Loading...
1/*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11/* start node id of a node block dedicated to the given node id */
12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14/* node block offset on the NAT area dedicated to the given start node id */
15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17/* # of pages to perform readahead before building free nids */
18#define FREE_NID_PAGES 4
19
20/* maximum readahead size for node during getting data blocks */
21#define MAX_RA_NODE 128
22
23/* control the memory footprint threshold (10MB per 1GB ram) */
24#define DEF_RAM_THRESHOLD 10
25
26/* vector size for gang look-up from nat cache that consists of radix tree */
27#define NATVEC_SIZE 64
28
29/* return value for read_node_page */
30#define LOCKED_PAGE 1
31
32/*
33 * For node information
34 */
35struct node_info {
36 nid_t nid; /* node id */
37 nid_t ino; /* inode number of the node's owner */
38 block_t blk_addr; /* block address of the node */
39 unsigned char version; /* version of the node */
40};
41
42struct nat_entry {
43 struct list_head list; /* for clean or dirty nat list */
44 bool checkpointed; /* whether it is checkpointed or not */
45 bool fsync_done; /* whether the latest node has fsync mark */
46 struct node_info ni; /* in-memory node information */
47};
48
49#define nat_get_nid(nat) (nat->ni.nid)
50#define nat_set_nid(nat, n) (nat->ni.nid = n)
51#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
52#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
53#define nat_get_ino(nat) (nat->ni.ino)
54#define nat_set_ino(nat, i) (nat->ni.ino = i)
55#define nat_get_version(nat) (nat->ni.version)
56#define nat_set_version(nat, v) (nat->ni.version = v)
57
58#define __set_nat_cache_dirty(nm_i, ne) \
59 do { \
60 ne->checkpointed = false; \
61 list_move_tail(&ne->list, &nm_i->dirty_nat_entries); \
62 } while (0);
63#define __clear_nat_cache_dirty(nm_i, ne) \
64 do { \
65 ne->checkpointed = true; \
66 list_move_tail(&ne->list, &nm_i->nat_entries); \
67 } while (0);
68#define inc_node_version(version) (++version)
69
70static inline void node_info_from_raw_nat(struct node_info *ni,
71 struct f2fs_nat_entry *raw_ne)
72{
73 ni->ino = le32_to_cpu(raw_ne->ino);
74 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
75 ni->version = raw_ne->version;
76}
77
78enum nid_type {
79 FREE_NIDS, /* indicates the free nid list */
80 NAT_ENTRIES /* indicates the cached nat entry */
81};
82
83/*
84 * For free nid mangement
85 */
86enum nid_state {
87 NID_NEW, /* newly added to free nid list */
88 NID_ALLOC /* it is allocated */
89};
90
91struct free_nid {
92 struct list_head list; /* for free node id list */
93 nid_t nid; /* node id */
94 int state; /* in use or not: NID_NEW or NID_ALLOC */
95};
96
97static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
98{
99 struct f2fs_nm_info *nm_i = NM_I(sbi);
100 struct free_nid *fnid;
101
102 if (nm_i->fcnt <= 0)
103 return -1;
104 spin_lock(&nm_i->free_nid_list_lock);
105 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
106 *nid = fnid->nid;
107 spin_unlock(&nm_i->free_nid_list_lock);
108 return 0;
109}
110
111/*
112 * inline functions
113 */
114static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
115{
116 struct f2fs_nm_info *nm_i = NM_I(sbi);
117 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
118}
119
120static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
121{
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
123 pgoff_t block_off;
