Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_inum.h"
26#include "xfs_sb.h"
27#include "xfs_ag.h"
28#include "xfs_mount.h"
29#include "xfs_da_format.h"
30#include "xfs_inode.h"
31#include "xfs_dir2.h"
32#include "xfs_ialloc.h"
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
39#include "xfs_error.h"
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
42#include "xfs_trace.h"
43#include "xfs_icache.h"
44#include "xfs_dinode.h"
45
46
47#ifdef HAVE_PERCPU_SB
48STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
49 int);
50STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
51 int);
52STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
53#else
54
55#define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
56#define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
57#endif
58
59static DEFINE_MUTEX(xfs_uuid_table_mutex);
60static int xfs_uuid_table_size;
61static uuid_t *xfs_uuid_table;
62
63/*
64 * See if the UUID is unique among mounted XFS filesystems.
65 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
66 */
67STATIC int
68xfs_uuid_mount(
69 struct xfs_mount *mp)
70{
71 uuid_t *uuid = &mp->m_sb.sb_uuid;
72 int hole, i;
73
74 if (mp->m_flags & XFS_MOUNT_NOUUID)
75 return 0;
76
77 if (uuid_is_nil(uuid)) {
78 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
79 return XFS_ERROR(EINVAL);
80 }
81
82 mutex_lock(&xfs_uuid_table_mutex);
83 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
84 if (uuid_is_nil(&xfs_uuid_table[i])) {
85 hole = i;
86 continue;
87 }
88 if (uuid_equal(uuid, &xfs_uuid_table[i]))
89 goto out_duplicate;
90 }
91
92 if (hole < 0) {
93 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
94 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
95 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
96 KM_SLEEP);
97 hole = xfs_uuid_table_size++;
98 }
99 xfs_uuid_table[hole] = *uuid;
100 mutex_unlock(&xfs_uuid_table_mutex);
101
102 return 0;
103
104 out_duplicate:
105 mutex_unlock(&xfs_uuid_table_mutex);
106 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
107 return XFS_ERROR(EINVAL);
108}
109
110STATIC void
111xfs_uuid_unmount(
112 struct xfs_mount *mp)
113{
114 uuid_t *uuid = &mp->m_sb.sb_uuid;
115 int i;
116
117 if (mp->m_flags & XFS_MOUNT_NOUUID)
118 return;
119
120 mutex_lock(&xfs_uuid_table_mutex);
121 for (i = 0; i < xfs_uuid_table_size; i++) {
122 if (uuid_is_nil(&xfs_uuid_table[i]))
123 continue;
124 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 continue;
126 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 break;
128 }
129 ASSERT(i < xfs_uuid_table_size);
130 mutex_unlock(&xfs_uuid_table_mutex);
131}
132
133
134STATIC void
135__xfs_free_perag(
136 struct rcu_head *head)
137{
138 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139
140 ASSERT(atomic_read(&pag->pag_ref) == 0);
141 kmem_free(pag);
142}
143
144/*
145 * Free up the per-ag resources associated with the mount structure.
146 */
147STATIC void
148xfs_free_perag(
149 xfs_mount_t *mp)
150{
151 xfs_agnumber_t agno;
152 struct xfs_perag *pag;
153
154 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 spin_lock(&mp->m_perag_lock);
156 pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 spin_unlock(&mp->m_perag_lock);
158 ASSERT(pag);
159 ASSERT(atomic_read(&pag->pag_ref) == 0);
160 call_rcu(&pag->rcu_head, __xfs_free_perag);
161 }
162}
163
164/*
165 * Check size of device based on the (data/realtime) block count.
166 * Note: this check is used by the growfs code as well as mount.
167 */
168int
169xfs_sb_validate_fsb_count(
170 xfs_sb_t *sbp,
171 __uint64_t nblocks)
172{
173 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
174 ASSERT(sbp->sb_blocklog >= BBSHIFT);
175
176#if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
177 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
178 return EFBIG;
179#else /* Limited by UINT_MAX of sectors */
180 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
181 return EFBIG;
182#endif
183 return 0;
184}
185
186int
187xfs_initialize_perag(
188 xfs_mount_t *mp,
189 xfs_agnumber_t agcount,
190 xfs_agnumber_t *maxagi)
191{
192 xfs_agnumber_t index;
193 xfs_agnumber_t first_initialised = 0;
194 xfs_perag_t *pag;
195 xfs_agino_t agino;
196 xfs_ino_t ino;
197 xfs_sb_t *sbp = &mp->m_sb;
198 int error = -ENOMEM;
199
200 /*
201 * Walk the current per-ag tree so we don't try to initialise AGs
202 * that already exist (growfs case). Allocate and insert all the
203 * AGs we don't find ready for initialisation.
204 */
205 for (index = 0; index < agcount; index++) {
206 pag = xfs_perag_get(mp, index);
207 if (pag) {
208 xfs_perag_put(pag);
209 continue;
210 }
211 if (!first_initialised)
212 first_initialised = index;
213
214 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
215 if (!pag)
216 goto out_unwind;
217 pag->pag_agno = index;
218 pag->pag_mount = mp;
219 spin_lock_init(&pag->pag_ici_lock);
220 mutex_init(&pag->pag_ici_reclaim_lock);
221 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
222 spin_lock_init(&pag->pag_buf_lock);
223 pag->pag_buf_tree = RB_ROOT;
224
225 if (radix_tree_preload(GFP_NOFS))
226 goto out_unwind;
227
228 spin_lock(&mp->m_perag_lock);
229 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
230 BUG();
231 spin_unlock(&mp->m_perag_lock);
232 radix_tree_preload_end();
233 error = -EEXIST;
234 goto out_unwind;
235 }
236 spin_unlock(&mp->m_perag_lock);
237 radix_tree_preload_end();
238 }
239
240 /*
241 * If we mount with the inode64 option, or no inode overflows
242 * the legacy 32-bit address space clear the inode32 option.
243 */
244 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
245 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
246
247 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
248 mp->m_flags |= XFS_MOUNT_32BITINODES;
249 else
250 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
251
252 if (mp->m_flags & XFS_MOUNT_32BITINODES)
253 index = xfs_set_inode32(mp);
254 else
255 index = xfs_set_inode64(mp);
256
257 if (maxagi)
258 *maxagi = index;
259 return 0;
260
261out_unwind:
262 kmem_free(pag);
263 for (; index > first_initialised; index--) {
264 pag = radix_tree_delete(&mp->m_perag_tree, index);
265 kmem_free(pag);
266 }
267 return error;
268}
269
270/*
271 * xfs_readsb
272 *
273 * Does the initial read of the superblock.
274 */
275int
276xfs_readsb(
277 struct xfs_mount *mp,
278 int flags)
279{
280 unsigned int sector_size;
281 struct xfs_buf *bp;
282 struct xfs_sb *sbp = &mp->m_sb;
283 int error;
284 int loud = !(flags & XFS_MFSI_QUIET);
285 const struct xfs_buf_ops *buf_ops;
286
287 ASSERT(mp->m_sb_bp == NULL);
288 ASSERT(mp->m_ddev_targp != NULL);
289
290 /*
291 * For the initial read, we must guess at the sector
292 * size based on the block device. It's enough to
293 * get the sb_sectsize out of the superblock and
294 * then reread with the proper length.
295 * We don't verify it yet, because it may not be complete.
296 */
297 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
298 buf_ops = NULL;
299
300 /*
301 * Allocate a (locked) buffer to hold the superblock.
302 * This will be kept around at all times to optimize
303 * access to the superblock.
304 */
305reread:
306 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
307 BTOBB(sector_size), 0, buf_ops);
308 if (!bp) {
309 if (loud)
310 xfs_warn(mp, "SB buffer read failed");
311 return EIO;
312 }
313 if (bp->b_error) {
314 error = bp->b_error;
315 if (loud)
316 xfs_warn(mp, "SB validate failed with error %d.", error);
317 /* bad CRC means corrupted metadata */
318 if (error == EFSBADCRC)
319 error = EFSCORRUPTED;
320 goto release_buf;
321 }
322
323 /*
324 * Initialize the mount structure from the superblock.
325 */
326 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
327 xfs_sb_quota_from_disk(&mp->m_sb);
328
329 /*
330 * We must be able to do sector-sized and sector-aligned IO.
331 */
332 if (sector_size > sbp->sb_sectsize) {
333 if (loud)
334 xfs_warn(mp, "device supports %u byte sectors (not %u)",
335 sector_size, sbp->sb_sectsize);
336 error = ENOSYS;
337 goto release_buf;
338 }
339
340 /*
341 * Re-read the superblock so the buffer is correctly sized,
342 * and properly verified.
343 */
344 if (buf_ops == NULL) {
345 xfs_buf_relse(bp);
346 sector_size = sbp->sb_sectsize;
347 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
348 goto reread;
349 }
350
351 /* Initialize per-cpu counters */
352 xfs_icsb_reinit_counters(mp);
353
354 /* no need to be quiet anymore, so reset the buf ops */
355 bp->b_ops = &xfs_sb_buf_ops;
356
357 mp->m_sb_bp = bp;
358 xfs_buf_unlock(bp);
359 return 0;
360
361release_buf:
362 xfs_buf_relse(bp);
363 return error;
364}
365
366/*
367 * Update alignment values based on mount options and sb values
368 */
369STATIC int
370xfs_update_alignment(xfs_mount_t *mp)
371{
372 xfs_sb_t *sbp = &(mp->m_sb);
373
374 if (mp->m_dalign) {
375 /*
376 * If stripe unit and stripe width are not multiples
377 * of the fs blocksize turn off alignment.
378 */
379 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
380 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
381 xfs_warn(mp,
382 "alignment check failed: sunit/swidth vs. blocksize(%d)",
383 sbp->sb_blocksize);
384 return XFS_ERROR(EINVAL);
385 } else {
386 /*
387 * Convert the stripe unit and width to FSBs.
388 */
389 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
390 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
391 xfs_warn(mp,
392 "alignment check failed: sunit/swidth vs. agsize(%d)",
393 sbp->sb_agblocks);
394 return XFS_ERROR(EINVAL);
395 } else if (mp->m_dalign) {
396 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
397 } else {
398 xfs_warn(mp,
399 "alignment check failed: sunit(%d) less than bsize(%d)",
400 mp->m_dalign, sbp->sb_blocksize);
401 return XFS_ERROR(EINVAL);
402 }
403 }
404
405 /*
406 * Update superblock with new values
407 * and log changes
408 */
409 if (xfs_sb_version_hasdalign(sbp)) {
410 if (sbp->sb_unit != mp->m_dalign) {
411 sbp->sb_unit = mp->m_dalign;
412 mp->m_update_flags |= XFS_SB_UNIT;
413 }
414 if (sbp->sb_width != mp->m_swidth) {
415 sbp->sb_width = mp->m_swidth;
416 mp->m_update_flags |= XFS_SB_WIDTH;
417 }
418 } else {
419 xfs_warn(mp,
420 "cannot change alignment: superblock does not support data alignment");
421 return XFS_ERROR(EINVAL);
422 }
423 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
424 xfs_sb_version_hasdalign(&mp->m_sb)) {
425 mp->m_dalign = sbp->sb_unit;
426 mp->m_swidth = sbp->sb_width;
427 }
428
429 return 0;
430}
431
432/*
433 * Set the maximum inode count for this filesystem
434 */
435STATIC void
436xfs_set_maxicount(xfs_mount_t *mp)
437{
438 xfs_sb_t *sbp = &(mp->m_sb);
439 __uint64_t icount;
440
441 if (sbp->sb_imax_pct) {
442 /*
443 * Make sure the maximum inode count is a multiple
444 * of the units we allocate inodes in.
445 */
446 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
447 do_div(icount, 100);
448 do_div(icount, mp->m_ialloc_blks);
449 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
450 sbp->sb_inopblog;
451 } else {
452 mp->m_maxicount = 0;
453 }
454}
455
456/*
457 * Set the default minimum read and write sizes unless
458 * already specified in a mount option.
459 * We use smaller I/O sizes when the file system
460 * is being used for NFS service (wsync mount option).
461 */
462STATIC void
463xfs_set_rw_sizes(xfs_mount_t *mp)
464{
465 xfs_sb_t *sbp = &(mp->m_sb);
466 int readio_log, writeio_log;
467
468 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
469 if (mp->m_flags & XFS_MOUNT_WSYNC) {
470 readio_log = XFS_WSYNC_READIO_LOG;
471 writeio_log = XFS_WSYNC_WRITEIO_LOG;
472 } else {
473 readio_log = XFS_READIO_LOG_LARGE;
474 writeio_log = XFS_WRITEIO_LOG_LARGE;
475 }
476 } else {
477 readio_log = mp->m_readio_log;
478 writeio_log = mp->m_writeio_log;
479 }
480
481 if (sbp->sb_blocklog > readio_log) {
482 mp->m_readio_log = sbp->sb_blocklog;
483 } else {
484 mp->m_readio_log = readio_log;
485 }
486 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
487 if (sbp->sb_blocklog > writeio_log) {
488 mp->m_writeio_log = sbp->sb_blocklog;
489 } else {
490 mp->m_writeio_log = writeio_log;
491 }
492 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
493}
494
495/*
496 * precalculate the low space thresholds for dynamic speculative preallocation.
