Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * fs/f2fs/node.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11/* start node id of a node block dedicated to the given node id */
 12#define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 13
 14/* node block offset on the NAT area dedicated to the given start node id */
 15#define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
 
 
 
 
 16
 17/* # of pages to perform readahead before building free nids */
 18#define FREE_NID_PAGES 4
 
 
 19
 20/* maximum readahead size for node during getting data blocks */
 21#define MAX_RA_NODE		128
 22
 23/* control the memory footprint threshold (10MB per 1GB ram) */
 24#define DEF_RAM_THRESHOLD	10
 
 
 
 
 
 
 
 
 25
 26/* vector size for gang look-up from nat cache that consists of radix tree */
 27#define NATVEC_SIZE	64
 
 28
 29/* return value for read_node_page */
 30#define LOCKED_PAGE	1
 31
 
 
 
 
 
 
 
 
 
 
 
 
 32/*
 33 * For node information
 34 */
 35struct node_info {
 36	nid_t nid;		/* node id */
 37	nid_t ino;		/* inode number of the node's owner */
 38	block_t	blk_addr;	/* block address of the node */
 39	unsigned char version;	/* version of the node */
 
 40};
 41
 42struct nat_entry {
 43	struct list_head list;	/* for clean or dirty nat list */
 44	bool checkpointed;	/* whether it is checkpointed or not */
 45	bool fsync_done;	/* whether the latest node has fsync mark */
 46	struct node_info ni;	/* in-memory node information */
 47};
 48
 49#define nat_get_nid(nat)		(nat->ni.nid)
 50#define nat_set_nid(nat, n)		(nat->ni.nid = n)
 51#define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
 52#define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
 53#define nat_get_ino(nat)		(nat->ni.ino)
 54#define nat_set_ino(nat, i)		(nat->ni.ino = i)
 55#define nat_get_version(nat)		(nat->ni.version)
 56#define nat_set_version(nat, v)		(nat->ni.version = v)
 57
 58#define __set_nat_cache_dirty(nm_i, ne)					\
 59	do {								\
 60		ne->checkpointed = false;				\
 61		list_move_tail(&ne->list, &nm_i->dirty_nat_entries);	\
 62	} while (0);
 63#define __clear_nat_cache_dirty(nm_i, ne)				\
 64	do {								\
 65		ne->checkpointed = true;				\
 66		list_move_tail(&ne->list, &nm_i->nat_entries);		\
 67	} while (0);
 68#define inc_node_version(version)	(++version)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 69
 70static inline void node_info_from_raw_nat(struct node_info *ni,
 71						struct f2fs_nat_entry *raw_ne)
 72{
 73	ni->ino = le32_to_cpu(raw_ne->ino);
 74	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
 75	ni->version = raw_ne->version;
 76}
 77
 78enum nid_type {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79	FREE_NIDS,	/* indicates the free nid list */
 80	NAT_ENTRIES	/* indicates the cached nat entry */
 
 
 
 
 
 
 
 81};
 82
 83/*
 84 * For free nid mangement
 85 */
 86enum nid_state {
 87	NID_NEW,	/* newly added to free nid list */
 88	NID_ALLOC	/* it is allocated */
 89};
 90
 91struct free_nid {
 92	struct list_head list;	/* for free node id list */
 93	nid_t nid;		/* node id */
 94	int state;		/* in use or not: NID_NEW or NID_ALLOC */
 95};
 96
 97static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
 98{
 99	struct f2fs_nm_info *nm_i = NM_I(sbi);
100	struct free_nid *fnid;
101
102	if (nm_i->fcnt <= 0)
103		return -1;
104	spin_lock(&nm_i->free_nid_list_lock);
105	fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
 
 
106	*nid = fnid->nid;
107	spin_unlock(&nm_i->free_nid_list_lock);
108	return 0;
109}
110
111/*
112 * inline functions
113 */
114static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
115{
116	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
 
 
 
 
 
117	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
118}
119
120static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
121{
122	struct f2fs_nm_info *nm_i = NM_I(sbi);
123	pgoff_t block_off;
124	pgoff_t block_addr;
125	int seg_off;
126
 
