Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
  3 *
  4 * Scatterlist handling helpers.
  5 *
  6 * This source code is licensed under the GNU General Public License,
  7 * Version 2. See the file COPYING for more details.
  8 */
  9#include <linux/export.h>
 10#include <linux/slab.h>
 11#include <linux/scatterlist.h>
 12#include <linux/highmem.h>
 13#include <linux/kmemleak.h>
 
 
 
 14
 15/**
 16 * sg_next - return the next scatterlist entry in a list
 17 * @sg:		The current sg entry
 18 *
 19 * Description:
 20 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
 21 *   of a chained scatterlist, it could jump to the start of a new
 22 *   scatterlist array.
 23 *
 24 **/
 25struct scatterlist *sg_next(struct scatterlist *sg)
 26{
 27#ifdef CONFIG_DEBUG_SG
 28	BUG_ON(sg->sg_magic != SG_MAGIC);
 29#endif
 30	if (sg_is_last(sg))
 31		return NULL;
 32
 33	sg++;
 34	if (unlikely(sg_is_chain(sg)))
 35		sg = sg_chain_ptr(sg);
 36
 37	return sg;
 38}
 39EXPORT_SYMBOL(sg_next);
 40
 41/**
 42 * sg_nents - return total count of entries in scatterlist
 43 * @sg:		The scatterlist
 44 *
 45 * Description:
 46 * Allows to know how many entries are in sg, taking into acount
 47 * chaining as well
 48 *
 49 **/
 50int sg_nents(struct scatterlist *sg)
 51{
 52	int nents;
 53	for (nents = 0; sg; sg = sg_next(sg))
 54		nents++;
 55	return nents;
 56}
 57EXPORT_SYMBOL(sg_nents);
 58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59
 60/**
 61 * sg_last - return the last scatterlist entry in a list
 62 * @sgl:	First entry in the scatterlist
 63 * @nents:	Number of entries in the scatterlist
 64 *
 65 * Description:
 66 *   Should only be used casually, it (currently) scans the entire list
 67 *   to get the last entry.
 68 *
 69 *   Note that the @sgl@ pointer passed in need not be the first one,
 70 *   the important bit is that @nents@ denotes the number of entries that
 71 *   exist from @sgl@.
 72 *
 73 **/
 74struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 75{
 76#ifndef ARCH_HAS_SG_CHAIN
 77	struct scatterlist *ret = &sgl[nents - 1];
 78#else
 79	struct scatterlist *sg, *ret = NULL;
 80	unsigned int i;
 81
 82	for_each_sg(sgl, sg, nents, i)
 83		ret = sg;
 84
 85#endif
 86#ifdef CONFIG_DEBUG_SG
 87	BUG_ON(sgl[0].sg_magic != SG_MAGIC);
 88	BUG_ON(!sg_is_last(ret));
 89#endif
 90	return ret;
 91}
 92EXPORT_SYMBOL(sg_last);
 93
 94/**
 95 * sg_init_table - Initialize SG table
 96 * @sgl:	   The SG table
 97 * @nents:	   Number of entries in table
 98 *
 99 * Notes:
100 *   If this is part of a chained sg table, sg_mark_end() should be
101 *   used only on the last table part.
102 *
103 **/
104void sg_init_table(struct scatterlist *sgl, unsigned int nents)
105{
106	memset(sgl, 0, sizeof(*sgl) * nents);
107#ifdef CONFIG_DEBUG_SG
108	{
109		unsigned int i;
110		for (i = 0; i < nents; i++)
111			sgl[i].sg_magic = SG_MAGIC;
112	}
113#endif
114	sg_mark_end(&sgl[nents - 1]);
115}
116EXPORT_SYMBOL(sg_init_table);
117
118/**
119 * sg_init_one - Initialize a single entry sg list
120 * @sg:		 SG entry
121 * @buf:	 Virtual address for IO
122 * @buflen:	 IO length
123 *
124 **/
125void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
126{
127	sg_init_table(sg, 1);
128	sg_set_buf(sg, buf, buflen);
129}
130EXPORT_SYMBOL(sg_init_one);
131
132/*
133 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
134 * helpers.
135 */
136static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
137{
138	if (nents == SG_MAX_SINGLE_ALLOC) {
139		/*
140		 * Kmemleak doesn't track page allocations as they are not
141		 * commonly used (in a raw form) for kernel data structures.
142		 * As we chain together a list of pages and then a normal
143		 * kmalloc (tracked by kmemleak), in order to for that last
144		 * allocation not to become decoupled (and thus a
145		 * false-positive) we need to inform kmemleak of all the
146		 * intermediate allocations.
147		 */
148		void *ptr = (void *) __get_free_page(gfp_mask);
149		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
150		return ptr;
151	} else
152		return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
 
153}
154
155static void sg_kfree(struct scatterlist *sg, unsigned int nents)
156{
157	if (nents == SG_MAX_SINGLE_ALLOC) {
158		kmemleak_free(sg);
159		free_page((unsigned long) sg);
160	} else
161		kfree(sg);
162}
163
164/**
165 * __sg_free_table - Free a previously mapped sg table
166 * @table:	The sg table header to use
167 * @max_ents:	The maximum number of entries per single scatterlist
 
 
168 * @free_fn:	Free function
 
169 *
170 *  Description:
171 *    Free an sg table previously allocated and setup with
172 *    __sg_alloc_table().  The @max_ents value must be identical to
173 *    that previously used with __sg_alloc_table().
174 *
175 **/
176void __sg_free_table(struct sg_table *table, unsigned int max_ents,
177		     sg_free_fn *free_fn)
 
178{
179	struct scatterlist *sgl, *next;
 
180
181	if (unlikely(!table->sgl))
182		return;
183
184	sgl = table->sgl;
185	while (table->orig_nents) {
186		unsigned int alloc_size = table->orig_nents;
187		unsigned int sg_size;
188
189		/*
190		 * If we have more than max_ents segments left,
191		 * then assign 'next' to the sg table after the current one.
192		 * sg_size is then one less than alloc size, since the last
193		 * element is the chain pointer.
194		 */
195		if (alloc_size > max_ents) {
196			next = sg_chain_ptr(&sgl[max_ents - 1]);
197			alloc_size = max_ents;
198			sg_size = alloc_size - 1;
199		} else {
200			sg_size = alloc_size;
201			next = NULL;
202		}
203
204		table->orig_nents -= sg_size;
205		free_fn(sgl, alloc_size);
 
 
 
206		sgl = next;
 
207	}
208
209	table->sgl = NULL;
210}
211EXPORT_SYMBOL(__sg_free_table);
212
213/**
 
 
 
 
 
 
 
 
 
 
 
 
 
214 * sg_free_table - Free a previously allocated sg table
215 * @table:	The mapped sg table header
216 *
217 **/
218void sg_free_table(struct sg_table *table)
219{
220	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
 
221}
222EXPORT_SYMBOL(sg_free_table);
223
224/**
225 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
226 * @table:	The sg table header to use
227 * @nents:	Number of entries in sg list
228 * @max_ents:	The maximum number of entries the allocator returns per call
 
 
 
229 * @gfp_mask:	GFP allocation mask
230 * @alloc_fn:	Allocator to use
231 *
232 * Description:
233 *   This function returns a @table @nents long. The allocator is
234 *   defined to return scatterlist chunks of maximum size @max_ents.
235 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
236 *   chained in units of @max_ents.
237 *
238 * Notes:
239 *   If this function returns non-0 (eg failure), the caller must call
240 *   __sg_free_table() to cleanup any leftover allocations.
241 *
242 **/
243int __sg_alloc_table(struct sg_table *table, unsigned int nents,
244		     unsigned int max_ents, gfp_t gfp_mask,
 
245		     sg_alloc_fn *alloc_fn)
246{
247	struct scatterlist *sg, *prv;
248	unsigned int left;
 
 
249
250	memset(table, 0, sizeof(*table));
251
252	if (nents == 0)
253		return -EINVAL;
254#ifndef ARCH_HAS_SG_CHAIN
255	if (WARN_ON_ONCE(nents > max_ents))
256		return -EINVAL;
257#endif
258
259	left = nents;
260	prv = NULL;
261	do {
262		unsigned int sg_size, alloc_size = left;
263
264		if (alloc_size > max_ents) {
265			alloc_size = max_ents;
266			sg_size = alloc_size - 1;
267		} else
268			sg_size = alloc_size;
269
270		left -= sg_size;
271
272		sg = alloc_fn(alloc_size, gfp_mask);
 
 
 
 
 