497 */
498void
499xfs_set_low_space_thresholds(
500 struct xfs_mount *mp)
501{
502 int i;
503
504 for (i = 0; i < XFS_LOWSP_MAX; i++) {
505 __uint64_t space = mp->m_sb.sb_dblocks;
506
507 do_div(space, 100);
508 mp->m_low_space[i] = space * (i + 1);
509 }
510}
511
512
513/*
514 * Set whether we're using inode alignment.
515 */
516STATIC void
517xfs_set_inoalignment(xfs_mount_t *mp)
518{
519 if (xfs_sb_version_hasalign(&mp->m_sb) &&
520 mp->m_sb.sb_inoalignmt >=
521 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
522 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
523 else
524 mp->m_inoalign_mask = 0;
525 /*
526 * If we are using stripe alignment, check whether
527 * the stripe unit is a multiple of the inode alignment
528 */
529 if (mp->m_dalign && mp->m_inoalign_mask &&
530 !(mp->m_dalign & mp->m_inoalign_mask))
531 mp->m_sinoalign = mp->m_dalign;
532 else
533 mp->m_sinoalign = 0;
534}
535
536/*
537 * Check that the data (and log if separate) is an ok size.
538 */
539STATIC int
540xfs_check_sizes(xfs_mount_t *mp)
541{
542 xfs_buf_t *bp;
543 xfs_daddr_t d;
544
545 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
546 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
547 xfs_warn(mp, "filesystem size mismatch detected");
548 return XFS_ERROR(EFBIG);
549 }
550 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
551 d - XFS_FSS_TO_BB(mp, 1),
552 XFS_FSS_TO_BB(mp, 1), 0, NULL);
553 if (!bp) {
554 xfs_warn(mp, "last sector read failed");
555 return EIO;
556 }
557 xfs_buf_relse(bp);
558
559 if (mp->m_logdev_targp != mp->m_ddev_targp) {
560 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
561 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
562 xfs_warn(mp, "log size mismatch detected");
563 return XFS_ERROR(EFBIG);
564 }
565 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
566 d - XFS_FSB_TO_BB(mp, 1),
567 XFS_FSB_TO_BB(mp, 1), 0, NULL);
568 if (!bp) {
569 xfs_warn(mp, "log device read failed");
570 return EIO;
571 }
572 xfs_buf_relse(bp);
573 }
574 return 0;
575}
576
577/*
578 * Clear the quotaflags in memory and in the superblock.
579 */
580int
581xfs_mount_reset_sbqflags(
582 struct xfs_mount *mp)
583{
584 int error;
585 struct xfs_trans *tp;
586
587 mp->m_qflags = 0;
588
589 /*
590 * It is OK to look at sb_qflags here in mount path,
591 * without m_sb_lock.
592 */
593 if (mp->m_sb.sb_qflags == 0)
594 return 0;
595 spin_lock(&mp->m_sb_lock);
596 mp->m_sb.sb_qflags = 0;
597 spin_unlock(&mp->m_sb_lock);
598
599 /*
600 * If the fs is readonly, let the incore superblock run
601 * with quotas off but don't flush the update out to disk
602 */
603 if (mp->m_flags & XFS_MOUNT_RDONLY)
604 return 0;
605
606 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
607 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
608 if (error) {
609 xfs_trans_cancel(tp, 0);
610 xfs_alert(mp, "%s: Superblock update failed!", __func__);
611 return error;
612 }
613
614 xfs_mod_sb(tp, XFS_SB_QFLAGS);
615 return xfs_trans_commit(tp, 0);
616}
617
618__uint64_t
619xfs_default_resblks(xfs_mount_t *mp)
620{
621 __uint64_t resblks;
622
623 /*
624 * We default to 5% or 8192 fsbs of space reserved, whichever is
625 * smaller. This is intended to cover concurrent allocation
626 * transactions when we initially hit enospc. These each require a 4
627 * block reservation. Hence by default we cover roughly 2000 concurrent
628 * allocation reservations.
629 */
630 resblks = mp->m_sb.sb_dblocks;
631 do_div(resblks, 20);
632 resblks = min_t(__uint64_t, resblks, 8192);
633 return resblks;
634}
635
636/*
637 * This function does the following on an initial mount of a file system:
638 * - reads the superblock from disk and init the mount struct
639 * - if we're a 32-bit kernel, do a size check on the superblock
640 * so we don't mount terabyte filesystems
641 * - init mount struct realtime fields
642 * - allocate inode hash table for fs
643 * - init directory manager
644 * - perform recovery and init the log manager
645 */
646int
647xfs_mountfs(
648 xfs_mount_t *mp)
649{
650 xfs_sb_t *sbp = &(mp->m_sb);
651 xfs_inode_t *rip;
652 __uint64_t resblks;
653 uint quotamount = 0;
654 uint quotaflags = 0;
655 int error = 0;
656
657 xfs_sb_mount_common(mp, sbp);
658
659 /*
660 * Check for a mismatched features2 values. Older kernels
661 * read & wrote into the wrong sb offset for sb_features2
662 * on some platforms due to xfs_sb_t not being 64bit size aligned
663 * when sb_features2 was added, which made older superblock
664 * reading/writing routines swap it as a 64-bit value.
665 *
666 * For backwards compatibility, we make both slots equal.
667 *
668 * If we detect a mismatched field, we OR the set bits into the
669 * existing features2 field in case it has already been modified; we
670 * don't want to lose any features. We then update the bad location
671 * with the ORed value so that older kernels will see any features2
672 * flags, and mark the two fields as needing updates once the
673 * transaction subsystem is online.
674 */
675 if (xfs_sb_has_mismatched_features2(sbp)) {
676 xfs_warn(mp, "correcting sb_features alignment problem");
677 sbp->sb_features2 |= sbp->sb_bad_features2;
678 sbp->sb_bad_features2 = sbp->sb_features2;
679 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
680
681 /*
682 * Re-check for ATTR2 in case it was found in bad_features2
683 * slot.
684 */
685 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
686 !(mp->m_flags & XFS_MOUNT_NOATTR2))
687 mp->m_flags |= XFS_MOUNT_ATTR2;
688 }
689
690 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
691 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
692 xfs_sb_version_removeattr2(&mp->m_sb);
693 mp->m_update_flags |= XFS_SB_FEATURES2;
694
695 /* update sb_versionnum for the clearing of the morebits */
696 if (!sbp->sb_features2)
697 mp->m_update_flags |= XFS_SB_VERSIONNUM;
698 }
699
700 /*
701 * Check if sb_agblocks is aligned at stripe boundary
702 * If sb_agblocks is NOT aligned turn off m_dalign since
703 * allocator alignment is within an ag, therefore ag has
704 * to be aligned at stripe boundary.
705 */
706 error = xfs_update_alignment(mp);
707 if (error)
708 goto out;
709
710 xfs_alloc_compute_maxlevels(mp);
711 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
712 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
713 xfs_ialloc_compute_maxlevels(mp);
714
715 xfs_set_maxicount(mp);
716
717 error = xfs_uuid_mount(mp);
718 if (error)
719 goto out;
720
721 /*
722 * Set the minimum read and write sizes
723 */
724 xfs_set_rw_sizes(mp);
725
726 /* set the low space thresholds for dynamic preallocation */
727 xfs_set_low_space_thresholds(mp);
728
729 /*
730 * Set the inode cluster size.
731 * This may still be overridden by the file system
732 * block size if it is larger than the chosen cluster size.
733 *
734 * For v5 filesystems, scale the cluster size with the inode size to
735 * keep a constant ratio of inode per cluster buffer, but only if mkfs
736 * has set the inode alignment value appropriately for larger cluster
737 * sizes.
738 */
739 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
740 if (xfs_sb_version_hascrc(&mp->m_sb)) {
741 int new_size = mp->m_inode_cluster_size;
742
743 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
744 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
745 mp->m_inode_cluster_size = new_size;
746 }
747
748 /*
749 * Set inode alignment fields
750 */
751 xfs_set_inoalignment(mp);
752
753 /*
754 * Check that the data (and log if separate) is an ok size.
755 */
756 error = xfs_check_sizes(mp);
757 if (error)
758 goto out_remove_uuid;
759
760 /*
761 * Initialize realtime fields in the mount structure
762 */
763 error = xfs_rtmount_init(mp);
764 if (error) {
765 xfs_warn(mp, "RT mount failed");
766 goto out_remove_uuid;
767 }
768
769 /*
770 * Copies the low order bits of the timestamp and the randomly
771 * set "sequence" number out of a UUID.
772 */
773 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
774
775 mp->m_dmevmask = 0; /* not persistent; set after each mount */
776
777 xfs_dir_mount(mp);
778
779 /*
780 * Initialize the attribute manager's entries.
781 */
782 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
783
784 /*
785 * Initialize the precomputed transaction reservations values.
786 */
787 xfs_trans_init(mp);
788
789 /*
790 * Allocate and initialize the per-ag data.
791 */
792 spin_lock_init(&mp->m_perag_lock);
793 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
794 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
795 if (error) {
796 xfs_warn(mp, "Failed per-ag init: %d", error);
797 goto out_remove_uuid;
798 }
799
800 if (!sbp->sb_logblocks) {
801 xfs_warn(mp, "no log defined");
802 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
803 error = XFS_ERROR(EFSCORRUPTED);
804 goto out_free_perag;
805 }
806
807 /*
808 * log's mount-time initialization. Perform 1st part recovery if needed
809 */
810 error = xfs_log_mount(mp, mp->m_logdev_targp,
811 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
812 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
813 if (error) {
814 xfs_warn(mp, "log mount failed");
815 goto out_fail_wait;
816 }
817
818 /*
819 * Now the log is mounted, we know if it was an unclean shutdown or
820 * not. If it was, with the first phase of recovery has completed, we
821 * have consistent AG blocks on disk. We have not recovered EFIs yet,
822 * but they are recovered transactionally in the second recovery phase
823 * later.
824 *
825 * Hence we can safely re-initialise incore superblock counters from
826 * the per-ag data. These may not be correct if the filesystem was not
827 * cleanly unmounted, so we need to wait for recovery to finish before
828 * doing this.
829 *
830 * If the filesystem was cleanly unmounted, then we can trust the
831 * values in the superblock to be correct and we don't need to do
832 * anything here.
833 *
834 * If we are currently making the filesystem, the initialisation will
835 * fail as the perag data is in an undefined state.
836 */
837 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
838 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
839 !mp->m_sb.sb_inprogress) {
840 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
841 if (error)
842 goto out_fail_wait;
843 }
844
845 /*
846 * Get and sanity-check the root inode.
847 * Save the pointer to it in the mount structure.
848 */
849 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
850 if (error) {
851 xfs_warn(mp, "failed to read root inode");
852 goto out_log_dealloc;
853 }
854
855 ASSERT(rip != NULL);
856
857 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
858 xfs_warn(mp, "corrupted root inode %llu: not a directory",
859 (unsigned long long)rip->i_ino);
860 xfs_iunlock(rip, XFS_ILOCK_EXCL);
861 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
862 mp);
863 error = XFS_ERROR(EFSCORRUPTED);
864 goto out_rele_rip;
865 }
866 mp->m_rootip = rip; /* save it */
867
868 xfs_iunlock(rip, XFS_ILOCK_EXCL);
869
870 /*
871 * Initialize realtime inode pointers in the mount structure
872 */
873 error = xfs_rtmount_inodes(mp);
874 if (error) {
875 /*
876 * Free up the root inode.
877 */
878 xfs_warn(mp, "failed to read RT inodes");
879 goto out_rele_rip;
880 }
881
882 /*
883 * If this is a read-only mount defer the superblock updates until
884 * the next remount into writeable mode. Otherwise we would never
885 * perform the update e.g. for the root filesystem.
886 */
887 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
888 error = xfs_mount_log_sb(mp, mp->m_update_flags);
889 if (error) {
890 xfs_warn(mp, "failed to write sb changes");
891 goto out_rtunmount;
892 }
893 }
894
895 /*
896 * Initialise the XFS quota management subsystem for this mount
897 */
898 if (XFS_IS_QUOTA_RUNNING(mp)) {
899 error = xfs_qm_newmount(mp, "amount, "aflags);
900 if (error)
901 goto out_rtunmount;
902 } else {
903 ASSERT(!XFS_IS_QUOTA_ON(mp));
904
905 /*
906 * If a file system had quotas running earlier, but decided to
907 * mount without -o uquota/pquota/gquota options, revoke the
908 * quotachecked license.
