Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/lglock.h>
 
 24
 25/*
 26 * Structure to determine completion condition and record errors.  May
 27 * be shared by works on different cpus.
 28 */
 29struct cpu_stop_done {
 30	atomic_t		nr_todo;	/* nr left to execute */
 31	bool			executed;	/* actually executed? */
 32	int			ret;		/* collected return value */
 33	struct completion	completion;	/* fired if nr_todo reaches 0 */
 34};
 35
 36/* the actual stopper, one per every possible cpu, enabled on online cpus */
 37struct cpu_stopper {
 38	spinlock_t		lock;
 
 
 39	bool			enabled;	/* is this stopper enabled? */
 40	struct list_head	works;		/* list of pending works */
 
 
 41};
 42
 43static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 44static DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task);
 45static bool stop_machine_initialized = false;
 46
 47/*
 48 * Avoids a race between stop_two_cpus and global stop_cpus, where
 49 * the stoppers could get queued up in reverse order, leading to
 50 * system deadlock. Using an lglock means stop_two_cpus remains
 51 * relatively cheap.
 52 */
 53DEFINE_STATIC_LGLOCK(stop_cpus_lock);
 54
 55static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 56{
 57	memset(done, 0, sizeof(*done));
 58	atomic_set(&done->nr_todo, nr_todo);
 59	init_completion(&done->completion);
 60}
 61
 62/* signal completion unless @done is NULL */
 63static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
 64{
 65	if (done) {
 66		if (executed)
 67			done->executed = true;
 68		if (atomic_dec_and_test(&done->nr_todo))
 69			complete(&done->completion);
 70	}
 
 
 
 
 71}
 72
 73/* queue @work to @stopper.  if offline, @work is completed immediately */
 74static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 75{
 76	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 77	struct task_struct *p = per_cpu(cpu_stopper_task, cpu);
 78
 79	unsigned long flags;
 
 80
 81	spin_lock_irqsave(&stopper->lock, flags);
 
 
 
 
 
 
 
 82
 83	if (stopper->enabled) {
 84		list_add_tail(&work->list, &stopper->works);
 85		wake_up_process(p);
 86	} else
 87		cpu_stop_signal_done(work->done, false);
 88
 89	spin_unlock_irqrestore(&stopper->lock, flags);
 90}
 91
 92/**
 93 * stop_one_cpu - stop a cpu
 94 * @cpu: cpu to stop
 95 * @fn: function to execute
 96 * @arg: argument to @fn
 97 *
 98 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 99 * the highest priority preempting any task on the cpu and
100 * monopolizing it.  This function returns after the execution is
101 * complete.
102 *
103 * This function doesn't guarantee @cpu stays online till @fn
104 * completes.  If @cpu goes down in the middle, execution may happen
105 * partially or fully on different cpus.  @fn should either be ready
106 * for that or the caller should ensure that @cpu stays online until
107 * this function completes.
108 *
109 * CONTEXT:
110 * Might sleep.
111 *
112 * RETURNS:
113 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
114 * otherwise, the return value of @fn.
115 */
116int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
117{
118	struct cpu_stop_done done;
119	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
120
121	cpu_stop_init_done(&done, 1);
122	cpu_stop_queue_work(cpu, &work);
 
 
 
 
 
 
123	wait_for_completion(&done.completion);
124	return done.executed ? done.ret : -ENOENT;
125}
126
127/* This controls the threads on each CPU. */
128enum multi_stop_state {
129	/* Dummy starting state for thread. */
130	MULTI_STOP_NONE,
131	/* Awaiting everyone to be scheduled. */
132	MULTI_STOP_PREPARE,
133	/* Disable interrupts. */
134	MULTI_STOP_DISABLE_IRQ,
135	/* Run the function */
136	MULTI_STOP_RUN,
137	/* Exit */
138	MULTI_STOP_EXIT,
139};
140
141struct multi_stop_data {
142	int			(*fn)(void *);
143	void			*data;
144	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
145	unsigned int		num_threads;
146	const struct cpumask	*active_cpus;
147
148	enum multi_stop_state	state;
149	atomic_t		thread_ack;
150};
151
152static void set_state(struct multi_stop_data *msdata,
153		      enum multi_stop_state newstate)
154{
155	/* Reset ack counter. */
156	atomic_set(&msdata->thread_ack, msdata->num_threads);
157	smp_wmb();
158	msdata->state = newstate;
159}
160
161/* Last one to ack a state moves to the next state. */
162static void ack_state(struct multi_stop_data *msdata)
163{
164	if (atomic_dec_and_test(&msdata->thread_ack))
165		set_state(msdata, msdata->state + 1);
166}
167
 
 
 
 
 
168/* This is the cpu_stop function which stops the CPU. */
169static int multi_cpu_stop(void *data)
170{
171	struct multi_stop_data *msdata = data;
172	enum multi_stop_state curstate = MULTI_STOP_NONE;
173	int cpu = smp_processor_id(), err = 0;
 
