Loading...
1/*
2 * kernel/stop_machine.c
3 *
4 * Copyright (C) 2008, 2005 IBM Corporation.
5 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
6 * Copyright (C) 2010 SUSE Linux Products GmbH
7 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
8 *
9 * This file is released under the GPLv2 and any later version.
10 */
11#include <linux/completion.h>
12#include <linux/cpu.h>
13#include <linux/init.h>
14#include <linux/kthread.h>
15#include <linux/export.h>
16#include <linux/percpu.h>
17#include <linux/sched.h>
18#include <linux/stop_machine.h>
19#include <linux/interrupt.h>
20#include <linux/kallsyms.h>
21#include <linux/smpboot.h>
22#include <linux/atomic.h>
23#include <linux/lglock.h>
24
25/*
26 * Structure to determine completion condition and record errors. May
27 * be shared by works on different cpus.
28 */
29struct cpu_stop_done {
30 atomic_t nr_todo; /* nr left to execute */
31 bool executed; /* actually executed? */
32 int ret; /* collected return value */
33 struct completion completion; /* fired if nr_todo reaches 0 */
34};
35
36/* the actual stopper, one per every possible cpu, enabled on online cpus */
37struct cpu_stopper {
38 spinlock_t lock;
39 bool enabled; /* is this stopper enabled? */
40 struct list_head works; /* list of pending works */
41};
42
43static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
44static DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task);
45static bool stop_machine_initialized = false;
46
47/*
48 * Avoids a race between stop_two_cpus and global stop_cpus, where
49 * the stoppers could get queued up in reverse order, leading to
50 * system deadlock. Using an lglock means stop_two_cpus remains
51 * relatively cheap.
52 */
53DEFINE_STATIC_LGLOCK(stop_cpus_lock);
54
55static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
56{
57 memset(done, 0, sizeof(*done));
58 atomic_set(&done->nr_todo, nr_todo);
59 init_completion(&done->completion);
60}
61
62/* signal completion unless @done is NULL */
63static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
64{
65 if (done) {
66 if (executed)
67 done->executed = true;
68 if (atomic_dec_and_test(&done->nr_todo))
69 complete(&done->completion);
70 }
71}
72
73/* queue @work to @stopper. if offline, @work is completed immediately */
74static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
75{
76 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
77 struct task_struct *p = per_cpu(cpu_stopper_task, cpu);
78
79 unsigned long flags;
80
81 spin_lock_irqsave(&stopper->lock, flags);
82
83 if (stopper->enabled) {
84 list_add_tail(&work->list, &stopper->works);
85 wake_up_process(p);
86 } else
87 cpu_stop_signal_done(work->done, false);
88
89 spin_unlock_irqrestore(&stopper->lock, flags);
90}
91
92/**
93 * stop_one_cpu - stop a cpu
94 * @cpu: cpu to stop
95 * @fn: function to execute
96 * @arg: argument to @fn
97 *
98 * Execute @fn(@arg) on @cpu. @fn is run in a process context with
99 * the highest priority preempting any task on the cpu and
100 * monopolizing it. This function returns after the execution is
101 * complete.
102 *
103 * This function doesn't guarantee @cpu stays online till @fn
104 * completes. If @cpu goes down in the middle, execution may happen
105 * partially or fully on different cpus. @fn should either be ready
106 * for that or the caller should ensure that @cpu stays online until
107 * this function completes.
108 *
109 * CONTEXT:
110 * Might sleep.
111 *
112 * RETURNS:
113 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
114 * otherwise, the return value of @fn.
115 */
116int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
117{
118 struct cpu_stop_done done;
119 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
120
121 cpu_stop_init_done(&done, 1);
122 cpu_stop_queue_work(cpu, &work);
123 wait_for_completion(&done.completion);
124 return done.executed ? done.ret : -ENOENT;
125}
126
127/* This controls the threads on each CPU. */
128enum multi_stop_state {
129 /* Dummy starting state for thread. */
130 MULTI_STOP_NONE,
131 /* Awaiting everyone to be scheduled. */
132 MULTI_STOP_PREPARE,
133 /* Disable interrupts. */
134 MULTI_STOP_DISABLE_IRQ,
135 /* Run the function */
136 MULTI_STOP_RUN,
137 /* Exit */
138 MULTI_STOP_EXIT,
139};
140
141struct multi_stop_data {
142 int (*fn)(void *);
143 void *data;
144 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
145 unsigned int num_threads;
146 const struct cpumask *active_cpus;
147
148 enum multi_stop_state state;
149 atomic_t thread_ack;
150};
151
152static void set_state(struct multi_stop_data *msdata,
153 enum multi_stop_state newstate)
154{
155 /* Reset ack counter. */
156 atomic_set(&msdata->thread_ack, msdata->num_threads);
157 smp_wmb();
158 msdata->state = newstate;
159}
160
161/* Last one to ack a state moves to the next state. */
162static void ack_state(struct multi_stop_data *msdata)
163{
164 if (atomic_dec_and_test(&msdata->thread_ack))
165 set_state(msdata, msdata->state + 1);
166}
167
168/* This is the cpu_stop function which stops the CPU. */
169static int multi_cpu_stop(void *data)
170{
171 struct multi_stop_data *msdata = data;
172 enum multi_stop_state curstate = MULTI_STOP_NONE;
173 int cpu = smp_processor_id(), err = 0;
174 unsigned long flags;
175 bool is_active;
176
177 /*
178 * When called from stop_machine_from_inactive_cpu(), irq might
179 * already be disabled. Save the state and restore it on exit.
