rlim_cur != RLIM_INFINITY &&
1511	    IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1512		/*
1513		 * update_rlimit_cpu can fail if the task is exiting, but there
1514		 * may be other tasks in the thread group that are not exiting,
1515		 * and they need their cpu timers adjusted.
1516		 *
1517		 * The group_leader is the last task to be released, so if we
1518		 * cannot update_rlimit_cpu on it, then the entire process is
1519		 * exiting and we do not need to update at all.
1520		 */
1521		update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1522	}
1523
1524	return retval;
1525}
1526
1527SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1528{
1529	struct rlimit value;
1530	int ret;
1531
1532	ret = do_prlimit(current, resource, NULL, &value);
1533	if (!ret)
1534		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1535
1536	return ret;
1537}
1538
1539#ifdef CONFIG_COMPAT
1540
1541COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1542		       struct compat_rlimit __user *, rlim)
1543{
1544	struct rlimit r;
1545	struct compat_rlimit r32;
1546
1547	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1548		return -EFAULT;
1549
1550	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1551		r.rlim_cur = RLIM_INFINITY;
1552	else
1553		r.rlim_cur = r32.rlim_cur;
1554	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1555		r.rlim_max = RLIM_INFINITY;
1556	else
1557		r.rlim_max = r32.rlim_max;
1558	return do_prlimit(current, resource, &r, NULL);
1559}
1560
1561COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1562		       struct compat_rlimit __user *, rlim)
1563{
1564	struct rlimit r;
1565	int ret;
1566
1567	ret = do_prlimit(current, resource, NULL, &r);
1568	if (!ret) {
1569		struct compat_rlimit r32;
1570		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1571			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1572		else
1573			r32.rlim_cur = r.rlim_cur;
1574		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1575			r32.rlim_max = COMPAT_RLIM_INFINITY;
1576		else
1577			r32.rlim_max = r.rlim_max;
1578
1579		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1580			return -EFAULT;
1581	}
1582	return ret;
1583}
1584
1585#endif
1586
1587#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1588
1589/*
1590 *	Back compatibility for getrlimit. Needed for some apps.
1591 */
 
1592SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1593		struct rlimit __user *, rlim)
1594{
1595	struct rlimit x;
1596	if (resource >= RLIM_NLIMITS)
1597		return -EINVAL;
1598
1599	resource = array_index_nospec(resource, RLIM_NLIMITS);
1600	task_lock(current->group_leader);
1601	x = current->signal->rlim[resource];
1602	task_unlock(current->group_leader);
1603	if (x.rlim_cur > 0x7FFFFFFF)
1604		x.rlim_cur = 0x7FFFFFFF;
1605	if (x.rlim_max > 0x7FFFFFFF)
1606		x.rlim_max = 0x7FFFFFFF;
1607	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1608}
1609
1610#ifdef CONFIG_COMPAT
1611COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1612		       struct compat_rlimit __user *, rlim)
1613{
1614	struct rlimit r;
1615
1616	if (resource >= RLIM_NLIMITS)
1617		return -EINVAL;
1618
1619	resource = array_index_nospec(resource, RLIM_NLIMITS);
1620	task_lock(current->group_leader);
1621	r = current->signal->rlim[resource];
1622	task_unlock(current->group_leader);
1623	if (r.rlim_cur > 0x7FFFFFFF)
1624		r.rlim_cur = 0x7FFFFFFF;
1625	if (r.rlim_max > 0x7FFFFFFF)
1626		r.rlim_max = 0x7FFFFFFF;
1627
1628	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1629	    put_user(r.rlim_max, &rlim->rlim_max))
1630		return -EFAULT;
1631	return 0;
1632}
1633#endif
1634
1635#endif
1636
1637static inline bool rlim64_is_infinity(__u64 rlim64)
1638{
1639#if BITS_PER_LONG < 64
1640	return rlim64 >= ULONG_MAX;
1641#else
1642	return rlim64 == RLIM64_INFINITY;
1643#endif
1644}
1645
1646static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1647{
1648	if (rlim->rlim_cur == RLIM_INFINITY)
1649		rlim64->rlim_cur = RLIM64_INFINITY;
1650	else
1651		rlim64->rlim_cur = rlim->rlim_cur;
1652	if (rlim->rlim_max == RLIM_INFINITY)
1653		rlim64->rlim_max = RLIM64_INFINITY;
1654	else
1655		rlim64->rlim_max = rlim->rlim_max;
1656}
1657
1658static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1659{
1660	if (rlim64_is_infinity(rlim64->rlim_cur))
1661		rlim->rlim_cur = RLIM_INFINITY;
1662	else
1663		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1664	if (rlim64_is_infinity(rlim64->rlim_max))
1665		rlim->rlim_max = RLIM_INFINITY;
1666	else
1667		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1668}
1669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1670/* rcu lock must be held */
1671static int check_prlimit_permission(struct task_struct *task,
1672				    unsigned int flags)
1673{
1674	const struct cred *cred = current_cred(), *tcred;
1675	bool id_match;
1676
1677	if (current == task)
1678		return 0;
1679
1680	tcred = __task_cred(task);
1681	id_match = (uid_eq(cred->uid, tcred->euid) &&
1682		    uid_eq(cred->uid, tcred->suid) &&
1683		    uid_eq(cred->uid, tcred->uid)  &&
1684		    gid_eq(cred->gid, tcred->egid) &&
1685		    gid_eq(cred->gid, tcred->sgid) &&
1686		    gid_eq(cred->gid, tcred->gid));
1687	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1688		return -EPERM;
 