 
 
 
 
127	block_off = NAT_BLOCK_OFFSET(start);
128	seg_off = block_off >> sbi->log_blocks_per_seg;
129
130	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
131		(seg_off << sbi->log_blocks_per_seg << 1) +
132		(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
133
134	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
135		block_addr += sbi->blocks_per_seg;
136
137	return block_addr;
138}
139
140static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
141						pgoff_t block_addr)
142{
143	struct f2fs_nm_info *nm_i = NM_I(sbi);
144
145	block_addr -= nm_i->nat_blkaddr;
146	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
147		block_addr -= sbi->blocks_per_seg;
148	else
149		block_addr += sbi->blocks_per_seg;
150
151	return block_addr + nm_i->nat_blkaddr;
152}
153
154static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
155{
156	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
157
158	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
159		f2fs_clear_bit(block_off, nm_i->nat_bitmap);
160	else
161		f2fs_set_bit(block_off, nm_i->nat_bitmap);
162}
163
164static inline void fill_node_footer(struct page *page, nid_t nid,
165				nid_t ino, unsigned int ofs, bool reset)
166{
167	struct f2fs_node *rn = F2FS_NODE(page);
168	if (reset)
169		memset(rn, 0, sizeof(*rn));
170	rn->footer.nid = cpu_to_le32(nid);
171	rn->footer.ino = cpu_to_le32(ino);
172	rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
173}
174
175static inline void copy_node_footer(struct page *dst, struct page *src)
176{
177	struct f2fs_node *src_rn = F2FS_NODE(src);
178	struct f2fs_node *dst_rn = F2FS_NODE(dst);
179	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
180}
181
182static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
183{
184	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
185	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
186	struct f2fs_node *rn = F2FS_NODE(page);
187
188	rn->footer.cp_ver = ckpt->checkpoint_ver;
189	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
190}
191
192static inline nid_t ino_of_node(struct page *node_page)
193{
194	struct f2fs_node *rn = F2FS_NODE(node_page);
195	return le32_to_cpu(rn->footer.ino);
196}
197
198static inline nid_t nid_of_node(struct page *node_page)
199{
200	struct f2fs_node *rn = F2FS_NODE(node_page);
201	return le32_to_cpu(rn->footer.nid);
202}
203
204static inline unsigned int ofs_of_node(struct page *node_page)
205{
206	struct f2fs_node *rn = F2FS_NODE(node_page);
207	unsigned flag = le32_to_cpu(rn->footer.flag);
208	return flag >> OFFSET_BIT_SHIFT;
209}
210
211static inline unsigned long long cpver_of_node(struct page *node_page)
212{
213	struct f2fs_node *rn = F2FS_NODE(node_page);
214	return le64_to_cpu(rn->footer.cp_ver);
215}
216
217static inline block_t next_blkaddr_of_node(struct page *node_page)
218{
219	struct f2fs_node *rn = F2FS_NODE(node_page);
220	return le32_to_cpu(rn->footer.next_blkaddr);
221}
222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223/*
224 * f2fs assigns the following node offsets described as (num).
225 * N = NIDS_PER_BLOCK
226 *
227 *  Inode block (0)
228 *    |- direct node (1)
229 *    |- direct node (2)
230 *    |- indirect node (3)
231 *    |            `- direct node (4 => 4 + N - 1)
232 *    |- indirect node (4 + N)
233 *    |            `- direct node (5 + N => 5 + 2N - 1)
234 *    `- double indirect node (5 + 2N)
235 *                 `- indirect node (6 + 2N)
236 *                       `- direct node
237 *                 ......
238 *                 `- indirect node ((6 + 2N) + x(N + 1))
239 *                       `- direct node
240 *                 ......
241 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
242 *                       `- direct node
243 */
244static inline bool IS_DNODE(struct page *node_page)
245{
246	unsigned int ofs = ofs_of_node(node_page);
247
248	if (f2fs_has_xattr_block(ofs))
249		return false;
250
251	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
252			ofs == 5 + 2 * NIDS_PER_BLOCK)
253		return false;
254	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
255		ofs -= 6 + 2 * NIDS_PER_BLOCK;
256		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
257			return false;
258	}
259	return true;
260}
261
262static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
263{
264	struct f2fs_node *rn = F2FS_NODE(p);
265
266	wait_on_page_writeback(p);
267
268	if (i)
269		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
270	else
271		rn->in.nid[off] = cpu_to_le32(nid);
272	set_page_dirty(p);
273}
274
275static inline nid_t get_nid(struct page *p, int off, bool i)
276{
277	struct f2fs_node *rn = F2FS_NODE(p);
278
279	if (i)
280		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
281	return le32_to_cpu(rn->in.nid[off]);
282}
283
284/*
285 * Coldness identification:
286 *  - Mark cold files in f2fs_inode_info
287 *  - Mark cold node blocks in their node footer
288 *  - Mark cold data pages in page cache
289 */
290static inline int is_file(struct inode *inode, int type)
291{
292	return F2FS_I(inode)->i_advise & type;
293}
294
295static inline void set_file(struct inode *inode, int type)
296{
297	F2FS_I(inode)->i_advise |= type;
298}
299
300static inline void clear_file(struct inode *inode, int type)
301{
302	F2FS_I(inode)->i_advise &= ~type;
303}
304
305#define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
306#define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
307#define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
308#define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
309#define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
310#define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
311
312static inline int is_cold_data(struct page *page)
313{
314	return PageChecked(page);
315}
316
317static inline void set_cold_data(struct page *page)
318{
319	SetPageChecked(page);
320}
321
322static inline void clear_cold_data(struct page *page)
323{
324	ClearPageChecked(page);
325}
326
327static inline int is_node(struct page *page, int type)
328{
329	struct f2fs_node *rn = F2FS_NODE(page);
330	return le32_to_cpu(rn->footer.flag) & (1 << type);
331}
332
333#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
334#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
335#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
336
337static inline void set_cold_node(struct inode *inode, struct page *page)
338{
339	struct f2fs_node *rn = F2FS_NODE(page);
340	unsigned int flag = le32_to_cpu(rn->footer.flag);
341
342	if (S_ISDIR(inode->i_mode))
343		flag &= ~(0x1 << COLD_BIT_SHIFT);
344	else
345		flag |= (0x1 << COLD_BIT_SHIFT);
346	rn->footer.flag = cpu_to_le32(flag);
347}
348
349static inline void set_mark(struct page *page, int mark, int type)
350{
351	struct f2fs_node *rn = F2FS_NODE(page);
352	unsigned int flag = le32_to_cpu(rn->footer.flag);
353	if (mark)
354		flag |= (0x1 << type);
355	else
356		flag &= ~(0x1 << type);
357	rn->footer.flag = cpu_to_le32(flag);
 
