Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
 
  25#include "xfs_inum.h"
 
 
  26#include "xfs_sb.h"
  27#include "xfs_ag.h"
 
  28#include "xfs_mount.h"
  29#include "xfs_da_format.h"
 
 
 
  30#include "xfs_inode.h"
  31#include "xfs_dir2.h"
  32#include "xfs_ialloc.h"
  33#include "xfs_alloc.h"
  34#include "xfs_rtalloc.h"
  35#include "xfs_bmap.h"
  36#include "xfs_trans.h"
  37#include "xfs_trans_priv.h"
  38#include "xfs_log.h"
  39#include "xfs_error.h"
  40#include "xfs_quota.h"
  41#include "xfs_fsops.h"
 
  42#include "xfs_trace.h"
  43#include "xfs_icache.h"
  44#include "xfs_dinode.h"
  45
  46
  47#ifdef HAVE_PERCPU_SB
  48STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
  49						int);
  50STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
  51						int);
  52STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
  53#else
  54
  55#define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
  56#define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
  57#endif
  58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59static DEFINE_MUTEX(xfs_uuid_table_mutex);
  60static int xfs_uuid_table_size;
  61static uuid_t *xfs_uuid_table;
  62
  63/*
  64 * See if the UUID is unique among mounted XFS filesystems.
  65 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  66 */
  67STATIC int
  68xfs_uuid_mount(
  69	struct xfs_mount	*mp)
  70{
  71	uuid_t			*uuid = &mp->m_sb.sb_uuid;
  72	int			hole, i;
  73
  74	if (mp->m_flags & XFS_MOUNT_NOUUID)
  75		return 0;
  76
  77	if (uuid_is_nil(uuid)) {
  78		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
  79		return XFS_ERROR(EINVAL);
  80	}
  81
  82	mutex_lock(&xfs_uuid_table_mutex);
  83	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  84		if (uuid_is_nil(&xfs_uuid_table[i])) {
  85			hole = i;
  86			continue;
  87		}
  88		if (uuid_equal(uuid, &xfs_uuid_table[i]))
  89			goto out_duplicate;
  90	}
  91
  92	if (hole < 0) {
  93		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
  94			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
  95			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
  96			KM_SLEEP);
  97		hole = xfs_uuid_table_size++;
  98	}
  99	xfs_uuid_table[hole] = *uuid;
 100	mutex_unlock(&xfs_uuid_table_mutex);
 101
 102	return 0;
 103
 104 out_duplicate:
 105	mutex_unlock(&xfs_uuid_table_mutex);
 106	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 107	return XFS_ERROR(EINVAL);
 108}
 109
 110STATIC void
 111xfs_uuid_unmount(
 112	struct xfs_mount	*mp)
 113{
 114	uuid_t			*uuid = &mp->m_sb.sb_uuid;
 115	int			i;
 116
 117	if (mp->m_flags & XFS_MOUNT_NOUUID)
 118		return;
 119
 120	mutex_lock(&xfs_uuid_table_mutex);
 121	for (i = 0; i < xfs_uuid_table_size; i++) {
 122		if (uuid_is_nil(&xfs_uuid_table[i]))
 123			continue;
 124		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 125			continue;
 126		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 127		break;
 128	}
 129	ASSERT(i < xfs_uuid_table_size);
 130	mutex_unlock(&xfs_uuid_table_mutex);
 131}
 132
 133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134STATIC void
 135__xfs_free_perag(
 136	struct rcu_head	*head)
 137{
 138	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 139
 140	ASSERT(atomic_read(&pag->pag_ref) == 0);
 141	kmem_free(pag);
 142}
 143
 144/*
 145 * Free up the per-ag resources associated with the mount structure.
 146 */
 147STATIC void
 148xfs_free_perag(
 149	xfs_mount_t	*mp)
 150{
 151	xfs_agnumber_t	agno;
 152	struct xfs_perag *pag;
 153
 154	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 155		spin_lock(&mp->m_perag_lock);
 156		pag = radix_tree_delete(&mp->m_perag_tree, agno);
 157		spin_unlock(&mp->m_perag_lock);
 158		ASSERT(pag);
 159		ASSERT(atomic_read(&pag->pag_ref) == 0);
 160		call_rcu(&pag->rcu_head, __xfs_free_perag);
 161	}
 162}
 163
 164/*
 165 * Check size of device based on the (data/realtime) block count.
 166 * Note: this check is used by the growfs code as well as mount.
 167 */
 168int
 169xfs_sb_validate_fsb_count(
 170	xfs_sb_t	*sbp,
 171	__uint64_t	nblocks)
 172{
 173	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 174	ASSERT(sbp->sb_blocklog >= BBSHIFT);
 175
 176#if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
 177	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 178		return EFBIG;
 179#else                  /* Limited by UINT_MAX of sectors */
 180	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
 181		return EFBIG;
 182#endif
 183	return 0;
 184}
 185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186int
 187xfs_initialize_perag(
 188	xfs_mount_t	*mp,
 189	xfs_agnumber_t	agcount,
 190	xfs_agnumber_t	*maxagi)
 191{
 192	xfs_agnumber_t	index;
 193	xfs_agnumber_t	first_initialised = 0;
 194	xfs_perag_t	*pag;
 195	xfs_agino_t	agino;
 196	xfs_ino_t	ino;
 197	xfs_sb_t	*sbp = &mp->m_sb;
 198	int		error = -ENOMEM;
 199
 200	/*
 201	 * Walk the current per-ag tree so we don't try to initialise AGs
 202	 * that already exist (growfs case). Allocate and insert all the
 203	 * AGs we don't find ready for initialisation.
 204	 */
 205	for (index = 0; index < agcount; index++) {
 206		pag = xfs_perag_get(mp, index);
 207		if (pag) {
 208			xfs_perag_put(pag);
 209			continue;
 210		}
 211		if (!first_initialised)
 212			first_initialised = index;
 213
 214		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 215		if (!pag)
 216			goto out_unwind;
 217		pag->pag_agno = index;
 218		pag->pag_mount = mp;
 219		spin_lock_init(&pag->pag_ici_lock);
 220		mutex_init(&pag->pag_ici_reclaim_lock);
 221		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 222		spin_lock_init(&pag->pag_buf_lock);
 223		pag->pag_buf_tree = RB_ROOT;
 224
 225		if (radix_tree_preload(GFP_NOFS))
 226			goto out_unwind;
 227
 228		spin_lock(&mp->m_perag_lock);
 229		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 230			BUG();
 231			spin_unlock(&mp->m_perag_lock);
 232			radix_tree_preload_end();
 233			error = -EEXIST;
 234			goto out_unwind;
 235		}
 236		spin_unlock(&mp->m_perag_lock);
 237		radix_tree_preload_end();
 238	}
 239
 240	/*
 241	 * If we mount with the inode64 option, or no inode overflows
 242	 * the legacy 32-bit address space clear the inode32 option.
 243	 */
 244	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
 245	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
 246
 247	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
 248		mp->m_flags |= XFS_MOUNT_32BITINODES;
 249	else
 250		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
 251
 252	if (mp->m_flags & XFS_MOUNT_32BITINODES)
 253		index = xfs_set_inode32(mp);
 254	else
 255		index = xfs_set_inode64(mp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 256
 257	if (maxagi)
 258		*maxagi = index;
 259	return 0;
 260
 261out_unwind:
 262	kmem_free(pag);
 263	for (; index > first_initialised; index--) {
 264		pag = radix_tree_delete(&mp->m_perag_tree, index);
 265		kmem_free(pag);
 266	}
 267	return error;
 268}
 269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270/*
 271 * xfs_readsb
 272 *
 273 * Does the initial read of the superblock.
 274 */
 275int
 276xfs_readsb(
 277	struct xfs_mount *mp,
 278	int		flags)
 279{
 280	unsigned int	sector_size;
 281	struct xfs_buf	*bp;
 282	struct xfs_sb	*sbp = &mp->m_sb;
 283	int		error;
 284	int		loud = !(flags & XFS_MFSI_QUIET);
 285	const struct xfs_buf_ops *buf_ops;
 286
 287	ASSERT(mp->m_sb_bp == NULL);
 288	ASSERT(mp->m_ddev_targp != NULL);
 289
 290	/*
 291	 * For the initial read, we must guess at the sector
 292	 * size based on the block device.  It's enough to
 293	 * get the sb_sectsize out of the superblock and
 294	 * then reread with the proper length.
 295	 * We don't verify it yet, because it may not be complete.
 296	 */
 297	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 298	buf_ops = NULL;
 299
 300	/*
 301	 * Allocate a (locked) buffer to hold the superblock.
 302	 * This will be kept around at all times to optimize
 303	 * access to the superblock.
 304	 */
 
 
 305reread:
 306	bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 307				   BTOBB(sector_size), 0, buf_ops);
 308	if (!bp) {
 309		if (loud)
 310			xfs_warn(mp, "SB buffer read failed");
 311		return EIO;
 312	}
 313	if (bp->b_error) {
 314		error = bp->b_error;
 315		if (loud)
 316			xfs_warn(mp, "SB validate failed with error %d.", error);
 317		/* bad CRC means corrupted metadata */
 318		if (error == EFSBADCRC)
 319			error = EFSCORRUPTED;
 320		goto release_buf;
 321	}
 322
 323	/*
 324	 * Initialize the mount structure from the superblock.
 
 325	 */
 326	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
 327	xfs_sb_quota_from_disk(&mp->m_sb);
 
 
 
 
 
 328
 329	/*
 330	 * We must be able to do sector-sized and sector-aligned IO.
 331	 */
 332	if (sector_size > sbp->sb_sectsize) {
 333		if (loud)
 334			xfs_warn(mp, "device supports %u byte sectors (not %u)",
 335				sector_size, sbp->sb_sectsize);
 336		error = ENOSYS;
 337		goto release_buf;
 338	}
 339
 340	/*
 341	 * Re-read the superblock so the buffer is correctly sized,
 342	 * and properly verified.
 343	 */
 344	if (buf_ops == NULL) {
 345		xfs_buf_relse(bp);
 346		sector_size = sbp->sb_sectsize;
 347		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 348		goto reread;
 349	}
 350
 351	/* Initialize per-cpu counters */
 352	xfs_icsb_reinit_counters(mp);
 353
 354	/* no need to be quiet anymore, so reset the buf ops */
 355	bp->b_ops = &xfs_sb_buf_ops;
 356
 357	mp->m_sb_bp = bp;
 358	xfs_buf_unlock(bp);
 359	return 0;
 360
 361release_buf:
 362	xfs_buf_relse(bp);
 363	return error;
 364}
 365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366/*
 367 * Update alignment values based on mount options and sb values
 368 */
 369STATIC int
 370xfs_update_alignment(xfs_mount_t *mp)
 371{
 372	xfs_sb_t	*sbp = &(mp->m_sb);
 373
 374	if (mp->m_dalign) {
 375		/*
 376		 * If stripe unit and stripe width are not multiples
 377		 * of the fs blocksize turn off alignment.
 378		 */
 379		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 380		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 381			xfs_warn(mp,
 382		"alignment check failed: sunit/swidth vs. blocksize(%d)",
 383				sbp->sb_blocksize);
 384			return XFS_ERROR(EINVAL);
 
 
 385		} else {
 386			/*
 387			 * Convert the stripe unit and width to FSBs.
 388			 */
 389			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 390			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 
 
 
 
 
 391				xfs_warn(mp,
 392			"alignment check failed: sunit/swidth vs. agsize(%d)",
 393					 sbp->sb_agblocks);
 394				return XFS_ERROR(EINVAL);
 
 
 
 
 395			} else if (mp->m_dalign) {
 396				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 397			} else {
 398				xfs_warn(mp,
 399			"alignment check failed: sunit(%d) less than bsize(%d)",
 400					 mp->m_dalign, sbp->sb_blocksize);
 401				return XFS_ERROR(EINVAL);
 
 
 
 
 402			}
 403		}
 404
 405		/*
 406		 * Update superblock with new values
 407		 * and log changes
 408		 */
 409		if (xfs_sb_version_hasdalign(sbp)) {
 410			if (sbp->sb_unit != mp->m_dalign) {
 411				sbp->sb_unit = mp->m_dalign;
 412				mp->m_update_flags |= XFS_SB_UNIT;
 413			}
 414			if (sbp->sb_width != mp->m_swidth) {
 415				sbp->sb_width = mp->m_swidth;
 416				mp->m_update_flags |= XFS_SB_WIDTH;
 417			}
 418		} else {
 419			xfs_warn(mp,
 420	"cannot change alignment: superblock does not support data alignment");
 421			return XFS_ERROR(EINVAL);
 422		}
 423	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 424		    xfs_sb_version_hasdalign(&mp->m_sb)) {
 425			mp->m_dalign = sbp->sb_unit;
 426			mp->m_swidth = sbp->sb_width;
 427	}
 428
 429	return 0;
 430}
 431
 432/*
 433 * Set the maximum inode count for this filesystem
 434 */
 435STATIC void
 436xfs_set_maxicount(xfs_mount_t *mp)
 437{
 438	xfs_sb_t	*sbp = &(mp->m_sb);
 439	__uint64_t	icount;
 440
 441	if (sbp->sb_imax_pct) {
 442		/*
 443		 * Make sure the maximum inode count is a multiple
 444		 * of the units we allocate inodes in.
 445		 */
 446		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 447		do_div(icount, 100);
 448		do_div(icount, mp->m_ialloc_blks);
 449		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 450				   sbp->sb_inopblog;
 451	} else {
 452		mp->m_maxicount = 0;
 453	}
 454}
 455
 456/*
 457 * Set the default minimum read and write sizes unless
 458 * already specified in a mount option.
 459 * We use smaller I/O sizes when the file system
 460 * is being used for NFS service (wsync mount option).
 461 */
 462STATIC void
 463xfs_set_rw_sizes(xfs_mount_t *mp)
 464{
 465	xfs_sb_t	*sbp = &(mp->m_sb);
 466	int		readio_log, writeio_log;
 467
 468	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 469		if (mp->m_flags & XFS_MOUNT_WSYNC) {
 470			readio_log = XFS_WSYNC_READIO_LOG;
 471			writeio_log = XFS_WSYNC_WRITEIO_LOG;
 472		} else {
 473			readio_log = XFS_READIO_LOG_LARGE;
 474			writeio_log = XFS_WRITEIO_LOG_LARGE;
 475		}
 476	} else {
 477		readio_log = mp->m_readio_log;
 478		writeio_log = mp->m_writeio_log;
 479	}
 480
 481	if (sbp->sb_blocklog > readio_log) {
 482		mp->m_readio_log = sbp->sb_blocklog;
 483	} else {
 484		mp->m_readio_log = readio_log;
 485	}
 486	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 487	if (sbp->sb_blocklog > writeio_log) {
 488		mp->m_writeio_log = sbp->sb_blocklog;
 489	} else {
 490		mp->m_writeio_log = writeio_log;
 491	}
 492	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 493}
 494
 495/*
 496 * precalculate the low space thresholds for dynamic speculative preallocation.
 497 */
 498void
 499xfs_set_low_space_thresholds(
 500	struct xfs_mount	*mp)
 501{
 502	int i;
 503
 504	for (i = 0; i < XFS_LOWSP_MAX; i++) {
 505		__uint64_t space = mp->m_sb.sb_dblocks;
 506
 507		do_div(space, 100);
 508		mp->m_low_space[i] = space * (i + 1);
 509	}
 510}
 511
 512
 513/*
 514 * Set whether we're using inode alignment.
 515 */
 516STATIC void
 517xfs_set_inoalignment(xfs_mount_t *mp)
 518{
 519	if (xfs_sb_version_hasalign(&mp->m_sb) &&
 520	    mp->m_sb.sb_inoalignmt >=
 521	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
 522		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
 523	else
 524		mp->m_inoalign_mask = 0;
 525	/*
 526	 * If we are using stripe alignment, check whether
 527	 * the stripe unit is a multiple of the inode alignment
 528	 */
 529	if (mp->m_dalign && mp->m_inoalign_mask &&
 530	    !(mp->m_dalign & mp->m_inoalign_mask))
 531		mp->m_sinoalign = mp->m_dalign;
 532	else
 533		mp->m_sinoalign = 0;
 534}
 535
 536/*
 537 * Check that the data (and log if separate) is an ok size.
 538 */
 539STATIC int
 540xfs_check_sizes(xfs_mount_t *mp)
 541{
 542	xfs_buf_t	*bp;
 543	xfs_daddr_t	d;
 544
 545	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 546	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 547		xfs_warn(mp, "filesystem size mismatch detected");
 548		return XFS_ERROR(EFBIG);
 549	}
 550	bp = xfs_buf_read_uncached(mp->m_ddev_targp,
 551					d - XFS_FSS_TO_BB(mp, 1),
 552					XFS_FSS_TO_BB(mp, 1), 0, NULL);
 553	if (!bp) {
 554		xfs_warn(mp, "last sector read failed");
 555		return EIO;
 556	}
 557	xfs_buf_relse(bp);
 558
 559	if (mp->m_logdev_targp != mp->m_ddev_targp) {
 560		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 561		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 562			xfs_warn(mp, "log size mismatch detected");
 563			return XFS_ERROR(EFBIG);
 564		}
 565		bp = xfs_buf_read_uncached(mp->m_logdev_targp,
 566					d - XFS_FSB_TO_BB(mp, 1),
 567					XFS_FSB_TO_BB(mp, 1), 0, NULL);
 568		if (!bp) {
 569			xfs_warn(mp, "log device read failed");
 570			return EIO;
 571		}
 572		xfs_buf_relse(bp);
 573	}
 574	return 0;
 575}
 576
 577/*
 578 * Clear the quotaflags in memory and in the superblock.
 579 */
 580int
 581xfs_mount_reset_sbqflags(
 582	struct xfs_mount	*mp)
 583{
 584	int			error;
 585	struct xfs_trans	*tp;
 586
 587	mp->m_qflags = 0;
 588
 589	/*
 590	 * It is OK to look at sb_qflags here in mount path,
 591	 * without m_sb_lock.
 592	 */
 593	if (mp->m_sb.sb_qflags == 0)
 594		return 0;
 595	spin_lock(&mp->m_sb_lock);
 596	mp->m_sb.sb_qflags = 0;
 597	spin_unlock(&mp->m_sb_lock);
 598
 599	/*
 600	 * If the fs is readonly, let the incore superblock run
 601	 * with quotas off but don't flush the update out to disk
 602	 */
 603	if (mp->m_flags & XFS_MOUNT_RDONLY)
 604		return 0;
 605
 606	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
 607	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
 
