Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
  3 *
  4 * Scatterlist handling helpers.
  5 *
  6 * This source code is licensed under the GNU General Public License,
  7 * Version 2. See the file COPYING for more details.
  8 */
  9#include <linux/export.h>
 10#include <linux/slab.h>
 11#include <linux/scatterlist.h>
 12#include <linux/highmem.h>
 13#include <linux/kmemleak.h>
 14
 15/**
 16 * sg_next - return the next scatterlist entry in a list
 17 * @sg:		The current sg entry
 18 *
 19 * Description:
 20 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
 21 *   of a chained scatterlist, it could jump to the start of a new
 22 *   scatterlist array.
 23 *
 24 **/
 25struct scatterlist *sg_next(struct scatterlist *sg)
 26{
 27#ifdef CONFIG_DEBUG_SG
 28	BUG_ON(sg->sg_magic != SG_MAGIC);
 29#endif
 30	if (sg_is_last(sg))
 31		return NULL;
 32
 33	sg++;
 34	if (unlikely(sg_is_chain(sg)))
 35		sg = sg_chain_ptr(sg);
 36
 37	return sg;
 38}
 39EXPORT_SYMBOL(sg_next);
 40
 41/**
 42 * sg_nents - return total count of entries in scatterlist
 43 * @sg:		The scatterlist
 44 *
 45 * Description:
 46 * Allows to know how many entries are in sg, taking into acount
 47 * chaining as well
 48 *
 49 **/
 50int sg_nents(struct scatterlist *sg)
 51{
 52	int nents;
 53	for (nents = 0; sg; sg = sg_next(sg))
 54		nents++;
 55	return nents;
 56}
 57EXPORT_SYMBOL(sg_nents);
 58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59
 60/**
 61 * sg_last - return the last scatterlist entry in a list
 62 * @sgl:	First entry in the scatterlist
 63 * @nents:	Number of entries in the scatterlist
 64 *
 65 * Description:
 66 *   Should only be used casually, it (currently) scans the entire list
 67 *   to get the last entry.
 68 *
 69 *   Note that the @sgl@ pointer passed in need not be the first one,
 70 *   the important bit is that @nents@ denotes the number of entries that
 71 *   exist from @sgl@.
 72 *
 73 **/
 74struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
 75{
 76#ifndef ARCH_HAS_SG_CHAIN
 77	struct scatterlist *ret = &sgl[nents - 1];
 78#else
 79	struct scatterlist *sg, *ret = NULL;
 80	unsigned int i;
 81
 82	for_each_sg(sgl, sg, nents, i)
 83		ret = sg;
 84
 85#endif
 86#ifdef CONFIG_DEBUG_SG
 87	BUG_ON(sgl[0].sg_magic != SG_MAGIC);
 88	BUG_ON(!sg_is_last(ret));
 89#endif
 90	return ret;
 91}
 92EXPORT_SYMBOL(sg_last);
 93
 94/**
 95 * sg_init_table - Initialize SG table
 96 * @sgl:	   The SG table
 97 * @nents:	   Number of entries in table
 98 *
 99 * Notes:
100 *   If this is part of a chained sg table, sg_mark_end() should be
101 *   used only on the last table part.
102 *
103 **/
104void sg_init_table(struct scatterlist *sgl, unsigned int nents)
105{
106	memset(sgl, 0, sizeof(*sgl) * nents);
107#ifdef CONFIG_DEBUG_SG
108	{
109		unsigned int i;
110		for (i = 0; i < nents; i++)
111			sgl[i].sg_magic = SG_MAGIC;
112	}
113#endif
114	sg_mark_end(&sgl[nents - 1]);
115}
116EXPORT_SYMBOL(sg_init_table);
117
118/**
119 * sg_init_one - Initialize a single entry sg list
120 * @sg:		 SG entry
121 * @buf:	 Virtual address for IO
122 * @buflen:	 IO length
123 *
124 **/
125void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
126{
127	sg_init_table(sg, 1);
128	sg_set_buf(sg, buf, buflen);
129}
130EXPORT_SYMBOL(sg_init_one);
131
132/*
133 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
134 * helpers.
135 */
136static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
137{
138	if (nents == SG_MAX_SINGLE_ALLOC) {
139		/*
140		 * Kmemleak doesn't track page allocations as they are not
141		 * commonly used (in a raw form) for kernel data structures.
142		 * As we chain together a list of pages and then a normal
143		 * kmalloc (tracked by kmemleak), in order to for that last
144		 * allocation not to become decoupled (and thus a
145		 * false-positive) we need to inform kmemleak of all the
146		 * intermediate allocations.
147		 */
148		void *ptr = (void *) __get_free_page(gfp_mask);
149		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
150		return ptr;
151	} else
152		return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
153}
154
155static void sg_kfree(struct scatterlist *sg, unsigned int nents)
156{
157	if (nents == SG_MAX_SINGLE_ALLOC) {
158		kmemleak_free(sg);
159		free_page((unsigned long) sg);
160	} else
161		kfree(sg);
162}
163
164/**
165 * __sg_free_table - Free a previously mapped sg table
166 * @table:	The sg table header to use
167 * @max_ents:	The maximum number of entries per single scatterlist
 
168 * @free_fn:	Free function
169 *
170 *  Description:
171 *    Free an sg table previously allocated and setup with
172 *    __sg_alloc_table().  The @max_ents value must be identical to
173 *    that previously used with __sg_alloc_table().
174 *
175 **/
176void __sg_free_table(struct sg_table *table, unsigned int max_ents,
177		     sg_free_fn *free_fn)
178{
179	struct scatterlist *sgl, *next;
180
181	if (unlikely(!table->sgl))
182		return;
183
184	sgl = table->sgl;
185	while (table->orig_nents) {
186		unsigned int alloc_size = table->orig_nents;
187		unsigned int sg_size;
188
189		/*
190		 * If we have more than max_ents segments left,
191		 * then assign 'next' to the sg table after the current one.
192		 * sg_size is then one less than alloc size, since the last
193		 * element is the chain pointer.
194		 */
195		if (alloc_size > max_ents) {
196			next = sg_chain_ptr(&sgl[max_ents - 1]);
197			alloc_size = max_ents;
198			sg_size = alloc_size - 1;
199		} else {
200			sg_size = alloc_size;
201			next = NULL;
202		}
203
204		table->orig_nents -= sg_size;
205		free_fn(sgl, alloc_size);
 