273		if (unlikely(!sg)) {
274			/*
275			 * Adjust entry count to reflect that the last
276			 * entry of the previous table won't be used for
277			 * linkage.  Without this, sg_kfree() may get
278			 * confused.
279			 */
280			if (prv)
281				table->nents = ++table->orig_nents;
282
283 			return -ENOMEM;
284		}
285
286		sg_init_table(sg, alloc_size);
287		table->nents = table->orig_nents += sg_size;
288
289		/*
290		 * If this is the first mapping, assign the sg table header.
291		 * If this is not the first mapping, chain previous part.
292		 */
293		if (prv)
294			sg_chain(prv, max_ents, sg);
295		else
296			table->sgl = sg;
297
298		/*
299		 * If no more entries after this one, mark the end
300		 */
301		if (!left)
302			sg_mark_end(&sg[sg_size - 1]);
303
304		prv = sg;
 
 
305	} while (left);
306
307	return 0;
308}
309EXPORT_SYMBOL(__sg_alloc_table);
310
311/**
312 * sg_alloc_table - Allocate and initialize an sg table
313 * @table:	The sg table header to use
314 * @nents:	Number of entries in sg list
315 * @gfp_mask:	GFP allocation mask
316 *
317 *  Description:
318 *    Allocate and initialize an sg table. If @nents@ is larger than
319 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
320 *
321 **/
322int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
323{
324	int ret;
325
326	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
327			       gfp_mask, sg_kmalloc);
328	if (unlikely(ret))
329		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
330
331	return ret;
332}
333EXPORT_SYMBOL(sg_alloc_table);
334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335/**
336 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
337 *			       an array of pages
338 * @sgt:	The sg table header to use
339 * @pages:	Pointer to an array of page pointers
340 * @n_pages:	Number of pages in the pages array
341 * @offset:     Offset from start of the first page to the start of a buffer
342 * @size:       Number of valid bytes in the buffer (after offset)
343 * @gfp_mask:	GFP allocation mask
 
 
344 *
345 *  Description:
346 *    Allocate and initialize an sg table from a list of pages. Contiguous
347 *    ranges of the pages are squashed into a single scatterlist node. A user
348 *    may provide an offset at a start and a size of valid data in a buffer
349 *    specified by the page array. The returned sg table is released by
350 *    sg_free_table.
 
351 *
352 * Returns:
353 *   0 on success, negative error on failure
 
 
 
 
 
 
354 */
355int sg_alloc_table_from_pages(struct sg_table *sgt,
356	struct page **pages, unsigned int n_pages,
357	unsigned long offset, unsigned long size,
358	gfp_t gfp_mask)
359{
360	unsigned int chunks;
361	unsigned int i;
362	unsigned int cur_page;
363	int ret;
364	struct scatterlist *s;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365
366	/* compute number of contiguous chunks */
367	chunks = 1;
368	for (i = 1; i < n_pages; ++i)
369		if (page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1)
370			++chunks;
371
372	ret = sg_alloc_table(sgt, chunks, gfp_mask);
373	if (unlikely(ret))
374		return ret;
 
 
375
376	/* merging chunks and putting them into the scatterlist */
377	cur_page = 0;
378	for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
379		unsigned long chunk_size;
380		unsigned int j;
381
382		/* look for the end of the current chunk */
383		for (j = cur_page + 1; j < n_pages; ++j)
384			if (page_to_pfn(pages[j]) !=
385			    page_to_pfn(pages[j - 1]) + 1)
 
 
386				break;
 
387
 
 
 
 
 
 
 
 
 
 
 
 
388		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
389		sg_set_page(s, pages[cur_page], min(size, chunk_size), offset);
 
 
390		size -= chunk_size;
391		offset = 0;
392		cur_page = j;
393	}
 
 
 
 
 
 
 
 
 
394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395	return 0;
396}
397EXPORT_SYMBOL(sg_alloc_table_from_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398
399void __sg_page_iter_start(struct sg_page_iter *piter,
400			  struct scatterlist *sglist, unsigned int nents,
401			  unsigned long pgoffset)
402{
403	piter->__pg_advance = 0;
404	piter->__nents = nents;
405
406	piter->sg = sglist;
407	piter->sg_pgoffset = pgoffset;
408}
409EXPORT_SYMBOL(__sg_page_iter_start);
410
411static int sg_page_count(struct scatterlist *sg)
412{
413	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
414}
415
416bool __sg_page_iter_next(struct sg_page_iter *piter)
417{
418	if (!piter->__nents || !piter->sg)
419		return false;
420
421	piter->sg_pgoffset += piter->__pg_advance;
422	piter->__pg_advance = 1;
423
424	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
425		piter->sg_pgoffset -= sg_page_count(piter->sg);
426		piter->sg = sg_next(piter->sg);
427		if (!--piter->__nents || !piter->sg)
428			return false;
429	}
430
431	return true;
432}
433EXPORT_SYMBOL(__sg_page_iter_next);
434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435/**
436 * sg_miter_start - start mapping iteration over a sg list
437 * @miter: sg mapping iter to be started
438 * @sgl: sg list to iterate over
439 * @nents: number of sg entries
 
440 *
441 * Description:
442 *   Starts mapping iterator @miter.
443 *
444 * Context:
445 *   Don't care.
446 */
447void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
448		    unsigned int nents, unsigned int flags)
449{
450	memset(miter, 0, sizeof(struct sg_mapping_iter));
451
452	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
453	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
454	miter->__flags = flags;
455}
456EXPORT_SYMBOL(sg_miter_start);
457
458static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
459{
460	if (!miter->__remaining) {
461		struct scatterlist *sg;
462		unsigned long pgoffset;
463
464		if (!__sg_page_iter_next(&miter->piter))
465			return false;
466
467		sg = miter->piter.sg;
468		pgoffset = miter->piter.sg_pgoffset;
469
470		miter->__offset = pgoffset ? 0 : sg->offset;
 
 
471		miter->__remaining = sg->offset + sg->length -
472				(pgoffset << PAGE_SHIFT) - miter->__offset;
 
473		miter->__remaining = min_t(unsigned long, miter->__remaining,
474					   PAGE_SIZE - miter->__offset);
475	}
476
477	return true;
478}
479
480/**
481 * sg_miter_skip - reposition mapping iterator
482 * @miter: sg mapping iter to be skipped
483 * @offset: number of bytes to plus the current location
484 *
485 * Description:
486 *   Sets the offset of @miter to its current location plus @offset bytes.
487 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
488 *   stops @miter.
489 *
490 * Context:
491 *   Don't care if @miter is stopped, or not proceeded yet.
492 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
493 *
494 * Returns:
495 *   true if @miter contains the valid mapping.  false if end of sg
496 *   list is reached.
497 */
498bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
499{
500	sg_miter_stop(miter);
501
502	while (offset) {
503		off_t consumed;
504
505		if (!sg_miter_get_next_page(miter))
506			return false;
507
508		consumed = min_t(off_t, offset, miter->__remaining);
509		miter->__offset += consumed;
510		miter->__remaining -= consumed;
511		offset -= consumed;
512	}
513
514	return true;
515}
516EXPORT_SYMBOL(sg_miter_skip);
517
518/**
519 * sg_miter_next - proceed mapping iterator to the next mapping
520 * @miter: sg mapping iter to proceed
521 *
522 * Description:
523 *   Proceeds @miter to the next mapping.  @miter should have been started
524 *   using sg_miter_start().  On successful return, @miter->page,
525 *   @miter->addr and @miter->length point to the current mapping.
526 *
527 * Context:
528 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
529 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
530 *
531 * Returns:
532 *   true if @miter contains the next mapping.  false if end of sg
533 *   list is reached.
534 */
535bool sg_miter_next(struct sg_mapping_iter *miter)
536{
537	sg_miter_stop(miter);
538
539	/*
540	 * Get to the next page if necessary.
541	 * __remaining, __offset is adjusted by sg_miter_stop
542	 */
543	if (!sg_miter_get_next_page(miter))
544		return false;
545
546	miter->page = sg_page_iter_page(&miter->piter);
547	miter->consumed = miter->length = miter->__remaining;
548
549	if (miter->__flags & SG_MITER_ATOMIC)
550		miter->addr = kmap_atomic(miter->page) + miter->__offset;
551	else
552		miter->addr = kmap(miter->page) + miter->__offset;
553
554	return true;
555}
556EXPORT_SYMBOL(sg_miter_next);
557
558/**
559 * sg_miter_stop - stop mapping iteration
560 * @miter: sg mapping iter to be stopped
561 *
562 * Description:
563 *   Stops mapping iterator @miter.  @miter should have been started
564 *   started using sg_miter_start().  A stopped iteration can be
565 *   resumed by calling sg_miter_next() on it.  This is useful when
566 *   resources (kmap) need to be released during iteration.
567 *
568 * Context:
569 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
570 *   otherwise.
571 */
572void sg_miter_stop(struct sg_mapping_iter *miter)
573{
574	WARN_ON(miter->consumed > miter->length);
575
576	/* drop resources from the last iteration */
577	if (miter->addr) {
578		miter->__offset += miter->consumed;
579		miter->__remaining -= miter->consumed;
580
581		if ((miter->__flags & SG_MITER_TO_SG) &&
582		    !PageSlab(miter->page))
583			flush_kernel_dcache_page(miter->page);
584
585		if (miter->__flags & SG_MITER_ATOMIC) {
586			WARN_ON_ONCE(preemptible());
587			kunmap_atomic(miter->addr);
588		} else
589			kunmap(miter->page);
590
591		miter->page = NULL;
592		miter->addr = NULL;
593		miter->length = 0;
594		miter->consumed = 0;
595	}
596}
597EXPORT_SYMBOL(sg_miter_stop);
598
599/**
600 * sg_copy_buffer - Copy data between a linear buffer and an SG list
601 * @sgl:		 The SG list
602 * @nents:		 Number of SG entries
603 * @buf:		 Where to copy from
604 * @buflen:		 The number of bytes to copy
605 * @skip:		 Number of bytes to skip before copying
606 * @to_buffer:		 transfer direction (true == from an sg list to a
607 *			 buffer, false == from a buffer to an sg list
608 *
609 * Returns the number of copied bytes.
610 *
611 **/
612static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents,
613			     void *buf, size_t buflen, off_t skip,
614			     bool to_buffer)
615{
616	unsigned int offset = 0;
617	struct sg_mapping_iter miter;
618	unsigned long flags;
619	unsigned int sg_flags = SG_MITER_ATOMIC;
620
621	if (to_buffer)
622		sg_flags |= SG_MITER_FROM_SG;
623	else
624		sg_flags |= SG_MITER_TO_SG;
625
626	sg_miter_start(&miter, sgl, nents, sg_flags);
627
628	if (!sg_miter_skip(&miter, skip))
629		return false;
630
631	local_irq_save(flags);
632
633	while (sg_miter_next(&miter) && offset < buflen) {
634		unsigned int len;
635
636		len = min(miter.length, buflen - offset);
637
638		if (to_buffer)
639			memcpy(buf + offset, miter.addr, len);
640		else
641			memcpy(miter.addr, buf + offset, len);
642
643		offset += len;
644	}
645
646	sg_miter_stop(&miter);
647
648	local_irq_restore(flags);
649	return offset;
650}
 
