Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.15
 
  1/*
  2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
  3 *
  4 * Scatterlist handling helpers.
  5 *
  6 * This source code is licensed under the GNU General Public License,
  7 * Version 2. See the file COPYING for more details.
  8 */
  9#include <linux/export.h>
 10#include <linux/slab.h>
 11#include <linux/scatterlist.h>
 12#include <linux/highmem.h>
 13#include <linux/kmemleak.h>
 14
 15/**
 16 * sg_next - return the next scatterlist entry in a list
 17 * @sg:		The current sg entry
 18 *
 19 * Description:
 20 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
 21 *   of a chained scatterlist, it could jump to the start of a new
 22 *   scatterlist array.
 23 *
 24 **/
 25struct scatterlist *sg_next(struct scatterlist *sg)
 26{
 27#ifdef CONFIG_DEBUG_SG
 28	BUG_ON(sg->sg_magic != SG_MAGIC);
 29#endif
 30	if (sg_is_last(sg))
 31		return NULL;
 32
 33	sg++;
 34	if (unlikely(sg_is_chain(sg)))
 35		sg = sg_chain_ptr(sg);
 36
 37	return sg;
 38}
 39EXPORT_SYMBOL(sg_next);
 40
 41/**
 42 * sg_nents - return total count of entries in scatterlist
 43 * @sg:		The scatterlist
 44 *
 45 * Description:
 46 * Allows to know how many entries are in sg, taking into acount
 47 * chaining as well
 48 *
 49 **/
 50int sg_nents(struct scatterlist *sg)
 51{
 52	int nents;
 53	for (nents = 0; sg; sg = sg_next(sg))
 54		nents++;
 55	return nents;
 56}
 57EXPORT_SYMBOL(sg_nents);
 58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59
 60/**
 61 * sg_last - return the last scatterlist entry in a list
 62 * @sgl:	First entry in the scatterlist
 63 * @nents:	Number of entries in the scatterlist
 64 *
 65 * Description:
 66 *   Should only be used casually, it (currently) scans the entire list
 67 *   to get the last entry.
 68 *
 69 *   Note that the @sgl@ pointer passed in need not be the first one,
 70 *   the important bit is that @nents@ denotes the number of entries that
 71 *   exist from @sgl@.
 72 *
 73 **/
 74struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 75{
 76#ifndef ARCH_HAS_SG_CHAIN
 77	struct scatterlist *ret = &sgl[nents - 1];
 78#else
 79	struct scatterlist *sg, *ret = NULL;
 80	unsigned int i;
 81
 82	for_each_sg(sgl, sg, nents, i)
 83		ret = sg;
 84
 85#endif
 86#ifdef CONFIG_DEBUG_SG
 87	BUG_ON(sgl[0].sg_magic != SG_MAGIC);
 88	BUG_ON(!sg_is_last(ret));
 89#endif
 90	return ret;
 91}
 92EXPORT_SYMBOL(sg_last);
 93
 94/**
 95 * sg_init_table - Initialize SG table
 96 * @sgl:	   The SG table
 97 * @nents:	   Number of entries in table
 98 *
 99 * Notes:
100 *   If this is part of a chained sg table, sg_mark_end() should be
101 *   used only on the last table part.
102 *
103 **/
104void sg_init_table(struct scatterlist *sgl, unsigned int nents)
105{
106	memset(sgl, 0, sizeof(*sgl) * nents);
107#ifdef CONFIG_DEBUG_SG
108	{
109		unsigned int i;
110		for (i = 0; i < nents; i++)
111			sgl[i].sg_magic = SG_MAGIC;
112	}
113#endif
114	sg_mark_end(&sgl[nents - 1]);
115}
116EXPORT_SYMBOL(sg_init_table);
117
118/**
119 * sg_init_one - Initialize a single entry sg list
120 * @sg:		 SG entry
121 * @buf:	 Virtual address for IO
122 * @buflen:	 IO length
123 *
124 **/
125void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
126{
127	sg_init_table(sg, 1);
128	sg_set_buf(sg, buf, buflen);
129}
130EXPORT_SYMBOL(sg_init_one);
131
132/*
133 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
134 * helpers.
135 */
136static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
137{
138	if (nents == SG_MAX_SINGLE_ALLOC) {
139		/*
140		 * Kmemleak doesn't track page allocations as they are not
141		 * commonly used (in a raw form) for kernel data structures.
142		 * As we chain together a list of pages and then a normal
143		 * kmalloc (tracked by kmemleak), in order to for that last
144		 * allocation not to become decoupled (and thus a
145		 * false-positive) we need to inform kmemleak of all the
146		 * intermediate allocations.
147		 */
148		void *ptr = (void *) __get_free_page(gfp_mask);
149		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
150		return ptr;
151	} else
152		return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
 
153}
154
155static void sg_kfree(struct scatterlist *sg, unsigned int nents)
156{
157	if (nents == SG_MAX_SINGLE_ALLOC) {
158		kmemleak_free(sg);
159		free_page((unsigned long) sg);
160	} else
161		kfree(sg);
162}
163
164/**
165 * __sg_free_table - Free a previously mapped sg table
166 * @table:	The sg table header to use
167 * @max_ents:	The maximum number of entries per single scatterlist
 
 
168 * @free_fn:	Free function
 
169 *
170 *  Description:
171 *    Free an sg table previously allocated and setup with
172 *    __sg_alloc_table().  The @max_ents value must be identical to
173 *    that previously used with __sg_alloc_table().
174 *
175 **/
176void __sg_free_table(struct sg_table *table, unsigned int max_ents,
177		     sg_free_fn *free_fn)
 
178{
179	struct scatterlist *sgl, *next;
 
180
181	if (unlikely(!table->sgl))
182		return;
183
184	sgl = table->sgl;
185	while (table->orig_nents) {
186		unsigned int alloc_size = table->orig_nents;
187		unsigned int sg_size;
188
189		/*
190		 * If we have more than max_ents segments left,
191		 * then assign 'next' to the sg table after the current one.
192		 * sg_size is then one less than alloc size, since the last
193		 * element is the chain pointer.
194		 */
195		if (alloc_size > max_ents) {
196			next = sg_chain_ptr(&sgl[max_ents - 1]);
197			alloc_size = max_ents;
198			sg_size = alloc_size - 1;
199		} else {
200			sg_size = alloc_size;
201			next = NULL;
202		}
203
204		table->orig_nents -= sg_size;
205		free_fn(sgl, alloc_size);
 
 
 
206		sgl = next;
 
207	}
208
209	table->sgl = NULL;
210}
211EXPORT_SYMBOL(__sg_free_table);
212
213/**
 
 
 
 
 
 
 
 
 
 
 
 
 
214 * sg_free_table - Free a previously allocated sg table
215 * @table:	The mapped sg table header
216 *
217 **/
218void sg_free_table(struct sg_table *table)
219{
220	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
 
221}
222EXPORT_SYMBOL(sg_free_table);
223
224/**
225 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
226 * @table:	The sg table header to use
227 * @nents:	Number of entries in sg list
228 * @max_ents:	The maximum number of entries the allocator returns per call
 