909 */
910 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
911 xfs_notice(mp, "resetting quota flags");
912 error = xfs_mount_reset_sbqflags(mp);
913 if (error)
914 return error;
915 }
916 }
917
918 /*
919 * Finish recovering the file system. This part needed to be
920 * delayed until after the root and real-time bitmap inodes
921 * were consistently read in.
922 */
923 error = xfs_log_mount_finish(mp);
924 if (error) {
925 xfs_warn(mp, "log mount finish failed");
926 goto out_rtunmount;
927 }
928
929 /*
930 * Complete the quota initialisation, post-log-replay component.
931 */
932 if (quotamount) {
933 ASSERT(mp->m_qflags == 0);
934 mp->m_qflags = quotaflags;
935
936 xfs_qm_mount_quotas(mp);
937 }
938
939 /*
940 * Now we are mounted, reserve a small amount of unused space for
941 * privileged transactions. This is needed so that transaction
942 * space required for critical operations can dip into this pool
943 * when at ENOSPC. This is needed for operations like create with
944 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
945 * are not allowed to use this reserved space.
946 *
947 * This may drive us straight to ENOSPC on mount, but that implies
948 * we were already there on the last unmount. Warn if this occurs.
949 */
950 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
951 resblks = xfs_default_resblks(mp);
952 error = xfs_reserve_blocks(mp, &resblks, NULL);
953 if (error)
954 xfs_warn(mp,
955 "Unable to allocate reserve blocks. Continuing without reserve pool.");
956 }
957
958 return 0;
959
960 out_rtunmount:
961 xfs_rtunmount_inodes(mp);
962 out_rele_rip:
963 IRELE(rip);
964 out_log_dealloc:
965 xfs_log_unmount(mp);
966 out_fail_wait:
967 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
968 xfs_wait_buftarg(mp->m_logdev_targp);
969 xfs_wait_buftarg(mp->m_ddev_targp);
970 out_free_perag:
971 xfs_free_perag(mp);
972 out_remove_uuid:
973 xfs_uuid_unmount(mp);
974 out:
975 return error;
976}
977
978/*
979 * This flushes out the inodes,dquots and the superblock, unmounts the
980 * log and makes sure that incore structures are freed.
981 */
982void
983xfs_unmountfs(
984 struct xfs_mount *mp)
985{
986 __uint64_t resblks;
987 int error;
988
989 cancel_delayed_work_sync(&mp->m_eofblocks_work);
990
991 xfs_qm_unmount_quotas(mp);
992 xfs_rtunmount_inodes(mp);
993 IRELE(mp->m_rootip);
994
995 /*
996 * We can potentially deadlock here if we have an inode cluster
997 * that has been freed has its buffer still pinned in memory because
998 * the transaction is still sitting in a iclog. The stale inodes
999 * on that buffer will have their flush locks held until the
1000 * transaction hits the disk and the callbacks run. the inode
1001 * flush takes the flush lock unconditionally and with nothing to
1002 * push out the iclog we will never get that unlocked. hence we
1003 * need to force the log first.
1004 */
1005 xfs_log_force(mp, XFS_LOG_SYNC);
1006
1007 /*
1008 * Flush all pending changes from the AIL.
1009 */
1010 xfs_ail_push_all_sync(mp->m_ail);
1011
1012 /*
1013 * And reclaim all inodes. At this point there should be no dirty
1014 * inodes and none should be pinned or locked, but use synchronous
1015 * reclaim just to be sure. We can stop background inode reclaim
1016 * here as well if it is still running.
1017 */
1018 cancel_delayed_work_sync(&mp->m_reclaim_work);
1019 xfs_reclaim_inodes(mp, SYNC_WAIT);
1020
1021 xfs_qm_unmount(mp);
1022
1023 /*
1024 * Unreserve any blocks we have so that when we unmount we don't account
1025 * the reserved free space as used. This is really only necessary for
1026 * lazy superblock counting because it trusts the incore superblock
1027 * counters to be absolutely correct on clean unmount.
1028 *
1029 * We don't bother correcting this elsewhere for lazy superblock
1030 * counting because on mount of an unclean filesystem we reconstruct the
1031 * correct counter value and this is irrelevant.
1032 *
1033 * For non-lazy counter filesystems, this doesn't matter at all because
1034 * we only every apply deltas to the superblock and hence the incore
1035 * value does not matter....
1036 */
1037 resblks = 0;
1038 error = xfs_reserve_blocks(mp, &resblks, NULL);
1039 if (error)
1040 xfs_warn(mp, "Unable to free reserved block pool. "
1041 "Freespace may not be correct on next mount.");
1042
1043 error = xfs_log_sbcount(mp);
1044 if (error)
1045 xfs_warn(mp, "Unable to update superblock counters. "
1046 "Freespace may not be correct on next mount.");
1047
1048 xfs_log_unmount(mp);
1049 xfs_uuid_unmount(mp);
1050
1051#if defined(DEBUG)
1052 xfs_errortag_clearall(mp, 0);
1053#endif
1054 xfs_free_perag(mp);
1055}
1056
1057int
1058xfs_fs_writable(xfs_mount_t *mp)
1059{
1060 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1061 (mp->m_flags & XFS_MOUNT_RDONLY));
1062}
1063
1064/*
1065 * xfs_log_sbcount
1066 *
1067 * Sync the superblock counters to disk.
1068 *
1069 * Note this code can be called during the process of freezing, so
1070 * we may need to use the transaction allocator which does not
1071 * block when the transaction subsystem is in its frozen state.
1072 */
1073int
1074xfs_log_sbcount(xfs_mount_t *mp)
1075{
1076 xfs_trans_t *tp;
1077 int error;
1078
1079 if (!xfs_fs_writable(mp))
1080 return 0;
1081
1082 xfs_icsb_sync_counters(mp, 0);
1083
1084 /*
1085 * we don't need to do this if we are updating the superblock
1086 * counters on every modification.
1087 */
1088 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1089 return 0;
1090
1091 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1092 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1093 if (error) {
1094 xfs_trans_cancel(tp, 0);
1095 return error;
1096 }
1097
1098 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1099 xfs_trans_set_sync(tp);
1100 error = xfs_trans_commit(tp, 0);
1101 return error;
1102}
1103
1104/*
1105 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1106 * a delta to a specified field in the in-core superblock. Simply
1107 * switch on the field indicated and apply the delta to that field.
1108 * Fields are not allowed to dip below zero, so if the delta would
1109 * do this do not apply it and return EINVAL.
1110 *
1111 * The m_sb_lock must be held when this routine is called.
1112 */
1113STATIC int
1114xfs_mod_incore_sb_unlocked(
1115 xfs_mount_t *mp,
1116 xfs_sb_field_t field,
1117 int64_t delta,
1118 int rsvd)
1119{
1120 int scounter; /* short counter for 32 bit fields */
1121 long long lcounter; /* long counter for 64 bit fields */
1122 long long res_used, rem;
1123
1124 /*
1125 * With the in-core superblock spin lock held, switch
1126 * on the indicated field. Apply the delta to the
1127 * proper field. If the fields value would dip below
1128 * 0, then do not apply the delta and return EINVAL.
1129 */
1130 switch (field) {
1131 case XFS_SBS_ICOUNT:
1132 lcounter = (long long)mp->m_sb.sb_icount;
1133 lcounter += delta;
1134 if (lcounter < 0) {
1135 ASSERT(0);
1136 return XFS_ERROR(EINVAL);
1137 }
1138 mp->m_sb.sb_icount = lcounter;
1139 return 0;
1140 case XFS_SBS_IFREE:
1141 lcounter = (long long)mp->m_sb.sb_ifree;
1142 lcounter += delta;
1143 if (lcounter < 0) {
1144 ASSERT(0);
1145 return XFS_ERROR(EINVAL);
1146 }
1147 mp->m_sb.sb_ifree = lcounter;
1148 return 0;
1149 case XFS_SBS_FDBLOCKS:
1150 lcounter = (long long)
1151 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1152 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1153
1154 if (delta > 0) { /* Putting blocks back */
1155 if (res_used > delta) {
1156 mp->m_resblks_avail += delta;
1157 } else {
1158 rem = delta - res_used;
1159 mp->m_resblks_avail = mp->m_resblks;
1160 lcounter += rem;
1161 }
1162 } else { /* Taking blocks away */
1163 lcounter += delta;
1164 if (lcounter >= 0) {
1165 mp->m_sb.sb_fdblocks = lcounter +
1166 XFS_ALLOC_SET_ASIDE(mp);
1167 return 0;
1168 }
1169
1170 /*
1171 * We are out of blocks, use any available reserved
1172 * blocks if were allowed to.
1173 */
1174 if (!rsvd)
1175 return XFS_ERROR(ENOSPC);
1176
1177 lcounter = (long long)mp->m_resblks_avail + delta;
1178 if (lcounter >= 0) {
1179 mp->m_resblks_avail = lcounter;
1180 return 0;
1181 }
1182 printk_once(KERN_WARNING
1183 "Filesystem \"%s\": reserve blocks depleted! "
1184 "Consider increasing reserve pool size.",
1185 mp->m_fsname);
1186 return XFS_ERROR(ENOSPC);
1187 }
1188
1189 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1190 return 0;
1191 case XFS_SBS_FREXTENTS:
1192 lcounter = (long long)mp->m_sb.sb_frextents;
1193 lcounter += delta;
1194 if (lcounter < 0) {
1195 return XFS_ERROR(ENOSPC);
1196 }
1197 mp->m_sb.sb_frextents = lcounter;
1198 return 0;
1199 case XFS_SBS_DBLOCKS:
1200 lcounter = (long long)mp->m_sb.sb_dblocks;
1201 lcounter += delta;
1202 if (lcounter < 0) {
1203 ASSERT(0);
1204 return XFS_ERROR(EINVAL);
1205 }
1206 mp->m_sb.sb_dblocks = lcounter;
1207 return 0;
1208 case XFS_SBS_AGCOUNT:
1209 scounter = mp->m_sb.sb_agcount;
1210 scounter += delta;
1211 if (scounter < 0) {
1212 ASSERT(0);
1213 return XFS_ERROR(EINVAL);
1214 }
1215 mp->m_sb.sb_agcount = scounter;
1216 return 0;
1217 case XFS_SBS_IMAX_PCT:
1218 scounter = mp->m_sb.sb_imax_pct;
1219 scounter += delta;
1220 if (scounter < 0) {
1221 ASSERT(0);
1222 return XFS_ERROR(EINVAL);
1223 }
1224 mp->m_sb.sb_imax_pct = scounter;
1225 return 0;
1226 case XFS_SBS_REXTSIZE:
1227 scounter = mp->m_sb.sb_rextsize;
1228 scounter += delta;
1229 if (scounter < 0) {
1230 ASSERT(0);
1231 return XFS_ERROR(EINVAL);
1232 }
1233 mp->m_sb.sb_rextsize = scounter;
1234 return 0;
1235 case XFS_SBS_RBMBLOCKS:
1236 scounter = mp->m_sb.sb_rbmblocks;
1237 scounter += delta;
1238 if (scounter < 0) {
1239 ASSERT(0);
1240 return XFS_ERROR(EINVAL);
1241 }
1242 mp->m_sb.sb_rbmblocks = scounter;
1243 return 0;
1244 case XFS_SBS_RBLOCKS:
1245 lcounter = (long long)mp->m_sb.sb_rblocks;
1246 lcounter += delta;
1247 if (lcounter < 0) {
1248 ASSERT(0);
1249 return XFS_ERROR(EINVAL);
1250 }
1251 mp->m_sb.sb_rblocks = lcounter;
1252 return 0;
1253 case XFS_SBS_REXTENTS:
1254 lcounter = (long long)mp->m_sb.sb_rextents;
1255 lcounter += delta;
1256 if (lcounter < 0) {
1257 ASSERT(0);
1258 return XFS_ERROR(EINVAL);
1259 }
1260 mp->m_sb.sb_rextents = lcounter;
1261 return 0;
1262 case XFS_SBS_REXTSLOG:
1263 scounter = mp->m_sb.sb_rextslog;
1264 scounter += delta;
1265 if (scounter < 0) {
1266 ASSERT(0);
1267 return XFS_ERROR(EINVAL);
1268 }
1269 mp->m_sb.sb_rextslog = scounter;
1270 return 0;
1271 default:
1272 ASSERT(0);
1273 return XFS_ERROR(EINVAL);
1274 }
1275}
1276
1277/*
1278 * xfs_mod_incore_sb() is used to change a field in the in-core
1279 * superblock structure by the specified delta. This modification
1280 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1281 * routine to do the work.