651
652/**
653 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
654 * @sgl:		 The SG list
655 * @nents:		 Number of SG entries
656 * @buf:		 Where to copy from
657 * @buflen:		 The number of bytes to copy
658 *
659 * Returns the number of copied bytes.
660 *
661 **/
662size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
663			   void *buf, size_t buflen)
664{
665	return sg_copy_buffer(sgl, nents, buf, buflen, 0, false);
666}
667EXPORT_SYMBOL(sg_copy_from_buffer);
668
669/**
670 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
671 * @sgl:		 The SG list
672 * @nents:		 Number of SG entries
673 * @buf:		 Where to copy to
674 * @buflen:		 The number of bytes to copy
675 *
676 * Returns the number of copied bytes.
677 *
678 **/
679size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
680			 void *buf, size_t buflen)
681{
682	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
683}
684EXPORT_SYMBOL(sg_copy_to_buffer);
685
686/**
687 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
688 * @sgl:		 The SG list
689 * @nents:		 Number of SG entries
690 * @buf:		 Where to copy from
691 * @skip:		 Number of bytes to skip before copying
692 * @buflen:		 The number of bytes to copy
 
693 *
694 * Returns the number of copied bytes.
695 *
696 **/
697size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
698			    void *buf, size_t buflen, off_t skip)
699{
700	return sg_copy_buffer(sgl, nents, buf, buflen, skip, false);
701}
702EXPORT_SYMBOL(sg_pcopy_from_buffer);
703
704/**
705 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
706 * @sgl:		 The SG list
707 * @nents:		 Number of SG entries
708 * @buf:		 Where to copy to
709 * @skip:		 Number of bytes to skip before copying
710 * @buflen:		 The number of bytes to copy
 
711 *
712 * Returns the number of copied bytes.
713 *
714 **/
715size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
716			  void *buf, size_t buflen, off_t skip)
717{
718	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
719}
720EXPORT_SYMBOL(sg_pcopy_to_buffer);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
   4 *
   5 * Scatterlist handling helpers.
 
 
 
   6 */
   7#include <linux/export.h>
   8#include <linux/slab.h>
   9#include <linux/scatterlist.h>
  10#include <linux/highmem.h>
  11#include <linux/kmemleak.h>
  12#include <linux/bvec.h>
  13#include <linux/uio.h>
  14#include <linux/folio_queue.h>
  15
  16/**
  17 * sg_next - return the next scatterlist entry in a list
  18 * @sg:		The current sg entry
  19 *
  20 * Description:
  21 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
  22 *   of a chained scatterlist, it could jump to the start of a new
  23 *   scatterlist array.
  24 *
  25 **/
  26struct scatterlist *sg_next(struct scatterlist *sg)
  27{
 
 
 
  28	if (sg_is_last(sg))
  29		return NULL;
  30
  31	sg++;
  32	if (unlikely(sg_is_chain(sg)))
  33		sg = sg_chain_ptr(sg);
  34
  35	return sg;
  36}
  37EXPORT_SYMBOL(sg_next);
  38
  39/**
  40 * sg_nents - return total count of entries in scatterlist
  41 * @sg:		The scatterlist
  42 *
  43 * Description:
  44 * Allows to know how many entries are in sg, taking into account
  45 * chaining as well
  46 *
  47 **/
  48int sg_nents(struct scatterlist *sg)
  49{
  50	int nents;
  51	for (nents = 0; sg; sg = sg_next(sg))
  52		nents++;
  53	return nents;
  54}
  55EXPORT_SYMBOL(sg_nents);
  56
  57/**
  58 * sg_nents_for_len - return total count of entries in scatterlist
  59 *                    needed to satisfy the supplied length
  60 * @sg:		The scatterlist
  61 * @len:	The total required length
  62 *
  63 * Description:
  64 * Determines the number of entries in sg that are required to meet
  65 * the supplied length, taking into account chaining as well
  66 *
  67 * Returns:
  68 *   the number of sg entries needed, negative error on failure
  69 *
  70 **/
  71int sg_nents_for_len(struct scatterlist *sg, u64 len)
  72{
  73	int nents;
  74	u64 total;
  75
  76	if (!len)
  77		return 0;
  78
  79	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
  80		nents++;
  81		total += sg->length;
  82		if (total >= len)
  83			return nents;
  84	}
  85
  86	return -EINVAL;
  87}
  88EXPORT_SYMBOL(sg_nents_for_len);
  89
  90/**
  91 * sg_last - return the last scatterlist entry in a list
  92 * @sgl:	First entry in the scatterlist
  93 * @nents:	Number of entries in the scatterlist
  94 *
  95 * Description:
  96 *   Should only be used casually, it (currently) scans the entire list
  97 *   to get the last entry.
  98 *
  99 *   Note that the @sgl@ pointer passed in need not be the first one,
 100 *   the important bit is that @nents@ denotes the number of entries that
 101 *   exist from @sgl@.
 102 *
 103 **/
 104struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 105{
 
 
 
 106	struct scatterlist *sg, *ret = NULL;
 107	unsigned int i;
 108
 109	for_each_sg(sgl, sg, nents, i)
 110		ret = sg;
 111
 
 
 
 112	BUG_ON(!sg_is_last(ret));
 
 113	return ret;
 114}
 115EXPORT_SYMBOL(sg_last);
 116
 117/**
 118 * sg_init_table - Initialize SG table
 119 * @sgl:	   The SG table
 120 * @nents:	   Number of entries in table
 121 *
 122 * Notes:
 123 *   If this is part of a chained sg table, sg_mark_end() should be
 124 *   used only on the last table part.
 125 *
 126 **/
 127void sg_init_table(struct scatterlist *sgl, unsigned int nents)
 128{
 129	memset(sgl, 0, sizeof(*sgl) * nents);
 130	sg_init_marker(sgl, nents);
 
 
 
 
 
 
 