124 pgoff_t block_addr;
125 int seg_off;
126
127 block_off = NAT_BLOCK_OFFSET(start);
128 seg_off = block_off >> sbi->log_blocks_per_seg;
129
130 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
131 (seg_off << sbi->log_blocks_per_seg << 1) +
132 (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
133
134 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
135 block_addr += sbi->blocks_per_seg;
136
137 return block_addr;
138}
139
140static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
141 pgoff_t block_addr)
142{
143 struct f2fs_nm_info *nm_i = NM_I(sbi);
144
145 block_addr -= nm_i->nat_blkaddr;
146 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
147 block_addr -= sbi->blocks_per_seg;
148 else
149 block_addr += sbi->blocks_per_seg;
150
151 return block_addr + nm_i->nat_blkaddr;
152}
153
154static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
155{
156 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
157
158 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
159 f2fs_clear_bit(block_off, nm_i->nat_bitmap);
160 else
161 f2fs_set_bit(block_off, nm_i->nat_bitmap);
162}
163
164static inline void fill_node_footer(struct page *page, nid_t nid,
165 nid_t ino, unsigned int ofs, bool reset)
166{
167 struct f2fs_node *rn = F2FS_NODE(page);
168 if (reset)
169 memset(rn, 0, sizeof(*rn));
170 rn->footer.nid = cpu_to_le32(nid);
171 rn->footer.ino = cpu_to_le32(ino);
172 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
173}
174
175static inline void copy_node_footer(struct page *dst, struct page *src)
176{
177 struct f2fs_node *src_rn = F2FS_NODE(src);
178 struct f2fs_node *dst_rn = F2FS_NODE(dst);
179 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
180}
181
182static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
183{
184 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
185 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
186 struct f2fs_node *rn = F2FS_NODE(page);
187
188 rn->footer.cp_ver = ckpt->checkpoint_ver;
189 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
190}
191
192static inline nid_t ino_of_node(struct page *node_page)
193{
194 struct f2fs_node *rn = F2FS_NODE(node_page);
195 return le32_to_cpu(rn->footer.ino);
196}
197
198static inline nid_t nid_of_node(struct page *node_page)
199{
200 struct f2fs_node *rn = F2FS_NODE(node_page);
201 return le32_to_cpu(rn->footer.nid);
202}
203
204static inline unsigned int ofs_of_node(struct page *node_page)
205{
206 struct f2fs_node *rn = F2FS_NODE(node_page);
207 unsigned flag = le32_to_cpu(rn->footer.flag);
208 return flag >> OFFSET_BIT_SHIFT;
209}
210
211static inline unsigned long long cpver_of_node(struct page *node_page)
212{
213 struct f2fs_node *rn = F2FS_NODE(node_page);
214 return le64_to_cpu(rn->footer.cp_ver);
215}
216
217static inline block_t next_blkaddr_of_node(struct page *node_page)
218{
219 struct f2fs_node *rn = F2FS_NODE(node_page);
220 return le32_to_cpu(rn->footer.next_blkaddr);
221}
222
223/*
224 * f2fs assigns the following node offsets described as (num).
225 * N = NIDS_PER_BLOCK
226 *
227 * Inode block (0)
228 * |- direct node (1)
229 * |- direct node (2)
230 * |- indirect node (3)
231 * | `- direct node (4 => 4 + N - 1)
232 * |- indirect node (4 + N)
233 * | `- direct node (5 + N => 5 + 2N - 1)
234 * `- double indirect node (5 + 2N)
235 * `- indirect node (6 + 2N)
236 * `- direct node
237 * ......
238 * `- indirect node ((6 + 2N) + x(N + 1))
239 * `- direct node
240 * ......