 
229 * @gfp_mask:	GFP allocation mask
230 * @alloc_fn:	Allocator to use
231 *
232 * Description:
233 *   This function returns a @table @nents long. The allocator is
234 *   defined to return scatterlist chunks of maximum size @max_ents.
235 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
236 *   chained in units of @max_ents.
237 *
238 * Notes:
239 *   If this function returns non-0 (eg failure), the caller must call
240 *   __sg_free_table() to cleanup any leftover allocations.
241 *
242 **/
243int __sg_alloc_table(struct sg_table *table, unsigned int nents,
244		     unsigned int max_ents, gfp_t gfp_mask,
 
245		     sg_alloc_fn *alloc_fn)
246{
247	struct scatterlist *sg, *prv;
248	unsigned int left;
 
 
249
250	memset(table, 0, sizeof(*table));
251
252	if (nents == 0)
253		return -EINVAL;
254#ifndef ARCH_HAS_SG_CHAIN
255	if (WARN_ON_ONCE(nents > max_ents))
256		return -EINVAL;
257#endif
258
259	left = nents;
260	prv = NULL;
261	do {
262		unsigned int sg_size, alloc_size = left;
263
264		if (alloc_size > max_ents) {
265			alloc_size = max_ents;
266			sg_size = alloc_size - 1;
267		} else
268			sg_size = alloc_size;
269
270		left -= sg_size;
271
272		sg = alloc_fn(alloc_size, gfp_mask);
 
 
 
 
 
273		if (unlikely(!sg)) {
274			/*
275			 * Adjust entry count to reflect that the last
276			 * entry of the previous table won't be used for
277			 * linkage.  Without this, sg_kfree() may get
278			 * confused.
279			 */
280			if (prv)
281				table->nents = ++table->orig_nents;
282
283 			return -ENOMEM;
284		}
285
286		sg_init_table(sg, alloc_size);
287		table->nents = table->orig_nents += sg_size;
288
289		/*
290		 * If this is the first mapping, assign the sg table header.
291		 * If this is not the first mapping, chain previous part.
292		 */
293		if (prv)
294			sg_chain(prv, max_ents, sg);
295		else
296			table->sgl = sg;
297
298		/*
299		 * If no more entries after this one, mark the end
300		 */
301		if (!left)
302			sg_mark_end(&sg[sg_size - 1]);
303
304		prv = sg;
 
 
305	} while (left);
306
307	return 0;
308}
309EXPORT_SYMBOL(__sg_alloc_table);
310
311/**
312 * sg_alloc_table - Allocate and initialize an sg table
313 * @table:	The sg table header to use
314 * @nents:	Number of entries in sg list
315 * @gfp_mask:	GFP allocation mask
316 *
317 *  Description:
318 *    Allocate and initialize an sg table. If @nents@ is larger than
319 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
320 *
321 **/
322int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
323{
324	int ret;
325
326	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
327			       gfp_mask, sg_kmalloc);
328	if (unlikely(ret))
329		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
330
331	return ret;
332}
333EXPORT_SYMBOL(sg_alloc_table);
334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335/**
336 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
337 *			       an array of pages
338 * @sgt:	The sg table header to use
339 * @pages:	Pointer to an array of page pointers
340 * @n_pages:	Number of pages in the pages array
341 * @offset:     Offset from start of the first page to the start of a buffer
342 * @size:       Number of valid bytes in the buffer (after offset)
343 * @gfp_mask:	GFP allocation mask
 
 
344 *
345 *  Description:
346 *    Allocate and initialize an sg table from a list of pages. Contiguous
347 *    ranges of the pages are squashed into a single scatterlist node. A user
348 *    may provide an offset at a start and a size of valid data in a buffer
349 *    specified by the page array. The returned sg table is released by
350 *    sg_free_table.
 
351 *
352 * Returns:
353 *   0 on success, negative error on failure
 
 
 
 
 
 
354 */
355int sg_alloc_table_from_pages(struct sg_table *sgt,
356	struct page **pages, unsigned int n_pages,
357	unsigned long offset, unsigned long size,
358	gfp_t gfp_mask)
359{
360	unsigned int chunks;
361	unsigned int i;
362	unsigned int cur_page;
363	int ret;
364	struct scatterlist *s;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365
366	/* compute number of contiguous chunks */
367	chunks = 1;
368	for (i = 1; i < n_pages; ++i)
369		if (page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1)
370			++chunks;
371
372	ret = sg_alloc_table(sgt, chunks, gfp_mask);
373	if (unlikely(ret))
374		return ret;
 
 
375
376	/* merging chunks and putting them into the scatterlist */
377	cur_page = 0;
378	for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
379		unsigned long chunk_size;
380		unsigned int j;
381
382		/* look for the end of the current chunk */
383		for (j = cur_page + 1; j < n_pages; ++j)
384			if (page_to_pfn(pages[j]) !=
385			    page_to_pfn(pages[j - 1]) + 1)
 
 
386				break;
 
387
 
 
 
 
 
 
 
 
 
 
 
 
388		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
389		sg_set_page(s, pages[cur_page], min(size, chunk_size), offset);
 
 
390		size -= chunk_size;
391		offset = 0;
392		cur_page = j;
393	}
 
 
 
 
 
 
 
 
 
394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395	return 0;
396}
397EXPORT_SYMBOL(sg_alloc_table_from_pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398
399void __sg_page_iter_start(struct sg_page_iter *piter,
400			  struct scatterlist *sglist, unsigned int nents,
401			  unsigned long pgoffset)
402{
403	piter->__pg_advance = 0;
404	piter->__nents = nents;
405
406	piter->sg = sglist;
407	piter->sg_pgoffset = pgoffset;
408}
409EXPORT_SYMBOL(__sg_page_iter_start);
410
411static int sg_page_count(struct scatterlist *sg)
412{
413	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
414}
415
416bool __sg_page_iter_next(struct sg_page_iter *piter)
417{
418	if (!piter->__nents || !piter->sg)
419		return false;
420
421	piter->sg_pgoffset += piter->__pg_advance;
422	piter->__pg_advance = 1;
423
424	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
425		piter->sg_pgoffset -= sg_page_count(piter->sg);
426		piter->sg = sg_next(piter->sg);
427		if (!--piter->__nents || !piter->sg)
428			return false;
429	}
430
431	return true;
432}
433EXPORT_SYMBOL(__sg_page_iter_next);
434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435/**
436 * sg_miter_start - start mapping iteration over a sg list
437 * @miter: sg mapping iter to be started
438 * @sgl: sg list to iterate over
439 * @nents: number of sg entries
440 *
441 * Description:
442 *   Starts mapping iterator @miter.
443 *
444 * Context:
445 *   Don't care.
446 */
447void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
448		    unsigned int nents, unsigned int flags)
449{
450	memset(miter, 0, sizeof(struct sg_mapping_iter));
451
452	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
453	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
454	miter->__flags = flags;
455}
456EXPORT_SYMBOL(sg_miter_start);
457
458static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
459{
460	if (!miter->__remaining) {
461		struct scatterlist *sg;
462		unsigned long pgoffset;
463
464		if (!__sg_page_iter_next(&miter->piter))
465			return false;
466
467		sg = miter->piter.sg;
468		pgoffset = miter->piter.sg_pgoffset;
469
470		miter->__offset = pgoffset ? 0 : sg->offset;
 