 
 
206		sgl = next;
207	}
208
209	table->sgl = NULL;
210}
211EXPORT_SYMBOL(__sg_free_table);
212
213/**
214 * sg_free_table - Free a previously allocated sg table
215 * @table:	The mapped sg table header
216 *
217 **/
218void sg_free_table(struct sg_table *table)
219{
220	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
221}
222EXPORT_SYMBOL(sg_free_table);
223
224/**
225 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
226 * @table:	The sg table header to use
227 * @nents:	Number of entries in sg list
228 * @max_ents:	The maximum number of entries the allocator returns per call
229 * @gfp_mask:	GFP allocation mask
230 * @alloc_fn:	Allocator to use
231 *
232 * Description:
233 *   This function returns a @table @nents long. The allocator is
234 *   defined to return scatterlist chunks of maximum size @max_ents.
235 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
236 *   chained in units of @max_ents.
237 *
238 * Notes:
239 *   If this function returns non-0 (eg failure), the caller must call
240 *   __sg_free_table() to cleanup any leftover allocations.
241 *
242 **/
243int __sg_alloc_table(struct sg_table *table, unsigned int nents,
244		     unsigned int max_ents, gfp_t gfp_mask,
245		     sg_alloc_fn *alloc_fn)
246{
247	struct scatterlist *sg, *prv;
248	unsigned int left;
249
250	memset(table, 0, sizeof(*table));
251
252	if (nents == 0)
253		return -EINVAL;
254#ifndef ARCH_HAS_SG_CHAIN
255	if (WARN_ON_ONCE(nents > max_ents))
256		return -EINVAL;
257#endif
258
259	left = nents;
260	prv = NULL;
261	do {
262		unsigned int sg_size, alloc_size = left;
263
264		if (alloc_size > max_ents) {
265			alloc_size = max_ents;
266			sg_size = alloc_size - 1;
267		} else
268			sg_size = alloc_size;
269
270		left -= sg_size;
271
272		sg = alloc_fn(alloc_size, gfp_mask);
 
 
 
 
 
273		if (unlikely(!sg)) {
274			/*
275			 * Adjust entry count to reflect that the last
276			 * entry of the previous table won't be used for
277			 * linkage.  Without this, sg_kfree() may get
278			 * confused.
279			 */
280			if (prv)
281				table->nents = ++table->orig_nents;
282
283 			return -ENOMEM;
284		}
285
286		sg_init_table(sg, alloc_size);
287		table->nents = table->orig_nents += sg_size;
288
289		/*
290		 * If this is the first mapping, assign the sg table header.
291		 * If this is not the first mapping, chain previous part.
292		 */
293		if (prv)
294			sg_chain(prv, max_ents, sg);
295		else
296			table->sgl = sg;
297
298		/*
299		 * If no more entries after this one, mark the end
300		 */
301		if (!left)
302			sg_mark_end(&sg[sg_size - 1]);
303
304		prv = sg;
305	} while (left);
306
307	return 0;
308}
309EXPORT_SYMBOL(__sg_alloc_table);
310
311/**
312 * sg_alloc_table - Allocate and initialize an sg table
313 * @table:	The sg table header to use
314 * @nents:	Number of entries in sg list
315 * @gfp_mask:	GFP allocation mask
316 *
317 *  Description:
318 *    Allocate and initialize an sg table. If @nents@ is larger than
319 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
320 *
321 **/
322int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
323{
324	int ret;
325
326	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
327			       gfp_mask, sg_kmalloc);
328	if (unlikely(ret))
329		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
330
331	return ret;
332}
333EXPORT_SYMBOL(sg_alloc_table);
334
335/**
336 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
337 *			       an array of pages
338 * @sgt:	The sg table header to use
339 * @pages:	Pointer to an array of page pointers
340 * @n_pages:	Number of pages in the pages array
341 * @offset:     Offset from start of the first page to the start of a buffer
342 * @size:       Number of valid bytes in the buffer (after offset)
343 * @gfp_mask:	GFP allocation mask
 
344 *
345 *  Description:
346 *    Allocate and initialize an sg table from a list of pages. Contiguous
347 *    ranges of the pages are squashed into a single scatterlist node. A user
348 *    may provide an offset at a start and a size of valid data in a buffer
349 *    specified by the page array. The returned sg table is released by
350 *    sg_free_table.
351 *
352 * Returns:
353 *   0 on success, negative error on failure
354 */
355int sg_alloc_table_from_pages(struct sg_table *sgt,
356	struct page **pages, unsigned int n_pages,
357	unsigned long offset, unsigned long size,
358	gfp_t gfp_mask)
359{
360	unsigned int chunks;
361	unsigned int i;
362	unsigned int cur_page;
363	int ret;
364	struct scatterlist *s;
365
 
 
 
366	/* compute number of contiguous chunks */
367	chunks = 1;
368	for (i = 1; i < n_pages; ++i)
369		if (page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1)
370			++chunks;
 
 
 
 
 
 
371
372	ret = sg_alloc_table(sgt, chunks, gfp_mask);
373	if (unlikely(ret))
374		return ret;
375
376	/* merging chunks and putting them into the scatterlist */
377	cur_page = 0;
378	for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
379		unsigned long chunk_size;
380		unsigned int j;
381
382		/* look for the end of the current chunk */
383		for (j = cur_page + 1; j < n_pages; ++j)
384			if (page_to_pfn(pages[j]) !=
 
 
 
385			    page_to_pfn(pages[j - 1]) + 1)
386				break;
 
387
388		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
389		sg_set_page(s, pages[cur_page], min(size, chunk_size), offset);
 