 131}
 132EXPORT_SYMBOL(sg_init_table);
 133
 134/**
 135 * sg_init_one - Initialize a single entry sg list
 136 * @sg:		 SG entry
 137 * @buf:	 Virtual address for IO
 138 * @buflen:	 IO length
 139 *
 140 **/
 141void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
 142{
 143	sg_init_table(sg, 1);
 144	sg_set_buf(sg, buf, buflen);
 145}
 146EXPORT_SYMBOL(sg_init_one);
 147
 148/*
 149 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
 150 * helpers.
 151 */
 152static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
 153{
 154	if (nents == SG_MAX_SINGLE_ALLOC) {
 155		/*
 156		 * Kmemleak doesn't track page allocations as they are not
 157		 * commonly used (in a raw form) for kernel data structures.
 158		 * As we chain together a list of pages and then a normal
 159		 * kmalloc (tracked by kmemleak), in order to for that last
 160		 * allocation not to become decoupled (and thus a
 161		 * false-positive) we need to inform kmemleak of all the
 162		 * intermediate allocations.
 163		 */
 164		void *ptr = (void *) __get_free_page(gfp_mask);
 165		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
 166		return ptr;
 167	} else
 168		return kmalloc_array(nents, sizeof(struct scatterlist),
 169				     gfp_mask);
 170}
 171
 172static void sg_kfree(struct scatterlist *sg, unsigned int nents)
 173{
 174	if (nents == SG_MAX_SINGLE_ALLOC) {
 175		kmemleak_free(sg);
 176		free_page((unsigned long) sg);
 177	} else
 178		kfree(sg);
 179}
 180
 181/**
 182 * __sg_free_table - Free a previously mapped sg table
 183 * @table:	The sg table header to use
 184 * @max_ents:	The maximum number of entries per single scatterlist
 185 * @nents_first_chunk: Number of entries int the (preallocated) first
 186 * 	scatterlist chunk, 0 means no such preallocated first chunk
 187 * @free_fn:	Free function
 188 * @num_ents:	Number of entries in the table
 189 *
 190 *  Description:
 191 *    Free an sg table previously allocated and setup with
 192 *    __sg_alloc_table().  The @max_ents value must be identical to
 193 *    that previously used with __sg_alloc_table().
 194 *
 195 **/
 196void __sg_free_table(struct sg_table *table, unsigned int max_ents,
 197		     unsigned int nents_first_chunk, sg_free_fn *free_fn,
 198		     unsigned int num_ents)
 199{
 200	struct scatterlist *sgl, *next;
 201	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 202
 203	if (unlikely(!table->sgl))
 204		return;
 205
 206	sgl = table->sgl;
 207	while (num_ents) {
 208		unsigned int alloc_size = num_ents;
 209		unsigned int sg_size;
 210
 211		/*
 212		 * If we have more than max_ents segments left,
 213		 * then assign 'next' to the sg table after the current one.
 214		 * sg_size is then one less than alloc size, since the last
 215		 * element is the chain pointer.
 216		 */
 217		if (alloc_size > curr_max_ents) {
 218			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
 219			alloc_size = curr_max_ents;
 220			sg_size = alloc_size - 1;
 221		} else {
 222			sg_size = alloc_size;
 223			next = NULL;
 224		}
 225
 226		num_ents -= sg_size;
 227		if (nents_first_chunk)
 228			nents_first_chunk = 0;
 229		else
 230			free_fn(sgl, alloc_size);
 231		sgl = next;
 232		curr_max_ents = max_ents;
 233	}
 234
 235	table->sgl = NULL;
 236}
 237EXPORT_SYMBOL(__sg_free_table);
 238
 239/**
 240 * sg_free_append_table - Free a previously allocated append sg table.
 241 * @table:	 The mapped sg append table header
 242 *
 243 **/
 244void sg_free_append_table(struct sg_append_table *table)
 245{
 246	__sg_free_table(&table->sgt, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
 247			table->total_nents);
 248}
 249EXPORT_SYMBOL(sg_free_append_table);
 250
 251
 252/**
 253 * sg_free_table - Free a previously allocated sg table
 254 * @table:	The mapped sg table header
 255 *
 256 **/
 257void sg_free_table(struct sg_table *table)
 258{
 259	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
 260			table->orig_nents);
 261}
 262EXPORT_SYMBOL(sg_free_table);
 263
 264/**
 265 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
 266 * @table:	The sg table header to use
 267 * @nents:	Number of entries in sg list
 268 * @max_ents:	The maximum number of entries the allocator returns per call
 269 * @first_chunk: first SGL if preallocated (may be %NULL)
 270 * @nents_first_chunk: Number of entries in the (preallocated) first
 271 * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
 272 * @gfp_mask:	GFP allocation mask
 273 * @alloc_fn:	Allocator to use
 274 *
 275 * Description:
 276 *   This function returns a @table @nents long. The allocator is
 277 *   defined to return scatterlist chunks of maximum size @max_ents.
 278 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
 279 *   chained in units of @max_ents.
 280 *
 281 * Notes:
 282 *   If this function returns non-0 (eg failure), the caller must call
 283 *   __sg_free_table() to cleanup any leftover allocations.
 284 *
 285 **/
 286int __sg_alloc_table(struct sg_table *table, unsigned int nents,
 287		     unsigned int max_ents, struct scatterlist *first_chunk,
 288		     unsigned int nents_first_chunk, gfp_t gfp_mask,
 289		     sg_alloc_fn *alloc_fn)
 290{
 291	struct scatterlist *sg, *prv;
 292	unsigned int left;
 293	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 294	unsigned prv_max_ents;
 295
 296	memset(table, 0, sizeof(*table));
 297
 298	if (nents == 0)
 299		return -EINVAL;
 300#ifdef CONFIG_ARCH_NO_SG_CHAIN
 301	if (WARN_ON_ONCE(nents > max_ents))
 302		return -EINVAL;
 303#endif
 304
 305	left = nents;
 306	prv = NULL;
 307	do {
 308		unsigned int sg_size, alloc_size = left;
 309
 310		if (alloc_size > curr_max_ents) {
 311			alloc_size = curr_max_ents;
 312			sg_size = alloc_size - 1;
 313		} else
 314			sg_size = alloc_size;
 315
 316		left -= sg_size;
 317
 318		if (first_chunk) {
 319			sg = first_chunk;
 320			first_chunk = NULL;
 321		} else {
 322			sg = alloc_fn(alloc_size, gfp_mask);
 323		}
 324		if (unlikely(!sg)) {
 325			/*
 326			 * Adjust entry count to reflect that the last
 327			 * entry of the previous table won't be used for
 328			 * linkage.  Without this, sg_kfree() may get
 329			 * confused.
 330			 */
 331			if (prv)
 332				table->nents = ++table->orig_nents;
 333
 334			return -ENOMEM;
 335		}
 336
 337		sg_init_table(sg, alloc_size);
 338		table->nents = table->orig_nents += sg_size;
 339
 340		/*
 341		 * If this is the first mapping, assign the sg table header.
 342		 * If this is not the first mapping, chain previous part.
 343		 */
 344		if (prv)
 345			sg_chain(prv, prv_max_ents, sg);
 346		else
 347			table->sgl = sg;
 348
 349		/*
 350		 * If no more entries after this one, mark the end
 351		 */
 352		if (!left)
 353			sg_mark_end(&sg[sg_size - 1]);
 354
 355		prv = sg;
 356		prv_max_ents = curr_max_ents;
 357		curr_max_ents = max_ents;
 358	} while (left);
 359
 360	return 0;
 361}
 362EXPORT_SYMBOL(__sg_alloc_table);
 363
 364/**
 365 * sg_alloc_table - Allocate and initialize an sg table
 366 * @table:	The sg table header to use
 367 * @nents:	Number of entries in sg list
 368 * @gfp_mask:	GFP allocation mask
 369 *
 370 *  Description:
 371 *    Allocate and initialize an sg table. If @nents@ is larger than
 372 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
 373 *
 374 **/
 375int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
 376{
 377	int ret;
 378
 379	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
 380			       NULL, 0, gfp_mask, sg_kmalloc);
 381	if (unlikely(ret))
 382		sg_free_table(table);
 