 
471		miter->__remaining = sg->offset + sg->length -
472				(pgoffset << PAGE_SHIFT) - miter->__offset;
 
473		miter->__remaining = min_t(unsigned long, miter->__remaining,
474					   PAGE_SIZE - miter->__offset);
475	}
476
477	return true;
478}
479
480/**
481 * sg_miter_skip - reposition mapping iterator
482 * @miter: sg mapping iter to be skipped
483 * @offset: number of bytes to plus the current location
484 *
485 * Description:
486 *   Sets the offset of @miter to its current location plus @offset bytes.
487 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
488 *   stops @miter.
489 *
490 * Context:
491 *   Don't care if @miter is stopped, or not proceeded yet.
492 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
493 *
494 * Returns:
495 *   true if @miter contains the valid mapping.  false if end of sg
496 *   list is reached.
497 */
498bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
499{
500	sg_miter_stop(miter);
501
502	while (offset) {
503		off_t consumed;
504
505		if (!sg_miter_get_next_page(miter))
506			return false;
507
508		consumed = min_t(off_t, offset, miter->__remaining);
509		miter->__offset += consumed;
510		miter->__remaining -= consumed;
511		offset -= consumed;
512	}
513
514	return true;
515}
516EXPORT_SYMBOL(sg_miter_skip);
517
518/**
519 * sg_miter_next - proceed mapping iterator to the next mapping
520 * @miter: sg mapping iter to proceed
521 *
522 * Description:
523 *   Proceeds @miter to the next mapping.  @miter should have been started
524 *   using sg_miter_start().  On successful return, @miter->page,
525 *   @miter->addr and @miter->length point to the current mapping.
526 *
527 * Context:
528 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
529 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
530 *
531 * Returns:
532 *   true if @miter contains the next mapping.  false if end of sg
533 *   list is reached.
534 */
535bool sg_miter_next(struct sg_mapping_iter *miter)
536{
537	sg_miter_stop(miter);
538
539	/*
540	 * Get to the next page if necessary.
541	 * __remaining, __offset is adjusted by sg_miter_stop
542	 */
543	if (!sg_miter_get_next_page(miter))
544		return false;
545
546	miter->page = sg_page_iter_page(&miter->piter);
547	miter->consumed = miter->length = miter->__remaining;
548
549	if (miter->__flags & SG_MITER_ATOMIC)
550		miter->addr = kmap_atomic(miter->page) + miter->__offset;
551	else
552		miter->addr = kmap(miter->page) + miter->__offset;
553
554	return true;
555}
556EXPORT_SYMBOL(sg_miter_next);
557
558/**
559 * sg_miter_stop - stop mapping iteration
560 * @miter: sg mapping iter to be stopped
561 *
562 * Description:
563 *   Stops mapping iterator @miter.  @miter should have been started
564 *   started using sg_miter_start().  A stopped iteration can be
565 *   resumed by calling sg_miter_next() on it.  This is useful when
566 *   resources (kmap) need to be released during iteration.
567 *
568 * Context:
569 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
570 *   otherwise.
571 */
572void sg_miter_stop(struct sg_mapping_iter *miter)
573{
574	WARN_ON(miter->consumed > miter->length);
575
576	/* drop resources from the last iteration */
577	if (miter->addr) {
578		miter->__offset += miter->consumed;
579		miter->__remaining -= miter->consumed;
580
581		if ((miter->__flags & SG_MITER_TO_SG) &&
582		    !PageSlab(miter->page))
583			flush_kernel_dcache_page(miter->page);
584
585		if (miter->__flags & SG_MITER_ATOMIC) {
586			WARN_ON_ONCE(preemptible());
587			kunmap_atomic(miter->addr);
588		} else
589			kunmap(miter->page);
590
591		miter->page = NULL;
592		miter->addr = NULL;
593		miter->length = 0;
594		miter->consumed = 0;
595	}
596}
597EXPORT_SYMBOL(sg_miter_stop);
598
599/**
600 * sg_copy_buffer - Copy data between a linear buffer and an SG list
601 * @sgl:		 The SG list
602 * @nents:		 Number of SG entries
603 * @buf:		 Where to copy from
604 * @buflen:		 The number of bytes to copy
605 * @skip:		 Number of bytes to skip before copying
606 * @to_buffer:		 transfer direction (true == from an sg list to a
607 *			 buffer, false == from a buffer to an sg list
608 *
609 * Returns the number of copied bytes.
610 *
611 **/
612static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents,
613			     void *buf, size_t buflen, off_t skip,
614			     bool to_buffer)
615{
616	unsigned int offset = 0;
617	struct sg_mapping_iter miter;
618	unsigned long flags;
619	unsigned int sg_flags = SG_MITER_ATOMIC;
620
621	if (to_buffer)
622		sg_flags |= SG_MITER_FROM_SG;
623	else
624		sg_flags |= SG_MITER_TO_SG;
625
626	sg_miter_start(&miter, sgl, nents, sg_flags);
627
628	if (!sg_miter_skip(&miter, skip))
629		return false;
630
631	local_irq_save(flags);
632
633	while (sg_miter_next(&miter) && offset < buflen) {
634		unsigned int len;
635
636		len = min(miter.length, buflen - offset);
637
638		if (to_buffer)
639			memcpy(buf + offset, miter.addr, len);
640		else
641			memcpy(miter.addr, buf + offset, len);
642
643		offset += len;
644	}
645
646	sg_miter_stop(&miter);
647
648	local_irq_restore(flags);
649	return offset;
650}
 
651
652/**
653 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
654 * @sgl:		 The SG list
655 * @nents:		 Number of SG entries
656 * @buf:		 Where to copy from
657 * @buflen:		 The number of bytes to copy
658 *
659 * Returns the number of copied bytes.
660 *
661 **/
662size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
663			   void *buf, size_t buflen)
664{
665	return sg_copy_buffer(sgl, nents, buf, buflen, 0, false);
666}
667EXPORT_SYMBOL(sg_copy_from_buffer);
668
669/**
670 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
671 * @sgl:		 The SG list
672 * @nents:		 Number of SG entries
673 * @buf:		 Where to copy to
674 * @buflen:		 The number of bytes to copy
675 *
676 * Returns the number of copied bytes.
677 *
678 **/
679size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
680			 void *buf, size_t buflen)
681{
682	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
683}
684EXPORT_SYMBOL(sg_copy_to_buffer);
685
686/**
687 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
688 * @sgl:		 The SG list
689 * @nents:		 Number of SG entries
690 * @buf:		 Where to copy from
691 * @skip:		 Number of bytes to skip before copying
692 * @buflen:		 The number of bytes to copy
 
693 *
694 * Returns the number of copied bytes.
695 *
696 **/
697size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
698			    void *buf, size_t buflen, off_t skip)
699{
700	return sg_copy_buffer(sgl, nents, buf, buflen, skip, false);
701}
702EXPORT_SYMBOL(sg_pcopy_from_buffer);
703
704/**
705 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
706 * @sgl:		 The SG list
707 * @nents:		 Number of SG entries
708 * @buf:		 Where to copy to
709 * @skip:		 Number of bytes to skip before copying
710 * @buflen:		 The number of bytes to copy
 
711 *
712 * Returns the number of copied bytes.
713 *
714 **/
715size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
716			  void *buf, size_t buflen, off_t skip)
717{
718	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
719}
720EXPORT_SYMBOL(sg_pcopy_to_buffer);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
   4 *
   5 * Scatterlist handling helpers.
 