 608	if (error) {
 609		xfs_trans_cancel(tp, 0);
 610		xfs_alert(mp, "%s: Superblock update failed!", __func__);
 611		return error;
 612	}
 613
 614	xfs_mod_sb(tp, XFS_SB_QFLAGS);
 615	return xfs_trans_commit(tp, 0);
 616}
 617
 618__uint64_t
 619xfs_default_resblks(xfs_mount_t *mp)
 620{
 621	__uint64_t resblks;
 622
 623	/*
 624	 * We default to 5% or 8192 fsbs of space reserved, whichever is
 625	 * smaller.  This is intended to cover concurrent allocation
 626	 * transactions when we initially hit enospc. These each require a 4
 627	 * block reservation. Hence by default we cover roughly 2000 concurrent
 628	 * allocation reservations.
 629	 */
 630	resblks = mp->m_sb.sb_dblocks;
 631	do_div(resblks, 20);
 632	resblks = min_t(__uint64_t, resblks, 8192);
 633	return resblks;
 634}
 635
 636/*
 637 * This function does the following on an initial mount of a file system:
 638 *	- reads the superblock from disk and init the mount struct
 639 *	- if we're a 32-bit kernel, do a size check on the superblock
 640 *		so we don't mount terabyte filesystems
 641 *	- init mount struct realtime fields
 642 *	- allocate inode hash table for fs
 643 *	- init directory manager
 644 *	- perform recovery and init the log manager
 645 */
 646int
 647xfs_mountfs(
 648	xfs_mount_t	*mp)
 649{
 650	xfs_sb_t	*sbp = &(mp->m_sb);
 651	xfs_inode_t	*rip;
 652	__uint64_t	resblks;
 653	uint		quotamount = 0;
 654	uint		quotaflags = 0;
 655	int		error = 0;
 656
 657	xfs_sb_mount_common(mp, sbp);
 658
 659	/*
 660	 * Check for a mismatched features2 values.  Older kernels
 661	 * read & wrote into the wrong sb offset for sb_features2
 662	 * on some platforms due to xfs_sb_t not being 64bit size aligned
 663	 * when sb_features2 was added, which made older superblock
 664	 * reading/writing routines swap it as a 64-bit value.
 665	 *
 666	 * For backwards compatibility, we make both slots equal.
 667	 *
 668	 * If we detect a mismatched field, we OR the set bits into the
 669	 * existing features2 field in case it has already been modified; we
 670	 * don't want to lose any features.  We then update the bad location
 671	 * with the ORed value so that older kernels will see any features2
 672	 * flags, and mark the two fields as needing updates once the
 673	 * transaction subsystem is online.
 674	 */
 675	if (xfs_sb_has_mismatched_features2(sbp)) {
 676		xfs_warn(mp, "correcting sb_features alignment problem");
 677		sbp->sb_features2 |= sbp->sb_bad_features2;
 678		sbp->sb_bad_features2 = sbp->sb_features2;
 679		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
 680
 681		/*
 682		 * Re-check for ATTR2 in case it was found in bad_features2
 683		 * slot.
 684		 */
 685		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 686		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 687			mp->m_flags |= XFS_MOUNT_ATTR2;
 688	}
 689
 690	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 691	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 692		xfs_sb_version_removeattr2(&mp->m_sb);
 693		mp->m_update_flags |= XFS_SB_FEATURES2;
 694
 695		/* update sb_versionnum for the clearing of the morebits */
 696		if (!sbp->sb_features2)
 697			mp->m_update_flags |= XFS_SB_VERSIONNUM;
 698	}
 699
 700	/*
 701	 * Check if sb_agblocks is aligned at stripe boundary
 702	 * If sb_agblocks is NOT aligned turn off m_dalign since
 703	 * allocator alignment is within an ag, therefore ag has
 704	 * to be aligned at stripe boundary.
 705	 */
 706	error = xfs_update_alignment(mp);
 707	if (error)
 708		goto out;
 709
 710	xfs_alloc_compute_maxlevels(mp);
 711	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 712	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 713	xfs_ialloc_compute_maxlevels(mp);
 714
 715	xfs_set_maxicount(mp);
 716
 
 
 717	error = xfs_uuid_mount(mp);
 718	if (error)
 719		goto out;
 720
 721	/*
 722	 * Set the minimum read and write sizes
 723	 */
 724	xfs_set_rw_sizes(mp);
 725
 726	/* set the low space thresholds for dynamic preallocation */
 727	xfs_set_low_space_thresholds(mp);
 728
 729	/*
 730	 * Set the inode cluster size.
 731	 * This may still be overridden by the file system
 732	 * block size if it is larger than the chosen cluster size.
 733	 *
 734	 * For v5 filesystems, scale the cluster size with the inode size to
 735	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
 736	 * has set the inode alignment value appropriately for larger cluster
 737	 * sizes.
 738	 */
 739	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 740	if (xfs_sb_version_hascrc(&mp->m_sb)) {
 741		int	new_size = mp->m_inode_cluster_size;
 742
 743		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
 744		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
 745			mp->m_inode_cluster_size = new_size;
 746	}
 747
 748	/*
 749	 * Set inode alignment fields
 750	 */
 751	xfs_set_inoalignment(mp);
 752
 753	/*
 754	 * Check that the data (and log if separate) is an ok size.
 755	 */
 756	error = xfs_check_sizes(mp);
 757	if (error)
 758		goto out_remove_uuid;
 759
 760	/*
 761	 * Initialize realtime fields in the mount structure
 762	 */
 763	error = xfs_rtmount_init(mp);
 764	if (error) {
 765		xfs_warn(mp, "RT mount failed");
 766		goto out_remove_uuid;
 767	}
 768
 769	/*
 770	 *  Copies the low order bits of the timestamp and the randomly
 771	 *  set "sequence" number out of a UUID.
 772	 */
 773	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
 774
 775	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
 776
 777	xfs_dir_mount(mp);
 778
 779	/*
 780	 * Initialize the attribute manager's entries.
 781	 */
 782	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
 783
 784	/*
 785	 * Initialize the precomputed transaction reservations values.
 786	 */
 787	xfs_trans_init(mp);
 788
 789	/*
 790	 * Allocate and initialize the per-ag data.
 791	 */
 792	spin_lock_init(&mp->m_perag_lock);
 793	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
 794	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 795	if (error) {
 796		xfs_warn(mp, "Failed per-ag init: %d", error);
 797		goto out_remove_uuid;
 798	}
 799
 800	if (!sbp->sb_logblocks) {
 801		xfs_warn(mp, "no log defined");
 802		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
 803		error = XFS_ERROR(EFSCORRUPTED);
 804		goto out_free_perag;
 805	}
 806
 807	/*
 808	 * log's mount-time initialization. Perform 1st part recovery if needed
 809	 */
 810	error = xfs_log_mount(mp, mp->m_logdev_targp,
 811			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 812			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 813	if (error) {
 814		xfs_warn(mp, "log mount failed");
 815		goto out_fail_wait;
 816	}
 817
 818	/*
 819	 * Now the log is mounted, we know if it was an unclean shutdown or
 820	 * not. If it was, with the first phase of recovery has completed, we
 821	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
 822	 * but they are recovered transactionally in the second recovery phase
 823	 * later.
 824	 *
 825	 * Hence we can safely re-initialise incore superblock counters from
 826	 * the per-ag data. These may not be correct if the filesystem was not
 827	 * cleanly unmounted, so we need to wait for recovery to finish before
 828	 * doing this.
 829	 *
 830	 * If the filesystem was cleanly unmounted, then we can trust the
 831	 * values in the superblock to be correct and we don't need to do
 832	 * anything here.
 833	 *
 834	 * If we are currently making the filesystem, the initialisation will
 835	 * fail as the perag data is in an undefined state.
 836	 */
 837	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
 838	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 839	     !mp->m_sb.sb_inprogress) {
 840		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
 841		if (error)
 842			goto out_fail_wait;
 843	}
 844
 845	/*
 846	 * Get and sanity-check the root inode.
 847	 * Save the pointer to it in the mount structure.
 848	 */
 849	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
 850	if (error) {
 851		xfs_warn(mp, "failed to read root inode");
 852		goto out_log_dealloc;
 853	}
 854
 855	ASSERT(rip != NULL);
 856
 857	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
 858		xfs_warn(mp, "corrupted root inode %llu: not a directory",
 859			(unsigned long long)rip->i_ino);
 860		xfs_iunlock(rip, XFS_ILOCK_EXCL);
 861		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
 862				 mp);
 863		error = XFS_ERROR(EFSCORRUPTED);
 864		goto out_rele_rip;
 865	}
 866	mp->m_rootip = rip;	/* save it */
 867
 868	xfs_iunlock(rip, XFS_ILOCK_EXCL);
 869
 870	/*
 871	 * Initialize realtime inode pointers in the mount structure
 872	 */
 873	error = xfs_rtmount_inodes(mp);
 874	if (error) {
 875		/*
 876		 * Free up the root inode.
 877		 */
 878		xfs_warn(mp, "failed to read RT inodes");
 879		goto out_rele_rip;
 880	}
 881
 882	/*
 883	 * If this is a read-only mount defer the superblock updates until
 884	 * the next remount into writeable mode.  Otherwise we would never
 885	 * perform the update e.g. for the root filesystem.
 886	 */
 887	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 888		error = xfs_mount_log_sb(mp, mp->m_update_flags);
 889		if (error) {
 890			xfs_warn(mp, "failed to write sb changes");
 891			goto out_rtunmount;
 892		}
 893	}
 894
 895	/*
 896	 * Initialise the XFS quota management subsystem for this mount
 897	 */
 898	if (XFS_IS_QUOTA_RUNNING(mp)) {
 899		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 900		if (error)
 901			goto out_rtunmount;
 902	} else {
 903		ASSERT(!XFS_IS_QUOTA_ON(mp));
 904
 905		/*
 906		 * If a file system had quotas running earlier, but decided to
 907		 * mount without -o uquota/pquota/gquota options, revoke the
 908		 * quotachecked license.
 909		 */
 910		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 911			xfs_notice(mp, "resetting quota flags");
 912			error = xfs_mount_reset_sbqflags(mp);
 913			if (error)
 914				return error;
 915		}
 916	}
 917
 918	/*
 919	 * Finish recovering the file system.  This part needed to be
 920	 * delayed until after the root and real-time bitmap inodes
 921	 * were consistently read in.
 922	 */
 923	error = xfs_log_mount_finish(mp);
 924	if (error) {
 925		xfs_warn(mp, "log mount finish failed");
 926		goto out_rtunmount;
 927	}
 928
 929	/*
 930	 * Complete the quota initialisation, post-log-replay component.
 931	 */
 932	if (quotamount) {
 933		ASSERT(mp->m_qflags == 0);
 934		mp->m_qflags = quotaflags;
 935
 936		xfs_qm_mount_quotas(mp);
 937	}
 938
 939	/*
 940	 * Now we are mounted, reserve a small amount of unused space for
 941	 * privileged transactions. This is needed so that transaction
 942	 * space required for critical operations can dip into this pool
 943	 * when at ENOSPC. This is needed for operations like create with
 944	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 945	 * are not allowed to use this reserved space.
 946	 *
 947	 * This may drive us straight to ENOSPC on mount, but that implies
 948	 * we were already there on the last unmount. Warn if this occurs.
 949	 */
 950	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 951		resblks = xfs_default_resblks(mp);
 952		error = xfs_reserve_blocks(mp, &resblks, NULL);
 953		if (error)
 954			xfs_warn(mp,
 955	"Unable to allocate reserve blocks. Continuing without reserve pool.");
 956	}
 957
 958	return 0;
 959
 960 out_rtunmount:
 961	xfs_rtunmount_inodes(mp);
 962 out_rele_rip:
 963	IRELE(rip);
 964 out_log_dealloc:
 965	xfs_log_unmount(mp);
 966 out_fail_wait:
 967	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
 968		xfs_wait_buftarg(mp->m_logdev_targp);
 969	xfs_wait_buftarg(mp->m_ddev_targp);
 970 out_free_perag:
 971	xfs_free_perag(mp);
 972 out_remove_uuid:
 973	xfs_uuid_unmount(mp);
 974 out:
 975	return error;
 976}
 977
 978/*
 979 * This flushes out the inodes,dquots and the superblock, unmounts the
 980 * log and makes sure that incore structures are freed.
 981 */
 982void
 983xfs_unmountfs(
 984	struct xfs_mount	*mp)
 985{
 986	__uint64_t		resblks;
 987	int			error;
 988
 989	cancel_delayed_work_sync(&mp->m_eofblocks_work);
 990
 991	xfs_qm_unmount_quotas(mp);
 992	xfs_rtunmount_inodes(mp);
 993	IRELE(mp->m_rootip);
 994
 995	/*
 996	 * We can potentially deadlock here if we have an inode cluster
 997	 * that has been freed has its buffer still pinned in memory because
 998	 * the transaction is still sitting in a iclog. The stale inodes
 999	 * on that buffer will have their flush locks held until the
1000	 * transaction hits the disk and the callbacks run. the inode
1001	 * flush takes the flush lock unconditionally and with nothing to
1002	 * push out the iclog we will never get that unlocked. hence we
1003	 * need to force the log first.
1004	 */
1005	xfs_log_force(mp, XFS_LOG_SYNC);
1006
1007	/*
1008	 * Flush all pending changes from the AIL.
1009	 */
1010	xfs_ail_push_all_sync(mp->m_ail);
1011
1012	/*
1013	 * And reclaim all inodes.  At this point there should be no dirty
1014	 * inodes and none should be pinned or locked, but use synchronous
1015	 * reclaim just to be sure. We can stop background inode reclaim
1016	 * here as well if it is still running.
1017	 */
1018	cancel_delayed_work_sync(&mp->m_reclaim_work);
1019	xfs_reclaim_inodes(mp, SYNC_WAIT);
1020
1021	xfs_qm_unmount(mp);
1022
1023	/*
 
 
 
 
 
 
 
1024	 * Unreserve any blocks we have so that when we unmount we don't account
1025	 * the reserved free space as used. This is really only necessary for
1026	 * lazy superblock counting because it trusts the incore superblock
1027	 * counters to be absolutely correct on clean unmount.
1028	 *
1029	 * We don't bother correcting this elsewhere for lazy superblock
1030	 * counting because on mount of an unclean filesystem we reconstruct the
1031	 * correct counter value and this is irrelevant.
1032	 *
1033	 * For non-lazy counter filesystems, this doesn't matter at all because
1034	 * we only every apply deltas to the superblock and hence the incore
1035	 * value does not matter....
1036	 */
1037	resblks = 0;
1038	error = xfs_reserve_blocks(mp, &resblks, NULL);
1039	if (error)
1040		xfs_warn(mp, "Unable to free reserved block pool. "
1041				"Freespace may not be correct on next mount.");
1042
1043	error = xfs_log_sbcount(mp);
1044	if (error)
1045		xfs_warn(mp, "Unable to update superblock counters. "
1046				"Freespace may not be correct on next mount.");
1047
 
 
 
 
 
 
 
 
1048	xfs_log_unmount(mp);
1049	xfs_uuid_unmount(mp);
1050
1051#if defined(DEBUG)
1052	xfs_errortag_clearall(mp, 0);
1053#endif
1054	xfs_free_perag(mp);
1055}
1056
1057int
1058xfs_fs_writable(xfs_mount_t *mp)
1059{
1060	return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1061		(mp->m_flags & XFS_MOUNT_RDONLY));
1062}
1063
1064/*
1065 * xfs_log_sbcount
1066 *
1067 * Sync the superblock counters to disk.
1068 *
1069 * Note this code can be called during the process of freezing, so
1070 * we may need to use the transaction allocator which does not
1071 * block when the transaction subsystem is in its frozen state.
1072 */
1073int
1074xfs_log_sbcount(xfs_mount_t *mp)
1075{
1076	xfs_trans_t	*tp;
1077	int		error;
1078
1079	if (!xfs_fs_writable(mp))
1080		return 0;
1081
1082	xfs_icsb_sync_counters(mp, 0);
1083
1084	/*
1085	 * we don't need to do this if we are updating the superblock
1086	 * counters on every modification.
1087	 */
1088	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1089		return 0;
1090
1091	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1092	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
 
