Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_inum.h"
26#include "xfs_sb.h"
27#include "xfs_ag.h"
28#include "xfs_mount.h"
29#include "xfs_da_format.h"
30#include "xfs_inode.h"
31#include "xfs_dir2.h"
32#include "xfs_ialloc.h"
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
39#include "xfs_error.h"
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
42#include "xfs_trace.h"
43#include "xfs_icache.h"
44#include "xfs_dinode.h"
45
46
47#ifdef HAVE_PERCPU_SB
48STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
49 int);
50STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
51 int);
52STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
53#else
54
55#define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
56#define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
57#endif
58
59static DEFINE_MUTEX(xfs_uuid_table_mutex);
60static int xfs_uuid_table_size;
61static uuid_t *xfs_uuid_table;
62
63/*
64 * See if the UUID is unique among mounted XFS filesystems.
65 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
66 */
67STATIC int
68xfs_uuid_mount(
69 struct xfs_mount *mp)
70{
71 uuid_t *uuid = &mp->m_sb.sb_uuid;
72 int hole, i;
73
74 if (mp->m_flags & XFS_MOUNT_NOUUID)
75 return 0;
76
77 if (uuid_is_nil(uuid)) {
78 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
79 return XFS_ERROR(EINVAL);
80 }
81
82 mutex_lock(&xfs_uuid_table_mutex);
83 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
84 if (uuid_is_nil(&xfs_uuid_table[i])) {
85 hole = i;
86 continue;
87 }
88 if (uuid_equal(uuid, &xfs_uuid_table[i]))
89 goto out_duplicate;
90 }
91
92 if (hole < 0) {
93 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
94 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
95 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
96 KM_SLEEP);
97 hole = xfs_uuid_table_size++;
98 }
99 xfs_uuid_table[hole] = *uuid;
100 mutex_unlock(&xfs_uuid_table_mutex);
101
102 return 0;
103
104 out_duplicate:
105 mutex_unlock(&xfs_uuid_table_mutex);
106 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
107 return XFS_ERROR(EINVAL);
108}
109
110STATIC void
111xfs_uuid_unmount(
112 struct xfs_mount *mp)
113{
114 uuid_t *uuid = &mp->m_sb.sb_uuid;
115 int i;
116
117 if (mp->m_flags & XFS_MOUNT_NOUUID)
118 return;
119
120 mutex_lock(&xfs_uuid_table_mutex);
121 for (i = 0; i < xfs_uuid_table_size; i++) {
122 if (uuid_is_nil(&xfs_uuid_table[i]))
123 continue;
124 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 continue;
126 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 break;
128 }
129 ASSERT(i < xfs_uuid_table_size);
130 mutex_unlock(&xfs_uuid_table_mutex);
131}
132
133
134STATIC void
135__xfs_free_perag(
136 struct rcu_head *head)
137{
138 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139
140 ASSERT(atomic_read(&pag->pag_ref) == 0);
141 kmem_free(pag);
142}
143
144/*
145 * Free up the per-ag resources associated with the mount structure.
146 */
147STATIC void
148xfs_free_perag(
149 xfs_mount_t *mp)
150{
151 xfs_agnumber_t agno;
152 struct xfs_perag *pag;
153
154 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 spin_lock(&mp->m_perag_lock);
156 pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 spin_unlock(&mp->m_perag_lock);
158 ASSERT(pag);
159 ASSERT(atomic_read(&pag->pag_ref) == 0);
160 call_rcu(&pag->rcu_head, __xfs_free_perag);
161 }
162}
163
164/*
165 * Check size of device based on the (data/realtime) block count.
166 * Note: this check is used by the growfs code as well as mount.
167 */
168int
169xfs_sb_validate_fsb_count(
170 xfs_sb_t *sbp,
171 __uint64_t nblocks)
172{
173 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
174 ASSERT(sbp->sb_blocklog >= BBSHIFT);
175
176#if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
177 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
178 return EFBIG;
179#else /* Limited by UINT_MAX of sectors */
180 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
181 return EFBIG;
182#endif
183 return 0;
184}
185
186int
187xfs_initialize_perag(
188 xfs_mount_t *mp,
189 xfs_agnumber_t agcount,
190 xfs_agnumber_t *maxagi)
191{
192 xfs_agnumber_t index;
193 xfs_agnumber_t first_initialised = 0;
194 xfs_perag_t *pag;
195 xfs_agino_t agino;
196 xfs_ino_t ino;
197 xfs_sb_t *sbp = &mp->m_sb;
198 int error = -ENOMEM;
199
200 /*
201 * Walk the current per-ag tree so we don't try to initialise AGs
202 * that already exist (growfs case). Allocate and insert all the
203 * AGs we don't find ready for initialisation.
204 */
205 for (index = 0; index < agcount; index++) {
206 pag = xfs_perag_get(mp, index);
207 if (pag) {
208 xfs_perag_put(pag);
209 continue;
210 }
211 if (!first_initialised)
212 first_initialised = index;
213
214 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
215 if (!pag)
216 goto out_unwind;
217 pag->pag_agno = index;
218 pag->pag_mount = mp;
219 spin_lock_init(&pag->pag_ici_lock);
220 mutex_init(&pag->pag_ici_reclaim_lock);
221 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
222 spin_lock_init(&pag->pag_buf_lock);
223 pag->pag_buf_tree = RB_ROOT;
224
225 if (radix_tree_preload(GFP_NOFS))
226 goto out_unwind;
227
228 spin_lock(&mp->m_perag_lock);
229 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
230 BUG();
231 spin_unlock(&mp->m_perag_lock);
232 radix_tree_preload_end();
233 error = -EEXIST;
234 goto out_unwind;
235 }
236 spin_unlock(&mp->m_perag_lock);
237 radix_tree_preload_end();
238 }
239
240 /*
241 * If we mount with the inode64 option, or no inode overflows
242 * the legacy 32-bit address space clear the inode32 option.
243 */
244 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
245 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
246
247 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
248 mp->m_flags |= XFS_MOUNT_32BITINODES;
249 else
250 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
251
252 if (mp->m_flags & XFS_MOUNT_32BITINODES)
253 index = xfs_set_inode32(mp);
254 else
255 index = xfs_set_inode64(mp);
256
257 if (maxagi)
258 *maxagi = index;
259 return 0;
260
261out_unwind:
262 kmem_free(pag);
263 for (; index > first_initialised; index--) {
264 pag = radix_tree_delete(&mp->m_perag_tree, index);
265 kmem_free(pag);
266 }
267 return error;
268}
269
270/*
271 * xfs_readsb
272 *
273 * Does the initial read of the superblock.
274 */
275int
276xfs_readsb(
277 struct xfs_mount *mp,
278 int flags)
279{
280 unsigned int sector_size;
281 struct xfs_buf *bp;
282 struct xfs_sb *sbp = &mp->m_sb;
283 int error;
284 int loud = !(flags & XFS_MFSI_QUIET);
285 const struct xfs_buf_ops *buf_ops;
286
287 ASSERT(mp->m_sb_bp == NULL);
288 ASSERT(mp->m_ddev_targp != NULL);
289
290 /*
291 * For the initial read, we must guess at the sector
292 * size based on the block device. It's enough to
293 * get the sb_sectsize out of the superblock and
294 * then reread with the proper length.
295 * We don't verify it yet, because it may not be complete.
296 */
297 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
298 buf_ops = NULL;
299
300 /*
301 * Allocate a (locked) buffer to hold the superblock.
302 * This will be kept around at all times to optimize
303 * access to the superblock.
304 */
305reread:
306 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
307 BTOBB(sector_size), 0, buf_ops);
308 if (!bp) {
309 if (loud)
310 xfs_warn(mp, "SB buffer read failed");
311 return EIO;
312 }
313 if (bp->b_error) {
314 error = bp->b_error;
315 if (loud)
316 xfs_warn(mp, "SB validate failed with error %d.", error);
317 /* bad CRC means corrupted metadata */
318 if (error == EFSBADCRC)
319 error = EFSCORRUPTED;
320 goto release_buf;
321 }
322
323 /*
324 * Initialize the mount structure from the superblock.
325 */
326 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
327 xfs_sb_quota_from_disk(&mp->m_sb);
328
329 /*
330 * We must be able to do sector-sized and sector-aligned IO.
331 */
332 if (sector_size > sbp->sb_sectsize) {
333 if (loud)
334 xfs_warn(mp, "device supports %u byte sectors (not %u)",
335 sector_size, sbp->sb_sectsize);
336 error = ENOSYS;
337 goto release_buf;
338 }
339
340 /*
341 * Re-read the superblock so the buffer is correctly sized,
342 * and properly verified.
343 */
344 if (buf_ops == NULL) {
345 xfs_buf_relse(bp);
346 sector_size = sbp->sb_sectsize;
347 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
348 goto reread;
349 }
350
351 /* Initialize per-cpu counters */
352 xfs_icsb_reinit_counters(mp);
353
354 /* no need to be quiet anymore, so reset the buf ops */
355 bp->b_ops = &xfs_sb_buf_ops;
356
357 mp->m_sb_bp = bp;
358 xfs_buf_unlock(bp);
359 return 0;
360
361release_buf:
362 xfs_buf_relse(bp);
363 return error;
364}
365
366/*
367 * Update alignment values based on mount options and sb values
368 */
369STATIC int
370xfs_update_alignment(xfs_mount_t *mp)
371{
372 xfs_sb_t *sbp = &(mp->m_sb);
373
374 if (mp->m_dalign) {
375 /*
376 * If stripe unit and stripe width are not multiples
377 * of the fs blocksize turn off alignment.
378 */
379 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
380 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
381 xfs_warn(mp,
382 "alignment check failed: sunit/swidth vs. blocksize(%d)",
383 sbp->sb_blocksize);
384 return XFS_ERROR(EINVAL);
385 } else {
386 /*
387 * Convert the stripe unit and width to FSBs.
388 */
389 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
390 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
391 xfs_warn(mp,
392 "alignment check failed: sunit/swidth vs. agsize(%d)",
393 sbp->sb_agblocks);
394 return XFS_ERROR(EINVAL);
395 } else if (mp->m_dalign) {
396 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
397 } else {
398 xfs_warn(mp,
399 "alignment check failed: sunit(%d) less than bsize(%d)",
400 mp->m_dalign, sbp->sb_blocksize);
401 return XFS_ERROR(EINVAL);
402 }
403 }
404
405 /*
406 * Update superblock with new values
407 * and log changes
408 */
409 if (xfs_sb_version_hasdalign(sbp)) {
410 if (sbp->sb_unit != mp->m_dalign) {
411 sbp->sb_unit = mp->m_dalign;
412 mp->m_update_flags |= XFS_SB_UNIT;
413 }
414 if (sbp->sb_width != mp->m_swidth) {
415 sbp->sb_width = mp->m_swidth;
416 mp->m_update_flags |= XFS_SB_WIDTH;
417 }
418 } else {
419 xfs_warn(mp,
420 "cannot change alignment: superblock does not support data alignment");
421 return XFS_ERROR(EINVAL);
422 }
423 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
424 xfs_sb_version_hasdalign(&mp->m_sb)) {
425 mp->m_dalign = sbp->sb_unit;
426 mp->m_swidth = sbp->sb_width;
427 }
428
429 return 0;
430}
431
432/*
433 * Set the maximum inode count for this filesystem
434 */
435STATIC void
436xfs_set_maxicount(xfs_mount_t *mp)
437{
438 xfs_sb_t *sbp = &(mp->m_sb);
439 __uint64_t icount;
440
441 if (sbp->sb_imax_pct) {
442 /*
443 * Make sure the maximum inode count is a multiple
444 * of the units we allocate inodes in.
445 */
446 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
447 do_div(icount, 100);
448 do_div(icount, mp->m_ialloc_blks);
449 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
450 sbp->sb_inopblog;
451 } else {
452 mp->m_maxicount = 0;
453 }
454}
455
456/*
457 * Set the default minimum read and write sizes unless
458 * already specified in a mount option.
459 * We use smaller I/O sizes when the file system
460 * is being used for NFS service (wsync mount option).
461 */
462STATIC void
463xfs_set_rw_sizes(xfs_mount_t *mp)
464{
465 xfs_sb_t *sbp = &(mp->m_sb);
466 int readio_log, writeio_log;
467
468 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
469 if (mp->m_flags & XFS_MOUNT_WSYNC) {
470 readio_log = XFS_WSYNC_READIO_LOG;
471 writeio_log = XFS_WSYNC_WRITEIO_LOG;
472 } else {
473 readio_log = XFS_READIO_LOG_LARGE;
474 writeio_log = XFS_WRITEIO_LOG_LARGE;
475 }
476 } else {
477 readio_log = mp->m_readio_log;
478 writeio_log = mp->m_writeio_log;
479 }
480
481 if (sbp->sb_blocklog > readio_log) {
482 mp->m_readio_log = sbp->sb_blocklog;
483 } else {
484 mp->m_readio_log = readio_log;
485 }
486 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
487 if (sbp->sb_blocklog > writeio_log) {
488 mp->m_writeio_log = sbp->sb_blocklog;
489 } else {
490 mp->m_writeio_log = writeio_log;
491 }
492 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
493}
494
495/*
496 * precalculate the low space thresholds for dynamic speculative preallocation.