241 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
242 * `- direct node
243 */
244static inline bool IS_DNODE(struct page *node_page)
245{
246 unsigned int ofs = ofs_of_node(node_page);
247
248 if (f2fs_has_xattr_block(ofs))
249 return false;
250
251 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
252 ofs == 5 + 2 * NIDS_PER_BLOCK)
253 return false;
254 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
255 ofs -= 6 + 2 * NIDS_PER_BLOCK;
256 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
257 return false;
258 }
259 return true;
260}
261
262static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
263{
264 struct f2fs_node *rn = F2FS_NODE(p);
265
266 wait_on_page_writeback(p);
267
268 if (i)
269 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
270 else
271 rn->in.nid[off] = cpu_to_le32(nid);
272 set_page_dirty(p);
273}
274
275static inline nid_t get_nid(struct page *p, int off, bool i)
276{
277 struct f2fs_node *rn = F2FS_NODE(p);
278
279 if (i)
280 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
281 return le32_to_cpu(rn->in.nid[off]);
282}
283
284/*
285 * Coldness identification:
286 * - Mark cold files in f2fs_inode_info
287 * - Mark cold node blocks in their node footer
288 * - Mark cold data pages in page cache
289 */
290static inline int is_file(struct inode *inode, int type)
291{
292 return F2FS_I(inode)->i_advise & type;
293}
294
295static inline void set_file(struct inode *inode, int type)
296{
297 F2FS_I(inode)->i_advise |= type;
298}
299
300static inline void clear_file(struct inode *inode, int type)
301{
302 F2FS_I(inode)->i_advise &= ~type;
303}
304
305#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
306#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
307#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
308#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
309#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
310#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
311
312static inline int is_cold_data(struct page *page)
313{
314 return PageChecked(page);
315}
316
317static inline void set_cold_data(struct page *page)
318{
319 SetPageChecked(page);
320}
321
322static inline void clear_cold_data(struct page *page)
323{
324 ClearPageChecked(page);
325}
326
327static inline int is_node(struct page *page, int type)
328{
329 struct f2fs_node *rn = F2FS_NODE(page);
330 return le32_to_cpu(rn->footer.flag) & (1 << type);
331}
332
333#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
334#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
335#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
336
337static inline void set_cold_node(struct inode *inode, struct page *page)
338{
339 struct f2fs_node *rn = F2FS_NODE(page);
340 unsigned int flag = le32_to_cpu(rn->footer.flag);
341
342 if (S_ISDIR(inode->i_mode))
343 flag &= ~(0x1 << COLD_BIT_SHIFT);
344 else
345 flag |= (0x1 << COLD_BIT_SHIFT);
346 rn->footer.flag = cpu_to_le32(flag);
347}
348
349static inline void set_mark(struct page *page, int mark, int type)
350{
351 struct f2fs_node *rn = F2FS_NODE(page);
352 unsigned int flag = le32_to_cpu(rn->footer.flag);
353 if (mark)
354 flag |= (0x1 << type);
355 else
356 flag &= ~(0x1 << type);
357 rn->footer.flag = cpu_to_le32(flag);
358}
359#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
360#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
1/*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11/* start node id of a node block dedicated to the given node id */
12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14/* node block offset on the NAT area dedicated to the given start node id */
15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17/* # of pages to perform synchronous readahead before building free nids */
18#define FREE_NID_PAGES 8
19#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20
21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23/* maximum readahead size for node during getting data blocks */
24#define MAX_RA_NODE 128
25
26/* control the memory footprint threshold (10MB per 1GB ram) */
27#define DEF_RAM_THRESHOLD 1
28
29/* control dirty nats ratio threshold (default: 10% over max nid count) */
30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31/* control total # of nats */