180 */
181 local_save_flags(flags);
182
183 if (!msdata->active_cpus)
184 is_active = cpu == cpumask_first(cpu_online_mask);
185 else
186 is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
187
188 /* Simple state machine */
189 do {
190 /* Chill out and ensure we re-read multi_stop_state. */
191 cpu_relax();
192 if (msdata->state != curstate) {
193 curstate = msdata->state;
194 switch (curstate) {
195 case MULTI_STOP_DISABLE_IRQ:
196 local_irq_disable();
197 hard_irq_disable();
198 break;
199 case MULTI_STOP_RUN:
200 if (is_active)
201 err = msdata->fn(msdata->data);
202 break;
203 default:
204 break;
205 }
206 ack_state(msdata);
207 }
208 } while (curstate != MULTI_STOP_EXIT);
209
210 local_irq_restore(flags);
211 return err;
212}
213
214struct irq_cpu_stop_queue_work_info {
215 int cpu1;
216 int cpu2;
217 struct cpu_stop_work *work1;
218 struct cpu_stop_work *work2;
219};
220
221/*
222 * This function is always run with irqs and preemption disabled.
223 * This guarantees that both work1 and work2 get queued, before
224 * our local migrate thread gets the chance to preempt us.
225 */
226static void irq_cpu_stop_queue_work(void *arg)
227{
228 struct irq_cpu_stop_queue_work_info *info = arg;
229 cpu_stop_queue_work(info->cpu1, info->work1);
230 cpu_stop_queue_work(info->cpu2, info->work2);
231}
232
233/**
234 * stop_two_cpus - stops two cpus
235 * @cpu1: the cpu to stop
236 * @cpu2: the other cpu to stop
237 * @fn: function to execute
238 * @arg: argument to @fn
239 *
240 * Stops both the current and specified CPU and runs @fn on one of them.
241 *
242 * returns when both are completed.
243 */
244int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
245{
246 struct cpu_stop_done done;
247 struct cpu_stop_work work1, work2;
248 struct irq_cpu_stop_queue_work_info call_args;
249 struct multi_stop_data msdata;
250
251 preempt_disable();
252 msdata = (struct multi_stop_data){
253 .fn = fn,
254 .data = arg,
255 .num_threads = 2,
256 .active_cpus = cpumask_of(cpu1),
257 };
258
259 work1 = work2 = (struct cpu_stop_work){
260 .fn = multi_cpu_stop,
261 .arg = &msdata,
262 .done = &done
263 };
264
265 call_args = (struct irq_cpu_stop_queue_work_info){
266 .cpu1 = cpu1,
267 .cpu2 = cpu2,
268 .work1 = &work1,
269 .work2 = &work2,
270 };
271
272 cpu_stop_init_done(&done, 2);
273 set_state(&msdata, MULTI_STOP_PREPARE);
274
275 /*
276 * If we observe both CPUs active we know _cpu_down() cannot yet have
277 * queued its stop_machine works and therefore ours will get executed
278 * first. Or its not either one of our CPUs that's getting unplugged,
279 * in which case we don't care.
280 *
281 * This relies on the stopper workqueues to be FIFO.
282 */
283 if (!cpu_active(cpu1) || !cpu_active(cpu2)) {
284 preempt_enable();
285 return -ENOENT;
286 }
287
288 lg_local_lock(&stop_cpus_lock);
289 /*
290 * Queuing needs to be done by the lowest numbered CPU, to ensure
291 * that works are always queued in the same order on every CPU.
292 * This prevents deadlocks.
293 */
294 smp_call_function_single(min(cpu1, cpu2),
295 &irq_cpu_stop_queue_work,
296 &call_args, 1);
297 lg_local_unlock(&stop_cpus_lock);
298 preempt_enable();
299
300 wait_for_completion(&done.completion);
301
302 return done.executed ? done.ret : -ENOENT;
303}
304
305/**
306 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
307 * @cpu: cpu to stop
308 * @fn: function to execute
309 * @arg: argument to @fn
310 *
311 * Similar to stop_one_cpu() but doesn't wait for completion. The
312 * caller is responsible for ensuring @work_buf is currently unused
313 * and will remain untouched until stopper starts executing @fn.
314 *
315 * CONTEXT:
316 * Don't care.