390		size -= chunk_size;
391		offset = 0;
392		cur_page = j;
393	}
394
395	return 0;
396}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
397EXPORT_SYMBOL(sg_alloc_table_from_pages);
398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399void __sg_page_iter_start(struct sg_page_iter *piter,
400			  struct scatterlist *sglist, unsigned int nents,
401			  unsigned long pgoffset)
402{
403	piter->__pg_advance = 0;
404	piter->__nents = nents;
405
406	piter->sg = sglist;
407	piter->sg_pgoffset = pgoffset;
408}
409EXPORT_SYMBOL(__sg_page_iter_start);
410
411static int sg_page_count(struct scatterlist *sg)
412{
413	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
414}
415
416bool __sg_page_iter_next(struct sg_page_iter *piter)
417{
418	if (!piter->__nents || !piter->sg)
419		return false;
420
421	piter->sg_pgoffset += piter->__pg_advance;
422	piter->__pg_advance = 1;
423
424	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
425		piter->sg_pgoffset -= sg_page_count(piter->sg);
426		piter->sg = sg_next(piter->sg);
427		if (!--piter->__nents || !piter->sg)
428			return false;
429	}
430
431	return true;
432}
433EXPORT_SYMBOL(__sg_page_iter_next);
434
435/**
436 * sg_miter_start - start mapping iteration over a sg list
437 * @miter: sg mapping iter to be started
438 * @sgl: sg list to iterate over
439 * @nents: number of sg entries
440 *
441 * Description:
442 *   Starts mapping iterator @miter.
443 *
444 * Context:
445 *   Don't care.
446 */
447void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
448		    unsigned int nents, unsigned int flags)
449{
450	memset(miter, 0, sizeof(struct sg_mapping_iter));
451
452	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
453	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
454	miter->__flags = flags;
455}
456EXPORT_SYMBOL(sg_miter_start);
457
458static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
459{
460	if (!miter->__remaining) {
461		struct scatterlist *sg;
462		unsigned long pgoffset;
463
464		if (!__sg_page_iter_next(&miter->piter))
465			return false;
466
467		sg = miter->piter.sg;
468		pgoffset = miter->piter.sg_pgoffset;
469
470		miter->__offset = pgoffset ? 0 : sg->offset;
471		miter->__remaining = sg->offset + sg->length -
472				(pgoffset << PAGE_SHIFT) - miter->__offset;
473		miter->__remaining = min_t(unsigned long, miter->__remaining,
474					   PAGE_SIZE - miter->__offset);
475	}
476
477	return true;
478}
479
480/**
481 * sg_miter_skip - reposition mapping iterator
482 * @miter: sg mapping iter to be skipped
483 * @offset: number of bytes to plus the current location
484 *
485 * Description:
486 *   Sets the offset of @miter to its current location plus @offset bytes.
487 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
488 *   stops @miter.
489 *
490 * Context:
491 *   Don't care if @miter is stopped, or not proceeded yet.
492 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
493 *
494 * Returns:
495 *   true if @miter contains the valid mapping.  false if end of sg
496 *   list is reached.
497 */
498bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
499{
500	sg_miter_stop(miter);
501
502	while (offset) {
503		off_t consumed;
504
505		if (!sg_miter_get_next_page(miter))
506			return false;
507
508		consumed = min_t(off_t, offset, miter->__remaining);
509		miter->__offset += consumed;
510		miter->__remaining -= consumed;
511		offset -= consumed;
512	}
513
514	return true;
515}
516EXPORT_SYMBOL(sg_miter_skip);
517
518/**
519 * sg_miter_next - proceed mapping iterator to the next mapping
520 * @miter: sg mapping iter to proceed
521 *
522 * Description:
523 *   Proceeds @miter to the next mapping.  @miter should have been started
524 *   using sg_miter_start().  On successful return, @miter->page,
525 *   @miter->addr and @miter->length point to the current mapping.
526 *
527 * Context:
528 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
529 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
530 *
531 * Returns:
532 *   true if @miter contains the next mapping.  false if end of sg
533 *   list is reached.
534 */
535bool sg_miter_next(struct sg_mapping_iter *miter)
536{
537	sg_miter_stop(miter);
538
539	/*
540	 * Get to the next page if necessary.
541	 * __remaining, __offset is adjusted by sg_miter_stop
542	 */
543	if (!sg_miter_get_next_page(miter))
544		return false;
545
546	miter->page = sg_page_iter_page(&miter->piter);
547	miter->consumed = miter->length = miter->__remaining;
548
549	if (miter->__flags & SG_MITER_ATOMIC)
550		miter->addr = kmap_atomic(miter->page) + miter->__offset;
551	else
552		miter->addr = kmap(miter->page) + miter->__offset;
553
554	return true;
555}
556EXPORT_SYMBOL(sg_miter_next);
557
558/**
559 * sg_miter_stop - stop mapping iteration
560 * @miter: sg mapping iter to be stopped
561 *
562 * Description:
563 *   Stops mapping iterator @miter.  @miter should have been started
564 *   started using sg_miter_start().  A stopped iteration can be
565 *   resumed by calling sg_miter_next() on it.  This is useful when
566 *   resources (kmap) need to be released during iteration.
567 *
568 * Context:
569 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
570 *   otherwise.
571 */
572void sg_miter_stop(struct sg_mapping_iter *miter)
573{
574	WARN_ON(miter->consumed > miter->length);
575
576	/* drop resources from the last iteration */
577	if (miter->addr) {
578		miter->__offset += miter->consumed;
579		miter->__remaining -= miter->consumed;
580
581		if ((miter->__flags & SG_MITER_TO_SG) &&
582		    !PageSlab(miter->page))
583			flush_kernel_dcache_page(miter->page);
584
585		if (miter->__flags & SG_MITER_ATOMIC) {
586			WARN_ON_ONCE(preemptible());
587			kunmap_atomic(miter->addr);
588		} else
589			kunmap(miter->page);
590
591		miter->page = NULL;
592		miter->addr = NULL;
593		miter->length = 0;
594		miter->consumed = 0;
595	}
596}
597EXPORT_SYMBOL(sg_miter_stop);
598
599/**
600 * sg_copy_buffer - Copy data between a linear buffer and an SG list
601 * @sgl:		 The SG list
602 * @nents:		 Number of SG entries
603 * @buf:		 Where to copy from
604 * @buflen:		 The number of bytes to copy
605 * @skip:		 Number of bytes to skip before copying
606 * @to_buffer:		 transfer direction (true == from an sg list to a
607 *			 buffer, false == from a buffer to an sg list
608 *
609 * Returns the number of copied bytes.
610 *
611 **/
612static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents,
613			     void *buf, size_t buflen, off_t skip,
614			     bool to_buffer)
615{
616	unsigned int offset = 0;
617	struct sg_mapping_iter miter;
618	unsigned long flags;
619	unsigned int sg_flags = SG_MITER_ATOMIC;
620
621	if (to_buffer)
622		sg_flags |= SG_MITER_FROM_SG;
623	else
624		sg_flags |= SG_MITER_TO_SG;
625
626	sg_miter_start(&miter, sgl, nents, sg_flags);
627
628	if (!sg_miter_skip(&miter, skip))
629		return false;
630
631	local_irq_save(flags);
632
633	while (sg_miter_next(&miter) && offset < buflen) {
634		unsigned int len;
635
636		len = min(miter.length, buflen - offset);
637
638		if (to_buffer)
639			memcpy(buf + offset, miter.addr, len);
640		else
641			memcpy(miter.addr, buf + offset, len);
642
643		offset += len;
644	}
645
646	sg_miter_stop(&miter);
647
648	local_irq_restore(flags);
649	return offset;
650}
 