32#define DEF_NAT_CACHE_THRESHOLD 100000
33
34/* vector size for gang look-up from nat cache that consists of radix tree */
35#define NATVEC_SIZE 64
36#define SETVEC_SIZE 32
37
38/* return value for read_node_page */
39#define LOCKED_PAGE 1
40
41/* For flag in struct node_info */
42enum {
43 IS_CHECKPOINTED, /* is it checkpointed before? */
44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
46 IS_DIRTY, /* this nat entry is dirty? */
47};
48
49/*
50 * For node information
51 */
52struct node_info {
53 nid_t nid; /* node id */
54 nid_t ino; /* inode number of the node's owner */
55 block_t blk_addr; /* block address of the node */
56 unsigned char version; /* version of the node */
57 unsigned char flag; /* for node information bits */
58};
59
60struct nat_entry {
61 struct list_head list; /* for clean or dirty nat list */
62 struct node_info ni; /* in-memory node information */
63};
64
65#define nat_get_nid(nat) (nat->ni.nid)
66#define nat_set_nid(nat, n) (nat->ni.nid = n)
67#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
68#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
69#define nat_get_ino(nat) (nat->ni.ino)
70#define nat_set_ino(nat, i) (nat->ni.ino = i)
71#define nat_get_version(nat) (nat->ni.version)
72#define nat_set_version(nat, v) (nat->ni.version = v)
73
74#define inc_node_version(version) (++version)
75
76static inline void copy_node_info(struct node_info *dst,
77 struct node_info *src)
78{
79 dst->nid = src->nid;
80 dst->ino = src->ino;
81 dst->blk_addr = src->blk_addr;
82 dst->version = src->version;
83 /* should not copy flag here */
84}
85
86static inline void set_nat_flag(struct nat_entry *ne,
87 unsigned int type, bool set)
88{
89 unsigned char mask = 0x01 << type;
90 if (set)
91 ne->ni.flag |= mask;
92 else
93 ne->ni.flag &= ~mask;
94}
95
96static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
97{
98 unsigned char mask = 0x01 << type;
99 return ne->ni.flag & mask;
100}
101
102static inline void nat_reset_flag(struct nat_entry *ne)
103{
104 /* these states can be set only after checkpoint was done */
105 set_nat_flag(ne, IS_CHECKPOINTED, true);
106 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
107 set_nat_flag(ne, HAS_LAST_FSYNC, true);
108}
109
110static inline void node_info_from_raw_nat(struct node_info *ni,
111 struct f2fs_nat_entry *raw_ne)
112{
113 ni->ino = le32_to_cpu(raw_ne->ino);
114 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
115 ni->version = raw_ne->version;
116}
117
118static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
119 struct node_info *ni)
120{
121 raw_ne->ino = cpu_to_le32(ni->ino);
122 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
123 raw_ne->version = ni->version;
124}
125
126static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
127{
128 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
129 NM_I(sbi)->dirty_nats_ratio / 100;
130}
131
132static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
133{
134 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
135}
136
137enum mem_type {
138 FREE_NIDS, /* indicates the free nid list */
139 NAT_ENTRIES, /* indicates the cached nat entry */
140 DIRTY_DENTS, /* indicates dirty dentry pages */
141 INO_ENTRIES, /* indicates inode entries */
142 EXTENT_CACHE, /* indicates extent cache */
143 BASE_CHECK, /* check kernel status */
144};
145
146struct nat_entry_set {
147 struct list_head set_list; /* link with other nat sets */
148 struct list_head entry_list; /* link with dirty nat entries */
149 nid_t set; /* set number*/
150 unsigned int entry_cnt; /* the # of nat entries in set */
151};
152
153/*
154 * For free nid mangement
155 */
156enum nid_state {
157 NID_NEW, /* newly added to free nid list */
158 NID_ALLOC /* it is allocated */
159};
160
161struct free_nid {
162 struct list_head list; /* for free node id list */
163 nid_t nid; /* node id */
164 int state; /* in use or not: NID_NEW or NID_ALLOC */
165};
166
167static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
168{
169 struct f2fs_nm_info *nm_i = NM_I(sbi);
170 struct free_nid *fnid;
171
172 spin_lock(&nm_i->nid_list_lock);
173 if (nm_i->nid_cnt[FREE_NID_LIST] <= 0) {
174 spin_unlock(&nm_i->nid_list_lock);
175 return;
176 }
177 fnid = list_entry(nm_i->nid_list[FREE_NID_LIST].next,