497 */
498void
499xfs_set_low_space_thresholds(
500 struct xfs_mount *mp)
501{
502 int i;
503
504 for (i = 0; i < XFS_LOWSP_MAX; i++) {
505 __uint64_t space = mp->m_sb.sb_dblocks;
506
507 do_div(space, 100);
508 mp->m_low_space[i] = space * (i + 1);
509 }
510}
511
512
513/*
514 * Set whether we're using inode alignment.
515 */
516STATIC void
517xfs_set_inoalignment(xfs_mount_t *mp)
518{
519 if (xfs_sb_version_hasalign(&mp->m_sb) &&
520 mp->m_sb.sb_inoalignmt >=
521 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
522 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
523 else
524 mp->m_inoalign_mask = 0;
525 /*
526 * If we are using stripe alignment, check whether
527 * the stripe unit is a multiple of the inode alignment
528 */
529 if (mp->m_dalign && mp->m_inoalign_mask &&
530 !(mp->m_dalign & mp->m_inoalign_mask))
531 mp->m_sinoalign = mp->m_dalign;
532 else
533 mp->m_sinoalign = 0;
534}
535
536/*
537 * Check that the data (and log if separate) is an ok size.
538 */
539STATIC int
540xfs_check_sizes(xfs_mount_t *mp)
541{
542 xfs_buf_t *bp;
543 xfs_daddr_t d;
544
545 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
546 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
547 xfs_warn(mp, "filesystem size mismatch detected");
548 return XFS_ERROR(EFBIG);
549 }
550 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
551 d - XFS_FSS_TO_BB(mp, 1),
552 XFS_FSS_TO_BB(mp, 1), 0, NULL);
553 if (!bp) {
554 xfs_warn(mp, "last sector read failed");
555 return EIO;
556 }
557 xfs_buf_relse(bp);
558
559 if (mp->m_logdev_targp != mp->m_ddev_targp) {
560 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
561 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
562 xfs_warn(mp, "log size mismatch detected");
563 return XFS_ERROR(EFBIG);
564 }
565 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
566 d - XFS_FSB_TO_BB(mp, 1),
567 XFS_FSB_TO_BB(mp, 1), 0, NULL);
568 if (!bp) {
569 xfs_warn(mp, "log device read failed");
570 return EIO;
571 }
572 xfs_buf_relse(bp);
573 }
574 return 0;
575}
576
577/*
578 * Clear the quotaflags in memory and in the superblock.
579 */
580int
581xfs_mount_reset_sbqflags(
582 struct xfs_mount *mp)
583{
584 int error;
585 struct xfs_trans *tp;
586
587 mp->m_qflags = 0;
588
589 /*
590 * It is OK to look at sb_qflags here in mount path,
591 * without m_sb_lock.
592 */
593 if (mp->m_sb.sb_qflags == 0)
594 return 0;
595 spin_lock(&mp->m_sb_lock);
596 mp->m_sb.sb_qflags = 0;
597 spin_unlock(&mp->m_sb_lock);
598
599 /*
600 * If the fs is readonly, let the incore superblock run
601 * with quotas off but don't flush the update out to disk
602 */
603 if (mp->m_flags & XFS_MOUNT_RDONLY)
604 return 0;
605
606 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
607 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
608 if (error) {
609 xfs_trans_cancel(tp, 0);
610 xfs_alert(mp, "%s: Superblock update failed!", __func__);
611 return error;
612 }
613
614 xfs_mod_sb(tp, XFS_SB_QFLAGS);
615 return xfs_trans_commit(tp, 0);
616}
617
618__uint64_t
619xfs_default_resblks(xfs_mount_t *mp)
620{
621 __uint64_t resblks;
622
623 /*
624 * We default to 5% or 8192 fsbs of space reserved, whichever is
625 * smaller. This is intended to cover concurrent allocation
626 * transactions when we initially hit enospc. These each require a 4
627 * block reservation. Hence by default we cover roughly 2000 concurrent
628 * allocation reservations.
629 */
630 resblks = mp->m_sb.sb_dblocks;
631 do_div(resblks, 20);
632 resblks = min_t(__uint64_t, resblks, 8192);
633 return resblks;
634}
635
636/*
637 * This function does the following on an initial mount of a file system:
638 * - reads the superblock from disk and init the mount struct
639 * - if we're a 32-bit kernel, do a size check on the superblock
640 * so we don't mount terabyte filesystems
641 * - init mount struct realtime fields
642 * - allocate inode hash table for fs
643 * - init directory manager
644 * - perform recovery and init the log manager
645 */
646int
647xfs_mountfs(
648 xfs_mount_t *mp)
649{
650 xfs_sb_t *sbp = &(mp->m_sb);
651 xfs_inode_t *rip;
652 __uint64_t resblks;
653 uint quotamount = 0;
654 uint quotaflags = 0;
655 int error = 0;
656
657 xfs_sb_mount_common(mp, sbp);
658
659 /*
660 * Check for a mismatched features2 values. Older kernels
661 * read & wrote into the wrong sb offset for sb_features2
662 * on some platforms due to xfs_sb_t not being 64bit size aligned
663 * when sb_features2 was added, which made older superblock
664 * reading/writing routines swap it as a 64-bit value.
665 *
666 * For backwards compatibility, we make both slots equal.
667 *
668 * If we detect a mismatched field, we OR the set bits into the
669 * existing features2 field in case it has already been modified; we
670 * don't want to lose any features. We then update the bad location
671 * with the ORed value so that older kernels will see any features2
672 * flags, and mark the two fields as needing updates once the
673 * transaction subsystem is online.
674 */
675 if (xfs_sb_has_mismatched_features2(sbp)) {
676 xfs_warn(mp, "correcting sb_features alignment problem");
677 sbp->sb_features2 |= sbp->sb_bad_features2;
678 sbp->sb_bad_features2 = sbp->sb_features2;
679 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
680
681 /*
682 * Re-check for ATTR2 in case it was found in bad_features2
683 * slot.
684 */
685 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
686 !(mp->m_flags & XFS_MOUNT_NOATTR2))
687 mp->m_flags |= XFS_MOUNT_ATTR2;
688 }
689
690 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
691 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
692 xfs_sb_version_removeattr2(&mp->m_sb);
693 mp->m_update_flags |= XFS_SB_FEATURES2;
694
695 /* update sb_versionnum for the clearing of the morebits */
696 if (!sbp->sb_features2)
697 mp->m_update_flags |= XFS_SB_VERSIONNUM;
698 }
699
700 /*
701 * Check if sb_agblocks is aligned at stripe boundary
702 * If sb_agblocks is NOT aligned turn off m_dalign since
703 * allocator alignment is within an ag, therefore ag has
704 * to be aligned at stripe boundary.
705 */
706 error = xfs_update_alignment(mp);
707 if (error)
708 goto out;
709
710 xfs_alloc_compute_maxlevels(mp);
711 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
712 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
713 xfs_ialloc_compute_maxlevels(mp);
714
715 xfs_set_maxicount(mp);
716
717 error = xfs_uuid_mount(mp);
718 if (error)
719 goto out;
720
721 /*
722 * Set the minimum read and write sizes
723 */
724 xfs_set_rw_sizes(mp);
725
726 /* set the low space thresholds for dynamic preallocation */
727 xfs_set_low_space_thresholds(mp);
728
729 /*
730 * Set the inode cluster size.
731 * This may still be overridden by the file system
732 * block size if it is larger than the chosen cluster size.
733 *
734 * For v5 filesystems, scale the cluster size with the inode size to
735 * keep a constant ratio of inode per cluster buffer, but only if mkfs
736 * has set the inode alignment value appropriately for larger cluster
737 * sizes.
738 */
739 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
740 if (xfs_sb_version_hascrc(&mp->m_sb)) {
741 int new_size = mp->m_inode_cluster_size;
742
743 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
744 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
745 mp->m_inode_cluster_size = new_size;
746 }
747
748 /*
749 * Set inode alignment fields
750 */
751 xfs_set_inoalignment(mp);
752
753 /*
754 * Check that the data (and log if separate) is an ok size.
755 */
756 error = xfs_check_sizes(mp);
757 if (error)
758 goto out_remove_uuid;
759
760 /*
761 * Initialize realtime fields in the mount structure
762 */
763 error = xfs_rtmount_init(mp);
764 if (error) {
765 xfs_warn(mp, "RT mount failed");
766 goto out_remove_uuid;
767 }
768
769 /*
770 * Copies the low order bits of the timestamp and the randomly
771 * set "sequence" number out of a UUID.
772 */
773 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
774
775 mp->m_dmevmask = 0; /* not persistent; set after each mount */
776
777 xfs_dir_mount(mp);
778
779 /*
780 * Initialize the attribute manager's entries.
781 */
782 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
783
784 /*
785 * Initialize the precomputed transaction reservations values.
786 */
787 xfs_trans_init(mp);
788
789 /*
790 * Allocate and initialize the per-ag data.
791 */
792 spin_lock_init(&mp->m_perag_lock);
793 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
794 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
795 if (error) {
796 xfs_warn(mp, "Failed per-ag init: %d", error);
797 goto out_remove_uuid;
798 }
799
800 if (!sbp->sb_logblocks) {
801 xfs_warn(mp, "no log defined");
802 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
803 error = XFS_ERROR(EFSCORRUPTED);
804 goto out_free_perag;
805 }
806
807 /*
808 * log's mount-time initialization. Perform 1st part recovery if needed
809 */
810 error = xfs_log_mount(mp, mp->m_logdev_targp,
811 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
812 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
813 if (error) {
814 xfs_warn(mp, "log mount failed");
815 goto out_fail_wait;
816 }
817
818 /*
819 * Now the log is mounted, we know if it was an unclean shutdown or
820 * not. If it was, with the first phase of recovery has completed, we
821 * have consistent AG blocks on disk. We have not recovered EFIs yet,
822 * but they are recovered transactionally in the second recovery phase
823 * later.
824 *
825 * Hence we can safely re-initialise incore superblock counters from
826 * the per-ag data. These may not be correct if the filesystem was not
827 * cleanly unmounted, so we need to wait for recovery to finish before
828 * doing this.
829 *
830 * If the filesystem was cleanly unmounted, then we can trust the
831 * values in the superblock to be correct and we don't need to do
832 * anything here.
833 *
834 * If we are currently making the filesystem, the initialisation will
835 * fail as the perag data is in an undefined state.
836 */
837 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
838 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
839 !mp->m_sb.sb_inprogress) {
840 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
841 if (error)
842 goto out_fail_wait;
843 }
844
845 /*
846 * Get and sanity-check the root inode.
847 * Save the pointer to it in the mount structure.
848 */
849 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
850 if (error) {
851 xfs_warn(mp, "failed to read root inode");
852 goto out_log_dealloc;
853 }
854
855 ASSERT(rip != NULL);
856
857 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
858 xfs_warn(mp, "corrupted root inode %llu: not a directory",
859 (unsigned long long)rip->i_ino);
860 xfs_iunlock(rip, XFS_ILOCK_EXCL);
861 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
862 mp);
863 error = XFS_ERROR(EFSCORRUPTED);
864 goto out_rele_rip;
865 }
866 mp->m_rootip = rip; /* save it */
867
868 xfs_iunlock(rip, XFS_ILOCK_EXCL);
869
870 /*
871 * Initialize realtime inode pointers in the mount structure
872 */
873 error = xfs_rtmount_inodes(mp);
874 if (error) {
875 /*
876 * Free up the root inode.
877 */
878 xfs_warn(mp, "failed to read RT inodes");
879 goto out_rele_rip;
880 }
881
882 /*
883 * If this is a read-only mount defer the superblock updates until
884 * the next remount into writeable mode. Otherwise we would never
885 * perform the update e.g. for the root filesystem.
886 */
887 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
888 error = xfs_mount_log_sb(mp, mp->m_update_flags);
889 if (error) {
890 xfs_warn(mp, "failed to write sb changes");
891 goto out_rtunmount;
892 }
893 }
894
895 /*
896 * Initialise the XFS quota management subsystem for this mount
897 */
898 if (XFS_IS_QUOTA_RUNNING(mp)) {
899 error = xfs_qm_newmount(mp, "amount, "aflags);
900 if (error)
901 goto out_rtunmount;
902 } else {
903 ASSERT(!XFS_IS_QUOTA_ON(mp));
904
905 /*
906 * If a file system had quotas running earlier, but decided to
907 * mount without -o uquota/pquota/gquota options, revoke the
908 * quotachecked license.