 
 
 
358}
359#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
360#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fs/f2fs/node.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
 
 
 
 
  7 */
  8/* start node id of a node block dedicated to the given node id */
  9#define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 10
 11/* node block offset on the NAT area dedicated to the given start node id */
 12#define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
 13
 14/* # of pages to perform synchronous readahead before building free nids */
 15#define FREE_NID_PAGES	8
 16#define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
 17
 18/* size of free nid batch when shrinking */
 19#define SHRINK_NID_BATCH_SIZE	8
 20
 21#define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
 22
 23/* maximum readahead size for node during getting data blocks */
 24#define MAX_RA_NODE		128
 25
 26/* control the memory footprint threshold (10MB per 1GB ram) */
 27#define DEF_RAM_THRESHOLD	1
 28
 29/* control dirty nats ratio threshold (default: 10% over max nid count) */
 30#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
 31/* control total # of nats */
 32#define DEF_NAT_CACHE_THRESHOLD			100000
 33
 34/* control total # of node writes used for roll-fowrad recovery */
 35#define DEF_RF_NODE_BLOCKS			0
 36
 37/* vector size for gang look-up from nat cache that consists of radix tree */
 38#define NATVEC_SIZE	64
 39#define SETVEC_SIZE	32
 40
 41/* return value for read_node_page */
 42#define LOCKED_PAGE	1
 43
 44/* check pinned file's alignment status of physical blocks */
 45#define FILE_NOT_ALIGNED	1
 46
 47/* For flag in struct node_info */
 48enum {
 49	IS_CHECKPOINTED,	/* is it checkpointed before? */
 50	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
 51	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
 52	IS_DIRTY,		/* this nat entry is dirty? */
 53	IS_PREALLOC,		/* nat entry is preallocated */
 54};
 55
 56/*
 57 * For node information
 58 */
 59struct node_info {
 60	nid_t nid;		/* node id */
 61	nid_t ino;		/* inode number of the node's owner */
 62	block_t	blk_addr;	/* block address of the node */
 63	unsigned char version;	/* version of the node */
 64	unsigned char flag;	/* for node information bits */
 65};
 66
 67struct nat_entry {
 68	struct list_head list;	/* for clean or dirty nat list */
 