1689
1690	return security_task_prlimit(cred, tcred, flags);
1691}
1692
1693SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1694		const struct rlimit64 __user *, new_rlim,
1695		struct rlimit64 __user *, old_rlim)
1696{
1697	struct rlimit64 old64, new64;
1698	struct rlimit old, new;
1699	struct task_struct *tsk;
1700	unsigned int checkflags = 0;
1701	int ret;
1702
1703	if (old_rlim)
1704		checkflags |= LSM_PRLIMIT_READ;
1705
1706	if (new_rlim) {
1707		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1708			return -EFAULT;
1709		rlim64_to_rlim(&new64, &new);
1710		checkflags |= LSM_PRLIMIT_WRITE;
1711	}
1712
1713	rcu_read_lock();
1714	tsk = pid ? find_task_by_vpid(pid) : current;
1715	if (!tsk) {
1716		rcu_read_unlock();
1717		return -ESRCH;
1718	}
1719	ret = check_prlimit_permission(tsk, checkflags);
1720	if (ret) {
1721		rcu_read_unlock();
1722		return ret;
1723	}
1724	get_task_struct(tsk);
1725	rcu_read_unlock();
1726
1727	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1728			old_rlim ? &old : NULL);
1729
1730	if (!ret && old_rlim) {
1731		rlim_to_rlim64(&old, &old64);
1732		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1733			ret = -EFAULT;
1734	}
1735
1736	put_task_struct(tsk);
1737	return ret;
1738}
1739
1740SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1741{
1742	struct rlimit new_rlim;
1743
1744	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1745		return -EFAULT;
1746	return do_prlimit(current, resource, &new_rlim, NULL);
1747}
1748
1749/*
1750 * It would make sense to put struct rusage in the task_struct,
1751 * except that would make the task_struct be *really big*.  After
1752 * task_struct gets moved into malloc'ed memory, it would
1753 * make sense to do this.  It will make moving the rest of the information
1754 * a lot simpler!  (Which we're not doing right now because we're not
1755 * measuring them yet).
1756 *
1757 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1758 * races with threads incrementing their own counters.  But since word
1759 * reads are atomic, we either get new values or old values and we don't
1760 * care which for the sums.  We always take the siglock to protect reading
1761 * the c* fields from p->signal from races with exit.c updating those
1762 * fields when reaping, so a sample either gets all the additions of a
1763 * given child after it's reaped, or none so this sample is before reaping.
1764 *
1765 * Locking:
1766 * We need to take the siglock for CHILDEREN, SELF and BOTH
1767 * for  the cases current multithreaded, non-current single threaded
1768 * non-current multithreaded.  Thread traversal is now safe with
1769 * the siglock held.
1770 * Strictly speaking, we donot need to take the siglock if we are current and
1771 * single threaded,  as no one else can take our signal_struct away, no one
1772 * else can  reap the  children to update signal->c* counters, and no one else
1773 * can race with the signal-> fields. If we do not take any lock, the
1774 * signal-> fields could be read out of order while another thread was just
1775 * exiting. So we should  place a read memory barrier when we avoid the lock.
1776 * On the writer side,  write memory barrier is implied in  __exit_signal
1777 * as __exit_signal releases  the siglock spinlock after updating the signal->
1778 * fields. But we don't do this yet to keep things simple.
1779 *
1780 */
1781
1782static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1783{
1784	r->ru_nvcsw += t->nvcsw;
1785	r->ru_nivcsw += t->nivcsw;
1786	r->ru_minflt += t->min_flt;
1787	r->ru_majflt += t->maj_flt;
1788	r->ru_inblock += task_io_get_inblock(t);
1789	r->ru_oublock += task_io_get_oublock(t);
1790}
1791
1792void getrusage(struct task_struct *p, int who, struct rusage *r)
1793{
1794	struct task_struct *t;
1795	unsigned long flags;
1796	u64 tgutime, tgstime, utime, stime;
1797	unsigned long maxrss;
1798	struct mm_struct *mm;
1799	struct signal_struct *sig = p->signal;
1800	unsigned int seq = 0;
1801
1802retry:
1803	memset(r, 0, sizeof(*r));
1804	utime = stime = 0;
1805	maxrss = 0;
1806
1807	if (who == RUSAGE_THREAD) {
1808		task_cputime_adjusted(current, &utime, &stime);
1809		accumulate_thread_rusage(p, r);
1810		maxrss = sig->maxrss;
1811		goto out_thread;
1812	}
1813
1814	flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 
1815
1816	switch (who) {
1817	case RUSAGE_BOTH:
1818	case RUSAGE_CHILDREN:
1819		utime = sig->cutime;
1820		stime = sig->cstime;
1821		r->ru_nvcsw = sig->cnvcsw;
1822		r->ru_nivcsw = sig->cnivcsw;
1823		r->ru_minflt = sig->cmin_flt;
1824		r->ru_majflt = sig->cmaj_flt;
1825		r->ru_inblock = sig->cinblock;
1826		r->ru_oublock = sig->coublock;
1827		maxrss = sig->cmaxrss;
 
 
 
1828
1829		if (who == RUSAGE_CHILDREN)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1830			break;
1831		fallthrough;
1832
1833	case RUSAGE_SELF:
1834		r->ru_nvcsw += sig->nvcsw;
1835		r->ru_nivcsw += sig->nivcsw;
1836		r->ru_minflt += sig->min_flt;
1837		r->ru_majflt += sig->maj_flt;
1838		r->ru_inblock += sig->inblock;
1839		r->ru_oublock += sig->oublock;
1840		if (maxrss < sig->maxrss)
1841			maxrss = sig->maxrss;
1842
1843		rcu_read_lock();
1844		__for_each_thread(sig, t)
1845			accumulate_thread_rusage(t, r);
1846		rcu_read_unlock();
1847
1848		break;
1849
1850	default:
1851		BUG();
1852	}
 
1853
1854	if (need_seqretry(&sig->stats_lock, seq)) {
1855		seq = 1;
1856		goto retry;
1857	}
1858	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1859
1860	if (who == RUSAGE_CHILDREN)
1861		goto out_children;
1862
1863	thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1864	utime += tgutime;
1865	stime += tgstime;
1866
1867out_thread:
1868	mm = get_task_mm(p);
1869	if (mm) {
1870		setmax_mm_hiwater_rss(&maxrss, mm);
1871		mmput(mm);
1872	}
1873
1874out_children:
1875	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1876	r->ru_utime = ns_to_kernel_old_timeval(utime);
1877	r->ru_stime = ns_to_kernel_old_timeval(stime);
1878}
1879
1880SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1881{
1882	struct rusage r;
 