1282 */
1283int
1284xfs_mod_incore_sb(
1285 struct xfs_mount *mp,
1286 xfs_sb_field_t field,
1287 int64_t delta,
1288 int rsvd)
1289{
1290 int status;
1291
1292#ifdef HAVE_PERCPU_SB
1293 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1294#endif
1295 spin_lock(&mp->m_sb_lock);
1296 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1297 spin_unlock(&mp->m_sb_lock);
1298
1299 return status;
1300}
1301
1302/*
1303 * Change more than one field in the in-core superblock structure at a time.
1304 *
1305 * The fields and changes to those fields are specified in the array of
1306 * xfs_mod_sb structures passed in. Either all of the specified deltas
1307 * will be applied or none of them will. If any modified field dips below 0,
1308 * then all modifications will be backed out and EINVAL will be returned.
1309 *
1310 * Note that this function may not be used for the superblock values that
1311 * are tracked with the in-memory per-cpu counters - a direct call to
1312 * xfs_icsb_modify_counters is required for these.
1313 */
1314int
1315xfs_mod_incore_sb_batch(
1316 struct xfs_mount *mp,
1317 xfs_mod_sb_t *msb,
1318 uint nmsb,
1319 int rsvd)
1320{
1321 xfs_mod_sb_t *msbp;
1322 int error = 0;
1323
1324 /*
1325 * Loop through the array of mod structures and apply each individually.
1326 * If any fail, then back out all those which have already been applied.
1327 * Do all of this within the scope of the m_sb_lock so that all of the
1328 * changes will be atomic.
1329 */
1330 spin_lock(&mp->m_sb_lock);
1331 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1332 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1333 msbp->msb_field > XFS_SBS_FDBLOCKS);
1334
1335 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1336 msbp->msb_delta, rsvd);
1337 if (error)
1338 goto unwind;
1339 }
1340 spin_unlock(&mp->m_sb_lock);
1341 return 0;
1342
1343unwind:
1344 while (--msbp >= msb) {
1345 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1346 -msbp->msb_delta, rsvd);
1347 ASSERT(error == 0);
1348 }
1349 spin_unlock(&mp->m_sb_lock);
1350 return error;
1351}
1352
1353/*
1354 * xfs_getsb() is called to obtain the buffer for the superblock.
1355 * The buffer is returned locked and read in from disk.
1356 * The buffer should be released with a call to xfs_brelse().
1357 *
1358 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1359 * the superblock buffer if it can be locked without sleeping.
1360 * If it can't then we'll return NULL.
1361 */
1362struct xfs_buf *
1363xfs_getsb(
1364 struct xfs_mount *mp,
1365 int flags)
1366{
1367 struct xfs_buf *bp = mp->m_sb_bp;
1368
1369 if (!xfs_buf_trylock(bp)) {
1370 if (flags & XBF_TRYLOCK)
1371 return NULL;
1372 xfs_buf_lock(bp);
1373 }
1374
1375 xfs_buf_hold(bp);
1376 ASSERT(XFS_BUF_ISDONE(bp));
1377 return bp;
1378}
1379
1380/*
1381 * Used to free the superblock along various error paths.
1382 */
1383void
1384xfs_freesb(
1385 struct xfs_mount *mp)
1386{
1387 struct xfs_buf *bp = mp->m_sb_bp;
1388
1389 xfs_buf_lock(bp);
1390 mp->m_sb_bp = NULL;
1391 xfs_buf_relse(bp);
1392}
1393
1394/*
1395 * Used to log changes to the superblock unit and width fields which could
1396 * be altered by the mount options, as well as any potential sb_features2
1397 * fixup. Only the first superblock is updated.
1398 */
1399int
1400xfs_mount_log_sb(
1401 xfs_mount_t *mp,
1402 __int64_t fields)
1403{
1404 xfs_trans_t *tp;
1405 int error;
1406
1407 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1408 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1409 XFS_SB_VERSIONNUM));
1410
1411 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1412 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1413 if (error) {
1414 xfs_trans_cancel(tp, 0);
1415 return error;
1416 }
1417 xfs_mod_sb(tp, fields);
1418 error = xfs_trans_commit(tp, 0);
1419 return error;
1420}
1421
1422/*
1423 * If the underlying (data/log/rt) device is readonly, there are some
1424 * operations that cannot proceed.
1425 */
1426int
1427xfs_dev_is_read_only(
1428 struct xfs_mount *mp,
1429 char *message)
1430{
1431 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1432 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1433 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1434 xfs_notice(mp, "%s required on read-only device.", message);
1435 xfs_notice(mp, "write access unavailable, cannot proceed.");
1436 return EROFS;
1437 }
1438 return 0;
1439}
1440
1441#ifdef HAVE_PERCPU_SB
1442/*
1443 * Per-cpu incore superblock counters
1444 *
1445 * Simple concept, difficult implementation
1446 *
1447 * Basically, replace the incore superblock counters with a distributed per cpu
1448 * counter for contended fields (e.g. free block count).
1449 *
1450 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1451 * hence needs to be accurately read when we are running low on space. Hence
1452 * there is a method to enable and disable the per-cpu counters based on how
1453 * much "stuff" is available in them.
1454 *
1455 * Basically, a counter is enabled if there is enough free resource to justify
1456 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1457 * ENOSPC), then we disable the counters to synchronise all callers and
1458 * re-distribute the available resources.
1459 *
1460 * If, once we redistributed the available resources, we still get a failure,
1461 * we disable the per-cpu counter and go through the slow path.
1462 *
1463 * The slow path is the current xfs_mod_incore_sb() function. This means that
1464 * when we disable a per-cpu counter, we need to drain its resources back to
1465 * the global superblock. We do this after disabling the counter to prevent
1466 * more threads from queueing up on the counter.
1467 *
1468 * Essentially, this means that we still need a lock in the fast path to enable
1469 * synchronisation between the global counters and the per-cpu counters. This
1470 * is not a problem because the lock will be local to a CPU almost all the time
1471 * and have little contention except when we get to ENOSPC conditions.
1472 *
1473 * Basically, this lock becomes a barrier that enables us to lock out the fast
1474 * path while we do things like enabling and disabling counters and
1475 * synchronising the counters.
1476 *
1477 * Locking rules:
1478 *
1479 * 1. m_sb_lock before picking up per-cpu locks
1480 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1481 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1482 * 4. modifying per-cpu counters requires holding per-cpu lock
1483 * 5. modifying global counters requires holding m_sb_lock
1484 * 6. enabling or disabling a counter requires holding the m_sb_lock
1485 * and _none_ of the per-cpu locks.
1486 *
1487 * Disabled counters are only ever re-enabled by a balance operation
1488 * that results in more free resources per CPU than a given threshold.
1489 * To ensure counters don't remain disabled, they are rebalanced when
1490 * the global resource goes above a higher threshold (i.e. some hysteresis
1491 * is present to prevent thrashing).
1492 */
1493
1494#ifdef CONFIG_HOTPLUG_CPU
1495/*
1496 * hot-plug CPU notifier support.
1497 *
1498 * We need a notifier per filesystem as we need to be able to identify
1499 * the filesystem to balance the counters out. This is achieved by
1500 * having a notifier block embedded in the xfs_mount_t and doing pointer
1501 * magic to get the mount pointer from the notifier block address.
1502 */
1503STATIC int
1504xfs_icsb_cpu_notify(
1505 struct notifier_block *nfb,
1506 unsigned long action,
1507 void *hcpu)
1508{
1509 xfs_icsb_cnts_t *cntp;
1510 xfs_mount_t *mp;
1511
1512 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1513 cntp = (xfs_icsb_cnts_t *)
1514 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1515 switch (action) {
1516 case CPU_UP_PREPARE:
1517 case CPU_UP_PREPARE_FROZEN:
1518 /* Easy Case - initialize the area and locks, and
1519 * then rebalance when online does everything else for us. */
1520 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1521 break;
1522 case CPU_ONLINE:
1523 case CPU_ONLINE_FROZEN:
1524 xfs_icsb_lock(mp);
1525 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1526 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1527 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1528 xfs_icsb_unlock(mp);
1529 break;
1530 case CPU_DEAD:
1531 case CPU_DEAD_FROZEN:
1532 /* Disable all the counters, then fold the dead cpu's
1533 * count into the total on the global superblock and
1534 * re-enable the counters. */
1535 xfs_icsb_lock(mp);
1536 spin_lock(&mp->m_sb_lock);
1537 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1538 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1539 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1540
1541 mp->m_sb.sb_icount += cntp->icsb_icount;
1542 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1543 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1544
1545 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1546
1547 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1548 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1549 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1550 spin_unlock(&mp->m_sb_lock);
1551 xfs_icsb_unlock(mp);
1552 break;
1553 }
1554
1555 return NOTIFY_OK;
1556}
1557#endif /* CONFIG_HOTPLUG_CPU */
1558
1559int
1560xfs_icsb_init_counters(
1561 xfs_mount_t *mp)
1562{
1563 xfs_icsb_cnts_t *cntp;
1564 int i;
1565
1566 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1567 if (mp->m_sb_cnts == NULL)
1568 return -ENOMEM;
1569
1570 for_each_online_cpu(i) {
1571 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1572 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1573 }
1574
1575 mutex_init(&mp->m_icsb_mutex);
1576
1577 /*
1578 * start with all counters disabled so that the
1579 * initial balance kicks us off correctly
1580 */
1581 mp->m_icsb_counters = -1;
1582
1583#ifdef CONFIG_HOTPLUG_CPU
1584 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1585 mp->m_icsb_notifier.priority = 0;
1586 register_hotcpu_notifier(&mp->m_icsb_notifier);
1587#endif /* CONFIG_HOTPLUG_CPU */
1588
1589 return 0;
1590}
1591
1592void
1593xfs_icsb_reinit_counters(
1594 xfs_mount_t *mp)
1595{
1596 xfs_icsb_lock(mp);
1597 /*
1598 * start with all counters disabled so that the
1599 * initial balance kicks us off correctly
1600 */
1601 mp->m_icsb_counters = -1;
1602 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1603 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1604 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1605 xfs_icsb_unlock(mp);
1606}
1607
1608void
1609xfs_icsb_destroy_counters(
1610 xfs_mount_t *mp)
1611{
1612 if (mp->m_sb_cnts) {
1613 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1614 free_percpu(mp->m_sb_cnts);
1615 }
1616 mutex_destroy(&mp->m_icsb_mutex);
1617}
1618
1619STATIC void
1620xfs_icsb_lock_cntr(
1621 xfs_icsb_cnts_t *icsbp)
1622{
1623 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1624 ndelay(1000);
1625 }
1626}
1627
1628STATIC void
1629xfs_icsb_unlock_cntr(
1630 xfs_icsb_cnts_t *icsbp)
1631{
1632 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1633}
1634
1635
1636STATIC void
1637xfs_icsb_lock_all_counters(
1638 xfs_mount_t *mp)
1639{
1640 xfs_icsb_cnts_t *cntp;
1641 int i;
1642
1643 for_each_online_cpu(i) {
1644 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1645 xfs_icsb_lock_cntr(cntp);
1646 }
1647}
1648
1649STATIC void
1650xfs_icsb_unlock_all_counters(
1651 xfs_mount_t *mp)
1652{
1653 xfs_icsb_cnts_t *cntp;
1654 int i;
1655
1656 for_each_online_cpu(i) {
1657 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1658 xfs_icsb_unlock_cntr(cntp);
1659 }
1660}
1661
1662STATIC void
1663xfs_icsb_count(
1664 xfs_mount_t *mp,
1665 xfs_icsb_cnts_t *cnt,
1666 int flags)
1667{
1668 xfs_icsb_cnts_t *cntp;
1669 int i;
1670
1671 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1672
1673 if (!(flags & XFS_ICSB_LAZY_COUNT))
1674 xfs_icsb_lock_all_counters(mp);
1675
1676 for_each_online_cpu(i) {
1677 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1678 cnt->icsb_icount += cntp->icsb_icount;
1679 cnt->icsb_ifree += cntp->icsb_ifree;
1680 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1681 }
1682
1683 if (!(flags & XFS_ICSB_LAZY_COUNT))
1684 xfs_icsb_unlock_all_counters(mp);
1685}
1686
1687STATIC int
1688xfs_icsb_counter_disabled(
1689 xfs_mount_t *mp,
1690 xfs_sb_field_t field)
1691{
1692 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1693 return test_bit(field, &mp->m_icsb_counters);
1694}
1695
1696STATIC void
1697xfs_icsb_disable_counter(
1698 xfs_mount_t *mp,
1699 xfs_sb_field_t field)
1700{
1701 xfs_icsb_cnts_t cnt;
1702
1703 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1704
1705 /*
1706 * If we are already disabled, then there is nothing to do
1707 * here. We check before locking all the counters to avoid
1708 * the expensive lock operation when being called in the
1709 * slow path and the counter is already disabled. This is
1710 * safe because the only time we set or clear this state is under
1711 * the m_icsb_mutex.