317 */
318void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
319 struct cpu_stop_work *work_buf)
320{
321 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
322 cpu_stop_queue_work(cpu, work_buf);
323}
324
325/* static data for stop_cpus */
326static DEFINE_MUTEX(stop_cpus_mutex);
327static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
328
329static void queue_stop_cpus_work(const struct cpumask *cpumask,
330 cpu_stop_fn_t fn, void *arg,
331 struct cpu_stop_done *done)
332{
333 struct cpu_stop_work *work;
334 unsigned int cpu;
335
336 /* initialize works and done */
337 for_each_cpu(cpu, cpumask) {
338 work = &per_cpu(stop_cpus_work, cpu);
339 work->fn = fn;
340 work->arg = arg;
341 work->done = done;
342 }
343
344 /*
345 * Disable preemption while queueing to avoid getting
346 * preempted by a stopper which might wait for other stoppers
347 * to enter @fn which can lead to deadlock.
348 */
349 lg_global_lock(&stop_cpus_lock);
350 for_each_cpu(cpu, cpumask)
351 cpu_stop_queue_work(cpu, &per_cpu(stop_cpus_work, cpu));
352 lg_global_unlock(&stop_cpus_lock);
353}
354
355static int __stop_cpus(const struct cpumask *cpumask,
356 cpu_stop_fn_t fn, void *arg)
357{
358 struct cpu_stop_done done;
359
360 cpu_stop_init_done(&done, cpumask_weight(cpumask));
361 queue_stop_cpus_work(cpumask, fn, arg, &done);
362 wait_for_completion(&done.completion);
363 return done.executed ? done.ret : -ENOENT;
364}
365
366/**
367 * stop_cpus - stop multiple cpus
368 * @cpumask: cpus to stop
369 * @fn: function to execute
370 * @arg: argument to @fn
371 *
372 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
373 * @fn is run in a process context with the highest priority
374 * preempting any task on the cpu and monopolizing it. This function
375 * returns after all executions are complete.
376 *
377 * This function doesn't guarantee the cpus in @cpumask stay online
378 * till @fn completes. If some cpus go down in the middle, execution
379 * on the cpu may happen partially or fully on different cpus. @fn
380 * should either be ready for that or the caller should ensure that
381 * the cpus stay online until this function completes.
382 *
383 * All stop_cpus() calls are serialized making it safe for @fn to wait
384 * for all cpus to start executing it.
385 *
386 * CONTEXT:
387 * Might sleep.
388 *
389 * RETURNS:
390 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
391 * @cpumask were offline; otherwise, 0 if all executions of @fn
392 * returned 0, any non zero return value if any returned non zero.
393 */
394int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
395{
396 int ret;
397
398 /* static works are used, process one request at a time */
399 mutex_lock(&stop_cpus_mutex);
400 ret = __stop_cpus(cpumask, fn, arg);
401 mutex_unlock(&stop_cpus_mutex);
402 return ret;
403}
404
405/**
406 * try_stop_cpus - try to stop multiple cpus
407 * @cpumask: cpus to stop
408 * @fn: function to execute
409 * @arg: argument to @fn
410 *
411 * Identical to stop_cpus() except that it fails with -EAGAIN if
412 * someone else is already using the facility.
413 *
414 * CONTEXT:
415 * Might sleep.
416 *
417 * RETURNS:
418 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
419 * @fn(@arg) was not executed at all because all cpus in @cpumask were
420 * offline; otherwise, 0 if all executions of @fn returned 0, any non
421 * zero return value if any returned non zero.
422 */
423int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
424{
425 int ret;
426
427 /* static works are used, process one request at a time */
428 if (!mutex_trylock(&stop_cpus_mutex))
429 return -EAGAIN;
430 ret = __stop_cpus(cpumask, fn, arg);
431 mutex_unlock(&stop_cpus_mutex);
432 return ret;
433}
434
435static int cpu_stop_should_run(unsigned int cpu)
436{
437 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
438 unsigned long flags;
439 int run;
440
441 spin_lock_irqsave(&stopper->lock, flags);
442 run = !list_empty(&stopper->works);
443 spin_unlock_irqrestore(&stopper->lock, flags);
444 return run;
445}
446
447static void cpu_stopper_thread(unsigned int cpu)
448{
449 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
450 struct cpu_stop_work *work;
451 int ret;
452
453repeat:
454 work = NULL;
455 spin_lock_irq(&stopper->lock);
456 if (!list_empty(&stopper->works)) {
457 work = list_first_entry(&stopper->works,
458 struct cpu_stop_work, list);
459 list_del_init(&work->list);
460 }
461 spin_unlock_irq(&stopper->lock);
462
463 if (work) {
464 cpu_stop_fn_t fn = work->fn;
465 void *arg = work->arg;
466 struct cpu_stop_done *done = work->done;
467 char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
468
469 /* cpu stop callbacks are not allowed to sleep */
470 preempt_disable();
471
472 ret = fn(arg);
473 if (ret)
474 done->ret = ret;
475
476 /* restore preemption and check it's still balanced */
477 preempt_enable();
478 WARN_ONCE(preempt_count(),