 
 
1883
 
 
1884	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1885	    who != RUSAGE_THREAD)
1886		return -EINVAL;
1887
1888	getrusage(current, who, &r);
1889	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1890}
1891
1892#ifdef CONFIG_COMPAT
1893COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1894{
1895	struct rusage r;
1896
1897	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1898	    who != RUSAGE_THREAD)
1899		return -EINVAL;
1900
1901	getrusage(current, who, &r);
1902	return put_compat_rusage(&r, ru);
1903}
1904#endif
1905
1906SYSCALL_DEFINE1(umask, int, mask)
1907{
1908	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1909	return mask;
1910}
1911
1912static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1913{
1914	CLASS(fd, exe)(fd);
1915	struct inode *inode;
1916	int err;
1917
1918	if (fd_empty(exe))
 
1919		return -EBADF;
1920
1921	inode = file_inode(fd_file(exe));
1922
1923	/*
1924	 * Because the original mm->exe_file points to executable file, make
1925	 * sure that this one is executable as well, to avoid breaking an
1926	 * overall picture.
1927	 */
1928	if (!S_ISREG(inode->i_mode) || path_noexec(&fd_file(exe)->f_path))
1929		return -EACCES;
 
 
1930
1931	err = file_permission(fd_file(exe), MAY_EXEC);
1932	if (err)
1933		return err;
1934
1935	return replace_mm_exe_file(mm, fd_file(exe));
1936}
1937
1938/*
1939 * Check arithmetic relations of passed addresses.
1940 *
1941 * WARNING: we don't require any capability here so be very careful
1942 * in what is allowed for modification from userspace.
1943 */
1944static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1945{
1946	unsigned long mmap_max_addr = TASK_SIZE;
1947	int error = -EINVAL, i;
1948
1949	static const unsigned char offsets[] = {
1950		offsetof(struct prctl_mm_map, start_code),
1951		offsetof(struct prctl_mm_map, end_code),
1952		offsetof(struct prctl_mm_map, start_data),
1953		offsetof(struct prctl_mm_map, end_data),
1954		offsetof(struct prctl_mm_map, start_brk),
1955		offsetof(struct prctl_mm_map, brk),
1956		offsetof(struct prctl_mm_map, start_stack),
1957		offsetof(struct prctl_mm_map, arg_start),
1958		offsetof(struct prctl_mm_map, arg_end),
1959		offsetof(struct prctl_mm_map, env_start),
1960		offsetof(struct prctl_mm_map, env_end),
1961	};
1962
1963	/*
1964	 * Make sure the members are not somewhere outside
1965	 * of allowed address space.
1966	 */
1967	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1968		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1969
1970		if ((unsigned long)val >= mmap_max_addr ||
1971		    (unsigned long)val < mmap_min_addr)
1972			goto out;
 
 
 
1973	}
1974
1975	/*
1976	 * Make sure the pairs are ordered.
 
 
 
1977	 */
1978#define __prctl_check_order(__m1, __op, __m2)				\
1979	((unsigned long)prctl_map->__m1 __op				\
1980	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1981	error  = __prctl_check_order(start_code, <, end_code);
1982	error |= __prctl_check_order(start_data,<=, end_data);
1983	error |= __prctl_check_order(start_brk, <=, brk);
1984	error |= __prctl_check_order(arg_start, <=, arg_end);
1985	error |= __prctl_check_order(env_start, <=, env_end);
1986	if (error)
1987		goto out;
1988#undef __prctl_check_order
1989
1990	error = -EINVAL;
 
 
 