1712 */
1713 if (xfs_icsb_counter_disabled(mp, field))
1714 return;
1715
1716 xfs_icsb_lock_all_counters(mp);
1717 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1718 /* drain back to superblock */
1719
1720 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1721 switch(field) {
1722 case XFS_SBS_ICOUNT:
1723 mp->m_sb.sb_icount = cnt.icsb_icount;
1724 break;
1725 case XFS_SBS_IFREE:
1726 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1727 break;
1728 case XFS_SBS_FDBLOCKS:
1729 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1730 break;
1731 default:
1732 BUG();
1733 }
1734 }
1735
1736 xfs_icsb_unlock_all_counters(mp);
1737}
1738
1739STATIC void
1740xfs_icsb_enable_counter(
1741 xfs_mount_t *mp,
1742 xfs_sb_field_t field,
1743 uint64_t count,
1744 uint64_t resid)
1745{
1746 xfs_icsb_cnts_t *cntp;
1747 int i;
1748
1749 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1750
1751 xfs_icsb_lock_all_counters(mp);
1752 for_each_online_cpu(i) {
1753 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1754 switch (field) {
1755 case XFS_SBS_ICOUNT:
1756 cntp->icsb_icount = count + resid;
1757 break;
1758 case XFS_SBS_IFREE:
1759 cntp->icsb_ifree = count + resid;
1760 break;
1761 case XFS_SBS_FDBLOCKS:
1762 cntp->icsb_fdblocks = count + resid;
1763 break;
1764 default:
1765 BUG();
1766 break;
1767 }
1768 resid = 0;
1769 }
1770 clear_bit(field, &mp->m_icsb_counters);
1771 xfs_icsb_unlock_all_counters(mp);
1772}
1773
1774void
1775xfs_icsb_sync_counters_locked(
1776 xfs_mount_t *mp,
1777 int flags)
1778{
1779 xfs_icsb_cnts_t cnt;
1780
1781 xfs_icsb_count(mp, &cnt, flags);
1782
1783 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1784 mp->m_sb.sb_icount = cnt.icsb_icount;
1785 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1786 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1787 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1788 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1789}
1790
1791/*
1792 * Accurate update of per-cpu counters to incore superblock
1793 */
1794void
1795xfs_icsb_sync_counters(
1796 xfs_mount_t *mp,
1797 int flags)
1798{
1799 spin_lock(&mp->m_sb_lock);
1800 xfs_icsb_sync_counters_locked(mp, flags);
1801 spin_unlock(&mp->m_sb_lock);
1802}
1803
1804/*
1805 * Balance and enable/disable counters as necessary.
1806 *
1807 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1808 * chosen to be the same number as single on disk allocation chunk per CPU, and
1809 * free blocks is something far enough zero that we aren't going thrash when we
1810 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1811 * prevent looping endlessly when xfs_alloc_space asks for more than will
1812 * be distributed to a single CPU but each CPU has enough blocks to be
1813 * reenabled.
1814 *
1815 * Note that we can be called when counters are already disabled.
1816 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1817 * prevent locking every per-cpu counter needlessly.
1818 */
1819
1820#define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
1821#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1822 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1823STATIC void
1824xfs_icsb_balance_counter_locked(
1825 xfs_mount_t *mp,
1826 xfs_sb_field_t field,
1827 int min_per_cpu)
1828{
1829 uint64_t count, resid;
1830 int weight = num_online_cpus();
1831 uint64_t min = (uint64_t)min_per_cpu;
1832
1833 /* disable counter and sync counter */
1834 xfs_icsb_disable_counter(mp, field);
1835
1836 /* update counters - first CPU gets residual*/
1837 switch (field) {
1838 case XFS_SBS_ICOUNT:
1839 count = mp->m_sb.sb_icount;
1840 resid = do_div(count, weight);
1841 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1842 return;
1843 break;
1844 case XFS_SBS_IFREE:
1845 count = mp->m_sb.sb_ifree;
1846 resid = do_div(count, weight);
1847 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1848 return;
1849 break;
1850 case XFS_SBS_FDBLOCKS:
1851 count = mp->m_sb.sb_fdblocks;
1852 resid = do_div(count, weight);
1853 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1854 return;
1855 break;
1856 default:
1857 BUG();
1858 count = resid = 0; /* quiet, gcc */
1859 break;
1860 }
1861
1862 xfs_icsb_enable_counter(mp, field, count, resid);
1863}
1864
1865STATIC void
1866xfs_icsb_balance_counter(
1867 xfs_mount_t *mp,
1868 xfs_sb_field_t fields,
1869 int min_per_cpu)
1870{
1871 spin_lock(&mp->m_sb_lock);
1872 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1873 spin_unlock(&mp->m_sb_lock);
1874}
1875
1876int
1877xfs_icsb_modify_counters(
1878 xfs_mount_t *mp,
1879 xfs_sb_field_t field,
1880 int64_t delta,
1881 int rsvd)
1882{
1883 xfs_icsb_cnts_t *icsbp;
1884 long long lcounter; /* long counter for 64 bit fields */
1885 int ret = 0;
1886
1887 might_sleep();
1888again:
1889 preempt_disable();
1890 icsbp = this_cpu_ptr(mp->m_sb_cnts);
1891
1892 /*
1893 * if the counter is disabled, go to slow path
1894 */
1895 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1896 goto slow_path;
1897 xfs_icsb_lock_cntr(icsbp);
1898 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1899 xfs_icsb_unlock_cntr(icsbp);
1900 goto slow_path;
1901 }
1902
1903 switch (field) {
1904 case XFS_SBS_ICOUNT:
1905 lcounter = icsbp->icsb_icount;
1906 lcounter += delta;
1907 if (unlikely(lcounter < 0))
1908 goto balance_counter;
1909 icsbp->icsb_icount = lcounter;
1910 break;
1911
1912 case XFS_SBS_IFREE:
1913 lcounter = icsbp->icsb_ifree;
1914 lcounter += delta;
1915 if (unlikely(lcounter < 0))
1916 goto balance_counter;
1917 icsbp->icsb_ifree = lcounter;
1918 break;
1919
1920 case XFS_SBS_FDBLOCKS:
1921 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1922
1923 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1924 lcounter += delta;
1925 if (unlikely(lcounter < 0))
1926 goto balance_counter;
1927 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1928 break;
1929 default:
1930 BUG();
1931 break;
1932 }
1933 xfs_icsb_unlock_cntr(icsbp);
1934 preempt_enable();
1935 return 0;
1936
1937slow_path:
1938 preempt_enable();
1939
1940 /*
1941 * serialise with a mutex so we don't burn lots of cpu on
1942 * the superblock lock. We still need to hold the superblock
1943 * lock, however, when we modify the global structures.
1944 */
1945 xfs_icsb_lock(mp);
1946
1947 /*
1948 * Now running atomically.
1949 *
1950 * If the counter is enabled, someone has beaten us to rebalancing.
1951 * Drop the lock and try again in the fast path....
1952 */
1953 if (!(xfs_icsb_counter_disabled(mp, field))) {
1954 xfs_icsb_unlock(mp);
1955 goto again;
1956 }
1957
1958 /*
1959 * The counter is currently disabled. Because we are
1960 * running atomically here, we know a rebalance cannot
1961 * be in progress. Hence we can go straight to operating
1962 * on the global superblock. We do not call xfs_mod_incore_sb()
1963 * here even though we need to get the m_sb_lock. Doing so
1964 * will cause us to re-enter this function and deadlock.
1965 * Hence we get the m_sb_lock ourselves and then call
1966 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1967 * directly on the global counters.
1968 */
1969 spin_lock(&mp->m_sb_lock);
1970 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1971 spin_unlock(&mp->m_sb_lock);
1972
1973 /*
1974 * Now that we've modified the global superblock, we
1975 * may be able to re-enable the distributed counters
1976 * (e.g. lots of space just got freed). After that
1977 * we are done.
1978 */
1979 if (ret != ENOSPC)
1980 xfs_icsb_balance_counter(mp, field, 0);
1981 xfs_icsb_unlock(mp);
1982 return ret;
1983
1984balance_counter:
1985 xfs_icsb_unlock_cntr(icsbp);
1986 preempt_enable();
1987
1988 /*
1989 * We may have multiple threads here if multiple per-cpu
1990 * counters run dry at the same time. This will mean we can
1991 * do more balances than strictly necessary but it is not
1992 * the common slowpath case.
1993 */
1994 xfs_icsb_lock(mp);
1995
1996 /*
1997 * running atomically.
1998 *
1999 * This will leave the counter in the correct state for future
2000 * accesses. After the rebalance, we simply try again and our retry
2001 * will either succeed through the fast path or slow path without
2002 * another balance operation being required.
2003 */
2004 xfs_icsb_balance_counter(mp, field, delta);
2005 xfs_icsb_unlock(mp);
2006 goto again;
2007}
2008
2009#endif
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_da_format.h"
29#include "xfs_da_btree.h"
30#include "xfs_inode.h"
31#include "xfs_dir2.h"
32#include "xfs_ialloc.h"
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
39#include "xfs_error.h"
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
42#include "xfs_trace.h"
43#include "xfs_icache.h"
44#include "xfs_sysfs.h"
45#include "xfs_rmap_btree.h"
46#include "xfs_refcount_btree.h"
47#include "xfs_reflink.h"
48#include "xfs_extent_busy.h"
49
50
51static DEFINE_MUTEX(xfs_uuid_table_mutex);
52static int xfs_uuid_table_size;
53static uuid_t *xfs_uuid_table;
54
55void
56xfs_uuid_table_free(void)
57{
58 if (xfs_uuid_table_size == 0)
59 return;
60 kmem_free(xfs_uuid_table);
61 xfs_uuid_table = NULL;
62 xfs_uuid_table_size = 0;
63}
64
65/*
66 * See if the UUID is unique among mounted XFS filesystems.
67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
68 */
69STATIC int
70xfs_uuid_mount(
71 struct xfs_mount *mp)
72{
73 uuid_t *uuid = &mp->m_sb.sb_uuid;
74 int hole, i;
75
76 /* Publish UUID in struct super_block */
77 uuid_copy(&mp->m_super->s_uuid, uuid);
78
79 if (mp->m_flags & XFS_MOUNT_NOUUID)
80 return 0;
81
82 if (uuid_is_null(uuid)) {
83 xfs_warn(mp, "Filesystem has null UUID - can't mount");
84 return -EINVAL;
85 }
86
87 mutex_lock(&xfs_uuid_table_mutex);
88 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
89 if (uuid_is_null(&xfs_uuid_table[i])) {
90 hole = i;
91 continue;
92 }
93 if (uuid_equal(uuid, &xfs_uuid_table[i]))
94 goto out_duplicate;
95 }
96
97 if (hole < 0) {
98 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
99 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
100 KM_SLEEP);
101 hole = xfs_uuid_table_size++;
102 }
103 xfs_uuid_table[hole] = *uuid;
104 mutex_unlock(&xfs_uuid_table_mutex);
105
106 return 0;
107
108 out_duplicate:
109 mutex_unlock(&xfs_uuid_table_mutex);
110 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
111 return -EINVAL;
112}
113
114STATIC void
115xfs_uuid_unmount(
116 struct xfs_mount *mp)
117{
118 uuid_t *uuid = &mp->m_sb.sb_uuid;
119 int i;
120
121 if (mp->m_flags & XFS_MOUNT_NOUUID)
122 return;
123
124 mutex_lock(&xfs_uuid_table_mutex);
125 for (i = 0; i < xfs_uuid_table_size; i++) {
126 if (uuid_is_null(&xfs_uuid_table[i]))
127 continue;
128 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
129 continue;
130 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
131 break;
132 }
133 ASSERT(i < xfs_uuid_table_size);
134 mutex_unlock(&xfs_uuid_table_mutex);
135}
136
137
138STATIC void
139__xfs_free_perag(
140 struct rcu_head *head)
141{
142 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
143
144 ASSERT(atomic_read(&pag->pag_ref) == 0);
145 kmem_free(pag);
146}
147
148/*
149 * Free up the per-ag resources associated with the mount structure.