651
652/**
653 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
654 * @sgl:		 The SG list
655 * @nents:		 Number of SG entries
656 * @buf:		 Where to copy from
657 * @buflen:		 The number of bytes to copy
658 *
659 * Returns the number of copied bytes.
660 *
661 **/
662size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
663			   void *buf, size_t buflen)
664{
665	return sg_copy_buffer(sgl, nents, buf, buflen, 0, false);
666}
667EXPORT_SYMBOL(sg_copy_from_buffer);
668
669/**
670 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
671 * @sgl:		 The SG list
672 * @nents:		 Number of SG entries
673 * @buf:		 Where to copy to
674 * @buflen:		 The number of bytes to copy
675 *
676 * Returns the number of copied bytes.
677 *
678 **/
679size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
680			 void *buf, size_t buflen)
681{
682	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
683}
684EXPORT_SYMBOL(sg_copy_to_buffer);
685
686/**
687 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
688 * @sgl:		 The SG list
689 * @nents:		 Number of SG entries
690 * @buf:		 Where to copy from
691 * @skip:		 Number of bytes to skip before copying
692 * @buflen:		 The number of bytes to copy
 
693 *
694 * Returns the number of copied bytes.
695 *
696 **/
697size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
698			    void *buf, size_t buflen, off_t skip)
699{
700	return sg_copy_buffer(sgl, nents, buf, buflen, skip, false);
701}
702EXPORT_SYMBOL(sg_pcopy_from_buffer);
703
704/**
705 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
706 * @sgl:		 The SG list
707 * @nents:		 Number of SG entries
708 * @buf:		 Where to copy to
709 * @skip:		 Number of bytes to skip before copying
710 * @buflen:		 The number of bytes to copy
 
711 *
712 * Returns the number of copied bytes.
713 *
714 **/
715size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
716			  void *buf, size_t buflen, off_t skip)
717{
718	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
719}
720EXPORT_SYMBOL(sg_pcopy_to_buffer);
v4.17
  1/*
  2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
  3 *
  4 * Scatterlist handling helpers.
  5 *
  6 * This source code is licensed under the GNU General Public License,
  7 * Version 2. See the file COPYING for more details.
  8 */
  9#include <linux/export.h>
 10#include <linux/slab.h>
 11#include <linux/scatterlist.h>
 12#include <linux/highmem.h>
 13#include <linux/kmemleak.h>
 14
 15/**
 16 * sg_next - return the next scatterlist entry in a list
 17 * @sg:		The current sg entry
 18 *
 19 * Description:
 20 *   Usually the next entry will be @sg@ + 1, but if this sg element is part
 21 *   of a chained scatterlist, it could jump to the start of a new
 22 *   scatterlist array.
 23 *
 24 **/
 25struct scatterlist *sg_next(struct scatterlist *sg)
 26{
 27#ifdef CONFIG_DEBUG_SG
 28	BUG_ON(sg->sg_magic != SG_MAGIC);
 29#endif
 30	if (sg_is_last(sg))
 31		return NULL;
 32
 33	sg++;
 34	if (unlikely(sg_is_chain(sg)))
 35		sg = sg_chain_ptr(sg);
 36
 37	return sg;
 38}
 39EXPORT_SYMBOL(sg_next);
 40
 41/**
 42 * sg_nents - return total count of entries in scatterlist
 43 * @sg:		The scatterlist
 44 *
 45 * Description:
 46 * Allows to know how many entries are in sg, taking into acount
 47 * chaining as well
 48 *
 49 **/
 50int sg_nents(struct scatterlist *sg)
 51{
 52	int nents;
 53	for (nents = 0; sg; sg = sg_next(sg))
 54		nents++;
 55	return nents;
 56}
 57EXPORT_SYMBOL(sg_nents);
 58
 59/**
 60 * sg_nents_for_len - return total count of entries in scatterlist
 61 *                    needed to satisfy the supplied length
 62 * @sg:		The scatterlist
 63 * @len:	The total required length
 64 *
 65 * Description:
 66 * Determines the number of entries in sg that are required to meet
 67 * the supplied length, taking into acount chaining as well
 68 *
 69 * Returns:
 70 *   the number of sg entries needed, negative error on failure
 71 *
 72 **/
 73int sg_nents_for_len(struct scatterlist *sg, u64 len)
 74{
 75	int nents;
 76	u64 total;
 77
 78	if (!len)
 79		return 0;
 80
 81	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
 82		nents++;
 83		total += sg->length;
 84		if (total >= len)
 85			return nents;
 86	}
 87
 88	return -EINVAL;
 89}
 90EXPORT_SYMBOL(sg_nents_for_len);
 91
 92/**
 93 * sg_last - return the last scatterlist entry in a list
 94 * @sgl:	First entry in the scatterlist
 95 * @nents:	Number of entries in the scatterlist
 96 *
 97 * Description:
 98 *   Should only be used casually, it (currently) scans the entire list
 99 *   to get the last entry.
100 *
101 *   Note that the @sgl@ pointer passed in need not be the first one,
102 *   the important bit is that @nents@ denotes the number of entries that
103 *   exist from @sgl@.
104 *
105 **/
106struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
107{
 
 
 
108	struct scatterlist *sg, *ret = NULL;
109	unsigned int i;
110
111	for_each_sg(sgl, sg, nents, i)
112		ret = sg;
113
 
114#ifdef CONFIG_DEBUG_SG
115	BUG_ON(sgl[0].sg_magic != SG_MAGIC);
116	BUG_ON(!sg_is_last(ret));
117#endif
118	return ret;
119}
120EXPORT_SYMBOL(sg_last);
121
122/**
123 * sg_init_table - Initialize SG table
124 * @sgl:	   The SG table
125 * @nents:	   Number of entries in table
126 *
127 * Notes:
128 *   If this is part of a chained sg table, sg_mark_end() should be
129 *   used only on the last table part.
130 *
131 **/
132void sg_init_table(struct scatterlist *sgl, unsigned int nents)
133{
134	memset(sgl, 0, sizeof(*sgl) * nents);
135	sg_init_marker(sgl, nents);
 