 383	return ret;
 384}
 385EXPORT_SYMBOL(sg_alloc_table);
 386
 387static struct scatterlist *get_next_sg(struct sg_append_table *table,
 388				       struct scatterlist *cur,
 389				       unsigned long needed_sges,
 390				       gfp_t gfp_mask)
 391{
 392	struct scatterlist *new_sg, *next_sg;
 393	unsigned int alloc_size;
 394
 395	if (cur) {
 396		next_sg = sg_next(cur);
 397		/* Check if last entry should be keeped for chainning */
 398		if (!sg_is_last(next_sg) || needed_sges == 1)
 399			return next_sg;
 400	}
 401
 402	alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
 403	new_sg = sg_kmalloc(alloc_size, gfp_mask);
 404	if (!new_sg)
 405		return ERR_PTR(-ENOMEM);
 406	sg_init_table(new_sg, alloc_size);
 407	if (cur) {
 408		table->total_nents += alloc_size - 1;
 409		__sg_chain(next_sg, new_sg);
 410	} else {
 411		table->sgt.sgl = new_sg;
 412		table->total_nents = alloc_size;
 413	}
 414	return new_sg;
 415}
 416
 417static bool pages_are_mergeable(struct page *a, struct page *b)
 418{
 419	if (page_to_pfn(a) != page_to_pfn(b) + 1)
 420		return false;
 421	if (!zone_device_pages_have_same_pgmap(a, b))
 422		return false;
 423	return true;
 424}
 425
 426/**
 427 * sg_alloc_append_table_from_pages - Allocate and initialize an append sg
 428 *                                    table from an array of pages
 429 * @sgt_append:  The sg append table to use
 430 * @pages:       Pointer to an array of page pointers
 431 * @n_pages:     Number of pages in the pages array
 432 * @offset:      Offset from start of the first page to the start of a buffer
 433 * @size:        Number of valid bytes in the buffer (after offset)
 434 * @max_segment: Maximum size of a scatterlist element in bytes
 435 * @left_pages:  Left pages caller have to set after this call
 436 * @gfp_mask:	 GFP allocation mask
 437 *
 438 * Description:
 439 *    In the first call it allocate and initialize an sg table from a list of
 440 *    pages, else reuse the scatterlist from sgt_append. Contiguous ranges of
 441 *    the pages are squashed into a single scatterlist entry up to the maximum
 442 *    size specified in @max_segment.  A user may provide an offset at a start
 443 *    and a size of valid data in a buffer specified by the page array. The
 444 *    returned sg table is released by sg_free_append_table
 445 *
 446 * Returns:
 447 *   0 on success, negative error on failure
 448 *
 449 * Notes:
 450 *   If this function returns non-0 (eg failure), the caller must call
 451 *   sg_free_append_table() to cleanup any leftover allocations.
 452 *
 453 *   In the fist call, sgt_append must by initialized.
 454 */
 455int sg_alloc_append_table_from_pages(struct sg_append_table *sgt_append,
 456		struct page **pages, unsigned int n_pages, unsigned int offset,
 457		unsigned long size, unsigned int max_segment,
 458		unsigned int left_pages, gfp_t gfp_mask)
 459{
 460	unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
 461	unsigned int added_nents = 0;
 462	struct scatterlist *s = sgt_append->prv;
 463	struct page *last_pg;
 464
 465	/*
 466	 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
 467	 * otherwise it can overshoot.
 468	 */
 469	max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
 470	if (WARN_ON(max_segment < PAGE_SIZE))
 471		return -EINVAL;
 472
 473	if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && sgt_append->prv)
 474		return -EOPNOTSUPP;
 475
 476	if (sgt_append->prv) {
 477		unsigned long next_pfn;
 478
 479		if (WARN_ON(offset))
 480			return -EINVAL;
 481
 482		/* Merge contiguous pages into the last SG */
 483		prv_len = sgt_append->prv->length;
 484		next_pfn = (sg_phys(sgt_append->prv) + prv_len) / PAGE_SIZE;
 485		if (page_to_pfn(pages[0]) == next_pfn) {
 486			last_pg = pfn_to_page(next_pfn - 1);
 487			while (n_pages && pages_are_mergeable(pages[0], last_pg)) {
 488				if (sgt_append->prv->length + PAGE_SIZE > max_segment)
 489					break;
 490				sgt_append->prv->length += PAGE_SIZE;
 491				last_pg = pages[0];
 492				pages++;
 493				n_pages--;
 494			}
 495			if (!n_pages)
 496				goto out;
 497		}
 498	}
 499
 500	/* compute number of contiguous chunks */
 501	chunks = 1;
 502	seg_len = 0;
 503	for (i = 1; i < n_pages; i++) {
 504		seg_len += PAGE_SIZE;
 505		if (seg_len >= max_segment ||
 506		    !pages_are_mergeable(pages[i], pages[i - 1])) {
 507			chunks++;
 508			seg_len = 0;
 509		}
 510	}
 511
 512	/* merging chunks and putting them into the scatterlist */
 513	cur_page = 0;
 514	for (i = 0; i < chunks; i++) {
 515		unsigned int j, chunk_size;
 