150 */
151STATIC void
152xfs_free_perag(
153 xfs_mount_t *mp)
154{
155 xfs_agnumber_t agno;
156 struct xfs_perag *pag;
157
158 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
159 spin_lock(&mp->m_perag_lock);
160 pag = radix_tree_delete(&mp->m_perag_tree, agno);
161 spin_unlock(&mp->m_perag_lock);
162 ASSERT(pag);
163 ASSERT(atomic_read(&pag->pag_ref) == 0);
164 xfs_buf_hash_destroy(pag);
165 mutex_destroy(&pag->pag_ici_reclaim_lock);
166 call_rcu(&pag->rcu_head, __xfs_free_perag);
167 }
168}
169
170/*
171 * Check size of device based on the (data/realtime) block count.
172 * Note: this check is used by the growfs code as well as mount.
173 */
174int
175xfs_sb_validate_fsb_count(
176 xfs_sb_t *sbp,
177 uint64_t nblocks)
178{
179 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
180 ASSERT(sbp->sb_blocklog >= BBSHIFT);
181
182 /* Limited by ULONG_MAX of page cache index */
183 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
184 return -EFBIG;
185 return 0;
186}
187
188int
189xfs_initialize_perag(
190 xfs_mount_t *mp,
191 xfs_agnumber_t agcount,
192 xfs_agnumber_t *maxagi)
193{
194 xfs_agnumber_t index;
195 xfs_agnumber_t first_initialised = NULLAGNUMBER;
196 xfs_perag_t *pag;
197 int error = -ENOMEM;
198
199 /*
200 * Walk the current per-ag tree so we don't try to initialise AGs
201 * that already exist (growfs case). Allocate and insert all the
202 * AGs we don't find ready for initialisation.
203 */
204 for (index = 0; index < agcount; index++) {
205 pag = xfs_perag_get(mp, index);
206 if (pag) {
207 xfs_perag_put(pag);
208 continue;
209 }
210
211 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
212 if (!pag)
213 goto out_unwind_new_pags;
214 pag->pag_agno = index;
215 pag->pag_mount = mp;
216 spin_lock_init(&pag->pag_ici_lock);
217 mutex_init(&pag->pag_ici_reclaim_lock);
218 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
219 if (xfs_buf_hash_init(pag))
220 goto out_free_pag;
221 init_waitqueue_head(&pag->pagb_wait);
222
223 if (radix_tree_preload(GFP_NOFS))
224 goto out_hash_destroy;
225
226 spin_lock(&mp->m_perag_lock);
227 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
228 BUG();
229 spin_unlock(&mp->m_perag_lock);
230 radix_tree_preload_end();
231 error = -EEXIST;
232 goto out_hash_destroy;
233 }
234 spin_unlock(&mp->m_perag_lock);
235 radix_tree_preload_end();
236 /* first new pag is fully initialized */
237 if (first_initialised == NULLAGNUMBER)
238 first_initialised = index;
239 }
240
241 index = xfs_set_inode_alloc(mp, agcount);
242
243 if (maxagi)
244 *maxagi = index;
245
246 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
247 return 0;
248
249out_hash_destroy:
250 xfs_buf_hash_destroy(pag);
251out_free_pag:
252 mutex_destroy(&pag->pag_ici_reclaim_lock);
253 kmem_free(pag);
254out_unwind_new_pags:
255 /* unwind any prior newly initialized pags */
256 for (index = first_initialised; index < agcount; index++) {
257 pag = radix_tree_delete(&mp->m_perag_tree, index);
258 if (!pag)
259 break;
260 xfs_buf_hash_destroy(pag);
261 mutex_destroy(&pag->pag_ici_reclaim_lock);
262 kmem_free(pag);
263 }
264 return error;
265}
266
267/*
268 * xfs_readsb
269 *
270 * Does the initial read of the superblock.
271 */
272int
273xfs_readsb(
274 struct xfs_mount *mp,
275 int flags)
276{
277 unsigned int sector_size;
278 struct xfs_buf *bp;
279 struct xfs_sb *sbp = &mp->m_sb;
280 int error;
281 int loud = !(flags & XFS_MFSI_QUIET);
282 const struct xfs_buf_ops *buf_ops;
283
284 ASSERT(mp->m_sb_bp == NULL);
285 ASSERT(mp->m_ddev_targp != NULL);
286
287 /*
288 * For the initial read, we must guess at the sector
289 * size based on the block device. It's enough to
290 * get the sb_sectsize out of the superblock and
291 * then reread with the proper length.
292 * We don't verify it yet, because it may not be complete.
293 */
294 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
295 buf_ops = NULL;
296
297 /*
298 * Allocate a (locked) buffer to hold the superblock. This will be kept
299 * around at all times to optimize access to the superblock. Therefore,
300 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
301 * elevated.
302 */
303reread:
304 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
305 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
306 buf_ops);
307 if (error) {
308 if (loud)
309 xfs_warn(mp, "SB validate failed with error %d.", error);
310 /* bad CRC means corrupted metadata */
311 if (error == -EFSBADCRC)
312 error = -EFSCORRUPTED;
313 return error;
314 }
315
316 /*
317 * Initialize the mount structure from the superblock.
318 */
319 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
320
321 /*
322 * If we haven't validated the superblock, do so now before we try
323 * to check the sector size and reread the superblock appropriately.
324 */
325 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
326 if (loud)
327 xfs_warn(mp, "Invalid superblock magic number");
328 error = -EINVAL;
329 goto release_buf;
330 }
331
332 /*
333 * We must be able to do sector-sized and sector-aligned IO.
334 */
335 if (sector_size > sbp->sb_sectsize) {
336 if (loud)
337 xfs_warn(mp, "device supports %u byte sectors (not %u)",
338 sector_size, sbp->sb_sectsize);
339 error = -ENOSYS;
340 goto release_buf;
341 }
342
343 if (buf_ops == NULL) {
344 /*
345 * Re-read the superblock so the buffer is correctly sized,
346 * and properly verified.
347 */
348 xfs_buf_relse(bp);
349 sector_size = sbp->sb_sectsize;
350 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
351 goto reread;
352 }
353
354 xfs_reinit_percpu_counters(mp);
355
356 /* no need to be quiet anymore, so reset the buf ops */
357 bp->b_ops = &xfs_sb_buf_ops;
358
359 mp->m_sb_bp = bp;
360 xfs_buf_unlock(bp);
361 return 0;
362
363release_buf:
364 xfs_buf_relse(bp);
365 return error;
366}
367
368/*
369 * Update alignment values based on mount options and sb values
370 */
371STATIC int
372xfs_update_alignment(xfs_mount_t *mp)
373{
374 xfs_sb_t *sbp = &(mp->m_sb);
375
376 if (mp->m_dalign) {
377 /*
378 * If stripe unit and stripe width are not multiples
379 * of the fs blocksize turn off alignment.
380 */
381 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
382 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
383 xfs_warn(mp,
384 "alignment check failed: sunit/swidth vs. blocksize(%d)",
385 sbp->sb_blocksize);
386 return -EINVAL;
387 } else {
388 /*
389 * Convert the stripe unit and width to FSBs.
390 */
391 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
392 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
393 xfs_warn(mp,
394 "alignment check failed: sunit/swidth vs. agsize(%d)",
395 sbp->sb_agblocks);
396 return -EINVAL;
397 } else if (mp->m_dalign) {
398 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
399 } else {
400 xfs_warn(mp,
401 "alignment check failed: sunit(%d) less than bsize(%d)",
402 mp->m_dalign, sbp->sb_blocksize);
403 return -EINVAL;
404 }
405 }
406
407 /*
408 * Update superblock with new values
409 * and log changes
410 */
411 if (xfs_sb_version_hasdalign(sbp)) {
412 if (sbp->sb_unit != mp->m_dalign) {
413 sbp->sb_unit = mp->m_dalign;
414 mp->m_update_sb = true;
415 }
416 if (sbp->sb_width != mp->m_swidth) {
417 sbp->sb_width = mp->m_swidth;
418 mp->m_update_sb = true;
419 }
420 } else {
421 xfs_warn(mp,
422 "cannot change alignment: superblock does not support data alignment");
423 return -EINVAL;
424 }
425 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
426 xfs_sb_version_hasdalign(&mp->m_sb)) {
427 mp->m_dalign = sbp->sb_unit;
428 mp->m_swidth = sbp->sb_width;
429 }
430
431 return 0;
432}
433
434/*
435 * Set the maximum inode count for this filesystem
436 */
437STATIC void
438xfs_set_maxicount(xfs_mount_t *mp)
439{
440 xfs_sb_t *sbp = &(mp->m_sb);
441 uint64_t icount;
442
443 if (sbp->sb_imax_pct) {
444 /*
445 * Make sure the maximum inode count is a multiple
446 * of the units we allocate inodes in.
447 */
448 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
449 do_div(icount, 100);
450 do_div(icount, mp->m_ialloc_blks);
451 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
452 sbp->sb_inopblog;
453 } else {
454 mp->m_maxicount = 0;
455 }
456}
457
458/*
459 * Set the default minimum read and write sizes unless
460 * already specified in a mount option.
461 * We use smaller I/O sizes when the file system
462 * is being used for NFS service (wsync mount option).
463 */
464STATIC void
465xfs_set_rw_sizes(xfs_mount_t *mp)
466{
467 xfs_sb_t *sbp = &(mp->m_sb);
468 int readio_log, writeio_log;
469
470 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
471 if (mp->m_flags & XFS_MOUNT_WSYNC) {
472 readio_log = XFS_WSYNC_READIO_LOG;
473 writeio_log = XFS_WSYNC_WRITEIO_LOG;
474 } else {
475 readio_log = XFS_READIO_LOG_LARGE;
476 writeio_log = XFS_WRITEIO_LOG_LARGE;
477 }
478 } else {
479 readio_log = mp->m_readio_log;
480 writeio_log = mp->m_writeio_log;
481 }
482
483 if (sbp->sb_blocklog > readio_log) {
484 mp->m_readio_log = sbp->sb_blocklog;
485 } else {
486 mp->m_readio_log = readio_log;
487 }
488 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
489 if (sbp->sb_blocklog > writeio_log) {
490 mp->m_writeio_log = sbp->sb_blocklog;
491 } else {
492 mp->m_writeio_log = writeio_log;
493 }
494 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
495}
496
497/*
498 * precalculate the low space thresholds for dynamic speculative preallocation.
499 */
500void
501xfs_set_low_space_thresholds(
502 struct xfs_mount *mp)
503{
504 int i;
505
506 for (i = 0; i < XFS_LOWSP_MAX; i++) {
507 uint64_t space = mp->m_sb.sb_dblocks;
508
509 do_div(space, 100);
510 mp->m_low_space[i] = space * (i + 1);
511 }
512}
513
514
515/*
516 * Set whether we're using inode alignment.
517 */
518STATIC void
519xfs_set_inoalignment(xfs_mount_t *mp)
520{
521 if (xfs_sb_version_hasalign(&mp->m_sb) &&
522 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
523 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
524 else
525 mp->m_inoalign_mask = 0;
526 /*
527 * If we are using stripe alignment, check whether
528 * the stripe unit is a multiple of the inode alignment
529 */
530 if (mp->m_dalign && mp->m_inoalign_mask &&
531 !(mp->m_dalign & mp->m_inoalign_mask))
532 mp->m_sinoalign = mp->m_dalign;
533 else
534 mp->m_sinoalign = 0;
535}
536
537/*
538 * Check that the data (and log if separate) is an ok size.
539 */
540STATIC int
541xfs_check_sizes(
542 struct xfs_mount *mp)
543{
544 struct xfs_buf *bp;
545 xfs_daddr_t d;
546 int error;
547
548 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
549 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
550 xfs_warn(mp, "filesystem size mismatch detected");
551 return -EFBIG;
552 }
553 error = xfs_buf_read_uncached(mp->m_ddev_targp,
554 d - XFS_FSS_TO_BB(mp, 1),
555 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
556 if (error) {
557 xfs_warn(mp, "last sector read failed");
558 return error;
559 }
560 xfs_buf_relse(bp);
561
562 if (mp->m_logdev_targp == mp->m_ddev_targp)
563 return 0;
564
565 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
566 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
567 xfs_warn(mp, "log size mismatch detected");
568 return -EFBIG;
569 }
570 error = xfs_buf_read_uncached(mp->m_logdev_targp,
571 d - XFS_FSB_TO_BB(mp, 1),
572 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
573 if (error) {
574 xfs_warn(mp, "log device read failed");
575 return error;
576 }
577 xfs_buf_relse(bp);
578 return 0;
579}
580
581/*
582 * Clear the quotaflags in memory and in the superblock.