 
 
   6 */
   7#include <linux/export.h>
   8#include <linux/slab.h>
   9#include <linux/scatterlist.h>
  10#include <linux/highmem.h>
  11#include <linux/kmemleak.h>
  12
  13/**
  14 * sg_next - return the next scatterlist entry in a list
  15 * @sg:		The current sg entry
  16 *
  17 * Description:
  18 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
  19 *   of a chained scatterlist, it could jump to the start of a new
  20 *   scatterlist array.
  21 *
  22 **/
  23struct scatterlist *sg_next(struct scatterlist *sg)
  24{
 
 
 
  25	if (sg_is_last(sg))
  26		return NULL;
  27
  28	sg++;
  29	if (unlikely(sg_is_chain(sg)))
  30		sg = sg_chain_ptr(sg);
  31
  32	return sg;
  33}
  34EXPORT_SYMBOL(sg_next);
  35
  36/**
  37 * sg_nents - return total count of entries in scatterlist
  38 * @sg:		The scatterlist
  39 *
  40 * Description:
  41 * Allows to know how many entries are in sg, taking into account
  42 * chaining as well
  43 *
  44 **/
  45int sg_nents(struct scatterlist *sg)
  46{
  47	int nents;
  48	for (nents = 0; sg; sg = sg_next(sg))
  49		nents++;
  50	return nents;
  51}
  52EXPORT_SYMBOL(sg_nents);
  53
  54/**
  55 * sg_nents_for_len - return total count of entries in scatterlist
  56 *                    needed to satisfy the supplied length
  57 * @sg:		The scatterlist
  58 * @len:	The total required length
  59 *
  60 * Description:
  61 * Determines the number of entries in sg that are required to meet
  62 * the supplied length, taking into account chaining as well
  63 *
  64 * Returns:
  65 *   the number of sg entries needed, negative error on failure
  66 *
  67 **/
  68int sg_nents_for_len(struct scatterlist *sg, u64 len)
  69{
  70	int nents;
  71	u64 total;
  72
  73	if (!len)
  74		return 0;
  75
  76	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
  77		nents++;
  78		total += sg->length;
  79		if (total >= len)
  80			return nents;
  81	}
  82
  83	return -EINVAL;
  84}
  85EXPORT_SYMBOL(sg_nents_for_len);
  86
  87/**
  88 * sg_last - return the last scatterlist entry in a list
  89 * @sgl:	First entry in the scatterlist
  90 * @nents:	Number of entries in the scatterlist
  91 *
  92 * Description:
  93 *   Should only be used casually, it (currently) scans the entire list
  94 *   to get the last entry.
  95 *
  96 *   Note that the @sgl@ pointer passed in need not be the first one,
  97 *   the important bit is that @nents@ denotes the number of entries that
  98 *   exist from @sgl@.
  99 *
 100 **/
 101struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 102{
 
 
 
 103	struct scatterlist *sg, *ret = NULL;
 104	unsigned int i;
 105
 106	for_each_sg(sgl, sg, nents, i)
 107		ret = sg;
 108
 
 
 
 109	BUG_ON(!sg_is_last(ret));
 
 110	return ret;
 111}
 112EXPORT_SYMBOL(sg_last);
 113
 114/**
 115 * sg_init_table - Initialize SG table
 116 * @sgl:	   The SG table
 117 * @nents:	   Number of entries in table
 118 *
 119 * Notes:
 120 *   If this is part of a chained sg table, sg_mark_end() should be
 121 *   used only on the last table part.
 122 *
 123 **/
 124void sg_init_table(struct scatterlist *sgl, unsigned int nents)
 125{
 126	memset(sgl, 0, sizeof(*sgl) * nents);
 127	sg_init_marker(sgl, nents);
 
 
 
 
 
 
 