 516
 517		/* look for the end of the current chunk */
 518		seg_len = 0;
 519		for (j = cur_page + 1; j < n_pages; j++) {
 520			seg_len += PAGE_SIZE;
 521			if (seg_len >= max_segment ||
 522			    !pages_are_mergeable(pages[j], pages[j - 1]))
 523				break;
 524		}
 525
 526		/* Pass how many chunks might be left */
 527		s = get_next_sg(sgt_append, s, chunks - i + left_pages,
 528				gfp_mask);
 529		if (IS_ERR(s)) {
 530			/*
 531			 * Adjust entry length to be as before function was
 532			 * called.
 533			 */
 534			if (sgt_append->prv)
 535				sgt_append->prv->length = prv_len;
 536			return PTR_ERR(s);
 537		}
 538		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
 539		sg_set_page(s, pages[cur_page],
 540			    min_t(unsigned long, size, chunk_size), offset);
 541		added_nents++;
 542		size -= chunk_size;
 543		offset = 0;
 544		cur_page = j;
 545	}
 546	sgt_append->sgt.nents += added_nents;
 547	sgt_append->sgt.orig_nents = sgt_append->sgt.nents;
 548	sgt_append->prv = s;
 549out:
 550	if (!left_pages)
 551		sg_mark_end(s);
 552	return 0;
 553}
 554EXPORT_SYMBOL(sg_alloc_append_table_from_pages);
 555
 556/**
 557 * sg_alloc_table_from_pages_segment - Allocate and initialize an sg table from
 558 *                                     an array of pages and given maximum
 559 *                                     segment.
 560 * @sgt:	 The sg table header to use
 561 * @pages:	 Pointer to an array of page pointers
 562 * @n_pages:	 Number of pages in the pages array
 563 * @offset:      Offset from start of the first page to the start of a buffer
 564 * @size:        Number of valid bytes in the buffer (after offset)
 565 * @max_segment: Maximum size of a scatterlist element in bytes
 566 * @gfp_mask:	 GFP allocation mask
 567 *
 568 *  Description:
 569 *    Allocate and initialize an sg table from a list of pages. Contiguous
 570 *    ranges of the pages are squashed into a single scatterlist node up to the
 571 *    maximum size specified in @max_segment. A user may provide an offset at a
 572 *    start and a size of valid data in a buffer specified by the page array.
 573 *
 574 *    The returned sg table is released by sg_free_table.
 575 *
 576 *  Returns:
 577 *   0 on success, negative error on failure
 578 */
 579int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages,
 580				unsigned int n_pages, unsigned int offset,
 581				unsigned long size, unsigned int max_segment,
 582				gfp_t gfp_mask)
 583{
 584	struct sg_append_table append = {};
 585	int err;
 586
 587	err = sg_alloc_append_table_from_pages(&append, pages, n_pages, offset,
 588					       size, max_segment, 0, gfp_mask);
 589	if (err) {
 590		sg_free_append_table(&append);
 591		return err;
 592	}
 593	memcpy(sgt, &append.sgt, sizeof(*sgt));
 594	WARN_ON(append.total_nents != sgt->orig_nents);
 595	return 0;
 596}
 597EXPORT_SYMBOL(sg_alloc_table_from_pages_segment);
 598
 599#ifdef CONFIG_SGL_ALLOC
 600
 601/**
 602 * sgl_alloc_order - allocate a scatterlist and its pages
 603 * @length: Length in bytes of the scatterlist. Must be at least one
 604 * @order: Second argument for alloc_pages()
 605 * @chainable: Whether or not to allocate an extra element in the scatterlist
 606 *	for scatterlist chaining purposes
 607 * @gfp: Memory allocation flags
 608 * @nent_p: [out] Number of entries in the scatterlist that have pages
 609 *
 610 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 611 */
 612struct scatterlist *sgl_alloc_order(unsigned long long length,
 613				    unsigned int order, bool chainable,
 614				    gfp_t gfp, unsigned int *nent_p)
 615{
 616	struct scatterlist *sgl, *sg;
 617	struct page *page;
 618	unsigned int nent, nalloc;
 619	u32 elem_len;
 620
 621	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
 622	/* Check for integer overflow */
 623	if (length > (nent << (PAGE_SHIFT + order)))
 624		return NULL;
 625	nalloc = nent;
 626	if (chainable) {
 627		/* Check for integer overflow */
 628		if (nalloc + 1 < nalloc)
 629			return NULL;
 630		nalloc++;
 631	}
 632	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
 633			    gfp & ~GFP_DMA);
 634	if (!sgl)
 635		return NULL;
 636
 637	sg_init_table(sgl, nalloc);
 638	sg = sgl;
 639	while (length) {
 640		elem_len = min_t(u64, length, PAGE_SIZE << order);
 641		page = alloc_pages(gfp, order);
 642		if (!page) {
 643			sgl_free_order(sgl, order);
 644			return NULL;
 645		}
 646
 647		sg_set_page(sg, page, elem_len, 0);
 648		length -= elem_len;
 649		sg = sg_next(sg);
 650	}
 651	WARN_ONCE(length, "length = %lld\n", length);
 652	if (nent_p)
 653		*nent_p = nent;
 654	return sgl;
 655}
 656EXPORT_SYMBOL(sgl_alloc_order);
 657
 658/**
 659 * sgl_alloc - allocate a scatterlist and its pages
 660 * @length: Length in bytes of the scatterlist
 661 * @gfp: Memory allocation flags
 662 * @nent_p: [out] Number of entries in the scatterlist
 663 *
 664 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 665 */
 666struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
 667			      unsigned int *nent_p)
 668{
 669	return sgl_alloc_order(length, 0, false, gfp, nent_p);
 670}
 671EXPORT_SYMBOL(sgl_alloc);
 672
 673/**
 674 * sgl_free_n_order - free a scatterlist and its pages
 675 * @sgl: Scatterlist with one or more elements
 676 * @nents: Maximum number of elements to free
 677 * @order: Second argument for __free_pages()
 678 *
 679 * Notes:
 680 * - If several scatterlists have been chained and each chain element is
 681 *   freed separately then it's essential to set nents correctly to avoid that a
 682 *   page would get freed twice.
 683 * - All pages in a chained scatterlist can be freed at once by setting @nents
 684 *   to a high number.
 685 */
 686void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
 687{
 688	struct scatterlist *sg;
 689	struct page *page;
 690	int i;
 691
 692	for_each_sg(sgl, sg, nents, i) {
 693		if (!sg)
 694			break;
 695		page = sg_page(sg);
 696		if (page)
 697			__free_pages(page, order);
 698	}
 699	kfree(sgl);
 700}
 701EXPORT_SYMBOL(sgl_free_n_order);
 702
 703/**
 704 * sgl_free_order - free a scatterlist and its pages
 705 * @sgl: Scatterlist with one or more elements
 706 * @order: Second argument for __free_pages()
 707 */
 708void sgl_free_order(struct scatterlist *sgl, int order)
 709{
 710	sgl_free_n_order(sgl, INT_MAX, order);
 711}
 712EXPORT_SYMBOL(sgl_free_order);
 713
 714/**
 715 * sgl_free - free a scatterlist and its pages
 716 * @sgl: Scatterlist with one or more elements
 717 */
 718void sgl_free(struct scatterlist *sgl)
 719{
 720	sgl_free_order(sgl, 0);
 721}
 722EXPORT_SYMBOL(sgl_free);
 723
 724#endif /* CONFIG_SGL_ALLOC */
 725
 726void __sg_page_iter_start(struct sg_page_iter *piter,
 727			  struct scatterlist *sglist, unsigned int nents,
 728			  unsigned long pgoffset)
 729{
 730	piter->__pg_advance = 0;
 731	piter->__nents = nents;
 732
 733	piter->sg = sglist;
 734	piter->sg_pgoffset = pgoffset;
 735}
 736EXPORT_SYMBOL(__sg_page_iter_start);
 737
 738static int sg_page_count(struct scatterlist *sg)
 739{
 740	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
 741}
 742
 743bool __sg_page_iter_next(struct sg_page_iter *piter)
 744{
 745	if (!piter->__nents || !piter->sg)
 746		return false;
 747
 748	piter->sg_pgoffset += piter->__pg_advance;
 749	piter->__pg_advance = 1;
 750
 751	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
 752		piter->sg_pgoffset -= sg_page_count(piter->sg);
 753		piter->sg = sg_next(piter->sg);
 754		if (!--piter->__nents || !piter->sg)
 755			return false;
 756	}
 757
 758	return true;
 759}
 760EXPORT_SYMBOL(__sg_page_iter_next);
 761
 762static int sg_dma_page_count(struct scatterlist *sg)
 763{
 764	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
 765}
 766
 767bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
 768{
 769	struct sg_page_iter *piter = &dma_iter->base;
 770
 771	if (!piter->__nents || !piter->sg)
 772		return false;
 773
 774	piter->sg_pgoffset += piter->__pg_advance;
 775	piter->__pg_advance = 1;
 776
 777	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
 778		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
 779		piter->sg = sg_next(piter->sg);
 780		if (!--piter->__nents || !piter->sg)
 781			return false;
 782	}
 783
 784	return true;
 785}
 786EXPORT_SYMBOL(__sg_page_iter_dma_next);
 787
 788/**
 789 * sg_miter_start - start mapping iteration over a sg list
 790 * @miter: sg mapping iter to be started
 791 * @sgl: sg list to iterate over
 792 * @nents: number of sg entries
 793 * @flags: sg iterator flags
 794 *
 795 * Description:
 796 *   Starts mapping iterator @miter.
 797 *
 798 * Context:
 799 *   Don't care.
 800 */
 801void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
 802		    unsigned int nents, unsigned int flags)
 803{
 804	memset(miter, 0, sizeof(struct sg_mapping_iter));
 805
 806	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
 807	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
 808	miter->__flags = flags;
 809}
 810EXPORT_SYMBOL(sg_miter_start);
 811
 812static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
 813{
 814	if (!miter->__remaining) {
 815		struct scatterlist *sg;
 
 816
 817		if (!__sg_page_iter_next(&miter->piter))
 818			return false;
 819
 820		sg = miter->piter.sg;
 
 821
 822		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
 823		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
 824		miter->__offset &= PAGE_SIZE - 1;
 825		miter->__remaining = sg->offset + sg->length -
 826				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
 827				     miter->__offset;
 828		miter->__remaining = min_t(unsigned long, miter->__remaining,
 829					   PAGE_SIZE - miter->__offset);
 830	}
 831
 832	return true;
 833}
 834
 835/**
 836 * sg_miter_skip - reposition mapping iterator
 837 * @miter: sg mapping iter to be skipped
 838 * @offset: number of bytes to plus the current location
 839 *
 840 * Description:
 841 *   Sets the offset of @miter to its current location plus @offset bytes.
 842 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
 843 *   stops @miter.
 844 *
 845 * Context:
 846 *   Don't care.
 
 847 *
 848 * Returns:
 849 *   true if @miter contains the valid mapping.  false if end of sg
 850 *   list is reached.
 851 */
 852bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
 853{
 854	sg_miter_stop(miter);
 855
 856	while (offset) {
 857		off_t consumed;
 858
 859		if (!sg_miter_get_next_page(miter))
 860			return false;
 861
 862		consumed = min_t(off_t, offset, miter->__remaining);
 863		miter->__offset += consumed;
 864		miter->__remaining -= consumed;
 865		offset -= consumed;
 866	}
 867
 868	return true;
 869}
 870EXPORT_SYMBOL(sg_miter_skip);
 871
 872/**
 873 * sg_miter_next - proceed mapping iterator to the next mapping
 874 * @miter: sg mapping iter to proceed
 875 *
 876 * Description:
 877 *   Proceeds @miter to the next mapping.  @miter should have been started
 878 *   using sg_miter_start().  On successful return, @miter->page,
 879 *   @miter->addr and @miter->length point to the current mapping.
 880 *
 881 * Context:
 882 *   May sleep if !SG_MITER_ATOMIC.
 
 883 *
 884 * Returns:
 885 *   true if @miter contains the next mapping.  false if end of sg
 886 *   list is reached.
 887 */
 888bool sg_miter_next(struct sg_mapping_iter *miter)
 889{
 890	sg_miter_stop(miter);
 891
 892	/*
 893	 * Get to the next page if necessary.
 894	 * __remaining, __offset is adjusted by sg_miter_stop
 895	 */
 896	if (!sg_miter_get_next_page(miter))
 897		return false;
 898
 899	miter->page = sg_page_iter_page(&miter->piter);
 900	miter->consumed = miter->length = miter->__remaining;
 901
 902	if (miter->__flags & SG_MITER_ATOMIC)
 903		miter->addr = kmap_atomic(miter->page) + miter->__offset;
 904	else
 905		miter->addr = kmap(miter->page) + miter->__offset;
 906
 907	return true;
 908}
 909EXPORT_SYMBOL(sg_miter_next);
 910
 911/**
 912 * sg_miter_stop - stop mapping iteration
 913 * @miter: sg mapping iter to be stopped
 914 *
 915 * Description:
 916 *   Stops mapping iterator @miter.  @miter should have been started
 917 *   using sg_miter_start().  A stopped iteration can be resumed by
 918 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
 919 *   need to be released during iteration.
 920 *
 921 * Context:
 922 *   Don't care otherwise.
 