479 "cpu_stop: %s(%p) leaked preempt count\n",
480 kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
481 ksym_buf), arg);
482
483 cpu_stop_signal_done(done, true);
484 goto repeat;
485 }
486}
487
488extern void sched_set_stop_task(int cpu, struct task_struct *stop);
489
490static void cpu_stop_create(unsigned int cpu)
491{
492 sched_set_stop_task(cpu, per_cpu(cpu_stopper_task, cpu));
493}
494
495static void cpu_stop_park(unsigned int cpu)
496{
497 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
498 struct cpu_stop_work *work;
499 unsigned long flags;
500
501 /* drain remaining works */
502 spin_lock_irqsave(&stopper->lock, flags);
503 list_for_each_entry(work, &stopper->works, list)
504 cpu_stop_signal_done(work->done, false);
505 stopper->enabled = false;
506 spin_unlock_irqrestore(&stopper->lock, flags);
507}
508
509static void cpu_stop_unpark(unsigned int cpu)
510{
511 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
512
513 spin_lock_irq(&stopper->lock);
514 stopper->enabled = true;
515 spin_unlock_irq(&stopper->lock);
516}
517
518static struct smp_hotplug_thread cpu_stop_threads = {
519 .store = &cpu_stopper_task,
520 .thread_should_run = cpu_stop_should_run,
521 .thread_fn = cpu_stopper_thread,
522 .thread_comm = "migration/%u",
523 .create = cpu_stop_create,
524 .setup = cpu_stop_unpark,
525 .park = cpu_stop_park,
526 .pre_unpark = cpu_stop_unpark,
527 .selfparking = true,
528};
529
530static int __init cpu_stop_init(void)
531{
532 unsigned int cpu;
533
534 for_each_possible_cpu(cpu) {
535 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
536
537 spin_lock_init(&stopper->lock);
538 INIT_LIST_HEAD(&stopper->works);
539 }
540
541 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
542 stop_machine_initialized = true;
543 return 0;
544}
545early_initcall(cpu_stop_init);
546
547#ifdef CONFIG_STOP_MACHINE
548
549int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
550{
551 struct multi_stop_data msdata = {
552 .fn = fn,
553 .data = data,
554 .num_threads = num_online_cpus(),
555 .active_cpus = cpus,
556 };
557
558 if (!stop_machine_initialized) {
559 /*
560 * Handle the case where stop_machine() is called
561 * early in boot before stop_machine() has been
562 * initialized.
563 */
564 unsigned long flags;
565 int ret;
566
567 WARN_ON_ONCE(msdata.num_threads != 1);
568
569 local_irq_save(flags);
570 hard_irq_disable();
571 ret = (*fn)(data);
572 local_irq_restore(flags);
573
574 return ret;
575 }
576
577 /* Set the initial state and stop all online cpus. */
578 set_state(&msdata, MULTI_STOP_PREPARE);
579 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
580}
581
582int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
583{
584 int ret;
585
586 /* No CPUs can come up or down during this. */
587 get_online_cpus();
588 ret = __stop_machine(fn, data, cpus);
589 put_online_cpus();
590 return ret;
591}
592EXPORT_SYMBOL_GPL(stop_machine);
593
594/**
595 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
596 * @fn: the function to run
597 * @data: the data ptr for the @fn()
598 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
599 *
600 * This is identical to stop_machine() but can be called from a CPU which
601 * is not active. The local CPU is in the process of hotplug (so no other
602 * CPU hotplug can start) and not marked active and doesn't have enough
603 * context to sleep.
604 *
605 * This function provides stop_machine() functionality for such state by
606 * using busy-wait for synchronization and executing @fn directly for local
607 * CPU.
608 *
609 * CONTEXT:
610 * Local CPU is inactive. Temporarily stops all active CPUs.
611 *
612 * RETURNS:
613 * 0 if all executions of @fn returned 0, any non zero return value if any
614 * returned non zero.
615 */
616int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
617 const struct cpumask *cpus)
618{
619 struct multi_stop_data msdata = { .fn = fn, .data = data,
620 .active_cpus = cpus };
621 struct cpu_stop_done done;
622 int ret;
623
624 /* Local CPU must be inactive and CPU hotplug in progress. */
625 BUG_ON(cpu_active(raw_smp_processor_id()));
626 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */
627
628 /* No proper task established and can't sleep - busy wait for lock. */
629 while (!mutex_trylock(&stop_cpus_mutex))
630 cpu_relax();
631
632 /* Schedule work on other CPUs and execute directly for local CPU */
633 set_state(&msdata, MULTI_STOP_PREPARE);
634 cpu_stop_init_done(&done, num_active_cpus());
635 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
636 &done);
637 ret = multi_cpu_stop(&msdata);
638
639 /* Busy wait for completion. */
640 while (!completion_done(&done.completion))
641 cpu_relax();
642
643 mutex_unlock(&stop_cpus_mutex);
644 return ret ?: done.ret;
645}
646
647#endif /* CONFIG_STOP_MACHINE */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * kernel/stop_machine.c
4 *
5 * Copyright (C) 2008, 2005 IBM Corporation.