1093	if (error) {
1094		xfs_trans_cancel(tp, 0);
1095		return error;
1096	}
1097
1098	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1099	xfs_trans_set_sync(tp);
1100	error = xfs_trans_commit(tp, 0);
1101	return error;
1102}
1103
1104/*
1105 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106 * a delta to a specified field in the in-core superblock.  Simply
1107 * switch on the field indicated and apply the delta to that field.
1108 * Fields are not allowed to dip below zero, so if the delta would
1109 * do this do not apply it and return EINVAL.
1110 *
1111 * The m_sb_lock must be held when this routine is called.
1112 */
1113STATIC int
1114xfs_mod_incore_sb_unlocked(
1115	xfs_mount_t	*mp,
1116	xfs_sb_field_t	field,
1117	int64_t		delta,
1118	int		rsvd)
1119{
1120	int		scounter;	/* short counter for 32 bit fields */
1121	long long	lcounter;	/* long counter for 64 bit fields */
1122	long long	res_used, rem;
1123
1124	/*
1125	 * With the in-core superblock spin lock held, switch
1126	 * on the indicated field.  Apply the delta to the
1127	 * proper field.  If the fields value would dip below
1128	 * 0, then do not apply the delta and return EINVAL.
1129	 */
1130	switch (field) {
1131	case XFS_SBS_ICOUNT:
1132		lcounter = (long long)mp->m_sb.sb_icount;
1133		lcounter += delta;
1134		if (lcounter < 0) {
1135			ASSERT(0);
1136			return XFS_ERROR(EINVAL);
1137		}
1138		mp->m_sb.sb_icount = lcounter;
1139		return 0;
1140	case XFS_SBS_IFREE:
1141		lcounter = (long long)mp->m_sb.sb_ifree;
1142		lcounter += delta;
1143		if (lcounter < 0) {
1144			ASSERT(0);
1145			return XFS_ERROR(EINVAL);
1146		}
1147		mp->m_sb.sb_ifree = lcounter;
1148		return 0;
1149	case XFS_SBS_FDBLOCKS:
1150		lcounter = (long long)
1151			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1152		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1153
1154		if (delta > 0) {		/* Putting blocks back */
1155			if (res_used > delta) {
1156				mp->m_resblks_avail += delta;
1157			} else {
1158				rem = delta - res_used;
1159				mp->m_resblks_avail = mp->m_resblks;
1160				lcounter += rem;
1161			}
1162		} else {				/* Taking blocks away */
1163			lcounter += delta;
1164			if (lcounter >= 0) {
1165				mp->m_sb.sb_fdblocks = lcounter +
1166							XFS_ALLOC_SET_ASIDE(mp);
1167				return 0;
1168			}
1169
1170			/*
1171			 * We are out of blocks, use any available reserved
1172			 * blocks if were allowed to.
1173			 */
1174			if (!rsvd)
1175				return XFS_ERROR(ENOSPC);
1176
1177			lcounter = (long long)mp->m_resblks_avail + delta;
1178			if (lcounter >= 0) {
1179				mp->m_resblks_avail = lcounter;
1180				return 0;
1181			}
1182			printk_once(KERN_WARNING
1183				"Filesystem \"%s\": reserve blocks depleted! "
1184				"Consider increasing reserve pool size.",
1185				mp->m_fsname);
1186			return XFS_ERROR(ENOSPC);
1187		}
1188
1189		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1190		return 0;
1191	case XFS_SBS_FREXTENTS:
1192		lcounter = (long long)mp->m_sb.sb_frextents;
1193		lcounter += delta;
1194		if (lcounter < 0) {
1195			return XFS_ERROR(ENOSPC);
1196		}
1197		mp->m_sb.sb_frextents = lcounter;
1198		return 0;
1199	case XFS_SBS_DBLOCKS:
1200		lcounter = (long long)mp->m_sb.sb_dblocks;
1201		lcounter += delta;
1202		if (lcounter < 0) {
1203			ASSERT(0);
1204			return XFS_ERROR(EINVAL);
1205		}
1206		mp->m_sb.sb_dblocks = lcounter;
1207		return 0;
1208	case XFS_SBS_AGCOUNT:
1209		scounter = mp->m_sb.sb_agcount;
1210		scounter += delta;
1211		if (scounter < 0) {
1212			ASSERT(0);
1213			return XFS_ERROR(EINVAL);
1214		}
1215		mp->m_sb.sb_agcount = scounter;
1216		return 0;
1217	case XFS_SBS_IMAX_PCT:
1218		scounter = mp->m_sb.sb_imax_pct;
1219		scounter += delta;
1220		if (scounter < 0) {
1221			ASSERT(0);
1222			return XFS_ERROR(EINVAL);
1223		}
1224		mp->m_sb.sb_imax_pct = scounter;
1225		return 0;
1226	case XFS_SBS_REXTSIZE:
1227		scounter = mp->m_sb.sb_rextsize;
1228		scounter += delta;
1229		if (scounter < 0) {
1230			ASSERT(0);
1231			return XFS_ERROR(EINVAL);
1232		}
1233		mp->m_sb.sb_rextsize = scounter;
1234		return 0;
1235	case XFS_SBS_RBMBLOCKS:
1236		scounter = mp->m_sb.sb_rbmblocks;
1237		scounter += delta;
1238		if (scounter < 0) {
1239			ASSERT(0);
1240			return XFS_ERROR(EINVAL);
1241		}
1242		mp->m_sb.sb_rbmblocks = scounter;
1243		return 0;
1244	case XFS_SBS_RBLOCKS:
1245		lcounter = (long long)mp->m_sb.sb_rblocks;
1246		lcounter += delta;
1247		if (lcounter < 0) {
1248			ASSERT(0);
1249			return XFS_ERROR(EINVAL);
1250		}
1251		mp->m_sb.sb_rblocks = lcounter;
1252		return 0;
1253	case XFS_SBS_REXTENTS:
1254		lcounter = (long long)mp->m_sb.sb_rextents;
1255		lcounter += delta;
1256		if (lcounter < 0) {
1257			ASSERT(0);
1258			return XFS_ERROR(EINVAL);
1259		}
1260		mp->m_sb.sb_rextents = lcounter;
1261		return 0;
1262	case XFS_SBS_REXTSLOG:
1263		scounter = mp->m_sb.sb_rextslog;
1264		scounter += delta;
1265		if (scounter < 0) {
1266			ASSERT(0);
1267			return XFS_ERROR(EINVAL);
1268		}
1269		mp->m_sb.sb_rextslog = scounter;
1270		return 0;
1271	default:
1272		ASSERT(0);
1273		return XFS_ERROR(EINVAL);
1274	}
1275}
1276
1277/*
1278 * xfs_mod_incore_sb() is used to change a field in the in-core
1279 * superblock structure by the specified delta.  This modification
1280 * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1281 * routine to do the work.
1282 */
1283int
1284xfs_mod_incore_sb(
1285	struct xfs_mount	*mp,
1286	xfs_sb_field_t		field,
1287	int64_t			delta,
1288	int			rsvd)
1289{
1290	int			status;
1291
1292#ifdef HAVE_PERCPU_SB
1293	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1294#endif
1295	spin_lock(&mp->m_sb_lock);
1296	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1297	spin_unlock(&mp->m_sb_lock);
1298
1299	return status;
1300}
1301
1302/*
1303 * Change more than one field in the in-core superblock structure at a time.
1304 *
1305 * The fields and changes to those fields are specified in the array of
1306 * xfs_mod_sb structures passed in.  Either all of the specified deltas
1307 * will be applied or none of them will.  If any modified field dips below 0,
1308 * then all modifications will be backed out and EINVAL will be returned.
1309 *
1310 * Note that this function may not be used for the superblock values that
1311 * are tracked with the in-memory per-cpu counters - a direct call to
1312 * xfs_icsb_modify_counters is required for these.
1313 */
1314int
1315xfs_mod_incore_sb_batch(
1316	struct xfs_mount	*mp,
1317	xfs_mod_sb_t		*msb,
1318	uint			nmsb,
1319	int			rsvd)
1320{
1321	xfs_mod_sb_t		*msbp;
1322	int			error = 0;
1323
1324	/*
1325	 * Loop through the array of mod structures and apply each individually.
1326	 * If any fail, then back out all those which have already been applied.
1327	 * Do all of this within the scope of the m_sb_lock so that all of the
1328	 * changes will be atomic.
1329	 */
1330	spin_lock(&mp->m_sb_lock);
1331	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1332		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1333		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1334
1335		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1336						   msbp->msb_delta, rsvd);
1337		if (error)
1338			goto unwind;
1339	}
1340	spin_unlock(&mp->m_sb_lock);
1341	return 0;
1342
1343unwind:
1344	while (--msbp >= msb) {
1345		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1346						   -msbp->msb_delta, rsvd);
1347		ASSERT(error == 0);
1348	}
1349	spin_unlock(&mp->m_sb_lock);
1350	return error;
1351}
1352
1353/*
1354 * xfs_getsb() is called to obtain the buffer for the superblock.
1355 * The buffer is returned locked and read in from disk.
1356 * The buffer should be released with a call to xfs_brelse().
1357 *
1358 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1359 * the superblock buffer if it can be locked without sleeping.
1360 * If it can't then we'll return NULL.
1361 */
1362struct xfs_buf *
1363xfs_getsb(
1364	struct xfs_mount	*mp,
1365	int			flags)
1366{
1367	struct xfs_buf		*bp = mp->m_sb_bp;
1368
1369	if (!xfs_buf_trylock(bp)) {
1370		if (flags & XBF_TRYLOCK)
1371			return NULL;
1372		xfs_buf_lock(bp);
1373	}
1374
1375	xfs_buf_hold(bp);
1376	ASSERT(XFS_BUF_ISDONE(bp));
1377	return bp;
1378}
1379
1380/*
1381 * Used to free the superblock along various error paths.
1382 */
1383void
1384xfs_freesb(
1385	struct xfs_mount	*mp)
1386{
1387	struct xfs_buf		*bp = mp->m_sb_bp;
1388
1389	xfs_buf_lock(bp);
1390	mp->m_sb_bp = NULL;
1391	xfs_buf_relse(bp);
1392}
1393
1394/*
1395 * Used to log changes to the superblock unit and width fields which could
1396 * be altered by the mount options, as well as any potential sb_features2
1397 * fixup. Only the first superblock is updated.
1398 */
1399int
1400xfs_mount_log_sb(
1401	xfs_mount_t	*mp,
1402	__int64_t	fields)
1403{
1404	xfs_trans_t	*tp;
1405	int		error;
1406
1407	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1408			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1409			 XFS_SB_VERSIONNUM));
1410
1411	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1412	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
 
1413	if (error) {
1414		xfs_trans_cancel(tp, 0);
1415		return error;
1416	}
1417	xfs_mod_sb(tp, fields);
1418	error = xfs_trans_commit(tp, 0);
1419	return error;
1420}
1421
1422/*
1423 * If the underlying (data/log/rt) device is readonly, there are some
1424 * operations that cannot proceed.
1425 */
1426int
1427xfs_dev_is_read_only(
1428	struct xfs_mount	*mp,
1429	char			*message)
1430{
1431	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1432	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1433	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1434		xfs_notice(mp, "%s required on read-only device.", message);
1435		xfs_notice(mp, "write access unavailable, cannot proceed.");
1436		return EROFS;
1437	}
1438	return 0;
1439}
1440
1441#ifdef HAVE_PERCPU_SB
1442/*
1443 * Per-cpu incore superblock counters
1444 *
1445 * Simple concept, difficult implementation
1446 *
1447 * Basically, replace the incore superblock counters with a distributed per cpu
1448 * counter for contended fields (e.g.  free block count).
1449 *
1450 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1451 * hence needs to be accurately read when we are running low on space. Hence
1452 * there is a method to enable and disable the per-cpu counters based on how
1453 * much "stuff" is available in them.
1454 *
1455 * Basically, a counter is enabled if there is enough free resource to justify
1456 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1457 * ENOSPC), then we disable the counters to synchronise all callers and
1458 * re-distribute the available resources.
1459 *
1460 * If, once we redistributed the available resources, we still get a failure,
1461 * we disable the per-cpu counter and go through the slow path.
1462 *
1463 * The slow path is the current xfs_mod_incore_sb() function.  This means that
1464 * when we disable a per-cpu counter, we need to drain its resources back to
1465 * the global superblock. We do this after disabling the counter to prevent
1466 * more threads from queueing up on the counter.
1467 *
1468 * Essentially, this means that we still need a lock in the fast path to enable
1469 * synchronisation between the global counters and the per-cpu counters. This
1470 * is not a problem because the lock will be local to a CPU almost all the time
1471 * and have little contention except when we get to ENOSPC conditions.
1472 *
1473 * Basically, this lock becomes a barrier that enables us to lock out the fast
1474 * path while we do things like enabling and disabling counters and
1475 * synchronising the counters.
1476 *
1477 * Locking rules:
1478 *
1479 * 	1. m_sb_lock before picking up per-cpu locks
1480 * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1481 * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1482 * 	4. modifying per-cpu counters requires holding per-cpu lock
1483 * 	5. modifying global counters requires holding m_sb_lock
1484 *	6. enabling or disabling a counter requires holding the m_sb_lock 
1485 *	   and _none_ of the per-cpu locks.
1486 *
1487 * Disabled counters are only ever re-enabled by a balance operation
1488 * that results in more free resources per CPU than a given threshold.
1489 * To ensure counters don't remain disabled, they are rebalanced when
1490 * the global resource goes above a higher threshold (i.e. some hysteresis
1491 * is present to prevent thrashing).
1492 */
1493
1494#ifdef CONFIG_HOTPLUG_CPU
1495/*
1496 * hot-plug CPU notifier support.
1497 *
1498 * We need a notifier per filesystem as we need to be able to identify
1499 * the filesystem to balance the counters out. This is achieved by
1500 * having a notifier block embedded in the xfs_mount_t and doing pointer
1501 * magic to get the mount pointer from the notifier block address.
1502 */
1503STATIC int
1504xfs_icsb_cpu_notify(
1505	struct notifier_block *nfb,
1506	unsigned long action,
1507	void *hcpu)
1508{
1509	xfs_icsb_cnts_t *cntp;
1510	xfs_mount_t	*mp;
1511
1512	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1513	cntp = (xfs_icsb_cnts_t *)
1514			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1515	switch (action) {
1516	case CPU_UP_PREPARE:
1517	case CPU_UP_PREPARE_FROZEN:
1518		/* Easy Case - initialize the area and locks, and
1519		 * then rebalance when online does everything else for us. */
1520		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1521		break;
1522	case CPU_ONLINE:
1523	case CPU_ONLINE_FROZEN:
1524		xfs_icsb_lock(mp);
1525		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1526		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1527		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1528		xfs_icsb_unlock(mp);
1529		break;
1530	case CPU_DEAD:
1531	case CPU_DEAD_FROZEN:
1532		/* Disable all the counters, then fold the dead cpu's
1533		 * count into the total on the global superblock and
1534		 * re-enable the counters. */
1535		xfs_icsb_lock(mp);
1536		spin_lock(&mp->m_sb_lock);
1537		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1538		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1539		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1540
1541		mp->m_sb.sb_icount += cntp->icsb_icount;
1542		mp->m_sb.sb_ifree += cntp->icsb_ifree;
1543		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1544
1545		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1546
1547		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1548		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1549		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1550		spin_unlock(&mp->m_sb_lock);
1551		xfs_icsb_unlock(mp);
1552		break;
1553	}
1554
1555	return NOTIFY_OK;
1556}
1557#endif /* CONFIG_HOTPLUG_CPU */
1558
1559int
1560xfs_icsb_init_counters(
1561	xfs_mount_t	*mp)
1562{
1563	xfs_icsb_cnts_t *cntp;
1564	int		i;
1565
1566	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1567	if (mp->m_sb_cnts == NULL)
1568		return -ENOMEM;
1569
 
 
 
 
 