 923 */
 924void sg_miter_stop(struct sg_mapping_iter *miter)
 925{
 926	WARN_ON(miter->consumed > miter->length);
 927
 928	/* drop resources from the last iteration */
 929	if (miter->addr) {
 930		miter->__offset += miter->consumed;
 931		miter->__remaining -= miter->consumed;
 932
 933		if (miter->__flags & SG_MITER_TO_SG)
 934			flush_dcache_page(miter->page);
 
 935
 936		if (miter->__flags & SG_MITER_ATOMIC) {
 937			WARN_ON_ONCE(!pagefault_disabled());
 938			kunmap_atomic(miter->addr);
 939		} else
 940			kunmap(miter->page);
 941
 942		miter->page = NULL;
 943		miter->addr = NULL;
 944		miter->length = 0;
 945		miter->consumed = 0;
 946	}
 947}
 948EXPORT_SYMBOL(sg_miter_stop);
 949
 950/**
 951 * sg_copy_buffer - Copy data between a linear buffer and an SG list
 952 * @sgl:		 The SG list
 953 * @nents:		 Number of SG entries
 954 * @buf:		 Where to copy from
 955 * @buflen:		 The number of bytes to copy
 956 * @skip:		 Number of bytes to skip before copying
 957 * @to_buffer:		 transfer direction (true == from an sg list to a
 958 *			 buffer, false == from a buffer to an sg list)
 959 *
 960 * Returns the number of copied bytes.
 961 *
 962 **/
 963size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
 964		      size_t buflen, off_t skip, bool to_buffer)
 
 965{
 966	unsigned int offset = 0;
 967	struct sg_mapping_iter miter;
 
 968	unsigned int sg_flags = SG_MITER_ATOMIC;
 969
 970	if (to_buffer)
 971		sg_flags |= SG_MITER_FROM_SG;
 972	else
 973		sg_flags |= SG_MITER_TO_SG;
 974
 975	sg_miter_start(&miter, sgl, nents, sg_flags);
 976
 977	if (!sg_miter_skip(&miter, skip))
 978		return 0;
 
 
 979
 980	while ((offset < buflen) && sg_miter_next(&miter)) {
 981		unsigned int len;
 982
 983		len = min(miter.length, buflen - offset);
 984
 985		if (to_buffer)
 986			memcpy(buf + offset, miter.addr, len);
 987		else
 988			memcpy(miter.addr, buf + offset, len);
 989
 990		offset += len;
 991	}
 992
 993	sg_miter_stop(&miter);
 994
 
 995	return offset;
 996}
 997EXPORT_SYMBOL(sg_copy_buffer);
 998
 999/**
1000 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
1001 * @sgl:		 The SG list
1002 * @nents:		 Number of SG entries
1003 * @buf:		 Where to copy from
1004 * @buflen:		 The number of bytes to copy
1005 *
1006 * Returns the number of copied bytes.
1007 *
1008 **/
1009size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1010			   const void *buf, size_t buflen)
1011{
1012	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
1013}
1014EXPORT_SYMBOL(sg_copy_from_buffer);
1015
1016/**
1017 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
1018 * @sgl:		 The SG list
1019 * @nents:		 Number of SG entries
1020 * @buf:		 Where to copy to
1021 * @buflen:		 The number of bytes to copy
1022 *
1023 * Returns the number of copied bytes.
1024 *
1025 **/
1026size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1027			 void *buf, size_t buflen)
1028{
1029	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
1030}
1031EXPORT_SYMBOL(sg_copy_to_buffer);
1032
1033/**
1034 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
1035 * @sgl:		 The SG list
1036 * @nents:		 Number of SG entries
1037 * @buf:		 Where to copy from
 
1038 * @buflen:		 The number of bytes to copy
1039 * @skip:		 Number of bytes to skip before copying
1040 *
1041 * Returns the number of copied bytes.
1042 *
1043 **/
1044size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1045			    const void *buf, size_t buflen, off_t skip)
1046{
1047	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1048}
1049EXPORT_SYMBOL(sg_pcopy_from_buffer);
1050
1051/**
1052 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1053 * @sgl:		 The SG list
1054 * @nents:		 Number of SG entries
1055 * @buf:		 Where to copy to
 