6 * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
7 * Copyright (C) 2010 SUSE Linux Products GmbH
8 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
9 */
10#include <linux/compiler.h>
11#include <linux/completion.h>
12#include <linux/cpu.h>
13#include <linux/init.h>
14#include <linux/kthread.h>
15#include <linux/export.h>
16#include <linux/percpu.h>
17#include <linux/sched.h>
18#include <linux/stop_machine.h>
19#include <linux/interrupt.h>
20#include <linux/kallsyms.h>
21#include <linux/smpboot.h>
22#include <linux/atomic.h>
23#include <linux/nmi.h>
24#include <linux/sched/wake_q.h>
25
26/*
27 * Structure to determine completion condition and record errors. May
28 * be shared by works on different cpus.
29 */
30struct cpu_stop_done {
31 atomic_t nr_todo; /* nr left to execute */
32 int ret; /* collected return value */
33 struct completion completion; /* fired if nr_todo reaches 0 */
34};
35
36/* the actual stopper, one per every possible cpu, enabled on online cpus */
37struct cpu_stopper {
38 struct task_struct *thread;
39
40 raw_spinlock_t lock;
41 bool enabled; /* is this stopper enabled? */
42 struct list_head works; /* list of pending works */
43
44 struct cpu_stop_work stop_work; /* for stop_cpus */
45};
46
47static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
48static bool stop_machine_initialized = false;
49
50/* static data for stop_cpus */
51static DEFINE_MUTEX(stop_cpus_mutex);
52static bool stop_cpus_in_progress;
53
54static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
55{
56 memset(done, 0, sizeof(*done));
57 atomic_set(&done->nr_todo, nr_todo);
58 init_completion(&done->completion);
59}
60
61/* signal completion unless @done is NULL */
62static void cpu_stop_signal_done(struct cpu_stop_done *done)
63{
64 if (atomic_dec_and_test(&done->nr_todo))
65 complete(&done->completion);
66}
67
68static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
69 struct cpu_stop_work *work,
70 struct wake_q_head *wakeq)
71{
72 list_add_tail(&work->list, &stopper->works);
73 wake_q_add(wakeq, stopper->thread);
74}
75
76/* queue @work to @stopper. if offline, @work is completed immediately */
77static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
78{
79 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
80 DEFINE_WAKE_Q(wakeq);
81 unsigned long flags;
82 bool enabled;
83
84 preempt_disable();
85 raw_spin_lock_irqsave(&stopper->lock, flags);
86 enabled = stopper->enabled;
87 if (enabled)
88 __cpu_stop_queue_work(stopper, work, &wakeq);
89 else if (work->done)
90 cpu_stop_signal_done(work->done);
91 raw_spin_unlock_irqrestore(&stopper->lock, flags);
92
93 wake_up_q(&wakeq);
94 preempt_enable();
95
96 return enabled;
97}
98
99/**
100 * stop_one_cpu - stop a cpu
101 * @cpu: cpu to stop
102 * @fn: function to execute
103 * @arg: argument to @fn
104 *
105 * Execute @fn(@arg) on @cpu. @fn is run in a process context with
106 * the highest priority preempting any task on the cpu and
107 * monopolizing it. This function returns after the execution is
108 * complete.
109 *
110 * This function doesn't guarantee @cpu stays online till @fn
111 * completes. If @cpu goes down in the middle, execution may happen
112 * partially or fully on different cpus. @fn should either be ready
113 * for that or the caller should ensure that @cpu stays online until
114 * this function completes.
115 *
116 * CONTEXT:
117 * Might sleep.
118 *
119 * RETURNS:
120 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
121 * otherwise, the return value of @fn.