174	unsigned long flags;
175	bool is_active;
176
177	/*
178	 * When called from stop_machine_from_inactive_cpu(), irq might
179	 * already be disabled.  Save the state and restore it on exit.
180	 */
181	local_save_flags(flags);
182
183	if (!msdata->active_cpus)
184		is_active = cpu == cpumask_first(cpu_online_mask);
185	else
186		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
 
 
 
187
188	/* Simple state machine */
189	do {
190		/* Chill out and ensure we re-read multi_stop_state. */
191		cpu_relax();
192		if (msdata->state != curstate) {
193			curstate = msdata->state;
 
194			switch (curstate) {
195			case MULTI_STOP_DISABLE_IRQ:
196				local_irq_disable();
197				hard_irq_disable();
198				break;
199			case MULTI_STOP_RUN:
200				if (is_active)
201					err = msdata->fn(msdata->data);
202				break;
203			default:
204				break;
205			}
206			ack_state(msdata);
 
 
 
 
 
 
 
207		}
208	} while (curstate != MULTI_STOP_EXIT);
209
210	local_irq_restore(flags);
211	return err;
212}
213
214struct irq_cpu_stop_queue_work_info {
215	int cpu1;
216	int cpu2;
217	struct cpu_stop_work *work1;
218	struct cpu_stop_work *work2;
219};
220
221/*
222 * This function is always run with irqs and preemption disabled.
223 * This guarantees that both work1 and work2 get queued, before
224 * our local migrate thread gets the chance to preempt us.
225 */
226static void irq_cpu_stop_queue_work(void *arg)
227{
228	struct irq_cpu_stop_queue_work_info *info = arg;
229	cpu_stop_queue_work(info->cpu1, info->work1);
230	cpu_stop_queue_work(info->cpu2, info->work2);
231}
232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233/**
234 * stop_two_cpus - stops two cpus
235 * @cpu1: the cpu to stop
236 * @cpu2: the other cpu to stop
237 * @fn: function to execute
238 * @arg: argument to @fn
239 *
240 * Stops both the current and specified CPU and runs @fn on one of them.
241 *
242 * returns when both are completed.
243 */
244int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
245{
246	struct cpu_stop_done done;
247	struct cpu_stop_work work1, work2;
248	struct irq_cpu_stop_queue_work_info call_args;
249	struct multi_stop_data msdata;
250
251	preempt_disable();
252	msdata = (struct multi_stop_data){
253		.fn = fn,
254		.data = arg,
255		.num_threads = 2,
256		.active_cpus = cpumask_of(cpu1),
257	};
258
259	work1 = work2 = (struct cpu_stop_work){
260		.fn = multi_cpu_stop,
261		.arg = &msdata,
262		.done = &done
263	};
264
265	call_args = (struct irq_cpu_stop_queue_work_info){
266		.cpu1 = cpu1,
267		.cpu2 = cpu2,
268		.work1 = &work1,
269		.work2 = &work2,
270	};
271
272	cpu_stop_init_done(&done, 2);
273	set_state(&msdata, MULTI_STOP_PREPARE);
274
275	/*
276	 * If we observe both CPUs active we know _cpu_down() cannot yet have
277	 * queued its stop_machine works and therefore ours will get executed
278	 * first. Or its not either one of our CPUs that's getting unplugged,
279	 * in which case we don't care.
280	 *
281	 * This relies on the stopper workqueues to be FIFO.
282	 */
283	if (!cpu_active(cpu1) || !cpu_active(cpu2)) {
284		preempt_enable();
285		return -ENOENT;
286	}
287
288	lg_local_lock(&stop_cpus_lock);
289	/*
290	 * Queuing needs to be done by the lowest numbered CPU, to ensure
291	 * that works are always queued in the same order on every CPU.
292	 * This prevents deadlocks.
293	 */
294	smp_call_function_single(min(cpu1, cpu2),
295				 &irq_cpu_stop_queue_work,
296				 &call_args, 1);
297	lg_local_unlock(&stop_cpus_lock);
298	preempt_enable();
299
300	wait_for_completion(&done.completion);
301
302	return done.executed ? done.ret : -ENOENT;
303}
304
305/**
306 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
307 * @cpu: cpu to stop
308 * @fn: function to execute
309 * @arg: argument to @fn
 
310 *
311 * Similar to stop_one_cpu() but doesn't wait for completion.  The
312 * caller is responsible for ensuring @work_buf is currently unused
313 * and will remain untouched until stopper starts executing @fn.
314 *
315 * CONTEXT:
316 * Don't care.
 