909 */
910 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
911 xfs_notice(mp, "resetting quota flags");
912 error = xfs_mount_reset_sbqflags(mp);
913 if (error)
914 return error;
915 }
916 }
917
918 /*
919 * Finish recovering the file system. This part needed to be
920 * delayed until after the root and real-time bitmap inodes
921 * were consistently read in.
922 */
923 error = xfs_log_mount_finish(mp);
924 if (error) {
925 xfs_warn(mp, "log mount finish failed");
926 goto out_rtunmount;
927 }
928
929 /*
930 * Complete the quota initialisation, post-log-replay component.
931 */
932 if (quotamount) {
933 ASSERT(mp->m_qflags == 0);
934 mp->m_qflags = quotaflags;
935
936 xfs_qm_mount_quotas(mp);
937 }
938
939 /*
940 * Now we are mounted, reserve a small amount of unused space for
941 * privileged transactions. This is needed so that transaction
942 * space required for critical operations can dip into this pool
943 * when at ENOSPC. This is needed for operations like create with
944 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
945 * are not allowed to use this reserved space.
946 *
947 * This may drive us straight to ENOSPC on mount, but that implies
948 * we were already there on the last unmount. Warn if this occurs.
949 */
950 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
951 resblks = xfs_default_resblks(mp);
952 error = xfs_reserve_blocks(mp, &resblks, NULL);
953 if (error)
954 xfs_warn(mp,
955 "Unable to allocate reserve blocks. Continuing without reserve pool.");
956 }
957
958 return 0;
959
960 out_rtunmount:
961 xfs_rtunmount_inodes(mp);
962 out_rele_rip:
963 IRELE(rip);
964 out_log_dealloc:
965 xfs_log_unmount(mp);
966 out_fail_wait:
967 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
968 xfs_wait_buftarg(mp->m_logdev_targp);
969 xfs_wait_buftarg(mp->m_ddev_targp);
970 out_free_perag:
971 xfs_free_perag(mp);
972 out_remove_uuid:
973 xfs_uuid_unmount(mp);
974 out:
975 return error;
976}
977
978/*
979 * This flushes out the inodes,dquots and the superblock, unmounts the
980 * log and makes sure that incore structures are freed.
981 */
982void
983xfs_unmountfs(
984 struct xfs_mount *mp)
985{
986 __uint64_t resblks;
987 int error;
988
989 cancel_delayed_work_sync(&mp->m_eofblocks_work);
990
991 xfs_qm_unmount_quotas(mp);
992 xfs_rtunmount_inodes(mp);
993 IRELE(mp->m_rootip);
994
995 /*
996 * We can potentially deadlock here if we have an inode cluster
997 * that has been freed has its buffer still pinned in memory because
998 * the transaction is still sitting in a iclog. The stale inodes
999 * on that buffer will have their flush locks held until the
1000 * transaction hits the disk and the callbacks run. the inode
1001 * flush takes the flush lock unconditionally and with nothing to
1002 * push out the iclog we will never get that unlocked. hence we
1003 * need to force the log first.
1004 */
1005 xfs_log_force(mp, XFS_LOG_SYNC);
1006
1007 /*
1008 * Flush all pending changes from the AIL.
1009 */
1010 xfs_ail_push_all_sync(mp->m_ail);
1011
1012 /*
1013 * And reclaim all inodes. At this point there should be no dirty
1014 * inodes and none should be pinned or locked, but use synchronous
1015 * reclaim just to be sure. We can stop background inode reclaim
1016 * here as well if it is still running.
1017 */
1018 cancel_delayed_work_sync(&mp->m_reclaim_work);
1019 xfs_reclaim_inodes(mp, SYNC_WAIT);
1020
1021 xfs_qm_unmount(mp);
1022
1023 /*
1024 * Unreserve any blocks we have so that when we unmount we don't account
1025 * the reserved free space as used. This is really only necessary for
1026 * lazy superblock counting because it trusts the incore superblock
1027 * counters to be absolutely correct on clean unmount.
1028 *
1029 * We don't bother correcting this elsewhere for lazy superblock
1030 * counting because on mount of an unclean filesystem we reconstruct the
1031 * correct counter value and this is irrelevant.
1032 *
1033 * For non-lazy counter filesystems, this doesn't matter at all because
1034 * we only every apply deltas to the superblock and hence the incore
1035 * value does not matter....
1036 */
1037 resblks = 0;
1038 error = xfs_reserve_blocks(mp, &resblks, NULL);
1039 if (error)
1040 xfs_warn(mp, "Unable to free reserved block pool. "
1041 "Freespace may not be correct on next mount.");
1042
1043 error = xfs_log_sbcount(mp);
1044 if (error)
1045 xfs_warn(mp, "Unable to update superblock counters. "
1046 "Freespace may not be correct on next mount.");
1047
1048 xfs_log_unmount(mp);
1049 xfs_uuid_unmount(mp);
1050
1051#if defined(DEBUG)
1052 xfs_errortag_clearall(mp, 0);
1053#endif
1054 xfs_free_perag(mp);
1055}
1056
1057int
1058xfs_fs_writable(xfs_mount_t *mp)
1059{
1060 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1061 (mp->m_flags & XFS_MOUNT_RDONLY));
1062}
1063
1064/*
1065 * xfs_log_sbcount
1066 *
1067 * Sync the superblock counters to disk.
1068 *
1069 * Note this code can be called during the process of freezing, so
1070 * we may need to use the transaction allocator which does not
1071 * block when the transaction subsystem is in its frozen state.
1072 */
1073int
1074xfs_log_sbcount(xfs_mount_t *mp)
1075{
1076 xfs_trans_t *tp;
1077 int error;
1078
1079 if (!xfs_fs_writable(mp))
1080 return 0;
1081
1082 xfs_icsb_sync_counters(mp, 0);
1083
1084 /*
1085 * we don't need to do this if we are updating the superblock
1086 * counters on every modification.
1087 */
1088 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1089 return 0;
1090
1091 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1092 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1093 if (error) {
1094 xfs_trans_cancel(tp, 0);
1095 return error;
1096 }
1097
1098 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1099 xfs_trans_set_sync(tp);
1100 error = xfs_trans_commit(tp, 0);
1101 return error;
1102}
1103
1104/*
1105 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1106 * a delta to a specified field in the in-core superblock. Simply
1107 * switch on the field indicated and apply the delta to that field.
1108 * Fields are not allowed to dip below zero, so if the delta would
1109 * do this do not apply it and return EINVAL.
1110 *
1111 * The m_sb_lock must be held when this routine is called.
1112 */
1113STATIC int
1114xfs_mod_incore_sb_unlocked(
1115 xfs_mount_t *mp,
1116 xfs_sb_field_t field,
1117 int64_t delta,
1118 int rsvd)
1119{
1120 int scounter; /* short counter for 32 bit fields */
1121 long long lcounter; /* long counter for 64 bit fields */
1122 long long res_used, rem;
1123
1124 /*
1125 * With the in-core superblock spin lock held, switch
1126 * on the indicated field. Apply the delta to the
1127 * proper field. If the fields value would dip below
1128 * 0, then do not apply the delta and return EINVAL.
1129 */
1130 switch (field) {
1131 case XFS_SBS_ICOUNT:
1132 lcounter = (long long)mp->m_sb.sb_icount;
1133 lcounter += delta;
1134 if (lcounter < 0) {
1135 ASSERT(0);
1136 return XFS_ERROR(EINVAL);
1137 }
1138 mp->m_sb.sb_icount = lcounter;
1139 return 0;
1140 case XFS_SBS_IFREE:
1141 lcounter = (long long)mp->m_sb.sb_ifree;
1142 lcounter += delta;
1143 if (lcounter < 0) {
1144 ASSERT(0);
1145 return XFS_ERROR(EINVAL);
1146 }
1147 mp->m_sb.sb_ifree = lcounter;
1148 return 0;
1149 case XFS_SBS_FDBLOCKS:
1150 lcounter = (long long)
1151 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1152 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1153
1154 if (delta > 0) { /* Putting blocks back */
1155 if (res_used > delta) {
1156 mp->m_resblks_avail += delta;
1157 } else {
1158 rem = delta - res_used;
1159 mp->m_resblks_avail = mp->m_resblks;
1160 lcounter += rem;
1161 }
1162 } else { /* Taking blocks away */
1163 lcounter += delta;
1164 if (lcounter >= 0) {
1165 mp->m_sb.sb_fdblocks = lcounter +
1166 XFS_ALLOC_SET_ASIDE(mp);
1167 return 0;
1168 }
1169
1170 /*
1171 * We are out of blocks, use any available reserved
1172 * blocks if were allowed to.
1173 */
1174 if (!rsvd)
1175 return XFS_ERROR(ENOSPC);
1176
1177 lcounter = (long long)mp->m_resblks_avail + delta;
1178 if (lcounter >= 0) {
1179 mp->m_resblks_avail = lcounter;
1180 return 0;
1181 }
1182 printk_once(KERN_WARNING
1183 "Filesystem \"%s\": reserve blocks depleted! "
1184 "Consider increasing reserve pool size.",
1185 mp->m_fsname);
1186 return XFS_ERROR(ENOSPC);
1187 }
1188
1189 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1190 return 0;
1191 case XFS_SBS_FREXTENTS:
1192 lcounter = (long long)mp->m_sb.sb_frextents;
1193 lcounter += delta;
1194 if (lcounter < 0) {
1195 return XFS_ERROR(ENOSPC);
1196 }
1197 mp->m_sb.sb_frextents = lcounter;
1198 return 0;
1199 case XFS_SBS_DBLOCKS:
1200 lcounter = (long long)mp->m_sb.sb_dblocks;
1201 lcounter += delta;
1202 if (lcounter < 0) {
1203 ASSERT(0);
1204 return XFS_ERROR(EINVAL);
1205 }
1206 mp->m_sb.sb_dblocks = lcounter;
1207 return 0;
1208 case XFS_SBS_AGCOUNT:
1209 scounter = mp->m_sb.sb_agcount;
1210 scounter += delta;
1211 if (scounter < 0) {
1212 ASSERT(0);
1213 return XFS_ERROR(EINVAL);
1214 }
1215 mp->m_sb.sb_agcount = scounter;
1216 return 0;
1217 case XFS_SBS_IMAX_PCT:
1218 scounter = mp->m_sb.sb_imax_pct;
1219 scounter += delta;
1220 if (scounter < 0) {
1221 ASSERT(0);
1222 return XFS_ERROR(EINVAL);
1223 }
1224 mp->m_sb.sb_imax_pct = scounter;
1225 return 0;
1226 case XFS_SBS_REXTSIZE:
1227 scounter = mp->m_sb.sb_rextsize;
1228 scounter += delta;
1229 if (scounter < 0) {
1230 ASSERT(0);
1231 return XFS_ERROR(EINVAL);
1232 }
1233 mp->m_sb.sb_rextsize = scounter;
1234 return 0;
1235 case XFS_SBS_RBMBLOCKS:
1236 scounter = mp->m_sb.sb_rbmblocks;
1237 scounter += delta;
1238 if (scounter < 0) {
1239 ASSERT(0);
1240 return XFS_ERROR(EINVAL);
1241 }
1242 mp->m_sb.sb_rbmblocks = scounter;
1243 return 0;
1244 case XFS_SBS_RBLOCKS:
1245 lcounter = (long long)mp->m_sb.sb_rblocks;
1246 lcounter += delta;
1247 if (lcounter < 0) {
1248 ASSERT(0);
1249 return XFS_ERROR(EINVAL);
1250 }
1251 mp->m_sb.sb_rblocks = lcounter;
1252 return 0;
1253 case XFS_SBS_REXTENTS:
1254 lcounter = (long long)mp->m_sb.sb_rextents;
1255 lcounter += delta;
1256 if (lcounter < 0) {
1257 ASSERT(0);
1258 return XFS_ERROR(EINVAL);
1259 }
1260 mp->m_sb.sb_rextents = lcounter;
1261 return 0;
1262 case XFS_SBS_REXTSLOG:
1263 scounter = mp->m_sb.sb_rextslog;
1264 scounter += delta;
1265 if (scounter < 0) {
1266 ASSERT(0);
1267 return XFS_ERROR(EINVAL);
1268 }
1269 mp->m_sb.sb_rextslog = scounter;
1270 return 0;
1271 default:
1272 ASSERT(0);
1273 return XFS_ERROR(EINVAL);
1274 }
1275}
1276
1277/*
1278 * xfs_mod_incore_sb() is used to change a field in the in-core
1279 * superblock structure by the specified delta. This modification
1280 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1281 * routine to do the work.
1282 */
1283int
1284xfs_mod_incore_sb(
1285 struct xfs_mount *mp,
1286 xfs_sb_field_t field,
1287 int64_t delta,
1288 int rsvd)
1289{
1290 int status;
1291
1292#ifdef HAVE_PERCPU_SB
1293 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1294#endif
1295 spin_lock(&mp->m_sb_lock);
1296 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1297 spin_unlock(&mp->m_sb_lock);
1298
1299 return status;
1300}
1301
1302/*
1303 * Change more than one field in the in-core superblock structure at a time.
