Loading...
1/*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11/* start node id of a node block dedicated to the given node id */
12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14/* node block offset on the NAT area dedicated to the given start node id */
15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17/* # of pages to perform readahead before building free nids */
18#define FREE_NID_PAGES 4
19
20/* maximum readahead size for node during getting data blocks */
21#define MAX_RA_NODE 128
22
23/* control the memory footprint threshold (10MB per 1GB ram) */
24#define DEF_RAM_THRESHOLD 10
25
26/* vector size for gang look-up from nat cache that consists of radix tree */
27#define NATVEC_SIZE 64
28
29/* return value for read_node_page */
30#define LOCKED_PAGE 1
31
32/*
33 * For node information
34 */
35struct node_info {
36 nid_t nid; /* node id */
37 nid_t ino; /* inode number of the node's owner */
38 block_t blk_addr; /* block address of the node */
39 unsigned char version; /* version of the node */
40};
41
42struct nat_entry {
43 struct list_head list; /* for clean or dirty nat list */
44 bool checkpointed; /* whether it is checkpointed or not */
45 bool fsync_done; /* whether the latest node has fsync mark */
46 struct node_info ni; /* in-memory node information */
47};
48
49#define nat_get_nid(nat) (nat->ni.nid)
50#define nat_set_nid(nat, n) (nat->ni.nid = n)
51#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
52#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
53#define nat_get_ino(nat) (nat->ni.ino)
54#define nat_set_ino(nat, i) (nat->ni.ino = i)
55#define nat_get_version(nat) (nat->ni.version)
56#define nat_set_version(nat, v) (nat->ni.version = v)
57
58#define __set_nat_cache_dirty(nm_i, ne) \
59 do { \
60 ne->checkpointed = false; \
61 list_move_tail(&ne->list, &nm_i->dirty_nat_entries); \
62 } while (0);
63#define __clear_nat_cache_dirty(nm_i, ne) \
64 do { \
65 ne->checkpointed = true; \
66 list_move_tail(&ne->list, &nm_i->nat_entries); \
67 } while (0);
68#define inc_node_version(version) (++version)
69
70static inline void node_info_from_raw_nat(struct node_info *ni,
71 struct f2fs_nat_entry *raw_ne)
72{
73 ni->ino = le32_to_cpu(raw_ne->ino);
74 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
75 ni->version = raw_ne->version;
76}
77
78enum nid_type {
79 FREE_NIDS, /* indicates the free nid list */
80 NAT_ENTRIES /* indicates the cached nat entry */
81};
82
83/*
84 * For free nid mangement
85 */
86enum nid_state {
87 NID_NEW, /* newly added to free nid list */
88 NID_ALLOC /* it is allocated */
89};
90
91struct free_nid {
92 struct list_head list; /* for free node id list */
93 nid_t nid; /* node id */
94 int state; /* in use or not: NID_NEW or NID_ALLOC */
95};
96
97static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
98{
99 struct f2fs_nm_info *nm_i = NM_I(sbi);
100 struct free_nid *fnid;
101
102 if (nm_i->fcnt <= 0)
103 return -1;
104 spin_lock(&nm_i->free_nid_list_lock);
105 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
106 *nid = fnid->nid;
107 spin_unlock(&nm_i->free_nid_list_lock);
108 return 0;
109}
110
111/*
112 * inline functions
113 */
114static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
115{
116 struct f2fs_nm_info *nm_i = NM_I(sbi);
117 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
118}
119
120static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
121{
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
123 pgoff_t block_off;
124 pgoff_t block_addr;
125 int seg_off;
126
127 block_off = NAT_BLOCK_OFFSET(start);
128 seg_off = block_off >> sbi->log_blocks_per_seg;
129
130 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
131 (seg_off << sbi->log_blocks_per_seg << 1) +
132 (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
133
134 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
135 block_addr += sbi->blocks_per_seg;
136
137 return block_addr;
138}
139
140static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
141 pgoff_t block_addr)
142{
143 struct f2fs_nm_info *nm_i = NM_I(sbi);
144
145 block_addr -= nm_i->nat_blkaddr;
146 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
147 block_addr -= sbi->blocks_per_seg;
148 else
149 block_addr += sbi->blocks_per_seg;
150
151 return block_addr + nm_i->nat_blkaddr;
152}
153
154static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
155{
156 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
157
158 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
159 f2fs_clear_bit(block_off, nm_i->nat_bitmap);
160 else
161 f2fs_set_bit(block_off, nm_i->nat_bitmap);
162}
163