178 struct free_nid, list);
179 *nid = fnid->nid;
180 spin_unlock(&nm_i->nid_list_lock);
181}
182
183/*
184 * inline functions
185 */
186static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
187{
188 struct f2fs_nm_info *nm_i = NM_I(sbi);
189 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
190}
191
192static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
193{
194 struct f2fs_nm_info *nm_i = NM_I(sbi);
195 pgoff_t block_off;
196 pgoff_t block_addr;
197 int seg_off;
198
199 block_off = NAT_BLOCK_OFFSET(start);
200 seg_off = block_off >> sbi->log_blocks_per_seg;
201
202 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
203 (seg_off << sbi->log_blocks_per_seg << 1) +
204 (block_off & (sbi->blocks_per_seg - 1)));
205
206 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
207 block_addr += sbi->blocks_per_seg;
208
209 return block_addr;
210}
211
212static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
213 pgoff_t block_addr)
214{
215 struct f2fs_nm_info *nm_i = NM_I(sbi);
216
217 block_addr -= nm_i->nat_blkaddr;
218 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
219 block_addr -= sbi->blocks_per_seg;
220 else
221 block_addr += sbi->blocks_per_seg;
222
223 return block_addr + nm_i->nat_blkaddr;
224}
225
226static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
227{
228 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
229
230 f2fs_change_bit(block_off, nm_i->nat_bitmap);
231}
232
233static inline nid_t ino_of_node(struct page *node_page)
234{
235 struct f2fs_node *rn = F2FS_NODE(node_page);
236 return le32_to_cpu(rn->footer.ino);
237}
238
239static inline nid_t nid_of_node(struct page *node_page)
240{
241 struct f2fs_node *rn = F2FS_NODE(node_page);
242 return le32_to_cpu(rn->footer.nid);
243}
244
245static inline unsigned int ofs_of_node(struct page *node_page)
246{
247 struct f2fs_node *rn = F2FS_NODE(node_page);
248 unsigned flag = le32_to_cpu(rn->footer.flag);
249 return flag >> OFFSET_BIT_SHIFT;
250}
251
252static inline __u64 cpver_of_node(struct page *node_page)
253{
254 struct f2fs_node *rn = F2FS_NODE(node_page);
255 return le64_to_cpu(rn->footer.cp_ver);
256}
257
258static inline block_t next_blkaddr_of_node(struct page *node_page)
259{
260 struct f2fs_node *rn = F2FS_NODE(node_page);
261 return le32_to_cpu(rn->footer.next_blkaddr);
262}
263
264static inline void fill_node_footer(struct page *page, nid_t nid,
265 nid_t ino, unsigned int ofs, bool reset)
266{
267 struct f2fs_node *rn = F2FS_NODE(page);
268 unsigned int old_flag = 0;
269
270 if (reset)
271 memset(rn, 0, sizeof(*rn));
272 else
273 old_flag = le32_to_cpu(rn->footer.flag);
274
275 rn->footer.nid = cpu_to_le32(nid);
276 rn->footer.ino = cpu_to_le32(ino);
277
278 /* should remain old flag bits such as COLD_BIT_SHIFT */
279 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
280 (old_flag & OFFSET_BIT_MASK));
281}
282
283static inline void copy_node_footer(struct page *dst, struct page *src)
284{
285 struct f2fs_node *src_rn = F2FS_NODE(src);
286 struct f2fs_node *dst_rn = F2FS_NODE(dst);
287 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
288}
289
290static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
291{
292 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
293 struct f2fs_node *rn = F2FS_NODE(page);
294 size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
295 __u64 cp_ver = le64_to_cpu(ckpt->checkpoint_ver);
296
297 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
298 __u64 crc = le32_to_cpu(*((__le32 *)
299 ((unsigned char *)ckpt + crc_offset)));
300 cp_ver |= (crc << 32);
301 }
302 rn->footer.cp_ver = cpu_to_le64(cp_ver);
303 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
304}
305
306static inline bool is_recoverable_dnode(struct page *page)
307{
308 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
309 size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
310 __u64 cp_ver = cur_cp_version(ckpt);
311
312 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
313 __u64 crc = le32_to_cpu(*((__le32 *)
314 ((unsigned char *)ckpt + crc_offset)));
315 cp_ver |= (crc << 32);
316 }
317 return cp_ver == cpver_of_node(page);
318}
319
320/*
321 * f2fs assigns the following node offsets described as (num).