 
 
 
 
 
 
136}
137EXPORT_SYMBOL(sg_init_table);
138
139/**
140 * sg_init_one - Initialize a single entry sg list
141 * @sg:		 SG entry
142 * @buf:	 Virtual address for IO
143 * @buflen:	 IO length
144 *
145 **/
146void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
147{
148	sg_init_table(sg, 1);
149	sg_set_buf(sg, buf, buflen);
150}
151EXPORT_SYMBOL(sg_init_one);
152
153/*
154 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
155 * helpers.
156 */
157static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
158{
159	if (nents == SG_MAX_SINGLE_ALLOC) {
160		/*
161		 * Kmemleak doesn't track page allocations as they are not
162		 * commonly used (in a raw form) for kernel data structures.
163		 * As we chain together a list of pages and then a normal
164		 * kmalloc (tracked by kmemleak), in order to for that last
165		 * allocation not to become decoupled (and thus a
166		 * false-positive) we need to inform kmemleak of all the
167		 * intermediate allocations.
168		 */
169		void *ptr = (void *) __get_free_page(gfp_mask);
170		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
171		return ptr;
172	} else
173		return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
174}
175
176static void sg_kfree(struct scatterlist *sg, unsigned int nents)
177{
178	if (nents == SG_MAX_SINGLE_ALLOC) {
179		kmemleak_free(sg);
180		free_page((unsigned long) sg);
181	} else
182		kfree(sg);
183}
184
185/**
186 * __sg_free_table - Free a previously mapped sg table
187 * @table:	The sg table header to use
188 * @max_ents:	The maximum number of entries per single scatterlist
189 * @skip_first_chunk: don't free the (preallocated) first scatterlist chunk
190 * @free_fn:	Free function
191 *
192 *  Description:
193 *    Free an sg table previously allocated and setup with
194 *    __sg_alloc_table().  The @max_ents value must be identical to
195 *    that previously used with __sg_alloc_table().
196 *
197 **/
198void __sg_free_table(struct sg_table *table, unsigned int max_ents,
199		     bool skip_first_chunk, sg_free_fn *free_fn)
200{
201	struct scatterlist *sgl, *next;
202
203	if (unlikely(!table->sgl))
204		return;
205
206	sgl = table->sgl;
207	while (table->orig_nents) {
208		unsigned int alloc_size = table->orig_nents;
209		unsigned int sg_size;
210
211		/*
212		 * If we have more than max_ents segments left,
213		 * then assign 'next' to the sg table after the current one.
214		 * sg_size is then one less than alloc size, since the last
215		 * element is the chain pointer.
216		 */
217		if (alloc_size > max_ents) {
218			next = sg_chain_ptr(&sgl[max_ents - 1]);
219			alloc_size = max_ents;
220			sg_size = alloc_size - 1;
221		} else {
222			sg_size = alloc_size;
223			next = NULL;
224		}
225
226		table->orig_nents -= sg_size;
227		if (skip_first_chunk)
228			skip_first_chunk = false;
229		else
230			free_fn(sgl, alloc_size);
231		sgl = next;
232	}
233
234	table->sgl = NULL;
235}
236EXPORT_SYMBOL(__sg_free_table);
237
238/**
239 * sg_free_table - Free a previously allocated sg table
240 * @table:	The mapped sg table header
241 *
242 **/
243void sg_free_table(struct sg_table *table)
244{
245	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
246}
247EXPORT_SYMBOL(sg_free_table);
248
249/**
250 * __sg_alloc_table - Allocate and initialize an sg table with given allocator
251 * @table:	The sg table header to use
252 * @nents:	Number of entries in sg list
253 * @max_ents:	The maximum number of entries the allocator returns per call
254 * @gfp_mask:	GFP allocation mask
255 * @alloc_fn:	Allocator to use
256 *
257 * Description:
258 *   This function returns a @table @nents long. The allocator is
259 *   defined to return scatterlist chunks of maximum size @max_ents.
260 *   Thus if @nents is bigger than @max_ents, the scatterlists will be
261 *   chained in units of @max_ents.
262 *
263 * Notes:
264 *   If this function returns non-0 (eg failure), the caller must call
265 *   __sg_free_table() to cleanup any leftover allocations.
266 *
267 **/
268int __sg_alloc_table(struct sg_table *table, unsigned int nents,
269		     unsigned int max_ents, struct scatterlist *first_chunk,
270		     gfp_t gfp_mask, sg_alloc_fn *alloc_fn)
271{
272	struct scatterlist *sg, *prv;
273	unsigned int left;
274
275	memset(table, 0, sizeof(*table));
276
277	if (nents == 0)
278		return -EINVAL;
279#ifndef CONFIG_ARCH_HAS_SG_CHAIN
280	if (WARN_ON_ONCE(nents > max_ents))
281		return -EINVAL;
282#endif
283
284	left = nents;
285	prv = NULL;
286	do {
287		unsigned int sg_size, alloc_size = left;
288
289		if (alloc_size > max_ents) {
290			alloc_size = max_ents;
291			sg_size = alloc_size - 1;
292		} else
293			sg_size = alloc_size;
294
295		left -= sg_size;
296
297		if (first_chunk) {
298			sg = first_chunk;
299			first_chunk = NULL;
300		} else {
301			sg = alloc_fn(alloc_size, gfp_mask);
302		}
303		if (unlikely(!sg)) {
304			/*
305			 * Adjust entry count to reflect that the last
306			 * entry of the previous table won't be used for
307			 * linkage.  Without this, sg_kfree() may get
308			 * confused.
309			 */
310			if (prv)
311				table->nents = ++table->orig_nents;
312
313 			return -ENOMEM;
314		}
315
316		sg_init_table(sg, alloc_size);
317		table->nents = table->orig_nents += sg_size;
318
319		/*
320		 * If this is the first mapping, assign the sg table header.
321		 * If this is not the first mapping, chain previous part.
322		 */
323		if (prv)
324			sg_chain(prv, max_ents, sg);
325		else
326			table->sgl = sg;
327
328		/*
329		 * If no more entries after this one, mark the end
330		 */
331		if (!left)
332			sg_mark_end(&sg[sg_size - 1]);
333
334		prv = sg;
335	} while (left);
336
337	return 0;
338}
339EXPORT_SYMBOL(__sg_alloc_table);
340
341/**
342 * sg_alloc_table - Allocate and initialize an sg table
343 * @table:	The sg table header to use
344 * @nents:	Number of entries in sg list
345 * @gfp_mask:	GFP allocation mask
346 *
347 *  Description:
348 *    Allocate and initialize an sg table. If @nents@ is larger than
349 *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
350 *
351 **/
352int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
353{
354	int ret;
355
356	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
357			       NULL, gfp_mask, sg_kmalloc);
358	if (unlikely(ret))
359		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
360
361	return ret;
362}
363EXPORT_SYMBOL(sg_alloc_table);
364
365/**
366 * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
367 *			         an array of pages
368 * @sgt:	 The sg table header to use
369 * @pages:	 Pointer to an array of page pointers
370 * @n_pages:	 Number of pages in the pages array
371 * @offset:      Offset from start of the first page to the start of a buffer
372 * @size:        Number of valid bytes in the buffer (after offset)
373 * @max_segment: Maximum size of a scatterlist node in bytes (page aligned)
374 * @gfp_mask:	 GFP allocation mask
375 *
376 *  Description:
377 *    Allocate and initialize an sg table from a list of pages. Contiguous
378 *    ranges of the pages are squashed into a single scatterlist node up to the
379 *    maximum size specified in @max_segment. An user may provide an offset at a
380 *    start and a size of valid data in a buffer specified by the page array.
381 *    The returned sg table is released by sg_free_table.
382 *
383 * Returns:
384 *   0 on success, negative error on failure
385 */
386int __sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
387				unsigned int n_pages, unsigned int offset,
388				unsigned long size, unsigned int max_segment,
389				gfp_t gfp_mask)
390{
391	unsigned int chunks, cur_page, seg_len, i;
 