 
 
 
317 */
318void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
319			struct cpu_stop_work *work_buf)
320{
321	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
322	cpu_stop_queue_work(cpu, work_buf);
323}
324
325/* static data for stop_cpus */
326static DEFINE_MUTEX(stop_cpus_mutex);
327static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
328
329static void queue_stop_cpus_work(const struct cpumask *cpumask,
330				 cpu_stop_fn_t fn, void *arg,
331				 struct cpu_stop_done *done)
332{
333	struct cpu_stop_work *work;
334	unsigned int cpu;
 
335
336	/* initialize works and done */
 
 
 
 
 
 
 
337	for_each_cpu(cpu, cpumask) {
338		work = &per_cpu(stop_cpus_work, cpu);
339		work->fn = fn;
340		work->arg = arg;
341		work->done = done;
 
 
342	}
 
 
 
343
344	/*
345	 * Disable preemption while queueing to avoid getting
346	 * preempted by a stopper which might wait for other stoppers
347	 * to enter @fn which can lead to deadlock.
348	 */
349	lg_global_lock(&stop_cpus_lock);
350	for_each_cpu(cpu, cpumask)
351		cpu_stop_queue_work(cpu, &per_cpu(stop_cpus_work, cpu));
352	lg_global_unlock(&stop_cpus_lock);
353}
354
355static int __stop_cpus(const struct cpumask *cpumask,
356		       cpu_stop_fn_t fn, void *arg)
357{
358	struct cpu_stop_done done;
359
360	cpu_stop_init_done(&done, cpumask_weight(cpumask));
361	queue_stop_cpus_work(cpumask, fn, arg, &done);
 
362	wait_for_completion(&done.completion);
363	return done.executed ? done.ret : -ENOENT;
364}
365
366/**
367 * stop_cpus - stop multiple cpus
368 * @cpumask: cpus to stop
369 * @fn: function to execute
370 * @arg: argument to @fn
371 *
372 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
373 * @fn is run in a process context with the highest priority
374 * preempting any task on the cpu and monopolizing it.  This function
375 * returns after all executions are complete.
376 *
377 * This function doesn't guarantee the cpus in @cpumask stay online
378 * till @fn completes.  If some cpus go down in the middle, execution
379 * on the cpu may happen partially or fully on different cpus.  @fn
380 * should either be ready for that or the caller should ensure that
381 * the cpus stay online until this function completes.
382 *
383 * All stop_cpus() calls are serialized making it safe for @fn to wait
384 * for all cpus to start executing it.
385 *
386 * CONTEXT:
387 * Might sleep.
388 *
389 * RETURNS:
390 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
391 * @cpumask were offline; otherwise, 0 if all executions of @fn
392 * returned 0, any non zero return value if any returned non zero.
393 */
394int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
395{
396	int ret;
397
398	/* static works are used, process one request at a time */
399	mutex_lock(&stop_cpus_mutex);
400	ret = __stop_cpus(cpumask, fn, arg);
401	mutex_unlock(&stop_cpus_mutex);
402	return ret;
403}
404
405/**
406 * try_stop_cpus - try to stop multiple cpus
407 * @cpumask: cpus to stop
408 * @fn: function to execute
409 * @arg: argument to @fn
410 *
411 * Identical to stop_cpus() except that it fails with -EAGAIN if
412 * someone else is already using the facility.
413 *
414 * CONTEXT:
415 * Might sleep.
416 *
417 * RETURNS:
418 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
419 * @fn(@arg) was not executed at all because all cpus in @cpumask were
420 * offline; otherwise, 0 if all executions of @fn returned 0, any non
421 * zero return value if any returned non zero.
422 */
423int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
424{
425	int ret;
426
427	/* static works are used, process one request at a time */
428	if (!mutex_trylock(&stop_cpus_mutex))
429		return -EAGAIN;
430	ret = __stop_cpus(cpumask, fn, arg);
431	mutex_unlock(&stop_cpus_mutex);
432	return ret;
433}
434
435static int cpu_stop_should_run(unsigned int cpu)
436{
437	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
438	unsigned long flags;
439	int run;
440
441	spin_lock_irqsave(&stopper->lock, flags);
442	run = !list_empty(&stopper->works);
443	spin_unlock_irqrestore(&stopper->lock, flags);
444	return run;
445}
446
447static void cpu_stopper_thread(unsigned int cpu)
448{
449	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
450	struct cpu_stop_work *work;
451	int ret;
452
453repeat:
454	work = NULL;
455	spin_lock_irq(&stopper->lock);
456	if (!list_empty(&stopper->works)) {
457		work = list_first_entry(&stopper->works,
458					struct cpu_stop_work, list);
459		list_del_init(&work->list);
460	}
461	spin_unlock_irq(&stopper->lock);
462
463	if (work) {
464		cpu_stop_fn_t fn = work->fn;
465		void *arg = work->arg;
466		struct cpu_stop_done *done = work->done;
467		char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
468
469		/* cpu stop callbacks are not allowed to sleep */
470		preempt_disable();
471
 
 
472		ret = fn(arg);
473		if (ret)
474			done->ret = ret;
475
476		/* restore preemption and check it's still balanced */
477		preempt_enable();
 
478		WARN_ONCE(preempt_count(),
479			  "cpu_stop: %s(%p) leaked preempt count\n",
480			  kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
481					  ksym_buf), arg);
482
483		cpu_stop_signal_done(done, true);
484		goto repeat;
485	}
486}
487
 
 
 
 
 
 
 
 
 
 
 