 128}
 129EXPORT_SYMBOL(sg_init_table);
 130
 131/**
 132 * sg_init_one - Initialize a single entry sg list
 133 * @sg:		 SG entry
 134 * @buf:	 Virtual address for IO
 135 * @buflen:	 IO length
 136 *
 137 **/
 138void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
 139{
 140	sg_init_table(sg, 1);
 141	sg_set_buf(sg, buf, buflen);
 142}
 143EXPORT_SYMBOL(sg_init_one);
 144
 145/*
 146 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
 147 * helpers.
 148 */
 149static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
 150{
 151	if (nents == SG_MAX_SINGLE_ALLOC) {
 152		/*
 153		 * Kmemleak doesn't track page allocations as they are not
 154		 * commonly used (in a raw form) for kernel data structures.
 155		 * As we chain together a list of pages and then a normal
 156		 * kmalloc (tracked by kmemleak), in order to for that last
 157		 * allocation not to become decoupled (and thus a
 158		 * false-positive) we need to inform kmemleak of all the
 159		 * intermediate allocations.
 160		 */
 161		void *ptr = (void *) __get_free_page(gfp_mask);
 162		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
 163		return ptr;
 164	} else
 165		return kmalloc_array(nents, sizeof(struct scatterlist),
 166				     gfp_mask);
 167}
 168
 169static void sg_kfree(struct scatterlist *sg, unsigned int nents)
 170{
 171	if (nents == SG_MAX_SINGLE_ALLOC) {
 172		kmemleak_free(sg);
 173		free_page((unsigned long) sg);
 174	} else
 175		kfree(sg);
 176}
 177
 178/**
 179 * __sg_free_table - Free a previously mapped sg table
 180 * @table:	The sg table header to use
 181 * @max_ents:	The maximum number of entries per single scatterlist
 182 * @nents_first_chunk: Number of entries int the (preallocated) first
 183 * 	scatterlist chunk, 0 means no such preallocated first chunk
 184 * @free_fn:	Free function
 185 * @num_ents:	Number of entries in the table
 186 *
 187 *  Description:
 188 *    Free an sg table previously allocated and setup with
 189 *    __sg_alloc_table().  The @max_ents value must be identical to
 190 *    that previously used with __sg_alloc_table().
 191 *
 192 **/
 193void __sg_free_table(struct sg_table *table, unsigned int max_ents,
 194		     unsigned int nents_first_chunk, sg_free_fn *free_fn,
 195		     unsigned int num_ents)
 196{
 197	struct scatterlist *sgl, *next;
 198	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 199
 200	if (unlikely(!table->sgl))
 201		return;
 202
 203	sgl = table->sgl;
 204	while (num_ents) {
 205		unsigned int alloc_size = num_ents;
 206		unsigned int sg_size;
 207
 208		/*
 209		 * If we have more than max_ents segments left,
 210		 * then assign 'next' to the sg table after the current one.
 211		 * sg_size is then one less than alloc size, since the last
 212		 * element is the chain pointer.
 213		 */
 214		if (alloc_size > curr_max_ents) {
 215			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
 216			alloc_size = curr_max_ents;
 217			sg_size = alloc_size - 1;
 218		} else {
 219			sg_size = alloc_size;
 220			next = NULL;
 221		}
 222
 223		num_ents -= sg_size;
 224		if (nents_first_chunk)
 225			nents_first_chunk = 0;
 226		else
 227			free_fn(sgl, alloc_size);
 228		sgl = next;
 229		curr_max_ents = max_ents;
 230	}
 231
 232	table->sgl = NULL;
 233}
 234EXPORT_SYMBOL(__sg_free_table);
 235
 236/**
 237 * sg_free_append_table - Free a previously allocated append sg table.
 238 * @table:	 The mapped sg append table header
 239 *
 240 **/
 241void sg_free_append_table(struct sg_append_table *table)
 242{
 243	__sg_free_table(&table->sgt, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
 244			table->total_nents);
 245}
 246EXPORT_SYMBOL(sg_free_append_table);
 247
 248
 249/**
 250 * sg_free_table - Free a previously allocated sg table
 251 * @table:	The mapped sg table header
 252 *
 253 **/
 254void sg_free_table(struct sg_table *table)
 255{
 256	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
 257			table->orig_nents);
 258}
 259EXPORT_SYMBOL(sg_free_table);
 260
 261/**
 262 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
 263 * @table:	The sg table header to use
 264 * @nents:	Number of entries in sg list
 265 * @max_ents:	The maximum number of entries the allocator returns per call
 266 * @nents_first_chunk: Number of entries int the (preallocated) first
 267 * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
 268 * @gfp_mask:	GFP allocation mask
 269 * @alloc_fn:	Allocator to use
 270 *
 271 * Description:
 272 *   This function returns a @table @nents long. The allocator is
 273 *   defined to return scatterlist chunks of maximum size @max_ents.
 274 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
 275 *   chained in units of @max_ents.
 276 *
 277 * Notes:
 278 *   If this function returns non-0 (eg failure), the caller must call
 279 *   __sg_free_table() to cleanup any leftover allocations.
 280 *
 281 **/
 282int __sg_alloc_table(struct sg_table *table, unsigned int nents,
 283		     unsigned int max_ents, struct scatterlist *first_chunk,
 284		     unsigned int nents_first_chunk, gfp_t gfp_mask,
 285		     sg_alloc_fn *alloc_fn)
 286{
 287	struct scatterlist *sg, *prv;
 288	unsigned int left;
 289	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
 290	unsigned prv_max_ents;
 291
 292	memset(table, 0, sizeof(*table));
 293
 294	if (nents == 0)
 295		return -EINVAL;
 296#ifdef CONFIG_ARCH_NO_SG_CHAIN
 297	if (WARN_ON_ONCE(nents > max_ents))
 298		return -EINVAL;
 299#endif
 300
 301	left = nents;
 302	prv = NULL;
 303	do {
 304		unsigned int sg_size, alloc_size = left;
 305
 306		if (alloc_size > curr_max_ents) {
 307			alloc_size = curr_max_ents;
 308			sg_size = alloc_size - 1;
 309		} else
 310			sg_size = alloc_size;
 311
 312		left -= sg_size;
 313
 314		if (first_chunk) {
 315			sg = first_chunk;
 316			first_chunk = NULL;
 317		} else {
 318			sg = alloc_fn(alloc_size, gfp_mask);
 319		}
 320		if (unlikely(!sg)) {
 321			/*
 322			 * Adjust entry count to reflect that the last
 323			 * entry of the previous table won't be used for
 324			 * linkage.  Without this, sg_kfree() may get
 325			 * confused.
 326			 */
 327			if (prv)
 328				table->nents = ++table->orig_nents;
 329
 330			return -ENOMEM;
 331		}
 332
 333		sg_init_table(sg, alloc_size);
 334		table->nents = table->orig_nents += sg_size;
 335
 336		/*
 337		 * If this is the first mapping, assign the sg table header.
 338		 * If this is not the first mapping, chain previous part.
 339		 */
 340		if (prv)
 341			sg_chain(prv, prv_max_ents, sg);
 342		else
 343			table->sgl = sg;
 344
 345		/*
 346		 * If no more entries after this one, mark the end
 347		 */
 348		if (!left)
 349			sg_mark_end(&sg[sg_size - 1]);
 350
 351		prv = sg;
 352		prv_max_ents = curr_max_ents;
 353		curr_max_ents = max_ents;
 354	} while (left);
 355
 356	return 0;
 357}
 358EXPORT_SYMBOL(__sg_alloc_table);
 359
 360/**
 361 * sg_alloc_table - Allocate and initialize an sg table
 362 * @table:	The sg table header to use
 363 * @nents:	Number of entries in sg list
 364 * @gfp_mask:	GFP allocation mask
 365 *
 366 *  Description:
 367 *    Allocate and initialize an sg table. If @nents@ is larger than
 368 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
 369 *
 370 **/
 371int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
 372{
 373	int ret;
 374
 375	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
 376			       NULL, 0, gfp_mask, sg_kmalloc);
 377	if (unlikely(ret))
 378		sg_free_table(table);
 