1991
1992	/*
1993	 * Neither we should allow to override limits if they set.
1994	 */
1995	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1996			      prctl_map->start_brk, prctl_map->end_data,
1997			      prctl_map->start_data))
1998			goto out;
1999
2000	error = 0;
2001out:
2002	return error;
2003}
2004
2005#ifdef CONFIG_CHECKPOINT_RESTORE
2006static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2007{
2008	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2009	unsigned long user_auxv[AT_VECTOR_SIZE];
2010	struct mm_struct *mm = current->mm;
2011	int error;
2012
2013	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2014	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2015
2016	if (opt == PR_SET_MM_MAP_SIZE)
2017		return put_user((unsigned int)sizeof(prctl_map),
2018				(unsigned int __user *)addr);
2019
2020	if (data_size != sizeof(prctl_map))
2021		return -EINVAL;
2022
2023	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2024		return -EFAULT;
2025
2026	error = validate_prctl_map_addr(&prctl_map);
2027	if (error)
2028		return error;
2029
2030	if (prctl_map.auxv_size) {
2031		/*
2032		 * Someone is trying to cheat the auxv vector.
2033		 */
2034		if (!prctl_map.auxv ||
2035				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2036			return -EINVAL;
2037
2038		memset(user_auxv, 0, sizeof(user_auxv));
2039		if (copy_from_user(user_auxv,
2040				   (const void __user *)prctl_map.auxv,
2041				   prctl_map.auxv_size))
2042			return -EFAULT;
2043
2044		/* Last entry must be AT_NULL as specification requires */
2045		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2046		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2047	}
2048
2049	if (prctl_map.exe_fd != (u32)-1) {
2050		/*
2051		 * Check if the current user is checkpoint/restore capable.
2052		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2053		 * or CAP_CHECKPOINT_RESTORE.
2054		 * Note that a user with access to ptrace can masquerade an
2055		 * arbitrary program as any executable, even setuid ones.
2056		 * This may have implications in the tomoyo subsystem.
2057		 */
2058		if (!checkpoint_restore_ns_capable(current_user_ns()))
2059			return -EPERM;
2060
2061		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2062		if (error)
2063			return error;
2064	}
2065
2066	/*
2067	 * arg_lock protects concurrent updates but we still need mmap_lock for
2068	 * read to exclude races with sys_brk.
2069	 */
2070	mmap_read_lock(mm);
2071
2072	/*
2073	 * We don't validate if these members are pointing to
2074	 * real present VMAs because application may have correspond
2075	 * VMAs already unmapped and kernel uses these members for statistics
2076	 * output in procfs mostly, except
2077	 *
2078	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2079	 *    for VMAs when updating these members so anything wrong written
2080	 *    here cause kernel to swear at userspace program but won't lead
2081	 *    to any problem in kernel itself
2082	 */
2083
2084	spin_lock(&mm->arg_lock);
2085	mm->start_code	= prctl_map.start_code;
2086	mm->end_code	= prctl_map.end_code;
2087	mm->start_data	= prctl_map.start_data;
2088	mm->end_data	= prctl_map.end_data;
2089	mm->start_brk	= prctl_map.start_brk;
2090	mm->brk		= prctl_map.brk;
2091	mm->start_stack	= prctl_map.start_stack;
2092	mm->arg_start	= prctl_map.arg_start;
2093	mm->arg_end	= prctl_map.arg_end;
2094	mm->env_start	= prctl_map.env_start;
2095	mm->env_end	= prctl_map.env_end;
2096	spin_unlock(&mm->arg_lock);
2097
2098	/*
2099	 * Note this update of @saved_auxv is lockless thus
2100	 * if someone reads this member in procfs while we're
2101	 * updating -- it may get partly updated results. It's
2102	 * known and acceptable trade off: we leave it as is to
2103	 * not introduce additional locks here making the kernel
2104	 * more complex.
2105	 */
2106	if (prctl_map.auxv_size)
2107		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2108
2109	mmap_read_unlock(mm);
2110	return 0;
2111}
2112#endif /* CONFIG_CHECKPOINT_RESTORE */
2113
2114static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2115			  unsigned long len)
2116{
2117	/*
2118	 * This doesn't move the auxiliary vector itself since it's pinned to
2119	 * mm_struct, but it permits filling the vector with new values.  It's
2120	 * up to the caller to provide sane values here, otherwise userspace
2121	 * tools which use this vector might be unhappy.
2122	 */
2123	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2124
2125	if (len > sizeof(user_auxv))
2126		return -EINVAL;
2127
2128	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2129		return -EFAULT;
2130
2131	/* Make sure the last entry is always AT_NULL */
2132	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2133	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2134
2135	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2136
2137	task_lock(current);
2138	memcpy(mm->saved_auxv, user_auxv, len);
2139	task_unlock(current);
2140
2141	return 0;
2142}
2143
2144static int prctl_set_mm(int opt, unsigned long addr,
2145			unsigned long arg4, unsigned long arg5)
2146{
 
2147	struct mm_struct *mm = current->mm;
2148	struct prctl_mm_map prctl_map = {
2149		.auxv = NULL,
2150		.auxv_size = 0,
2151		.exe_fd = -1,
2152	};
2153	struct vm_area_struct *vma;
2154	int error;
2155
2156	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2157			      opt != PR_SET_MM_MAP &&
2158			      opt != PR_SET_MM_MAP_SIZE)))
2159		return -EINVAL;
2160
2161#ifdef CONFIG_CHECKPOINT_RESTORE
2162	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2163		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2164#endif
2165
2166	if (!capable(CAP_SYS_RESOURCE))
2167		return -EPERM;
2168
2169	if (opt == PR_SET_MM_EXE_FILE)
2170		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2171
2172	if (opt == PR_SET_MM_AUXV)
2173		return prctl_set_auxv(mm, addr, arg4);
2174
2175	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2176		return -EINVAL;
2177
2178	error = -EINVAL;
2179
2180	/*
2181	 * arg_lock protects concurrent updates of arg boundaries, we need
2182	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2183	 * validation.
2184	 */
2185	mmap_read_lock(mm);
2186	vma = find_vma(mm, addr);
2187
2188	spin_lock(&mm->arg_lock);
2189	prctl_map.start_code	= mm->start_code;
2190	prctl_map.end_code	= mm->end_code;
2191	prctl_map.start_data	= mm->start_data;
2192	prctl_map.end_data	= mm->end_data;
2193	prctl_map.start_brk	= mm->start_brk;
2194	prctl_map.brk		= mm->brk;
2195	prctl_map.start_stack	= mm->start_stack;
2196	prctl_map.arg_start	= mm->arg_start;
2197	prctl_map.arg_end	= mm->arg_end;
2198	prctl_map.env_start	= mm->env_start;
2199	prctl_map.env_end	= mm->env_end;
2200
2201	switch (opt) {
2202	case PR_SET_MM_START_CODE:
2203		prctl_map.start_code = addr;
2204		break;
2205	case PR_SET_MM_END_CODE:
2206		prctl_map.end_code = addr;
2207		break;
2208	case PR_SET_MM_START_DATA:
2209		prctl_map.start_data = addr;
2210		break;
2211	case PR_SET_MM_END_DATA:
2212		prctl_map.end_data = addr;
2213		break;
2214	case PR_SET_MM_START_STACK:
2215		prctl_map.start_stack = addr;
2216		break;
 
2217	case PR_SET_MM_START_BRK:
2218		prctl_map.start_brk = addr;
 
 
 
 
 
 
 
 
2219		break;
 
2220	case PR_SET_MM_BRK:
2221		prctl_map.brk = addr;
 
 
 
 
 
 
 
 
2222		break;
2223	case PR_SET_MM_ARG_START:
2224		prctl_map.arg_start = addr;
2225		break;
2226	case PR_SET_MM_ARG_END:
2227		prctl_map.arg_end = addr;
2228		break;
2229	case PR_SET_MM_ENV_START:
2230		prctl_map.env_start = addr;
2231		break;
2232	case PR_SET_MM_ENV_END:
2233		prctl_map.env_end = addr;
2234		break;
2235	default:
2236		goto out;
2237	}
2238
2239	error = validate_prctl_map_addr(&prctl_map);
2240	if (error)
2241		goto out;
2242
2243	switch (opt) {
2244	/*
2245	 * If command line arguments and environment
2246	 * are placed somewhere else on stack, we can
2247	 * set them up here, ARG_START/END to setup
2248	 * command line arguments and ENV_START/END
2249	 * for environment.
2250	 */
2251	case PR_SET_MM_START_STACK:
2252	case PR_SET_MM_ARG_START:
2253	case PR_SET_MM_ARG_END:
2254	case PR_SET_MM_ENV_START:
2255	case PR_SET_MM_ENV_END:
2256		if (!vma) {
2257			error = -EFAULT;
2258			goto out;
2259		}
2260	}
 