 
392	int ret;
393	struct scatterlist *s;
394
395	if (WARN_ON(!max_segment || offset_in_page(max_segment)))
396		return -EINVAL;
397
398	/* compute number of contiguous chunks */
399	chunks = 1;
400	seg_len = 0;
401	for (i = 1; i < n_pages; i++) {
402		seg_len += PAGE_SIZE;
403		if (seg_len >= max_segment ||
404		    page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
405			chunks++;
406			seg_len = 0;
407		}
408	}
409
410	ret = sg_alloc_table(sgt, chunks, gfp_mask);
411	if (unlikely(ret))
412		return ret;
413
414	/* merging chunks and putting them into the scatterlist */
415	cur_page = 0;
416	for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
417		unsigned int j, chunk_size;
 
418
419		/* look for the end of the current chunk */
420		seg_len = 0;
421		for (j = cur_page + 1; j < n_pages; j++) {
422			seg_len += PAGE_SIZE;
423			if (seg_len >= max_segment ||
424			    page_to_pfn(pages[j]) !=
425			    page_to_pfn(pages[j - 1]) + 1)
426				break;
427		}
428
429		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
430		sg_set_page(s, pages[cur_page],
431			    min_t(unsigned long, size, chunk_size), offset);
432		size -= chunk_size;
433		offset = 0;
434		cur_page = j;
435	}
436
437	return 0;
438}
439EXPORT_SYMBOL(__sg_alloc_table_from_pages);
440
441/**
442 * sg_alloc_table_from_pages - Allocate and initialize an sg table from
443 *			       an array of pages
444 * @sgt:	 The sg table header to use
445 * @pages:	 Pointer to an array of page pointers
446 * @n_pages:	 Number of pages in the pages array
447 * @offset:      Offset from start of the first page to the start of a buffer
448 * @size:        Number of valid bytes in the buffer (after offset)
449 * @gfp_mask:	 GFP allocation mask
450 *
451 *  Description:
452 *    Allocate and initialize an sg table from a list of pages. Contiguous
453 *    ranges of the pages are squashed into a single scatterlist node. A user
454 *    may provide an offset at a start and a size of valid data in a buffer
455 *    specified by the page array. The returned sg table is released by
456 *    sg_free_table.
457 *
458 * Returns:
459 *   0 on success, negative error on failure
460 */
461int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
462			      unsigned int n_pages, unsigned int offset,
463			      unsigned long size, gfp_t gfp_mask)
464{
465	return __sg_alloc_table_from_pages(sgt, pages, n_pages, offset, size,
466					   SCATTERLIST_MAX_SEGMENT, gfp_mask);
467}
468EXPORT_SYMBOL(sg_alloc_table_from_pages);
469
470#ifdef CONFIG_SGL_ALLOC
471
472/**
473 * sgl_alloc_order - allocate a scatterlist and its pages
474 * @length: Length in bytes of the scatterlist. Must be at least one
475 * @order: Second argument for alloc_pages()
476 * @chainable: Whether or not to allocate an extra element in the scatterlist
477 *	for scatterlist chaining purposes
478 * @gfp: Memory allocation flags
479 * @nent_p: [out] Number of entries in the scatterlist that have pages
480 *
481 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
482 */
483struct scatterlist *sgl_alloc_order(unsigned long long length,
484				    unsigned int order, bool chainable,
485				    gfp_t gfp, unsigned int *nent_p)
486{
487	struct scatterlist *sgl, *sg;
488	struct page *page;
489	unsigned int nent, nalloc;
490	u32 elem_len;
491
492	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
493	/* Check for integer overflow */
494	if (length > (nent << (PAGE_SHIFT + order)))
495		return NULL;
496	nalloc = nent;
497	if (chainable) {
498		/* Check for integer overflow */
499		if (nalloc + 1 < nalloc)
500			return NULL;
501		nalloc++;
502	}
503	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
504			    (gfp & ~GFP_DMA) | __GFP_ZERO);
505	if (!sgl)
506		return NULL;
507
508	sg_init_table(sgl, nalloc);
509	sg = sgl;
510	while (length) {
511		elem_len = min_t(u64, length, PAGE_SIZE << order);
512		page = alloc_pages(gfp, order);
513		if (!page) {
514			sgl_free(sgl);
515			return NULL;
516		}
517
518		sg_set_page(sg, page, elem_len, 0);
519		length -= elem_len;
520		sg = sg_next(sg);
521	}
522	WARN_ONCE(length, "length = %lld\n", length);
523	if (nent_p)
524		*nent_p = nent;
525	return sgl;
526}
527EXPORT_SYMBOL(sgl_alloc_order);
528
529/**
530 * sgl_alloc - allocate a scatterlist and its pages
531 * @length: Length in bytes of the scatterlist
532 * @gfp: Memory allocation flags
533 * @nent_p: [out] Number of entries in the scatterlist
534 *
535 * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
536 */
537struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
538			      unsigned int *nent_p)
539{
540	return sgl_alloc_order(length, 0, false, gfp, nent_p);
541}
542EXPORT_SYMBOL(sgl_alloc);
543
544/**
545 * sgl_free_n_order - free a scatterlist and its pages
546 * @sgl: Scatterlist with one or more elements
547 * @nents: Maximum number of elements to free
548 * @order: Second argument for __free_pages()
549 *
550 * Notes:
551 * - If several scatterlists have been chained and each chain element is
552 *   freed separately then it's essential to set nents correctly to avoid that a
553 *   page would get freed twice.
554 * - All pages in a chained scatterlist can be freed at once by setting @nents
555 *   to a high number.
556 */
557void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
558{
559	struct scatterlist *sg;
560	struct page *page;
561	int i;
562
563	for_each_sg(sgl, sg, nents, i) {
564		if (!sg)
565			break;
566		page = sg_page(sg);
567		if (page)
568			__free_pages(page, order);
569	}
570	kfree(sgl);
571}
572EXPORT_SYMBOL(sgl_free_n_order);
573
574/**
575 * sgl_free_order - free a scatterlist and its pages
576 * @sgl: Scatterlist with one or more elements
577 * @order: Second argument for __free_pages()
578 */
579void sgl_free_order(struct scatterlist *sgl, int order)
580{
581	sgl_free_n_order(sgl, INT_MAX, order);
582}
583EXPORT_SYMBOL(sgl_free_order);
584
585/**
586 * sgl_free - free a scatterlist and its pages
587 * @sgl: Scatterlist with one or more elements
588 */
589void sgl_free(struct scatterlist *sgl)
590{
591	sgl_free_order(sgl, 0);
592}
593EXPORT_SYMBOL(sgl_free);
594
595#endif /* CONFIG_SGL_ALLOC */
596
597void __sg_page_iter_start(struct sg_page_iter *piter,