 
 69	struct node_info ni;	/* in-memory node information */
 70};
 71
 72#define nat_get_nid(nat)		((nat)->ni.nid)
 73#define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
 74#define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
 75#define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
 76#define nat_get_ino(nat)		((nat)->ni.ino)
 77#define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
 78#define nat_get_version(nat)		((nat)->ni.version)
 79#define nat_set_version(nat, v)		((nat)->ni.version = (v))
 80
 81#define inc_node_version(version)	(++(version))
 82
 83static inline void copy_node_info(struct node_info *dst,
 84						struct node_info *src)
 85{
 86	dst->nid = src->nid;
 87	dst->ino = src->ino;
 88	dst->blk_addr = src->blk_addr;
 89	dst->version = src->version;
 90	/* should not copy flag here */
 91}
 92
 93static inline void set_nat_flag(struct nat_entry *ne,
 94				unsigned int type, bool set)
 95{
 96	unsigned char mask = 0x01 << type;
 97	if (set)
 98		ne->ni.flag |= mask;
 99	else
100		ne->ni.flag &= ~mask;
101}
102
103static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
104{
105	unsigned char mask = 0x01 << type;
106	return ne->ni.flag & mask;
107}
108
109static inline void nat_reset_flag(struct nat_entry *ne)
110{
111	/* these states can be set only after checkpoint was done */
112	set_nat_flag(ne, IS_CHECKPOINTED, true);
113	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
114	set_nat_flag(ne, HAS_LAST_FSYNC, true);
115}
116
117static inline void node_info_from_raw_nat(struct node_info *ni,
118						struct f2fs_nat_entry *raw_ne)
119{
120	ni->ino = le32_to_cpu(raw_ne->ino);
121	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
122	ni->version = raw_ne->version;
123}
124
125static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
126						struct node_info *ni)
127{
128	raw_ne->ino = cpu_to_le32(ni->ino);
129	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
130	raw_ne->version = ni->version;
131}
132
133static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
134{
135	return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
136					NM_I(sbi)->dirty_nats_ratio / 100;
137}
138
139static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
140{
141	return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
142}
143
144enum mem_type {
145	FREE_NIDS,	/* indicates the free nid list */
146	NAT_ENTRIES,	/* indicates the cached nat entry */
147	DIRTY_DENTS,	/* indicates dirty dentry pages */
148	INO_ENTRIES,	/* indicates inode entries */
149	READ_EXTENT_CACHE,	/* indicates read extent cache */
150	AGE_EXTENT_CACHE,	/* indicates age extent cache */
151	DISCARD_CACHE,	/* indicates memory of cached discard cmds */
152	COMPRESS_PAGE,	/* indicates memory of cached compressed pages */
153	BASE_CHECK,	/* check kernel status */
154};
155
156struct nat_entry_set {
157	struct list_head set_list;	/* link with other nat sets */
158	struct list_head entry_list;	/* link with dirty nat entries */
159	nid_t set;			/* set number*/
160	unsigned int entry_cnt;		/* the # of nat entries in set */
 