 
488extern void sched_set_stop_task(int cpu, struct task_struct *stop);
489
490static void cpu_stop_create(unsigned int cpu)
491{
492	sched_set_stop_task(cpu, per_cpu(cpu_stopper_task, cpu));
493}
494
495static void cpu_stop_park(unsigned int cpu)
496{
497	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
498	struct cpu_stop_work *work;
499	unsigned long flags;
500
501	/* drain remaining works */
502	spin_lock_irqsave(&stopper->lock, flags);
503	list_for_each_entry(work, &stopper->works, list)
504		cpu_stop_signal_done(work->done, false);
505	stopper->enabled = false;
506	spin_unlock_irqrestore(&stopper->lock, flags);
507}
508
509static void cpu_stop_unpark(unsigned int cpu)
510{
511	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
512
513	spin_lock_irq(&stopper->lock);
514	stopper->enabled = true;
515	spin_unlock_irq(&stopper->lock);
516}
517
518static struct smp_hotplug_thread cpu_stop_threads = {
519	.store			= &cpu_stopper_task,
520	.thread_should_run	= cpu_stop_should_run,
521	.thread_fn		= cpu_stopper_thread,
522	.thread_comm		= "migration/%u",
523	.create			= cpu_stop_create,
524	.setup			= cpu_stop_unpark,
525	.park			= cpu_stop_park,
526	.pre_unpark		= cpu_stop_unpark,
527	.selfparking		= true,
528};
529
530static int __init cpu_stop_init(void)
531{
532	unsigned int cpu;
533
534	for_each_possible_cpu(cpu) {
535		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
536
537		spin_lock_init(&stopper->lock);
538		INIT_LIST_HEAD(&stopper->works);
539	}
540
541	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
 
542	stop_machine_initialized = true;
543	return 0;
544}
545early_initcall(cpu_stop_init);
546
547#ifdef CONFIG_STOP_MACHINE
548
549int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
550{
551	struct multi_stop_data msdata = {
552		.fn = fn,
553		.data = data,
554		.num_threads = num_online_cpus(),
555		.active_cpus = cpus,
556	};
557
 
 
558	if (!stop_machine_initialized) {
559		/*
560		 * Handle the case where stop_machine() is called
561		 * early in boot before stop_machine() has been
562		 * initialized.
563		 */
564		unsigned long flags;
565		int ret;
566
567		WARN_ON_ONCE(msdata.num_threads != 1);
568
569		local_irq_save(flags);
570		hard_irq_disable();
571		ret = (*fn)(data);
572		local_irq_restore(flags);
573
574		return ret;
575	}
576
577	/* Set the initial state and stop all online cpus. */
578	set_state(&msdata, MULTI_STOP_PREPARE);
579	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
580}
581
582int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
583{
584	int ret;
585
586	/* No CPUs can come up or down during this. */
587	get_online_cpus();
588	ret = __stop_machine(fn, data, cpus);
589	put_online_cpus();
590	return ret;
591}
592EXPORT_SYMBOL_GPL(stop_machine);
593
594/**
595 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
596 * @fn: the function to run
597 * @data: the data ptr for the @fn()
598 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
599 *
600 * This is identical to stop_machine() but can be called from a CPU which
601 * is not active.  The local CPU is in the process of hotplug (so no other
602 * CPU hotplug can start) and not marked active and doesn't have enough
603 * context to sleep.
604 *
605 * This function provides stop_machine() functionality for such state by
606 * using busy-wait for synchronization and executing @fn directly for local
607 * CPU.
608 *
609 * CONTEXT:
610 * Local CPU is inactive.  Temporarily stops all active CPUs.
611 *
612 * RETURNS:
613 * 0 if all executions of @fn returned 0, any non zero return value if any
614 * returned non zero.
615 */
616int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
617				  const struct cpumask *cpus)
618{
619	struct multi_stop_data msdata = { .fn = fn, .data = data,
620					    .active_cpus = cpus };
621	struct cpu_stop_done done;
622	int ret;
623
624	/* Local CPU must be inactive and CPU hotplug in progress. */
625	BUG_ON(cpu_active(raw_smp_processor_id()));
626	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
627
628	/* No proper task established and can't sleep - busy wait for lock. */
629	while (!mutex_trylock(&stop_cpus_mutex))
630		cpu_relax();
631
632	/* Schedule work on other CPUs and execute directly for local CPU */
633	set_state(&msdata, MULTI_STOP_PREPARE);
634	cpu_stop_init_done(&done, num_active_cpus());
635	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
636			     &done);
637	ret = multi_cpu_stop(&msdata);
638
639	/* Busy wait for completion. */
640	while (!completion_done(&done.completion))
641		cpu_relax();
642
643	mutex_unlock(&stop_cpus_mutex);
644	return ret ?: done.ret;
645}
646
647#endif	/* CONFIG_STOP_MACHINE */
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * kernel/stop_machine.c
  4 *
  5 * Copyright (C) 2008, 2005	IBM Corporation.
  6 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  7 * Copyright (C) 2010		SUSE Linux Products GmbH
  8 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
 
 
  9 */
 10#include <linux/compiler.h>
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/nmi.h>
 24#include <linux/sched/wake_q.h>
 25
 26/*
 27 * Structure to determine completion condition and record errors.  May
 28 * be shared by works on different cpus.
 29 */
 30struct cpu_stop_done {
 31	atomic_t		nr_todo;	/* nr left to execute */
 