 
 
 
 
 
 
 
 
 
2261
2262	mm->start_code	= prctl_map.start_code;
2263	mm->end_code	= prctl_map.end_code;
2264	mm->start_data	= prctl_map.start_data;
2265	mm->end_data	= prctl_map.end_data;
2266	mm->start_brk	= prctl_map.start_brk;
2267	mm->brk		= prctl_map.brk;
2268	mm->start_stack	= prctl_map.start_stack;
2269	mm->arg_start	= prctl_map.arg_start;
2270	mm->arg_end	= prctl_map.arg_end;
2271	mm->env_start	= prctl_map.env_start;
2272	mm->env_end	= prctl_map.env_end;
2273
2274	error = 0;
2275out:
2276	spin_unlock(&mm->arg_lock);
2277	mmap_read_unlock(mm);
2278	return error;
2279}
2280
2281#ifdef CONFIG_CHECKPOINT_RESTORE
2282static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2283{
2284	return put_user(me->clear_child_tid, tid_addr);
2285}
2286#else
2287static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2288{
2289	return -EINVAL;
2290}
2291#endif
2292
2293static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2294{
2295	/*
2296	 * If task has has_child_subreaper - all its descendants
2297	 * already have these flag too and new descendants will
2298	 * inherit it on fork, skip them.
2299	 *
2300	 * If we've found child_reaper - skip descendants in
2301	 * it's subtree as they will never get out pidns.
2302	 */
2303	if (p->signal->has_child_subreaper ||
2304	    is_child_reaper(task_pid(p)))
2305		return 0;
2306
2307	p->signal->has_child_subreaper = 1;
2308	return 1;
2309}
2310
2311int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2312{
2313	return -EINVAL;
2314}
2315
2316int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2317				    unsigned long ctrl)
2318{
2319	return -EINVAL;
2320}
 
 
 
 
2321
2322int __weak arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status)
2323{
2324	return -EINVAL;
2325}
2326
2327int __weak arch_set_shadow_stack_status(struct task_struct *t, unsigned long status)
2328{
2329	return -EINVAL;
2330}
2331
2332int __weak arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status)
2333{
2334	return -EINVAL;
2335}
2336
2337#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2338
2339#ifdef CONFIG_ANON_VMA_NAME
2340
2341#define ANON_VMA_NAME_MAX_LEN		80
2342#define ANON_VMA_NAME_INVALID_CHARS	"\\`$[]"
2343
2344static inline bool is_valid_name_char(char ch)
2345{
2346	/* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2347	return ch > 0x1f && ch < 0x7f &&
2348		!strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2349}
2350
2351static int prctl_set_vma(unsigned long opt, unsigned long addr,
2352			 unsigned long size, unsigned long arg)
2353{
2354	struct mm_struct *mm = current->mm;
2355	const char __user *uname;
2356	struct anon_vma_name *anon_name = NULL;
2357	int error;
2358
2359	switch (opt) {
2360	case PR_SET_VMA_ANON_NAME:
2361		uname = (const char __user *)arg;
2362		if (uname) {
2363			char *name, *pch;
2364
2365			name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2366			if (IS_ERR(name))
2367				return PTR_ERR(name);
2368
2369			for (pch = name; *pch != '\0'; pch++) {
2370				if (!is_valid_name_char(*pch)) {
2371					kfree(name);
2372					return -EINVAL;
2373				}
2374			}
2375			/* anon_vma has its own copy */
2376			anon_name = anon_vma_name_alloc(name);
2377			kfree(name);
2378			if (!anon_name)
2379				return -ENOMEM;
2380
2381		}
2382
2383		mmap_write_lock(mm);
2384		error = madvise_set_anon_name(mm, addr, size, anon_name);
2385		mmap_write_unlock(mm);
2386		anon_vma_name_put(anon_name);
2387		break;
2388	default:
2389		error = -EINVAL;
2390	}
2391
 
 
 
2392	return error;
2393}
2394
2395#else /* CONFIG_ANON_VMA_NAME */
2396static int prctl_set_vma(unsigned long opt, unsigned long start,
2397			 unsigned long size, unsigned long arg)
2398{
2399	return -EINVAL;
2400}
2401#endif /* CONFIG_ANON_VMA_NAME */
2402
2403static inline unsigned long get_current_mdwe(void)
2404{
2405	unsigned long ret = 0;
2406
2407	if (test_bit(MMF_HAS_MDWE, &current->mm->flags))
2408		ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2409	if (test_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags))
2410		ret |= PR_MDWE_NO_INHERIT;
2411
2412	return ret;
2413}
2414
2415static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2416				 unsigned long arg4, unsigned long arg5)
2417{
2418	unsigned long current_bits;
2419
2420	if (arg3 || arg4 || arg5)
2421		return -EINVAL;
2422
2423	if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2424		return -EINVAL;
2425
2426	/* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2427	if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2428		return -EINVAL;
2429
2430	/*
2431	 * EOPNOTSUPP might be more appropriate here in principle, but
2432	 * existing userspace depends on EINVAL specifically.
2433	 */
2434	if (!arch_memory_deny_write_exec_supported())
2435		return -EINVAL;
2436
2437	current_bits = get_current_mdwe();
2438	if (current_bits && current_bits != bits)
2439		return -EPERM; /* Cannot unset the flags */
2440
2441	if (bits & PR_MDWE_NO_INHERIT)
2442		set_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags);
2443	if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2444		set_bit(MMF_HAS_MDWE, &current->mm->flags);
2445
2446	return 0;
2447}
2448
2449static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2450				 unsigned long arg4, unsigned long arg5)
2451{
2452	if (arg2 || arg3 || arg4 || arg5)
2453		return -EINVAL;
2454	return get_current_mdwe();
2455}
2456
2457static int prctl_get_auxv(void __user *addr, unsigned long len)
2458{
2459	struct mm_struct *mm = current->mm;
2460	unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2461
2462	if (size && copy_to_user(addr, mm->saved_auxv, size))
2463		return -EFAULT;
2464	return sizeof(mm->saved_auxv);
2465}
 