 
1570	for_each_online_cpu(i) {
1571		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1572		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1573	}
1574
1575	mutex_init(&mp->m_icsb_mutex);
1576
1577	/*
1578	 * start with all counters disabled so that the
1579	 * initial balance kicks us off correctly
1580	 */
1581	mp->m_icsb_counters = -1;
1582
1583#ifdef CONFIG_HOTPLUG_CPU
1584	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1585	mp->m_icsb_notifier.priority = 0;
1586	register_hotcpu_notifier(&mp->m_icsb_notifier);
1587#endif /* CONFIG_HOTPLUG_CPU */
1588
1589	return 0;
1590}
1591
1592void
1593xfs_icsb_reinit_counters(
1594	xfs_mount_t	*mp)
1595{
1596	xfs_icsb_lock(mp);
1597	/*
1598	 * start with all counters disabled so that the
1599	 * initial balance kicks us off correctly
1600	 */
1601	mp->m_icsb_counters = -1;
1602	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1603	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1604	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1605	xfs_icsb_unlock(mp);
1606}
1607
1608void
1609xfs_icsb_destroy_counters(
1610	xfs_mount_t	*mp)
1611{
1612	if (mp->m_sb_cnts) {
1613		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1614		free_percpu(mp->m_sb_cnts);
1615	}
1616	mutex_destroy(&mp->m_icsb_mutex);
1617}
1618
1619STATIC void
1620xfs_icsb_lock_cntr(
1621	xfs_icsb_cnts_t	*icsbp)
1622{
1623	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1624		ndelay(1000);
1625	}
1626}
1627
1628STATIC void
1629xfs_icsb_unlock_cntr(
1630	xfs_icsb_cnts_t	*icsbp)
1631{
1632	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1633}
1634
1635
1636STATIC void
1637xfs_icsb_lock_all_counters(
1638	xfs_mount_t	*mp)
1639{
1640	xfs_icsb_cnts_t *cntp;
1641	int		i;
1642
1643	for_each_online_cpu(i) {
1644		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1645		xfs_icsb_lock_cntr(cntp);
1646	}
1647}
1648
1649STATIC void
1650xfs_icsb_unlock_all_counters(
1651	xfs_mount_t	*mp)
1652{
1653	xfs_icsb_cnts_t *cntp;
1654	int		i;
1655
1656	for_each_online_cpu(i) {
1657		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1658		xfs_icsb_unlock_cntr(cntp);
1659	}
1660}
1661
1662STATIC void
1663xfs_icsb_count(
1664	xfs_mount_t	*mp,
1665	xfs_icsb_cnts_t	*cnt,
1666	int		flags)
1667{
1668	xfs_icsb_cnts_t *cntp;
1669	int		i;
1670
1671	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1672
1673	if (!(flags & XFS_ICSB_LAZY_COUNT))
1674		xfs_icsb_lock_all_counters(mp);
1675
1676	for_each_online_cpu(i) {
1677		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1678		cnt->icsb_icount += cntp->icsb_icount;
1679		cnt->icsb_ifree += cntp->icsb_ifree;
1680		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1681	}
1682
1683	if (!(flags & XFS_ICSB_LAZY_COUNT))
1684		xfs_icsb_unlock_all_counters(mp);
1685}
1686
1687STATIC int
1688xfs_icsb_counter_disabled(
1689	xfs_mount_t	*mp,
1690	xfs_sb_field_t	field)
1691{
1692	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1693	return test_bit(field, &mp->m_icsb_counters);
1694}
1695
1696STATIC void
1697xfs_icsb_disable_counter(
1698	xfs_mount_t	*mp,
1699	xfs_sb_field_t	field)
1700{
1701	xfs_icsb_cnts_t	cnt;
1702
1703	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1704
1705	/*
1706	 * If we are already disabled, then there is nothing to do
1707	 * here. We check before locking all the counters to avoid
1708	 * the expensive lock operation when being called in the
1709	 * slow path and the counter is already disabled. This is
1710	 * safe because the only time we set or clear this state is under
1711	 * the m_icsb_mutex.
1712	 */
1713	if (xfs_icsb_counter_disabled(mp, field))
1714		return;
1715
1716	xfs_icsb_lock_all_counters(mp);
1717	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1718		/* drain back to superblock */
1719
1720		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1721		switch(field) {
1722		case XFS_SBS_ICOUNT:
1723			mp->m_sb.sb_icount = cnt.icsb_icount;
1724			break;
1725		case XFS_SBS_IFREE:
1726			mp->m_sb.sb_ifree = cnt.icsb_ifree;
1727			break;
1728		case XFS_SBS_FDBLOCKS:
1729			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1730			break;
1731		default:
1732			BUG();
1733		}
1734	}
1735
1736	xfs_icsb_unlock_all_counters(mp);
1737}
1738
1739STATIC void
1740xfs_icsb_enable_counter(
1741	xfs_mount_t	*mp,
1742	xfs_sb_field_t	field,
1743	uint64_t	count,
1744	uint64_t	resid)
1745{
1746	xfs_icsb_cnts_t	*cntp;
1747	int		i;
1748
1749	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1750
1751	xfs_icsb_lock_all_counters(mp);
1752	for_each_online_cpu(i) {
1753		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1754		switch (field) {
1755		case XFS_SBS_ICOUNT:
1756			cntp->icsb_icount = count + resid;
1757			break;
1758		case XFS_SBS_IFREE:
1759			cntp->icsb_ifree = count + resid;
1760			break;
1761		case XFS_SBS_FDBLOCKS:
1762			cntp->icsb_fdblocks = count + resid;
1763			break;
1764		default:
1765			BUG();
1766			break;
1767		}
1768		resid = 0;
1769	}
1770	clear_bit(field, &mp->m_icsb_counters);
1771	xfs_icsb_unlock_all_counters(mp);
1772}
1773
1774void
1775xfs_icsb_sync_counters_locked(
1776	xfs_mount_t	*mp,
1777	int		flags)
1778{
1779	xfs_icsb_cnts_t	cnt;
1780
1781	xfs_icsb_count(mp, &cnt, flags);
1782
1783	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1784		mp->m_sb.sb_icount = cnt.icsb_icount;
1785	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1786		mp->m_sb.sb_ifree = cnt.icsb_ifree;
1787	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1788		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1789}
1790
1791/*
1792 * Accurate update of per-cpu counters to incore superblock
1793 */
1794void
1795xfs_icsb_sync_counters(
1796	xfs_mount_t	*mp,
1797	int		flags)
1798{
1799	spin_lock(&mp->m_sb_lock);
1800	xfs_icsb_sync_counters_locked(mp, flags);
1801	spin_unlock(&mp->m_sb_lock);
1802}
1803
1804/*
1805 * Balance and enable/disable counters as necessary.
1806 *
1807 * Thresholds for re-enabling counters are somewhat magic.  inode counts are
1808 * chosen to be the same number as single on disk allocation chunk per CPU, and
1809 * free blocks is something far enough zero that we aren't going thrash when we
1810 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1811 * prevent looping endlessly when xfs_alloc_space asks for more than will
1812 * be distributed to a single CPU but each CPU has enough blocks to be
1813 * reenabled.
1814 *
1815 * Note that we can be called when counters are already disabled.
1816 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1817 * prevent locking every per-cpu counter needlessly.
1818 */
1819
1820#define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
1821#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1822		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1823STATIC void
1824xfs_icsb_balance_counter_locked(
1825	xfs_mount_t	*mp,
1826	xfs_sb_field_t  field,
1827	int		min_per_cpu)
1828{
1829	uint64_t	count, resid;
1830	int		weight = num_online_cpus();
1831	uint64_t	min = (uint64_t)min_per_cpu;
1832
1833	/* disable counter and sync counter */
1834	xfs_icsb_disable_counter(mp, field);
1835
1836	/* update counters  - first CPU gets residual*/
1837	switch (field) {
1838	case XFS_SBS_ICOUNT:
1839		count = mp->m_sb.sb_icount;
1840		resid = do_div(count, weight);
1841		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1842			return;
1843		break;
1844	case XFS_SBS_IFREE:
1845		count = mp->m_sb.sb_ifree;
1846		resid = do_div(count, weight);
1847		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1848			return;
1849		break;
1850	case XFS_SBS_FDBLOCKS:
1851		count = mp->m_sb.sb_fdblocks;
1852		resid = do_div(count, weight);
1853		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1854			return;
1855		break;
1856	default:
1857		BUG();
1858		count = resid = 0;	/* quiet, gcc */
1859		break;
1860	}
1861
1862	xfs_icsb_enable_counter(mp, field, count, resid);
1863}
1864
1865STATIC void
1866xfs_icsb_balance_counter(
1867	xfs_mount_t	*mp,
1868	xfs_sb_field_t  fields,
1869	int		min_per_cpu)
1870{
1871	spin_lock(&mp->m_sb_lock);
1872	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1873	spin_unlock(&mp->m_sb_lock);
1874}
1875
1876int
1877xfs_icsb_modify_counters(
1878	xfs_mount_t	*mp,
1879	xfs_sb_field_t	field,
1880	int64_t		delta,
1881	int		rsvd)
1882{
1883	xfs_icsb_cnts_t	*icsbp;
1884	long long	lcounter;	/* long counter for 64 bit fields */
1885	int		ret = 0;
1886
1887	might_sleep();
1888again:
1889	preempt_disable();
1890	icsbp = this_cpu_ptr(mp->m_sb_cnts);
1891
1892	/*
1893	 * if the counter is disabled, go to slow path
1894	 */
1895	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1896		goto slow_path;
1897	xfs_icsb_lock_cntr(icsbp);
1898	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1899		xfs_icsb_unlock_cntr(icsbp);
1900		goto slow_path;
1901	}
1902
1903	switch (field) {
1904	case XFS_SBS_ICOUNT:
1905		lcounter = icsbp->icsb_icount;
1906		lcounter += delta;
1907		if (unlikely(lcounter < 0))
1908			goto balance_counter;
1909		icsbp->icsb_icount = lcounter;
1910		break;
1911
1912	case XFS_SBS_IFREE:
1913		lcounter = icsbp->icsb_ifree;
1914		lcounter += delta;
1915		if (unlikely(lcounter < 0))
1916			goto balance_counter;
1917		icsbp->icsb_ifree = lcounter;
1918		break;
1919
1920	case XFS_SBS_FDBLOCKS:
1921		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1922
1923		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1924		lcounter += delta;
1925		if (unlikely(lcounter < 0))
1926			goto balance_counter;
1927		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1928		break;
1929	default:
1930		BUG();
1931		break;
1932	}
1933	xfs_icsb_unlock_cntr(icsbp);
1934	preempt_enable();
1935	return 0;
1936
1937slow_path:
1938	preempt_enable();
1939
1940	/*
1941	 * serialise with a mutex so we don't burn lots of cpu on
1942	 * the superblock lock. We still need to hold the superblock
1943	 * lock, however, when we modify the global structures.
1944	 */
1945	xfs_icsb_lock(mp);
1946
1947	/*
1948	 * Now running atomically.
1949	 *
1950	 * If the counter is enabled, someone has beaten us to rebalancing.
1951	 * Drop the lock and try again in the fast path....
1952	 */
1953	if (!(xfs_icsb_counter_disabled(mp, field))) {
1954		xfs_icsb_unlock(mp);
1955		goto again;
1956	}
1957
1958	/*
1959	 * The counter is currently disabled. Because we are
1960	 * running atomically here, we know a rebalance cannot
1961	 * be in progress. Hence we can go straight to operating
1962	 * on the global superblock. We do not call xfs_mod_incore_sb()
1963	 * here even though we need to get the m_sb_lock. Doing so
1964	 * will cause us to re-enter this function and deadlock.
1965	 * Hence we get the m_sb_lock ourselves and then call
1966	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1967	 * directly on the global counters.
1968	 */
1969	spin_lock(&mp->m_sb_lock);
1970	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1971	spin_unlock(&mp->m_sb_lock);
1972
1973	/*
1974	 * Now that we've modified the global superblock, we
1975	 * may be able to re-enable the distributed counters
1976	 * (e.g. lots of space just got freed). After that
1977	 * we are done.
1978	 */
1979	if (ret != ENOSPC)
1980		xfs_icsb_balance_counter(mp, field, 0);
1981	xfs_icsb_unlock(mp);
1982	return ret;
1983
1984balance_counter:
1985	xfs_icsb_unlock_cntr(icsbp);
1986	preempt_enable();
1987
1988	/*
1989	 * We may have multiple threads here if multiple per-cpu
1990	 * counters run dry at the same time. This will mean we can
1991	 * do more balances than strictly necessary but it is not
1992	 * the common slowpath case.
1993	 */
1994	xfs_icsb_lock(mp);
1995
1996	/*
1997	 * running atomically.
1998	 *
1999	 * This will leave the counter in the correct state for future
2000	 * accesses. After the rebalance, we simply try again and our retry
2001	 * will either succeed through the fast path or slow path without
2002	 * another balance operation being required.
2003	 */
2004	xfs_icsb_balance_counter(mp, field, delta);
2005	xfs_icsb_unlock(mp);
2006	goto again;
2007}
2008
2009#endif
v3.5.6
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
 
 
 
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_trans_priv.h"
  26#include "xfs_sb.h"
  27#include "xfs_ag.h"
  28#include "xfs_dir2.h"
  29#include "xfs_mount.h"
  30#include "xfs_bmap_btree.h"
  31#include "xfs_alloc_btree.h"
  32#include "xfs_ialloc_btree.h"
  33#include "xfs_dinode.h"
  34#include "xfs_inode.h"
  35#include "xfs_btree.h"
  36#include "xfs_ialloc.h"
  37#include "xfs_alloc.h"
  38#include "xfs_rtalloc.h"
  39#include "xfs_bmap.h"
 
 
 
  40#include "xfs_error.h"
  41#include "xfs_quota.h"
  42#include "xfs_fsops.h"
  43#include "xfs_utils.h"
  44#include "xfs_trace.h"
 