 32	int			ret;		/* collected return value */
 33	struct completion	completion;	/* fired if nr_todo reaches 0 */
 34};
 35
 36/* the actual stopper, one per every possible cpu, enabled on online cpus */
 37struct cpu_stopper {
 38	struct task_struct	*thread;
 39
 40	raw_spinlock_t		lock;
 41	bool			enabled;	/* is this stopper enabled? */
 42	struct list_head	works;		/* list of pending works */
 43
 44	struct cpu_stop_work	stop_work;	/* for stop_cpus */
 45};
 46
 47static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 
 48static bool stop_machine_initialized = false;
 49
 50/* static data for stop_cpus */
 51static DEFINE_MUTEX(stop_cpus_mutex);
 52static bool stop_cpus_in_progress;
 
 
 
 
 53
 54static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 55{
 56	memset(done, 0, sizeof(*done));
 57	atomic_set(&done->nr_todo, nr_todo);
 58	init_completion(&done->completion);
 59}
 60
 61/* signal completion unless @done is NULL */
 62static void cpu_stop_signal_done(struct cpu_stop_done *done)
 63{
 64	if (atomic_dec_and_test(&done->nr_todo))
 65		complete(&done->completion);
 66}
 67
 68static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
 69					struct cpu_stop_work *work,
 70					struct wake_q_head *wakeq)
 71{
 72	list_add_tail(&work->list, &stopper->works);
 73	wake_q_add(wakeq, stopper->thread);
 74}
 75
 76/* queue @work to @stopper.  if offline, @work is completed immediately */
 77static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 78{
 79	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 80	DEFINE_WAKE_Q(wakeq);
 
 81	unsigned long flags;
 82	bool enabled;
 83
 84	preempt_disable();
 85	raw_spin_lock_irqsave(&stopper->lock, flags);
 86	enabled = stopper->enabled;
 87	if (enabled)
 88		__cpu_stop_queue_work(stopper, work, &wakeq);
 89	else if (work->done)
 90		cpu_stop_signal_done(work->done);
 91	raw_spin_unlock_irqrestore(&stopper->lock, flags);
 92
 93	wake_up_q(&wakeq);
 94	preempt_enable();
 
 
 
 95
 96	return enabled;
 97}
 98
 99/**
100 * stop_one_cpu - stop a cpu
101 * @cpu: cpu to stop
102 * @fn: function to execute
103 * @arg: argument to @fn
104 *
105 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
106 * the highest priority preempting any task on the cpu and
107 * monopolizing it.  This function returns after the execution is
108 * complete.
109 *
110 * This function doesn't guarantee @cpu stays online till @fn
111 * completes.  If @cpu goes down in the middle, execution may happen
112 * partially or fully on different cpus.  @fn should either be ready
113 * for that or the caller should ensure that @cpu stays online until
114 * this function completes.
115 *
116 * CONTEXT:
117 * Might sleep.
118 *
119 * RETURNS:
120 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
121 * otherwise, the return value of @fn.
122 */
123int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
124{
125	struct cpu_stop_done done;
126	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
127
128	cpu_stop_init_done(&done, 1);
129	if (!cpu_stop_queue_work(cpu, &work))
130		return -ENOENT;
131	/*
132	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
133	 * cycle by doing a preemption:
134	 */
135	cond_resched();
136	wait_for_completion(&done.completion);
137	return done.ret;
138}
139
140/* This controls the threads on each CPU. */
141enum multi_stop_state {
142	/* Dummy starting state for thread. */
143	MULTI_STOP_NONE,
144	/* Awaiting everyone to be scheduled. */
145	MULTI_STOP_PREPARE,
146	/* Disable interrupts. */
147	MULTI_STOP_DISABLE_IRQ,
148	/* Run the function */
149	MULTI_STOP_RUN,
150	/* Exit */
151	MULTI_STOP_EXIT,
152};
153
154struct multi_stop_data {
155	cpu_stop_fn_t		fn;
156	void			*data;
157	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
158	unsigned int		num_threads;
159	const struct cpumask	*active_cpus;
160
161	enum multi_stop_state	state;
162	atomic_t		thread_ack;
163};
164
165static void set_state(struct multi_stop_data *msdata,
166		      enum multi_stop_state newstate)
167{
168	/* Reset ack counter. */
169	atomic_set(&msdata->thread_ack, msdata->num_threads);
170	smp_wmb();
171	WRITE_ONCE(msdata->state, newstate);
172}
173
174/* Last one to ack a state moves to the next state. */
175static void ack_state(struct multi_stop_data *msdata)
176{
177	if (atomic_dec_and_test(&msdata->thread_ack))
178		set_state(msdata, msdata->state + 1);
179}
180
181void __weak stop_machine_yield(const struct cpumask *cpumask)
182{
183	cpu_relax();
184}
185
186/* This is the cpu_stop function which stops the CPU. */
187static int multi_cpu_stop(void *data)
188{
189	struct multi_stop_data *msdata = data;
190	enum multi_stop_state newstate, curstate = MULTI_STOP_NONE;
191	int cpu = smp_processor_id(), err = 0;
192	const struct cpumask *cpumask;
193	unsigned long flags;
194	bool is_active;
195
196	/*
197	 * When called from stop_machine_from_inactive_cpu(), irq might
198	 * already be disabled.  Save the state and restore it on exit.
199	 */
200	local_save_flags(flags);
201
202	if (!msdata->active_cpus) {
203		cpumask = cpu_online_mask;
204		is_active = cpu == cpumask_first(cpumask);
205	} else {
206		cpumask = msdata->active_cpus;
207		is_active = cpumask_test_cpu(cpu, cpumask);
208	}
209
210	/* Simple state machine */
211	do {
212		/* Chill out and ensure we re-read multi_stop_state. */
213		stop_machine_yield(cpumask);
214		newstate = READ_ONCE(msdata->state);
215		if (newstate != curstate) {
216			curstate = newstate;
217			switch (curstate) {
218			case MULTI_STOP_DISABLE_IRQ:
219				local_irq_disable();
220				hard_irq_disable();
221				break;
222			case MULTI_STOP_RUN:
223				if (is_active)
224					err = msdata->fn(msdata->data);
225				break;
226			default:
227				break;
228			}
229			ack_state(msdata);
230		} else if (curstate > MULTI_STOP_PREPARE) {
231			/*
232			 * At this stage all other CPUs we depend on must spin
233			 * in the same loop. Any reason for hard-lockup should
234			 * be detected and reported on their side.
235			 */
236			touch_nmi_watchdog();
237		}
238	} while (curstate != MULTI_STOP_EXIT);
239
240	local_irq_restore(flags);
241	return err;
242}
243
244static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
245				    int cpu2, struct cpu_stop_work *work2)
 