598			  struct scatterlist *sglist, unsigned int nents,
599			  unsigned long pgoffset)
600{
601	piter->__pg_advance = 0;
602	piter->__nents = nents;
603
604	piter->sg = sglist;
605	piter->sg_pgoffset = pgoffset;
606}
607EXPORT_SYMBOL(__sg_page_iter_start);
608
609static int sg_page_count(struct scatterlist *sg)
610{
611	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
612}
613
614bool __sg_page_iter_next(struct sg_page_iter *piter)
615{
616	if (!piter->__nents || !piter->sg)
617		return false;
618
619	piter->sg_pgoffset += piter->__pg_advance;
620	piter->__pg_advance = 1;
621
622	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
623		piter->sg_pgoffset -= sg_page_count(piter->sg);
624		piter->sg = sg_next(piter->sg);
625		if (!--piter->__nents || !piter->sg)
626			return false;
627	}
628
629	return true;
630}
631EXPORT_SYMBOL(__sg_page_iter_next);
632
633/**
634 * sg_miter_start - start mapping iteration over a sg list
635 * @miter: sg mapping iter to be started
636 * @sgl: sg list to iterate over
637 * @nents: number of sg entries
638 *
639 * Description:
640 *   Starts mapping iterator @miter.
641 *
642 * Context:
643 *   Don't care.
644 */
645void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
646		    unsigned int nents, unsigned int flags)
647{
648	memset(miter, 0, sizeof(struct sg_mapping_iter));
649
650	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
651	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
652	miter->__flags = flags;
653}
654EXPORT_SYMBOL(sg_miter_start);
655
656static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
657{
658	if (!miter->__remaining) {
659		struct scatterlist *sg;
660		unsigned long pgoffset;
661
662		if (!__sg_page_iter_next(&miter->piter))
663			return false;
664
665		sg = miter->piter.sg;
666		pgoffset = miter->piter.sg_pgoffset;
667
668		miter->__offset = pgoffset ? 0 : sg->offset;
669		miter->__remaining = sg->offset + sg->length -
670				(pgoffset << PAGE_SHIFT) - miter->__offset;
671		miter->__remaining = min_t(unsigned long, miter->__remaining,
672					   PAGE_SIZE - miter->__offset);
673	}
674
675	return true;
676}
677
678/**
679 * sg_miter_skip - reposition mapping iterator
680 * @miter: sg mapping iter to be skipped
681 * @offset: number of bytes to plus the current location
682 *
683 * Description:
684 *   Sets the offset of @miter to its current location plus @offset bytes.
685 *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
686 *   stops @miter.
687 *
688 * Context:
689 *   Don't care if @miter is stopped, or not proceeded yet.
690 *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
691 *
692 * Returns:
693 *   true if @miter contains the valid mapping.  false if end of sg
694 *   list is reached.
695 */
696bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
697{
698	sg_miter_stop(miter);
699
700	while (offset) {
701		off_t consumed;
702
703		if (!sg_miter_get_next_page(miter))
704			return false;
705
706		consumed = min_t(off_t, offset, miter->__remaining);
707		miter->__offset += consumed;
708		miter->__remaining -= consumed;
709		offset -= consumed;
710	}
711
712	return true;
713}
714EXPORT_SYMBOL(sg_miter_skip);
715
716/**
717 * sg_miter_next - proceed mapping iterator to the next mapping
718 * @miter: sg mapping iter to proceed
719 *
720 * Description:
721 *   Proceeds @miter to the next mapping.  @miter should have been started
722 *   using sg_miter_start().  On successful return, @miter->page,
723 *   @miter->addr and @miter->length point to the current mapping.
724 *
725 * Context:
726 *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
727 *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
728 *
729 * Returns:
730 *   true if @miter contains the next mapping.  false if end of sg
731 *   list is reached.
732 */
733bool sg_miter_next(struct sg_mapping_iter *miter)
734{
735	sg_miter_stop(miter);
736
737	/*
738	 * Get to the next page if necessary.
739	 * __remaining, __offset is adjusted by sg_miter_stop
740	 */
741	if (!sg_miter_get_next_page(miter))
742		return false;
743
744	miter->page = sg_page_iter_page(&miter->piter);
745	miter->consumed = miter->length = miter->__remaining;
746
747	if (miter->__flags & SG_MITER_ATOMIC)
748		miter->addr = kmap_atomic(miter->page) + miter->__offset;
749	else
750		miter->addr = kmap(miter->page) + miter->__offset;
751
752	return true;
753}
754EXPORT_SYMBOL(sg_miter_next);
755
756/**
757 * sg_miter_stop - stop mapping iteration
758 * @miter: sg mapping iter to be stopped
759 *
760 * Description:
761 *   Stops mapping iterator @miter.  @miter should have been started
762 *   using sg_miter_start().  A stopped iteration can be resumed by
763 *   calling sg_miter_next() on it.  This is useful when resources (kmap)
764 *   need to be released during iteration.
765 *
766 * Context:
767 *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
768 *   otherwise.
769 */
770void sg_miter_stop(struct sg_mapping_iter *miter)
771{
772	WARN_ON(miter->consumed > miter->length);
773
774	/* drop resources from the last iteration */
775	if (miter->addr) {
776		miter->__offset += miter->consumed;
777		miter->__remaining -= miter->consumed;
778
779		if ((miter->__flags & SG_MITER_TO_SG) &&
780		    !PageSlab(miter->page))
781			flush_kernel_dcache_page(miter->page);
782
783		if (miter->__flags & SG_MITER_ATOMIC) {
784			WARN_ON_ONCE(preemptible());
785			kunmap_atomic(miter->addr);
786		} else
787			kunmap(miter->page);
788
789		miter->page = NULL;
790		miter->addr = NULL;
791		miter->length = 0;
792		miter->consumed = 0;
793	}
794}
795EXPORT_SYMBOL(sg_miter_stop);
796
797/**
798 * sg_copy_buffer - Copy data between a linear buffer and an SG list
799 * @sgl:		 The SG list
800 * @nents:		 Number of SG entries
801 * @buf:		 Where to copy from
802 * @buflen:		 The number of bytes to copy
803 * @skip:		 Number of bytes to skip before copying
804 * @to_buffer:		 transfer direction (true == from an sg list to a
805 *			 buffer, false == from a buffer to an sg list
806 *
807 * Returns the number of copied bytes.
808 *
809 **/
810size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
811		      size_t buflen, off_t skip, bool to_buffer)
 