 379	return ret;
 380}
 381EXPORT_SYMBOL(sg_alloc_table);
 382
 383static struct scatterlist *get_next_sg(struct sg_append_table *table,
 384				       struct scatterlist *cur,
 385				       unsigned long needed_sges,
 386				       gfp_t gfp_mask)
 387{
 388	struct scatterlist *new_sg, *next_sg;
 389	unsigned int alloc_size;
 390
 391	if (cur) {
 392		next_sg = sg_next(cur);
 393		/* Check if last entry should be keeped for chainning */
 394		if (!sg_is_last(next_sg) || needed_sges == 1)
 395			return next_sg;
 396	}
 397
 398	alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
 399	new_sg = sg_kmalloc(alloc_size, gfp_mask);
 400	if (!new_sg)
 401		return ERR_PTR(-ENOMEM);
 402	sg_init_table(new_sg, alloc_size);
 403	if (cur) {
 404		table->total_nents += alloc_size - 1;
 405		__sg_chain(next_sg, new_sg);
 406	} else {
 407		table->sgt.sgl = new_sg;
 408		table->total_nents = alloc_size;
 409	}
 410	return new_sg;
 411}
 412
 413static bool pages_are_mergeable(struct page *a, struct page *b)
 414{
 415	if (page_to_pfn(a) != page_to_pfn(b) + 1)
 416		return false;
 417	if (!zone_device_pages_have_same_pgmap(a, b))
 418		return false;
 419	return true;
 420}
 421
 422/**
 423 * sg_alloc_append_table_from_pages - Allocate and initialize an append sg
 424 *                                    table from an array of pages
 425 * @sgt_append:  The sg append table to use
 426 * @pages:       Pointer to an array of page pointers
 427 * @n_pages:     Number of pages in the pages array
 428 * @offset:      Offset from start of the first page to the start of a buffer
 429 * @size:        Number of valid bytes in the buffer (after offset)
 430 * @max_segment: Maximum size of a scatterlist element in bytes
 431 * @left_pages:  Left pages caller have to set after this call
 432 * @gfp_mask:	 GFP allocation mask
 433 *
 434 * Description:
 435 *    In the first call it allocate and initialize an sg table from a list of
 436 *    pages, else reuse the scatterlist from sgt_append. Contiguous ranges of
 437 *    the pages are squashed into a single scatterlist entry up to the maximum
 438 *    size specified in @max_segment.  A user may provide an offset at a start
 439 *    and a size of valid data in a buffer specified by the page array. The
 440 *    returned sg table is released by sg_free_append_table
 441 *
 442 * Returns:
 443 *   0 on success, negative error on failure
 444 *
 445 * Notes:
 446 *   If this function returns non-0 (eg failure), the caller must call
 447 *   sg_free_append_table() to cleanup any leftover allocations.
 448 *
 449 *   In the fist call, sgt_append must by initialized.
 450 */
 451int sg_alloc_append_table_from_pages(struct sg_append_table *sgt_append,
 452		struct page **pages, unsigned int n_pages, unsigned int offset,
 453		unsigned long size, unsigned int max_segment,
 454		unsigned int left_pages, gfp_t gfp_mask)
 455{
 456	unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
 457	unsigned int added_nents = 0;
 458	struct scatterlist *s = sgt_append->prv;
 459	struct page *last_pg;
 460
 461	/*
 462	 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
 463	 * otherwise it can overshoot.
 464	 */
 465	max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
 466	if (WARN_ON(max_segment < PAGE_SIZE))
 467		return -EINVAL;
 468
 469	if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && sgt_append->prv)
 470		return -EOPNOTSUPP;
 471
 472	if (sgt_append->prv) {
 473		unsigned long next_pfn = (page_to_phys(sg_page(sgt_append->prv)) +
 474			sgt_append->prv->offset + sgt_append->prv->length) / PAGE_SIZE;
 475
 476		if (WARN_ON(offset))
 477			return -EINVAL;
 478
 479		/* Merge contiguous pages into the last SG */
 480		prv_len = sgt_append->prv->length;
 481		if (page_to_pfn(pages[0]) == next_pfn) {
 482			last_pg = pfn_to_page(next_pfn - 1);
 483			while (n_pages && pages_are_mergeable(pages[0], last_pg)) {
 484				if (sgt_append->prv->length + PAGE_SIZE > max_segment)
 485					break;
 486				sgt_append->prv->length += PAGE_SIZE;
 487				last_pg = pages[0];
 488				pages++;
 489				n_pages--;
 490			}
 491			if (!n_pages)
 492				goto out;
 493		}
 494	}
 495
 496	/* compute number of contiguous chunks */
 497	chunks = 1;
 498	seg_len = 0;
 499	for (i = 1; i < n_pages; i++) {
 500		seg_len += PAGE_SIZE;
 501		if (seg_len >= max_segment ||
 502		    !pages_are_mergeable(pages[i], pages[i - 1])) {
 503			chunks++;
 504			seg_len = 0;
 505		}
 506	}
 507
 508	/* merging chunks and putting them into the scatterlist */
 509	cur_page = 0;
 510	for (i = 0; i < chunks; i++) {
 511		unsigned int j, chunk_size;
 