 
 
 
 
 
 
 
 
 
 
246{
247	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
248	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
249	DEFINE_WAKE_Q(wakeq);
250	int err;
251
252retry:
253	/*
254	 * The waking up of stopper threads has to happen in the same
255	 * scheduling context as the queueing.  Otherwise, there is a
256	 * possibility of one of the above stoppers being woken up by another
257	 * CPU, and preempting us. This will cause us to not wake up the other
258	 * stopper forever.
259	 */
260	preempt_disable();
261	raw_spin_lock_irq(&stopper1->lock);
262	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
263
264	if (!stopper1->enabled || !stopper2->enabled) {
265		err = -ENOENT;
266		goto unlock;
267	}
268
269	/*
270	 * Ensure that if we race with __stop_cpus() the stoppers won't get
271	 * queued up in reverse order leading to system deadlock.
272	 *
273	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
274	 * queued a work on cpu1 but not on cpu2, we hold both locks.
275	 *
276	 * It can be falsely true but it is safe to spin until it is cleared,
277	 * queue_stop_cpus_work() does everything under preempt_disable().
278	 */
279	if (unlikely(stop_cpus_in_progress)) {
280		err = -EDEADLK;
281		goto unlock;
282	}
283
284	err = 0;
285	__cpu_stop_queue_work(stopper1, work1, &wakeq);
286	__cpu_stop_queue_work(stopper2, work2, &wakeq);
287
288unlock:
289	raw_spin_unlock(&stopper2->lock);
290	raw_spin_unlock_irq(&stopper1->lock);
291
292	if (unlikely(err == -EDEADLK)) {
293		preempt_enable();
294
295		while (stop_cpus_in_progress)
296			cpu_relax();
297
298		goto retry;
299	}
300
301	wake_up_q(&wakeq);
302	preempt_enable();
303
304	return err;
305}
306/**
307 * stop_two_cpus - stops two cpus
308 * @cpu1: the cpu to stop
309 * @cpu2: the other cpu to stop
310 * @fn: function to execute
311 * @arg: argument to @fn
312 *
313 * Stops both the current and specified CPU and runs @fn on one of them.
314 *
315 * returns when both are completed.
316 */
317int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
318{
319	struct cpu_stop_done done;
320	struct cpu_stop_work work1, work2;
 
321	struct multi_stop_data msdata;
322
 
323	msdata = (struct multi_stop_data){
324		.fn = fn,
325		.data = arg,
326		.num_threads = 2,
327		.active_cpus = cpumask_of(cpu1),
328	};
329
330	work1 = work2 = (struct cpu_stop_work){
331		.fn = multi_cpu_stop,
332		.arg = &msdata,
333		.done = &done
334	};
335
 
 
 
 
 
 
 
336	cpu_stop_init_done(&done, 2);
337	set_state(&msdata, MULTI_STOP_PREPARE);
338
339	if (cpu1 > cpu2)
340		swap(cpu1, cpu2);
341	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
 
 
 
 
 
 
 
342		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
343
344	wait_for_completion(&done.completion);
345	return done.ret;
 