122 */
123int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
124{
125 struct cpu_stop_done done;
126 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
127
128 cpu_stop_init_done(&done, 1);
129 if (!cpu_stop_queue_work(cpu, &work))
130 return -ENOENT;
131 /*
132 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
133 * cycle by doing a preemption:
134 */
135 cond_resched();
136 wait_for_completion(&done.completion);
137 return done.ret;
138}
139
140/* This controls the threads on each CPU. */
141enum multi_stop_state {
142 /* Dummy starting state for thread. */
143 MULTI_STOP_NONE,
144 /* Awaiting everyone to be scheduled. */
145 MULTI_STOP_PREPARE,
146 /* Disable interrupts. */
147 MULTI_STOP_DISABLE_IRQ,
148 /* Run the function */
149 MULTI_STOP_RUN,
150 /* Exit */
151 MULTI_STOP_EXIT,
152};
153
154struct multi_stop_data {
155 cpu_stop_fn_t fn;
156 void *data;
157 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
158 unsigned int num_threads;
159 const struct cpumask *active_cpus;
160
161 enum multi_stop_state state;
162 atomic_t thread_ack;
163};
164
165static void set_state(struct multi_stop_data *msdata,
166 enum multi_stop_state newstate)
167{
168 /* Reset ack counter. */
169 atomic_set(&msdata->thread_ack, msdata->num_threads);
170 smp_wmb();
171 WRITE_ONCE(msdata->state, newstate);
172}
173
174/* Last one to ack a state moves to the next state. */
175static void ack_state(struct multi_stop_data *msdata)
176{
177 if (atomic_dec_and_test(&msdata->thread_ack))
178 set_state(msdata, msdata->state + 1);
179}
180
181void __weak stop_machine_yield(const struct cpumask *cpumask)
182{
183 cpu_relax();
184}
185
186/* This is the cpu_stop function which stops the CPU. */
187static int multi_cpu_stop(void *data)
188{
189 struct multi_stop_data *msdata = data;
190 enum multi_stop_state newstate, curstate = MULTI_STOP_NONE;
191 int cpu = smp_processor_id(), err = 0;
192 const struct cpumask *cpumask;
193 unsigned long flags;
194 bool is_active;
195
196 /*
197 * When called from stop_machine_from_inactive_cpu(), irq might
198 * already be disabled. Save the state and restore it on exit.
199 */
200 local_save_flags(flags);
201
202 if (!msdata->active_cpus) {
203 cpumask = cpu_online_mask;
204 is_active = cpu == cpumask_first(cpumask);
205 } else {
206 cpumask = msdata->active_cpus;
207 is_active = cpumask_test_cpu(cpu, cpumask);
208 }
209
210 /* Simple state machine */
211 do {
212 /* Chill out and ensure we re-read multi_stop_state. */
213 stop_machine_yield(cpumask);
214 newstate = READ_ONCE(msdata->state);
215 if (newstate != curstate) {
216 curstate = newstate;
217 switch (curstate) {
218 case MULTI_STOP_DISABLE_IRQ:
219 local_irq_disable();
220 hard_irq_disable();
221 break;
222 case MULTI_STOP_RUN:
223 if (is_active)
224 err = msdata->fn(msdata->data);
225 break;
226 default:
227 break;
228 }
229 ack_state(msdata);
230 } else if (curstate > MULTI_STOP_PREPARE) {
231 /*
232 * At this stage all other CPUs we depend on must spin
233 * in the same loop. Any reason for hard-lockup should
234 * be detected and reported on their side.
235 */
236 touch_nmi_watchdog();
237 }
238 rcu_momentary_dyntick_idle();
239 } while (curstate != MULTI_STOP_EXIT);
240
241 local_irq_restore(flags);
242 return err;
243}
244
245static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
246 int cpu2, struct cpu_stop_work *work2)
247{
248 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
249 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
250 DEFINE_WAKE_Q(wakeq);
251 int err;
252
253retry:
254 /*
255 * The waking up of stopper threads has to happen in the same
256 * scheduling context as the queueing. Otherwise, there is a
257 * possibility of one of the above stoppers being woken up by another
258 * CPU, and preempting us. This will cause us to not wake up the other
259 * stopper forever.
260 */
261 preempt_disable();
262 raw_spin_lock_irq(&stopper1->lock);
263 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
264
265 if (!stopper1->enabled || !stopper2->enabled) {
266 err = -ENOENT;
267 goto unlock;
268 }
269
270 /*
271 * Ensure that if we race with __stop_cpus() the stoppers won't get
272 * queued up in reverse order leading to system deadlock.
273 *
274 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
275 * queued a work on cpu1 but not on cpu2, we hold both locks.
276 *
277 * It can be falsely true but it is safe to spin until it is cleared,
278 * queue_stop_cpus_work() does everything under preempt_disable().
279 */
280 if (unlikely(stop_cpus_in_progress)) {
281 err = -EDEADLK;
282 goto unlock;
283 }
284
285 err = 0;
286 __cpu_stop_queue_work(stopper1, work1, &wakeq);
287 __cpu_stop_queue_work(stopper2, work2, &wakeq);
288
289unlock:
290 raw_spin_unlock(&stopper2->lock);
291 raw_spin_unlock_irq(&stopper1->lock);
292
293 if (unlikely(err == -EDEADLK)) {
294 preempt_enable();
295
296 while (stop_cpus_in_progress)
297 cpu_relax();
298
299 goto retry;
300 }
301
302 wake_up_q(&wakeq);
303 preempt_enable();
304
305 return err;
306}
307/**
308 * stop_two_cpus - stops two cpus
309 * @cpu1: the cpu to stop
310 * @cpu2: the other cpu to stop
311 * @fn: function to execute
312 * @arg: argument to @fn
313 *
314 * Stops both the current and specified CPU and runs @fn on one of them.
315 *
316 * returns when both are completed.