1304 *
1305 * The fields and changes to those fields are specified in the array of
1306 * xfs_mod_sb structures passed in. Either all of the specified deltas
1307 * will be applied or none of them will. If any modified field dips below 0,
1308 * then all modifications will be backed out and EINVAL will be returned.
1309 *
1310 * Note that this function may not be used for the superblock values that
1311 * are tracked with the in-memory per-cpu counters - a direct call to
1312 * xfs_icsb_modify_counters is required for these.
1313 */
1314int
1315xfs_mod_incore_sb_batch(
1316 struct xfs_mount *mp,
1317 xfs_mod_sb_t *msb,
1318 uint nmsb,
1319 int rsvd)
1320{
1321 xfs_mod_sb_t *msbp;
1322 int error = 0;
1323
1324 /*
1325 * Loop through the array of mod structures and apply each individually.
1326 * If any fail, then back out all those which have already been applied.
1327 * Do all of this within the scope of the m_sb_lock so that all of the
1328 * changes will be atomic.
1329 */
1330 spin_lock(&mp->m_sb_lock);
1331 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1332 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1333 msbp->msb_field > XFS_SBS_FDBLOCKS);
1334
1335 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1336 msbp->msb_delta, rsvd);
1337 if (error)
1338 goto unwind;
1339 }
1340 spin_unlock(&mp->m_sb_lock);
1341 return 0;
1342
1343unwind:
1344 while (--msbp >= msb) {
1345 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1346 -msbp->msb_delta, rsvd);
1347 ASSERT(error == 0);
1348 }
1349 spin_unlock(&mp->m_sb_lock);
1350 return error;
1351}
1352
1353/*
1354 * xfs_getsb() is called to obtain the buffer for the superblock.
1355 * The buffer is returned locked and read in from disk.
1356 * The buffer should be released with a call to xfs_brelse().
1357 *
1358 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1359 * the superblock buffer if it can be locked without sleeping.
1360 * If it can't then we'll return NULL.
1361 */
1362struct xfs_buf *
1363xfs_getsb(
1364 struct xfs_mount *mp,
1365 int flags)
1366{
1367 struct xfs_buf *bp = mp->m_sb_bp;
1368
1369 if (!xfs_buf_trylock(bp)) {
1370 if (flags & XBF_TRYLOCK)
1371 return NULL;
1372 xfs_buf_lock(bp);
1373 }
1374
1375 xfs_buf_hold(bp);
1376 ASSERT(XFS_BUF_ISDONE(bp));
1377 return bp;
1378}
1379
1380/*
1381 * Used to free the superblock along various error paths.
1382 */
1383void
1384xfs_freesb(
1385 struct xfs_mount *mp)
1386{
1387 struct xfs_buf *bp = mp->m_sb_bp;
1388
1389 xfs_buf_lock(bp);
1390 mp->m_sb_bp = NULL;
1391 xfs_buf_relse(bp);
1392}
1393
1394/*
1395 * Used to log changes to the superblock unit and width fields which could
1396 * be altered by the mount options, as well as any potential sb_features2
1397 * fixup. Only the first superblock is updated.
1398 */
1399int
1400xfs_mount_log_sb(
1401 xfs_mount_t *mp,
1402 __int64_t fields)
1403{
1404 xfs_trans_t *tp;
1405 int error;
1406
1407 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1408 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1409 XFS_SB_VERSIONNUM));
1410
1411 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1412 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1413 if (error) {
1414 xfs_trans_cancel(tp, 0);
1415 return error;
1416 }
1417 xfs_mod_sb(tp, fields);
1418 error = xfs_trans_commit(tp, 0);
1419 return error;
1420}
1421
1422/*
1423 * If the underlying (data/log/rt) device is readonly, there are some
1424 * operations that cannot proceed.
1425 */
1426int
1427xfs_dev_is_read_only(
1428 struct xfs_mount *mp,
1429 char *message)
1430{
1431 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1432 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1433 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1434 xfs_notice(mp, "%s required on read-only device.", message);
1435 xfs_notice(mp, "write access unavailable, cannot proceed.");
1436 return EROFS;
1437 }
1438 return 0;
1439}
1440
1441#ifdef HAVE_PERCPU_SB
1442/*
1443 * Per-cpu incore superblock counters
1444 *
1445 * Simple concept, difficult implementation
1446 *
1447 * Basically, replace the incore superblock counters with a distributed per cpu
1448 * counter for contended fields (e.g. free block count).
1449 *
1450 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1451 * hence needs to be accurately read when we are running low on space. Hence
1452 * there is a method to enable and disable the per-cpu counters based on how
1453 * much "stuff" is available in them.
1454 *
1455 * Basically, a counter is enabled if there is enough free resource to justify
1456 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1457 * ENOSPC), then we disable the counters to synchronise all callers and
1458 * re-distribute the available resources.
1459 *
1460 * If, once we redistributed the available resources, we still get a failure,
1461 * we disable the per-cpu counter and go through the slow path.
1462 *
1463 * The slow path is the current xfs_mod_incore_sb() function. This means that
1464 * when we disable a per-cpu counter, we need to drain its resources back to
1465 * the global superblock. We do this after disabling the counter to prevent
1466 * more threads from queueing up on the counter.
1467 *
1468 * Essentially, this means that we still need a lock in the fast path to enable
1469 * synchronisation between the global counters and the per-cpu counters. This
1470 * is not a problem because the lock will be local to a CPU almost all the time
1471 * and have little contention except when we get to ENOSPC conditions.
1472 *
1473 * Basically, this lock becomes a barrier that enables us to lock out the fast
1474 * path while we do things like enabling and disabling counters and
1475 * synchronising the counters.
1476 *
1477 * Locking rules:
1478 *
1479 * 1. m_sb_lock before picking up per-cpu locks
1480 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1481 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1482 * 4. modifying per-cpu counters requires holding per-cpu lock
1483 * 5. modifying global counters requires holding m_sb_lock
1484 * 6. enabling or disabling a counter requires holding the m_sb_lock
1485 * and _none_ of the per-cpu locks.
1486 *
1487 * Disabled counters are only ever re-enabled by a balance operation
1488 * that results in more free resources per CPU than a given threshold.
1489 * To ensure counters don't remain disabled, they are rebalanced when
1490 * the global resource goes above a higher threshold (i.e. some hysteresis
1491 * is present to prevent thrashing).
1492 */
1493
1494#ifdef CONFIG_HOTPLUG_CPU
1495/*
1496 * hot-plug CPU notifier support.
1497 *
1498 * We need a notifier per filesystem as we need to be able to identify
1499 * the filesystem to balance the counters out. This is achieved by
1500 * having a notifier block embedded in the xfs_mount_t and doing pointer
1501 * magic to get the mount pointer from the notifier block address.
1502 */
1503STATIC int
1504xfs_icsb_cpu_notify(
1505 struct notifier_block *nfb,
1506 unsigned long action,
1507 void *hcpu)
1508{
1509 xfs_icsb_cnts_t *cntp;
1510 xfs_mount_t *mp;
1511
1512 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1513 cntp = (xfs_icsb_cnts_t *)
1514 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1515 switch (action) {
1516 case CPU_UP_PREPARE:
1517 case CPU_UP_PREPARE_FROZEN:
1518 /* Easy Case - initialize the area and locks, and
1519 * then rebalance when online does everything else for us. */
1520 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1521 break;
1522 case CPU_ONLINE:
1523 case CPU_ONLINE_FROZEN:
1524 xfs_icsb_lock(mp);
1525 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1526 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1527 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1528 xfs_icsb_unlock(mp);
1529 break;
1530 case CPU_DEAD:
1531 case CPU_DEAD_FROZEN:
1532 /* Disable all the counters, then fold the dead cpu's
1533 * count into the total on the global superblock and
1534 * re-enable the counters. */
1535 xfs_icsb_lock(mp);
1536 spin_lock(&mp->m_sb_lock);
1537 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1538 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1539 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1540
1541 mp->m_sb.sb_icount += cntp->icsb_icount;
1542 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1543 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1544
1545 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1546
1547 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1548 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1549 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1550 spin_unlock(&mp->m_sb_lock);
1551 xfs_icsb_unlock(mp);
1552 break;
1553 }
1554
1555 return NOTIFY_OK;
1556}
1557#endif /* CONFIG_HOTPLUG_CPU */
1558
1559int
1560xfs_icsb_init_counters(
1561 xfs_mount_t *mp)
1562{
1563 xfs_icsb_cnts_t *cntp;
1564 int i;
1565
1566 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1567 if (mp->m_sb_cnts == NULL)
1568 return -ENOMEM;
1569
1570 for_each_online_cpu(i) {
1571 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1572 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1573 }
1574
1575 mutex_init(&mp->m_icsb_mutex);
1576
1577 /*
1578 * start with all counters disabled so that the
1579 * initial balance kicks us off correctly
1580 */
1581 mp->m_icsb_counters = -1;
1582
1583#ifdef CONFIG_HOTPLUG_CPU
1584 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1585 mp->m_icsb_notifier.priority = 0;
1586 register_hotcpu_notifier(&mp->m_icsb_notifier);
1587#endif /* CONFIG_HOTPLUG_CPU */
1588
1589 return 0;
1590}
1591
1592void
1593xfs_icsb_reinit_counters(
1594 xfs_mount_t *mp)
1595{
1596 xfs_icsb_lock(mp);
1597 /*
1598 * start with all counters disabled so that the
1599 * initial balance kicks us off correctly
1600 */
1601 mp->m_icsb_counters = -1;
1602 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1603 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1604 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1605 xfs_icsb_unlock(mp);
1606}
1607
1608void
1609xfs_icsb_destroy_counters(
1610 xfs_mount_t *mp)
1611{
1612 if (mp->m_sb_cnts) {
1613 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1614 free_percpu(mp->m_sb_cnts);
1615 }
1616 mutex_destroy(&mp->m_icsb_mutex);
1617}
1618
1619STATIC void
1620xfs_icsb_lock_cntr(
1621 xfs_icsb_cnts_t *icsbp)
1622{
1623 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1624 ndelay(1000);
1625 }
1626}
1627
1628STATIC void
1629xfs_icsb_unlock_cntr(
1630 xfs_icsb_cnts_t *icsbp)
1631{
1632 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1633}
1634
1635
1636STATIC void
1637xfs_icsb_lock_all_counters(
1638 xfs_mount_t *mp)
1639{
1640 xfs_icsb_cnts_t *cntp;
1641 int i;
1642
1643 for_each_online_cpu(i) {
1644 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1645 xfs_icsb_lock_cntr(cntp);
1646 }
1647}
1648
1649STATIC void
1650xfs_icsb_unlock_all_counters(
1651 xfs_mount_t *mp)
1652{
1653 xfs_icsb_cnts_t *cntp;
1654 int i;
1655
1656 for_each_online_cpu(i) {
1657 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1658 xfs_icsb_unlock_cntr(cntp);
1659 }
1660}
1661
1662STATIC void
1663xfs_icsb_count(
1664 xfs_mount_t *mp,
1665 xfs_icsb_cnts_t *cnt,
1666 int flags)
1667{
1668 xfs_icsb_cnts_t *cntp;
1669 int i;
1670
1671 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1672
1673 if (!(flags & XFS_ICSB_LAZY_COUNT))
1674 xfs_icsb_lock_all_counters(mp);
1675
1676 for_each_online_cpu(i) {
1677 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1678 cnt->icsb_icount += cntp->icsb_icount;
1679 cnt->icsb_ifree += cntp->icsb_ifree;
1680 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1681 }
1682
1683 if (!(flags & XFS_ICSB_LAZY_COUNT))
1684 xfs_icsb_unlock_all_counters(mp);
1685}
1686
1687STATIC int
1688xfs_icsb_counter_disabled(
1689 xfs_mount_t *mp,
1690 xfs_sb_field_t field)
1691{
1692 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1693 return test_bit(field, &mp->m_icsb_counters);
1694}
1695
1696STATIC void
1697xfs_icsb_disable_counter(
1698 xfs_mount_t *mp,
1699 xfs_sb_field_t field)
1700{
1701 xfs_icsb_cnts_t cnt;
1702
1703 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1704
1705 /*
1706 * If we are already disabled, then there is nothing to do
1707 * here. We check before locking all the counters to avoid
1708 * the expensive lock operation when being called in the
1709 * slow path and the counter is already disabled. This is
1710 * safe because the only time we set or clear this state is under
1711 * the m_icsb_mutex.