 
  45
  46
  47#ifdef HAVE_PERCPU_SB
  48STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
  49						int);
  50STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
  51						int);
  52STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
  53#else
  54
  55#define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
  56#define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
  57#endif
  58
  59static const struct {
  60	short offset;
  61	short type;	/* 0 = integer
  62			 * 1 = binary / string (no translation)
  63			 */
  64} xfs_sb_info[] = {
  65    { offsetof(xfs_sb_t, sb_magicnum),   0 },
  66    { offsetof(xfs_sb_t, sb_blocksize),  0 },
  67    { offsetof(xfs_sb_t, sb_dblocks),    0 },
  68    { offsetof(xfs_sb_t, sb_rblocks),    0 },
  69    { offsetof(xfs_sb_t, sb_rextents),   0 },
  70    { offsetof(xfs_sb_t, sb_uuid),       1 },
  71    { offsetof(xfs_sb_t, sb_logstart),   0 },
  72    { offsetof(xfs_sb_t, sb_rootino),    0 },
  73    { offsetof(xfs_sb_t, sb_rbmino),     0 },
  74    { offsetof(xfs_sb_t, sb_rsumino),    0 },
  75    { offsetof(xfs_sb_t, sb_rextsize),   0 },
  76    { offsetof(xfs_sb_t, sb_agblocks),   0 },
  77    { offsetof(xfs_sb_t, sb_agcount),    0 },
  78    { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
  79    { offsetof(xfs_sb_t, sb_logblocks),  0 },
  80    { offsetof(xfs_sb_t, sb_versionnum), 0 },
  81    { offsetof(xfs_sb_t, sb_sectsize),   0 },
  82    { offsetof(xfs_sb_t, sb_inodesize),  0 },
  83    { offsetof(xfs_sb_t, sb_inopblock),  0 },
  84    { offsetof(xfs_sb_t, sb_fname[0]),   1 },
  85    { offsetof(xfs_sb_t, sb_blocklog),   0 },
  86    { offsetof(xfs_sb_t, sb_sectlog),    0 },
  87    { offsetof(xfs_sb_t, sb_inodelog),   0 },
  88    { offsetof(xfs_sb_t, sb_inopblog),   0 },
  89    { offsetof(xfs_sb_t, sb_agblklog),   0 },
  90    { offsetof(xfs_sb_t, sb_rextslog),   0 },
  91    { offsetof(xfs_sb_t, sb_inprogress), 0 },
  92    { offsetof(xfs_sb_t, sb_imax_pct),   0 },
  93    { offsetof(xfs_sb_t, sb_icount),     0 },
  94    { offsetof(xfs_sb_t, sb_ifree),      0 },
  95    { offsetof(xfs_sb_t, sb_fdblocks),   0 },
  96    { offsetof(xfs_sb_t, sb_frextents),  0 },
  97    { offsetof(xfs_sb_t, sb_uquotino),   0 },
  98    { offsetof(xfs_sb_t, sb_gquotino),   0 },
  99    { offsetof(xfs_sb_t, sb_qflags),     0 },
 100    { offsetof(xfs_sb_t, sb_flags),      0 },
 101    { offsetof(xfs_sb_t, sb_shared_vn),  0 },
 102    { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
 103    { offsetof(xfs_sb_t, sb_unit),	 0 },
 104    { offsetof(xfs_sb_t, sb_width),	 0 },
 105    { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
 106    { offsetof(xfs_sb_t, sb_logsectlog), 0 },
 107    { offsetof(xfs_sb_t, sb_logsectsize),0 },
 108    { offsetof(xfs_sb_t, sb_logsunit),	 0 },
 109    { offsetof(xfs_sb_t, sb_features2),	 0 },
 110    { offsetof(xfs_sb_t, sb_bad_features2), 0 },
 111    { sizeof(xfs_sb_t),			 0 }
 112};
 113
 114static DEFINE_MUTEX(xfs_uuid_table_mutex);
 115static int xfs_uuid_table_size;
 116static uuid_t *xfs_uuid_table;
 117
 118/*
 119 * See if the UUID is unique among mounted XFS filesystems.
 120 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
 121 */
 122STATIC int
 123xfs_uuid_mount(
 124	struct xfs_mount	*mp)
 125{
 126	uuid_t			*uuid = &mp->m_sb.sb_uuid;
 127	int			hole, i;
 128
 129	if (mp->m_flags & XFS_MOUNT_NOUUID)
 130		return 0;
 131
 132	if (uuid_is_nil(uuid)) {
 133		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
 134		return XFS_ERROR(EINVAL);
 135	}
 136
 137	mutex_lock(&xfs_uuid_table_mutex);
 138	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
 139		if (uuid_is_nil(&xfs_uuid_table[i])) {
 140			hole = i;
 141			continue;
 142		}
 143		if (uuid_equal(uuid, &xfs_uuid_table[i]))
 144			goto out_duplicate;
 145	}
 146
 147	if (hole < 0) {
 148		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
 149			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
 150			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
 151			KM_SLEEP);
 152		hole = xfs_uuid_table_size++;
 153	}
 154	xfs_uuid_table[hole] = *uuid;
 155	mutex_unlock(&xfs_uuid_table_mutex);
 156
 157	return 0;
 158
 159 out_duplicate:
 160	mutex_unlock(&xfs_uuid_table_mutex);
 161	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 162	return XFS_ERROR(EINVAL);
 163}
 164
 165STATIC void
 166xfs_uuid_unmount(
 167	struct xfs_mount	*mp)
 168{
 169	uuid_t			*uuid = &mp->m_sb.sb_uuid;
 170	int			i;
 171
 172	if (mp->m_flags & XFS_MOUNT_NOUUID)
 173		return;
 174
 175	mutex_lock(&xfs_uuid_table_mutex);
 176	for (i = 0; i < xfs_uuid_table_size; i++) {
 177		if (uuid_is_nil(&xfs_uuid_table[i]))
 178			continue;
 179		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 180			continue;
 181		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 182		break;
 183	}
 184	ASSERT(i < xfs_uuid_table_size);
 185	mutex_unlock(&xfs_uuid_table_mutex);
 186}
 187
 188
 189/*
 190 * Reference counting access wrappers to the perag structures.
 191 * Because we never free per-ag structures, the only thing we
 192 * have to protect against changes is the tree structure itself.
 193 */
 194struct xfs_perag *
 195xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
 196{
 197	struct xfs_perag	*pag;
 198	int			ref = 0;
 199
 200	rcu_read_lock();
 201	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
 202	if (pag) {
 203		ASSERT(atomic_read(&pag->pag_ref) >= 0);
 204		ref = atomic_inc_return(&pag->pag_ref);
 205	}
 206	rcu_read_unlock();
 207	trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
 208	return pag;
 209}
 210
 211/*
 212 * search from @first to find the next perag with the given tag set.
 213 */
 214struct xfs_perag *
 215xfs_perag_get_tag(
 216	struct xfs_mount	*mp,
 217	xfs_agnumber_t		first,
 218	int			tag)
 219{
 220	struct xfs_perag	*pag;
 221	int			found;
 222	int			ref;
 223
 224	rcu_read_lock();
 225	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
 226					(void **)&pag, first, 1, tag);
 227	if (found <= 0) {
 228		rcu_read_unlock();
 229		return NULL;
 230	}
 231	ref = atomic_inc_return(&pag->pag_ref);
 232	rcu_read_unlock();
 233	trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
 234	return pag;
 235}
 236
 237void
 238xfs_perag_put(struct xfs_perag *pag)
 239{
 240	int	ref;
 241
 242	ASSERT(atomic_read(&pag->pag_ref) > 0);
 243	ref = atomic_dec_return(&pag->pag_ref);
 244	trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
 245}
 246
 247STATIC void
 248__xfs_free_perag(
 249	struct rcu_head	*head)
 250{
 251	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 252
 253	ASSERT(atomic_read(&pag->pag_ref) == 0);
 254	kmem_free(pag);
 255}
 256
 257/*
 258 * Free up the per-ag resources associated with the mount structure.
 259 */
 260STATIC void
 261xfs_free_perag(
 262	xfs_mount_t	*mp)
 263{
 264	xfs_agnumber_t	agno;
 265	struct xfs_perag *pag;
 266
 267	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 268		spin_lock(&mp->m_perag_lock);
 269		pag = radix_tree_delete(&mp->m_perag_tree, agno);
 270		spin_unlock(&mp->m_perag_lock);
 271		ASSERT(pag);
 272		ASSERT(atomic_read(&pag->pag_ref) == 0);
 273		call_rcu(&pag->rcu_head, __xfs_free_perag);
 274	}
 275}
 276
 277/*
 278 * Check size of device based on the (data/realtime) block count.
 279 * Note: this check is used by the growfs code as well as mount.
 280 */
 281int
 282xfs_sb_validate_fsb_count(
 283	xfs_sb_t	*sbp,
 284	__uint64_t	nblocks)
 285{
 286	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 287	ASSERT(sbp->sb_blocklog >= BBSHIFT);
 288
 289#if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
 290	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 291		return EFBIG;
 292#else                  /* Limited by UINT_MAX of sectors */
 293	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
 294		return EFBIG;
 295#endif
 296	return 0;
 297}
 298
 299/*
 300 * Check the validity of the SB found.
 301 */
 302STATIC int
 303xfs_mount_validate_sb(
 304	xfs_mount_t	*mp,
 305	xfs_sb_t	*sbp,
 306	int		flags)
 307{
 308	int		loud = !(flags & XFS_MFSI_QUIET);
 309
 310	/*
 311	 * If the log device and data device have the
 312	 * same device number, the log is internal.
 313	 * Consequently, the sb_logstart should be non-zero.  If
 314	 * we have a zero sb_logstart in this case, we may be trying to mount
 315	 * a volume filesystem in a non-volume manner.
 316	 */
 317	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 318		if (loud)
 319			xfs_warn(mp, "bad magic number");
 320		return XFS_ERROR(EWRONGFS);
 321	}
 322
 323	if (!xfs_sb_good_version(sbp)) {
 324		if (loud)
 325			xfs_warn(mp, "bad version");
 326		return XFS_ERROR(EWRONGFS);
 327	}
 328
 329	if (unlikely(
 330	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
 331		if (loud)
 332			xfs_warn(mp,
 333		"filesystem is marked as having an external log; "
 334		"specify logdev on the mount command line.");
 335		return XFS_ERROR(EINVAL);
 336	}
 337
 338	if (unlikely(
 339	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
 340		if (loud)
 341			xfs_warn(mp,
 342		"filesystem is marked as having an internal log; "
 343		"do not specify logdev on the mount command line.");
 344		return XFS_ERROR(EINVAL);
 345	}
 346
 347	/*
 348	 * More sanity checking.  Most of these were stolen directly from
 349	 * xfs_repair.
 350	 */
 351	if (unlikely(
 352	    sbp->sb_agcount <= 0					||
 353	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
 354	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
 355	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
 356	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
 357	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
 358	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
 359	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
 360	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
 361	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
 362	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
 363	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
 364	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
 365	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
 366	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
 367	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
 368	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
 369	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
 370	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
 371	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */)	||
 372	    sbp->sb_dblocks == 0					||
 373	    sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp)			||
 374	    sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
 375		if (loud)
 376			XFS_CORRUPTION_ERROR("SB sanity check failed",
 377				XFS_ERRLEVEL_LOW, mp, sbp);
 378		return XFS_ERROR(EFSCORRUPTED);
 379	}
 380
 381	/*
 382	 * Until this is fixed only page-sized or smaller data blocks work.
 383	 */
 384	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
 385		if (loud) {
 386			xfs_warn(mp,
 387		"File system with blocksize %d bytes. "
 388		"Only pagesize (%ld) or less will currently work.",
 389				sbp->sb_blocksize, PAGE_SIZE);
 390		}
 391		return XFS_ERROR(ENOSYS);
 392	}
 393
 394	/*
 395	 * Currently only very few inode sizes are supported.
 396	 */
 397	switch (sbp->sb_inodesize) {
 398	case 256:
 399	case 512:
 400	case 1024:
 401	case 2048:
 402		break;
 403	default:
 404		if (loud)
 405			xfs_warn(mp, "inode size of %d bytes not supported",
 406				sbp->sb_inodesize);
 407		return XFS_ERROR(ENOSYS);
 408	}
 409
 410	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
 411	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
 412		if (loud)
 413			xfs_warn(mp,
 414		"file system too large to be mounted on this system.");
 415		return XFS_ERROR(EFBIG);
 416	}
 417
 418	if (unlikely(sbp->sb_inprogress)) {
 419		if (loud)
 420			xfs_warn(mp, "file system busy");
 421		return XFS_ERROR(EFSCORRUPTED);
 422	}
 423
 424	/*
 425	 * Version 1 directory format has never worked on Linux.
 426	 */
 427	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
 428		if (loud)
 429			xfs_warn(mp,
 430				"file system using version 1 directory format");
 431		return XFS_ERROR(ENOSYS);
 432	}
 433
 434	return 0;
 435}
 436
 437int
 438xfs_initialize_perag(
 439	xfs_mount_t	*mp,
 440	xfs_agnumber_t	agcount,
 441	xfs_agnumber_t	*maxagi)
 442{
 443	xfs_agnumber_t	index, max_metadata;
 444	xfs_agnumber_t	first_initialised = 0;
 445	xfs_perag_t	*pag;
 446	xfs_agino_t	agino;
 447	xfs_ino_t	ino;
 448	xfs_sb_t	*sbp = &mp->m_sb;
 449	int		error = -ENOMEM;
 450
 451	/*
 452	 * Walk the current per-ag tree so we don't try to initialise AGs
 453	 * that already exist (growfs case). Allocate and insert all the
 454	 * AGs we don't find ready for initialisation.
 455	 */
 456	for (index = 0; index < agcount; index++) {
 457		pag = xfs_perag_get(mp, index);
 458		if (pag) {
 459			xfs_perag_put(pag);
 460			continue;
 461		}
 462		if (!first_initialised)
 463			first_initialised = index;
 464
 465		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 466		if (!pag)
 467			goto out_unwind;
 468		pag->pag_agno = index;
 469		pag->pag_mount = mp;
 470		spin_lock_init(&pag->pag_ici_lock);
 471		mutex_init(&pag->pag_ici_reclaim_lock);
 472		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 473		spin_lock_init(&pag->pag_buf_lock);
 474		pag->pag_buf_tree = RB_ROOT;
 475
 476		if (radix_tree_preload(GFP_NOFS))
 477			goto out_unwind;
 478
 479		spin_lock(&mp->m_perag_lock);
 480		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 481			BUG();
 482			spin_unlock(&mp->m_perag_lock);
 483			radix_tree_preload_end();
 484			error = -EEXIST;
 485			goto out_unwind;
 486		}
 487		spin_unlock(&mp->m_perag_lock);
 488		radix_tree_preload_end();
 489	}
 490
 491	/*
 492	 * If we mount with the inode64 option, or no inode overflows
 493	 * the legacy 32-bit address space clear the inode32 option.
 494	 */
 495	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
 496	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
 497
 498	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
 499		mp->m_flags |= XFS_MOUNT_32BITINODES;
 500	else
 501		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
 502
 503	if (mp->m_flags & XFS_MOUNT_32BITINODES) {
 504		/*
 505		 * Calculate how much should be reserved for inodes to meet
 506		 * the max inode percentage.
 507		 */
 508		if (mp->m_maxicount) {
 509			__uint64_t	icount;
 510
 511			icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 512			do_div(icount, 100);
 513			icount += sbp->sb_agblocks - 1;
 514			do_div(icount, sbp->sb_agblocks);
 515			max_metadata = icount;
 516		} else {
 517			max_metadata = agcount;
 518		}
 519
 520		for (index = 0; index < agcount; index++) {
 521			ino = XFS_AGINO_TO_INO(mp, index, agino);
 522			if (ino > XFS_MAXINUMBER_32) {
 523				index++;
 524				break;
 525			}
 526
 527			pag = xfs_perag_get(mp, index);
 528			pag->pagi_inodeok = 1;
 529			if (index < max_metadata)
 530				pag->pagf_metadata = 1;
 531			xfs_perag_put(pag);
 532		}
 533	} else {
 534		for (index = 0; index < agcount; index++) {
 535			pag = xfs_perag_get(mp, index);
 536			pag->pagi_inodeok = 1;
 537			xfs_perag_put(pag);
 538		}
 539	}
 540
 541	if (maxagi)
 542		*maxagi = index;
 543	return 0;
 544
 545out_unwind:
 546	kmem_free(pag);
 547	for (; index > first_initialised; index--) {
 548		pag = radix_tree_delete(&mp->m_perag_tree, index);
 549		kmem_free(pag);
 550	}
 551	return error;
 552}
 553
 554void
 555xfs_sb_from_disk(
 556	struct xfs_mount	*mp,
 557	xfs_dsb_t	*from)
 558{
 559	struct xfs_sb *to = &mp->m_sb;
 560
 561	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
 562	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
 563	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
 564	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
 565	to->sb_rextents = be64_to_cpu(from->sb_rextents);
 566	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
 567	to->sb_logstart = be64_to_cpu(from->sb_logstart);
 568	to->sb_rootino = be64_to_cpu(from->sb_rootino);
 569	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
 570	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
 571	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
 572	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
 573	to->sb_agcount = be32_to_cpu(from->sb_agcount);
 574	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
 575	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
 576	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
 577	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
 578	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
 579	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
 580	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
 581	to->sb_blocklog = from->sb_blocklog;
 582	to->sb_sectlog = from->sb_sectlog;
 583	to->sb_inodelog = from->sb_inodelog;
 584	to->sb_inopblog = from->sb_inopblog;
 585	to->sb_agblklog = from->sb_agblklog;
 586	to->sb_rextslog = from->sb_rextslog;
 587	to->sb_inprogress = from->sb_inprogress;
 588	to->sb_imax_pct = from->sb_imax_pct;
 589	to->sb_icount = be64_to_cpu(from->sb_icount);
 590	to->sb_ifree = be64_to_cpu(from->sb_ifree);
 591	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
 592	to->sb_frextents = be64_to_cpu(from->sb_frextents);
 593	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
 594	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
 595	to->sb_qflags = be16_to_cpu(from->sb_qflags);
 596	to->sb_flags = from->sb_flags;
 597	to->sb_shared_vn = from->sb_shared_vn;
 598	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
 599	to->sb_unit = be32_to_cpu(from->sb_unit);
 600	to->sb_width = be32_to_cpu(from->sb_width);
 601	to->sb_dirblklog = from->sb_dirblklog;
 602	to->sb_logsectlog = from->sb_logsectlog;
 603	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
 604	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
 605	to->sb_features2 = be32_to_cpu(from->sb_features2);
 606	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
 607}
 608
 609/*
 610 * Copy in core superblock to ondisk one.
 611 *
 612 * The fields argument is mask of superblock fields to copy.
 613 */
 614void
 615xfs_sb_to_disk(
 616	xfs_dsb_t	*to,
 617	xfs_sb_t	*from,
 618	__int64_t	fields)
 619{
 620	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
 621	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
 622	xfs_sb_field_t	f;
 623	int		first;
 624	int		size;
 625
 626	ASSERT(fields);
 627	if (!fields)
 628		return;
 629
 630	while (fields) {
 631		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
 632		first = xfs_sb_info[f].offset;
 633		size = xfs_sb_info[f + 1].offset - first;
 634
 635		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
 636
 637		if (size == 1 || xfs_sb_info[f].type == 1) {
 638			memcpy(to_ptr + first, from_ptr + first, size);
 639		} else {
 640			switch (size) {
 641			case 2:
 642				*(__be16 *)(to_ptr + first) =
 643					cpu_to_be16(*(__u16 *)(from_ptr + first));
 644				break;
 645			case 4:
 646				*(__be32 *)(to_ptr + first) =
 647					cpu_to_be32(*(__u32 *)(from_ptr + first));
 648				break;
 649			case 8:
 650				*(__be64 *)(to_ptr + first) =
 651					cpu_to_be64(*(__u64 *)(from_ptr + first));
 652				break;
 653			default:
 654				ASSERT(0);
 655			}
 656		}
 657
 658		fields &= ~(1LL << f);
 659	}
 660}
 661
 662/*
 663 * xfs_readsb
 664 *
 665 * Does the initial read of the superblock.
 666 */
 667int
 668xfs_readsb(xfs_mount_t *mp, int flags)
 
 
 669{
 670	unsigned int	sector_size;
 671	xfs_buf_t	*bp;
 
 672	int		error;
 673	int		loud = !(flags & XFS_MFSI_QUIET);
 
 674
 675	ASSERT(mp->m_sb_bp == NULL);
 676	ASSERT(mp->m_ddev_targp != NULL);
 677
 678	/*
 
 
 
 
 
 
 
 
 
 
 679	 * Allocate a (locked) buffer to hold the superblock.
 680	 * This will be kept around at all times to optimize
 681	 * access to the superblock.
 682	 */
 683	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 684
 685reread:
 686	bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 687					BTOBB(sector_size), 0);
 688	if (!bp) {
 689		if (loud)
 690			xfs_warn(mp, "SB buffer read failed");
 691		return EIO;
 692	}
 
 
 
 
 
 
 
 
 
 693
 694	/*
 695	 * Initialize the mount structure from the superblock.
 696	 * But first do some basic consistency checking.
 697	 */
 698	xfs_sb_from_disk(mp, XFS_BUF_TO_SBP(bp));
 699	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
 700	if (error) {
 701		if (loud)
 702			xfs_warn(mp, "SB validate failed");
 703		goto release_buf;
 704	}
 705
 706	/*
 707	 * We must be able to do sector-sized and sector-aligned IO.
 708	 */
 709	if (sector_size > mp->m_sb.sb_sectsize) {
 710		if (loud)
 711			xfs_warn(mp, "device supports %u byte sectors (not %u)",
 712				sector_size, mp->m_sb.sb_sectsize);
 713		error = ENOSYS;
 714		goto release_buf;
 715	}
 716
 717	/*
 718	 * If device sector size is smaller than the superblock size,
 719	 * re-read the superblock so the buffer is correctly sized.
 720	 */
 721	if (sector_size < mp->m_sb.sb_sectsize) {
 722		xfs_buf_relse(bp);
 723		sector_size = mp->m_sb.sb_sectsize;
 
 724		goto reread;
 725	}
 726
 727	/* Initialize per-cpu counters */
 728	xfs_icsb_reinit_counters(mp);
 729
 
 
 
 730	mp->m_sb_bp = bp;
 731	xfs_buf_unlock(bp);
 732	return 0;
 733
 734release_buf:
 735	xfs_buf_relse(bp);
 736	return error;
 737}
 738
 739
 740/*
 741 * xfs_mount_common
 742 *
 743 * Mount initialization code establishing various mount
 744 * fields from the superblock associated with the given
 745 * mount structure
 746 */
 747STATIC void
 748xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
 749{
 750	mp->m_agfrotor = mp->m_agirotor = 0;
 751	spin_lock_init(&mp->m_agirotor_lock);
 752	mp->m_maxagi = mp->m_sb.sb_agcount;
 753	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
 754	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
 755	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
 756	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
 757	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
 758	mp->m_blockmask = sbp->sb_blocksize - 1;
 759	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
 760	mp->m_blockwmask = mp->m_blockwsize - 1;
 761
 762	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
 763	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
 764	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
 765	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
 766
 767	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
 768	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
 769	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
 770	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
 771
 772	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
 773	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
 774	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
 775	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
 776
 777	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
 778	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
 779					sbp->sb_inopblock);
 780	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
 781}
 782
 783/*
 784 * xfs_initialize_perag_data
 785 *
 786 * Read in each per-ag structure so we can count up the number of
 787 * allocated inodes, free inodes and used filesystem blocks as this
 788 * information is no longer persistent in the superblock. Once we have
 789 * this information, write it into the in-core superblock structure.
 790 */
 791STATIC int
 792xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
 793{
 794	xfs_agnumber_t	index;
 795	xfs_perag_t	*pag;
 796	xfs_sb_t	*sbp = &mp->m_sb;
 797	uint64_t	ifree = 0;
 798	uint64_t	ialloc = 0;
 799	uint64_t	bfree = 0;
 800	uint64_t	bfreelst = 0;
 801	uint64_t	btree = 0;
 802	int		error;
 803
 804	for (index = 0; index < agcount; index++) {
 805		/*
 806		 * read the agf, then the agi. This gets us
 807		 * all the information we need and populates the
 808		 * per-ag structures for us.
 809		 */
 810		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
 811		if (error)
 812			return error;
 813
 814		error = xfs_ialloc_pagi_init(mp, NULL, index);
 815		if (error)
 816			return error;
 817		pag = xfs_perag_get(mp, index);
 818		ifree += pag->pagi_freecount;
 819		ialloc += pag->pagi_count;
 820		bfree += pag->pagf_freeblks;
 821		bfreelst += pag->pagf_flcount;
 822		btree += pag->pagf_btreeblks;
 823		xfs_perag_put(pag);
 824	}
 825	/*
 826	 * Overwrite incore superblock counters with just-read data
 827	 */
 828	spin_lock(&mp->m_sb_lock);
 829	sbp->sb_ifree = ifree;
 830	sbp->sb_icount = ialloc;
 831	sbp->sb_fdblocks = bfree + bfreelst + btree;
 832	spin_unlock(&mp->m_sb_lock);
 833
 834	/* Fixup the per-cpu counters as well. */
 835	xfs_icsb_reinit_counters(mp);
 836
 837	return 0;
 838}
 839
 840/*
 841 * Update alignment values based on mount options and sb values
 842 */
 843STATIC int
 844xfs_update_alignment(xfs_mount_t *mp)
 845{
 846	xfs_sb_t	*sbp = &(mp->m_sb);
 847
 848	if (mp->m_dalign) {
 849		/*
 850		 * If stripe unit and stripe width are not multiples
 851		 * of the fs blocksize turn off alignment.
 852		 */
 853		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 854		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 855			if (mp->m_flags & XFS_MOUNT_RETERR) {
 856				xfs_warn(mp, "alignment check failed: "
 857					 "(sunit/swidth vs. blocksize)");
 858				return XFS_ERROR(EINVAL);
 859			}
 860			mp->m_dalign = mp->m_swidth = 0;
 861		} else {
 862			/*
 863			 * Convert the stripe unit and width to FSBs.
 864			 */
 865			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 866			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 867				if (mp->m_flags & XFS_MOUNT_RETERR) {
 868					xfs_warn(mp, "alignment check failed: "
 869						 "(sunit/swidth vs. ag size)");
 870					return XFS_ERROR(EINVAL);
 871				}
 872				xfs_warn(mp,
 873		"stripe alignment turned off: sunit(%d)/swidth(%d) "
 874		"incompatible with agsize(%d)",
 875					mp->m_dalign, mp->m_swidth,
 876					sbp->sb_agblocks);
 877
 878				mp->m_dalign = 0;
 879				mp->m_swidth = 0;
 880			} else if (mp->m_dalign) {
 881				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 882			} else {
 883				if (mp->m_flags & XFS_MOUNT_RETERR) {
 884					xfs_warn(mp, "alignment check failed: "
 885						"sunit(%d) less than bsize(%d)",
 886						mp->m_dalign,
 887						mp->m_blockmask +1);
 888					return XFS_ERROR(EINVAL);
 889				}
 890				mp->m_swidth = 0;
 891			}
 892		}
 893
 894		/*
 895		 * Update superblock with new values
 896		 * and log changes
 897		 */
 898		if (xfs_sb_version_hasdalign(sbp)) {
 899			if (sbp->sb_unit != mp->m_dalign) {
 900				sbp->sb_unit = mp->m_dalign;
 901				mp->m_update_flags |= XFS_SB_UNIT;
 902			}
 903			if (sbp->sb_width != mp->m_swidth) {
 904				sbp->sb_width = mp->m_swidth;
 905				mp->m_update_flags |= XFS_SB_WIDTH;
 906			}
 