2466
2467SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2468		unsigned long, arg4, unsigned long, arg5)
2469{
2470	struct task_struct *me = current;
2471	unsigned char comm[sizeof(me->comm)];
2472	long error;
2473
2474	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2475	if (error != -ENOSYS)
2476		return error;
2477
2478	error = 0;
2479	switch (option) {
2480	case PR_SET_PDEATHSIG:
2481		if (!valid_signal(arg2)) {
2482			error = -EINVAL;
2483			break;
2484		}
2485		me->pdeath_signal = arg2;
2486		break;
2487	case PR_GET_PDEATHSIG:
2488		error = put_user(me->pdeath_signal, (int __user *)arg2);
2489		break;
2490	case PR_GET_DUMPABLE:
2491		error = get_dumpable(me->mm);
2492		break;
2493	case PR_SET_DUMPABLE:
2494		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2495			error = -EINVAL;
2496			break;
2497		}
2498		set_dumpable(me->mm, arg2);
2499		break;
2500
2501	case PR_SET_UNALIGN:
2502		error = SET_UNALIGN_CTL(me, arg2);
2503		break;
2504	case PR_GET_UNALIGN:
2505		error = GET_UNALIGN_CTL(me, arg2);
2506		break;
2507	case PR_SET_FPEMU:
2508		error = SET_FPEMU_CTL(me, arg2);
2509		break;
2510	case PR_GET_FPEMU:
2511		error = GET_FPEMU_CTL(me, arg2);
2512		break;
2513	case PR_SET_FPEXC:
2514		error = SET_FPEXC_CTL(me, arg2);
2515		break;
2516	case PR_GET_FPEXC:
2517		error = GET_FPEXC_CTL(me, arg2);
2518		break;
2519	case PR_GET_TIMING:
2520		error = PR_TIMING_STATISTICAL;
2521		break;
2522	case PR_SET_TIMING:
2523		if (arg2 != PR_TIMING_STATISTICAL)
2524			error = -EINVAL;
2525		break;
2526	case PR_SET_NAME:
2527		comm[sizeof(me->comm) - 1] = 0;
2528		if (strncpy_from_user(comm, (char __user *)arg2,
2529				      sizeof(me->comm) - 1) < 0)
2530			return -EFAULT;
2531		set_task_comm(me, comm);
2532		proc_comm_connector(me);
2533		break;
2534	case PR_GET_NAME:
2535		get_task_comm(comm, me);
2536		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2537			return -EFAULT;
2538		break;
2539	case PR_GET_ENDIAN:
2540		error = GET_ENDIAN(me, arg2);
2541		break;
2542	case PR_SET_ENDIAN:
2543		error = SET_ENDIAN(me, arg2);
2544		break;
2545	case PR_GET_SECCOMP:
2546		error = prctl_get_seccomp();
2547		break;
2548	case PR_SET_SECCOMP:
2549		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2550		break;
2551	case PR_GET_TSC:
2552		error = GET_TSC_CTL(arg2);
2553		break;
2554	case PR_SET_TSC:
2555		error = SET_TSC_CTL(arg2);
2556		break;
2557	case PR_TASK_PERF_EVENTS_DISABLE:
2558		error = perf_event_task_disable();
2559		break;
2560	case PR_TASK_PERF_EVENTS_ENABLE:
2561		error = perf_event_task_enable();
2562		break;
2563	case PR_GET_TIMERSLACK:
2564		if (current->timer_slack_ns > ULONG_MAX)
2565			error = ULONG_MAX;
2566		else
2567			error = current->timer_slack_ns;
2568		break;
2569	case PR_SET_TIMERSLACK:
2570		if (rt_or_dl_task_policy(current))
2571			break;
2572		if (arg2 <= 0)
2573			current->timer_slack_ns =
2574					current->default_timer_slack_ns;
2575		else
2576			current->timer_slack_ns = arg2;
2577		break;
2578	case PR_MCE_KILL:
2579		if (arg4 | arg5)
2580			return -EINVAL;
2581		switch (arg2) {
2582		case PR_MCE_KILL_CLEAR:
2583			if (arg3 != 0)
2584				return -EINVAL;
2585			current->flags &= ~PF_MCE_PROCESS;
2586			break;
2587		case PR_MCE_KILL_SET:
2588			current->flags |= PF_MCE_PROCESS;
2589			if (arg3 == PR_MCE_KILL_EARLY)
2590				current->flags |= PF_MCE_EARLY;
2591			else if (arg3 == PR_MCE_KILL_LATE)
2592				current->flags &= ~PF_MCE_EARLY;
2593			else if (arg3 == PR_MCE_KILL_DEFAULT)
2594				current->flags &=
2595						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2596			else
2597				return -EINVAL;
2598			break;
2599		default:
2600			return -EINVAL;
2601		}
2602		break;
2603	case PR_MCE_KILL_GET:
2604		if (arg2 | arg3 | arg4 | arg5)
2605			return -EINVAL;
2606		if (current->flags & PF_MCE_PROCESS)
2607			error = (current->flags & PF_MCE_EARLY) ?
2608				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2609		else
2610			error = PR_MCE_KILL_DEFAULT;
2611		break;
2612	case PR_SET_MM:
2613		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2614		break;
2615	case PR_GET_TID_ADDRESS:
2616		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2617		break;
2618	case PR_SET_CHILD_SUBREAPER:
2619		me->signal->is_child_subreaper = !!arg2;
2620		if (!arg2)
2621			break;
2622
2623		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2624		break;
2625	case PR_GET_CHILD_SUBREAPER:
2626		error = put_user(me->signal->is_child_subreaper,
2627				 (int __user *)arg2);
2628		break;
2629	case PR_SET_NO_NEW_PRIVS:
2630		if (arg2 != 1 || arg3 || arg4 || arg5)
2631			return -EINVAL;
2632
2633		task_set_no_new_privs(current);
2634		break;