1712 */
1713 if (xfs_icsb_counter_disabled(mp, field))
1714 return;
1715
1716 xfs_icsb_lock_all_counters(mp);
1717 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1718 /* drain back to superblock */
1719
1720 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1721 switch(field) {
1722 case XFS_SBS_ICOUNT:
1723 mp->m_sb.sb_icount = cnt.icsb_icount;
1724 break;
1725 case XFS_SBS_IFREE:
1726 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1727 break;
1728 case XFS_SBS_FDBLOCKS:
1729 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1730 break;
1731 default:
1732 BUG();
1733 }
1734 }
1735
1736 xfs_icsb_unlock_all_counters(mp);
1737}
1738
1739STATIC void
1740xfs_icsb_enable_counter(
1741 xfs_mount_t *mp,
1742 xfs_sb_field_t field,
1743 uint64_t count,
1744 uint64_t resid)
1745{
1746 xfs_icsb_cnts_t *cntp;
1747 int i;
1748
1749 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1750
1751 xfs_icsb_lock_all_counters(mp);
1752 for_each_online_cpu(i) {
1753 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1754 switch (field) {
1755 case XFS_SBS_ICOUNT:
1756 cntp->icsb_icount = count + resid;
1757 break;
1758 case XFS_SBS_IFREE:
1759 cntp->icsb_ifree = count + resid;
1760 break;
1761 case XFS_SBS_FDBLOCKS:
1762 cntp->icsb_fdblocks = count + resid;
1763 break;
1764 default:
1765 BUG();
1766 break;
1767 }
1768 resid = 0;
1769 }
1770 clear_bit(field, &mp->m_icsb_counters);
1771 xfs_icsb_unlock_all_counters(mp);
1772}
1773
1774void
1775xfs_icsb_sync_counters_locked(
1776 xfs_mount_t *mp,
1777 int flags)
1778{
1779 xfs_icsb_cnts_t cnt;
1780
1781 xfs_icsb_count(mp, &cnt, flags);
1782
1783 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1784 mp->m_sb.sb_icount = cnt.icsb_icount;
1785 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1786 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1787 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1788 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1789}
1790
1791/*
1792 * Accurate update of per-cpu counters to incore superblock
1793 */
1794void
1795xfs_icsb_sync_counters(
1796 xfs_mount_t *mp,
1797 int flags)
1798{
1799 spin_lock(&mp->m_sb_lock);
1800 xfs_icsb_sync_counters_locked(mp, flags);
1801 spin_unlock(&mp->m_sb_lock);
1802}
1803
1804/*
1805 * Balance and enable/disable counters as necessary.
1806 *
1807 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1808 * chosen to be the same number as single on disk allocation chunk per CPU, and
1809 * free blocks is something far enough zero that we aren't going thrash when we
1810 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1811 * prevent looping endlessly when xfs_alloc_space asks for more than will
1812 * be distributed to a single CPU but each CPU has enough blocks to be
1813 * reenabled.
1814 *
1815 * Note that we can be called when counters are already disabled.
1816 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1817 * prevent locking every per-cpu counter needlessly.
1818 */
1819
1820#define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
1821#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1822 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1823STATIC void
1824xfs_icsb_balance_counter_locked(
1825 xfs_mount_t *mp,
1826 xfs_sb_field_t field,
1827 int min_per_cpu)
1828{
1829 uint64_t count, resid;
1830 int weight = num_online_cpus();
1831 uint64_t min = (uint64_t)min_per_cpu;
1832
1833 /* disable counter and sync counter */
1834 xfs_icsb_disable_counter(mp, field);
1835
1836 /* update counters - first CPU gets residual*/
1837 switch (field) {
1838 case XFS_SBS_ICOUNT:
1839 count = mp->m_sb.sb_icount;
1840 resid = do_div(count, weight);
1841 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1842 return;
1843 break;
1844 case XFS_SBS_IFREE:
1845 count = mp->m_sb.sb_ifree;
1846 resid = do_div(count, weight);
1847 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1848 return;
1849 break;
1850 case XFS_SBS_FDBLOCKS:
1851 count = mp->m_sb.sb_fdblocks;
1852 resid = do_div(count, weight);
1853 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1854 return;
1855 break;
1856 default:
1857 BUG();
1858 count = resid = 0; /* quiet, gcc */
1859 break;
1860 }
1861
1862 xfs_icsb_enable_counter(mp, field, count, resid);
1863}
1864
1865STATIC void
1866xfs_icsb_balance_counter(
1867 xfs_mount_t *mp,
1868 xfs_sb_field_t fields,
1869 int min_per_cpu)
1870{
1871 spin_lock(&mp->m_sb_lock);
1872 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1873 spin_unlock(&mp->m_sb_lock);
1874}
1875
1876int
1877xfs_icsb_modify_counters(
1878 xfs_mount_t *mp,
1879 xfs_sb_field_t field,
1880 int64_t delta,
1881 int rsvd)
1882{
1883 xfs_icsb_cnts_t *icsbp;
1884 long long lcounter; /* long counter for 64 bit fields */
1885 int ret = 0;
1886
1887 might_sleep();
1888again:
1889 preempt_disable();
1890 icsbp = this_cpu_ptr(mp->m_sb_cnts);
1891
1892 /*
1893 * if the counter is disabled, go to slow path
1894 */
1895 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1896 goto slow_path;
1897 xfs_icsb_lock_cntr(icsbp);
1898 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1899 xfs_icsb_unlock_cntr(icsbp);
1900 goto slow_path;
1901 }
1902
1903 switch (field) {
1904 case XFS_SBS_ICOUNT:
1905 lcounter = icsbp->icsb_icount;
1906 lcounter += delta;
1907 if (unlikely(lcounter < 0))
1908 goto balance_counter;
1909 icsbp->icsb_icount = lcounter;
1910 break;
1911
1912 case XFS_SBS_IFREE:
1913 lcounter = icsbp->icsb_ifree;
1914 lcounter += delta;
1915 if (unlikely(lcounter < 0))
1916 goto balance_counter;
1917 icsbp->icsb_ifree = lcounter;
1918 break;
1919
1920 case XFS_SBS_FDBLOCKS:
1921 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1922
1923 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1924 lcounter += delta;
1925 if (unlikely(lcounter < 0))
1926 goto balance_counter;
1927 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1928 break;
1929 default:
1930 BUG();
1931 break;
1932 }
1933 xfs_icsb_unlock_cntr(icsbp);
1934 preempt_enable();
1935 return 0;
1936
1937slow_path:
1938 preempt_enable();
1939
1940 /*
1941 * serialise with a mutex so we don't burn lots of cpu on
1942 * the superblock lock. We still need to hold the superblock
1943 * lock, however, when we modify the global structures.
1944 */
1945 xfs_icsb_lock(mp);
1946
1947 /*
1948 * Now running atomically.
1949 *
1950 * If the counter is enabled, someone has beaten us to rebalancing.
1951 * Drop the lock and try again in the fast path....
1952 */
1953 if (!(xfs_icsb_counter_disabled(mp, field))) {
1954 xfs_icsb_unlock(mp);
1955 goto again;
1956 }
1957
1958 /*
1959 * The counter is currently disabled. Because we are
1960 * running atomically here, we know a rebalance cannot
1961 * be in progress. Hence we can go straight to operating
1962 * on the global superblock. We do not call xfs_mod_incore_sb()
1963 * here even though we need to get the m_sb_lock. Doing so
1964 * will cause us to re-enter this function and deadlock.
1965 * Hence we get the m_sb_lock ourselves and then call
1966 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1967 * directly on the global counters.
1968 */
1969 spin_lock(&mp->m_sb_lock);
1970 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1971 spin_unlock(&mp->m_sb_lock);
1972
1973 /*
1974 * Now that we've modified the global superblock, we
1975 * may be able to re-enable the distributed counters
1976 * (e.g. lots of space just got freed). After that
1977 * we are done.
1978 */
1979 if (ret != ENOSPC)
1980 xfs_icsb_balance_counter(mp, field, 0);
1981 xfs_icsb_unlock(mp);
1982 return ret;
1983
1984balance_counter:
1985 xfs_icsb_unlock_cntr(icsbp);
1986 preempt_enable();
1987
1988 /*
1989 * We may have multiple threads here if multiple per-cpu
1990 * counters run dry at the same time. This will mean we can
1991 * do more balances than strictly necessary but it is not
1992 * the common slowpath case.
1993 */
1994 xfs_icsb_lock(mp);
1995
1996 /*
1997 * running atomically.
1998 *
1999 * This will leave the counter in the correct state for future
2000 * accesses. After the rebalance, we simply try again and our retry
2001 * will either succeed through the fast path or slow path without
2002 * another balance operation being required.
2003 */
2004 xfs_icsb_balance_counter(mp, field, delta);
2005 xfs_icsb_unlock(mp);
2006 goto again;
2007}
2008
2009#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_log_priv.h"
25#include "xfs_error.h"
26#include "xfs_quota.h"
27#include "xfs_fsops.h"
28#include "xfs_icache.h"
29#include "xfs_sysfs.h"
30#include "xfs_rmap_btree.h"
31#include "xfs_refcount_btree.h"
32#include "xfs_reflink.h"
33#include "xfs_extent_busy.h"
34#include "xfs_health.h"
35#include "xfs_trace.h"
36#include "xfs_ag.h"
37
38static DEFINE_MUTEX(xfs_uuid_table_mutex);
39static int xfs_uuid_table_size;
40static uuid_t *xfs_uuid_table;
41
42void
43xfs_uuid_table_free(void)
44{
45 if (xfs_uuid_table_size == 0)
46 return;
47 kmem_free(xfs_uuid_table);
48 xfs_uuid_table = NULL;
49 xfs_uuid_table_size = 0;
50}
51
52/*
53 * See if the UUID is unique among mounted XFS filesystems.
54 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
55 */
56STATIC int
57xfs_uuid_mount(
58 struct xfs_mount *mp)
59{
60 uuid_t *uuid = &mp->m_sb.sb_uuid;
61 int hole, i;
62
63 /* Publish UUID in struct super_block */
64 uuid_copy(&mp->m_super->s_uuid, uuid);
65
66 if (xfs_has_nouuid(mp))
67 return 0;
68
69 if (uuid_is_null(uuid)) {
70 xfs_warn(mp, "Filesystem has null UUID - can't mount");
71 return -EINVAL;
72 }
73
74 mutex_lock(&xfs_uuid_table_mutex);
75 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
76 if (uuid_is_null(&xfs_uuid_table[i])) {
77 hole = i;
78 continue;
79 }
80 if (uuid_equal(uuid, &xfs_uuid_table[i]))
81 goto out_duplicate;
82 }
83
84 if (hole < 0) {
85 xfs_uuid_table = krealloc(xfs_uuid_table,
86 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
87 GFP_KERNEL | __GFP_NOFAIL);
88 hole = xfs_uuid_table_size++;
89 }
90 xfs_uuid_table[hole] = *uuid;
91 mutex_unlock(&xfs_uuid_table_mutex);
92
93 return 0;
94
95 out_duplicate:
96 mutex_unlock(&xfs_uuid_table_mutex);
97 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
98 return -EINVAL;
99}
100
101STATIC void
102xfs_uuid_unmount(
103 struct xfs_mount *mp)
104{
105 uuid_t *uuid = &mp->m_sb.sb_uuid;
106 int i;
107
108 if (xfs_has_nouuid(mp))
109 return;
110
111 mutex_lock(&xfs_uuid_table_mutex);
112 for (i = 0; i < xfs_uuid_table_size; i++) {
113 if (uuid_is_null(&xfs_uuid_table[i]))
114 continue;
115 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
116 continue;
117 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
118 break;
119 }
120 ASSERT(i < xfs_uuid_table_size);
121 mutex_unlock(&xfs_uuid_table_mutex);
122}
123
124/*
125 * Check size of device based on the (data/realtime) block count.
126 * Note: this check is used by the growfs code as well as mount.
127 */
128int
129xfs_sb_validate_fsb_count(
130 xfs_sb_t *sbp,
131 uint64_t nblocks)
132{
133 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
134 ASSERT(sbp->sb_blocklog >= BBSHIFT);
135
136 /* Limited by ULONG_MAX of page cache index */
137 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
138 return -EFBIG;
139 return 0;
140}
141
142/*
143 * xfs_readsb
144 *
145 * Does the initial read of the superblock.
146 */
147int
148xfs_readsb(
149 struct xfs_mount *mp,
150 int flags)
151{
152 unsigned int sector_size;
153 struct xfs_buf *bp;
154 struct xfs_sb *sbp = &mp->m_sb;
155 int error;
156 int loud = !(flags & XFS_MFSI_QUIET);
157 const struct xfs_buf_ops *buf_ops;
158
159 ASSERT(mp->m_sb_bp == NULL);
160 ASSERT(mp->m_ddev_targp != NULL);
161
162 /*
163 * For the initial read, we must guess at the sector
164 * size based on the block device. It's enough to
165 * get the sb_sectsize out of the superblock and
166 * then reread with the proper length.
167 * We don't verify it yet, because it may not be complete.