346}
347
348/**
349 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
350 * @cpu: cpu to stop
351 * @fn: function to execute
352 * @arg: argument to @fn
353 * @work_buf: pointer to cpu_stop_work structure
354 *
355 * Similar to stop_one_cpu() but doesn't wait for completion.  The
356 * caller is responsible for ensuring @work_buf is currently unused
357 * and will remain untouched until stopper starts executing @fn.
358 *
359 * CONTEXT:
360 * Don't care.
361 *
362 * RETURNS:
363 * true if cpu_stop_work was queued successfully and @fn will be called,
364 * false otherwise.
365 */
366bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
367			struct cpu_stop_work *work_buf)
368{
369	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
370	return cpu_stop_queue_work(cpu, work_buf);
371}
372
373static bool queue_stop_cpus_work(const struct cpumask *cpumask,
 
 
 
 
374				 cpu_stop_fn_t fn, void *arg,
375				 struct cpu_stop_done *done)
376{
377	struct cpu_stop_work *work;
378	unsigned int cpu;
379	bool queued = false;
380
381	/*
382	 * Disable preemption while queueing to avoid getting
383	 * preempted by a stopper which might wait for other stoppers
384	 * to enter @fn which can lead to deadlock.
385	 */
386	preempt_disable();
387	stop_cpus_in_progress = true;
388	barrier();
389	for_each_cpu(cpu, cpumask) {
390		work = &per_cpu(cpu_stopper.stop_work, cpu);
391		work->fn = fn;
392		work->arg = arg;
393		work->done = done;
394		if (cpu_stop_queue_work(cpu, work))
395			queued = true;
396	}
397	barrier();
398	stop_cpus_in_progress = false;
399	preempt_enable();
400
401	return queued;
 
 
 
 
 
 
 
 
402}
403
404static int __stop_cpus(const struct cpumask *cpumask,
405		       cpu_stop_fn_t fn, void *arg)
406{
407	struct cpu_stop_done done;
408
409	cpu_stop_init_done(&done, cpumask_weight(cpumask));
410	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
411		return -ENOENT;
412	wait_for_completion(&done.completion);
413	return done.ret;
414}
415
416/**
417 * stop_cpus - stop multiple cpus
418 * @cpumask: cpus to stop
419 * @fn: function to execute
420 * @arg: argument to @fn
421 *
422 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
423 * @fn is run in a process context with the highest priority
424 * preempting any task on the cpu and monopolizing it.  This function
425 * returns after all executions are complete.
426 *
427 * This function doesn't guarantee the cpus in @cpumask stay online
428 * till @fn completes.  If some cpus go down in the middle, execution
429 * on the cpu may happen partially or fully on different cpus.  @fn
430 * should either be ready for that or the caller should ensure that
431 * the cpus stay online until this function completes.
432 *
433 * All stop_cpus() calls are serialized making it safe for @fn to wait
434 * for all cpus to start executing it.
435 *
436 * CONTEXT:
437 * Might sleep.
438 *
439 * RETURNS:
440 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
441 * @cpumask were offline; otherwise, 0 if all executions of @fn
442 * returned 0, any non zero return value if any returned non zero.
443 */
444int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
445{
446	int ret;
447
448	/* static works are used, process one request at a time */
449	mutex_lock(&stop_cpus_mutex);
450	ret = __stop_cpus(cpumask, fn, arg);
451	mutex_unlock(&stop_cpus_mutex);
452	return ret;
453}
454
455/**
456 * try_stop_cpus - try to stop multiple cpus
457 * @cpumask: cpus to stop
458 * @fn: function to execute
459 * @arg: argument to @fn
460 *
461 * Identical to stop_cpus() except that it fails with -EAGAIN if
462 * someone else is already using the facility.
463 *
464 * CONTEXT:
465 * Might sleep.
466 *
467 * RETURNS:
468 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
469 * @fn(@arg) was not executed at all because all cpus in @cpumask were
470 * offline; otherwise, 0 if all executions of @fn returned 0, any non
471 * zero return value if any returned non zero.
472 */
473int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
474{
475	int ret;
476
477	/* static works are used, process one request at a time */
478	if (!mutex_trylock(&stop_cpus_mutex))
479		return -EAGAIN;
480	ret = __stop_cpus(cpumask, fn, arg);
481	mutex_unlock(&stop_cpus_mutex);
482	return ret;
483}
484
485static int cpu_stop_should_run(unsigned int cpu)
486{
487	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
488	unsigned long flags;
489	int run;
490
491	raw_spin_lock_irqsave(&stopper->lock, flags);
492	run = !list_empty(&stopper->works);
493	raw_spin_unlock_irqrestore(&stopper->lock, flags);
494	return run;
495}
496
497static void cpu_stopper_thread(unsigned int cpu)
498{
499	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
500	struct cpu_stop_work *work;
 
501
502repeat:
503	work = NULL;
504	raw_spin_lock_irq(&stopper->lock);
505	if (!list_empty(&stopper->works)) {
506		work = list_first_entry(&stopper->works,
507					struct cpu_stop_work, list);
508		list_del_init(&work->list);
509	}
510	raw_spin_unlock_irq(&stopper->lock);
511
512	if (work) {
513		cpu_stop_fn_t fn = work->fn;
514		void *arg = work->arg;
515		struct cpu_stop_done *done = work->done;
516		int ret;
 