 
 
 
 907		}
 908	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 909		    xfs_sb_version_hasdalign(&mp->m_sb)) {
 910			mp->m_dalign = sbp->sb_unit;
 911			mp->m_swidth = sbp->sb_width;
 912	}
 913
 914	return 0;
 915}
 916
 917/*
 918 * Set the maximum inode count for this filesystem
 919 */
 920STATIC void
 921xfs_set_maxicount(xfs_mount_t *mp)
 922{
 923	xfs_sb_t	*sbp = &(mp->m_sb);
 924	__uint64_t	icount;
 925
 926	if (sbp->sb_imax_pct) {
 927		/*
 928		 * Make sure the maximum inode count is a multiple
 929		 * of the units we allocate inodes in.
 930		 */
 931		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 932		do_div(icount, 100);
 933		do_div(icount, mp->m_ialloc_blks);
 934		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 935				   sbp->sb_inopblog;
 936	} else {
 937		mp->m_maxicount = 0;
 938	}
 939}
 940
 941/*
 942 * Set the default minimum read and write sizes unless
 943 * already specified in a mount option.
 944 * We use smaller I/O sizes when the file system
 945 * is being used for NFS service (wsync mount option).
 946 */
 947STATIC void
 948xfs_set_rw_sizes(xfs_mount_t *mp)
 949{
 950	xfs_sb_t	*sbp = &(mp->m_sb);
 951	int		readio_log, writeio_log;
 952
 953	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 954		if (mp->m_flags & XFS_MOUNT_WSYNC) {
 955			readio_log = XFS_WSYNC_READIO_LOG;
 956			writeio_log = XFS_WSYNC_WRITEIO_LOG;
 957		} else {
 958			readio_log = XFS_READIO_LOG_LARGE;
 959			writeio_log = XFS_WRITEIO_LOG_LARGE;
 960		}
 961	} else {
 962		readio_log = mp->m_readio_log;
 963		writeio_log = mp->m_writeio_log;
 964	}
 965
 966	if (sbp->sb_blocklog > readio_log) {
 967		mp->m_readio_log = sbp->sb_blocklog;
 968	} else {
 969		mp->m_readio_log = readio_log;
 970	}
 971	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 972	if (sbp->sb_blocklog > writeio_log) {
 973		mp->m_writeio_log = sbp->sb_blocklog;
 974	} else {
 975		mp->m_writeio_log = writeio_log;
 976	}
 977	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 978}
 979
 980/*
 981 * precalculate the low space thresholds for dynamic speculative preallocation.
 982 */
 983void
 984xfs_set_low_space_thresholds(
 985	struct xfs_mount	*mp)
 986{
 987	int i;
 988
 989	for (i = 0; i < XFS_LOWSP_MAX; i++) {
 990		__uint64_t space = mp->m_sb.sb_dblocks;
 991
 992		do_div(space, 100);
 993		mp->m_low_space[i] = space * (i + 1);
 994	}
 995}
 996
 997
 998/*
 999 * Set whether we're using inode alignment.
1000 */
1001STATIC void
1002xfs_set_inoalignment(xfs_mount_t *mp)
1003{
1004	if (xfs_sb_version_hasalign(&mp->m_sb) &&
1005	    mp->m_sb.sb_inoalignmt >=
1006	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1007		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1008	else
1009		mp->m_inoalign_mask = 0;
1010	/*
1011	 * If we are using stripe alignment, check whether
1012	 * the stripe unit is a multiple of the inode alignment
1013	 */
1014	if (mp->m_dalign && mp->m_inoalign_mask &&
1015	    !(mp->m_dalign & mp->m_inoalign_mask))
1016		mp->m_sinoalign = mp->m_dalign;
1017	else
1018		mp->m_sinoalign = 0;
1019}
1020
1021/*
1022 * Check that the data (and log if separate) are an ok size.
1023 */
1024STATIC int
1025xfs_check_sizes(xfs_mount_t *mp)
1026{
1027	xfs_buf_t	*bp;
1028	xfs_daddr_t	d;
1029
1030	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1031	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1032		xfs_warn(mp, "filesystem size mismatch detected");
1033		return XFS_ERROR(EFBIG);
1034	}
1035	bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1036					d - XFS_FSS_TO_BB(mp, 1),
1037					XFS_FSS_TO_BB(mp, 1), 0);
1038	if (!bp) {
1039		xfs_warn(mp, "last sector read failed");
1040		return EIO;
1041	}
1042	xfs_buf_relse(bp);
1043
1044	if (mp->m_logdev_targp != mp->m_ddev_targp) {
1045		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1046		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1047			xfs_warn(mp, "log size mismatch detected");
1048			return XFS_ERROR(EFBIG);
1049		}
1050		bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1051					d - XFS_FSB_TO_BB(mp, 1),
1052					XFS_FSB_TO_BB(mp, 1), 0);
1053		if (!bp) {
1054			xfs_warn(mp, "log device read failed");
1055			return EIO;
1056		}
1057		xfs_buf_relse(bp);
1058	}
1059	return 0;
1060}
1061
1062/*
1063 * Clear the quotaflags in memory and in the superblock.
1064 */
1065int
1066xfs_mount_reset_sbqflags(
1067	struct xfs_mount	*mp)
1068{
1069	int			error;
1070	struct xfs_trans	*tp;
1071
1072	mp->m_qflags = 0;
1073
1074	/*
1075	 * It is OK to look at sb_qflags here in mount path,
1076	 * without m_sb_lock.
1077	 */
1078	if (mp->m_sb.sb_qflags == 0)
1079		return 0;
1080	spin_lock(&mp->m_sb_lock);
1081	mp->m_sb.sb_qflags = 0;
1082	spin_unlock(&mp->m_sb_lock);
1083
1084	/*
1085	 * If the fs is readonly, let the incore superblock run
1086	 * with quotas off but don't flush the update out to disk
1087	 */
1088	if (mp->m_flags & XFS_MOUNT_RDONLY)
1089		return 0;
1090
1091	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1092	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1093				      XFS_DEFAULT_LOG_COUNT);
1094	if (error) {
1095		xfs_trans_cancel(tp, 0);
1096		xfs_alert(mp, "%s: Superblock update failed!", __func__);
1097		return error;
1098	}
1099
1100	xfs_mod_sb(tp, XFS_SB_QFLAGS);
1101	return xfs_trans_commit(tp, 0);
1102}
1103
1104__uint64_t
1105xfs_default_resblks(xfs_mount_t *mp)
1106{
1107	__uint64_t resblks;
1108
1109	/*
1110	 * We default to 5% or 8192 fsbs of space reserved, whichever is
1111	 * smaller.  This is intended to cover concurrent allocation
1112	 * transactions when we initially hit enospc. These each require a 4
1113	 * block reservation. Hence by default we cover roughly 2000 concurrent
1114	 * allocation reservations.
1115	 */
1116	resblks = mp->m_sb.sb_dblocks;
1117	do_div(resblks, 20);
1118	resblks = min_t(__uint64_t, resblks, 8192);
1119	return resblks;
1120}
1121
1122/*
1123 * This function does the following on an initial mount of a file system:
1124 *	- reads the superblock from disk and init the mount struct
1125 *	- if we're a 32-bit kernel, do a size check on the superblock
1126 *		so we don't mount terabyte filesystems
1127 *	- init mount struct realtime fields
1128 *	- allocate inode hash table for fs
1129 *	- init directory manager
1130 *	- perform recovery and init the log manager
1131 */
1132int
1133xfs_mountfs(
1134	xfs_mount_t	*mp)
1135{
1136	xfs_sb_t	*sbp = &(mp->m_sb);
1137	xfs_inode_t	*rip;
1138	__uint64_t	resblks;
1139	uint		quotamount = 0;
1140	uint		quotaflags = 0;
1141	int		error = 0;
1142
1143	xfs_mount_common(mp, sbp);
1144
1145	/*
1146	 * Check for a mismatched features2 values.  Older kernels
1147	 * read & wrote into the wrong sb offset for sb_features2
1148	 * on some platforms due to xfs_sb_t not being 64bit size aligned
1149	 * when sb_features2 was added, which made older superblock
1150	 * reading/writing routines swap it as a 64-bit value.
1151	 *
1152	 * For backwards compatibility, we make both slots equal.
1153	 *
1154	 * If we detect a mismatched field, we OR the set bits into the
1155	 * existing features2 field in case it has already been modified; we
1156	 * don't want to lose any features.  We then update the bad location
1157	 * with the ORed value so that older kernels will see any features2
1158	 * flags, and mark the two fields as needing updates once the
1159	 * transaction subsystem is online.
1160	 */
1161	if (xfs_sb_has_mismatched_features2(sbp)) {
1162		xfs_warn(mp, "correcting sb_features alignment problem");
1163		sbp->sb_features2 |= sbp->sb_bad_features2;
1164		sbp->sb_bad_features2 = sbp->sb_features2;
1165		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1166
1167		/*
1168		 * Re-check for ATTR2 in case it was found in bad_features2
1169		 * slot.
1170		 */
1171		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1172		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1173			mp->m_flags |= XFS_MOUNT_ATTR2;
1174	}
1175
1176	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1177	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1178		xfs_sb_version_removeattr2(&mp->m_sb);
1179		mp->m_update_flags |= XFS_SB_FEATURES2;
1180
1181		/* update sb_versionnum for the clearing of the morebits */
1182		if (!sbp->sb_features2)
1183			mp->m_update_flags |= XFS_SB_VERSIONNUM;
1184	}
1185
1186	/*
1187	 * Check if sb_agblocks is aligned at stripe boundary
1188	 * If sb_agblocks is NOT aligned turn off m_dalign since
1189	 * allocator alignment is within an ag, therefore ag has
1190	 * to be aligned at stripe boundary.
1191	 */
1192	error = xfs_update_alignment(mp);
1193	if (error)
1194		goto out;
1195
1196	xfs_alloc_compute_maxlevels(mp);
1197	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1198	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1199	xfs_ialloc_compute_maxlevels(mp);
1200
1201	xfs_set_maxicount(mp);
1202
1203	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1204
1205	error = xfs_uuid_mount(mp);
1206	if (error)
1207		goto out;
1208
1209	/*
1210	 * Set the minimum read and write sizes
1211	 */
1212	xfs_set_rw_sizes(mp);
1213
1214	/* set the low space thresholds for dynamic preallocation */
1215	xfs_set_low_space_thresholds(mp);
1216
1217	/*
1218	 * Set the inode cluster size.
1219	 * This may still be overridden by the file system
1220	 * block size if it is larger than the chosen cluster size.
 
 
 
 
 
1221	 */
1222	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 
 
 
 
 
 
 
1223
1224	/*
1225	 * Set inode alignment fields
1226	 */
1227	xfs_set_inoalignment(mp);
1228
1229	/*
1230	 * Check that the data (and log if separate) are an ok size.
1231	 */
1232	error = xfs_check_sizes(mp);
1233	if (error)
1234		goto out_remove_uuid;
1235
1236	/*
1237	 * Initialize realtime fields in the mount structure
1238	 */
1239	error = xfs_rtmount_init(mp);
1240	if (error) {
1241		xfs_warn(mp, "RT mount failed");
1242		goto out_remove_uuid;
1243	}
1244
1245	/*
1246	 *  Copies the low order bits of the timestamp and the randomly
1247	 *  set "sequence" number out of a UUID.
1248	 */
1249	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1250
1251	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1252
1253	xfs_dir_mount(mp);
1254
1255	/*
1256	 * Initialize the attribute manager's entries.
1257	 */
1258	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1259
1260	/*
1261	 * Initialize the precomputed transaction reservations values.
1262	 */
1263	xfs_trans_init(mp);
1264
1265	/*
1266	 * Allocate and initialize the per-ag data.
1267	 */
1268	spin_lock_init(&mp->m_perag_lock);
1269	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1270	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1271	if (error) {
1272		xfs_warn(mp, "Failed per-ag init: %d", error);
1273		goto out_remove_uuid;
1274	}
1275
1276	if (!sbp->sb_logblocks) {
1277		xfs_warn(mp, "no log defined");
1278		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1279		error = XFS_ERROR(EFSCORRUPTED);
1280		goto out_free_perag;
1281	}
1282
1283	/*
1284	 * log's mount-time initialization. Perform 1st part recovery if needed
1285	 */
1286	error = xfs_log_mount(mp, mp->m_logdev_targp,
1287			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1288			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1289	if (error) {
1290		xfs_warn(mp, "log mount failed");
1291		goto out_fail_wait;
1292	}
1293
1294	/*
1295	 * Now the log is mounted, we know if it was an unclean shutdown or
1296	 * not. If it was, with the first phase of recovery has completed, we
1297	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1298	 * but they are recovered transactionally in the second recovery phase
1299	 * later.
1300	 *
1301	 * Hence we can safely re-initialise incore superblock counters from
1302	 * the per-ag data. These may not be correct if the filesystem was not
1303	 * cleanly unmounted, so we need to wait for recovery to finish before
1304	 * doing this.
1305	 *
1306	 * If the filesystem was cleanly unmounted, then we can trust the
1307	 * values in the superblock to be correct and we don't need to do
1308	 * anything here.
1309	 *
1310	 * If we are currently making the filesystem, the initialisation will
1311	 * fail as the perag data is in an undefined state.
1312	 */
1313	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1314	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1315	     !mp->m_sb.sb_inprogress) {
1316		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1317		if (error)
1318			goto out_fail_wait;
1319	}
1320
1321	/*
1322	 * Get and sanity-check the root inode.
1323	 * Save the pointer to it in the mount structure.
1324	 */
1325	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1326	if (error) {
1327		xfs_warn(mp, "failed to read root inode");
1328		goto out_log_dealloc;
1329	}
1330
1331	ASSERT(rip != NULL);
1332
1333	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1334		xfs_warn(mp, "corrupted root inode %llu: not a directory",
1335			(unsigned long long)rip->i_ino);
1336		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1337		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1338				 mp);
1339		error = XFS_ERROR(EFSCORRUPTED);
1340		goto out_rele_rip;
1341	}
1342	mp->m_rootip = rip;	/* save it */
1343
1344	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1345
1346	/*
1347	 * Initialize realtime inode pointers in the mount structure
1348	 */
1349	error = xfs_rtmount_inodes(mp);
1350	if (error) {
1351		/*
1352		 * Free up the root inode.
1353		 */
1354		xfs_warn(mp, "failed to read RT inodes");
1355		goto out_rele_rip;
1356	}
1357
1358	/*
1359	 * If this is a read-only mount defer the superblock updates until
1360	 * the next remount into writeable mode.  Otherwise we would never
1361	 * perform the update e.g. for the root filesystem.
1362	 */
1363	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1364		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1365		if (error) {
1366			xfs_warn(mp, "failed to write sb changes");
1367			goto out_rtunmount;
1368		}
1369	}
1370
1371	/*
1372	 * Initialise the XFS quota management subsystem for this mount
1373	 */
1374	if (XFS_IS_QUOTA_RUNNING(mp)) {
1375		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1376		if (error)
1377			goto out_rtunmount;
1378	} else {
1379		ASSERT(!XFS_IS_QUOTA_ON(mp));
1380
1381		/*
1382		 * If a file system had quotas running earlier, but decided to
1383		 * mount without -o uquota/pquota/gquota options, revoke the
1384		 * quotachecked license.
1385		 */
1386		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1387			xfs_notice(mp, "resetting quota flags");
1388			error = xfs_mount_reset_sbqflags(mp);
1389			if (error)
1390				return error;
1391		}
1392	}
1393
1394	/*
1395	 * Finish recovering the file system.  This part needed to be
1396	 * delayed until after the root and real-time bitmap inodes
1397	 * were consistently read in.
1398	 */
1399	error = xfs_log_mount_finish(mp);
1400	if (error) {
1401		xfs_warn(mp, "log mount finish failed");
1402		goto out_rtunmount;
1403	}
1404
1405	/*
1406	 * Complete the quota initialisation, post-log-replay component.
1407	 */
1408	if (quotamount) {
1409		ASSERT(mp->m_qflags == 0);
1410		mp->m_qflags = quotaflags;
1411
1412		xfs_qm_mount_quotas(mp);
1413	}
1414
1415	/*
1416	 * Now we are mounted, reserve a small amount of unused space for
1417	 * privileged transactions. This is needed so that transaction
1418	 * space required for critical operations can dip into this pool
1419	 * when at ENOSPC. This is needed for operations like create with
1420	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1421	 * are not allowed to use this reserved space.
1422	 *
1423	 * This may drive us straight to ENOSPC on mount, but that implies
1424	 * we were already there on the last unmount. Warn if this occurs.
1425	 */
1426	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1427		resblks = xfs_default_resblks(mp);
1428		error = xfs_reserve_blocks(mp, &resblks, NULL);
1429		if (error)
1430			xfs_warn(mp,
1431	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1432	}
1433
1434	return 0;
1435
1436 out_rtunmount:
1437	xfs_rtunmount_inodes(mp);
1438 out_rele_rip:
1439	IRELE(rip);
1440 out_log_dealloc:
1441	xfs_log_unmount(mp);
1442 out_fail_wait:
1443	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1444		xfs_wait_buftarg(mp->m_logdev_targp);
1445	xfs_wait_buftarg(mp->m_ddev_targp);
1446 out_free_perag:
1447	xfs_free_perag(mp);
1448 out_remove_uuid:
1449	xfs_uuid_unmount(mp);
1450 out:
1451	return error;
1452}
1453
1454/*
1455 * This flushes out the inodes,dquots and the superblock, unmounts the
1456 * log and makes sure that incore structures are freed.
1457 */
1458void
1459xfs_unmountfs(
1460	struct xfs_mount	*mp)
1461{
1462	__uint64_t		resblks;
1463	int			error;
1464
 