1056 * @buflen:		 The number of bytes to copy
1057 * @skip:		 Number of bytes to skip before copying
1058 *
1059 * Returns the number of copied bytes.
1060 *
1061 **/
1062size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1063			  void *buf, size_t buflen, off_t skip)
1064{
1065	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1066}
1067EXPORT_SYMBOL(sg_pcopy_to_buffer);
1068
1069/**
1070 * sg_zero_buffer - Zero-out a part of a SG list
1071 * @sgl:		 The SG list
1072 * @nents:		 Number of SG entries
1073 * @buflen:		 The number of bytes to zero out
1074 * @skip:		 Number of bytes to skip before zeroing
1075 *
1076 * Returns the number of bytes zeroed.
1077 **/
1078size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1079		       size_t buflen, off_t skip)
1080{
1081	unsigned int offset = 0;
1082	struct sg_mapping_iter miter;
1083	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1084
1085	sg_miter_start(&miter, sgl, nents, sg_flags);
1086
1087	if (!sg_miter_skip(&miter, skip))
1088		return false;
1089
1090	while (offset < buflen && sg_miter_next(&miter)) {
1091		unsigned int len;
1092
1093		len = min(miter.length, buflen - offset);
1094		memset(miter.addr, 0, len);
1095
1096		offset += len;
1097	}
1098
1099	sg_miter_stop(&miter);
1100	return offset;
1101}
1102EXPORT_SYMBOL(sg_zero_buffer);
1103
1104/*
1105 * Extract and pin a list of up to sg_max pages from UBUF- or IOVEC-class
1106 * iterators, and add them to the scatterlist.
1107 */
1108static ssize_t extract_user_to_sg(struct iov_iter *iter,
1109				  ssize_t maxsize,
1110				  struct sg_table *sgtable,
1111				  unsigned int sg_max,
1112				  iov_iter_extraction_t extraction_flags)
1113{
1114	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1115	struct page **pages;
1116	unsigned int npages;
1117	ssize_t ret = 0, res;
1118	size_t len, off;
1119
1120	/* We decant the page list into the tail of the scatterlist */
1121	pages = (void *)sgtable->sgl +
1122		array_size(sg_max, sizeof(struct scatterlist));
1123	pages -= sg_max;
1124
1125	do {
1126		res = iov_iter_extract_pages(iter, &pages, maxsize, sg_max,
1127					     extraction_flags, &off);
1128		if (res <= 0)
1129			goto failed;
1130
1131		len = res;
1132		maxsize -= len;
1133		ret += len;
1134		npages = DIV_ROUND_UP(off + len, PAGE_SIZE);
1135		sg_max -= npages;
1136
1137		for (; npages > 0; npages--) {
1138			struct page *page = *pages;
1139			size_t seg = min_t(size_t, PAGE_SIZE - off, len);
1140
1141			*pages++ = NULL;
1142			sg_set_page(sg, page, seg, off);
1143			sgtable->nents++;
1144			sg++;
1145			len -= seg;
1146			off = 0;
1147		}
1148	} while (maxsize > 0 && sg_max > 0);
1149
1150	return ret;
1151
1152failed:
1153	while (sgtable->nents > sgtable->orig_nents)
1154		unpin_user_page(sg_page(&sgtable->sgl[--sgtable->nents]));
1155	return res;
1156}
1157
1158/*
1159 * Extract up to sg_max pages from a BVEC-type iterator and add them to the
1160 * scatterlist.  The pages are not pinned.
1161 */
1162static ssize_t extract_bvec_to_sg(struct iov_iter *iter,
1163				  ssize_t maxsize,
1164				  struct sg_table *sgtable,
1165				  unsigned int sg_max,
1166				  iov_iter_extraction_t extraction_flags)
1167{
1168	const struct bio_vec *bv = iter->bvec;
1169	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1170	unsigned long start = iter->iov_offset;
1171	unsigned int i;
1172	ssize_t ret = 0;
1173
1174	for (i = 0; i < iter->nr_segs; i++) {
1175		size_t off, len;
1176
1177		len = bv[i].bv_len;
1178		if (start >= len) {
1179			start -= len;
1180			continue;
1181		}
1182
1183		len = min_t(size_t, maxsize, len - start);
1184		off = bv[i].bv_offset + start;
1185
1186		sg_set_page(sg, bv[i].bv_page, len, off);
1187		sgtable->nents++;
1188		sg++;
1189		sg_max--;
1190
1191		ret += len;
1192		maxsize -= len;
1193		if (maxsize <= 0 || sg_max == 0)
1194			break;
1195		start = 0;
1196	}
1197
1198	if (ret > 0)
1199		iov_iter_advance(iter, ret);
1200	return ret;
1201}
1202
1203/*
1204 * Extract up to sg_max pages from a KVEC-type iterator and add them to the
1205 * scatterlist.  This can deal with vmalloc'd buffers as well as kmalloc'd or
1206 * static buffers.  The pages are not pinned.
1207 */
1208static ssize_t extract_kvec_to_sg(struct iov_iter *iter,
1209				  ssize_t maxsize,
1210				  struct sg_table *sgtable,
1211				  unsigned int sg_max,
1212				  iov_iter_extraction_t extraction_flags)
1213{
1214	const struct kvec *kv = iter->kvec;
1215	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1216	unsigned long start = iter->iov_offset;
1217	unsigned int i;
1218	ssize_t ret = 0;
1219
1220	for (i = 0; i < iter->nr_segs; i++) {
1221		struct page *page;
1222		unsigned long kaddr;
1223		size_t off, len, seg;
1224
1225		len = kv[i].iov_len;
1226		if (start >= len) {
1227			start -= len;
1228			continue;
1229		}
1230
1231		kaddr = (unsigned long)kv[i].iov_base + start;
1232		off = kaddr & ~PAGE_MASK;
1233		len = min_t(size_t, maxsize, len - start);
1234		kaddr &= PAGE_MASK;
1235
1236		maxsize -= len;
1237		ret += len;
1238		do {
1239			seg = min_t(size_t, len, PAGE_SIZE - off);
1240			if (is_vmalloc_or_module_addr((void *)kaddr))
1241				page = vmalloc_to_page((void *)kaddr);
1242			else
1243				page = virt_to_page((void *)kaddr);
1244
1245			sg_set_page(sg, page, len, off);
1246			sgtable->nents++;
1247			sg++;
1248			sg_max--;
1249
1250			len -= seg;
1251			kaddr += PAGE_SIZE;
1252			off = 0;
1253		} while (len > 0 && sg_max > 0);
1254
1255		if (maxsize <= 0 || sg_max == 0)
1256			break;
1257		start = 0;
1258	}
1259
1260	if (ret > 0)
1261		iov_iter_advance(iter, ret);
1262	return ret;
1263}
1264
1265/*
1266 * Extract up to sg_max folios from an FOLIOQ-type iterator and add them to
1267 * the scatterlist.  The pages are not pinned.
1268 */
1269static ssize_t extract_folioq_to_sg(struct iov_iter *iter,
1270				   ssize_t maxsize,
1271				   struct sg_table *sgtable,
1272				   unsigned int sg_max,
1273				   iov_iter_extraction_t extraction_flags)
1274{
1275	const struct folio_queue *folioq = iter->folioq;
1276	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1277	unsigned int slot = iter->folioq_slot;
1278	ssize_t ret = 0;
1279	size_t offset = iter->iov_offset;
1280
1281	BUG_ON(!folioq);
1282
1283	if (slot >= folioq_nr_slots(folioq)) {
1284		folioq = folioq->next;
1285		if (WARN_ON_ONCE(!folioq))
1286			return 0;
1287		slot = 0;
1288	}
1289
1290	do {
1291		struct folio *folio = folioq_folio(folioq, slot);
1292		size_t fsize = folioq_folio_size(folioq, slot);
1293
1294		if (offset < fsize) {
1295			size_t part = umin(maxsize - ret, fsize - offset);
1296
1297			sg_set_page(sg, folio_page(folio, 0), part, offset);
1298			sgtable->nents++;
1299			sg++;
1300			sg_max--;
1301			offset += part;
1302			ret += part;
1303		}
1304
1305		if (offset >= fsize) {
1306			offset = 0;
1307			slot++;
1308			if (slot >= folioq_nr_slots(folioq)) {
1309				if (!folioq->next) {
1310					WARN_ON_ONCE(ret < iter->count);
1311					break;
1312				}
1313				folioq = folioq->next;
1314				slot = 0;
1315			}
1316		}
1317	} while (sg_max > 0 && ret < maxsize);
1318
1319	iter->folioq = folioq;
1320	iter->folioq_slot = slot;
1321	iter->iov_offset = offset;
1322	iter->count -= ret;
1323	return ret;
1324}
1325
1326/*
1327 * Extract up to sg_max folios from an XARRAY-type iterator and add them to
1328 * the scatterlist.  The pages are not pinned.
1329 */
1330static ssize_t extract_xarray_to_sg(struct iov_iter *iter,
1331				    ssize_t maxsize,
1332				    struct sg_table *sgtable,
1333				    unsigned int sg_max,
1334				    iov_iter_extraction_t extraction_flags)
1335{
1336	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1337	struct xarray *xa = iter->xarray;
1338	struct folio *folio;
1339	loff_t start = iter->xarray_start + iter->iov_offset;
1340	pgoff_t index = start / PAGE_SIZE;
1341	ssize_t ret = 0;
1342	size_t offset, len;
1343	XA_STATE(xas, xa, index);
1344
1345	rcu_read_lock();
1346
1347	xas_for_each(&xas, folio, ULONG_MAX) {
1348		if (xas_retry(&xas, folio))
1349			continue;
1350		if (WARN_ON(xa_is_value(folio)))
1351			break;
1352		if (WARN_ON(folio_test_hugetlb(folio)))
1353			break;
1354
1355		offset = offset_in_folio(folio, start);
1356		len = min_t(size_t, maxsize, folio_size(folio) - offset);
1357
1358		sg_set_page(sg, folio_page(folio, 0), len, offset);
1359		sgtable->nents++;
1360		sg++;
1361		sg_max--;
1362
1363		maxsize -= len;
1364		ret += len;
1365		if (maxsize <= 0 || sg_max == 0)
1366			break;
1367	}
1368
1369	rcu_read_unlock();
1370	if (ret > 0)
1371		iov_iter_advance(iter, ret);
1372	return ret;
1373}
1374
1375/**
1376 * extract_iter_to_sg - Extract pages from an iterator and add to an sglist
1377 * @iter: The iterator to extract from
1378 * @maxsize: The amount of iterator to copy
1379 * @sgtable: The scatterlist table to fill in
1380 * @sg_max: Maximum number of elements in @sgtable that may be filled
1381 * @extraction_flags: Flags to qualify the request
1382 *
1383 * Extract the page fragments from the given amount of the source iterator and
1384 * add them to a scatterlist that refers to all of those bits, to a maximum
1385 * addition of @sg_max elements.
1386 *
1387 * The pages referred to by UBUF- and IOVEC-type iterators are extracted and
1388 * pinned; BVEC-, KVEC-, FOLIOQ- and XARRAY-type are extracted but aren't
1389 * pinned; DISCARD-type is not supported.
1390 *
1391 * No end mark is placed on the scatterlist; that's left to the caller.
1392 *
1393 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1394 * be allowed on the pages extracted.
1395 *
1396 * If successful, @sgtable->nents is updated to include the number of elements
1397 * added and the number of bytes added is returned.  @sgtable->orig_nents is
1398 * left unaltered.
1399 *
1400 * The iov_iter_extract_mode() function should be used to query how cleanup
1401 * should be performed.
1402 */
1403ssize_t extract_iter_to_sg(struct iov_iter *iter, size_t maxsize,
1404			   struct sg_table *sgtable, unsigned int sg_max,
1405			   iov_iter_extraction_t extraction_flags)
1406{
1407	if (maxsize == 0)
1408		return 0;
1409
1410	switch (iov_iter_type(iter)) {
1411	case ITER_UBUF:
1412	case ITER_IOVEC:
1413		return extract_user_to_sg(iter, maxsize, sgtable, sg_max,
1414					  extraction_flags);
1415	case ITER_BVEC:
1416		return extract_bvec_to_sg(iter, maxsize, sgtable, sg_max,
1417					  extraction_flags);
1418	case ITER_KVEC:
1419		return extract_kvec_to_sg(iter, maxsize, sgtable, sg_max,
1420					  extraction_flags);
1421	case ITER_FOLIOQ:
1422		return extract_folioq_to_sg(iter, maxsize, sgtable, sg_max,
1423					    extraction_flags);
1424	case ITER_XARRAY:
1425		return extract_xarray_to_sg(iter, maxsize, sgtable, sg_max,
1426					    extraction_flags);
1427	default:
1428		pr_err("%s(%u) unsupported\n", __func__, iov_iter_type(iter));
1429		WARN_ON_ONCE(1);
1430		return -EIO;
1431	}
1432}
1433EXPORT_SYMBOL_GPL(extract_iter_to_sg);