168 */
169 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
170 buf_ops = NULL;
171
172 /*
173 * Allocate a (locked) buffer to hold the superblock. This will be kept
174 * around at all times to optimize access to the superblock. Therefore,
175 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
176 * elevated.
177 */
178reread:
179 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
180 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
181 buf_ops);
182 if (error) {
183 if (loud)
184 xfs_warn(mp, "SB validate failed with error %d.", error);
185 /* bad CRC means corrupted metadata */
186 if (error == -EFSBADCRC)
187 error = -EFSCORRUPTED;
188 return error;
189 }
190
191 /*
192 * Initialize the mount structure from the superblock.
193 */
194 xfs_sb_from_disk(sbp, bp->b_addr);
195
196 /*
197 * If we haven't validated the superblock, do so now before we try
198 * to check the sector size and reread the superblock appropriately.
199 */
200 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
201 if (loud)
202 xfs_warn(mp, "Invalid superblock magic number");
203 error = -EINVAL;
204 goto release_buf;
205 }
206
207 /*
208 * We must be able to do sector-sized and sector-aligned IO.
209 */
210 if (sector_size > sbp->sb_sectsize) {
211 if (loud)
212 xfs_warn(mp, "device supports %u byte sectors (not %u)",
213 sector_size, sbp->sb_sectsize);
214 error = -ENOSYS;
215 goto release_buf;
216 }
217
218 if (buf_ops == NULL) {
219 /*
220 * Re-read the superblock so the buffer is correctly sized,
221 * and properly verified.
222 */
223 xfs_buf_relse(bp);
224 sector_size = sbp->sb_sectsize;
225 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
226 goto reread;
227 }
228
229 mp->m_features |= xfs_sb_version_to_features(sbp);
230 xfs_reinit_percpu_counters(mp);
231
232 /* no need to be quiet anymore, so reset the buf ops */
233 bp->b_ops = &xfs_sb_buf_ops;
234
235 mp->m_sb_bp = bp;
236 xfs_buf_unlock(bp);
237 return 0;
238
239release_buf:
240 xfs_buf_relse(bp);
241 return error;
242}
243
244/*
245 * If the sunit/swidth change would move the precomputed root inode value, we
246 * must reject the ondisk change because repair will stumble over that.
247 * However, we allow the mount to proceed because we never rejected this
248 * combination before. Returns true to update the sb, false otherwise.
249 */
250static inline int
251xfs_check_new_dalign(
252 struct xfs_mount *mp,
253 int new_dalign,
254 bool *update_sb)
255{
256 struct xfs_sb *sbp = &mp->m_sb;
257 xfs_ino_t calc_ino;
258
259 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
260 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
261
262 if (sbp->sb_rootino == calc_ino) {
263 *update_sb = true;
264 return 0;
265 }
266
267 xfs_warn(mp,
268"Cannot change stripe alignment; would require moving root inode.");
269
270 /*
271 * XXX: Next time we add a new incompat feature, this should start
272 * returning -EINVAL to fail the mount. Until then, spit out a warning
273 * that we're ignoring the administrator's instructions.
274 */
275 xfs_warn(mp, "Skipping superblock stripe alignment update.");
276 *update_sb = false;
277 return 0;
278}
279
280/*
281 * If we were provided with new sunit/swidth values as mount options, make sure
282 * that they pass basic alignment and superblock feature checks, and convert
283 * them into the same units (FSB) that everything else expects. This step
284 * /must/ be done before computing the inode geometry.
285 */
286STATIC int
287xfs_validate_new_dalign(
288 struct xfs_mount *mp)
289{
290 if (mp->m_dalign == 0)
291 return 0;
292
293 /*
294 * If stripe unit and stripe width are not multiples
295 * of the fs blocksize turn off alignment.
296 */
297 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
298 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
299 xfs_warn(mp,
300 "alignment check failed: sunit/swidth vs. blocksize(%d)",
301 mp->m_sb.sb_blocksize);
302 return -EINVAL;
303 }
304
305 /*
306 * Convert the stripe unit and width to FSBs.
307 */
308 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
309 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
310 xfs_warn(mp,
311 "alignment check failed: sunit/swidth vs. agsize(%d)",
312 mp->m_sb.sb_agblocks);
313 return -EINVAL;
314 }
315
316 if (!mp->m_dalign) {
317 xfs_warn(mp,
318 "alignment check failed: sunit(%d) less than bsize(%d)",
319 mp->m_dalign, mp->m_sb.sb_blocksize);
320 return -EINVAL;
321 }
322
323 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
324
325 if (!xfs_has_dalign(mp)) {
326 xfs_warn(mp,
327"cannot change alignment: superblock does not support data alignment");
328 return -EINVAL;
329 }
330
331 return 0;
332}
333
334/* Update alignment values based on mount options and sb values. */
335STATIC int
336xfs_update_alignment(
337 struct xfs_mount *mp)
338{
339 struct xfs_sb *sbp = &mp->m_sb;
340
341 if (mp->m_dalign) {
342 bool update_sb;
343 int error;
344
345 if (sbp->sb_unit == mp->m_dalign &&
346 sbp->sb_width == mp->m_swidth)
347 return 0;
348
349 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
350 if (error || !update_sb)
351 return error;
352
353 sbp->sb_unit = mp->m_dalign;
354 sbp->sb_width = mp->m_swidth;
355 mp->m_update_sb = true;
356 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
357 mp->m_dalign = sbp->sb_unit;
358 mp->m_swidth = sbp->sb_width;
359 }
360
361 return 0;
362}
363
364/*
365 * precalculate the low space thresholds for dynamic speculative preallocation.
366 */
367void
368xfs_set_low_space_thresholds(
369 struct xfs_mount *mp)
370{
371 uint64_t dblocks = mp->m_sb.sb_dblocks;
372 uint64_t rtexts = mp->m_sb.sb_rextents;
373 int i;
374
375 do_div(dblocks, 100);
376 do_div(rtexts, 100);
377
378 for (i = 0; i < XFS_LOWSP_MAX; i++) {
379 mp->m_low_space[i] = dblocks * (i + 1);
380 mp->m_low_rtexts[i] = rtexts * (i + 1);
381 }
382}
383
384/*
385 * Check that the data (and log if separate) is an ok size.
386 */
387STATIC int
388xfs_check_sizes(
389 struct xfs_mount *mp)
390{
391 struct xfs_buf *bp;
392 xfs_daddr_t d;
393 int error;
394
395 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
396 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
397 xfs_warn(mp, "filesystem size mismatch detected");
398 return -EFBIG;
399 }
400 error = xfs_buf_read_uncached(mp->m_ddev_targp,
401 d - XFS_FSS_TO_BB(mp, 1),
402 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
403 if (error) {
404 xfs_warn(mp, "last sector read failed");
405 return error;
406 }
407 xfs_buf_relse(bp);
408
409 if (mp->m_logdev_targp == mp->m_ddev_targp)
410 return 0;
411
412 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
413 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
414 xfs_warn(mp, "log size mismatch detected");
415 return -EFBIG;
416 }
417 error = xfs_buf_read_uncached(mp->m_logdev_targp,
418 d - XFS_FSB_TO_BB(mp, 1),
419 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
420 if (error) {
421 xfs_warn(mp, "log device read failed");
422 return error;
423 }
424 xfs_buf_relse(bp);
425 return 0;
426}
427
428/*
429 * Clear the quotaflags in memory and in the superblock.
430 */
431int
432xfs_mount_reset_sbqflags(
433 struct xfs_mount *mp)
434{
435 mp->m_qflags = 0;
436
437 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
438 if (mp->m_sb.sb_qflags == 0)
439 return 0;
440 spin_lock(&mp->m_sb_lock);
441 mp->m_sb.sb_qflags = 0;
442 spin_unlock(&mp->m_sb_lock);
443
444 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
445 return 0;
446
447 return xfs_sync_sb(mp, false);
448}
449
450uint64_t
451xfs_default_resblks(xfs_mount_t *mp)
452{
453 uint64_t resblks;
454
455 /*
456 * We default to 5% or 8192 fsbs of space reserved, whichever is
457 * smaller. This is intended to cover concurrent allocation
458 * transactions when we initially hit enospc. These each require a 4
459 * block reservation. Hence by default we cover roughly 2000 concurrent
460 * allocation reservations.
461 */
462 resblks = mp->m_sb.sb_dblocks;
463 do_div(resblks, 20);
464 resblks = min_t(uint64_t, resblks, 8192);
465 return resblks;
466}
467
468/* Ensure the summary counts are correct. */
469STATIC int
470xfs_check_summary_counts(
471 struct xfs_mount *mp)
472{
473 int error = 0;
474
475 /*
476 * The AG0 superblock verifier rejects in-progress filesystems,
477 * so we should never see the flag set this far into mounting.
478 */
479 if (mp->m_sb.sb_inprogress) {
480 xfs_err(mp, "sb_inprogress set after log recovery??");
481 WARN_ON(1);
482 return -EFSCORRUPTED;
483 }
484
485 /*
486 * Now the log is mounted, we know if it was an unclean shutdown or
487 * not. If it was, with the first phase of recovery has completed, we
488 * have consistent AG blocks on disk. We have not recovered EFIs yet,
489 * but they are recovered transactionally in the second recovery phase
490 * later.
491 *
492 * If the log was clean when we mounted, we can check the summary
493 * counters. If any of them are obviously incorrect, we can recompute
494 * them from the AGF headers in the next step.
495 */
496 if (xfs_is_clean(mp) &&
497 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
498 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
499 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
500 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
501
502 /*
503 * We can safely re-initialise incore superblock counters from the
504 * per-ag data. These may not be correct if the filesystem was not
505 * cleanly unmounted, so we waited for recovery to finish before doing
506 * this.
507 *
508 * If the filesystem was cleanly unmounted or the previous check did
509 * not flag anything weird, then we can trust the values in the
510 * superblock to be correct and we don't need to do anything here.
511 * Otherwise, recalculate the summary counters.
512 */
513 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
514 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
515 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
516 if (error)
517 return error;
518 }
519
520 /*
521 * Older kernels misused sb_frextents to reflect both incore
522 * reservations made by running transactions and the actual count of
523 * free rt extents in the ondisk metadata. Transactions committed
524 * during runtime can therefore contain a superblock update that
525 * undercounts the number of free rt extents tracked in the rt bitmap.
526 * A clean unmount record will have the correct frextents value since
527 * there can be no other transactions running at that point.
528 *
529 * If we're mounting the rt volume after recovering the log, recompute
530 * frextents from the rtbitmap file to fix the inconsistency.
531 */
532 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
533 error = xfs_rtalloc_reinit_frextents(mp);
534 if (error)
535 return error;
536 }
537
538 return 0;
539}
540
541static void
542xfs_unmount_check(
543 struct xfs_mount *mp)
544{
545 if (xfs_is_shutdown(mp))
546 return;
547
548 if (percpu_counter_sum(&mp->m_ifree) >
549 percpu_counter_sum(&mp->m_icount)) {
550 xfs_alert(mp, "ifree/icount mismatch at unmount");
551 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
552 }
553}
554
555/*
556 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
557 * internal inode structures can be sitting in the CIL and AIL at this point,
558 * so we need to unpin them, write them back and/or reclaim them before unmount
559 * can proceed. In other words, callers are required to have inactivated all
560 * inodes.
561 *
562 * An inode cluster that has been freed can have its buffer still pinned in
563 * memory because the transaction is still sitting in a iclog. The stale inodes
564 * on that buffer will be pinned to the buffer until the transaction hits the
565 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
566 * may never see the pinned buffer, so nothing will push out the iclog and
567 * unpin the buffer.
568 *
569 * Hence we need to force the log to unpin everything first. However, log
570 * forces don't wait for the discards they issue to complete, so we have to
571 * explicitly wait for them to complete here as well.
572 *
573 * Then we can tell the world we are unmounting so that error handling knows
574 * that the filesystem is going away and we should error out anything that we
575 * have been retrying in the background. This will prevent never-ending
576 * retries in AIL pushing from hanging the unmount.
577 *
578 * Finally, we can push the AIL to clean all the remaining dirty objects, then
579 * reclaim the remaining inodes that are still in memory at this point in time.