 
1465	xfs_qm_unmount_quotas(mp);
1466	xfs_rtunmount_inodes(mp);
1467	IRELE(mp->m_rootip);
1468
1469	/*
1470	 * We can potentially deadlock here if we have an inode cluster
1471	 * that has been freed has its buffer still pinned in memory because
1472	 * the transaction is still sitting in a iclog. The stale inodes
1473	 * on that buffer will have their flush locks held until the
1474	 * transaction hits the disk and the callbacks run. the inode
1475	 * flush takes the flush lock unconditionally and with nothing to
1476	 * push out the iclog we will never get that unlocked. hence we
1477	 * need to force the log first.
1478	 */
1479	xfs_log_force(mp, XFS_LOG_SYNC);
1480
1481	/*
1482	 * Flush all pending changes from the AIL.
1483	 */
1484	xfs_ail_push_all_sync(mp->m_ail);
1485
1486	/*
1487	 * And reclaim all inodes.  At this point there should be no dirty
1488	 * inode, and none should be pinned or locked, but use synchronous
1489	 * reclaim just to be sure.
 
1490	 */
 
1491	xfs_reclaim_inodes(mp, SYNC_WAIT);
1492
1493	xfs_qm_unmount(mp);
1494
1495	/*
1496	 * Flush out the log synchronously so that we know for sure
1497	 * that nothing is pinned.  This is important because bflush()
1498	 * will skip pinned buffers.
1499	 */
1500	xfs_log_force(mp, XFS_LOG_SYNC);
1501
1502	/*
1503	 * Unreserve any blocks we have so that when we unmount we don't account
1504	 * the reserved free space as used. This is really only necessary for
1505	 * lazy superblock counting because it trusts the incore superblock
1506	 * counters to be absolutely correct on clean unmount.
1507	 *
1508	 * We don't bother correcting this elsewhere for lazy superblock
1509	 * counting because on mount of an unclean filesystem we reconstruct the
1510	 * correct counter value and this is irrelevant.
1511	 *
1512	 * For non-lazy counter filesystems, this doesn't matter at all because
1513	 * we only every apply deltas to the superblock and hence the incore
1514	 * value does not matter....
1515	 */
1516	resblks = 0;
1517	error = xfs_reserve_blocks(mp, &resblks, NULL);
1518	if (error)
1519		xfs_warn(mp, "Unable to free reserved block pool. "
1520				"Freespace may not be correct on next mount.");
1521
1522	error = xfs_log_sbcount(mp);
1523	if (error)
1524		xfs_warn(mp, "Unable to update superblock counters. "
1525				"Freespace may not be correct on next mount.");
1526
1527	/*
1528	 * At this point we might have modified the superblock again and thus
1529	 * added an item to the AIL, thus flush it again.
1530	 */
1531	xfs_ail_push_all_sync(mp->m_ail);
1532	xfs_wait_buftarg(mp->m_ddev_targp);
1533
1534	xfs_log_unmount_write(mp);
1535	xfs_log_unmount(mp);
1536	xfs_uuid_unmount(mp);
1537
1538#if defined(DEBUG)
1539	xfs_errortag_clearall(mp, 0);
1540#endif
1541	xfs_free_perag(mp);
1542}
1543
1544int
1545xfs_fs_writable(xfs_mount_t *mp)
1546{
1547	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1548		(mp->m_flags & XFS_MOUNT_RDONLY));
1549}
1550
1551/*
1552 * xfs_log_sbcount
1553 *
1554 * Sync the superblock counters to disk.
1555 *
1556 * Note this code can be called during the process of freezing, so
1557 * we may need to use the transaction allocator which does not
1558 * block when the transaction subsystem is in its frozen state.
1559 */
1560int
1561xfs_log_sbcount(xfs_mount_t *mp)
1562{
1563	xfs_trans_t	*tp;
1564	int		error;
1565
1566	if (!xfs_fs_writable(mp))
1567		return 0;
1568
1569	xfs_icsb_sync_counters(mp, 0);
1570
1571	/*
1572	 * we don't need to do this if we are updating the superblock
1573	 * counters on every modification.
1574	 */
1575	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1576		return 0;
1577
1578	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1579	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1580					XFS_DEFAULT_LOG_COUNT);
1581	if (error) {
1582		xfs_trans_cancel(tp, 0);
1583		return error;
1584	}
1585
1586	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1587	xfs_trans_set_sync(tp);
1588	error = xfs_trans_commit(tp, 0);
1589	return error;
1590}
1591
1592/*
1593 * xfs_mod_sb() can be used to copy arbitrary changes to the
1594 * in-core superblock into the superblock buffer to be logged.
1595 * It does not provide the higher level of locking that is
1596 * needed to protect the in-core superblock from concurrent
1597 * access.
1598 */
1599void
1600xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1601{
1602	xfs_buf_t	*bp;
1603	int		first;
1604	int		last;
1605	xfs_mount_t	*mp;
1606	xfs_sb_field_t	f;
1607
1608	ASSERT(fields);
1609	if (!fields)
1610		return;
1611	mp = tp->t_mountp;
1612	bp = xfs_trans_getsb(tp, mp, 0);
1613	first = sizeof(xfs_sb_t);
1614	last = 0;
1615
1616	/* translate/copy */
1617
1618	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1619
1620	/* find modified range */
1621	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1622	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1623	last = xfs_sb_info[f + 1].offset - 1;
1624
1625	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1626	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1627	first = xfs_sb_info[f].offset;
1628
1629	xfs_trans_log_buf(tp, bp, first, last);
1630}
1631
1632
1633/*
1634 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1635 * a delta to a specified field in the in-core superblock.  Simply
1636 * switch on the field indicated and apply the delta to that field.
1637 * Fields are not allowed to dip below zero, so if the delta would
1638 * do this do not apply it and return EINVAL.
1639 *
1640 * The m_sb_lock must be held when this routine is called.
1641 */
1642STATIC int
1643xfs_mod_incore_sb_unlocked(
1644	xfs_mount_t	*mp,
1645	xfs_sb_field_t	field,
1646	int64_t		delta,
1647	int		rsvd)
1648{
1649	int		scounter;	/* short counter for 32 bit fields */
1650	long long	lcounter;	/* long counter for 64 bit fields */
1651	long long	res_used, rem;
1652
1653	/*
1654	 * With the in-core superblock spin lock held, switch
1655	 * on the indicated field.  Apply the delta to the
1656	 * proper field.  If the fields value would dip below
1657	 * 0, then do not apply the delta and return EINVAL.
1658	 */
1659	switch (field) {
1660	case XFS_SBS_ICOUNT:
1661		lcounter = (long long)mp->m_sb.sb_icount;
1662		lcounter += delta;
1663		if (lcounter < 0) {
1664			ASSERT(0);
1665			return XFS_ERROR(EINVAL);
1666		}
1667		mp->m_sb.sb_icount = lcounter;
1668		return 0;
1669	case XFS_SBS_IFREE:
1670		lcounter = (long long)mp->m_sb.sb_ifree;
1671		lcounter += delta;
1672		if (lcounter < 0) {
1673			ASSERT(0);
1674			return XFS_ERROR(EINVAL);
1675		}
1676		mp->m_sb.sb_ifree = lcounter;
1677		return 0;
1678	case XFS_SBS_FDBLOCKS:
1679		lcounter = (long long)
1680			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1681		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1682
1683		if (delta > 0) {		/* Putting blocks back */
1684			if (res_used > delta) {
1685				mp->m_resblks_avail += delta;
1686			} else {
1687				rem = delta - res_used;
1688				mp->m_resblks_avail = mp->m_resblks;
1689				lcounter += rem;
1690			}
1691		} else {				/* Taking blocks away */
1692			lcounter += delta;
1693			if (lcounter >= 0) {
1694				mp->m_sb.sb_fdblocks = lcounter +
1695							XFS_ALLOC_SET_ASIDE(mp);
1696				return 0;
1697			}
1698
1699			/*
1700			 * We are out of blocks, use any available reserved
1701			 * blocks if were allowed to.
1702			 */
1703			if (!rsvd)
1704				return XFS_ERROR(ENOSPC);
1705
1706			lcounter = (long long)mp->m_resblks_avail + delta;
1707			if (lcounter >= 0) {
1708				mp->m_resblks_avail = lcounter;
1709				return 0;
1710			}
1711			printk_once(KERN_WARNING
1712				"Filesystem \"%s\": reserve blocks depleted! "
1713				"Consider increasing reserve pool size.",
1714				mp->m_fsname);
1715			return XFS_ERROR(ENOSPC);
1716		}
1717
1718		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1719		return 0;
1720	case XFS_SBS_FREXTENTS:
1721		lcounter = (long long)mp->m_sb.sb_frextents;
1722		lcounter += delta;
1723		if (lcounter < 0) {
1724			return XFS_ERROR(ENOSPC);
1725		}
1726		mp->m_sb.sb_frextents = lcounter;
1727		return 0;
1728	case XFS_SBS_DBLOCKS:
1729		lcounter = (long long)mp->m_sb.sb_dblocks;
1730		lcounter += delta;
1731		if (lcounter < 0) {
1732			ASSERT(0);
1733			return XFS_ERROR(EINVAL);
1734		}
1735		mp->m_sb.sb_dblocks = lcounter;
1736		return 0;
1737	case XFS_SBS_AGCOUNT:
1738		scounter = mp->m_sb.sb_agcount;
1739		scounter += delta;
1740		if (scounter < 0) {
1741			ASSERT(0);
1742			return XFS_ERROR(EINVAL);
1743		}
1744		mp->m_sb.sb_agcount = scounter;
1745		return 0;
1746	case XFS_SBS_IMAX_PCT:
1747		scounter = mp->m_sb.sb_imax_pct;
1748		scounter += delta;
1749		if (scounter < 0) {
1750			ASSERT(0);
1751			return XFS_ERROR(EINVAL);
1752		}
1753		mp->m_sb.sb_imax_pct = scounter;
1754		return 0;
1755	case XFS_SBS_REXTSIZE:
1756		scounter = mp->m_sb.sb_rextsize;
1757		scounter += delta;
1758		if (scounter < 0) {
1759			ASSERT(0);
1760			return XFS_ERROR(EINVAL);
1761		}
1762		mp->m_sb.sb_rextsize = scounter;
1763		return 0;
1764	case XFS_SBS_RBMBLOCKS:
1765		scounter = mp->m_sb.sb_rbmblocks;
1766		scounter += delta;
1767		if (scounter < 0) {
1768			ASSERT(0);
1769			return XFS_ERROR(EINVAL);
1770		}
1771		mp->m_sb.sb_rbmblocks = scounter;
1772		return 0;
1773	case XFS_SBS_RBLOCKS:
1774		lcounter = (long long)mp->m_sb.sb_rblocks;
1775		lcounter += delta;
1776		if (lcounter < 0) {
1777			ASSERT(0);
1778			return XFS_ERROR(EINVAL);
1779		}
1780		mp->m_sb.sb_rblocks = lcounter;
1781		return 0;
1782	case XFS_SBS_REXTENTS:
1783		lcounter = (long long)mp->m_sb.sb_rextents;
1784		lcounter += delta;
1785		if (lcounter < 0) {
1786			ASSERT(0);
1787			return XFS_ERROR(EINVAL);
1788		}
1789		mp->m_sb.sb_rextents = lcounter;
1790		return 0;
1791	case XFS_SBS_REXTSLOG:
1792		scounter = mp->m_sb.sb_rextslog;
1793		scounter += delta;
1794		if (scounter < 0) {
1795			ASSERT(0);
1796			return XFS_ERROR(EINVAL);
1797		}
1798		mp->m_sb.sb_rextslog = scounter;
1799		return 0;
1800	default:
1801		ASSERT(0);
1802		return XFS_ERROR(EINVAL);
1803	}
1804}
1805
1806/*
1807 * xfs_mod_incore_sb() is used to change a field in the in-core
1808 * superblock structure by the specified delta.  This modification
1809 * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1810 * routine to do the work.
1811 */
1812int
1813xfs_mod_incore_sb(
1814	struct xfs_mount	*mp,
1815	xfs_sb_field_t		field,
1816	int64_t			delta,
1817	int			rsvd)
1818{
1819	int			status;
1820
1821#ifdef HAVE_PERCPU_SB
1822	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1823#endif
1824	spin_lock(&mp->m_sb_lock);
1825	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1826	spin_unlock(&mp->m_sb_lock);
1827
1828	return status;
1829}
1830
1831/*
1832 * Change more than one field in the in-core superblock structure at a time.
1833 *
1834 * The fields and changes to those fields are specified in the array of
1835 * xfs_mod_sb structures passed in.  Either all of the specified deltas
1836 * will be applied or none of them will.  If any modified field dips below 0,
1837 * then all modifications will be backed out and EINVAL will be returned.
1838 *
1839 * Note that this function may not be used for the superblock values that
1840 * are tracked with the in-memory per-cpu counters - a direct call to
1841 * xfs_icsb_modify_counters is required for these.
1842 */
1843int
1844xfs_mod_incore_sb_batch(
1845	struct xfs_mount	*mp,
1846	xfs_mod_sb_t		*msb,
1847	uint			nmsb,
1848	int			rsvd)
1849{
1850	xfs_mod_sb_t		*msbp;
1851	int			error = 0;
1852
1853	/*
1854	 * Loop through the array of mod structures and apply each individually.
1855	 * If any fail, then back out all those which have already been applied.
1856	 * Do all of this within the scope of the m_sb_lock so that all of the
1857	 * changes will be atomic.
1858	 */
1859	spin_lock(&mp->m_sb_lock);
1860	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1861		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1862		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1863
1864		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1865						   msbp->msb_delta, rsvd);
1866		if (error)
1867			goto unwind;
1868	}
1869	spin_unlock(&mp->m_sb_lock);
1870	return 0;
1871
1872unwind:
1873	while (--msbp >= msb) {
1874		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1875						   -msbp->msb_delta, rsvd);
1876		ASSERT(error == 0);
1877	}
1878	spin_unlock(&mp->m_sb_lock);
1879	return error;
1880}
1881
1882/*
1883 * xfs_getsb() is called to obtain the buffer for the superblock.
1884 * The buffer is returned locked and read in from disk.
1885 * The buffer should be released with a call to xfs_brelse().
1886 *
1887 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1888 * the superblock buffer if it can be locked without sleeping.
1889 * If it can't then we'll return NULL.
1890 */
1891struct xfs_buf *
1892xfs_getsb(
1893	struct xfs_mount	*mp,
1894	int			flags)
1895{
1896	struct xfs_buf		*bp = mp->m_sb_bp;
1897
1898	if (!xfs_buf_trylock(bp)) {
1899		if (flags & XBF_TRYLOCK)
1900			return NULL;
1901		xfs_buf_lock(bp);
1902	}
1903
1904	xfs_buf_hold(bp);
1905	ASSERT(XFS_BUF_ISDONE(bp));
1906	return bp;
1907}
1908
1909/*
1910 * Used to free the superblock along various error paths.
1911 */
1912void
1913xfs_freesb(
1914	struct xfs_mount	*mp)
1915{
1916	struct xfs_buf		*bp = mp->m_sb_bp;
1917
1918	xfs_buf_lock(bp);
1919	mp->m_sb_bp = NULL;
1920	xfs_buf_relse(bp);
1921}
1922
1923/*
1924 * Used to log changes to the superblock unit and width fields which could
1925 * be altered by the mount options, as well as any potential sb_features2
1926 * fixup. Only the first superblock is updated.
1927 */
1928int
1929xfs_mount_log_sb(
1930	xfs_mount_t	*mp,
1931	__int64_t	fields)
1932{
1933	xfs_trans_t	*tp;
1934	int		error;
1935
1936	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1937			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1938			 XFS_SB_VERSIONNUM));
1939
1940	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1941	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1942				XFS_DEFAULT_LOG_COUNT);
1943	if (error) {
1944		xfs_trans_cancel(tp, 0);
1945		return error;
1946	}
1947	xfs_mod_sb(tp, fields);
1948	error = xfs_trans_commit(tp, 0);
1949	return error;
1950}
1951
1952/*
1953 * If the underlying (data/log/rt) device is readonly, there are some
1954 * operations that cannot proceed.
1955 */
1956int
1957xfs_dev_is_read_only(
1958	struct xfs_mount	*mp,
1959	char			*message)
1960{
1961	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1962	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1963	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1964		xfs_notice(mp, "%s required on read-only device.", message);
1965		xfs_notice(mp, "write access unavailable, cannot proceed.");
1966		return EROFS;
1967	}
1968	return 0;
1969}
1970
1971#ifdef HAVE_PERCPU_SB
1972/*
1973 * Per-cpu incore superblock counters
1974 *
1975 * Simple concept, difficult implementation
1976 *
1977 * Basically, replace the incore superblock counters with a distributed per cpu
1978 * counter for contended fields (e.g.  free block count).
1979 *
1980 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1981 * hence needs to be accurately read when we are running low on space. Hence
1982 * there is a method to enable and disable the per-cpu counters based on how
1983 * much "stuff" is available in them.
1984 *
1985 * Basically, a counter is enabled if there is enough free resource to justify
1986 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1987 * ENOSPC), then we disable the counters to synchronise all callers and
1988 * re-distribute the available resources.
1989 *
1990 * If, once we redistributed the available resources, we still get a failure,
1991 * we disable the per-cpu counter and go through the slow path.
1992 *
1993 * The slow path is the current xfs_mod_incore_sb() function.  This means that
1994 * when we disable a per-cpu counter, we need to drain its resources back to
1995 * the global superblock. We do this after disabling the counter to prevent
1996 * more threads from queueing up on the counter.
1997 *
1998 * Essentially, this means that we still need a lock in the fast path to enable
1999 * synchronisation between the global counters and the per-cpu counters. This
2000 * is not a problem because the lock will be local to a CPU almost all the time
2001 * and have little contention except when we get to ENOSPC conditions.
2002 *
2003 * Basically, this lock becomes a barrier that enables us to lock out the fast
2004 * path while we do things like enabling and disabling counters and
2005 * synchronising the counters.
2006 *
2007 * Locking rules:
2008 *
2009 * 	1. m_sb_lock before picking up per-cpu locks
2010 * 	2. per-cpu locks always picked up via for_each_online_cpu() order
2011 * 	3. accurate counter sync requires m_sb_lock + per cpu locks
2012 * 	4. modifying per-cpu counters requires holding per-cpu lock
2013 * 	5. modifying global counters requires holding m_sb_lock
2014 *	6. enabling or disabling a counter requires holding the m_sb_lock 
2015 *	   and _none_ of the per-cpu locks.
2016 *
2017 * Disabled counters are only ever re-enabled by a balance operation
2018 * that results in more free resources per CPU than a given threshold.
2019 * To ensure counters don't remain disabled, they are rebalanced when
2020 * the global resource goes above a higher threshold (i.e. some hysteresis
2021 * is present to prevent thrashing).
2022 */
2023
2024#ifdef CONFIG_HOTPLUG_CPU
2025/*
2026 * hot-plug CPU notifier support.
2027 *
2028 * We need a notifier per filesystem as we need to be able to identify
2029 * the filesystem to balance the counters out. This is achieved by
2030 * having a notifier block embedded in the xfs_mount_t and doing pointer
2031 * magic to get the mount pointer from the notifier block address.
2032 */
2033STATIC int
2034xfs_icsb_cpu_notify(
2035	struct notifier_block *nfb,
2036	unsigned long action,
2037	void *hcpu)
2038{
2039	xfs_icsb_cnts_t *cntp;
2040	xfs_mount_t	*mp;
2041
2042	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2043	cntp = (xfs_icsb_cnts_t *)
2044			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2045	switch (action) {
2046	case CPU_UP_PREPARE:
2047	case CPU_UP_PREPARE_FROZEN:
2048		/* Easy Case - initialize the area and locks, and
2049		 * then rebalance when online does everything else for us. */
2050		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2051		break;
2052	case CPU_ONLINE:
2053	case CPU_ONLINE_FROZEN:
2054		xfs_icsb_lock(mp);
2055		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2056		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2057		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2058		xfs_icsb_unlock(mp);
2059		break;
2060	case CPU_DEAD:
2061	case CPU_DEAD_FROZEN:
2062		/* Disable all the counters, then fold the dead cpu's
2063		 * count into the total on the global superblock and
2064		 * re-enable the counters. */
2065		xfs_icsb_lock(mp);
2066		spin_lock(&mp->m_sb_lock);
2067		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2068		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2069		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2070
2071		mp->m_sb.sb_icount += cntp->icsb_icount;
2072		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2073		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2074
2075		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2076
2077		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2078		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2079		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2080		spin_unlock(&mp->m_sb_lock);
2081		xfs_icsb_unlock(mp);
2082		break;
2083	}
2084
2085	return NOTIFY_OK;
2086}
2087#endif /* CONFIG_HOTPLUG_CPU */
2088
2089int
2090xfs_icsb_init_counters(
2091	xfs_mount_t	*mp)
2092{
2093	xfs_icsb_cnts_t *cntp;
2094	int		i;
2095
2096	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2097	if (mp->m_sb_cnts == NULL)
2098		return -ENOMEM;
2099
2100#ifdef CONFIG_HOTPLUG_CPU
2101	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2102	mp->m_icsb_notifier.priority = 0;
2103	register_hotcpu_notifier(&mp->m_icsb_notifier);
2104#endif /* CONFIG_HOTPLUG_CPU */
2105
2106	for_each_online_cpu(i) {
2107		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2108		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2109	}
2110
2111	mutex_init(&mp->m_icsb_mutex);
2112
2113	/*
2114	 * start with all counters disabled so that the
2115	 * initial balance kicks us off correctly
2116	 */
2117	mp->m_icsb_counters = -1;
 