812{
813	unsigned int offset = 0;
814	struct sg_mapping_iter miter;
 
815	unsigned int sg_flags = SG_MITER_ATOMIC;
816
817	if (to_buffer)
818		sg_flags |= SG_MITER_FROM_SG;
819	else
820		sg_flags |= SG_MITER_TO_SG;
821
822	sg_miter_start(&miter, sgl, nents, sg_flags);
823
824	if (!sg_miter_skip(&miter, skip))
825		return false;
826
827	while ((offset < buflen) && sg_miter_next(&miter)) {
 
 
828		unsigned int len;
829
830		len = min(miter.length, buflen - offset);
831
832		if (to_buffer)
833			memcpy(buf + offset, miter.addr, len);
834		else
835			memcpy(miter.addr, buf + offset, len);
836
837		offset += len;
838	}
839
840	sg_miter_stop(&miter);
841
 
842	return offset;
843}
844EXPORT_SYMBOL(sg_copy_buffer);
845
846/**
847 * sg_copy_from_buffer - Copy from a linear buffer to an SG list
848 * @sgl:		 The SG list
849 * @nents:		 Number of SG entries
850 * @buf:		 Where to copy from
851 * @buflen:		 The number of bytes to copy
852 *
853 * Returns the number of copied bytes.
854 *
855 **/
856size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
857			   const void *buf, size_t buflen)
858{
859	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
860}
861EXPORT_SYMBOL(sg_copy_from_buffer);
862
863/**
864 * sg_copy_to_buffer - Copy from an SG list to a linear buffer
865 * @sgl:		 The SG list
866 * @nents:		 Number of SG entries
867 * @buf:		 Where to copy to
868 * @buflen:		 The number of bytes to copy
869 *
870 * Returns the number of copied bytes.
871 *
872 **/
873size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
874			 void *buf, size_t buflen)
875{
876	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
877}
878EXPORT_SYMBOL(sg_copy_to_buffer);
879
880/**
881 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
882 * @sgl:		 The SG list
883 * @nents:		 Number of SG entries
884 * @buf:		 Where to copy from
 
885 * @buflen:		 The number of bytes to copy
886 * @skip:		 Number of bytes to skip before copying
887 *
888 * Returns the number of copied bytes.
889 *
890 **/
891size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
892			    const void *buf, size_t buflen, off_t skip)
893{
894	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
895}
896EXPORT_SYMBOL(sg_pcopy_from_buffer);
897
898/**
899 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
900 * @sgl:		 The SG list
901 * @nents:		 Number of SG entries
902 * @buf:		 Where to copy to
 
903 * @buflen:		 The number of bytes to copy
904 * @skip:		 Number of bytes to skip before copying
905 *
906 * Returns the number of copied bytes.
907 *
908 **/
909size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
910			  void *buf, size_t buflen, off_t skip)
911{
912	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
913}
914EXPORT_SYMBOL(sg_pcopy_to_buffer);
915
916/**
917 * sg_zero_buffer - Zero-out a part of a SG list
918 * @sgl:		 The SG list
919 * @nents:		 Number of SG entries
920 * @buflen:		 The number of bytes to zero out
921 * @skip:		 Number of bytes to skip before zeroing
922 *
923 * Returns the number of bytes zeroed.
924 **/
925size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
926		       size_t buflen, off_t skip)
927{
928	unsigned int offset = 0;
929	struct sg_mapping_iter miter;
930	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
931
932	sg_miter_start(&miter, sgl, nents, sg_flags);
933
934	if (!sg_miter_skip(&miter, skip))
935		return false;
936
937	while (offset < buflen && sg_miter_next(&miter)) {
938		unsigned int len;
939
940		len = min(miter.length, buflen - offset);
941		memset(miter.addr, 0, len);
942
943		offset += len;
944	}
945
946	sg_miter_stop(&miter);
947	return offset;
948}
949EXPORT_SYMBOL(sg_zero_buffer);