 
 
517
518		/* cpu stop callbacks must not sleep, make in_atomic() == T */
519		preempt_count_inc();
520		ret = fn(arg);
521		if (done) {
522			if (ret)
523				done->ret = ret;
524			cpu_stop_signal_done(done);
525		}
526		preempt_count_dec();
527		WARN_ONCE(preempt_count(),
528			  "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
 
 
 
 
529		goto repeat;
530	}
531}
532
533void stop_machine_park(int cpu)
534{
535	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
536	/*
537	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
538	 * the pending works before it parks, until then it is fine to queue
539	 * the new works.
540	 */
541	stopper->enabled = false;
542	kthread_park(stopper->thread);
543}
544
545extern void sched_set_stop_task(int cpu, struct task_struct *stop);
546
547static void cpu_stop_create(unsigned int cpu)
548{
549	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
550}
551
552static void cpu_stop_park(unsigned int cpu)
553{
554	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 
 
555
556	WARN_ON(!list_empty(&stopper->works));
 
 
 
 
 
557}
558
559void stop_machine_unpark(int cpu)
560{
561	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
562
 
563	stopper->enabled = true;
564	kthread_unpark(stopper->thread);
565}
566
567static struct smp_hotplug_thread cpu_stop_threads = {
568	.store			= &cpu_stopper.thread,
569	.thread_should_run	= cpu_stop_should_run,
570	.thread_fn		= cpu_stopper_thread,
571	.thread_comm		= "migration/%u",
572	.create			= cpu_stop_create,
 
573	.park			= cpu_stop_park,
 
574	.selfparking		= true,
575};
576
577static int __init cpu_stop_init(void)
578{
579	unsigned int cpu;
580
581	for_each_possible_cpu(cpu) {
582		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
583
584		raw_spin_lock_init(&stopper->lock);
585		INIT_LIST_HEAD(&stopper->works);
586	}
587
588	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
589	stop_machine_unpark(raw_smp_processor_id());
590	stop_machine_initialized = true;
591	return 0;
592}
593early_initcall(cpu_stop_init);
594
595int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
596			    const struct cpumask *cpus)
 
597{
598	struct multi_stop_data msdata = {
599		.fn = fn,
600		.data = data,
601		.num_threads = num_online_cpus(),
602		.active_cpus = cpus,
603	};
604
605	lockdep_assert_cpus_held();
606
607	if (!stop_machine_initialized) {
608		/*
609		 * Handle the case where stop_machine() is called
610		 * early in boot before stop_machine() has been
611		 * initialized.
612		 */
613		unsigned long flags;
614		int ret;
615
616		WARN_ON_ONCE(msdata.num_threads != 1);
617
618		local_irq_save(flags);
619		hard_irq_disable();
620		ret = (*fn)(data);
621		local_irq_restore(flags);
622
623		return ret;
624	}
625
626	/* Set the initial state and stop all online cpus. */
627	set_state(&msdata, MULTI_STOP_PREPARE);
628	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
629}
630
631int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
632{
633	int ret;
634
635	/* No CPUs can come up or down during this. */
636	cpus_read_lock();
637	ret = stop_machine_cpuslocked(fn, data, cpus);
638	cpus_read_unlock();
639	return ret;
640}
641EXPORT_SYMBOL_GPL(stop_machine);
642
643/**
644 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
645 * @fn: the function to run
646 * @data: the data ptr for the @fn()
647 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
648 *
649 * This is identical to stop_machine() but can be called from a CPU which
650 * is not active.  The local CPU is in the process of hotplug (so no other
651 * CPU hotplug can start) and not marked active and doesn't have enough
652 * context to sleep.
653 *
654 * This function provides stop_machine() functionality for such state by
655 * using busy-wait for synchronization and executing @fn directly for local
656 * CPU.
657 *
658 * CONTEXT:
659 * Local CPU is inactive.  Temporarily stops all active CPUs.
660 *
661 * RETURNS:
662 * 0 if all executions of @fn returned 0, any non zero return value if any
663 * returned non zero.
664 */
665int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
666				  const struct cpumask *cpus)
667{
668	struct multi_stop_data msdata = { .fn = fn, .data = data,
669					    .active_cpus = cpus };
670	struct cpu_stop_done done;
671	int ret;
672
673	/* Local CPU must be inactive and CPU hotplug in progress. */
674	BUG_ON(cpu_active(raw_smp_processor_id()));
675	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
676
677	/* No proper task established and can't sleep - busy wait for lock. */
678	while (!mutex_trylock(&stop_cpus_mutex))
679		cpu_relax();
680
681	/* Schedule work on other CPUs and execute directly for local CPU */
682	set_state(&msdata, MULTI_STOP_PREPARE);
683	cpu_stop_init_done(&done, num_active_cpus());
684	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
685			     &done);
686	ret = multi_cpu_stop(&msdata);
687
688	/* Busy wait for completion. */
689	while (!completion_done(&done.completion))
690		cpu_relax();
691
692	mutex_unlock(&stop_cpus_mutex);
693	return ret ?: done.ret;
694}