 512
 513		/* look for the end of the current chunk */
 514		seg_len = 0;
 515		for (j = cur_page + 1; j < n_pages; j++) {
 516			seg_len += PAGE_SIZE;
 517			if (seg_len >= max_segment ||
 518			    !pages_are_mergeable(pages[j], pages[j - 1]))
 519				break;
 520		}
 521
 522		/* Pass how many chunks might be left */
 523		s = get_next_sg(sgt_append, s, chunks - i + left_pages,
 524				gfp_mask);
 525		if (IS_ERR(s)) {
 526			/*
 527			 * Adjust entry length to be as before function was
 528			 * called.
 529			 */
 530			if (sgt_append->prv)
 531				sgt_append->prv->length = prv_len;
 532			return PTR_ERR(s);
 533		}
 534		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
 535		sg_set_page(s, pages[cur_page],
 536			    min_t(unsigned long, size, chunk_size), offset);
 537		added_nents++;
 538		size -= chunk_size;
 539		offset = 0;
 540		cur_page = j;
 541	}
 542	sgt_append->sgt.nents += added_nents;
 543	sgt_append->sgt.orig_nents = sgt_append->sgt.nents;
 544	sgt_append->prv = s;
 545out:
 546	if (!left_pages)
 547		sg_mark_end(s);
 548	return 0;
 549}
 550EXPORT_SYMBOL(sg_alloc_append_table_from_pages);
 551
 552/**
 553 * sg_alloc_table_from_pages_segment - Allocate and initialize an sg table from
 554 *                                     an array of pages and given maximum
 555 *                                     segment.
 556 * @sgt:	 The sg table header to use
 557 * @pages:	 Pointer to an array of page pointers
 558 * @n_pages:	 Number of pages in the pages array
 559 * @offset:      Offset from start of the first page to the start of a buffer
 560 * @size:        Number of valid bytes in the buffer (after offset)
 561 * @max_segment: Maximum size of a scatterlist element in bytes
 562 * @gfp_mask:	 GFP allocation mask
 563 *
 564 *  Description:
 565 *    Allocate and initialize an sg table from a list of pages. Contiguous
 566 *    ranges of the pages are squashed into a single scatterlist node up to the
 567 *    maximum size specified in @max_segment. A user may provide an offset at a
 568 *    start and a size of valid data in a buffer specified by the page array.
 569 *
 570 *    The returned sg table is released by sg_free_table.
 571 *
 572 *  Returns:
 573 *   0 on success, negative error on failure
 574 */
 575int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages,
 576				unsigned int n_pages, unsigned int offset,
 577				unsigned long size, unsigned int max_segment,
 578				gfp_t gfp_mask)
 579{
 580	struct sg_append_table append = {};
 581	int err;
 582
 583	err = sg_alloc_append_table_from_pages(&append, pages, n_pages, offset,
 584					       size, max_segment, 0, gfp_mask);
 585	if (err) {
 586		sg_free_append_table(&append);
 587		return err;
 588	}
 589	memcpy(sgt, &append.sgt, sizeof(*sgt));
 590	WARN_ON(append.total_nents != sgt->orig_nents);
 591	return 0;
 592}
 593EXPORT_SYMBOL(sg_alloc_table_from_pages_segment);
 594
 595#ifdef CONFIG_SGL_ALLOC
 596
 597/**
 598 * sgl_alloc_order - allocate a scatterlist and its pages
 599 * @length: Length in bytes of the scatterlist. Must be at least one
 600 * @order: Second argument for alloc_pages()
 601 * @chainable: Whether or not to allocate an extra element in the scatterlist
 602 *	for scatterlist chaining purposes
 603 * @gfp: Memory allocation flags
 604 * @nent_p: [out] Number of entries in the scatterlist that have pages
 605 *
 606 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 607 */
 608struct scatterlist *sgl_alloc_order(unsigned long long length,
 609				    unsigned int order, bool chainable,
 610				    gfp_t gfp, unsigned int *nent_p)
 611{
 612	struct scatterlist *sgl, *sg;
 613	struct page *page;
 614	unsigned int nent, nalloc;
 615	u32 elem_len;
 616
 617	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
 618	/* Check for integer overflow */
 619	if (length > (nent << (PAGE_SHIFT + order)))
 620		return NULL;
 621	nalloc = nent;
 622	if (chainable) {
 623		/* Check for integer overflow */
 624		if (nalloc + 1 < nalloc)
 625			return NULL;
 626		nalloc++;
 627	}
 628	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
 629			    gfp & ~GFP_DMA);
 630	if (!sgl)
 631		return NULL;
 632
 633	sg_init_table(sgl, nalloc);
 634	sg = sgl;
 635	while (length) {
 636		elem_len = min_t(u64, length, PAGE_SIZE << order);
 637		page = alloc_pages(gfp, order);
 638		if (!page) {
 639			sgl_free_order(sgl, order);
 640			return NULL;
 641		}
 642
 643		sg_set_page(sg, page, elem_len, 0);
 644		length -= elem_len;
 645		sg = sg_next(sg);
 646	}
 647	WARN_ONCE(length, "length = %lld\n", length);
 648	if (nent_p)
 649		*nent_p = nent;
 650	return sgl;
 651}
 652EXPORT_SYMBOL(sgl_alloc_order);
 653
 654/**
 655 * sgl_alloc - allocate a scatterlist and its pages
 656 * @length: Length in bytes of the scatterlist
 657 * @gfp: Memory allocation flags
 658 * @nent_p: [out] Number of entries in the scatterlist
 659 *
 660 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
 661 */
 662struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
 663			      unsigned int *nent_p)
 664{
 665	return sgl_alloc_order(length, 0, false, gfp, nent_p);
 666}
 667EXPORT_SYMBOL(sgl_alloc);
 668
 669/**
 670 * sgl_free_n_order - free a scatterlist and its pages
 671 * @sgl: Scatterlist with one or more elements
 672 * @nents: Maximum number of elements to free
 673 * @order: Second argument for __free_pages()
 674 *
 675 * Notes:
 676 * - If several scatterlists have been chained and each chain element is
 677 *   freed separately then it's essential to set nents correctly to avoid that a
 678 *   page would get freed twice.
 679 * - All pages in a chained scatterlist can be freed at once by setting @nents
 680 *   to a high number.
 681 */
 682void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
 683{
 684	struct scatterlist *sg;
 685	struct page *page;
 686	int i;
 687
 688	for_each_sg(sgl, sg, nents, i) {
 689		if (!sg)
 690			break;
 691		page = sg_page(sg);
 692		if (page)
 693			__free_pages(page, order);
 694	}
 695	kfree(sgl);
 696}
 697EXPORT_SYMBOL(sgl_free_n_order);
 698
 699/**
 700 * sgl_free_order - free a scatterlist and its pages
 701 * @sgl: Scatterlist with one or more elements
 702 * @order: Second argument for __free_pages()
 703 */
 704void sgl_free_order(struct scatterlist *sgl, int order)
 705{
 706	sgl_free_n_order(sgl, INT_MAX, order);
 707}
 708EXPORT_SYMBOL(sgl_free_order);
 709
 710/**
 711 * sgl_free - free a scatterlist and its pages
 712 * @sgl: Scatterlist with one or more elements
 713 */
 714void sgl_free(struct scatterlist *sgl)
 715{
 716	sgl_free_order(sgl, 0);
 717}
 718EXPORT_SYMBOL(sgl_free);
 719
 720#endif /* CONFIG_SGL_ALLOC */
 721
 722void __sg_page_iter_start(struct sg_page_iter *piter,
 723			  struct scatterlist *sglist, unsigned int nents,
 724			  unsigned long pgoffset)
 725{
 726	piter->__pg_advance = 0;
 727	piter->__nents = nents;
 728
 729	piter->sg = sglist;
 730	piter->sg_pgoffset = pgoffset;
 731}
 732EXPORT_SYMBOL(__sg_page_iter_start);
 733
 734static int sg_page_count(struct scatterlist *sg)
 735{
 736	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
 737}
 738
 739bool __sg_page_iter_next(struct sg_page_iter *piter)
 740{
 741	if (!piter->__nents || !piter->sg)
 742		return false;
 743
 744	piter->sg_pgoffset += piter->__pg_advance;
 745	piter->__pg_advance = 1;
 746
 747	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
 748		piter->sg_pgoffset -= sg_page_count(piter->sg);
 749		piter->sg = sg_next(piter->sg);
 750		if (!--piter->__nents || !piter->sg)
 751			return false;
 752	}
 753
 754	return true;
 755}
 756EXPORT_SYMBOL(__sg_page_iter_next);
 757
 758static int sg_dma_page_count(struct scatterlist *sg)
 759{
 760	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
 761}
 762
 763bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
 764{
 765	struct sg_page_iter *piter = &dma_iter->base;
 766
 767	if (!piter->__nents || !piter->sg)
 768		return false;
 769
 770	piter->sg_pgoffset += piter->__pg_advance;
 771	piter->__pg_advance = 1;
 772
 773	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
 774		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
 775		piter->sg = sg_next(piter->sg);
 776		if (!--piter->__nents || !piter->sg)
 777			return false;
 778	}
 779
 780	return true;
 781}
 782EXPORT_SYMBOL(__sg_page_iter_dma_next);
 783
 784/**
 785 * sg_miter_start - start mapping iteration over a sg list
 786 * @miter: sg mapping iter to be started
 787 * @sgl: sg list to iterate over
 788 * @nents: number of sg entries
 789 *
 790 * Description:
 791 *   Starts mapping iterator @miter.
 792 *
 793 * Context:
 794 *   Don't care.
 795 */
 796void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
 797		    unsigned int nents, unsigned int flags)
 798{
 799	memset(miter, 0, sizeof(struct sg_mapping_iter));
 800
 801	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
 802	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
 803	miter->__flags = flags;
 804}
 805EXPORT_SYMBOL(sg_miter_start);
 806
 807static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
 808{
 809	if (!miter->__remaining) {
 810		struct scatterlist *sg;
 
 811
 812		if (!__sg_page_iter_next(&miter->piter))
 813			return false;
 814
 815		sg = miter->piter.sg;
 
 816
 817		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
 818		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
 819		miter->__offset &= PAGE_SIZE - 1;
 820		miter->__remaining = sg->offset + sg->length -
 821				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
 822				     miter->__offset;
 823		miter->__remaining = min_t(unsigned long, miter->__remaining,
 824					   PAGE_SIZE - miter->__offset);
 825	}
 826
 827	return true;
 828}
 829
 830/**
 831 * sg_miter_skip - reposition mapping iterator
 832 * @miter: sg mapping iter to be skipped
 833 * @offset: number of bytes to plus the current location
 834 *
 835 * Description:
 836 *   Sets the offset of @miter to its current location plus @offset bytes.
 837 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
 838 *   stops @miter.
 839 *
 840 * Context:
 841 *   Don't care.
 
 842 *
 843 * Returns:
 844 *   true if @miter contains the valid mapping.  false if end of sg
 845 *   list is reached.
 846 */
 847bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
 848{
 849	sg_miter_stop(miter);
 850
 851	while (offset) {
 852		off_t consumed;
 853
 854		if (!sg_miter_get_next_page(miter))
 855			return false;
 856
 857		consumed = min_t(off_t, offset, miter->__remaining);
 858		miter->__offset += consumed;
 859		miter->__remaining -= consumed;
 860		offset -= consumed;
 861	}
 862
 863	return true;
 864}
 865EXPORT_SYMBOL(sg_miter_skip);
 866
 867/**
 868 * sg_miter_next - proceed mapping iterator to the next mapping
 869 * @miter: sg mapping iter to proceed
 870 *
 871 * Description:
 872 *   Proceeds @miter to the next mapping.  @miter should have been started
 873 *   using sg_miter_start().  On successful return, @miter->page,
 874 *   @miter->addr and @miter->length point to the current mapping.
 875 *
 876 * Context:
 877 *   May sleep if !SG_MITER_ATOMIC.
 