164static inline void fill_node_footer(struct page *page, nid_t nid,
165 nid_t ino, unsigned int ofs, bool reset)
166{
167 struct f2fs_node *rn = F2FS_NODE(page);
168 if (reset)
169 memset(rn, 0, sizeof(*rn));
170 rn->footer.nid = cpu_to_le32(nid);
171 rn->footer.ino = cpu_to_le32(ino);
172 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
173}
174
175static inline void copy_node_footer(struct page *dst, struct page *src)
176{
177 struct f2fs_node *src_rn = F2FS_NODE(src);
178 struct f2fs_node *dst_rn = F2FS_NODE(dst);
179 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
180}
181
182static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
183{
184 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
185 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
186 struct f2fs_node *rn = F2FS_NODE(page);
187
188 rn->footer.cp_ver = ckpt->checkpoint_ver;
189 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
190}
191
192static inline nid_t ino_of_node(struct page *node_page)
193{
194 struct f2fs_node *rn = F2FS_NODE(node_page);
195 return le32_to_cpu(rn->footer.ino);
196}
197
198static inline nid_t nid_of_node(struct page *node_page)
199{
200 struct f2fs_node *rn = F2FS_NODE(node_page);
201 return le32_to_cpu(rn->footer.nid);
202}
203
204static inline unsigned int ofs_of_node(struct page *node_page)
205{
206 struct f2fs_node *rn = F2FS_NODE(node_page);
207 unsigned flag = le32_to_cpu(rn->footer.flag);
208 return flag >> OFFSET_BIT_SHIFT;
209}
210
211static inline unsigned long long cpver_of_node(struct page *node_page)
212{
213 struct f2fs_node *rn = F2FS_NODE(node_page);
214 return le64_to_cpu(rn->footer.cp_ver);
215}
216
217static inline block_t next_blkaddr_of_node(struct page *node_page)
218{
219 struct f2fs_node *rn = F2FS_NODE(node_page);
220 return le32_to_cpu(rn->footer.next_blkaddr);
221}
222
223/*
224 * f2fs assigns the following node offsets described as (num).
225 * N = NIDS_PER_BLOCK
226 *
227 * Inode block (0)
228 * |- direct node (1)
229 * |- direct node (2)
230 * |- indirect node (3)
231 * | `- direct node (4 => 4 + N - 1)
232 * |- indirect node (4 + N)
233 * | `- direct node (5 + N => 5 + 2N - 1)
234 * `- double indirect node (5 + 2N)
235 * `- indirect node (6 + 2N)
236 * `- direct node
237 * ......
238 * `- indirect node ((6 + 2N) + x(N + 1))
239 * `- direct node
240 * ......
241 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
242 * `- direct node
243 */
244static inline bool IS_DNODE(struct page *node_page)
245{
246 unsigned int ofs = ofs_of_node(node_page);
247
248 if (f2fs_has_xattr_block(ofs))
249 return false;
250
251 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
252 ofs == 5 + 2 * NIDS_PER_BLOCK)
253 return false;
254 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
255 ofs -= 6 + 2 * NIDS_PER_BLOCK;
256 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
257 return false;
258 }
259 return true;
260}
261
262static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
263{
264 struct f2fs_node *rn = F2FS_NODE(p);
265
266 wait_on_page_writeback(p);
267
268 if (i)
269 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
270 else
271 rn->in.nid[off] = cpu_to_le32(nid);
272 set_page_dirty(p);
273}
274
275static inline nid_t get_nid(struct page *p, int off, bool i)
276{
277 struct f2fs_node *rn = F2FS_NODE(p);
278
279 if (i)
280 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
281 return le32_to_cpu(rn->in.nid[off]);
282}
283
284/*
285 * Coldness identification:
286 * - Mark cold files in f2fs_inode_info
287 * - Mark cold node blocks in their node footer
288 * - Mark cold data pages in page cache
289 */
290static inline int is_file(struct inode *inode, int type)
291{
292 return F2FS_I(inode)->i_advise & type;
293}
294
295static inline void set_file(struct inode *inode, int type)
296{
297 F2FS_I(inode)->i_advise |= type;
298}
299
300static inline void clear_file(struct inode *inode, int type)
301{
302 F2FS_I(inode)->i_advise &= ~type;
303}
304
305#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
306#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
307#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
308#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
309#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
310#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
311
312static inline int is_cold_data(struct page *page)
313{
314 return PageChecked(page);
315}
316
317static inline void set_cold_data(struct page *page)
318{
319 SetPageChecked(page);
320}
321
322static inline void clear_cold_data(struct page *page)
323{
324 ClearPageChecked(page);
325}
326