322 * N = NIDS_PER_BLOCK
323 *
324 * Inode block (0)
325 * |- direct node (1)
326 * |- direct node (2)
327 * |- indirect node (3)
328 * | `- direct node (4 => 4 + N - 1)
329 * |- indirect node (4 + N)
330 * | `- direct node (5 + N => 5 + 2N - 1)
331 * `- double indirect node (5 + 2N)
332 * `- indirect node (6 + 2N)
333 * `- direct node
334 * ......
335 * `- indirect node ((6 + 2N) + x(N + 1))
336 * `- direct node
337 * ......
338 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
339 * `- direct node
340 */
341static inline bool IS_DNODE(struct page *node_page)
342{
343 unsigned int ofs = ofs_of_node(node_page);
344
345 if (f2fs_has_xattr_block(ofs))
346 return false;
347
348 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
349 ofs == 5 + 2 * NIDS_PER_BLOCK)
350 return false;
351 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
352 ofs -= 6 + 2 * NIDS_PER_BLOCK;
353 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
354 return false;
355 }
356 return true;
357}
358
359static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
360{
361 struct f2fs_node *rn = F2FS_NODE(p);
362
363 f2fs_wait_on_page_writeback(p, NODE, true);
364
365 if (i)
366 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
367 else
368 rn->in.nid[off] = cpu_to_le32(nid);
369 return set_page_dirty(p);
370}
371
372static inline nid_t get_nid(struct page *p, int off, bool i)
373{
374 struct f2fs_node *rn = F2FS_NODE(p);
375
376 if (i)
377 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
378 return le32_to_cpu(rn->in.nid[off]);
379}
380
381/*
382 * Coldness identification:
383 * - Mark cold files in f2fs_inode_info
384 * - Mark cold node blocks in their node footer
385 * - Mark cold data pages in page cache
386 */
387static inline int is_cold_data(struct page *page)
388{
389 return PageChecked(page);
390}
391
392static inline void set_cold_data(struct page *page)
393{
394 SetPageChecked(page);
395}
396
397static inline void clear_cold_data(struct page *page)
398{
399 ClearPageChecked(page);
400}
401
402static inline int is_node(struct page *page, int type)
403{
404 struct f2fs_node *rn = F2FS_NODE(page);
405 return le32_to_cpu(rn->footer.flag) & (1 << type);
406}
407
408#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
409#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
410#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
411
412static inline int is_inline_node(struct page *page)
413{
414 return PageChecked(page);
415}
416
417static inline void set_inline_node(struct page *page)
418{
419 SetPageChecked(page);
420}
421
422static inline void clear_inline_node(struct page *page)
423{
424 ClearPageChecked(page);
425}
426
427static inline void set_cold_node(struct inode *inode, struct page *page)
428{
429 struct f2fs_node *rn = F2FS_NODE(page);
430 unsigned int flag = le32_to_cpu(rn->footer.flag);
431
432 if (S_ISDIR(inode->i_mode))
433 flag &= ~(0x1 << COLD_BIT_SHIFT);
434 else
435 flag |= (0x1 << COLD_BIT_SHIFT);
436 rn->footer.flag = cpu_to_le32(flag);
437}
438
439static inline void set_mark(struct page *page, int mark, int type)
440{
441 struct f2fs_node *rn = F2FS_NODE(page);
442 unsigned int flag = le32_to_cpu(rn->footer.flag);
443 if (mark)
444 flag |= (0x1 << type);
445 else
446 flag &= ~(0x1 << type);
447 rn->footer.flag = cpu_to_le32(flag);
448}
449#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
450#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)