580 */
581static void
582xfs_unmount_flush_inodes(
583 struct xfs_mount *mp)
584{
585 xfs_log_force(mp, XFS_LOG_SYNC);
586 xfs_extent_busy_wait_all(mp);
587 flush_workqueue(xfs_discard_wq);
588
589 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
590
591 xfs_ail_push_all_sync(mp->m_ail);
592 xfs_inodegc_stop(mp);
593 cancel_delayed_work_sync(&mp->m_reclaim_work);
594 xfs_reclaim_inodes(mp);
595 xfs_health_unmount(mp);
596}
597
598static void
599xfs_mount_setup_inode_geom(
600 struct xfs_mount *mp)
601{
602 struct xfs_ino_geometry *igeo = M_IGEO(mp);
603
604 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
605 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
606
607 xfs_ialloc_setup_geometry(mp);
608}
609
610/* Compute maximum possible height for per-AG btree types for this fs. */
611static inline void
612xfs_agbtree_compute_maxlevels(
613 struct xfs_mount *mp)
614{
615 unsigned int levels;
616
617 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
618 levels = max(levels, mp->m_rmap_maxlevels);
619 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
620}
621
622/*
623 * This function does the following on an initial mount of a file system:
624 * - reads the superblock from disk and init the mount struct
625 * - if we're a 32-bit kernel, do a size check on the superblock
626 * so we don't mount terabyte filesystems
627 * - init mount struct realtime fields
628 * - allocate inode hash table for fs
629 * - init directory manager
630 * - perform recovery and init the log manager
631 */
632int
633xfs_mountfs(
634 struct xfs_mount *mp)
635{
636 struct xfs_sb *sbp = &(mp->m_sb);
637 struct xfs_inode *rip;
638 struct xfs_ino_geometry *igeo = M_IGEO(mp);
639 uint64_t resblks;
640 uint quotamount = 0;
641 uint quotaflags = 0;
642 int error = 0;
643
644 xfs_sb_mount_common(mp, sbp);
645
646 /*
647 * Check for a mismatched features2 values. Older kernels read & wrote
648 * into the wrong sb offset for sb_features2 on some platforms due to
649 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
650 * which made older superblock reading/writing routines swap it as a
651 * 64-bit value.
652 *
653 * For backwards compatibility, we make both slots equal.
654 *
655 * If we detect a mismatched field, we OR the set bits into the existing
656 * features2 field in case it has already been modified; we don't want
657 * to lose any features. We then update the bad location with the ORed
658 * value so that older kernels will see any features2 flags. The
659 * superblock writeback code ensures the new sb_features2 is copied to
660 * sb_bad_features2 before it is logged or written to disk.
661 */
662 if (xfs_sb_has_mismatched_features2(sbp)) {
663 xfs_warn(mp, "correcting sb_features alignment problem");
664 sbp->sb_features2 |= sbp->sb_bad_features2;
665 mp->m_update_sb = true;
666 }
667
668
669 /* always use v2 inodes by default now */
670 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
671 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
672 mp->m_features |= XFS_FEAT_NLINK;
673 mp->m_update_sb = true;
674 }
675
676 /*
677 * If we were given new sunit/swidth options, do some basic validation
678 * checks and convert the incore dalign and swidth values to the
679 * same units (FSB) that everything else uses. This /must/ happen
680 * before computing the inode geometry.
681 */
682 error = xfs_validate_new_dalign(mp);
683 if (error)
684 goto out;
685
686 xfs_alloc_compute_maxlevels(mp);
687 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
688 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
689 xfs_mount_setup_inode_geom(mp);
690 xfs_rmapbt_compute_maxlevels(mp);
691 xfs_refcountbt_compute_maxlevels(mp);
692
693 xfs_agbtree_compute_maxlevels(mp);
694
695 /*
696 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
697 * is NOT aligned turn off m_dalign since allocator alignment is within
698 * an ag, therefore ag has to be aligned at stripe boundary. Note that
699 * we must compute the free space and rmap btree geometry before doing
700 * this.
701 */
702 error = xfs_update_alignment(mp);
703 if (error)
704 goto out;
705
706 /* enable fail_at_unmount as default */
707 mp->m_fail_unmount = true;
708
709 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
710 NULL, mp->m_super->s_id);
711 if (error)
712 goto out;
713
714 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
715 &mp->m_kobj, "stats");
716 if (error)
717 goto out_remove_sysfs;
718
719 error = xfs_error_sysfs_init(mp);
720 if (error)
721 goto out_del_stats;
722
723 error = xfs_errortag_init(mp);
724 if (error)
725 goto out_remove_error_sysfs;
726
727 error = xfs_uuid_mount(mp);
728 if (error)
729 goto out_remove_errortag;
730
731 /*
732 * Update the preferred write size based on the information from the
733 * on-disk superblock.
734 */
735 mp->m_allocsize_log =
736 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
737 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
738
739 /* set the low space thresholds for dynamic preallocation */
740 xfs_set_low_space_thresholds(mp);
741
742 /*
743 * If enabled, sparse inode chunk alignment is expected to match the
744 * cluster size. Full inode chunk alignment must match the chunk size,
745 * but that is checked on sb read verification...
746 */
747 if (xfs_has_sparseinodes(mp) &&
748 mp->m_sb.sb_spino_align !=
749 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
750 xfs_warn(mp,
751 "Sparse inode block alignment (%u) must match cluster size (%llu).",
752 mp->m_sb.sb_spino_align,
753 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
754 error = -EINVAL;
755 goto out_remove_uuid;
756 }
757
758 /*
759 * Check that the data (and log if separate) is an ok size.
760 */
761 error = xfs_check_sizes(mp);
762 if (error)
763 goto out_remove_uuid;
764
765 /*
766 * Initialize realtime fields in the mount structure
767 */
768 error = xfs_rtmount_init(mp);
769 if (error) {
770 xfs_warn(mp, "RT mount failed");
771 goto out_remove_uuid;
772 }
773
774 /*
775 * Copies the low order bits of the timestamp and the randomly
776 * set "sequence" number out of a UUID.
777 */
778 mp->m_fixedfsid[0] =
779 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
780 get_unaligned_be16(&sbp->sb_uuid.b[4]);
781 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
782
783 error = xfs_da_mount(mp);
784 if (error) {
785 xfs_warn(mp, "Failed dir/attr init: %d", error);
786 goto out_remove_uuid;
787 }
788
789 /*
790 * Initialize the precomputed transaction reservations values.
791 */
792 xfs_trans_init(mp);
793
794 /*
795 * Allocate and initialize the per-ag data.
796 */
797 error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
798 &mp->m_maxagi);
799 if (error) {
800 xfs_warn(mp, "Failed per-ag init: %d", error);
801 goto out_free_dir;
802 }
803
804 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
805 xfs_warn(mp, "no log defined");
806 error = -EFSCORRUPTED;
807 goto out_free_perag;
808 }
809
810 error = xfs_inodegc_register_shrinker(mp);
811 if (error)
812 goto out_fail_wait;
813
814 /*
815 * Log's mount-time initialization. The first part of recovery can place
816 * some items on the AIL, to be handled when recovery is finished or
817 * cancelled.
818 */
819 error = xfs_log_mount(mp, mp->m_logdev_targp,
820 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
821 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
822 if (error) {
823 xfs_warn(mp, "log mount failed");
824 goto out_inodegc_shrinker;
825 }
826
827 /* Enable background inode inactivation workers. */
828 xfs_inodegc_start(mp);
829 xfs_blockgc_start(mp);
830
831 /*
832 * Now that we've recovered any pending superblock feature bit
833 * additions, we can finish setting up the attr2 behaviour for the
834 * mount. The noattr2 option overrides the superblock flag, so only
835 * check the superblock feature flag if the mount option is not set.
836 */
837 if (xfs_has_noattr2(mp)) {
838 mp->m_features &= ~XFS_FEAT_ATTR2;
839 } else if (!xfs_has_attr2(mp) &&
840 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
841 mp->m_features |= XFS_FEAT_ATTR2;
842 }
843
844 /*
845 * Get and sanity-check the root inode.
846 * Save the pointer to it in the mount structure.
847 */
848 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
849 XFS_ILOCK_EXCL, &rip);
850 if (error) {
851 xfs_warn(mp,
852 "Failed to read root inode 0x%llx, error %d",
853 sbp->sb_rootino, -error);
854 goto out_log_dealloc;
855 }
856
857 ASSERT(rip != NULL);
858
859 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
860 xfs_warn(mp, "corrupted root inode %llu: not a directory",
861 (unsigned long long)rip->i_ino);
862 xfs_iunlock(rip, XFS_ILOCK_EXCL);
863 error = -EFSCORRUPTED;
864 goto out_rele_rip;
865 }
866 mp->m_rootip = rip; /* save it */
867
868 xfs_iunlock(rip, XFS_ILOCK_EXCL);
869
870 /*
871 * Initialize realtime inode pointers in the mount structure
872 */
873 error = xfs_rtmount_inodes(mp);
874 if (error) {
875 /*
876 * Free up the root inode.
877 */
878 xfs_warn(mp, "failed to read RT inodes");
879 goto out_rele_rip;
880 }
881
882 /* Make sure the summary counts are ok. */
883 error = xfs_check_summary_counts(mp);
884 if (error)
885 goto out_rtunmount;
886
887 /*
888 * If this is a read-only mount defer the superblock updates until
889 * the next remount into writeable mode. Otherwise we would never
890 * perform the update e.g. for the root filesystem.
891 */
892 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
893 error = xfs_sync_sb(mp, false);
894 if (error) {
895 xfs_warn(mp, "failed to write sb changes");
896 goto out_rtunmount;
897 }
898 }
899
900 /*
901 * Initialise the XFS quota management subsystem for this mount
902 */
903 if (XFS_IS_QUOTA_ON(mp)) {
904 error = xfs_qm_newmount(mp, "amount, "aflags);
905 if (error)
906 goto out_rtunmount;
907 } else {
908 /*
909 * If a file system had quotas running earlier, but decided to
910 * mount without -o uquota/pquota/gquota options, revoke the
911 * quotachecked license.
912 */
913 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
914 xfs_notice(mp, "resetting quota flags");
915 error = xfs_mount_reset_sbqflags(mp);
916 if (error)
917 goto out_rtunmount;
918 }
919 }
920
921 /*
922 * Finish recovering the file system. This part needed to be delayed
923 * until after the root and real-time bitmap inodes were consistently
924 * read in. Temporarily create per-AG space reservations for metadata
925 * btree shape changes because space freeing transactions (for inode
926 * inactivation) require the per-AG reservation in lieu of reserving
927 * blocks.
928 */
929 error = xfs_fs_reserve_ag_blocks(mp);
930 if (error && error == -ENOSPC)
931 xfs_warn(mp,
932 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
933 error = xfs_log_mount_finish(mp);
934 xfs_fs_unreserve_ag_blocks(mp);
935 if (error) {
936 xfs_warn(mp, "log mount finish failed");
937 goto out_rtunmount;
938 }
939
940 /*
941 * Now the log is fully replayed, we can transition to full read-only
942 * mode for read-only mounts. This will sync all the metadata and clean
943 * the log so that the recovery we just performed does not have to be
944 * replayed again on the next mount.
945 *
946 * We use the same quiesce mechanism as the rw->ro remount, as they are
947 * semantically identical operations.
948 */
949 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
950 xfs_log_clean(mp);
951
952 /*
953 * Complete the quota initialisation, post-log-replay component.
954 */
955 if (quotamount) {
956 ASSERT(mp->m_qflags == 0);
957 mp->m_qflags = quotaflags;
958
959 xfs_qm_mount_quotas(mp);
960 }
961
962 /*
963 * Now we are mounted, reserve a small amount of unused space for
964 * privileged transactions. This is needed so that transaction
965 * space required for critical operations can dip into this pool
966 * when at ENOSPC. This is needed for operations like create with
967 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
968 * are not allowed to use this reserved space.
969 *
970 * This may drive us straight to ENOSPC on mount, but that implies
971 * we were already there on the last unmount. Warn if this occurs.
972 */
973 if (!xfs_is_readonly(mp)) {
974 resblks = xfs_default_resblks(mp);
975 error = xfs_reserve_blocks(mp, &resblks, NULL);
976 if (error)
977 xfs_warn(mp,
978 "Unable to allocate reserve blocks. Continuing without reserve pool.");
979
980 /* Reserve AG blocks for future btree expansion. */
981 error = xfs_fs_reserve_ag_blocks(mp);
982 if (error && error != -ENOSPC)
983 goto out_agresv;
984 }
985
986 return 0;
987
988 out_agresv:
989 xfs_fs_unreserve_ag_blocks(mp);
990 xfs_qm_unmount_quotas(mp);
991 out_rtunmount:
992 xfs_rtunmount_inodes(mp);
993 out_rele_rip:
994 xfs_irele(rip);
995 /* Clean out dquots that might be in memory after quotacheck. */
996 xfs_qm_unmount(mp);
997
998 /*
999 * Inactivate all inodes that might still be in memory after a log
1000 * intent recovery failure so that reclaim can free them. Metadata
1001 * inodes and the root directory shouldn't need inactivation, but the
1002 * mount failed for some reason, so pull down all the state and flee.
1003 */
1004 xfs_inodegc_flush(mp);
1005
1006 /*
1007 * Flush all inode reclamation work and flush the log.
1008 * We have to do this /after/ rtunmount and qm_unmount because those
1009 * two will have scheduled delayed reclaim for the rt/quota inodes.