327static inline int is_node(struct page *page, int type)
328{
329 struct f2fs_node *rn = F2FS_NODE(page);
330 return le32_to_cpu(rn->footer.flag) & (1 << type);
331}
332
333#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
334#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
335#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
336
337static inline void set_cold_node(struct inode *inode, struct page *page)
338{
339 struct f2fs_node *rn = F2FS_NODE(page);
340 unsigned int flag = le32_to_cpu(rn->footer.flag);
341
342 if (S_ISDIR(inode->i_mode))
343 flag &= ~(0x1 << COLD_BIT_SHIFT);
344 else
345 flag |= (0x1 << COLD_BIT_SHIFT);
346 rn->footer.flag = cpu_to_le32(flag);
347}
348
349static inline void set_mark(struct page *page, int mark, int type)
350{
351 struct f2fs_node *rn = F2FS_NODE(page);
352 unsigned int flag = le32_to_cpu(rn->footer.flag);
353 if (mark)
354 flag |= (0x1 << type);
355 else
356 flag &= ~(0x1 << type);
357 rn->footer.flag = cpu_to_le32(flag);
358}
359#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
360#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8/* start node id of a node block dedicated to the given node id */
9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11/* node block offset on the NAT area dedicated to the given start node id */
12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14/* # of pages to perform synchronous readahead before building free nids */
15#define FREE_NID_PAGES 8
16#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18/* size of free nid batch when shrinking */
19#define SHRINK_NID_BATCH_SIZE 8
20
21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23/* maximum readahead size for node during getting data blocks */
24#define MAX_RA_NODE 128
25
26/* control the memory footprint threshold (10MB per 1GB ram) */
27#define DEF_RAM_THRESHOLD 1
28
29/* control dirty nats ratio threshold (default: 10% over max nid count) */
30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31/* control total # of nats */
32#define DEF_NAT_CACHE_THRESHOLD 100000
33
34/* control total # of node writes used for roll-fowrad recovery */
35#define DEF_RF_NODE_BLOCKS 0
36
37/* vector size for gang look-up from nat cache that consists of radix tree */
38#define NAT_VEC_SIZE 32
39
40/* return value for read_node_page */
41#define LOCKED_PAGE 1
42
43/* check pinned file's alignment status of physical blocks */
44#define FILE_NOT_ALIGNED 1
45
46/* For flag in struct node_info */
47enum {
48 IS_CHECKPOINTED, /* is it checkpointed before? */
49 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
50 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
51 IS_DIRTY, /* this nat entry is dirty? */
52 IS_PREALLOC, /* nat entry is preallocated */
53};
54
55/*
56 * For node information
57 */
58struct node_info {
59 nid_t nid; /* node id */
60 nid_t ino; /* inode number of the node's owner */
61 block_t blk_addr; /* block address of the node */
62 unsigned char version; /* version of the node */
63 unsigned char flag; /* for node information bits */
64};
65
66struct nat_entry {
67 struct list_head list; /* for clean or dirty nat list */
68 struct node_info ni; /* in-memory node information */
69};
70
71#define nat_get_nid(nat) ((nat)->ni.nid)
72#define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
73#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
74#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
75#define nat_get_ino(nat) ((nat)->ni.ino)
76#define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
77#define nat_get_version(nat) ((nat)->ni.version)
78#define nat_set_version(nat, v) ((nat)->ni.version = (v))
79
80#define inc_node_version(version) (++(version))
81
82static inline void copy_node_info(struct node_info *dst,
83 struct node_info *src)
84{
85 dst->nid = src->nid;
86 dst->ino = src->ino;
87 dst->blk_addr = src->blk_addr;
88 dst->version = src->version;
89 /* should not copy flag here */
90}
91
92static inline void set_nat_flag(struct nat_entry *ne,
93 unsigned int type, bool set)
94{
95 if (set)
96 ne->ni.flag |= BIT(type);
97 else
98 ne->ni.flag &= ~BIT(type);
99}
100
101static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
102{
103 return ne->ni.flag & BIT(type);
104}
105
106static inline void nat_reset_flag(struct nat_entry *ne)
107{
108 /* these states can be set only after checkpoint was done */
109 set_nat_flag(ne, IS_CHECKPOINTED, true);
110 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
111 set_nat_flag(ne, HAS_LAST_FSYNC, true);
112}
113
114static inline void node_info_from_raw_nat(struct node_info *ni,
115 struct f2fs_nat_entry *raw_ne)