 
 
 
 
 
 
2118	return 0;
2119}
2120
2121void
2122xfs_icsb_reinit_counters(
2123	xfs_mount_t	*mp)
2124{
2125	xfs_icsb_lock(mp);
2126	/*
2127	 * start with all counters disabled so that the
2128	 * initial balance kicks us off correctly
2129	 */
2130	mp->m_icsb_counters = -1;
2131	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2132	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2133	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2134	xfs_icsb_unlock(mp);
2135}
2136
2137void
2138xfs_icsb_destroy_counters(
2139	xfs_mount_t	*mp)
2140{
2141	if (mp->m_sb_cnts) {
2142		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2143		free_percpu(mp->m_sb_cnts);
2144	}
2145	mutex_destroy(&mp->m_icsb_mutex);
2146}
2147
2148STATIC void
2149xfs_icsb_lock_cntr(
2150	xfs_icsb_cnts_t	*icsbp)
2151{
2152	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2153		ndelay(1000);
2154	}
2155}
2156
2157STATIC void
2158xfs_icsb_unlock_cntr(
2159	xfs_icsb_cnts_t	*icsbp)
2160{
2161	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2162}
2163
2164
2165STATIC void
2166xfs_icsb_lock_all_counters(
2167	xfs_mount_t	*mp)
2168{
2169	xfs_icsb_cnts_t *cntp;
2170	int		i;
2171
2172	for_each_online_cpu(i) {
2173		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2174		xfs_icsb_lock_cntr(cntp);
2175	}
2176}
2177
2178STATIC void
2179xfs_icsb_unlock_all_counters(
2180	xfs_mount_t	*mp)
2181{
2182	xfs_icsb_cnts_t *cntp;
2183	int		i;
2184
2185	for_each_online_cpu(i) {
2186		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2187		xfs_icsb_unlock_cntr(cntp);
2188	}
2189}
2190
2191STATIC void
2192xfs_icsb_count(
2193	xfs_mount_t	*mp,
2194	xfs_icsb_cnts_t	*cnt,
2195	int		flags)
2196{
2197	xfs_icsb_cnts_t *cntp;
2198	int		i;
2199
2200	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2201
2202	if (!(flags & XFS_ICSB_LAZY_COUNT))
2203		xfs_icsb_lock_all_counters(mp);
2204
2205	for_each_online_cpu(i) {
2206		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2207		cnt->icsb_icount += cntp->icsb_icount;
2208		cnt->icsb_ifree += cntp->icsb_ifree;
2209		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2210	}
2211
2212	if (!(flags & XFS_ICSB_LAZY_COUNT))
2213		xfs_icsb_unlock_all_counters(mp);
2214}
2215
2216STATIC int
2217xfs_icsb_counter_disabled(
2218	xfs_mount_t	*mp,
2219	xfs_sb_field_t	field)
2220{
2221	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2222	return test_bit(field, &mp->m_icsb_counters);
2223}
2224
2225STATIC void
2226xfs_icsb_disable_counter(
2227	xfs_mount_t	*mp,
2228	xfs_sb_field_t	field)
2229{
2230	xfs_icsb_cnts_t	cnt;
2231
2232	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2233
2234	/*
2235	 * If we are already disabled, then there is nothing to do
2236	 * here. We check before locking all the counters to avoid
2237	 * the expensive lock operation when being called in the
2238	 * slow path and the counter is already disabled. This is
2239	 * safe because the only time we set or clear this state is under
2240	 * the m_icsb_mutex.
2241	 */
2242	if (xfs_icsb_counter_disabled(mp, field))
2243		return;
2244
2245	xfs_icsb_lock_all_counters(mp);
2246	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2247		/* drain back to superblock */
2248
2249		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2250		switch(field) {
2251		case XFS_SBS_ICOUNT:
2252			mp->m_sb.sb_icount = cnt.icsb_icount;
2253			break;
2254		case XFS_SBS_IFREE:
2255			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2256			break;
2257		case XFS_SBS_FDBLOCKS:
2258			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2259			break;
2260		default:
2261			BUG();
2262		}
2263	}
2264
2265	xfs_icsb_unlock_all_counters(mp);
2266}
2267
2268STATIC void
2269xfs_icsb_enable_counter(
2270	xfs_mount_t	*mp,
2271	xfs_sb_field_t	field,
2272	uint64_t	count,
2273	uint64_t	resid)
2274{
2275	xfs_icsb_cnts_t	*cntp;
2276	int		i;
2277
2278	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2279
2280	xfs_icsb_lock_all_counters(mp);
2281	for_each_online_cpu(i) {
2282		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2283		switch (field) {
2284		case XFS_SBS_ICOUNT:
2285			cntp->icsb_icount = count + resid;
2286			break;
2287		case XFS_SBS_IFREE:
2288			cntp->icsb_ifree = count + resid;
2289			break;
2290		case XFS_SBS_FDBLOCKS:
2291			cntp->icsb_fdblocks = count + resid;
2292			break;
2293		default:
2294			BUG();
2295			break;
2296		}
2297		resid = 0;
2298	}
2299	clear_bit(field, &mp->m_icsb_counters);
2300	xfs_icsb_unlock_all_counters(mp);
2301}
2302
2303void
2304xfs_icsb_sync_counters_locked(
2305	xfs_mount_t	*mp,
2306	int		flags)
2307{
2308	xfs_icsb_cnts_t	cnt;
2309
2310	xfs_icsb_count(mp, &cnt, flags);
2311
2312	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2313		mp->m_sb.sb_icount = cnt.icsb_icount;
2314	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2315		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2316	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2317		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2318}
2319
2320/*
2321 * Accurate update of per-cpu counters to incore superblock
2322 */
2323void
2324xfs_icsb_sync_counters(
2325	xfs_mount_t	*mp,
2326	int		flags)
2327{
2328	spin_lock(&mp->m_sb_lock);
2329	xfs_icsb_sync_counters_locked(mp, flags);
2330	spin_unlock(&mp->m_sb_lock);
2331}
2332
2333/*
2334 * Balance and enable/disable counters as necessary.
2335 *
2336 * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2337 * chosen to be the same number as single on disk allocation chunk per CPU, and
2338 * free blocks is something far enough zero that we aren't going thrash when we
2339 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2340 * prevent looping endlessly when xfs_alloc_space asks for more than will
2341 * be distributed to a single CPU but each CPU has enough blocks to be
2342 * reenabled.
2343 *
2344 * Note that we can be called when counters are already disabled.
2345 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2346 * prevent locking every per-cpu counter needlessly.
2347 */
2348
2349#define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2350#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2351		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2352STATIC void
2353xfs_icsb_balance_counter_locked(
2354	xfs_mount_t	*mp,
2355	xfs_sb_field_t  field,
2356	int		min_per_cpu)
2357{
2358	uint64_t	count, resid;
2359	int		weight = num_online_cpus();
2360	uint64_t	min = (uint64_t)min_per_cpu;
2361
2362	/* disable counter and sync counter */
2363	xfs_icsb_disable_counter(mp, field);
2364
2365	/* update counters  - first CPU gets residual*/
2366	switch (field) {
2367	case XFS_SBS_ICOUNT:
2368		count = mp->m_sb.sb_icount;
2369		resid = do_div(count, weight);
2370		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2371			return;
2372		break;
2373	case XFS_SBS_IFREE:
2374		count = mp->m_sb.sb_ifree;
2375		resid = do_div(count, weight);
2376		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2377			return;
2378		break;
2379	case XFS_SBS_FDBLOCKS:
2380		count = mp->m_sb.sb_fdblocks;
2381		resid = do_div(count, weight);
2382		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2383			return;
2384		break;
2385	default:
2386		BUG();
2387		count = resid = 0;	/* quiet, gcc */
2388		break;
2389	}
2390
2391	xfs_icsb_enable_counter(mp, field, count, resid);
2392}
2393
2394STATIC void
2395xfs_icsb_balance_counter(
2396	xfs_mount_t	*mp,
2397	xfs_sb_field_t  fields,
2398	int		min_per_cpu)
2399{
2400	spin_lock(&mp->m_sb_lock);
2401	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2402	spin_unlock(&mp->m_sb_lock);
2403}
2404
2405int
2406xfs_icsb_modify_counters(
2407	xfs_mount_t	*mp,
2408	xfs_sb_field_t	field,
2409	int64_t		delta,
2410	int		rsvd)
2411{
2412	xfs_icsb_cnts_t	*icsbp;
2413	long long	lcounter;	/* long counter for 64 bit fields */
2414	int		ret = 0;
2415
2416	might_sleep();
2417again:
2418	preempt_disable();
2419	icsbp = this_cpu_ptr(mp->m_sb_cnts);
2420
2421	/*
2422	 * if the counter is disabled, go to slow path
2423	 */
2424	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2425		goto slow_path;
2426	xfs_icsb_lock_cntr(icsbp);
2427	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2428		xfs_icsb_unlock_cntr(icsbp);
2429		goto slow_path;
2430	}
2431
2432	switch (field) {
2433	case XFS_SBS_ICOUNT:
2434		lcounter = icsbp->icsb_icount;
2435		lcounter += delta;
2436		if (unlikely(lcounter < 0))
2437			goto balance_counter;
2438		icsbp->icsb_icount = lcounter;
2439		break;
2440
2441	case XFS_SBS_IFREE:
2442		lcounter = icsbp->icsb_ifree;
2443		lcounter += delta;
2444		if (unlikely(lcounter < 0))
2445			goto balance_counter;
2446		icsbp->icsb_ifree = lcounter;
2447		break;
2448
2449	case XFS_SBS_FDBLOCKS:
2450		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2451
2452		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2453		lcounter += delta;
2454		if (unlikely(lcounter < 0))
2455			goto balance_counter;
2456		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2457		break;
2458	default:
2459		BUG();
2460		break;
2461	}
2462	xfs_icsb_unlock_cntr(icsbp);
2463	preempt_enable();
2464	return 0;
2465
2466slow_path:
2467	preempt_enable();
2468
2469	/*
2470	 * serialise with a mutex so we don't burn lots of cpu on
2471	 * the superblock lock. We still need to hold the superblock
2472	 * lock, however, when we modify the global structures.
2473	 */
2474	xfs_icsb_lock(mp);
2475
2476	/*
2477	 * Now running atomically.
2478	 *
2479	 * If the counter is enabled, someone has beaten us to rebalancing.
2480	 * Drop the lock and try again in the fast path....
2481	 */
2482	if (!(xfs_icsb_counter_disabled(mp, field))) {
2483		xfs_icsb_unlock(mp);
2484		goto again;
2485	}
2486
2487	/*
2488	 * The counter is currently disabled. Because we are
2489	 * running atomically here, we know a rebalance cannot
2490	 * be in progress. Hence we can go straight to operating
2491	 * on the global superblock. We do not call xfs_mod_incore_sb()
2492	 * here even though we need to get the m_sb_lock. Doing so
2493	 * will cause us to re-enter this function and deadlock.
2494	 * Hence we get the m_sb_lock ourselves and then call
2495	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2496	 * directly on the global counters.
2497	 */
2498	spin_lock(&mp->m_sb_lock);
2499	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2500	spin_unlock(&mp->m_sb_lock);
2501
2502	/*
2503	 * Now that we've modified the global superblock, we
2504	 * may be able to re-enable the distributed counters
2505	 * (e.g. lots of space just got freed). After that
2506	 * we are done.
2507	 */
2508	if (ret != ENOSPC)
2509		xfs_icsb_balance_counter(mp, field, 0);
2510	xfs_icsb_unlock(mp);
2511	return ret;
2512
2513balance_counter:
2514	xfs_icsb_unlock_cntr(icsbp);
2515	preempt_enable();
2516
2517	/*
2518	 * We may have multiple threads here if multiple per-cpu
2519	 * counters run dry at the same time. This will mean we can
2520	 * do more balances than strictly necessary but it is not
2521	 * the common slowpath case.
2522	 */
2523	xfs_icsb_lock(mp);
2524
2525	/*
2526	 * running atomically.
2527	 *
2528	 * This will leave the counter in the correct state for future
2529	 * accesses. After the rebalance, we simply try again and our retry
2530	 * will either succeed through the fast path or slow path without
2531	 * another balance operation being required.
2532	 */
2533	xfs_icsb_balance_counter(mp, field, delta);
2534	xfs_icsb_unlock(mp);
2535	goto again;
2536}
2537
2538#endif