583 */
584int
585xfs_mount_reset_sbqflags(
586 struct xfs_mount *mp)
587{
588 mp->m_qflags = 0;
589
590 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
591 if (mp->m_sb.sb_qflags == 0)
592 return 0;
593 spin_lock(&mp->m_sb_lock);
594 mp->m_sb.sb_qflags = 0;
595 spin_unlock(&mp->m_sb_lock);
596
597 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
598 return 0;
599
600 return xfs_sync_sb(mp, false);
601}
602
603uint64_t
604xfs_default_resblks(xfs_mount_t *mp)
605{
606 uint64_t resblks;
607
608 /*
609 * We default to 5% or 8192 fsbs of space reserved, whichever is
610 * smaller. This is intended to cover concurrent allocation
611 * transactions when we initially hit enospc. These each require a 4
612 * block reservation. Hence by default we cover roughly 2000 concurrent
613 * allocation reservations.
614 */
615 resblks = mp->m_sb.sb_dblocks;
616 do_div(resblks, 20);
617 resblks = min_t(uint64_t, resblks, 8192);
618 return resblks;
619}
620
621/*
622 * This function does the following on an initial mount of a file system:
623 * - reads the superblock from disk and init the mount struct
624 * - if we're a 32-bit kernel, do a size check on the superblock
625 * so we don't mount terabyte filesystems
626 * - init mount struct realtime fields
627 * - allocate inode hash table for fs
628 * - init directory manager
629 * - perform recovery and init the log manager
630 */
631int
632xfs_mountfs(
633 struct xfs_mount *mp)
634{
635 struct xfs_sb *sbp = &(mp->m_sb);
636 struct xfs_inode *rip;
637 uint64_t resblks;
638 uint quotamount = 0;
639 uint quotaflags = 0;
640 int error = 0;
641
642 xfs_sb_mount_common(mp, sbp);
643
644 /*
645 * Check for a mismatched features2 values. Older kernels read & wrote
646 * into the wrong sb offset for sb_features2 on some platforms due to
647 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
648 * which made older superblock reading/writing routines swap it as a
649 * 64-bit value.
650 *
651 * For backwards compatibility, we make both slots equal.
652 *
653 * If we detect a mismatched field, we OR the set bits into the existing
654 * features2 field in case it has already been modified; we don't want
655 * to lose any features. We then update the bad location with the ORed
656 * value so that older kernels will see any features2 flags. The
657 * superblock writeback code ensures the new sb_features2 is copied to
658 * sb_bad_features2 before it is logged or written to disk.
659 */
660 if (xfs_sb_has_mismatched_features2(sbp)) {
661 xfs_warn(mp, "correcting sb_features alignment problem");
662 sbp->sb_features2 |= sbp->sb_bad_features2;
663 mp->m_update_sb = true;
664
665 /*
666 * Re-check for ATTR2 in case it was found in bad_features2
667 * slot.
668 */
669 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
670 !(mp->m_flags & XFS_MOUNT_NOATTR2))
671 mp->m_flags |= XFS_MOUNT_ATTR2;
672 }
673
674 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
675 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
676 xfs_sb_version_removeattr2(&mp->m_sb);
677 mp->m_update_sb = true;
678
679 /* update sb_versionnum for the clearing of the morebits */
680 if (!sbp->sb_features2)
681 mp->m_update_sb = true;
682 }
683
684 /* always use v2 inodes by default now */
685 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
686 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
687 mp->m_update_sb = true;
688 }
689
690 /*
691 * Check if sb_agblocks is aligned at stripe boundary
692 * If sb_agblocks is NOT aligned turn off m_dalign since
693 * allocator alignment is within an ag, therefore ag has
694 * to be aligned at stripe boundary.
695 */
696 error = xfs_update_alignment(mp);
697 if (error)
698 goto out;
699
700 xfs_alloc_compute_maxlevels(mp);
701 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
702 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
703 xfs_ialloc_compute_maxlevels(mp);
704 xfs_rmapbt_compute_maxlevels(mp);
705 xfs_refcountbt_compute_maxlevels(mp);
706
707 xfs_set_maxicount(mp);
708
709 /* enable fail_at_unmount as default */
710 mp->m_fail_unmount = true;
711
712 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
713 if (error)
714 goto out;
715
716 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
717 &mp->m_kobj, "stats");
718 if (error)
719 goto out_remove_sysfs;
720
721 error = xfs_error_sysfs_init(mp);
722 if (error)
723 goto out_del_stats;
724
725 error = xfs_errortag_init(mp);
726 if (error)
727 goto out_remove_error_sysfs;
728
729 error = xfs_uuid_mount(mp);
730 if (error)
731 goto out_remove_errortag;
732
733 /*
734 * Set the minimum read and write sizes
735 */
736 xfs_set_rw_sizes(mp);
737
738 /* set the low space thresholds for dynamic preallocation */
739 xfs_set_low_space_thresholds(mp);
740
741 /*
742 * Set the inode cluster size.
743 * This may still be overridden by the file system
744 * block size if it is larger than the chosen cluster size.
745 *
746 * For v5 filesystems, scale the cluster size with the inode size to
747 * keep a constant ratio of inode per cluster buffer, but only if mkfs
748 * has set the inode alignment value appropriately for larger cluster
749 * sizes.
750 */
751 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
752 if (xfs_sb_version_hascrc(&mp->m_sb)) {
753 int new_size = mp->m_inode_cluster_size;
754
755 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
756 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
757 mp->m_inode_cluster_size = new_size;
758 }
759
760 /*
761 * If enabled, sparse inode chunk alignment is expected to match the
762 * cluster size. Full inode chunk alignment must match the chunk size,
763 * but that is checked on sb read verification...
764 */
765 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
766 mp->m_sb.sb_spino_align !=
767 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
768 xfs_warn(mp,
769 "Sparse inode block alignment (%u) must match cluster size (%llu).",
770 mp->m_sb.sb_spino_align,
771 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
772 error = -EINVAL;
773 goto out_remove_uuid;
774 }
775
776 /*
777 * Set inode alignment fields
778 */
779 xfs_set_inoalignment(mp);
780
781 /*
782 * Check that the data (and log if separate) is an ok size.
783 */
784 error = xfs_check_sizes(mp);
785 if (error)
786 goto out_remove_uuid;
787
788 /*
789 * Initialize realtime fields in the mount structure
790 */
791 error = xfs_rtmount_init(mp);
792 if (error) {
793 xfs_warn(mp, "RT mount failed");
794 goto out_remove_uuid;
795 }
796
797 /*
798 * Copies the low order bits of the timestamp and the randomly
799 * set "sequence" number out of a UUID.
800 */
801 mp->m_fixedfsid[0] =
802 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
803 get_unaligned_be16(&sbp->sb_uuid.b[4]);
804 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
805
806 error = xfs_da_mount(mp);
807 if (error) {
808 xfs_warn(mp, "Failed dir/attr init: %d", error);
809 goto out_remove_uuid;
810 }
811
812 /*
813 * Initialize the precomputed transaction reservations values.
814 */
815 xfs_trans_init(mp);
816
817 /*
818 * Allocate and initialize the per-ag data.
819 */
820 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
821 if (error) {
822 xfs_warn(mp, "Failed per-ag init: %d", error);
823 goto out_free_dir;
824 }
825
826 if (!sbp->sb_logblocks) {
827 xfs_warn(mp, "no log defined");
828 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
829 error = -EFSCORRUPTED;
830 goto out_free_perag;
831 }
832
833 /*
834 * Log's mount-time initialization. The first part of recovery can place
835 * some items on the AIL, to be handled when recovery is finished or
836 * cancelled.
837 */
838 error = xfs_log_mount(mp, mp->m_logdev_targp,
839 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
840 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
841 if (error) {
842 xfs_warn(mp, "log mount failed");
843 goto out_fail_wait;
844 }
845
846 /*
847 * Now the log is mounted, we know if it was an unclean shutdown or
848 * not. If it was, with the first phase of recovery has completed, we
849 * have consistent AG blocks on disk. We have not recovered EFIs yet,
850 * but they are recovered transactionally in the second recovery phase
851 * later.
852 *
853 * Hence we can safely re-initialise incore superblock counters from
854 * the per-ag data. These may not be correct if the filesystem was not
855 * cleanly unmounted, so we need to wait for recovery to finish before
856 * doing this.
857 *
858 * If the filesystem was cleanly unmounted, then we can trust the
859 * values in the superblock to be correct and we don't need to do
860 * anything here.
861 *
862 * If we are currently making the filesystem, the initialisation will
863 * fail as the perag data is in an undefined state.
864 */
865 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
866 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
867 !mp->m_sb.sb_inprogress) {
868 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
869 if (error)
870 goto out_log_dealloc;
871 }
872
873 /*
874 * Get and sanity-check the root inode.
875 * Save the pointer to it in the mount structure.
876 */
877 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
878 if (error) {
879 xfs_warn(mp, "failed to read root inode");
880 goto out_log_dealloc;
881 }
882
883 ASSERT(rip != NULL);
884
885 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
886 xfs_warn(mp, "corrupted root inode %llu: not a directory",
887 (unsigned long long)rip->i_ino);
888 xfs_iunlock(rip, XFS_ILOCK_EXCL);
889 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
890 mp);
891 error = -EFSCORRUPTED;
892 goto out_rele_rip;
893 }
894 mp->m_rootip = rip; /* save it */
895
896 xfs_iunlock(rip, XFS_ILOCK_EXCL);
897
898 /*
899 * Initialize realtime inode pointers in the mount structure
900 */
901 error = xfs_rtmount_inodes(mp);
902 if (error) {
903 /*
904 * Free up the root inode.
905 */
906 xfs_warn(mp, "failed to read RT inodes");
907 goto out_rele_rip;
908 }
909
910 /*
911 * If this is a read-only mount defer the superblock updates until
912 * the next remount into writeable mode. Otherwise we would never
913 * perform the update e.g. for the root filesystem.
914 */
915 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
916 error = xfs_sync_sb(mp, false);
917 if (error) {
918 xfs_warn(mp, "failed to write sb changes");
919 goto out_rtunmount;
920 }
921 }
922
923 /*
924 * Initialise the XFS quota management subsystem for this mount
925 */
926 if (XFS_IS_QUOTA_RUNNING(mp)) {
927 error = xfs_qm_newmount(mp, "amount, "aflags);
928 if (error)
929 goto out_rtunmount;
930 } else {
931 ASSERT(!XFS_IS_QUOTA_ON(mp));
932
933 /*
934 * If a file system had quotas running earlier, but decided to
935 * mount without -o uquota/pquota/gquota options, revoke the
936 * quotachecked license.
937 */
938 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
939 xfs_notice(mp, "resetting quota flags");
940 error = xfs_mount_reset_sbqflags(mp);
941 if (error)
942 goto out_rtunmount;
943 }
944 }
945
946 /*
947 * Finish recovering the file system. This part needed to be delayed
948 * until after the root and real-time bitmap inodes were consistently
949 * read in.
950 */
951 error = xfs_log_mount_finish(mp);
952 if (error) {
953 xfs_warn(mp, "log mount finish failed");
954 goto out_rtunmount;
955 }
956
957 /*
958 * Now the log is fully replayed, we can transition to full read-only
959 * mode for read-only mounts. This will sync all the metadata and clean
960 * the log so that the recovery we just performed does not have to be
961 * replayed again on the next mount.
962 *
963 * We use the same quiesce mechanism as the rw->ro remount, as they are
964 * semantically identical operations.
965 */
966 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
967 XFS_MOUNT_RDONLY) {
968 xfs_quiesce_attr(mp);
969 }
970
971 /*
972 * Complete the quota initialisation, post-log-replay component.
973 */
974 if (quotamount) {
975 ASSERT(mp->m_qflags == 0);
976 mp->m_qflags = quotaflags;
977
978 xfs_qm_mount_quotas(mp);
979 }
980
981 /*
982 * Now we are mounted, reserve a small amount of unused space for
983 * privileged transactions. This is needed so that transaction
984 * space required for critical operations can dip into this pool
985 * when at ENOSPC. This is needed for operations like create with
986 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
987 * are not allowed to use this reserved space.
988 *
989 * This may drive us straight to ENOSPC on mount, but that implies
990 * we were already there on the last unmount. Warn if this occurs.
991 */
992 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
993 resblks = xfs_default_resblks(mp);
994 error = xfs_reserve_blocks(mp, &resblks, NULL);
995 if (error)
996 xfs_warn(mp,
997 "Unable to allocate reserve blocks. Continuing without reserve pool.");
998
999 /* Recover any CoW blocks that never got remapped. */
1000 error = xfs_reflink_recover_cow(mp);
1001 if (error) {
1002 xfs_err(mp,
1003 "Error %d recovering leftover CoW allocations.", error);
1004 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1005 goto out_quota;
1006 }
1007
1008 /* Reserve AG blocks for future btree expansion. */
1009 error = xfs_fs_reserve_ag_blocks(mp);
1010 if (error && error != -ENOSPC)
1011 goto out_agresv;
1012 }
1013
1014 return 0;
1015
1016 out_agresv:
1017 xfs_fs_unreserve_ag_blocks(mp);
1018 out_quota:
1019 xfs_qm_unmount_quotas(mp);
1020 out_rtunmount:
1021 xfs_rtunmount_inodes(mp);
1022 out_rele_rip:
1023 IRELE(rip);
1024 /* Clean out dquots that might be in memory after quotacheck. */
1025 xfs_qm_unmount(mp);
1026 /*
1027 * Cancel all delayed reclaim work and reclaim the inodes directly.