161};
162
163struct free_nid {
164	struct list_head list;	/* for free node id list */
165	nid_t nid;		/* node id */
166	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
167};
168
169static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
170{
171	struct f2fs_nm_info *nm_i = NM_I(sbi);
172	struct free_nid *fnid;
173
174	spin_lock(&nm_i->nid_list_lock);
175	if (nm_i->nid_cnt[FREE_NID] <= 0) {
176		spin_unlock(&nm_i->nid_list_lock);
177		return;
178	}
179	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
180	*nid = fnid->nid;
181	spin_unlock(&nm_i->nid_list_lock);
 
182}
183
184/*
185 * inline functions
186 */
187static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
188{
189	struct f2fs_nm_info *nm_i = NM_I(sbi);
190
191#ifdef CONFIG_F2FS_CHECK_FS
192	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
193						nm_i->bitmap_size))
194		f2fs_bug_on(sbi, 1);
195#endif
196	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
197}
198
199static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
200{
201	struct f2fs_nm_info *nm_i = NM_I(sbi);
202	pgoff_t block_off;
203	pgoff_t block_addr;
 
204
205	/*
206	 * block_off = segment_off * 512 + off_in_segment
207	 * OLD = (segment_off * 512) * 2 + off_in_segment
208	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
209	 */
210	block_off = NAT_BLOCK_OFFSET(start);
 
211
212	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
213		(block_off << 1) -
214		(block_off & (sbi->blocks_per_seg - 1)));
215
216	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
217		block_addr += sbi->blocks_per_seg;
218
219	return block_addr;
220}
221
222static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
223						pgoff_t block_addr)
224{
225	struct f2fs_nm_info *nm_i = NM_I(sbi);
226
227	block_addr -= nm_i->nat_blkaddr;
228	block_addr ^= 1 << sbi->log_blocks_per_seg;
 
 
 