2635	case PR_GET_NO_NEW_PRIVS:
2636		if (arg2 || arg3 || arg4 || arg5)
2637			return -EINVAL;
2638		return task_no_new_privs(current) ? 1 : 0;
2639	case PR_GET_THP_DISABLE:
2640		if (arg2 || arg3 || arg4 || arg5)
2641			return -EINVAL;
2642		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2643		break;
2644	case PR_SET_THP_DISABLE:
2645		if (arg3 || arg4 || arg5)
2646			return -EINVAL;
2647		if (mmap_write_lock_killable(me->mm))
2648			return -EINTR;
2649		if (arg2)
2650			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2651		else
2652			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2653		mmap_write_unlock(me->mm);
2654		break;
2655	case PR_MPX_ENABLE_MANAGEMENT:
2656	case PR_MPX_DISABLE_MANAGEMENT:
2657		/* No longer implemented: */
2658		return -EINVAL;
2659	case PR_SET_FP_MODE:
2660		error = SET_FP_MODE(me, arg2);
2661		break;
2662	case PR_GET_FP_MODE:
2663		error = GET_FP_MODE(me);
2664		break;
2665	case PR_SVE_SET_VL:
2666		error = SVE_SET_VL(arg2);
2667		break;
2668	case PR_SVE_GET_VL:
2669		error = SVE_GET_VL();
2670		break;
2671	case PR_SME_SET_VL:
2672		error = SME_SET_VL(arg2);
2673		break;
2674	case PR_SME_GET_VL:
2675		error = SME_GET_VL();
2676		break;
2677	case PR_GET_SPECULATION_CTRL:
2678		if (arg3 || arg4 || arg5)
2679			return -EINVAL;
2680		error = arch_prctl_spec_ctrl_get(me, arg2);
2681		break;
2682	case PR_SET_SPECULATION_CTRL:
2683		if (arg4 || arg5)
2684			return -EINVAL;
2685		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2686		break;
2687	case PR_PAC_RESET_KEYS:
2688		if (arg3 || arg4 || arg5)
2689			return -EINVAL;
2690		error = PAC_RESET_KEYS(me, arg2);
2691		break;
2692	case PR_PAC_SET_ENABLED_KEYS:
2693		if (arg4 || arg5)
2694			return -EINVAL;
2695		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2696		break;
2697	case PR_PAC_GET_ENABLED_KEYS:
2698		if (arg2 || arg3 || arg4 || arg5)
2699			return -EINVAL;
2700		error = PAC_GET_ENABLED_KEYS(me);
2701		break;
2702	case PR_SET_TAGGED_ADDR_CTRL:
2703		if (arg3 || arg4 || arg5)
2704			return -EINVAL;
2705		error = SET_TAGGED_ADDR_CTRL(arg2);
2706		break;
2707	case PR_GET_TAGGED_ADDR_CTRL:
2708		if (arg2 || arg3 || arg4 || arg5)
2709			return -EINVAL;
2710		error = GET_TAGGED_ADDR_CTRL();
2711		break;
2712	case PR_SET_IO_FLUSHER:
2713		if (!capable(CAP_SYS_RESOURCE))
2714			return -EPERM;
2715
2716		if (arg3 || arg4 || arg5)
2717			return -EINVAL;
2718
2719		if (arg2 == 1)
2720			current->flags |= PR_IO_FLUSHER;
2721		else if (!arg2)
2722			current->flags &= ~PR_IO_FLUSHER;
2723		else
2724			return -EINVAL;
2725		break;
2726	case PR_GET_IO_FLUSHER:
2727		if (!capable(CAP_SYS_RESOURCE))
2728			return -EPERM;
2729
2730		if (arg2 || arg3 || arg4 || arg5)
2731			return -EINVAL;
2732
2733		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2734		break;
2735	case PR_SET_SYSCALL_USER_DISPATCH:
2736		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2737						  (char __user *) arg5);
2738		break;
2739#ifdef CONFIG_SCHED_CORE
2740	case PR_SCHED_CORE:
2741		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2742		break;
2743#endif
2744	case PR_SET_MDWE:
2745		error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2746		break;
2747	case PR_GET_MDWE:
2748		error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2749		break;
2750	case PR_PPC_GET_DEXCR:
2751		if (arg3 || arg4 || arg5)
2752			return -EINVAL;
2753		error = PPC_GET_DEXCR_ASPECT(me, arg2);
2754		break;
2755	case PR_PPC_SET_DEXCR:
2756		if (arg4 || arg5)
2757			return -EINVAL;
2758		error = PPC_SET_DEXCR_ASPECT(me, arg2, arg3);
2759		break;
2760	case PR_SET_VMA:
2761		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2762		break;
2763	case PR_GET_AUXV:
2764		if (arg4 || arg5)
2765			return -EINVAL;
2766		error = prctl_get_auxv((void __user *)arg2, arg3);
2767		break;
2768#ifdef CONFIG_KSM
2769	case PR_SET_MEMORY_MERGE:
2770		if (arg3 || arg4 || arg5)
2771			return -EINVAL;
2772		if (mmap_write_lock_killable(me->mm))
2773			return -EINTR;
2774
2775		if (arg2)
2776			error = ksm_enable_merge_any(me->mm);
2777		else
2778			error = ksm_disable_merge_any(me->mm);
2779		mmap_write_unlock(me->mm);
2780		break;
2781	case PR_GET_MEMORY_MERGE:
2782		if (arg2 || arg3 || arg4 || arg5)
2783			return -EINVAL;
2784
2785		error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2786		break;
2787#endif
2788	case PR_RISCV_V_SET_CONTROL:
2789		error = RISCV_V_SET_CONTROL(arg2);
2790		break;
2791	case PR_RISCV_V_GET_CONTROL:
2792		error = RISCV_V_GET_CONTROL();
2793		break;
2794	case PR_RISCV_SET_ICACHE_FLUSH_CTX:
2795		error = RISCV_SET_ICACHE_FLUSH_CTX(arg2, arg3);
2796		break;
2797	case PR_GET_SHADOW_STACK_STATUS:
2798		if (arg3 || arg4 || arg5)
2799			return -EINVAL;
2800		error = arch_get_shadow_stack_status(me, (unsigned long __user *) arg2);
2801		break;
2802	case PR_SET_SHADOW_STACK_STATUS:
2803		if (arg3 || arg4 || arg5)
2804			return -EINVAL;
2805		error = arch_set_shadow_stack_status(me, arg2);
2806		break;
2807	case PR_LOCK_SHADOW_STACK_STATUS:
2808		if (arg3 || arg4 || arg5)
2809			return -EINVAL;
2810		error = arch_lock_shadow_stack_status(me, arg2);
2811		break;
2812	default:
2813		error = -EINVAL;
2814		break;
2815	}
2816	return error;
2817}
2818
2819SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2820		struct getcpu_cache __user *, unused)
2821{
2822	int err = 0;
2823	int cpu = raw_smp_processor_id();
2824
2825	if (cpup)
2826		err |= put_user(cpu, cpup);
2827	if (nodep)
2828		err |= put_user(cpu_to_node(cpu), nodep);
2829	return err ? -EFAULT : 0;
2830}
2831
2832/**
2833 * do_sysinfo - fill in sysinfo struct
2834 * @info: pointer to buffer to fill
2835 */
2836static int do_sysinfo(struct sysinfo *info)
2837{
2838	unsigned long mem_total, sav_total;
2839	unsigned int mem_unit, bitcount;
2840	struct timespec64 tp;
2841
2842	memset(info, 0, sizeof(struct sysinfo));
2843
2844	ktime_get_boottime_ts64(&tp);
2845	timens_add_boottime(&tp);
2846	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2847
2848	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2849
2850	info->procs = nr_threads;
2851
2852	si_meminfo(info);
2853	si_swapinfo(info);
2854
2855	/*
2856	 * If the sum of all the available memory (i.e. ram + swap)
2857	 * is less than can be stored in a 32 bit unsigned long then
2858	 * we can be binary compatible with 2.2.x kernels.  If not,
2859	 * well, in that case 2.2.x was broken anyways...
2860	 *
2861	 *  -Erik Andersen <andersee@debian.org>
2862	 */
2863
2864	mem_total = info->totalram + info->totalswap;
2865	if (mem_total < info->totalram || mem_total < info->totalswap)
2866		goto out;
2867	bitcount = 0;
2868	mem_unit = info->mem_unit;
2869	while (mem_unit > 1) {
2870		bitcount++;
2871		mem_unit >>= 1;
2872		sav_total = mem_total;
2873		mem_total <<= 1;
2874		if (mem_total < sav_total)
2875			goto out;
2876	}
2877
2878	/*
2879	 * If mem_total did not overflow, multiply all memory values by
2880	 * info->mem_unit and set it to 1.  This leaves things compatible
2881	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2882	 * kernels...
2883	 */
2884
2885	info->mem_unit = 1;
2886	info->totalram <<= bitcount;
2887	info->freeram <<= bitcount;
2888	info->sharedram <<= bitcount;
2889	info->bufferram <<= bitcount;
2890	info->totalswap <<= bitcount;
2891	info->freeswap <<= bitcount;
2892	info->totalhigh <<= bitcount;
2893	info->freehigh <<= bitcount;
2894
2895out:
2896	return 0;
2897}
2898
2899SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2900{
2901	struct sysinfo val;
2902
2903	do_sysinfo(&val);
2904
2905	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2906		return -EFAULT;
2907
2908	return 0;
2909}
2910
2911#ifdef CONFIG_COMPAT
2912struct compat_sysinfo {
2913	s32 uptime;
2914	u32 loads[3];
2915	u32 totalram;
2916	u32 freeram;
2917	u32 sharedram;
2918	u32 bufferram;
2919	u32 totalswap;
2920	u32 freeswap;
2921	u16 procs;
2922	u16 pad;
2923	u32 totalhigh;
2924	u32 freehigh;
2925	u32 mem_unit;
2926	char _f[20-2*sizeof(u32)-sizeof(int)];
2927};
2928
2929COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2930{
2931	struct sysinfo s;
2932	struct compat_sysinfo s_32;
2933
2934	do_sysinfo(&s);
2935
2936	/* Check to see if any memory value is too large for 32-bit and scale
2937	 *  down if needed
2938	 */
2939	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2940		int bitcount = 0;
2941
2942		while (s.mem_unit < PAGE_SIZE) {
2943			s.mem_unit <<= 1;
2944			bitcount++;
2945		}
2946
2947		s.totalram >>= bitcount;
2948		s.freeram >>= bitcount;
2949		s.sharedram >>= bitcount;
2950		s.bufferram >>= bitcount;
2951		s.totalswap >>= bitcount;
2952		s.freeswap >>= bitcount;
2953		s.totalhigh >>= bitcount;
2954		s.freehigh >>= bitcount;
2955	}
2956
2957	memset(&s_32, 0, sizeof(s_32));
2958	s_32.uptime = s.uptime;
2959	s_32.loads[0] = s.loads[0];
2960	s_32.loads[1] = s.loads[1];
2961	s_32.loads[2] = s.loads[2];
2962	s_32.totalram = s.totalram;
2963	s_32.freeram = s.freeram;
2964	s_32.sharedram = s.sharedram;
2965	s_32.bufferram = s.bufferram;
2966	s_32.totalswap = s.totalswap;
2967	s_32.freeswap = s.freeswap;
2968	s_32.procs = s.procs;
2969	s_32.totalhigh = s.totalhigh;
2970	s_32.freehigh = s.freehigh;
2971	s_32.mem_unit = s.mem_unit;
2972	if (copy_to_user(info, &s_32, sizeof(s_32)))
2973		return -EFAULT;
 
2974	return 0;
2975}
2976#endif /* CONFIG_COMPAT */