1028 * We have to do this /after/ rtunmount and qm_unmount because those
1029 * two will have scheduled delayed reclaim for the rt/quota inodes.
1030 *
1031 * This is slightly different from the unmountfs call sequence
1032 * because we could be tearing down a partially set up mount. In
1033 * particular, if log_mount_finish fails we bail out without calling
1034 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1035 * quota inodes.
1036 */
1037 cancel_delayed_work_sync(&mp->m_reclaim_work);
1038 xfs_reclaim_inodes(mp, SYNC_WAIT);
1039 out_log_dealloc:
1040 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1041 xfs_log_mount_cancel(mp);
1042 out_fail_wait:
1043 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1044 xfs_wait_buftarg(mp->m_logdev_targp);
1045 xfs_wait_buftarg(mp->m_ddev_targp);
1046 out_free_perag:
1047 xfs_free_perag(mp);
1048 out_free_dir:
1049 xfs_da_unmount(mp);
1050 out_remove_uuid:
1051 xfs_uuid_unmount(mp);
1052 out_remove_errortag:
1053 xfs_errortag_del(mp);
1054 out_remove_error_sysfs:
1055 xfs_error_sysfs_del(mp);
1056 out_del_stats:
1057 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1058 out_remove_sysfs:
1059 xfs_sysfs_del(&mp->m_kobj);
1060 out:
1061 return error;
1062}
1063
1064/*
1065 * This flushes out the inodes,dquots and the superblock, unmounts the
1066 * log and makes sure that incore structures are freed.
1067 */
1068void
1069xfs_unmountfs(
1070 struct xfs_mount *mp)
1071{
1072 uint64_t resblks;
1073 int error;
1074
1075 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1076 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1077
1078 xfs_fs_unreserve_ag_blocks(mp);
1079 xfs_qm_unmount_quotas(mp);
1080 xfs_rtunmount_inodes(mp);
1081 IRELE(mp->m_rootip);
1082
1083 /*
1084 * We can potentially deadlock here if we have an inode cluster
1085 * that has been freed has its buffer still pinned in memory because
1086 * the transaction is still sitting in a iclog. The stale inodes
1087 * on that buffer will have their flush locks held until the
1088 * transaction hits the disk and the callbacks run. the inode
1089 * flush takes the flush lock unconditionally and with nothing to
1090 * push out the iclog we will never get that unlocked. hence we
1091 * need to force the log first.
1092 */
1093 xfs_log_force(mp, XFS_LOG_SYNC);
1094
1095 /*
1096 * Wait for all busy extents to be freed, including completion of
1097 * any discard operation.
1098 */
1099 xfs_extent_busy_wait_all(mp);
1100 flush_workqueue(xfs_discard_wq);
1101
1102 /*
1103 * We now need to tell the world we are unmounting. This will allow
1104 * us to detect that the filesystem is going away and we should error
1105 * out anything that we have been retrying in the background. This will
1106 * prevent neverending retries in AIL pushing from hanging the unmount.
1107 */
1108 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1109
1110 /*
1111 * Flush all pending changes from the AIL.
1112 */
1113 xfs_ail_push_all_sync(mp->m_ail);
1114
1115 /*
1116 * And reclaim all inodes. At this point there should be no dirty
1117 * inodes and none should be pinned or locked, but use synchronous
1118 * reclaim just to be sure. We can stop background inode reclaim
1119 * here as well if it is still running.
1120 */
1121 cancel_delayed_work_sync(&mp->m_reclaim_work);
1122 xfs_reclaim_inodes(mp, SYNC_WAIT);
1123
1124 xfs_qm_unmount(mp);
1125
1126 /*
1127 * Unreserve any blocks we have so that when we unmount we don't account
1128 * the reserved free space as used. This is really only necessary for
1129 * lazy superblock counting because it trusts the incore superblock
1130 * counters to be absolutely correct on clean unmount.
1131 *
1132 * We don't bother correcting this elsewhere for lazy superblock
1133 * counting because on mount of an unclean filesystem we reconstruct the
1134 * correct counter value and this is irrelevant.
1135 *
1136 * For non-lazy counter filesystems, this doesn't matter at all because
1137 * we only every apply deltas to the superblock and hence the incore
1138 * value does not matter....
1139 */
1140 resblks = 0;
1141 error = xfs_reserve_blocks(mp, &resblks, NULL);
1142 if (error)
1143 xfs_warn(mp, "Unable to free reserved block pool. "
1144 "Freespace may not be correct on next mount.");
1145
1146 error = xfs_log_sbcount(mp);
1147 if (error)
1148 xfs_warn(mp, "Unable to update superblock counters. "
1149 "Freespace may not be correct on next mount.");
1150
1151
1152 xfs_log_unmount(mp);
1153 xfs_da_unmount(mp);
1154 xfs_uuid_unmount(mp);
1155
1156#if defined(DEBUG)
1157 xfs_errortag_clearall(mp);
1158#endif
1159 xfs_free_perag(mp);
1160
1161 xfs_errortag_del(mp);
1162 xfs_error_sysfs_del(mp);
1163 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1164 xfs_sysfs_del(&mp->m_kobj);
1165}
1166
1167/*
1168 * Determine whether modifications can proceed. The caller specifies the minimum
1169 * freeze level for which modifications should not be allowed. This allows
1170 * certain operations to proceed while the freeze sequence is in progress, if
1171 * necessary.
1172 */
1173bool
1174xfs_fs_writable(
1175 struct xfs_mount *mp,
1176 int level)
1177{
1178 ASSERT(level > SB_UNFROZEN);
1179 if ((mp->m_super->s_writers.frozen >= level) ||
1180 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1181 return false;
1182
1183 return true;
1184}
1185
1186/*
1187 * xfs_log_sbcount
1188 *
1189 * Sync the superblock counters to disk.
1190 *
1191 * Note this code can be called during the process of freezing, so we use the
1192 * transaction allocator that does not block when the transaction subsystem is
1193 * in its frozen state.
1194 */
1195int
1196xfs_log_sbcount(xfs_mount_t *mp)
1197{
1198 /* allow this to proceed during the freeze sequence... */
1199 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1200 return 0;
1201
1202 /*
1203 * we don't need to do this if we are updating the superblock
1204 * counters on every modification.
1205 */
1206 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1207 return 0;
1208
1209 return xfs_sync_sb(mp, true);
1210}
1211
1212/*
1213 * Deltas for the inode count are +/-64, hence we use a large batch size
1214 * of 128 so we don't need to take the counter lock on every update.
1215 */
1216#define XFS_ICOUNT_BATCH 128
1217int
1218xfs_mod_icount(
1219 struct xfs_mount *mp,
1220 int64_t delta)
1221{
1222 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1223 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1224 ASSERT(0);
1225 percpu_counter_add(&mp->m_icount, -delta);
1226 return -EINVAL;
1227 }
1228 return 0;
1229}
1230
1231int
1232xfs_mod_ifree(
1233 struct xfs_mount *mp,
1234 int64_t delta)
1235{
1236 percpu_counter_add(&mp->m_ifree, delta);
1237 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1238 ASSERT(0);
1239 percpu_counter_add(&mp->m_ifree, -delta);
1240 return -EINVAL;
1241 }
1242 return 0;
1243}
1244
1245/*
1246 * Deltas for the block count can vary from 1 to very large, but lock contention
1247 * only occurs on frequent small block count updates such as in the delayed
1248 * allocation path for buffered writes (page a time updates). Hence we set
1249 * a large batch count (1024) to minimise global counter updates except when
1250 * we get near to ENOSPC and we have to be very accurate with our updates.
1251 */
1252#define XFS_FDBLOCKS_BATCH 1024
1253int
1254xfs_mod_fdblocks(
1255 struct xfs_mount *mp,
1256 int64_t delta,
1257 bool rsvd)
1258{
1259 int64_t lcounter;
1260 long long res_used;
1261 s32 batch;
1262
1263 if (delta > 0) {
1264 /*
1265 * If the reserve pool is depleted, put blocks back into it
1266 * first. Most of the time the pool is full.
1267 */
1268 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1269 percpu_counter_add(&mp->m_fdblocks, delta);
1270 return 0;
1271 }
1272
1273 spin_lock(&mp->m_sb_lock);
1274 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1275
1276 if (res_used > delta) {
1277 mp->m_resblks_avail += delta;
1278 } else {
1279 delta -= res_used;
1280 mp->m_resblks_avail = mp->m_resblks;
1281 percpu_counter_add(&mp->m_fdblocks, delta);
1282 }
1283 spin_unlock(&mp->m_sb_lock);
1284 return 0;
1285 }
1286
1287 /*
1288 * Taking blocks away, need to be more accurate the closer we
1289 * are to zero.
1290 *
1291 * If the counter has a value of less than 2 * max batch size,
1292 * then make everything serialise as we are real close to
1293 * ENOSPC.
1294 */
1295 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1296 XFS_FDBLOCKS_BATCH) < 0)
1297 batch = 1;
1298 else
1299 batch = XFS_FDBLOCKS_BATCH;
1300
1301 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1302 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1303 XFS_FDBLOCKS_BATCH) >= 0) {
1304 /* we had space! */
1305 return 0;
1306 }
1307
1308 /*
1309 * lock up the sb for dipping into reserves before releasing the space
1310 * that took us to ENOSPC.
1311 */
1312 spin_lock(&mp->m_sb_lock);
1313 percpu_counter_add(&mp->m_fdblocks, -delta);
1314 if (!rsvd)
1315 goto fdblocks_enospc;
1316
1317 lcounter = (long long)mp->m_resblks_avail + delta;
1318 if (lcounter >= 0) {
1319 mp->m_resblks_avail = lcounter;
1320 spin_unlock(&mp->m_sb_lock);
1321 return 0;
1322 }
1323 printk_once(KERN_WARNING
1324 "Filesystem \"%s\": reserve blocks depleted! "
1325 "Consider increasing reserve pool size.",
1326 mp->m_fsname);
1327fdblocks_enospc:
1328 spin_unlock(&mp->m_sb_lock);
1329 return -ENOSPC;
1330}
1331
1332int
1333xfs_mod_frextents(
1334 struct xfs_mount *mp,
1335 int64_t delta)
1336{
1337 int64_t lcounter;
1338 int ret = 0;
1339
1340 spin_lock(&mp->m_sb_lock);
1341 lcounter = mp->m_sb.sb_frextents + delta;
1342 if (lcounter < 0)
1343 ret = -ENOSPC;
1344 else
1345 mp->m_sb.sb_frextents = lcounter;
1346 spin_unlock(&mp->m_sb_lock);
1347 return ret;
1348}
1349
1350/*
1351 * xfs_getsb() is called to obtain the buffer for the superblock.
1352 * The buffer is returned locked and read in from disk.
1353 * The buffer should be released with a call to xfs_brelse().
1354 *
1355 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1356 * the superblock buffer if it can be locked without sleeping.
1357 * If it can't then we'll return NULL.
1358 */
1359struct xfs_buf *
1360xfs_getsb(
1361 struct xfs_mount *mp,
1362 int flags)
1363{
1364 struct xfs_buf *bp = mp->m_sb_bp;
1365
1366 if (!xfs_buf_trylock(bp)) {
1367 if (flags & XBF_TRYLOCK)
1368 return NULL;
1369 xfs_buf_lock(bp);
1370 }
1371
1372 xfs_buf_hold(bp);
1373 ASSERT(bp->b_flags & XBF_DONE);
1374 return bp;
1375}
1376
1377/*
1378 * Used to free the superblock along various error paths.
1379 */
1380void
1381xfs_freesb(
1382 struct xfs_mount *mp)
1383{
1384 struct xfs_buf *bp = mp->m_sb_bp;
1385
1386 xfs_buf_lock(bp);
1387 mp->m_sb_bp = NULL;
1388 xfs_buf_relse(bp);
1389}
1390
1391/*
1392 * If the underlying (data/log/rt) device is readonly, there are some
1393 * operations that cannot proceed.
1394 */
1395int
1396xfs_dev_is_read_only(
1397 struct xfs_mount *mp,
1398 char *message)
1399{
1400 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1401 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1402 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1403 xfs_notice(mp, "%s required on read-only device.", message);
1404 xfs_notice(mp, "write access unavailable, cannot proceed.");
1405 return -EROFS;
1406 }
1407 return 0;
1408}