317 */
318int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
319{
320 struct cpu_stop_done done;
321 struct cpu_stop_work work1, work2;
322 struct multi_stop_data msdata;
323
324 msdata = (struct multi_stop_data){
325 .fn = fn,
326 .data = arg,
327 .num_threads = 2,
328 .active_cpus = cpumask_of(cpu1),
329 };
330
331 work1 = work2 = (struct cpu_stop_work){
332 .fn = multi_cpu_stop,
333 .arg = &msdata,
334 .done = &done
335 };
336
337 cpu_stop_init_done(&done, 2);
338 set_state(&msdata, MULTI_STOP_PREPARE);
339
340 if (cpu1 > cpu2)
341 swap(cpu1, cpu2);
342 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
343 return -ENOENT;
344
345 wait_for_completion(&done.completion);
346 return done.ret;
347}
348
349/**
350 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
351 * @cpu: cpu to stop
352 * @fn: function to execute
353 * @arg: argument to @fn
354 * @work_buf: pointer to cpu_stop_work structure
355 *
356 * Similar to stop_one_cpu() but doesn't wait for completion. The
357 * caller is responsible for ensuring @work_buf is currently unused
358 * and will remain untouched until stopper starts executing @fn.
359 *
360 * CONTEXT:
361 * Don't care.
362 *
363 * RETURNS:
364 * true if cpu_stop_work was queued successfully and @fn will be called,
365 * false otherwise.
366 */
367bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
368 struct cpu_stop_work *work_buf)
369{
370 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
371 return cpu_stop_queue_work(cpu, work_buf);
372}
373
374static bool queue_stop_cpus_work(const struct cpumask *cpumask,
375 cpu_stop_fn_t fn, void *arg,
376 struct cpu_stop_done *done)
377{
378 struct cpu_stop_work *work;
379 unsigned int cpu;
380 bool queued = false;
381
382 /*
383 * Disable preemption while queueing to avoid getting
384 * preempted by a stopper which might wait for other stoppers
385 * to enter @fn which can lead to deadlock.
386 */
387 preempt_disable();
388 stop_cpus_in_progress = true;
389 barrier();
390 for_each_cpu(cpu, cpumask) {
391 work = &per_cpu(cpu_stopper.stop_work, cpu);
392 work->fn = fn;
393 work->arg = arg;
394 work->done = done;
395 if (cpu_stop_queue_work(cpu, work))
396 queued = true;
397 }
398 barrier();
399 stop_cpus_in_progress = false;
400 preempt_enable();
401
402 return queued;
403}
404
405static int __stop_cpus(const struct cpumask *cpumask,
406 cpu_stop_fn_t fn, void *arg)
407{
408 struct cpu_stop_done done;
409
410 cpu_stop_init_done(&done, cpumask_weight(cpumask));
411 if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
412 return -ENOENT;
413 wait_for_completion(&done.completion);
414 return done.ret;
415}
416
417/**
418 * stop_cpus - stop multiple cpus
419 * @cpumask: cpus to stop
420 * @fn: function to execute
421 * @arg: argument to @fn
422 *
423 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
424 * @fn is run in a process context with the highest priority
425 * preempting any task on the cpu and monopolizing it. This function
426 * returns after all executions are complete.
427 *
428 * This function doesn't guarantee the cpus in @cpumask stay online
429 * till @fn completes. If some cpus go down in the middle, execution
430 * on the cpu may happen partially or fully on different cpus. @fn
431 * should either be ready for that or the caller should ensure that
432 * the cpus stay online until this function completes.
433 *
434 * All stop_cpus() calls are serialized making it safe for @fn to wait
435 * for all cpus to start executing it.
436 *
437 * CONTEXT:
438 * Might sleep.
439 *
440 * RETURNS:
441 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
442 * @cpumask were offline; otherwise, 0 if all executions of @fn
443 * returned 0, any non zero return value if any returned non zero.
444 */
445static int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
446{
447 int ret;
448
449 /* static works are used, process one request at a time */
450 mutex_lock(&stop_cpus_mutex);
451 ret = __stop_cpus(cpumask, fn, arg);
452 mutex_unlock(&stop_cpus_mutex);
453 return ret;
454}
455
456static int cpu_stop_should_run(unsigned int cpu)
457{
458 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
459 unsigned long flags;
460 int run;
461
462 raw_spin_lock_irqsave(&stopper->lock, flags);
463 run = !list_empty(&stopper->works);
464 raw_spin_unlock_irqrestore(&stopper->lock, flags);
465 return run;
466}
467
468static void cpu_stopper_thread(unsigned int cpu)
469{
470 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
471 struct cpu_stop_work *work;
472
473repeat:
474 work = NULL;
475 raw_spin_lock_irq(&stopper->lock);
476 if (!list_empty(&stopper->works)) {
477 work = list_first_entry(&stopper->works,
478 struct cpu_stop_work, list);
479 list_del_init(&work->list);
480 }
481 raw_spin_unlock_irq(&stopper->lock);
482
483 if (work) {
484 cpu_stop_fn_t fn = work->fn;
485 void *arg = work->arg;
486 struct cpu_stop_done *done = work->done;
487 int ret;
488
489 /* cpu stop callbacks must not sleep, make in_atomic() == T */
490 preempt_count_inc();
491 ret = fn(arg);
492 if (done) {
493 if (ret)
494 done->ret = ret;
495 cpu_stop_signal_done(done);
496 }
497 preempt_count_dec();
498 WARN_ONCE(preempt_count(),
499 "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
500 goto repeat;
501 }
502}
503
504void stop_machine_park(int cpu)
505{
506 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
507 /*
508 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
509 * the pending works before it parks, until then it is fine to queue
510 * the new works.