1010 *
1011 * This is slightly different from the unmountfs call sequence
1012 * because we could be tearing down a partially set up mount. In
1013 * particular, if log_mount_finish fails we bail out without calling
1014 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1015 * quota inodes.
1016 */
1017 xfs_unmount_flush_inodes(mp);
1018 out_log_dealloc:
1019 xfs_log_mount_cancel(mp);
1020 out_inodegc_shrinker:
1021 unregister_shrinker(&mp->m_inodegc_shrinker);
1022 out_fail_wait:
1023 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1024 xfs_buftarg_drain(mp->m_logdev_targp);
1025 xfs_buftarg_drain(mp->m_ddev_targp);
1026 out_free_perag:
1027 xfs_free_perag(mp);
1028 out_free_dir:
1029 xfs_da_unmount(mp);
1030 out_remove_uuid:
1031 xfs_uuid_unmount(mp);
1032 out_remove_errortag:
1033 xfs_errortag_del(mp);
1034 out_remove_error_sysfs:
1035 xfs_error_sysfs_del(mp);
1036 out_del_stats:
1037 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1038 out_remove_sysfs:
1039 xfs_sysfs_del(&mp->m_kobj);
1040 out:
1041 return error;
1042}
1043
1044/*
1045 * This flushes out the inodes,dquots and the superblock, unmounts the
1046 * log and makes sure that incore structures are freed.
1047 */
1048void
1049xfs_unmountfs(
1050 struct xfs_mount *mp)
1051{
1052 uint64_t resblks;
1053 int error;
1054
1055 /*
1056 * Perform all on-disk metadata updates required to inactivate inodes
1057 * that the VFS evicted earlier in the unmount process. Freeing inodes
1058 * and discarding CoW fork preallocations can cause shape changes to
1059 * the free inode and refcount btrees, respectively, so we must finish
1060 * this before we discard the metadata space reservations. Metadata
1061 * inodes and the root directory do not require inactivation.
1062 */
1063 xfs_inodegc_flush(mp);
1064
1065 xfs_blockgc_stop(mp);
1066 xfs_fs_unreserve_ag_blocks(mp);
1067 xfs_qm_unmount_quotas(mp);
1068 xfs_rtunmount_inodes(mp);
1069 xfs_irele(mp->m_rootip);
1070
1071 xfs_unmount_flush_inodes(mp);
1072
1073 xfs_qm_unmount(mp);
1074
1075 /*
1076 * Unreserve any blocks we have so that when we unmount we don't account
1077 * the reserved free space as used. This is really only necessary for
1078 * lazy superblock counting because it trusts the incore superblock
1079 * counters to be absolutely correct on clean unmount.
1080 *
1081 * We don't bother correcting this elsewhere for lazy superblock
1082 * counting because on mount of an unclean filesystem we reconstruct the
1083 * correct counter value and this is irrelevant.
1084 *
1085 * For non-lazy counter filesystems, this doesn't matter at all because
1086 * we only every apply deltas to the superblock and hence the incore
1087 * value does not matter....
1088 */
1089 resblks = 0;
1090 error = xfs_reserve_blocks(mp, &resblks, NULL);
1091 if (error)
1092 xfs_warn(mp, "Unable to free reserved block pool. "
1093 "Freespace may not be correct on next mount.");
1094 xfs_unmount_check(mp);
1095
1096 xfs_log_unmount(mp);
1097 xfs_da_unmount(mp);
1098 xfs_uuid_unmount(mp);
1099
1100#if defined(DEBUG)
1101 xfs_errortag_clearall(mp);
1102#endif
1103 unregister_shrinker(&mp->m_inodegc_shrinker);
1104 xfs_free_perag(mp);
1105
1106 xfs_errortag_del(mp);
1107 xfs_error_sysfs_del(mp);
1108 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1109 xfs_sysfs_del(&mp->m_kobj);
1110}
1111
1112/*
1113 * Determine whether modifications can proceed. The caller specifies the minimum
1114 * freeze level for which modifications should not be allowed. This allows
1115 * certain operations to proceed while the freeze sequence is in progress, if
1116 * necessary.
1117 */
1118bool
1119xfs_fs_writable(
1120 struct xfs_mount *mp,
1121 int level)
1122{
1123 ASSERT(level > SB_UNFROZEN);
1124 if ((mp->m_super->s_writers.frozen >= level) ||
1125 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1126 return false;
1127
1128 return true;
1129}
1130
1131/* Adjust m_fdblocks or m_frextents. */
1132int
1133xfs_mod_freecounter(
1134 struct xfs_mount *mp,
1135 struct percpu_counter *counter,
1136 int64_t delta,
1137 bool rsvd)
1138{
1139 int64_t lcounter;
1140 long long res_used;
1141 uint64_t set_aside = 0;
1142 s32 batch;
1143 bool has_resv_pool;
1144
1145 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1146 has_resv_pool = (counter == &mp->m_fdblocks);
1147 if (rsvd)
1148 ASSERT(has_resv_pool);
1149
1150 if (delta > 0) {
1151 /*
1152 * If the reserve pool is depleted, put blocks back into it
1153 * first. Most of the time the pool is full.
1154 */
1155 if (likely(!has_resv_pool ||
1156 mp->m_resblks == mp->m_resblks_avail)) {
1157 percpu_counter_add(counter, delta);
1158 return 0;
1159 }
1160
1161 spin_lock(&mp->m_sb_lock);
1162 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1163
1164 if (res_used > delta) {
1165 mp->m_resblks_avail += delta;
1166 } else {
1167 delta -= res_used;
1168 mp->m_resblks_avail = mp->m_resblks;
1169 percpu_counter_add(counter, delta);
1170 }
1171 spin_unlock(&mp->m_sb_lock);
1172 return 0;
1173 }
1174
1175 /*
1176 * Taking blocks away, need to be more accurate the closer we
1177 * are to zero.
1178 *
1179 * If the counter has a value of less than 2 * max batch size,
1180 * then make everything serialise as we are real close to
1181 * ENOSPC.
1182 */
1183 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1184 XFS_FDBLOCKS_BATCH) < 0)
1185 batch = 1;
1186 else
1187 batch = XFS_FDBLOCKS_BATCH;
1188
1189 /*
1190 * Set aside allocbt blocks because these blocks are tracked as free
1191 * space but not available for allocation. Technically this means that a
1192 * single reservation cannot consume all remaining free space, but the
1193 * ratio of allocbt blocks to usable free blocks should be rather small.
1194 * The tradeoff without this is that filesystems that maintain high
1195 * perag block reservations can over reserve physical block availability
1196 * and fail physical allocation, which leads to much more serious
1197 * problems (i.e. transaction abort, pagecache discards, etc.) than
1198 * slightly premature -ENOSPC.
1199 */
1200 if (has_resv_pool)
1201 set_aside = xfs_fdblocks_unavailable(mp);
1202 percpu_counter_add_batch(counter, delta, batch);
1203 if (__percpu_counter_compare(counter, set_aside,
1204 XFS_FDBLOCKS_BATCH) >= 0) {
1205 /* we had space! */
1206 return 0;
1207 }
1208
1209 /*
1210 * lock up the sb for dipping into reserves before releasing the space
1211 * that took us to ENOSPC.
1212 */
1213 spin_lock(&mp->m_sb_lock);
1214 percpu_counter_add(counter, -delta);
1215 if (!has_resv_pool || !rsvd)
1216 goto fdblocks_enospc;
1217
1218 lcounter = (long long)mp->m_resblks_avail + delta;
1219 if (lcounter >= 0) {
1220 mp->m_resblks_avail = lcounter;
1221 spin_unlock(&mp->m_sb_lock);
1222 return 0;
1223 }
1224 xfs_warn_once(mp,
1225"Reserve blocks depleted! Consider increasing reserve pool size.");
1226
1227fdblocks_enospc:
1228 spin_unlock(&mp->m_sb_lock);
1229 return -ENOSPC;
1230}
1231
1232/*
1233 * Used to free the superblock along various error paths.
1234 */
1235void
1236xfs_freesb(
1237 struct xfs_mount *mp)
1238{
1239 struct xfs_buf *bp = mp->m_sb_bp;
1240
1241 xfs_buf_lock(bp);
1242 mp->m_sb_bp = NULL;
1243 xfs_buf_relse(bp);
1244}
1245
1246/*
1247 * If the underlying (data/log/rt) device is readonly, there are some
1248 * operations that cannot proceed.
1249 */
1250int
1251xfs_dev_is_read_only(
1252 struct xfs_mount *mp,
1253 char *message)
1254{
1255 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1256 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1257 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1258 xfs_notice(mp, "%s required on read-only device.", message);
1259 xfs_notice(mp, "write access unavailable, cannot proceed.");
1260 return -EROFS;
1261 }
1262 return 0;
1263}
1264
1265/* Force the summary counters to be recalculated at next mount. */
1266void
1267xfs_force_summary_recalc(
1268 struct xfs_mount *mp)
1269{
1270 if (!xfs_has_lazysbcount(mp))
1271 return;
1272
1273 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1274}
1275
1276/*
1277 * Enable a log incompat feature flag in the primary superblock. The caller
1278 * cannot have any other transactions in progress.
1279 */
1280int
1281xfs_add_incompat_log_feature(
1282 struct xfs_mount *mp,
1283 uint32_t feature)
1284{
1285 struct xfs_dsb *dsb;
1286 int error;
1287
1288 ASSERT(hweight32(feature) == 1);
1289 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1290
1291 /*
1292 * Force the log to disk and kick the background AIL thread to reduce
1293 * the chances that the bwrite will stall waiting for the AIL to unpin
1294 * the primary superblock buffer. This isn't a data integrity
1295 * operation, so we don't need a synchronous push.
1296 */
1297 error = xfs_log_force(mp, XFS_LOG_SYNC);
1298 if (error)
1299 return error;
1300 xfs_ail_push_all(mp->m_ail);
1301
1302 /*
1303 * Lock the primary superblock buffer to serialize all callers that
1304 * are trying to set feature bits.
1305 */
1306 xfs_buf_lock(mp->m_sb_bp);
1307 xfs_buf_hold(mp->m_sb_bp);
1308
1309 if (xfs_is_shutdown(mp)) {
1310 error = -EIO;
1311 goto rele;
1312 }
1313
1314 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1315 goto rele;
1316
1317 /*
1318 * Write the primary superblock to disk immediately, because we need
1319 * the log_incompat bit to be set in the primary super now to protect
1320 * the log items that we're going to commit later.
1321 */
1322 dsb = mp->m_sb_bp->b_addr;
1323 xfs_sb_to_disk(dsb, &mp->m_sb);
1324 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1325 error = xfs_bwrite(mp->m_sb_bp);
1326 if (error)
1327 goto shutdown;
1328
1329 /*
1330 * Add the feature bits to the incore superblock before we unlock the
1331 * buffer.
1332 */
1333 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1334 xfs_buf_relse(mp->m_sb_bp);
1335
1336 /* Log the superblock to disk. */
1337 return xfs_sync_sb(mp, false);
1338shutdown:
1339 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1340rele:
1341 xfs_buf_relse(mp->m_sb_bp);
1342 return error;
1343}
1344
1345/*
1346 * Clear all the log incompat flags from the superblock.
1347 *
1348 * The caller cannot be in a transaction, must ensure that the log does not
1349 * contain any log items protected by any log incompat bit, and must ensure
1350 * that there are no other threads that depend on the state of the log incompat
1351 * feature flags in the primary super.
1352 *
1353 * Returns true if the superblock is dirty.
1354 */
1355bool
1356xfs_clear_incompat_log_features(
1357 struct xfs_mount *mp)
1358{
1359 bool ret = false;
1360
1361 if (!xfs_has_crc(mp) ||
1362 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1363 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1364 xfs_is_shutdown(mp))
1365 return false;
1366
1367 /*
1368 * Update the incore superblock. We synchronize on the primary super
1369 * buffer lock to be consistent with the add function, though at least
1370 * in theory this shouldn't be necessary.
1371 */
1372 xfs_buf_lock(mp->m_sb_bp);
1373 xfs_buf_hold(mp->m_sb_bp);
1374
1375 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1376 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1377 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1378 ret = true;
1379 }
1380
1381 xfs_buf_relse(mp->m_sb_bp);
1382 return ret;
1383}
1384
1385/*
1386 * Update the in-core delayed block counter.
1387 *
1388 * We prefer to update the counter without having to take a spinlock for every
1389 * counter update (i.e. batching). Each change to delayed allocation
1390 * reservations can change can easily exceed the default percpu counter
1391 * batching, so we use a larger batch factor here.
1392 *
1393 * Note that we don't currently have any callers requiring fast summation
1394 * (e.g. percpu_counter_read) so we can use a big batch value here.
1395 */
1396#define XFS_DELALLOC_BATCH (4096)
1397void
1398xfs_mod_delalloc(
1399 struct xfs_mount *mp,
1400 int64_t delta)
1401{
1402 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1403 XFS_DELALLOC_BATCH);
1404}