 
229	return block_addr + nm_i->nat_blkaddr;
230}
231
232static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
233{
234	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
235
236	f2fs_change_bit(block_off, nm_i->nat_bitmap);
237#ifdef CONFIG_F2FS_CHECK_FS
238	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
239#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240}
241
242static inline nid_t ino_of_node(struct page *node_page)
243{
244	struct f2fs_node *rn = F2FS_NODE(node_page);
245	return le32_to_cpu(rn->footer.ino);
246}
247
248static inline nid_t nid_of_node(struct page *node_page)
249{
250	struct f2fs_node *rn = F2FS_NODE(node_page);
251	return le32_to_cpu(rn->footer.nid);
252}
253
254static inline unsigned int ofs_of_node(struct page *node_page)
255{
256	struct f2fs_node *rn = F2FS_NODE(node_page);
257	unsigned flag = le32_to_cpu(rn->footer.flag);
258	return flag >> OFFSET_BIT_SHIFT;
259}
260
261static inline __u64 cpver_of_node(struct page *node_page)
262{
263	struct f2fs_node *rn = F2FS_NODE(node_page);
264	return le64_to_cpu(rn->footer.cp_ver);
265}
266
267static inline block_t next_blkaddr_of_node(struct page *node_page)
268{
269	struct f2fs_node *rn = F2FS_NODE(node_page);
270	return le32_to_cpu(rn->footer.next_blkaddr);
271}
272
273static inline void fill_node_footer(struct page *page, nid_t nid,
274				nid_t ino, unsigned int ofs, bool reset)
275{
276	struct f2fs_node *rn = F2FS_NODE(page);
277	unsigned int old_flag = 0;
278
279	if (reset)
280		memset(rn, 0, sizeof(*rn));
281	else
282		old_flag = le32_to_cpu(rn->footer.flag);
283
284	rn->footer.nid = cpu_to_le32(nid);
285	rn->footer.ino = cpu_to_le32(ino);
286
287	/* should remain old flag bits such as COLD_BIT_SHIFT */
288	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
289					(old_flag & OFFSET_BIT_MASK));
290}
291
292static inline void copy_node_footer(struct page *dst, struct page *src)
293{
294	struct f2fs_node *src_rn = F2FS_NODE(src);
295	struct f2fs_node *dst_rn = F2FS_NODE(dst);
296	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
297}
298
299static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
300{
301	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
302	struct f2fs_node *rn = F2FS_NODE(page);
303	__u64 cp_ver = cur_cp_version(ckpt);
304
305	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
306		cp_ver |= (cur_cp_crc(ckpt) << 32);
307
308	rn->footer.cp_ver = cpu_to_le64(cp_ver);
309	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
310}
311
312static inline bool is_recoverable_dnode(struct page *page)
313{
314	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
315	__u64 cp_ver = cur_cp_version(ckpt);
316
317	/* Don't care crc part, if fsck.f2fs sets it. */
318	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
319		return (cp_ver << 32) == (cpver_of_node(page) << 32);
320
321	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
322		cp_ver |= (cur_cp_crc(ckpt) << 32);
323
324	return cp_ver == cpver_of_node(page);
325}
326
327/*
328 * f2fs assigns the following node offsets described as (num).
329 * N = NIDS_PER_BLOCK
330 *
331 *  Inode block (0)
332 *    |- direct node (1)
333 *    |- direct node (2)
334 *    |- indirect node (3)
335 *    |            `- direct node (4 => 4 + N - 1)
336 *    |- indirect node (4 + N)
337 *    |            `- direct node (5 + N => 5 + 2N - 1)
338 *    `- double indirect node (5 + 2N)
339 *                 `- indirect node (6 + 2N)
340 *                       `- direct node
341 *                 ......
342 *                 `- indirect node ((6 + 2N) + x(N + 1))
343 *                       `- direct node
344 *                 ......
345 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
346 *                       `- direct node
347 */
348static inline bool IS_DNODE(struct page *node_page)
349{
350	unsigned int ofs = ofs_of_node(node_page);
351
352	if (f2fs_has_xattr_block(ofs))
353		return true;
354
355	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
356			ofs == 5 + 2 * NIDS_PER_BLOCK)
357		return false;
358	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
359		ofs -= 6 + 2 * NIDS_PER_BLOCK;
360		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
361			return false;
362	}
363	return true;
364}
365
366static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
367{
368	struct f2fs_node *rn = F2FS_NODE(p);
369
370	f2fs_wait_on_page_writeback(p, NODE, true, true);
371
372	if (i)
373		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
374	else
375		rn->in.nid[off] = cpu_to_le32(nid);
376	return set_page_dirty(p);
377}
378
379static inline nid_t get_nid(struct page *p, int off, bool i)
380{
381	struct f2fs_node *rn = F2FS_NODE(p);
382
383	if (i)
384		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
385	return le32_to_cpu(rn->in.nid[off]);
386}
387
388/*
389 * Coldness identification:
390 *  - Mark cold files in f2fs_inode_info
391 *  - Mark cold node blocks in their node footer
392 *  - Mark cold data pages in page cache
393 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
394
395static inline int is_node(struct page *page, int type)
396{
397	struct f2fs_node *rn = F2FS_NODE(page);
398	return le32_to_cpu(rn->footer.flag) & (1 << type);
399}
400
401#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
402#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
403#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
404
405static inline void set_cold_node(struct page *page, bool is_dir)
406{
407	struct f2fs_node *rn = F2FS_NODE(page);
408	unsigned int flag = le32_to_cpu(rn->footer.flag);
409
410	if (is_dir)
411		flag &= ~(0x1 << COLD_BIT_SHIFT);
412	else
413		flag |= (0x1 << COLD_BIT_SHIFT);
414	rn->footer.flag = cpu_to_le32(flag);
415}
416
417static inline void set_mark(struct page *page, int mark, int type)
418{
419	struct f2fs_node *rn = F2FS_NODE(page);
420	unsigned int flag = le32_to_cpu(rn->footer.flag);
421	if (mark)
422		flag |= (0x1 << type);
423	else
424		flag &= ~(0x1 << type);
425	rn->footer.flag = cpu_to_le32(flag);
426
427#ifdef CONFIG_F2FS_CHECK_FS
428	f2fs_inode_chksum_set(F2FS_P_SB(page), page);
429#endif
430}
431#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
432#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)