511 */
512 stopper->enabled = false;
513 kthread_park(stopper->thread);
514}
515
516extern void sched_set_stop_task(int cpu, struct task_struct *stop);
517
518static void cpu_stop_create(unsigned int cpu)
519{
520 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
521}
522
523static void cpu_stop_park(unsigned int cpu)
524{
525 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
526
527 WARN_ON(!list_empty(&stopper->works));
528}
529
530void stop_machine_unpark(int cpu)
531{
532 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
533
534 stopper->enabled = true;
535 kthread_unpark(stopper->thread);
536}
537
538static struct smp_hotplug_thread cpu_stop_threads = {
539 .store = &cpu_stopper.thread,
540 .thread_should_run = cpu_stop_should_run,
541 .thread_fn = cpu_stopper_thread,
542 .thread_comm = "migration/%u",
543 .create = cpu_stop_create,
544 .park = cpu_stop_park,
545 .selfparking = true,
546};
547
548static int __init cpu_stop_init(void)
549{
550 unsigned int cpu;
551
552 for_each_possible_cpu(cpu) {
553 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
554
555 raw_spin_lock_init(&stopper->lock);
556 INIT_LIST_HEAD(&stopper->works);
557 }
558
559 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
560 stop_machine_unpark(raw_smp_processor_id());
561 stop_machine_initialized = true;
562 return 0;
563}
564early_initcall(cpu_stop_init);
565
566int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
567 const struct cpumask *cpus)
568{
569 struct multi_stop_data msdata = {
570 .fn = fn,
571 .data = data,
572 .num_threads = num_online_cpus(),
573 .active_cpus = cpus,
574 };
575
576 lockdep_assert_cpus_held();
577
578 if (!stop_machine_initialized) {
579 /*
580 * Handle the case where stop_machine() is called
581 * early in boot before stop_machine() has been
582 * initialized.
583 */
584 unsigned long flags;
585 int ret;
586
587 WARN_ON_ONCE(msdata.num_threads != 1);
588
589 local_irq_save(flags);
590 hard_irq_disable();
591 ret = (*fn)(data);
592 local_irq_restore(flags);
593
594 return ret;
595 }
596
597 /* Set the initial state and stop all online cpus. */
598 set_state(&msdata, MULTI_STOP_PREPARE);
599 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
600}
601
602int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
603{
604 int ret;
605
606 /* No CPUs can come up or down during this. */
607 cpus_read_lock();
608 ret = stop_machine_cpuslocked(fn, data, cpus);
609 cpus_read_unlock();
610 return ret;
611}
612EXPORT_SYMBOL_GPL(stop_machine);
613
614/**
615 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
616 * @fn: the function to run
617 * @data: the data ptr for the @fn()
618 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
619 *
620 * This is identical to stop_machine() but can be called from a CPU which
621 * is not active. The local CPU is in the process of hotplug (so no other
622 * CPU hotplug can start) and not marked active and doesn't have enough
623 * context to sleep.
624 *
625 * This function provides stop_machine() functionality for such state by
626 * using busy-wait for synchronization and executing @fn directly for local
627 * CPU.
628 *
629 * CONTEXT:
630 * Local CPU is inactive. Temporarily stops all active CPUs.
631 *
632 * RETURNS:
633 * 0 if all executions of @fn returned 0, any non zero return value if any
634 * returned non zero.
635 */
636int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
637 const struct cpumask *cpus)
638{
639 struct multi_stop_data msdata = { .fn = fn, .data = data,
640 .active_cpus = cpus };
641 struct cpu_stop_done done;
642 int ret;
643
644 /* Local CPU must be inactive and CPU hotplug in progress. */
645 BUG_ON(cpu_active(raw_smp_processor_id()));
646 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */
647
648 /* No proper task established and can't sleep - busy wait for lock. */
649 while (!mutex_trylock(&stop_cpus_mutex))
650 cpu_relax();
651
652 /* Schedule work on other CPUs and execute directly for local CPU */
653 set_state(&msdata, MULTI_STOP_PREPARE);
654 cpu_stop_init_done(&done, num_active_cpus());
655 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
656 &done);
657 ret = multi_cpu_stop(&msdata);
658
659 /* Busy wait for completion. */
660 while (!completion_done(&done.completion))
661 cpu_relax();
662
663 mutex_unlock(&stop_cpus_mutex);
664 return ret ?: done.ret;
665}