116{
117 ni->ino = le32_to_cpu(raw_ne->ino);
118 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
119 ni->version = raw_ne->version;
120}
121
122static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
123 struct node_info *ni)
124{
125 raw_ne->ino = cpu_to_le32(ni->ino);
126 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
127 raw_ne->version = ni->version;
128}
129
130static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
131{
132 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
133 NM_I(sbi)->dirty_nats_ratio / 100;
134}
135
136static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
137{
138 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
139}
140
141enum mem_type {
142 FREE_NIDS, /* indicates the free nid list */
143 NAT_ENTRIES, /* indicates the cached nat entry */
144 DIRTY_DENTS, /* indicates dirty dentry pages */
145 INO_ENTRIES, /* indicates inode entries */
146 READ_EXTENT_CACHE, /* indicates read extent cache */
147 AGE_EXTENT_CACHE, /* indicates age extent cache */
148 DISCARD_CACHE, /* indicates memory of cached discard cmds */
149 COMPRESS_PAGE, /* indicates memory of cached compressed pages */
150 BASE_CHECK, /* check kernel status */
151};
152
153struct nat_entry_set {
154 struct list_head set_list; /* link with other nat sets */
155 struct list_head entry_list; /* link with dirty nat entries */
156 nid_t set; /* set number*/
157 unsigned int entry_cnt; /* the # of nat entries in set */
158};
159
160struct free_nid {
161 struct list_head list; /* for free node id list */
162 nid_t nid; /* node id */
163 int state; /* in use or not: FREE_NID or PREALLOC_NID */
164};
165
166static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
167{
168 struct f2fs_nm_info *nm_i = NM_I(sbi);
169 struct free_nid *fnid;
170
171 spin_lock(&nm_i->nid_list_lock);
172 if (nm_i->nid_cnt[FREE_NID] <= 0) {
173 spin_unlock(&nm_i->nid_list_lock);
174 return;
175 }
176 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
177 *nid = fnid->nid;
178 spin_unlock(&nm_i->nid_list_lock);
179}
180
181/*
182 * inline functions
183 */
184static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
185{
186 struct f2fs_nm_info *nm_i = NM_I(sbi);
187
188#ifdef CONFIG_F2FS_CHECK_FS
189 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
190 nm_i->bitmap_size))
191 f2fs_bug_on(sbi, 1);
192#endif
193 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
194}
195
196static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
197{
198 struct f2fs_nm_info *nm_i = NM_I(sbi);
199 pgoff_t block_off;
200 pgoff_t block_addr;
201
202 /*
203 * block_off = segment_off * 512 + off_in_segment
204 * OLD = (segment_off * 512) * 2 + off_in_segment
205 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
206 */
207 block_off = NAT_BLOCK_OFFSET(start);
208
209 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
210 (block_off << 1) -
211 (block_off & (BLKS_PER_SEG(sbi) - 1)));
212
213 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
214 block_addr += BLKS_PER_SEG(sbi);
215
216 return block_addr;
217}
218
219static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
220 pgoff_t block_addr)
221{
222 struct f2fs_nm_info *nm_i = NM_I(sbi);
223
224 block_addr -= nm_i->nat_blkaddr;
225 block_addr ^= BIT(sbi->log_blocks_per_seg);
226 return block_addr + nm_i->nat_blkaddr;
227}
228
229static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
230{
231 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
232
233 f2fs_change_bit(block_off, nm_i->nat_bitmap);
234#ifdef CONFIG_F2FS_CHECK_FS
235 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
236#endif
237}
238
239static inline nid_t ino_of_node(struct page *node_page)
240{
241 struct f2fs_node *rn = F2FS_NODE(node_page);
242 return le32_to_cpu(rn->footer.ino);
243}
244
245static inline nid_t nid_of_node(struct page *node_page)
246{
247 struct f2fs_node *rn = F2FS_NODE(node_page);
248 return le32_to_cpu(rn->footer.nid);
249}
250
251static inline unsigned int ofs_of_node(struct page *node_page)
252{
253 struct f2fs_node *rn = F2FS_NODE(node_page);
254 unsigned flag = le32_to_cpu(rn->footer.flag);
255 return flag >> OFFSET_BIT_SHIFT;
256}
257
258static inline __u64 cpver_of_node(struct page *node_page)
259{
260 struct f2fs_node *rn = F2FS_NODE(node_page);
261 return le64_to_cpu(rn->footer.cp_ver);
262}
263
264static inline block_t next_blkaddr_of_node(struct page *node_page)
265{
266 struct f2fs_node *rn = F2FS_NODE(node_page);
267 return le32_to_cpu(rn->footer.next_blkaddr);
268}
269
270static inline void fill_node_footer(struct page *page, nid_t nid,