 878 *
 879 * Returns:
 880 *   true if @miter contains the next mapping.  false if end of sg
 881 *   list is reached.
 882 */
 883bool sg_miter_next(struct sg_mapping_iter *miter)
 884{
 885	sg_miter_stop(miter);
 886
 887	/*
 888	 * Get to the next page if necessary.
 889	 * __remaining, __offset is adjusted by sg_miter_stop
 890	 */
 891	if (!sg_miter_get_next_page(miter))
 892		return false;
 893
 894	miter->page = sg_page_iter_page(&miter->piter);
 895	miter->consumed = miter->length = miter->__remaining;
 896
 897	if (miter->__flags & SG_MITER_ATOMIC)
 898		miter->addr = kmap_atomic(miter->page) + miter->__offset;
 899	else
 900		miter->addr = kmap(miter->page) + miter->__offset;
 901
 902	return true;
 903}
 904EXPORT_SYMBOL(sg_miter_next);
 905
 906/**
 907 * sg_miter_stop - stop mapping iteration
 908 * @miter: sg mapping iter to be stopped
 909 *
 910 * Description:
 911 *   Stops mapping iterator @miter.  @miter should have been started
 912 *   using sg_miter_start().  A stopped iteration can be resumed by
 913 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
 914 *   need to be released during iteration.
 915 *
 916 * Context:
 917 *   Don't care otherwise.
 
 918 */
 919void sg_miter_stop(struct sg_mapping_iter *miter)
 920{
 921	WARN_ON(miter->consumed > miter->length);
 922
 923	/* drop resources from the last iteration */
 924	if (miter->addr) {
 925		miter->__offset += miter->consumed;
 926		miter->__remaining -= miter->consumed;
 927
 928		if (miter->__flags & SG_MITER_TO_SG)
 929			flush_dcache_page(miter->page);
 
 930
 931		if (miter->__flags & SG_MITER_ATOMIC) {
 932			WARN_ON_ONCE(!pagefault_disabled());
 933			kunmap_atomic(miter->addr);
 934		} else
 935			kunmap(miter->page);
 936
 937		miter->page = NULL;
 938		miter->addr = NULL;
 939		miter->length = 0;
 940		miter->consumed = 0;
 941	}
 942}
 943EXPORT_SYMBOL(sg_miter_stop);
 944
 945/**
 946 * sg_copy_buffer - Copy data between a linear buffer and an SG list
 947 * @sgl:		 The SG list
 948 * @nents:		 Number of SG entries
 949 * @buf:		 Where to copy from
 950 * @buflen:		 The number of bytes to copy
 951 * @skip:		 Number of bytes to skip before copying
 952 * @to_buffer:		 transfer direction (true == from an sg list to a
 953 *			 buffer, false == from a buffer to an sg list)
 954 *
 955 * Returns the number of copied bytes.
 956 *
 957 **/
 958size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
 959		      size_t buflen, off_t skip, bool to_buffer)
 
 960{
 961	unsigned int offset = 0;
 962	struct sg_mapping_iter miter;
 
 963	unsigned int sg_flags = SG_MITER_ATOMIC;
 964
 965	if (to_buffer)
 966		sg_flags |= SG_MITER_FROM_SG;
 967	else
 968		sg_flags |= SG_MITER_TO_SG;
 969
 970	sg_miter_start(&miter, sgl, nents, sg_flags);
 971
 972	if (!sg_miter_skip(&miter, skip))
 973		return 0;
 
 
 974
 975	while ((offset < buflen) && sg_miter_next(&miter)) {
 976		unsigned int len;
 977
 978		len = min(miter.length, buflen - offset);
 979
 980		if (to_buffer)
 981			memcpy(buf + offset, miter.addr, len);
 982		else
 983			memcpy(miter.addr, buf + offset, len);
 984
 985		offset += len;
 986	}
 987
 988	sg_miter_stop(&miter);
 989
 
 990	return offset;
 991}
 992EXPORT_SYMBOL(sg_copy_buffer);
 993
 994/**
 995 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
 996 * @sgl:		 The SG list
 997 * @nents:		 Number of SG entries
 998 * @buf:		 Where to copy from
 999 * @buflen:		 The number of bytes to copy
1000 *
1001 * Returns the number of copied bytes.
1002 *
1003 **/
1004size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1005			   const void *buf, size_t buflen)
1006{
1007	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
1008}
1009EXPORT_SYMBOL(sg_copy_from_buffer);
1010
1011/**
1012 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
1013 * @sgl:		 The SG list
1014 * @nents:		 Number of SG entries
1015 * @buf:		 Where to copy to
1016 * @buflen:		 The number of bytes to copy
1017 *
1018 * Returns the number of copied bytes.
1019 *
1020 **/
1021size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1022			 void *buf, size_t buflen)
1023{
1024	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
1025}
1026EXPORT_SYMBOL(sg_copy_to_buffer);
1027
1028/**
1029 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
1030 * @sgl:		 The SG list
1031 * @nents:		 Number of SG entries
1032 * @buf:		 Where to copy from
 
1033 * @buflen:		 The number of bytes to copy
1034 * @skip:		 Number of bytes to skip before copying
1035 *
1036 * Returns the number of copied bytes.
1037 *
1038 **/
1039size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1040			    const void *buf, size_t buflen, off_t skip)
1041{
1042	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1043}
1044EXPORT_SYMBOL(sg_pcopy_from_buffer);
1045
1046/**
1047 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1048 * @sgl:		 The SG list
1049 * @nents:		 Number of SG entries
1050 * @buf:		 Where to copy to
 
1051 * @buflen:		 The number of bytes to copy
1052 * @skip:		 Number of bytes to skip before copying
1053 *
1054 * Returns the number of copied bytes.
1055 *
1056 **/
1057size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1058			  void *buf, size_t buflen, off_t skip)
1059{
1060	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1061}
1062EXPORT_SYMBOL(sg_pcopy_to_buffer);
1063
1064/**
1065 * sg_zero_buffer - Zero-out a part of a SG list
1066 * @sgl:		 The SG list
1067 * @nents:		 Number of SG entries
1068 * @buflen:		 The number of bytes to zero out
1069 * @skip:		 Number of bytes to skip before zeroing
1070 *
1071 * Returns the number of bytes zeroed.
1072 **/
1073size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1074		       size_t buflen, off_t skip)
1075{
1076	unsigned int offset = 0;
1077	struct sg_mapping_iter miter;
1078	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1079
1080	sg_miter_start(&miter, sgl, nents, sg_flags);
1081
1082	if (!sg_miter_skip(&miter, skip))
1083		return false;
1084
1085	while (offset < buflen && sg_miter_next(&miter)) {
1086		unsigned int len;
1087
1088		len = min(miter.length, buflen - offset);
1089		memset(miter.addr, 0, len);
1090
1091		offset += len;
1092	}
1093
1094	sg_miter_stop(&miter);
1095	return offset;
1096}
1097EXPORT_SYMBOL(sg_zero_buffer);