271 nid_t ino, unsigned int ofs, bool reset)
272{
273 struct f2fs_node *rn = F2FS_NODE(page);
274 unsigned int old_flag = 0;
275
276 if (reset)
277 memset(rn, 0, sizeof(*rn));
278 else
279 old_flag = le32_to_cpu(rn->footer.flag);
280
281 rn->footer.nid = cpu_to_le32(nid);
282 rn->footer.ino = cpu_to_le32(ino);
283
284 /* should remain old flag bits such as COLD_BIT_SHIFT */
285 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
286 (old_flag & OFFSET_BIT_MASK));
287}
288
289static inline void copy_node_footer(struct page *dst, struct page *src)
290{
291 struct f2fs_node *src_rn = F2FS_NODE(src);
292 struct f2fs_node *dst_rn = F2FS_NODE(dst);
293 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
294}
295
296static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
297{
298 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
299 struct f2fs_node *rn = F2FS_NODE(page);
300 __u64 cp_ver = cur_cp_version(ckpt);
301
302 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
303 cp_ver |= (cur_cp_crc(ckpt) << 32);
304
305 rn->footer.cp_ver = cpu_to_le64(cp_ver);
306 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
307}
308
309static inline bool is_recoverable_dnode(struct page *page)
310{
311 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
312 __u64 cp_ver = cur_cp_version(ckpt);
313
314 /* Don't care crc part, if fsck.f2fs sets it. */
315 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
316 return (cp_ver << 32) == (cpver_of_node(page) << 32);
317
318 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
319 cp_ver |= (cur_cp_crc(ckpt) << 32);
320
321 return cp_ver == cpver_of_node(page);
322}
323
324/*
325 * f2fs assigns the following node offsets described as (num).
326 * N = NIDS_PER_BLOCK
327 *
328 * Inode block (0)
329 * |- direct node (1)
330 * |- direct node (2)
331 * |- indirect node (3)
332 * | `- direct node (4 => 4 + N - 1)
333 * |- indirect node (4 + N)
334 * | `- direct node (5 + N => 5 + 2N - 1)
335 * `- double indirect node (5 + 2N)
336 * `- indirect node (6 + 2N)
337 * `- direct node
338 * ......
339 * `- indirect node ((6 + 2N) + x(N + 1))
340 * `- direct node
341 * ......
342 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
343 * `- direct node
344 */
345static inline bool IS_DNODE(struct page *node_page)
346{
347 unsigned int ofs = ofs_of_node(node_page);
348
349 if (f2fs_has_xattr_block(ofs))
350 return true;
351
352 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
353 ofs == 5 + 2 * NIDS_PER_BLOCK)
354 return false;
355 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
356 ofs -= 6 + 2 * NIDS_PER_BLOCK;
357 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
358 return false;
359 }
360 return true;
361}
362
363static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
364{
365 struct f2fs_node *rn = F2FS_NODE(p);
366
367 f2fs_wait_on_page_writeback(p, NODE, true, true);
368
369 if (i)
370 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
371 else
372 rn->in.nid[off] = cpu_to_le32(nid);
373 return set_page_dirty(p);
374}
375
376static inline nid_t get_nid(struct page *p, int off, bool i)
377{
378 struct f2fs_node *rn = F2FS_NODE(p);
379
380 if (i)
381 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
382 return le32_to_cpu(rn->in.nid[off]);
383}
384
385/*
386 * Coldness identification:
387 * - Mark cold files in f2fs_inode_info
388 * - Mark cold node blocks in their node footer
389 * - Mark cold data pages in page cache
390 */
391
392static inline int is_node(struct page *page, int type)
393{
394 struct f2fs_node *rn = F2FS_NODE(page);
395 return le32_to_cpu(rn->footer.flag) & BIT(type);
396}
397
398#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
399#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
400#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
401
402static inline void set_cold_node(struct page *page, bool is_dir)
403{
404 struct f2fs_node *rn = F2FS_NODE(page);
405 unsigned int flag = le32_to_cpu(rn->footer.flag);
406
407 if (is_dir)
408 flag &= ~BIT(COLD_BIT_SHIFT);
409 else
410 flag |= BIT(COLD_BIT_SHIFT);
411 rn->footer.flag = cpu_to_le32(flag);
412}
413
414static inline void set_mark(struct page *page, int mark, int type)
415{
416 struct f2fs_node *rn = F2FS_NODE(page);
417 unsigned int flag = le32_to_cpu(rn->footer.flag);
418 if (mark)
419 flag |= BIT(type);
420 else
421 flag &= ~BIT(type);
422 rn->footer.flag = cpu_to_le32(flag);
423
424#ifdef CONFIG_F2FS_CHECK_FS
425 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
426#endif
427}
428#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
429#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)